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TITLE; MODEL BASED SEGMENTATION AND ANALYSIS 
OF KNEE SOUND SIGNAL

Abstract

The motivation of the work is to develop a signal processing methodology for non- 
invasive diagnosis of knee osteoarthritis in an early stage. The sound signal that is 
emitted from knee when it moves is called Vibroarthrographic (VAG) signal. Analysis 
of this sound signal will help in diagnosis of the knee joint problems.

In this project a model based approach for segmenting the VAG signals, followed 
by feature extraction and classification is proposed. This could be used to get some 
indication whether the signal is from a normal knee or from an abnormal knee. The 
proposed scheme also has the capability for finding the depth of severity of the damage 
and it can also localize the angle range of the knee swing, where the damage has 
occurred. As a result, the project gave an accuracy of 70.4% with leave-one-out 
method.

After doing the classification using the segments, finally it has been calculated 
how many segments from each signal has been correctly identified. A total of 30 knee 
sound signals from normal and abnormal knees has been used in this work and out of 
that 26 signals has been classified properly (either normal or abnormal) and 4 signals 
got misclassified. with a successful classification accuracy of 86.7%.
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X
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C hapter 1 

In trodu ction

1.1 A n atom y  o f  th e  N orm al K n ee  Jo in t

Knee joint is the most complex joint in human structure. Flexion and extension are 

the main knee movements although some rotation occurs when the knee is flexed. The 

sound emitted from the knee when it moves, called the Vibroarthrographic (VAG) 

signal. Here (Figure 1.1) is a brief description of the normal human knee joint for 

both flexion and extension position.

The knee is a “hinge type” joint, which is formed by two bones held together by 

flexible ligaments. The bones are the femur (thigh bone) and the tibia (shin bone). 

The knee cap (patella) also forms part of the knee joint. It glides over the end of 

the femur as the knee bends. The moving parts of a normal knee are covered with a 

layer of articular cartilage, which is a white smooth substance about 1/4 of an inch 

thick on the patella and 1/8 of an inch thick on the femur and tibia. An x-ray of the 

knee normally shows space (the “joint space”) between the femur and the tibia as 

well as between the femur and the patella. This is not empty space but represents the 

cartilage (which does not show up on x-rays). The smooth, cartilage-covered surfaces

1
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Figure 1.1: Anatomy of the human knee joint [18]

of the knee move on each other with very little friction in the normal joint. In the 

normal knee the “joint space” is approximately 1/4 of an inch wide and fairly even 

in outline.

1.2 K n ee-J o in t P ath o logy: O steo a rth r itis

There are several knee-joint pathologies and the osteoarthritis is the most common 

one. The term “arthritis” literally means inflammation of a joint, but is generally used 

to describe any condition in which there is damage to the cartilage. Inflammation, 

if present, is in the synovium. The proportion of cartilage damage and synovial 

inflammation varies with the type and stage of arthritis. Usually the pain early on 

is due to inflammation. In the later stages, when the cartilage is worn away, most of 

the pain comes from the mechanical friction of raw bones rubbing on each other.

Knee cartilage, can be compared to the tread of an automobile tire, very durable 

but susceptible to wear over time. Osteoarthritis is a degenerative process, which
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Figure 1.2: Osteoarthritis on human knee.joint [19]

results in the wearing out of the joint surface. Over time the Joint surface slowly 

erodes until the underlying bone is exposed. This exposed bone can be painful when 

the joint moves and bears weight. Osteoarthritis mainly damages the joint cartilage, 

b u t there is often some inflammation as well. It usually affects only one or two major 

joints (usually in the legs). It does not affect the internal organs. The cause of knee 

osteoarthritis is not known. It is thought to be simply a process of "wear and tear” in 

most cases. Some conditions may predispose the knee to osteoarthritis, for example, 

a previous fracture th a t involved the joint, or by lesser injuries th a t may have torn 

ligaments or menisci. In osteoarthritis of the knee the cartilage cushion is either 

thinner than normal (leaving bare spots on the bone), or completely absent. Bare 

bones grind against each other and cause mechanical pain. Fragments of cartilage 

floating in the joint may cause inflammation in the joint, lining, and this is a second 

source of pain. X-ra.ys show the “joint space” to be narrowed and irregular in outline. 

