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ABSTRACT 

CALIBRATION TECHNIQUES FOR LOW-COST STAR TRACKERS 

Tom Dzamba, Master of Applied Science, Aerospace Engineering 
Ryerson University, Toronto~ August 2009 

v 

This study presents a series of cost-effective strategies for calibrating star trackers 

for microsatellite missions. VIe examine three such strategies that focus on the 

calibration of the image detector~ geometric calibration of the lab setup used for 

ground testing, and an optical calibration due to lens aberrations. Procedures are 

developed for each of these strategies that emphasize speed of implementation and 

accuracy, while trying to minimize manual labour. For the detector calibration, 

an existing calibration technique was adapted and implemented to reduce fixed 

pattern noise and dark current. Preliminary results show reduced variations in 

pixel sensitivity by approximately 21%, averaged across each pixel color given the 

use of a color imager. Although not substantial, this reduction in pixel variation 

will help preserve the Gaussian illumination pattern of imaged stars, aiding in 

correct centroid location. Results pertaining to the lab calibration show accurate 

star placement , in angular terms to 0.0073° across most of the field of view. 

This provides an accurate low-cost , variable solution for characterizing sensor 

performance; specifically pattern matching techniques. Finally, we present some 

initial results for lens aberration characterization. Using a Gaussian model of the 

star image shape gives trends consistent with astigmatism and field curvature 

aberrations. Together, these calibrations represent tools that aim to improve 

both development and manufacture of modern microsatellite star trackers. 
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CHAPTER 1 

Introduction 

1 

0 ver the past decade, microsatellites have become a popular alternative 

to conventional larger satellites for various near Earth and deep space 

applications. Given their small size and low-cost, microsatellites can be con­

structed and deployed for a fraction of the cost of previous larger satellites. 

This not only allows for innovative microsatellite designs, but also promotes the 

development of multiple satellites systems. Many of these new designs demand 

high-performance Attitude Control Systems (ACSs) that are not affordable 

under microsatellite cost budgets. As a result, current microsatellites are 

generally limited to moderate performance sensor suites. 

Common attitude sensors include: sun-sensors, star trackers, horizon 

sensors, magnetometers, and for short-term measurements, gyroscopes 

[Larson & \Vertz 2005]. Among these, star trackers have the potential to 

be an enabling technology for high-value microsatellite missions. Since they pro­

vide 3-axis attitude solutions frorn a single instrument, even a modest accuracy 

star tracker can potentially simplify sensor fusion and integration problems. The 

main disadvantage of star trackers is that they remain expensive when compared 

to other sensors and as a result, rarely find their way onto microsatellites. In 

this light, one can conclude that a technical priority of star tracker development 

for the microsatellite market is the reduction of manufacturing costs rather than 

a pursuit of high precision. 

Elements of this cost mitigation can arise from star tracker calibration strategies 

applicable to the development and manufacture of modern microsatellite star 

trackers. A common trend in reducing the cost of high performance sensors is the 

use of Commercial-Off-The-Shelf (COTS) components in microsatellite sensor 
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design. These components provide reduced performance for a fraction of the 

cost of existing specialized components. Following the manufacturing process, 

various calibration techniques can then be utilized to calibrate a sensor made 

from COTS components as a single unit to restore overall sensor performance. 

This thesis describes some calibration techniques for low-cost microsatellite star 

trackers, usefull at various stages of instrument development. 

1.1 Fundamentals of a Star Tracker 

Star trackers compute the attitude of a spacecraft through a measurement of 

relative angular star positions. Generally, these sensors consist of three main 

components; a lens system, an imaging array, and a microprocessor used to ana­

lyze the image and perform subsequent computation, see Fig. 1.1. Imaged star 

patterns are first compared against an onboard star catalogue to determine their 

identity and relative angular position with respect to the sensor. The \i\Thaba 

problem is then solved using one of many commonly implemented algorithms to . 

yield a 3-axis attitude solution. 

Real Sky 

* * * * * ** * * * 

Lens Focal Plane 

low Bandw;dth J 
Interface 

Figure 1.1: Sketch of an autonomous star tracker, [Liebe 2002]. 
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1.1.1 Modes of operation 

Star trackers typically operate in two modes: initial attitude acquisition followed 

by attitude tracking. If no previous attitude knowledge is known, the initial 

acquisition mode will attempt to match an imaged star pattern by searching 

through the onboard catalogue. This is commonly known as the Lost-In-Space 

(LIS) problem and can typically be accomplished in a few seconds [Liebe 2002]. 

If a previous attitude update is known, the tracking mode typically assumes that 

the present attitude is close to the last known attitude (less than 1 s ago), and 

only previously identified stars are tracked at known positions. 

1.1.2 Star imaging and centroiding 

In order to perform any attitude computation using the relative angular positions 

of stars , they first have to be found within an image. A common technique for 

this is to set a background image noise threshold and assume that any remain­

ing illumination patterns are stars. Once a star has been detected, it 's relative 

angular position is computed by finding the brightest point of its illumination 

pattern or Point-Spread Function (PSF). Although many different approaches 

exist for finding the point of peak illumination, this study employs a first-moment 

centroid technique. The PSF of a star is isolated from the image by drawing a 

TJ x TJ window around a detected star. The centroid coordinates with respect to 

this window can then be computed as: 

2:~=12:~=1 [x!(x, y)] 
X c = "\:'11 "\:''I J( ) 

u x =1 uy=1 X, Y 
(1.1) 

(1.2) 

where I(x, y) is the illumination value at row x and column y of the PSF, and 

TJ is the size of the window around the PSF. 

The pixels of an image detector measure an illumination value per unit 
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area. Any image produced by a detector represents a discrete representation of 

the incident illumination. Given an arbitrary image of a star field , the apparent 

size of a star is usually on the order of a single pixel. This makes the task 

of accurately determining the star centroid difficult, as the entire illumination 

pattern resides within one pixel. A common technique used to mitigate this effect 

is to defocus the incident star light using the sensor optics. This distributes the 

illumination pattern of a star over a larger region of pixels, effectively increasing 

the sampling of the illumination pattern, see Fig. 1.2. 

Focal 
Point 

I Pixel response 
Star #1 

I Pixel response 
Star #2 

Defocused Imaging 

• ! ! 

• ! I 

1 

* 

I 
I 

I ! 

! • 

2 

* 

• 

• 

• 

• 

Tightly Focused Imaging 

• • 

• • 

1 

* 

~? 

2 

* 

• • • 

• • • 

Signal ambiguity with 
tight focus 

Figure 1.2: Star Tracker focussing 

1.2 Our Prototype Star Thacker 

Pixel response 
Star #1 

Pixel response 
Star #2 

This thesis represents a companion study to an ongoing effort to develop a 

very small star tracker using high-quality COTS parts. Component selection 

for this star tracker design establishes baseline parameters relevant to the cali-
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Figure 1.3: Prototype star tracker camera. 

bration processes, but the discussed calibration techniques should be applicable 

to other designs. Our chosen detector is a five-megapixel (2592 x 1944 pixel) , 

7.13mm( diag.) CMOS sensor, see Fig. 1.3. To minimize mass and volume, the 

optics are very compact; the current design employs a 6mm (diam.) , F/2 .0 lens. 

The resulting Field Of View (FOV) from this design is approximately 26° x 20°. 

This FOV is comparable to many commerically available wide-angle star trackers , 

but the native resolution is higher than the current norm. This sensor is designed 

to track stars of visual magnitude 4.0 or brighter. In contrast with many modern 

star tracker designs, this sensor uses a colour (Bayer-pattern) detector. 
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1.3 Objectives 

The main goal of this thesis is to explore practical calibration techniques applica­

ble to the development and manufacture of modern microsatellite star trackers. 

In rough correspondence to the components of a star tracker, this thesis proposes 

three types of calibrations useful at various stages of instrument development: 

• Optical Calibration. Aberrations introduced by the star tracker's optical 

components shift and distort the star images on the detector. Identifying 

centroid locations and calculating corresponding direction vectors rely on 

effective modeling and correction of these aberrations. 

• Detector Calibration. In order to improve the star detection likelihood, ac­

curacy dominant noise sources arising from the detector array are examined 

and corrected for. 

• Laboratory Calibration. Pattern matching algorithms are a vital software 

component of any star tracker and laboratory testing is an essential part 

of software validation. A self-calibrating projector system is proposed for 

laboratory tests that corrects for nonidealities in the physical setup and 

enables flexible hardware-in-the-loop testing. 

The utility of our calibration techniques stems from their ability to assist develop­

ment , test and manufacture of microsatellite star tackers. As promising as these 

techniques may be, we must be pragmatic about assessing the costs involved 

in adopting these schemes. The factors most likely to increase unit costs are 

a) labour or time-intensive practices , b) online storage requirements (e.g. , flash 

memory) , and c) online computational requirements (e.g. , processing power). Of­

fline processing and storage are plentiful and cheap - these have minimal impact 

on system cost. For each of the proposed calibrations an estimate of their cost 

impact is weighed against added performance benefits to justify the practicality 

of implementation. 
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1.4 Outline 

The content of this thesis is separated into three independent sections; lab calibra­

tion, detector calibration, and optical calibration. Due to the dissimilar nature 

of these topics, they are each discussed as a whole; (i.e. problem formulation, 

literature review, approach, implementation, and results), entirely within their 

respective chapters. Chapter 2 describes a self-calibrating projector system that 

compensates for nonidealities in the physical setup of the lab. Following this 

calibration, the lab setup will provide a means for sensor performance character­

ization, specifically in terms of pattern matching abilities. Chapter 3 discusses 

the calibration of a silicon based image detector; specifically targeting DCN and 

FPN. A calibration of the lens system used within the prototype sensor is dis­

cussed in Chapter 4. This calibration addresses the effects of the five classical 

optical aberrations on star centroid accuracy. Finally, Chapter 5 provides some 

conclusions and suggested directions of future research. 
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CHAPTER 2 

Lab Calibration 

This study presents a star simulator used for ground testing microsatellite star 

trackers. Common setups for this application involve labourous measure­

ment and positioning of components making the lab environment inflexible and 

the task of testing numerous sensors lengthy. The proposed method minimizes 

this need of manual setup through the use of a self-calibrating project-screen­

sensor system. A general analytical model and a projected calibration pattern 

are utilized to determine a set of parameters that define all nonidealities in the 

lab setup. These parameters are then used to project deformed images that, 

when imaged by the star tracker, appear as desired. 

2.1 Introduction 

Ground testing spacecraft sensors is essential. Performance and function can 

be characterized and thoroughly validated within the lab environment before 

deployment. A large part of ground testing is associated with simulating the 

correct sensor stimulus. Depending of the type of sensor, this may be optical, 

magnetic, or inertial. In either case, great effort is usually spent in the calibration 

of this stimulus to ensure a high level of realism. 