There is no blood test for diagnosing osteoarthritis and its progression.

Many patients have knee pain coming from injury to  a meniscal cartilage rather
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than  injury to the articular cartilage. The comparison between two categories are as 

follows:

• The articular cartilage is the cartilage that covers the ends of the bone (similar 

to the tread on a tire).

• A meniscal cartilage is a disc of cartilage that is actually separate from the 

femur, the tibia and the patella. There are two such c-shaped meniscal cartilages 

in the knee.

They are sandwiched between the femur and the tibia. These meniscal cartilages 

are often injured, particularly during athletics of a meniscal cartilage is torn, it of

ten  does not heal and the pieces of the cartilage may become trapped in abnormal 

positions in the knee causing giving way, fluid on the knee, and pain with certain 

twisting activities. However, when the articular cartilage has been worn out (as in 

arthritis), arthroscopy is rarely able to correct the problem and a knee replacement 

is often needed. Osteoarthritis of the knee often develops in one weight-bearing com

partm ent of the knee, while the other two compartments remain relatively healthy. 

Since osteoarthritis is a progressive disease, in the short term  it can be managed con

servatively. Anti-inflammatory drugs, cortisone injections, and physical therapy can 

delay the need for surgery, but eventually many people require surgical reconstruc

tion of the loiee. -The traditional approach to knee reconstruction has been a total 

knee replacement, wliich replaces all three compartments of the knee. A total knee 

provides excellent pain relief and has been shown to be very durable. The problem 

with approach is that i t ’s a expensive procedure. For people who need two or more 

of their knee compartments resurfaced, total knee replacement is an excellent choice 

to relieve pain and restore function of the knee.
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1.3 R ev iew  o f  N on-Invasive D iagnosis o f O steoarthri

tis:

There are a rmmber of non-invasive diagnostic method for Osteoarthritis (OA) other 

than the general clinical diagnosis like inspection, function testing and palpation. Few 

of them are described below [20] :

(a) P la in  R ad iographs or X -rays: Plain X-rays have been the primary imaging

method used to confirm the diagnosis of OA, stage its severity, and follow its 

progression. Unfortunately, the severity of radiographic findings do not correlate 

well with the severity of symptoms or the presence of functional disability. 

Although more than 90% of people over age 40 have some radiographic evidence 

of osteoarthritic joint changes, only 30% have symptoms. This limits the use 

of radiography, both as a diagnostic tool and as a tool for ongoing assessment 

of disease progression. Because the plain radiograph is almost always sufficient, 

most of the follo-wing techniques are only used in special circumstances to aid 

in the diagnosis of OA. For example, these studies can be used to eliminate an 

infected joint (e.g., radionuclide scintigraphy) or to look for a herniated disc in 

the back (e.g., magnetic resonance imaging MRI).

(b) A rth ro g rap h y : This involves the injection of contrast media into a joint. Arthrog-

rr-'hy is a relatively time-consuming and invasive procedme, but it may be use

ful in detecting meniscal injury, loose bodies in the joint cavity, and other local 

changes in joint structure. It has been mostly replaced by MRI.
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I (c) U ltra so u n d : Ultrasound is inexpensive and widely available, and does not ex

pose the patient to ionizing radiation; however, its use is limited because ultra

sound waves do not readily pass through bone tissue. It is particularly valuable 

in the imaging of soft-tissue structures and tendons associated with the joint. 

Although ultrasound cannot evaluate bone, it can distinguish between solid and 

cystic soft-tissue lesions. It is also helpful in demonstrating joint effusions be

hind the knee (Baker’s or popliteal cyst) and to guide a needle for aspiration of 

fluid (arthrocentesis).