Star trackers take images of stars in visible wavelenghts, and use these 

images to determine attitude. Laboratory simulation of these starfields com­

monly includes elaborate lab setups, resulting in various degrees of simulation 

accuracy. This study describes a low-cost approach to lab calibration for star 

tracker ground testing. 
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~1any forms of star simulation for star tracker ground testing exist. Some 

are implemented physically by providing some form of optical stimulus to the 

star tracker. Others are implemented digitally, by creating artificial images that 

are then processed by the sensor software. This approach allows for testing 

of the sensor 's star identification capability, on-board catalog, and resultant 

attitude computations, [Ruffino & Moccia 2002], (\iVessling & Does 1994). Mul­

tiple different lab setups exist for each type of simulation, each representing 

various combinations of test capability, resultant performance and ease of 

implementation. A brief review of these commonly used test setups is pre­

sented, for a more in depth review please see [Ruffino & Moccia 2002]. \iVe 

also present an overview of general techniques used to improve projector accuracy. 

Our chosen architecture consists of a conventional Liquid Crystal Display (LCD) 

projector and the prototype star tracker. The goal of this simulator is two-fold: 

i) provide realistic starfield images that can be imaged and processed by 

the star tracker, and ii) limit the amount of necessary lab setup. This was 

achieved by developing a relation between the coordinates of the star tracker and 

corresponding coordinates on the projector through a lab model. Projector and 

sensor offsets make this challenging as they introduce geometric disturbances 

to desired star placement, not only on the projection surface but also on the 

detector of the sensor. In addition, zoom and distortion effects from both 

the projector and sensor optics provide further image deformation. In the 

model, these effects are described by a set of geometric and optical parameters. 

An automated calibration routine is used to compute optimal values of these 

parameters , resulting in a quick, flexible and accurate form of star simulation. 

2.1.1 Star Simulators 

The most simplistic form of ground testing is numerical scene simulation. This 

involves generating artificial images of starfields which are then processed to 

compute attitude, either on-board the sensor or with a separate computer. 

Although this method enables multiple aspects of the star tracker software to be 
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tested , only a fraction of the sensor hardware; if any, is actually used. Critical 

errors associated with the image acquisition hardware and respective software 

interface can remain overlooked and potentially result in reduced performance. 

The next level of star tracker ground testing addresses the concern of 

complete hardware testing by creating an optical stimulus for the star tracker 

using pinholes, or high resolution displays. Light from these sources is commonly 

collimated to better represent stars at an infinite distance. Compared to 

numerical scene simulation, these techniques do provide a more complete form 

of component testing, however they suffer in terms of limited performance. 

Pinhole simulators can typically only test a single star scene at time, as a result, 

limiting the flexibility of dynamic simulation. Scene simulators overcome this 

hurdle by using high-resolution displays capable of representing multiple stars at 

once. Unlike pinhole star simulators, this technique does also allow for dynamic 

testing by manipulating the image on the display, however it is limited in terms 

of angular accuracy by the pixel size and separation, [Wessling & Does 1994]. 

Lastly, real sky tests represent the highest level of image realism, but do 

have drawbacks associated with proper setup. Atmospheric refraction distorts 

the apparent position and brightness of stars. High altitudes or elevation angles 

minimize these effects, but a lot of effort is necessary to produce good truth 

comparisons, [Bank 1997]. To keep the sensor inertially pointing, this type of 

testing is commonly done in an astronomical observatory to utilize the telescope 

tracking system. This can introduce further mechanisms of error in the form 

of vibrations from the the movement of the tracking system and also limits the 

starfields that can be imaged. Table 2.1 summarizes the test capability, resultant 

performance, and required setup effort of each of these techniques. 

The solution proposed within this study represents an approach similar to scene 

simulator, but utilizing a digital projector and projection screen instead of a 

high-resolution display. The setup does allow for both static and dynamic tests, 

but as is common to scene simulators, is limited in resultant accuracy. The use 
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Table 2.1: Summary of techniques for validating star trackers [Ruffino & Moccia 2002] 

Technique References Test Capability Performance Notes Accmacy 

Numerical scene simulation [Wessling & Does 1994] • Robustness of star • No end-to-end hardware testing 
(Synthetic detector pixels) identification algorithms (imaging ~ubsy~tems not tested) 

• Initial attitude acquisition • Time consuming processing 
• Onboard catalog adequacy 
• Static and Dynamic te~t~ 

Pinhole star simulator~ tThomas et al. 1996] • Angular measurement accuracy • 1 star ~cene • 1-arc~ec 
Gullapalli et al. 1993) and stability (only static tests) • Limited dynamic simulations (order of magnitude) 
Bank 1997] • Dynamic tests (gimbaled 

sensor mount required) 

Scene ~imulators lGullapalli et al. 1993J • Full FOV, multiple star tests • Inaccmate angular star size • 50-100 arc~ec 
(PC-controlled high Wessling & Doe~ 1994j • Static and dynamic tests Discrete ~tar positions in ~cene (order of magnitude) 
resolution displays) • • 50-arcsec separation 

(order of magnitude) 

Real sky tests [Jorgensen & Liebe 1996] • Robustness of star • Affected by external • 1-arcsec 
lAlexander & Chang 1996J identification algorithm~ pertmbations (order of magnitude) 
Bank 1997) • Initial attitude acquisition • Limited availability of 

• Onboard catalog adequacy star field scene~ 
• Angular measurement accuracy • Limited dynamic simulations 
and stability (static test~ only) 

-- - -- -- -
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of a projector allows for a larger useable scene area and limits the size of setup 

components, but it also introduces some challenges associated with projector­

screen-sensor alignment. A calibration of the lab setup is required to ensure that 

the images perceived by the sensor are as realistic as possible. 

2.1.2 Challenges of Accurate Projection 

Projectors are generally designed to produce a rectangular image on a planar 

surface that is aligned perpendicular to the projector boresight. Gsing the focal 

length of the optics and the distance to the projection screen, the shape and size 

of the projected image is easily computed. If the projector is not aligned orthog­

onally to the projection surface, the incident image will be trapezoidal instead of 

rectangular. The discrepancy between the ideal rectangular image and the inci­

dent trapezoid is referred to as the image keystone, a general problem associated 

with projection. The keystone effect can be broken down into horizontal and 

vertical components. Horizontal keystoning occurs when the projector is mis­

aligned with the projection surface normal along the horizontal plane, see Figure 

2.1. This forms a trapezoidal image, with the parallel edges aligned vertically. 

The further the horizontal projector misalignment, the greater the difference in 

lengths of these parallel sides. Vertical keystoning can then be described in the 

same fashion, only involving a vertical misalignment of the projector boresight 

instead of a horizontal one. This forms a trapezoidal image with the parallel sides 

aligned horizontally and will further deform as the misalignment with the surface 

normal grows, see Figure 2.1. 

The keystone discussed thus far refers to the shape of the projected image on the 

planar surface. The utilized setup then calls for observing this image with the 

prototype star tracker. Since the projector and camera are of finite size, some 

physical separation is unavoidable. This introduces misalignment effects between 

the optical axes of the projector and sensor that introduces additional keystone 

in the sensor image. This secondary source of keystoning is depicted in Figure 

2.2, where it is illustrated that the projection of a off-axis position, (3, will be 
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z 

Figure 2.1: Horizontal and Vertical keystone. 

perceived as a different off-axis position, a, in the sensor frame. These two forms 

of image keystoning represent the geometric nonidealities that must be addressed 

with the proposed calibration. 

Additional discrepancies between the projected and observed images can arise 

from nonidealities in the projector and sensor optics. The zoom feature present 

in most available projectors changes the focal length of the system resulting in 

a variable magnification of the image. Furthermore, any discrepancies between 

the ideal focal length of a system (specified by design) and the true focal length 

(result of optics manufacture) can also cause image magnification. Lens distortion 

is another nonideality of an optical system, but compared to zoom effects , impacts 

the shape of the image in a more complicated manner. Although many forms of 

lens distortion exist, this study limits the consideration of this optical aberration 

to radial distortion only, which can be described as an image deformation relative 

to the boresight distance. If a lens is not rectilinear, imaged lines will appear as 

curves. Two types of image deformation can occur as a result of radial distortion; 

barrel distortion and pincushion distortion, see Figure 2.3. 



2.1. Introduction 

PROJECTION 
SCREEN 

I 

I 
I 

I / 

'l 

I 

I~ / 
I ~ / 

I /~ 
/ 

I / 
I / 

I / 
I / 

/ 

qROJECTOR 

/ 

/ 
/ 

/ 

a- DESI.RED 
SENSOR 
COORDINATES 

~ - NECESSARY 
PROJECTOR 
COORDINATES 

Figure 2.2: Projector vs. Sensor star patterns. 

15 

In conclusion, the required calibration of the lab setup must not only compen­

sate for geometric nonidealities that result in image keystoning but also optical 

nonidealities that can deform the projected and observed images. 

Common keystone correction algorithms aim to improve the shape of a 

projected image on an imperfectly aligned surface. This is generally achieved in 

one of two ways: manually or through camera feedback. Low-cost conventional 

projectors use manual keystone adjustment to change the appearance of the 

projected image with respect to a human observer. The provided input varies 

the shape of the image that is generated by the projector. The general aim is to 

restore the original rectangular shape of the projected image. The accuracy 1of 

this technique is limited due to two main factors. Firstly, the keystone settings 

on a projector are limited both in range and resolution and secondly, a human 

observer can only resolve the shape of an image to a limited degree. More 

1 Defined as the discrepancy between the resultant image and the desired rectangular image. 
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Figure 2.3: Examples of radial distortion. 

expensive, higher-end projectors use a camera to provide visual feedback of 

the projected image shape, [Sukthankar et al. 2001]. Similar to the manual 

technique, the shape of the incident image is then used to vary internal projector 

parameters until the desired shape is reached, only in this case the process 

is automated. The camera is mounted to the projector and aligned with 

boresight to minimize any keystone effects associated with relative position and 

orientation. 

2.1.3 Star Simulator 

The proposed projector-based star simulator can be split into two main com­

ponents: an analytical lab model described by a set of optical and geometric 

parameters and a calibration routine used to find the values of these parameters. 

The lab model relates the image perceived by the camera to that generated by 

the projector and was analytically developed using basic planar and spherical 

geometry. The model is based on a number of optical and geometric parameters 

associated with the position and orientation of the projector-screen-sensor 

system that must be found for each specific lab setup. A automated calibration 

routine was developed to simplify this procedure. The calibration routine is 

based on the previous discussion of projector-camera feedback systems. However, 
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as previously discussed, the image is optimized for the camera view of the screen, 

not the projector view. The calibration procedure employs the use of a test 

pattern that is first projected and then imaged/ centroided by the prototype star 

tracker. vVe deterrnine the values of the model parameters through an error 

minimization between the imaged pattern and the model generated pattern. We 

assumed no prior knowledge of the position or orientation of either the projector 

or camera (prototype star tracker) , and we also compensate for optical zoom 

and lens distortion in addition to image keystoning. 

The components utilized in the development of this star simulator were a 

~EC LT245 projector, a projection screen, and the prototype sensor. The 

projector has a native resolution of 1024 x 768, a pixel size of 6.45pm, and a 

focal length of 22.1mm. The sensor was manually oriented to ensure that the 

entire projected image was within its FOV. The general layout and governing 

coordinate axes are defined in Figure 2.4. 

2.2 Model Overview 

Two versions of the lab model were developed, a forward model and an inverse 

model. Both are based on the same lab parameters and geometric relations, 

but implement these operations in a different sequence. The forward model is 

used within the proposed calibration routine, describing the transformation from 

projector coordinates to sensor coordinates. The inverse model describes the 

transformation from the sensor image to the projector input image. This second 

model is used to determine the necessary projector image for a given desired 

sensor image. Each is based on 14 parameters that describe the position and 

orientation of the sensor, the position and orientation of the projection screen, 

the focal ratios of the sensor and projector optics, and lastly the distortion of 

the sensor optics. 

Before beginning the model descriptions, it is worthwhile to define the co-
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PROJECTION SCREEN 

Figure 2.4: Lab calibration setup. 

ordinate axes that are used to relate the image coordinates to the orientation 

and position of the other components. Two coordinate frames are attached to 

the sensor: one centered on the image detector, denoted by subscript S, and 

another centered on the sensor intersection of the optical axis with the detector, 

denoted by subscript OA. Both reference frames are oriented in the same 

manner as showed in Figure 2.4, only their respective origins are different. A 

projector frame is also defined, denoted by P, whose origin lies at the center of 

the projector and corresponding axes line up respectively. 

Star trackers measure the location of a star as a direction vector; gener­

ally in angular terms (e.g. right ascension and declination). Due to the fact 

that we will be working with these vectors in a relative sense with respect to 
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the projector and sensor, a new representation of relative direction is presented. 

This representation is further referred to as spherical coordinates and redefines 

any celestial direction using an angle from boresight, p, and a clock angle from 

the vertical axis , fJ. Please see Figure 2.5 for an illustration. 

Figure 2.5: Angular coordinate definition 

2.2.1 Forward Model Derivation 

As previously described, the forward model is implemented as part of the cal­

ibration routine used to determine the model parameters. This is achieved by 

an error minimization between the centroids of the modeled test pattern and the 
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imaged test pattern. Due to the use of a specific representation of lens distortion, 

the error minimization is not implemented on the raw imaged test pattern but 

on a partially corrected form of this image instead. This representation is used 

in an interest to limit numerical computation, and will become evident within 

the derivation of the inverse model. For an illustration of the order of operations 

implemented in the forward model and the point of error minimization in the 

proposed calibration, see Figure 2.6. 
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Figure 2.6: Forward Model roadmap. 
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The analytical model begins at the projector input by specifying the direction 

(pp, Bp) of a calibration point. Both the projector and sensor contain a set 

of optics that have an ideal focal length, J;, specified by the optical design. 

However, the actual value of this focal length, JP , rnay differ slightly from this 

ideal value. This discrepancy is addressed by defining a focal ratio, F p, that 

will be used to scale the off-boresight angle, p, either up or down to model focal 

length discrepancies and zoom effects. VVith respect to the projector, this scaling 
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operation is defined as follows: 

, _ 1 (tanpp) 
PP =tan Fp 

where 
F- JP 
p- !~ 
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(2.1) 

(2.2) 

The intersection of the direction vector with the projection surface is then found 

by using the direction vector and the distance to the projection screen, Dpt· 

The direction vector, (p'p : B'p), is first converted to Cartesian components and 

then traced to the projection surface. The conversion to Cartesian coordinates is 

described as follows: 

Sp I 

[ 

r sin B'p l 
r cos B'p 

fp 

(2.3) 

where 

r = fp tanp'p (2.4) 

using the parametric equations for a plane, the intersection of the star vector can 

now be found. A plane is defined by a point, Ppt, and a normal, npt = [a b c]r. 
The point and normal used are: 

(2.5) 

[ 

sin Gpz l 
npt = - sin ci> pl cos 8 pl 

cos ci>pz cos epz 

(2.6) 

where: Dpt is the distance along the boresight from the projector to the projection 

screen, and ci>pt and \lJ pl are the rotations of the projection screen about the local 

X andY axes. The plane constant, d, can then be found through the parametric 
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formulation: 

ax + by + cz + d = 0 (2.7) 

and so 

(2.8) 

Using this constant, the intersection of the vector s~ with the projection screen 

can be found by 

Sintp = ts'p (2.9) 

where 
d 

(2.10) t= I sp • npl 

This intersection calculation gives the coordinates of the intersection point , in 

the projector frame. The next step is to convert these coordinates into the sensor 

frame using the orientation of the camera ( <P s , 8 s, '11 s). This is achieved using a 

1-2-3 Euler angle set , Rps , as follows: 

(2.11) 

where 

(2.12) 

and 

(2.13) 

Sintp is the position of the intersection point in projector coordinates, and S p 

is the position of the sensor in projector coordinates. Following this , another 

scaling of the angular coordinate p will occur as the position of the calibration 

point is traced through the sensor optics. In order to implement this scaling, 

the coordinates of the point Sints must be first converted to an angular direction 

vector, (ps ' , Bs '): 

(2.14) 

where (x 18 , y15 ) are the x and y components of the intersection coordinates in 
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the sensor frarne , Bints. 

e' _ t 2 ( X Is Y Is ) s-aan -,-
r r 

' -1( r ) Ps =tan -
Zis 

The scaling operation due to the sensor optics is then: 

where 

Ps = tan- 1 (Fs tan Ps ') 

F _is 
s- i~ 
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(2.15) 

(2.16) 

(2.17) 

(2.18) 

f represents the set focal length, and f' is the true focal length. Given these 

scaled angular coordinates, we convert them back to Cartesian coordinates using 

the assumed focal length of the sensor optics, to determine the ideal position of 

the calibration point on the imaging array: 

r =is tan(ps) (2.19) 

[ 

r sin Os l 
ss = r cosOs 

is 
(2.20) 

As shown in Figure 2.6, this analytical derivation of the calibration point's 

coordinates is then compared to a corrected version of the imaged point 

coordinates. The purpose of the analytical transformation applied to the actual 

image is to correct for the effect of lens distortion which can be specified by 

3 parameters. The first two parameters, (xoA , YoA) : specify the intersection of 

the sensor optical axis with respect to the image detector. This parameter is 

important because the magnitude of radial distortion is a function of a points 

distance relative to the optical axis. By knowing the coordinates of this axis 

intersection, this relative distance can be computed for any point on the sensor 

detector. The third necessary parameter is the distortion coefficient, J(. This 

coefficient describes the magnitude and type of radial distortion. The correction 
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for radial lens distortion is implemented as follows: 

The coordinates of an imaged calibration point relative to the optical axis 

are described as: 

(2.21) 

The distortion corrected coordinates of a calibration point; relative to the op­

tical axis, are then calculated by shifting the relative imaged coordinates (lens 

distortion included) , s~t ' by <5: 

(2.22) 

where: 

(2.23) 

T = I 2 I 2 
S optx + S opty (2.24) 

Lastly, the coordinates are then transformed back to the sensor frame through 

the relation: 

ss = Sopt + (OA) (2.25) 

2.2.2 Inverse Model Derivation 

The second algorithm, titled the inverse model, was developed to implement a 

set of lab parameters and compute the necessary projector image for a given 

desired sensor response. Within the forward model, coordinates were analytically 

mapped from the projector input image onto the sensor imaging array. Given a 

set of lab parameters, the opposite relationship can now be defined: mapping 

desired sensor coordinates to the input projector coordinates. 

Given a desired star position on the sensor array, (s:;), we account for 

the effect of lens distortion first. This is achieved in exactly the same manner 

as was done within the forward model using Eqs. 2.21-2.25. Following this, the 
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discrepancy in the sensor focal length is taken into account. The coordinates 

(ss) are first converted into spherical coordinates , (ps ,Bs) using Eqs. 2.14-

2.16 and the set focal length of the prototype sensor, f s. Using the sensor focal 

ratio, F5 , the discrepancy is defined as an operation on the angular boresight 

component: 
, _ 1 (tan Ps) 

Ps =tan F 
s 

(2.26) 

The direction vector is first converted back to Cartesian coordinates, s~, and then 

traced to the projection surface. To achieve this , we rotate the plane normal, npl 

and the plane point, PPL , into the sensor frame: 

ns = Rspnpl (2.27) 

Ps = RsPPpl (2.28) 

The intersection is then defined in the sensor frame using Eqs. 2.7- 2.10. These 

coordinates are then converted into the projector frame using the sensor orien­

tation, Rps, and the corresponding sensor position, sp. In order to account for 

the discrepancy in projector focal length, the intersection coordinates are first 

converted into angular coordinates, (pp ' , Bp ') , using Eqs. 2.14-2.16. The dis­

crepancy is then applied as: 

_ 1 (tanpp ') pp =tan Fp (2.29) 

The last step is to recompute the corresponding Cartesian pixel coordinates (ss) 

on the projector image using Eq. 2.3. 

2.3 Calibration Implementation 

The first step in the implementation of the lab calibration was composed of 

projecting, capturing, and centroiding a test pattern of points. The coordinates of 

the imaged points were then compared to a corresponding set formed analytically 

by using a coarse estimate of the lab parameters and the forward model. using 
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a constrained nonlinear optimization, a set of 14 lab parameters was computed 

through a minimization of the Root Mean Squared (RMS) error between each 

set of calibration points. Once the system was calibrated, the parameters can be 

used with the inverse model to correct for the projection geometry when placing 

stars in synthetic images. 

2.3.1 Calibration Points & Star Representation 

As a result of the projector resolution, the accuracy of projections onto the pro­

jection surface is normally limited to the pixel level. \iVith a technique similar to 

defocussing star images, the accuracy of this placement can be improved to the 

sub-pixel level by utilizing BVN distributions instead of single pixels. This dis­

tributes an illumination pattern over a region of pixels, allowing for finer control of 

centroid placement. These distributions are centered at the desired coordinates 

and then integrated across each pixel area to acquire the necessary projector 

input. The intensity of a circular star image is given by the bivariate normal 

distribution as: 

where 

and 

P(y , x) = 27r<J2A exp II- 2 (1 ~ P2 ) II 
z = (y-~ty ) 2 _ 2p(y-~y)(x --:~x ) + (x -~x ) 2 

~2 ~2 ~2 

p =cor (y , x) = Vy
2
x 

~ 

(2.30) 

(2.31) 

(2.32) 

is the correlation of y and x , and Vyx is the covariance. The intensity value 

of each pixel within the illumination pattern was calculated by integrating the 

relation across each pixel region. 