(d) R ad ionuclide  Scintigraphy: Also loiown as a bone scan, this is a sensitive, 

but nonspecific, method of detecting OA activity. It creates images by scan

ning affected areas of the body with a gamma camera after a bone-seeldng 

radiopharmaceutical is injected. Radionuclides, such as technetium-99 HDP, 

are attracted to areas of bone with relatively high blood flow, edema, and high 

bone-mineral turnover rates (abnormal joint physiology). Joints tha t are un

usually active “light up” in the resulting images. Scintigraphic imaging can be 

used to distinguish between joints with active disease and those that are altered, 

but inactive. Moreover, scintigraphic imaging may detect the presence of OA 

before these changes are detectable on X-rays. Unfortunately, tliis technique is 

very costly and time consuming, and requires the use of a radioactive material, 

which in turn needs special handling. Thus, it is not an appropriate teclmique 

for the routine diagnosis or management of OA.

(e) M agnetic  R esonance Im aging (M R I) : MRI is a very expensive imaging tech

nique th a t uses the behavior of atomic nuclei in a magnetic field to create im

ages. Patients are exposed to radiowaves and a strong magnetic field, rather

r .
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than X-rays or other types of radiation. This technique provides excellent re

constructed images of interior organs, and can delineate muscle, bone, blood 

vessels, and nerves. MRI is limited as a diagnostic modality because of its 

expense. Although it is not routinely performed in patients with OA, MRI is 

useful when other entities, such as meniscal tears or ligament injuries need to 

be eliminated because it permits the simultaneous imaging of all joint compo

nents with excellent contrast between different tissues. MRI has proven to be 

particularly valuable in imaging joint effusions, menisci, joint ligament, osteo

phytes, and defects in bone, articular cartilage, and synovial tissue. Moreover, 

this technique has specific advantages in diagnosing osteonecrosis, internal joint 

derangements, bone and joint infections, and disorders of the structures around 

joints (e.g., rotator cuff lesions).

(f) C o m p u ted  Tom ography: Computed tomography or computerized axial to

mography is an examination that uses X-ray to obtain a cross sectional im

age of the hmnan body. CT Scan is helpful in detecting fine detail of cortical 

bone. Relative to X-ray, CAT reconstructs multiple, two dimensional images. 

It can distinguish normal and abnormal structures accurately. It is also a rel

atively expensive test. Relative to MRI, it gives poor definition of soft-tissue 

boundaries.

1.4 A n  In troduction  to  K n ee Sound Signals

In this work the vibration or sound signals emitted by knee joints during the course of 

normal movement known as VibroArthroGraphic (VAG) signals has been studied. It
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is hypothesized that this signals are associated Avith specific pathological conditions. 

In early stages of this work, the researchers [5] found out two types of knee sound 

signals.

1. Physiological PatellofemoralCrepitus (PPG) is the vibration signal produced 

during slow motion (less then 5°/s), which can be measured by Vibration 

arthrometry (VAM). and

2. The signal produced from the Icnee when the movement is pretty fast (more 

than 67% ), is called “Vibration signal in rapid knee me non”.

A noninvasive procedure to diagnose cartilage pathology would be extremely useful 

in screening symptomatic patients before knee surgery and in follow-up after surgery. 

W ith appropriate teclmiques for recording and analysis, computer-aided analysis of 

VAG signals should provide quantitative indices representing the functional state of 

articular cartilage.

VAG signal has the potential to be widely used non-invasive diagnosis and can be 

used as an inexpensive diagnosis tool for monitoring of cartilage disorders.

1.5 O bjective o f  th is project

• The key objective of this work is to find out an inexpensive diagnostic tool for 

finding the indication of OA in early stage.

• Another motive of this project is to find out the appropriate angle of the damage 

area.

^ .
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1.6 O rganization  of th e  R ep ort

• In Chapter 2 we will talk about all the related works, people studied VAG 

signals in different way, only those comparable with our strategy have been 

presented here.

• In Chapter 3, 1 would like to discuss about the methodology such as Adaptive 

segmentation technique, that 1 have used in this work as well as the other 

strategies that people have taken for doing the adaptive segmentation for non- 

stationary signals

• Chapter 4 will give an idea of the pattern extraction and classification techniques 

as well as discussion about the Linear Discriminant Analysis (LDA) technique 

which 1 have used to do the signal classification

Finally in Chapter 5 we will discuss the results and also try to give some future 

direction of this work
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C hapter 2 

R elated  W orks

2.1 P reviou s R esearch

Robert Hooke is the person who worked first (in 17̂ '̂' century) in this area and find 

out that joint noise could be used a diagnostic sign in patients sufiering from painful 

joints [5]. Mollan and his co-workers in Northern Ireland published a series of papers 

on various aspects of knee joint vibration analysis. They performed experiments on 

the type of recording system to be used for recording the knee joint vibration signals. 