2.3.2 Test Patterns 

The calibration procedure dictates the use of a projected and imaged test pattern 

in order to determine the lab parameters. For simplicity this study utilized the 
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most basic of test pattern, a uniformly spaced grid of calibration points. This 

grid pattern was setup to correspond to the projector aspect ratio of 4:3 and was 

spaced uniformly across 80% of the available projection area to account for any 

discrepancies between the projected image and the sensor FOV. Four different 

grid densities were tested, to assess impact of additional calibration points on the 

resultant angular star placement (Table 2.2). Although this analysis is limited 

to only using a simply uniform grid pattern, it is important to note that the 

shape and spatial distribution of a test pattern vary the resultant accuracy of 

the parameter fit and the total time necessary for calibration. This is part of the 

plan of future work and will be discussed in more detail later in the chapter. 

Table 2.2: Investigated Grid Densities 

Total # of: horz. vert. 
calibration points: 

48 6 8 
108 9 12 
192 12 16 
300 15 20 

2.3.3 Imaging & Centroiding 

Each calibration point of test pattern was projected, imaged, and centroided in­

dividually to eliminate any confusion associated with identifying corresponding 

pairs. Individual images were pregenerated and stored to decrease the total cali­

bration time. Once an image was captured, the centroid of the calibration point 

was found through three main steps: 

• Detecting the calibration point within the captured image. 

• Determining an appropriate window around the PSF. 

• Computing the first-moment centroid of the window to find the exact point 

location with respect to the image detector. 
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The first task of detected the calibration point was achieved by thresholding the 

image to eliminate any nonessential background illumination and image noise. 

This was set to a value corresponding to 20% of the maximum illumination 

level of the detector, determined empirically. The image was then searched 

row by row for pixels brighter than the computed threshold. Once a bright 

pixel was found, the pixels surrounding it were examined to check for an 

illumination pattern. If there was no illumination pattern surrounding the pixel, 

it was dismissed as noise and the search continued. If an illumination pat­

tern was found, the pixel was assumed to be the edge of a calibration point's PSF. 

The accuracy of the centroid is dependent on the size of the PSF. The 

larger the PSF, the more pixel values can be used within the centroid calcula­

tion. To accommodate the fact that not all PSFs imaged by the sensor will be 

the same, a dynamic sizing routine was developed to determine an appropriate 

window around each PSF. The window size is based on the dimension from the 

edge of the detected PSF to the brightest pixel. To find the brightest pixel, a 

repetitive process of comparing the brightness of one pixel to the brightest pixel 

of the surrounding neighborhood was used. Beginning at the edge pixel of the 

PSF, a 9 x 9 window (centred on the current pixel) was searched for a brighter 

measured illumination. If brighter pixel was found, the process was repeated 

with the window now being centred on the new brightest pixel. Once no brighter 

pixels were found, the distance from the edge pixel to the current pixel, TJ, was 

computed. A square 2TJ x 2TJ window was then centred around the brightest 

pixel, and the contained pixels values were then used in the computation of the 

first-moment centroid. 

L"sing the brightness values within the windowed PSF, I(x, y), and coor­

dinates corresponding to each pixel, the first moment centroid can be computed 

as: 

(2.33) 
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_ 2:;:12:~:1 [y!(x , y)] 
Yc - '\:"'11 '\:"' 11 I( ) 

L...i x =1 L...iy=1 X ' Y 
(2.34) 

S(x , y) = (xc, Yc) (2.35) 

where I(x , y) is the illumination value at row x and column y and S(x , y) is the 

computed centroid with respect to the defined window. 

2.3.4 Optimization 

After acquiring the image coordinates of each point within the projected test pat­

tern, an optimization routine was employed using the forward model to compute 

the desired set of lab parameters. This optimization was based on the mini­

mization of the RMS error between the analytically generated and imaged test 

patterns: see Figure 2.6. This is defined by cost function Q shown below. 

Q = t IIJ real ( i) ~ I gen ( i) 11
2 

(2.36) 
i=1 

where 

lgen = f (LP) (2.37) 

and Ireal is the imaged test pattern: Igen IS the generated pro­

jector pattern and LP represents the set of 14 lab parameters: 

Fp , F8 , Sp , ci> 8 , 8 8 , \IT 8 , ci>pz , 8pz , Dpz, OA, K. Given a coarse initial guess and 

bounds on the valid ranges of each lab parameter, a constrained nonlinear 

optimization was implemented using the MATLAB "fmincon" optimization 

function. 

2.4 Results 

The accuracy of a proposed star simulator was assessed in two ways: -residual 

calibration error and pattern simulation error. Results of the analytical model 

were compared to the imaged calibration pattern to asses the validity of the lab 
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model. Then in addition , a series of artificial star patterns were simulated and 

examined, comparing the desired arc lengths and dihedral angles to the observed 

results. 

2.4.1 Accuracy of calibration 

Each of the four calibration patterns listed in Table 2.2 were used to form 

a corresponding parameter fit. The residual error between each imaged and 

analytically generated pattern were then examined. Table 2.3 shows the mean 

and maximum values of residual error for each test pattern. 

Table 2.3: Resultant accuracies of each test pattern 

Total # of Calibration l\!Iean Angular Maximum Angular 
calibration points: Time: Error (0

) Error (0
) 

48 ~ 5 min 0.0088 0.0181 
108 ~ 9 min 0.0078 0.0249 
192 ~ 16 min 0.0077 0.0246 
300 ~ 25 min 0.0073 0.0313 

The mean residual error is quite promising in terms of attained angular accuracy 

and is comparable to other more common forms of star simulators. There does 

not appear to be much of a correlation between test pattern population and 

resultant mean accuracy. In comparison, the maximum residual error values 

show a much stronger trend with test pattern population but not in the direction 

expected. As more points are added, the maximum error grows significantly. In 

addition to the statistical analysis shown in Table 2.3 , the spatial distribution 

of the residual error was examined for each test pattern. These distributions 

showed that as more points were added to the test pattern, small regions of 

the test pattern grew in residual error while the majority of the pattern showed 

decreases in residual error. These defined regions are visible around the sensor 

boresight and at the corners of the test pattern, see Figure 2. 7. As the number of 
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calibration points was increased, only the relative magnitude of the residual error 

grew within these regions while its spatial distribution remained constant. This 

seems to indicate that there is structure in the residual error, possibly due to an 

incorrect lab model. Future investigations are required to identify and model any 

source ( s) of these errors. 
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Figure 2. 7: Residual star placement error ( 300-point pattern). 

2.4.2 Mock Star Pattern Tests 
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As a second evaluation of star simulator performance, a series of artificial star 

patterns were projected and imaged using the computed parameter values and 

the inverse model. A triangular star pattern was created by equally spacing 

three stars within the sensor FOV. This pattern was then incrementally rotated 
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about the sensor boresight to create a series of 100 test star patterns. Each star 

pattern was projected, imaged and centroided one star at a time, to prevent any 

mismatch of points. Once all three stars within the pattern were imaged, the 

arc lengths and dihedral angles of the pattern were computed and compared to 

the values associated with the generated pattern. Discrepancies between imaged 

and desired arc-lengths and dihedral angles were then analyzed to assess the 

simulator performance, see Table 2.4 for error statistics and Figures 2.8-2.9 for 

illustration. 

10 

Table 2.4: Mock Star Pattern Accuracy 
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Figure 2.8: Arc length error 

70 80 90 100 



2.5. Conclusion 

0.1 

~ 0.08 
0 

e 
~ 0.06 
~ 
"0 
C]) 

.J::. 

0 
0.04 

0.02 

10 20 30 40 50 
Image count 

60 70 

Figure 2.9: Dihedral angle error. 
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The data series corresponding to Table 2.4 shows sizable periodic increases in arc 

length and dihedral error. This is due to part of the tested star pattern moving 

through a region of less accurate star placement, see Figure 2. 7. Eliminating 

these regions should allow for maximum error values to converge to the indicated 

means. 

2.5 Conclusion 

Testing the pattern matching performance and capability of a star tracker re­

quires accurate angular star placement throughout the sensor FOV. Lab setups 

associated with this type of testing commonly require a significant amount of 

user measurement and alignment. This generally leads to single-use lab space, 

that ultimately makes star tracker ground testing more difficult. The proposed 

star simulator addresses both of these issues in a simple, low-cost fashion. The 

achievable angular star placement accuracy is comparable, if not better than 

other common forms of star simulators. In addition , the automated calibration 

limits the required labor to less than 1 minute and the total calibration time to 
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approximately 25 min. This makes it feasible to recalibrate the lab setup before 

each use, resulting in a more flexible laboratory environment. Although this 

calibration routine was developed for use with proposed projector-screen-sensor 

system, it can easily be implemented to calibrate similar forms of star simulators, 

specifically those involving high resolution displays. 

Further investigations are still required to address some remaining issues 

and explore further possibilities. First, the developed lab model needs to be 

revisited in order to identify any remaining problems or limitations. Second, 

the calibration procedure can still be streamlined by tuning the size, shape 

and method of projection/ capture of the utilized test pattern. The projection 

of multiple calibration points within a single image could greatly reduce the 

amount of total calibration time but some logic must be developed to prevent 

the mismatch of points. Lastly, some further investigation of star placement 

accuracy is required using a higher resolution projector. 
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CHAPTER 3 

Detector Calibration 

The pixels detectors common to all star tracker designs produce imperfect 

representations of the spatial distribution of incoming starlight. Ideally, the 

signal from each pixel would vary in direct proportion to the integrated photon 

flux incident on the pixers collection area, but a number of physical processes 

create temporal and spatial variations in these signals. This noise impairs our 

measurement of star centroids. VVithout precise star centroid positions, the ac­

curacy of the star tracker's attitude solution suffers. Fortunately, some of these 

distorting effects can be removed through careful radiometric calibration. This 

part of the study examines a calibration routine originally proposed by Healey, 

[Healey & Kondepudy 1994], extends the application to colour detectors and de­

scribes its implementation for star tracker detector calibration. 

3.1 Introduction 

Generally, two types of solid-state detectors are used for star trackers: Charged­

Coupled Devicess ( CCDs) and Complimentary-Metal-Oxide-Semiconductors 

(CMOS). Although many functional and performance differences exist between 

these two technologies, they both share similar noise models. Vve begin with a 

basic review of both CCD and CMOS detector operations. Following this, we 

present a basic overview of detector noise sources and some comments as to how 

they contribute to the measure of illumination. 
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3.1.1 Basic detector operation 

Solid state arrays are optoelectronic components that provide the ability to 

convert light intensity into a measurable voltage signal. Digital camera use this 

ability to form irnages that can be thought of as a spatial sampling of the incident 

light. Silicon based photodetectors convert incident photons into Electron Hole 

Pairs (EHPs) that form an electric charge proportional in magnitude. The CCD 

is then just a semiconductor architecture incorporating this technology, allowing 

for this generated charge to be collected, transfered and ultimately read out as 

a measurable voltage signal [Holst & Lomheim 2007, Janesick 2001]. 

Photons are converted to an electrical charge by either a i\1etal-Oxide­

Semiconductor (MOS), also called a photogate, or by a photodiode. An applied 

voltage potential is used to isolate and hold the charge within the local region, 

commonly called a pixel well. The total number of electrons that can be 

stored within the well is proportional to the applied voltage, oxide thickness, 

and gate electrode area, [Janesick 2001]. Following a finite exposure time, 

the collected charge within the pixel is is read out of the well by the CCD 

register. This transfer process occurs by systematically manipulating the gate 

voltage of neighboring pixel wells. Charges are transferred from pixel to pixel 

in a conveyor-belt-like fashion down columns, and then across the bottom 

row to an output circuit for charge-to-voltage conversion and amplification 

[Holst & Lomheim 2007]. A circuit, commonly called an electrometer, converts 

the charge packet frorn the charge don1ain to voltage domain using either 

a floating diode or floating diffusion. The diode , acting as a capacitor , is 

precharged at a reference level. The transferred charge partially discharges 

this capacitance resulting in a resultant signal voltage linearly proportional to 

the number of electrons [Holst & Lomheim 2007, Janesick 2001]. This voltage 

is then subsequently amplified by before it reaches the Analog to Digital 

Convertor ( ADC). 

Although there are many functional and performance differences between 
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CCD and CMOS detectors, the most evident difference is at the pixel level. 

Unlike CCDs, CMOS detectors perform the charge-to-voltage conversion within 

each pixel well. The pixel area is shared by the photodetector, the electrometer, 

and the add~essing/output connection circuitry [Holst & Lomheim 2007]. This 

not only allows for select pixel readout, but given that the image is in digital 

form at the pixel level, image processing routines can be implemented on the 

chip. In addition, the voltages required for pixel reset and select transistor 

operations are generally lower than those used for CCDs, sometimes by an order 

of magnitude [Holst & Lomheim 2007], leading to a lower power requirement. 

These characteristics make the CMOS array an attractive alternative to CCDs 

for star tracker component selection. 

3.1.2 Fundamental detector noise sources 

Ideally, the signal from each pixel would vary in direct proportion to the 

integrated photon flux incident on the pixel's collection area, but a number of 

physical processes create temporal and spatial variations in these signals. These 

variations can change the shape and the illumination distribution of an imaged 

star 's PSF. In turn, this impairs our measurement of star centroids which leads 

to reduced attitude accuracy. 

Before we look into correcting for detector noise , it is important to under­

stand where it originates and the respective impacts on the measured pixel 

illumination. \Ve present a fundamental detector noise model, outlining the basic 

noise sources associated with solid-state detectors. Although discrepancies exist 

in the relative magnitudes of the discussed noise types, the presented model is 

generally applicable to both CCD and CMOS detectors. 

The noise of an image detector can be loosely defined as any deviation of 

the measured pixel illumination from the truth. As discussed in section 3.1.1, 

image detectors are composed of many subcomponents that each participate in 

the formation of the pixel illumination measurement. :Many of these subcom-
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ponents contribute some form of noise to this measurement value, beginning 

within the pixel well and leading all the way up to the ADC. A basic model of 

this process is shown in Figure 3.1 , where we define four main points of noise 

contribution. 

Photon (Shot) Noise 
Dark Current Noise 
Fixed Pattern Noise 

ri l Reset Noise 

G Amplifier Noise 

[ 4'] Quantization Noise 

Figure 3.1: Noise injection model for pixel detectors. 

The first of these points, labelled as # 1 within Figure 3.1 , describes the measured 

illumination at the point of the node capacitor. At this stage, a finite amount of 

charge has been collected within the node capacitor following a specific integration 

time. This charge is about to be transferred out of the pixel well to allow for the 

next exposure. Three different types of noise make up this first point of noise 

contribution: 

• Photon (Shot j\"oise), a consequence of the photon counting process. 

• Dark Current l\ oise (DCN), caused by thermal electrons. 

• Fixed Pattern Noise (FPN), caused by pixel-to-pixel variations in sensitiv­

ity. 

Each of these noise types represent a unique form of noise contribution to 

the ideal signal. Their corresponding effects on the measured illumination are 

further discussed in the paragraphs to follow. 
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Shot noise is associated with the random arrival of incident photons on 

the image detector. Since each photon is an independent event, the arrival of 

any given photon cannot be precisely predicted; instead the probability of its 

arrival in a given time period can be examined [Kod 2005]. This type of noise 

is most apparent when the number of collected photons is small. It 's resultant 

effect can be reduced by simply collecting more photons, either with a longer 

exposure or by combining multiple frames. 

Dark Current Noise (DCN) is a fundamental noise source In any silicon­

based photodetector. Thermal energy generates free electrons within the silicon 

substrate that are indistinguishable from photoelectrons when they migrate into 

pixel wells. These free electrons accumulate over the exposure time within each 

pixel and lead to an artificial increase in sensed well illumination. The noise 

contribution due to dark current varies both spatiality throughout the detector 

and temporally, making it difficult to determine its value at any given pixel. 

Commonly this type of detector noise is mostly eliminated by cooling the detector. 

Last of these first three noise sources is Fixed Pattern Noise (FPN). 

This term represents a summation of many individual noise sources that 

each cause pixels to respond slightly differently to incident light. These 

individual contributions come from small variations in detector size, dop­

ing density, coating thickness, and many other effects that are a result 

of a variety of imperfections in the fabrication of solid-state detectors 

[Holst & Lomheim 2007, Healey & Kondepudy 1994, Janesick 2001]. The 

resultant effect of this type of noise on the measured illumination can be equated 

to a pixel gain that is a function of incident light intensity and varies spatially 

throughout the array. This is the definition of FPN that is used throughout this 

study and is consistent with the work of [Healey & Kondepudy 1994]. Other lit­

erature limits the term FPN to only the time-invariant component of previously 

described variances in pixel response. The term photo response nonuniformity is 

then used to describe temporal effects pertaining to the dependence of this pixel 
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gain on illumination levels. 

The remaining three points of noise contribution, defined as # 2-4 within 

Figure 3.1, describe the noise contributions of the pixel readout process. This 

includes the conversion of the signal from the charge domain to the voltage 

domain by a sense capacitor, subsequent amplification, and lastly quantization 

effects of the ADC. 

As described in 3.1.1 , the charge-to-voltage conversion process is done by 

measuring a change from a reference voltage. Following each exposure, this 

voltage has to be reset to its original value. Resistance within this process 

generates a thermal noise that is commonly known as reset noise, or kTC noise. 

This causes the reference value to fluctuate, resulting in a random contribution 

to the output illumination signal. 

Once the signal is converted to a voltage value, it is amplified to an ac­

ceptable level for the ADC. This process of amplification introduces two types 

of noise: white noise and flicker noise. White noise, or commonly called Johnson 

noise after its pioneer [Kod 2005, Janesick 2001], is due to resistance within 

the output amplifier. This resistance results in another source of thermal noise 

which is modelled as a random fluctuation in the amplified signal. Flicker noise, 

also known as 1/ f noise, represents the frequency dependent noise contribution 

of the amplifier. Generally accepted to originate due to interface states in 

the image sensor silicon that turn on and off randomly according to different 

time constants, flicker noise is inversely proportional to the pixel read-out rate 

[Janesick 2001]. Lastly we have quantization noise. This is simply a result of 

the ADC that must represent the signal using a finite range of integer values. 

Inherently, this will introduce roundoff errors that result in small contributions 

to the output voltage. The behavior of the noise contribution can be both 

random or uniform depending on the ranges of expected voltages. In either case, 

quantization noise is not a dominant noise source. 
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3.2 Noise calibration formulation 

Noise calibration is most effective for sources that are constant or only slowly 

changing in time. Of the reviewed list of noise sources , fixed pattern noise and 

the constant component of dark current noise make the best two candidates for 

correction. Fortunately these two noise sources are also generally recognized as 

the dominant contributors to image noise for both CCD and CMOS detectors 

[Janesick 2001 , Yadid-Pecht & Etienne-Cummings 2004]. Our basis for this cal­

ibration is based on a the CCD calibration scheme developed by Healey and 

Kondepudy [Healey & Kondepudy 1994]. Vve present an abbreviated version of 

their calibration procedure and describe extensions for use with colour imagers. 

Because our prototype camera uses a linear response CMOS detector, the noise 

behavior remains similar [Janesick 2001, Novak et al. ] and the same analysis can 

be applied. 

3.2.1 Correction Model 

The response of an arbitrary detector can be described by D(a, b), indexed by 

row a and column, b , is related to the 'true' integrated illumination, I (a , b) , 

collected by the detector pixels. This relationship has the form: 

D(a , b)= (J((a , b)I(a, b)+ NDc(a, b)+ Ns(a , b)+ NR(a , b)) A+ NQ(a , b) (3.1) 

where K is the per-pixel gain variation (i.e. , the FPN) , A is the amplifier gain, 

and the remaining terms are due to noise; DC~ (NDc), Shot (Ns), Reset (NR) 

, Quantization ( N Q) , respectively. The formulation of this relation is showed in 

[Healey & Kondepudy 1994], but can also be rederived based on the previous dis­

cussions on fundamental detector operations and common detector noise sources. 

By definition, the average value of J( across the array is one. In order to minimize 

the effects of noise, we wish to apply a correction of the form: 

D c (a , b) = D (a , b) "- D vc (a , b) 
J((a , b) 

(3.2) 
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using estimates of the DCN component of the image, D;c (a , b) , and the FP~ 

gain, K. The calibration process must provide a means of estimating these quan­

tities. 

3.2.2 Dark Current Noise {DCN) 

Separating the dark current components from the detector image requires an 

improved understanding of the DC~ terms. Mathematically, the bias-plus-noise 

model can be expressed as: 

(3.3) 

The stochastic component of the noise model, N N , is treated as a zero-mean, 

Gaussian random variable. If images are taken with zero incident illumination, 

then the entire pixel response will be due to DCN. The bias term can then be 

estimated by averaging a series of ndark images, Ddark: 

DDc(a , b)= LZ!!rk Ddarki (a , b) (3.4) 
ndark 

Due to the random nature of N N , some pixels in D- D ;c would end up having 

values less than zero. Since image intensities are often handled as unsigned, 

fixed point integers , some care must be taken to prevent underflow. Negative 

value pixels can be pinned to zero. 