A group led by Mang in Germany has also published a paper on the analysis of knee 

joint sound signals [1]. Based upon the division of sound peaks into frequency groups, 

this term was apparently able to identify by sound analysis clinically and operatively 

demonstrated chondromalacia patella, meniscus lesion s, and arthritis. Chondromala

cia literally means “softening of the cartilage”, and Patellae means “the knee-cap”. 

So Chondromalacia patellae means “softening of the articular cartilage of the knee

cap.” The articular cartilage is the cartilage lining under the knee-cap that articulates 

with the knee joint. Under normal circumstances, it is smooth and shiny, so th a t it 

glides smoothly along the articular groove of the femur as the knee bends. When

10
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it “softens”, it may break down, causing irregularities along the undersurface of the 

patella.

In 1985 Mollan [5] and his group published a paper named “W hat is physiological 

patello-femoral crepitus?” They basically introduced the PPG signal. They used this 

name to the fine creaking sensation, which can be felt on all normal patellae as the 

knee moves slowly. This produces a very regular, reproducible signal. While working 

they do simultaneous recordings, from accelerometers taped to upper and lower poles 

of the patella. And they found out the traces are mirror image of each other.

In 1990 [6] the same group made other publications describing the technique of 

vibration arthrometry being developed to assist the clinical examiner in identifying 

these vibrations and to improve diagnostic accuracy. They found out that varying the 

investigative procedure can affect the magnitude of some parameters of the vibration 

signal. And they do the research for the effect of speed of joint movement and that 

has been quantified in a pilot study involving 24 patients with internal knee damage. 

Custom designed hardware was used to measure joint speed as the rate of change 

of joint angle, which was measured by an electrogoniometer. It was found that the 

energy content of the vibration, reflected by the peak amplitude and root mean square 

value was strongly affected by joint speed.

In 1992 a group led by Rangayyan, [l],in the University of Calgary has done a 

series of research on the analysis of knee vibration signal using Linear Prediction. 

This paper investigates the possibility of developing a noninvasive method based on 

analysis of vibration produced by the knee joint. Particularly they used the method of 

modeling by finear prediction for adaptive segmentation and parameterization of knee 

vibration signal. Parameters extracted from the LP model, such as dominant poles
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were found to be useful in constructing feature vectors. Dominant poles represent 

peaks of signal segments in the spectral domain. Two-dimensional feature vectors 

were constructed for the signal segments analyzed by using the first dominant pole 

frequency and the ratio of power in the 40-120 Hz band to total power.

In 1992, a comparative study of simultaneous Vibromyography and electromyog

raphy with active human quadriceps has been done Rangayyan and Zhang [12]. Here 

they compared the Vibromyograghic (VMG) signals and Electromyography (EMG) 

signals and find out tha t VMG is a better way to understand the neuromuscular con

trol than using EMG. In contrast to EMG signals, the VMG appears to more directly 

reflect contractile properties of muscles and may therefore be used also as an aid to 

the understanding of the neuromuscular control. Vibromyographic (VMG) signals 

are the low frequency vibration signals generated during muscle contraction and elec

tromyographic (EMG) signals recorded simultaneously during isometric contraction 

of the human quadriceps muscles. In this paper, they compared VMG with EMG and 

found out th a t VMG have diagnostic potential in pediatric muscle diseases and like 

the EMG signal, exhibits a feature of joint angle dependents. The comparison was 

accomplished by evaluating the averaged root mean squared (rms) value, mean fre

quency (ME) and peak frequency (PE) of the VMG and EMG signals for fom’ muscle 

contraction levels at joint angles of 30°, 60° and 90°. Eurthermore the study indicates 

that the averaged ME (6-24Hz) and PE (9-19Hz) of the VMG signals are much lower 

than the ME(75-109Hz) and PE (40-80Hz)of the EMG signal, but they have similar 

slopes for 60° and 90° joint angle. This means VMG can reflect the same muscle 

activation patterns like EMG, while the difference in the frequency content between 

the VMG and EMG reflect the morphological differences between the mechanical and
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electrical responses of muscle activation.