This model is useful but it does not quite tell the whole story. This bias, 

while constant in short term, is actually a function of integration time, tint , 

and ambient temperature , T. Including all of these factors would complicate 

the determination of b DC . Many detectors, including the one used in this 

study, have hardware features that help avoid this problem. Our detector has 

a border of masked (blackened) pixels around the edge of the detector to help 

correct the T and t int dependencies. The response from these dark pixels are 

used to estimate the bulk changes in Nbias · Averaging images using Eq. 3.4 then 
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gives us the per-pixel deviation from the overall array bias. From our testing, 

there is some evidence to suggest that iJ DC still retains some temperature and 

integration time dependence, but these effects are quite weak and have minimal 

impact on the star detection problem. 

3.2.3 Fixed Pattern Noise 

The challenge in estimating FP~ is to separate the per-pixel gain variations, 

K (a, b), from any spatial illumination variation caused by nonuniform illumi­

nation and surface reflectance. The calibration method outlined by Healey 

begins by generating a quasi-uniform illumination across a calibration card, and 

imaging the illumination field. Uniformity is necessary over small distances, but 

small variations over larger distances are actually helpful. 

\iVith the illuminated field filling the camera FOV, we take a series of n 2 

images and calculate the DCN-correction mean: 

2:::7:!1 ( Dj(a , b)- DDc(a , b)) 
e( a , b) = ----'---------'-­

n2 
(3.5) 

Since we assume that we are able to remove the bias component of the DCN and 

the averaging process removes the zero mean components of the noise sources we 

are effectively measuring the expectation of the response due to the illumination, 

i.e. , 

e(a , b)~ E {K (a , b) I (a , b) A} (3.6) 

We then reorient the camera so the pixels see slightly different areas of the cal­

ibration card and repeat the averaging process. If we collect n 1 sets , each of n 2 

images, then the results from the i-th set are denoted: 

(3.7) 
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Once these temporal averages have been calculated, we compute a series of spa­

tially averaged images. These are computed using a W x W window centred on 

each pixel: 
~a+(W-1)/2 ~b+(W-1 )/2 ( ) 

-. ( b) = L.,.,q=a-( W - 1)/2 L.,.,r=b- (W - 1)/2 ei q ~ r 
e~ a , (vV)2 (3.8) 

This spatial averaging is intended to remove the effects of the FP:\" term K (a , b). 

The window size must be large enough so that spatial gain variations average out , 

but small enough that the illumination over the integration window remains con­

stant. Since each carnera orientation changes the detector illumination slightly, 

we can estimate the slope of each pixel 's response to the changing illumination: 

m (a, b) = ~ f ':_i (a b) 
n1 . ei (a , b) 

~=1 

(3.9) 

Thus, we evaluate the individual pixel gain by comparing changes in each pixel 

to the mean change taken over the averaging window. Vve improve the quality 

of the fit by making a final pass through the data to remove outliers. For each 

pixel we compute: 

(3.10) 

and 

a~ (a , b)= var (mi) (3.11) 

Averaging the standard deviations over the image gives the mean standard devi­

ation, a-. We then remove from the consideration any pixel where: 

II mi (a , b) - iii (a , b) II > p · a (3.12) 

leaving n~ (a , 'b) acceptable values. After removing outliers, the mean slope at 

each pixel was recalculated giving a final estimate of K (a, b) : 

(3.13) 
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The detector in our camera is a Bayer-pattern colour imager, see Fig. 3.2. Each 

pixel is covered with a colour filter that gives the detector its color sensitivity. 

The filters are arranged in a repeating 2 x 2 , Green-Red-Blue-Green (GRBG) 

pattern. The lamp used in our tests provides broadband illumination, but the 

response between pixels of different colors will not be identical. As a consequence, 

Eq. 3.8 must be calculated using only pixels of the same color. This change is 

fairly easy to implement, but it does require some more spatial uniformity in the 

illumination. 

Bayer pattern 

Detector array 

Figure 3.2: Bayer-pattern on image detector. 

3.3 Implementation 

Dark current calibration is straightforward. \Ve take a series of zero illumination 

images to obtain DDc, the dark reference image. To minimize stray light, we 

take the exposures with the lens cap on, the lights off, and an opaque box around 

the whole camera. For our tests, ndark = 100. Repeating the calibration several 
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times with the same integration time gave consistent results. Over a range 

of integration times (10- 1 :::; tint :::; 1second) , the spatial mean of Dvc grew 

steadily, but slowly. The net change over this tint range was about 6 detector 

counts (0.15% of full scale). The tight clustering in the Dvc values together 

with the very small changes over vastly different integration times suggests that 

the bulk hardware corrections are very effective. 

The experimental setup for the FPN calibration is a little more compli­

cated. Broadband illumination for these tests is provided by a Xenon arc lamp. 

Light from the lamp passes through a diffusing opalesent glass screen and strikes 

a white calibration card chosen for low specular reflectivity. The camera is 

manually positioned with a good view of the illuminated portion of the card. 

The whole apparatus is mounted on an optics table for stability. To vary the 

illumination across the detector, the camera position was manually shifted to 

image a different area of the card. For this study n 1 = 56 different image 

configurations were taken. We removed the dark current bias from each image 

using the fJ vc obtained above, and calculated the FPN correction, k, using Eq. 

3.13. The array windows size was W = 19. 

The entire image acquisition process required approximately 15min of manual 

labour to reposition the camera in different configurations. Following this , 5min 

was required for automated computation. 

3.4 Results 

Evaluating the performance of this calibration is a challenging problem to frame, 

in large part due to the number of pixels in the detector. The impact of detec­

tor calibration on star detection and localization would be a good measure of 

effectiveness, but it is impractical to make such evaluations over each pixel in 

the array. Instead, we consider the statistical properties of an average image set 

e* (a, b) , before and after calibration. It is important to note that the images 
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used to calculate e* were collected from a camera configuration distinct from 

those used during calibration. 

3.4.1 Validation of illumination uniformity 

The implemented calibration procedure is based on having a relatively constant, 

or at least smoothly varying, illumination field. Prior to any examination of 

the noise correction effectiveness, it is worthwhile to provide at least a basic 

validation that this true for our lab setup. This can be done by a comparison 

of the variables ei (a, b) and ei (a , b) over n 1 configurations. To reiterate, ei (a , b) 

is the pixel illumination following dark current correction, ei (a , b) is the mean 

value of ei (a , b) within the pixel neighborhood and n 1 is the number of different 

image configurations. This comparison was quantified as a standard deviation of 

the difference between these values and then the entire detector was searched for 

the strongest and weakest representations of this spatial uniformity assumption. 

The results are shown in Figure 3.3. 
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Figure 3.3: Validation of spatial illumination consistancy. 

Examining both sets of data points, it can be seen that there are significant 
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changes of neighborhood illumination. However, despite these changes in illu­

mination even the weakest representation of the illumination spatial uniformity 

seems to exhibit a relatively strong linear relationship. This increases the confi­

dence of the computed FPN correction as it is shown that the n1ean neighborhood 

illumination is in fact a good approximation of any individual pixel value. 

3.4.2 Effectiveness of FPN correction 

Our assumption in the FPN calibration is that pixel response variations within 

a small windowed region of a calibration image are due to FP:\1 effects rather 

than differences in illumination. Based on this assumption, effective cancellation 

of FPN would decrease the magnitudes of these variations, leading to a more 

uniform windowed response. Using a window size of vV = 19, we examined the 

variation in windowed pixel responses throughout a new calibration image e* 1 

This variation is represented as a standard deviation , a 8 (a , b), which is calculated 

as: 

a8(a ,b)= (3.14) 

\iVhere N = W 2 , xi is the pixel response of the ith pixel within the window and 

e(a,b). 

Table 3.1: Corrected vs. Uncorrected variation in windowed pixel response (in 
detector counts) 

C ncorrected Corrected I 
Pixel Mean window a of Mean window a of 
Color variation win. variation variation win. variation 

Green 17.52 1.24 12.91 0.83 
Red 20.46 2.43 15.85 1.42 
Blue 25.65 2.89 21.56 2.20 

Fig. 3.4 and Table 3.1 show the distributions of a 8 before and after FP:\" correc-

1 Independent of the image set used for the FPN calibration process. 
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Figure 3.4: Corrected vs. Uncorrected image smoothness characterization. 

49 

tion, for each color. From this data it is clear that variations within a windowed 

region of the image do decrease as a result of the FPN correction. To gauge how 

much pixels are affected by the correction, we statistically examine the difference 

in the windowed pixel variations shown in Figure 3.4. These results are presented 

in Figure 3.5. 

3.5 Conclusion 

Detector noise degrades our ability to properly detect and centroid stars , ulti­

mately reducing the accuracy of a star tracker. To decrease these effects, a form 

of radiometric calibration outlined by Healey, [Healey & Kondepudy 1994], was 

adapted and implemented to reduce the effects of DCN and FPN. The success 

of the calibration was judged by a decrease in variation of observed measured 
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Figure 3.5: Change in window variation due to FPl\ correction. 

illuminations within a local window, centered about each pixel. Prior to any cor­

rection, each pixel neighborhood showed variations from 17-25 detector counts, or 

approximately 1% of the measured illumination. Literature describes DCl\ and 

FP~ to be the dominant forms of noise present within uncalibrated solid-state 

imagers. The latter of which is generally outlined to fall around 1% of mea­

sured signal strength. Following the correction, neighborhood variations were 

reduced by 15- 26% of their original values, dropping the measured magnitude 

of FPN to approximately 0.8% of the measured illumination. This improvement 

is moderate but not insignificant. Futher study is required to determine how this 

improved reponse uniformity translates to improvements in star detection and 

star centroiding. 
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3.5.1 Implementation Notes 

The online requirements of the DCN and FP:\1 corrections are sizeable, partic­

ularly in terms of required storage. The correction for these noise sources is 

applied on a per-pixel basis. Thus, at least several bytes of calibration data 

must be stored on board the sensor for each pixel in the array. Judging from the 

observed noise levels, one byte of DCN correction should be sufficient; with the 

use of look-up tables, one or two additional bytes would be enough to correct the 

FPN effects. Thus, the 5-megapixel array in our prototype star tracker would 

then require 10-15 MB of non-volatile storage for the calibration data. \iVhile 

not absurdly large, this may have significant impact on the hardware design. 

Computational costs will vary greatly depending on where the corrections 

must be applied to the entire array, or whether windowing can be used. 