In 1994, Zhang and Rangayyan [3], published another paper, which mentions 

about the filtering technique of the VAG signal for muscle contraction interference. 

While measuring the knee signal using a sensor, they contain significant interference 

caused by muscle contraction (MCI) tha t required for the Icnee movement. Previously 

a simple frequency domain high-pass filtering teclmique was used for minimizing the 

MCI cancellation, but in this work they used an adaptive MCI cancellation as an 

alternative for MCI cancellation in VAG signal. They basically used the Least Mean 

Square (LMS) for performing this job. And also they divide the whole MCI reduction 

in two parts:

1 . For detecting and characterizing the correlated MCI components for use as a 

reference signal in adaptive filtering and

2 . Optimizing the step size of the non-stationary adaptive filter

Simon and Verstraete in 1995 did some prediction of knee joint torque from the 

activity of knee flexion/extention [11]. In this study the authors investigated the 

relationship between the torque production of the knee flexors and extensors and the 

EMG of five muscles crossing the knee. EMG activity and the knee joint torque were 

recorded for five subjects using smdace electrodes and BIODEX system (the Biodex 

Multi-Joint System allows the clinician to test, rehab, and analyze a wide range 

of joint movements at various speeds and various resistance settings. The Biodex 

System’s wide range of operational modes provides optimal flexibility, and is able to 

safely accommodate all levels of patients from the weakest individual to the strongest 

athlete), respectively. Data were normalized and averaged for three trials, for each

■j”
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of four speeds. The result showed consistent patterns for the torque produced by the 

muscles and the muscle activity, although minor variations existed. A relationship 

between torque and EMG was developed for both extension and flexion with squared 

values ranging from 0.73 to 0.98.

In 1996, Ragayyan and Moussavi did some progress [4] and published a work on 

Screening and Adaptive Segmentation of Vibroarthrographic Signals, This paper is 

basically the continuation of the work reported by Thavathia [1] by using the LP 

modeling with a constant width reference window (N samples) .If a sudden variation 

appears in the middle of a test window then Thavathia’s [1] method will show it 

either at the beginning of the window or at the end of the window, not in the exact 

position of the variation. So they present here a new adaptive segmentation based 

on Recursive Least Squares (RLS) algorithm. No reference window is required in this 

procedure. The filter used in this method tries to  predict the signal from a few past 

samples of the signal in memory, and computes the prediction error. If a change in 

signal statistics occurs, the tap-weights and the prediction error wiU show a change 

as well, which can be detected by applying a threshold.

The method was evaluated with 46 VAG signals, and the segment boundaries 

computed. Results of application of this method of two VAG signals representative 

are shown in Figure 2.1. The segment lines are shown by the vertical dashed lines. It 

is seen from the figures that the clicks (sudden variations) as well as the transitional 

variations (gradual changes) have been detected successfully. Comparison of the 

spectra of consecutive segments from a number of VAG signals indicated tha t the 

method is able to track spectral changes very well.
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Figure 2.1; the left one shows The arrow points to a chck Heard at 20° extension 0° 
is the Fully extended position and the right one shows the Arrows point to clicks and 
grinding sounds heard during auscultation [4]

In 1996, Kshirsagar, Robson and Herrod [10] worked on the thickness of artic

ular cartilage, which can be an important parameter to assess the progression of 

osteoarthritis. So in this paper the authors give a complete computerized method for 

doing the analysis of Magnetic Resonance Imaging (MRI) for directly visualizing the 

cartilage. Here are the steps they have taken for doing this automation.