Fixed point subtraction is sufficient for DCN correction, but FPN correction 

will require multiplication and possibly fixed point division. Confining these 

calculations to areas of interest, will save significant processing, but identifying 

these areas will itself take processing. 
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CHAPTER 4 

Optical Model Calibration 

A ll light rays passing through an optical system experience some amount 

of deformation due to nonidealities of the optics used. These nonidealities 

are generally described as optical aberrations. Without any aberrations the 

focused image of a point source (star) would appear as a small circular spot. 

Due to optical effects, the Point-Spread Function (PSF) of a point source 

object can change in shape, size, and position. These effects impair our 

ability to properly measure the star centroid, degrading star tracker accuracy. 

This chapter focusses on how optical aberrations affect star tracker images 

and possible corrective measures than can be implemented to minimize their 

effects. We first present a brief review of optical aberrations and how they 

deform the PSF of a point source. Second, As part of an overall plan to 

correct for these effects, this section outlines a framework that can be used to 

determine the specifics of present aberrations. The framework is based on the 

calibration of an analytical model that describes the transformation of light from 

a pinhole, through the sensor optics and onto the detector. This calibration 

is outlined as a comparison between test images and analytical predictions 

at the point of the lens incident light vector. To achieve this comparison, a 

parameterization for deformed PSFs was developed. Although limited in the 

ability to parameterize the effects of all aberrations, preliminary results from 

a survey of the sensor FOV show results that are consistent with expected trends. 
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4.1 Background 

First we present a brief review of ray optics and the five basic optical aberrations 

followed by an outline of the proposed aberration calibration procedure. 

4.1.1 Ray Optics 

This summary follows a review of Gaussian optics from ?? . In the field of Gaus­

sian optics, rays incident on a lens surface follow the Gaussian approximation to 

Snell's law (i.e., for small angles). This first-order approximation is defined as: 

TJ sin() 

ry() 

ry' sin()' 

ry'()' 

( 4.1) 

( 4.2) 

where TJ and ry' are the refractive indices of the two media and () and ()' are the 

angles of the incident and refracted rays. The rays that propagate according to 

this approximation are called paraxial rays. From this approximation it can be 

shown that the image point of an incident ray is independent of the height of 

intersection made with the a spherical convex refracting surface. This leads to 

the formulation of the Gaussian imaging equation that can be defined as: 

n' n n'- n 
(4.3) 

S' S R 

where R is the radius of curvature of the refracting surface and S' is the distance 

of point P~ from the intersection of the optical axis and the refractive surface. 

This equation shows that given an object point Po a distance S away from a 

refractive surface, all rays incident on this surface will converge to a point P~ 

a distance S' from the surface [Mahajan 1998], see Figure 4.1. In a non-ideal 

optical system, the refracted rays intersect the axis at slightly different points in 

the vicinity of P~, which can be described as the effects of optical aberrations. 

VIe can now extend the reviewed principles of ray optics to waves. Given a 

convex spherical refracting surface as that shown in Figure 4.1, a point source 
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Optical axis 

{- )S 
5' 

Figure 4.1: Gaussian imaging by a convex spherical refractive surface, 
[Mahajan 1998] 

illumination profile will result in a spherical exit wavefront under the paraxial 

approximation. This wavefront is commonly known as the Gaussian reference 

sphere, which is centred about a point on the optical axis known as the Gaussian 

image point. This point is part of a plane that represents the ideal convergence of 

any on or off-axis illumination and is commonly called the Gaussian image plane. 

As additional terms are added to the paraxial approximation , the wavefront at 

the exit pupil ceases to be spherical and therefore not perfectly convergent to the 

Gaussian image point. These terms can be divided into five groups that each 

describe a different effect on the exiting wavefront. 

4.1.2 Optical aberrations 

Arbitrary, physically realizable refracting surfaces will produce very complex im­

ages but even mathematically ideal optical elements will introduce aberrant re­

sponse. The five most common effects are: spherical, coma, astigmatism, field 
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Aberration Common Effect on 
Coefficient point-source PSF 

Spherical As Airy pattern of 
concentric fringes 

Coma Ac Comet-like deformation 
(bright head with 
diminishing tail) 

Astigmatism A a Elliptical deformation 
Field Curvature Ad Elliptical deformation 

Distortion At Pincushion or 
Barrel deformation 

Table 4.1: Aberration effects on point-source PSF 

curvature, and distortion. Commonly the effect of each aberration is parame­

terized into an coefficient that describes its relative magnitude and the order 

of included terms. Some common representations of aberrations are the Siedel 

representation [\Velfod 1986, Born & \Volf 1991] and the Zernike representation 

[Mahajan 1998, Born & Wolf 1991]. Each of these aberration types represent a 

specific type of basis function that describes the shape of the exit wavefront. Table 

4.1loosely defines these effect on an ideal point-source PSF. The coefficients listed 

within the table are used to denote the peak values of the aberration within an 

optical system. For a full review of optical aberrations and their corresponding ef­

fects , please see (Mahajan 1998, Mahajan 2001, \Velfod 1986, Born & Wolf 1991]. 

4.2 Proposed lens calibration 

The final aim of the lens calibration procedure is to minimize the effects of aber­

rations on the PSFs of stars. This goal can be divided into two main tasks: 

• Find which aberrations are present and to what extent. 

• lJ sing this information, correct both the centroid position and PSF shape. 

Although neither task has been fully completed to date, a framework has been 

developed to accomplish the first of these two tasks and preliminary results have 
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been collected. This framework is based on the calibration of an analytical model 

that describes the transformation of light from a pinhole light source, through 

the sensor optics and onto the detector. This model is based on a set of optical 

and geometric parameters that are difficult to manually measure. Instead, a 

calibration procedure has been developed to compute the parameter set through 

a comparison of test images to analytical predictions. In this case, the test irnages 

are pinhole images at various known sensor orientations. 

4.2.1 Lens calibration lab setup 

The lab setup intended for this calibration procedure consists of a Xenon arc 

lamp, 25Jtm pinhole, a 3-axis motion platform and the prototype sensor. The 

lamp is used to illuminate the pinhole which is aimed at a set of mirrors . These 

mirrors are positioned to redirect the point source illumination pattern onto the 

star tracker which is mounted to the 3-axis motion platform to allow for con­

trolled precise rotation about any axes. The mirrors extend the distance between 

the point source and the sensor optics, see Figure 4.2 for illustration. The an­

gular positioning accuracy of this platform is 0.002° (1 - (]" ). The entire setup is 

mounted to an optics table for stability and vibrational isolation. 

4.2.2 Image comparison with analytical predictions 

Given a vector of light incident on an lens system, determining the resultant 

PSF would be difficult. This in turn complicates the task of comparing acquired 

pinhole images to analytical predictions from a known sensor orientation. Instead, 

we chose to make the comparison between test images and analytical predictions 

on the outer surface of the lens by exmaining incident light vectors. A road map 

for the proposed comparison is shown in Figure 4.3. 

Stemming from the roadmap, we have identified the necessary parameters and 

have begun formulating the required analytical relations. These relations are 

divided into two categories: finding the incident light vector from the light source 
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Pinhole 
Xenon 
Lamp 

· -- -- ------------- ----------W'-~-+-t---------¥.-.t--· 

Image of 
pinhole 

Mirror Prototype 3-Axis Motion 
Star Tracker Platform 

Figure 4.2: Aberration survey lab setup. 

(pinhole) side and finding the incident light vector from the PSF side. The first 

of these two formulations is straightforward. For a known sensor orientation, the 

incident vector on the light source side of the sensor optics is described by the 

set of joint angles and a translational offset of the pinhole light vector from the 

sensor optical axis at zero joint angles. This translational offset is orthogonal to 

the optical axis and is comprised of two components, Lx and Ly , corresponding 

to offsets of the light source along the x and y axes, see Figure 4.4. 

On the other (detector) side, the formulation of the incident light vector is more 

complicated. It is a function of the lens aberration coefficients, the position 

and shape of the imaged PSF and a set of imager mounting parameters. The 

mounting parameters can be described as a set of translation offset parameters 

and a rotation sequence that describe the position and orientation of the image 

detector with respect to the sensor. The translational offset is represented in the 

sensor frame as I = (Ix, Iy , Iz), and is also shown in Figure 4.4. The necessary 
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Lamp to incident light vector Image to incident light vector 

Figure 4.3: Aberration Characterization road map of operations. 
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set of rotation angles are then described by <I> I , 8 I , and 'l1 I , expressed as a 

direction cosine matrix from the detector frame to the sensor frame, C si. The 

sign convention utilized for these rotations is described in Figure 4.5. 

The required model parameters are summarized by the following list: 

• Light source misaslignment with sensor optical axis (2 parameters) 

• Aberration coefficients of the lens system (5 parameter) 

• Orientation of the image detector, with respect to the sensor (optical axis) 

( 3 parameters) 

• Position of the image detector, with respect to the sensor (3 parameters) 

"C sing these formulations of the incident light vector from both sides of the sensor 

optics, an error minimization routine can be setup to compute values for each 

of the 13 describe parameters. This routines guides the variation in model pa­

rameters by minimizing the RMS error between the two computed incident light 

vectors. 
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Figure 4.4: Light source boresight misalignment. 

4.3 PSF Parameterization 

Part of the formulation for the incident light vector (from the detector side) 

involves the position and shape of the imaged PSF. This can be related to the 

present aberrations and the off-axis angle of the incident vector. As a preliminary 

analysis, we develop a parameterization technique for aberrant PSFs and exarnine 

how these parameters change throughout the sensor FOV. This is beneficial in 

two ways: 

• Variations in the parameters mapped over the sensor FOV will help describe 

the dominant forms of aberrations. 

• Based on these variations, a PSF deformation lookup table can be created 

that can be used to improve the detection of aberrant PSFs in the presence 

of noise. 
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lens 
imaging 
plane 

Figure 4.5: Imager misalignment sign convention 
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A star can modelled as a point source at an infinite distance. With an ideal 

optical system, this source should appear as a circular PSF on the detector 

plane of an image sensor. As introduced above, optical aberrations alter the exit 

wavefront from the sensor optics, changing the PSF shape and position. These 

effects can be subdivided into respective contributions from each aberration. If 

we can parameterize the shape and position of an aberrant PSF, we can map 

these effects across the sensor FOV. 

Given some basic optical design information pertaining to our prototype 

star tracker's optics, we know that the dominant aberrations are astigmatism, 

field curvature and distortion. Thus, the developed parameterization is limited 

to the effects of these three aberrations on the measured PSF location and 

shape. Distortion is commonly approximated as a strictly position altering aber­

ration. Field curvature and astigmatism represent shape varying aberrations, 

transforming circular PSFs into ellipses. Even though the process is different, 

they introduce similar effects. 