•  Identify the position of the femoral bone in the 2D MR image

• The coarse edge detection, in order to locate the femur, that edge map is cross 

related to the standard template of human femur bone to maximize the corre

lation value

•  The image is zoomed to define the area of interest. An edge map is obtained 

with a finer filter to delineate precisely the edges of the cartilage around the 

femur

• Eliminate the artifact edges from the trabecular structure, then the thickness, 

defined as the perpendicular distances between the cartilage edges, is measured
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along the femoral contour a t every point and the plot of cartilage thicloiess in 

mm is plotted against the distance along femur

This automated method for cartilage thickness using MRI provides objective and 

rapid measurements at statistical significant number of points along the joint.

In 1998, Cashman and Kitnev [9] showed up with VAG analysis using MR images 

of the knee, This paper talking about something related to our study but it really not 

of our interest. The authors here trying to highlighted the information in the MR 

slice images of early knee joint damages. The reason for working on it cause, when a 

patient with osteoarthritis considering for the orthopedic knee surgery, it would be an 

advantage to present anatomical CT or MRI information to the surgeons in a more 

accessible format allowing them to display and manipulate anatomical structures as 

3D objects. So the authors trying to develop techniques for automated segmentation 

and rendering of the major joint structures. They have used 1.5T gee body scanner 

and obtained sagittal Tl-weighted spin echo images from 4 volunteers and 2 patients 

with OA. Segmentation was performed using MIDUS (Medical Information Display 

and Analysis System: Imperial College).

In recent work, Ching, Jiang and Lee in their paper on Vibration arthrometry, 

talked about the patients with failed total loiee replacement [7]. Here they did the 

preliminary study on VAM, of artificial knee joint in vivo. As discussed in Section 

1.4, basically there are two speed protocols in knee kinematics: i) 2°/s, the signal 

is called “Physiological Patellofemoral Crepitus (PPG)” in which the value of Root 

Mean Square (rms) is used as a parameter, and ii) 67°/s, is called “Vibration signal 

in rapid knee motion” in which Autoregressive(AR) modeling is used for adaptive 

segmentation and extracting the dominant pole of each signal segment to calculate
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the  spectral pov ■ %lios in f<100Hz and r>500Hz.

The study hat. .ected 14 Failed Total Knee Replacement (FTKR) and 12 Normal 

Total Knee Replacement (NTKR) patients. FTK R is clinically divided into three 

categories; metal wear, polyethylene wear of the patellar component, and no wear but 

w ith prosthesis misalignment. From the study they found out tha t PPG signals are 

only detected in two cases of the Metal wear FTK R group. All other NTKR control 

group, the polyethylene wear FTKR group and the no wear FTKR group have no 

PPG  signals produced. Therefore PPG signals can only be utilized to judge whether 

there is the metal wear in knee prosthesis, but cannot be used for the detection of 

polythene wear in the early stage. On the other hand they showed that the vibration 

signal in rapid knee motion could be used for effectively detecting polythene wear of 

the patellar component in the early stage.

In another paper by Jiang and Yuan the authors utilize the PPG signals to evaluate 

the condition of pateHar-femoral joint for OA knee patients [8 ].

PPG signals measured when the knee joint goes through a flexion-extension motion 

slowly at an angular speed of about 2°/s. Typically, a PPG signal is a sequence of 

vibration pulses generated between the patellar and femoral surfaces. Therefore, a 

PPG  signal usually carries information reflecting the integrity and lubrication of the 

articular cartilage. Also they analyzed tha t PPG signal is non-stationary in nature 

because of its manifestation of slip-stick friction. So to process a PPG signal, they 

divide it into locally-stationary segments for using signal processing techniques such 

as AR modehng. They divide osteoarthritis into three types: Typel : the cartilage of 

patellar-femoral joint is intact, the osteoarthritis found in femoral-tibia joint surface, 

Type2: degeneration occurs in the surface cartilage of both the femoral-tibial joint
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and femoral trochlea, but not on the patellar surface, TypeS: both patellar-femoral 

and femoral-tibial joint have osteoarthritis.