Vve can approximate these PSF deformations by fitting a Bivariate Normal (BV~) 

distribution to the imaged PSF. Mathematically, this can be represented by the 

equation: 

f (.r, y) = A exp (- [ _z 2 ] ) 
2 1 Pxy 

(4.4) 
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where 

(4.5) 

A is peak magnitude defined as: 

(4.6) 

a-x and a-y are the standard deviations of the distribution along the principal axes 

of the ellipse, (J-t x, P,y) define the ellipse centroid on the image detector and Pxy 

is the correlation coefficient. This coefficient affects the eccentricity of the ellipse 

and its orientation with respect to the x and y axes of the image detector. 

4.4 Survey Implementation 

The aberration survey was completed by imaging an illuminated pinhole from 

various off-boresight angles. The resultant PSF images were then fit to a 

BV~ distribution through a nonlinear least-squares iterative algorithm. Due to 

misalignments between the sensor optical axis and light source boresight only 

about half of the sensor FOV was sampled. 

The platform was used to vary the sensor orientation allowing for the point source 

to be imaged through various rotations of the sensor optics. The sensor was 

rotated both around its boresight and through incrementally increasing off-axis 

angles with the point source, taking irnages at each orientation. A relatively 

large sample set of 756 images was taken in all, representing approximately half 

of the sensor FOV. Due to some residual misalignment of the sensor with the 

point source, the collected pinhole images represent a series of concentric rings 

centered about the light source boresight. 

Each imaged PSF was fit with a BVN distribution using a nonlinear least-squares 

approach. The raw detector image is first centroided to provide the approximate 

PSF position. The image is then windowed to a smaller image based on the size 
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of the PSF 1 . The window is divided into individual pixel illuminations that are 

assumed to be representative of a BVN illumination distribution, I(i , j). These 

pixel illuminations are then compared against an analytical model of the BVN 

distribution , G(A, rJx ,y , pxy ). A cost function, Q, can then be defined as the 

absolute difference in pixel illuminations: 

Q = L L[G(A, CJx, CJy, PXY)- f(i, j)] 2 

j 

(4.7) 

A nonlinear least squares algorithm was then used to compute optimal values of 

the BVN parameter set, through a minimization of Eq. 4. 7. An initial guess and 

bounds on parameter variation were used with MATLAB's lsqnonlin function to 

perform this optimization. 

4.5 Survey Results 

Shape deformation is clearly present within the aberration survey of the sensor 

FOV. BVN parameters fitted from the survey data show smooth variations in 

both the size of the PSF principal axes, CJ x, CJy, and their respective correlation 

coefficient, PXY· All three of these fitted parameters form saddle-shaped trends 

when a surface is mapped to the collected data points, see Figures 4.6-4.8. The 

hole at the center of each of these plots is due to a lack of imaged data points 

within the region. This was caused due to residual misalignment between the 

light source boresight and the optical axis of the prototype sensor. This type of 

relation bet-vveen the standard deviations and the correlation coefficient describes 

a stretching of the ideal circular PSF into an ellipse. It is clear that this defor­

mation grows as the distance of the imaged point from the optical axis increases. 

This type of PSF deformation is consistent with the effects of astigmatism and 

field curvature, which was expected. 

1This is described by the distance traveled on the detector from the edge pixel of the PSF 
to the brightest pixel of the PSF, see Chapter 2 
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In addition to the parameters shown in Figures 4.6-4.8, the BVN parameter 

fit also determined the centroid of each PSF. If intersection coordinates of the 

optical axis with the detector were known, the fitted PSF centroids could be used 

to determine distortion effects. As previously described , the distortion aberration 

can change the position of the PSF. Depending on the magnitude, this would 

cause the the imaged PSF centroids to take either a pincushion or barrel-like 

shape, see Chapter 2. Any measurable deformation from the ideal pattern of 

imaged concentric rings could then be related to the relative magnitude of the 

distortion aberration. Unfortunately, offsets from both the lens and detector look 

the same as offsets of the detector platform. This makes the calculation of the 

optical axis intersection more difficult. The next section outlines a procedure 

for aberration characterization that aims to simply this problem. Small-scale 

variations of the fitted BVN parameters are also evident within the parameter 

plots of Figures 4.6-4.8. Further analysis is required to determine if these features 
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are a result of other optical aberrations or just artifacts of image processing. 

4.6 Summary 

A method to parameterize the shape and position of a deformed PSF has been 

developed. Using this parameterization and the BVN fitting technique described 

in section 4.4, aberrant PSF images have been fit with sets of BVN parameters. 

Trends in these parameters reveal shape deforming effects representative of 

astigmatism and field curvature aberrations. These forms of deformations 

agree with optical specifications provided by the lens manufacturer describing 

astigmatism and field curvature as two of the dominant aberrating effects. 

As part of the goal to correct for all present optical aberrations, an ap­

proach has been developed to determine the aberration coefficients. An optical 

model has been outlined that can serve as an analytical tool to relate imaged 

PSFs to corresponding joint angles. Further work is still needed to define the 

specific analytical relations associated with PSF deformation due to aberrations. 
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CHAPTER 5 

Conclusions and Future Work 

The goal of this study was to examine several practical calibration techniques 

applicable to the development and manufacture of modern microsatellite 

star trackers. Three such calibrations were examined pertaining to the lab setup 

used for sensor ground testing, the image detector and the sensor optics. This 

chapter provides an outline of key features and results observed within each de­

veloped calibration as well as some suggestions of future work. The thesis ends 

with a discussion on how and when these calibration techniques would be used 

within the various stages of sensor development and testing. 

5.1 Lab calibration summary 

A new form of star simulator was presented involving the use of an LCD 

projector. The outlined setup procedure minimizes the need of manual setup, 

a common drawback of most of the present star simulators, through the use 

of a self-calibrating projector-screen-sensor system. An analytical model of lab 

was developed relating projector coordinates to sensor coordinates. A projected 

test pattern was then used together with a developed calibration procedure to 

numerically determine necessary parameters of this lab setup. Using these values 

together with the lab model, projector images were modified to compensate for 

geometric and optical nonidealities of the lab setup. This allows for the desired 

image representation from sensor perspective. 

The main focusses of this calibration were to maximize the angular place­

ment accuracy of points within the sensor FOV and minimize the required 
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amount of labor required for setup. Prelirninary results of show a resultant angu­

lar star placement accuracy of 0.0073°. This value is comparable to and in some 

cases better than other similar forms of star simulation. In addition , the entire 

calibration procedure required less than 1 minute of labor and approximately 25 

min of automated calibration. This makes it feasible to recalibrate the lab setup 

before each use, resulting in a more flexible laboratory environment. Although 

this calibration routine was developed for use with proposed projector-screen­

sensor system, it can easily be implemented to calibrate similar forms of star 

simulators , specifically those involving high resolution displays. 

Further investigations are still required to address some remaining issues 

and explore further possibilities. First , the developed lab model needs to be 

revisited and examined for potential model changes that would better account 

for increased regions of error near the boresight and at the corners. Second, 

the calibration procedure can still be streamlined by tuning the size , shape 

and method of projection/ capture of the utilized test pattern. The projection 

of multiple calibration points within a single image could greatly reduce the 

amount the total calibration time but some logic must be developed to prevent 

the mismatch of points. Lastly, some further investigation of star placement 

accuracy is required using a higher resolution projector. 

5.2 Detector Calibration 

Pixel detectors common to all star tracker designs produce imperfect represen­

tations of the spatial distribution of incoming starlight. This affects our ability 

to properly centroid stars, degrading star tracker accuracy. These imperfect 

representations stem from various types of detector noise, generally common to 

both CCD and CMOS imagers. Following an overview of fundamental noise 

sources, an existing procedure for radiometric camera calibration developed by 

Healey was adapted and implemented for our current star tracker. 
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This form of detector calibration focussed on removing the dominant noise 

sources associated with uncalibrated imagers: DC)J and FPN. Following the 

calibration , images could be corrected on-demand, given some fixed parameter 

storage requirements. The effectiveness of this correction was then examined 

through a statistical analysis of the variation within small pixel windows. Prior 

to correction, a 19 x 19 window of pixels generally saw a variation within 

the range of 17-25 detector counts, or approximately 1% of the measured 

illumination. Following the correction, this variation was reduced to 13-21 

detector counts, or approximately 0.8% of the measured illumination. 

Although these improvements are small, the implementation of this cor­

rection can improve our ability to detect and centroid stars. A further analysis 

of how these changes in pixel variation relate to improvements in star detection 

and centroid accuracy, could provide some insight as to whether the large storage 

requirements are worth it. 

5.3 Lens Calibration 

Aberrations corrupt the PSFs of stars imaged by the sensor. As part of an overall 

plan to correct for these effects, this section outlined a framework that can be 

used to determine the specifics of present aberrations. The framework is based on 

the calibration of an analytical model that describes the transformation of light 

from a pinhole, through the sensor optics and onto the detector. This calibration 

is outlined as a comparison between test images and analytical predictions 

at the point of the lens incident light vector. To achieve this comparison, a 

parameterization for deformed PSFs was developed. Although limited in the 

ability to parameterize the effects of all aberrations, preliminary results from 

a survey of the sensor FOV show results that are consistent with expected trends. 

Future work is required to expand the PSF parameterization to include 

all aberration effects, and subsequently relate these values to the incident light 
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vector. This relation can then be used to determine the specific details of the 

aberrations present, inorder to implement some form of PSF centroid and shape 

correction. Although in this case, the FOV survey was just used for basic 

parameterization validation, no other images would be required for the complete 

calibration of the lab model. This places the total required time for image 

acquisition at approximately 35min. Assuming a similar optimization time to 

the calibration of the star simulator, the entire lens calibration procedure could 

be completed in less than 40min. 

5.4 Concluding Remarks 

Individually, these techniques are not necessarily ground-breaking. Each 

represents a conventional or commonsense approach to calibration. Together 

however, they represent a set of tools that we feel are particularly practical and 

cost-effective for improving the engineering of microsatellite star trackers. 

Both the detector and lens calibration can improve the speed and accu­

racy of a star track attitude solution. The calibration of the image detector 

reduces small noise contributions throughout the image, making it easier 

to find dim stars and more accurately centroid bright stars. Similarly, the 

calibration of the sensor optics allows for the formulation of a PSF deformation 

lookup table. If the specific type of PSF deformation for a certain part of the 

detector is known, it is easier to detect aberrant PSFs hidden amongst image 

noise. Both of these calibrations can be useful when selecting components for 

a prototype sensor or even for just improving the performance of existing sensors. 

The developed lab calibration can be used to simplify hardware-in-the­

loop testing. This type of testing is used to validate the sensor as a whole. 

The quick and automated calibration of the developed star simulator, promote 

frequent testing that is useful for rapid sensor development. In addition , the 

short simulator calibration time allows for the quick testing of multiple sensors. 
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