The results obtained with PPG signals are as follows:

• The proposed method is efficient for the analysis of the Condition of patellar 

femoral joint cartilage, VAM could be seen as an alternative way of noninvasive 

diagnosis of OA

• By Using the Intraclass Distances it is possible to differentiate OA type 1 alone 

from OA types 2  and 3

2.2  S u m m ary  o f  R ev iew s

Various works have been done on VAG signals till to date. People applied many 

adaptive signal processing techniques such as time-frequency analysis, wavelet anal

ysis, stochastic point process modeling for better analysis. But, VA.G, as an non- 

stationary signal, should get more attention in the process of segmentation before it 

get analyzed. This project mainly devoted for segmenting the signal intelligently, so 

tha t afte’’ analysis it can give the better indication of the pathological condition and 

can do the localization as well.
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C hapter 3 

Segm entation  Based A nalysis o f  
VAG

Vibroarthi'ographic (VAG) signals that is emitted from knee when the leg is in motion 

can be recorded, and could be analyzed for different medical purposes. Here in this 

work VAG signals has been used which was recorded while knee moves from 135° 

to 0° position. This kind of movement causes the joint surfaces to rub against one 

another. The regions of the joint surfaces coming in contact are different at each 

angle position during the swing. Also the quahty of the joint surfaces coming in 

contact may change with joint angle. This means that the signals are expected to 

have different characteristics at different joint angles. Therefore the signal produced 

by a swing is non-stationary in nature, i.e., the statistical characteristics changes with 

time (angle). All the traditional spectral estimation methods require the signal to 

be stationary in nature, and further, ergodicity is assumed to permit signal analysis 

based on single observation. In order to use these techniques on VAG, the signals 

need to be segmented in such a way so that each part of the signals can be assumed 

as stationary in nature. Such segmentation can be done in two ways:

• Fixed Segmentation

19

Reproduced with permission of the  coovrioht owner. Further reoroduction orahibited without nermiasinn



20

• Adaptive segmentation

F ixed  S egm en ta tion :  In this process the signal is segmented by a number of 

segments and the length of each segment will be same. This is commonly used in 

speech signal processing for short time analysis. This method has also been applied to 

heart sound analysis. The main problem with fixed segmentation is that sometimes 

it causes redundant data, which is costly and not meaningful all the time.

A d a p tive  S egm en ta tion :  The main objective of adaptive segmentation is to trace 

the nonstationarities in the signals that are being processed. So the signal bound

aries are determined adaptively and their length depends on the non-stationarity of 

the signal. This process has been used for analysis of biomedical signals, such as 

Electroencephalogram (BEG).

3.1 D ifferent Techniques o f  A d ap tive  Segm enta

tion

People did adaptive segmentation of signals in many research. One such Approach is 

Wavelet Packet Decomposition (WPD). This approach tries to find the most efficient 

partition of the frequency axis. The resulting frequency partitioning has narrow 

bands around prominent (high-energy) harmonics, and has wide bands to span the 

low-energy noise-like portions of the signal. WPD uses the so-called Best-Basis-Search 

algorithm (BBSA) to achieve this goal. This algorithm recursively splits the signal 

into high and low frequency portions and compares these partitions to select the best 

set tha t covers the whole frequency range. A drawback is that WPD is only adaptive 

to the frequency characteristics of the signal, not to its time/dynamic characteristics.
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In a similar way, time adaptive approaches have been developed, but these approaches 

lack frequency adaptivity.

Gonon proposes an approach to signal analysis that is adaptive to both the time 

and frequency characteristics of the signal. The key idea is to use separate criteria 

for the time and frequency segmentations and the combine the two criteria. A useful 

concept based on the entropy is LSEC (Local Stabilized Entropy Criterion). It is a 

quantity tha t represents how the entropy of a windowed part of the signal relates to 

the entropy of two smaller windowed parts of the signal. Gonon chose first to split 

the signal into different frequency bands, and then perform a CELS segmentation on 

each of the bands separately.

Lazareck and Moussavi adaptively did some similar segmentation to our work, 

they segment the normal swallowing sound signals [15]. It is speculated that the 

swallowing sound, non-stationary by nature, may be decomposed into characteristic 

segments, representing different stages of swallowing mechanism. They measured the 

variance for each swallow using a 25ms window . A threshold greater that f.i + a oî 

the calculated variance dimension was used to detect the peak of the variance dimen

sions, which defined the segment boundaries of the swallowing sound. Lastly, each 

swallowing sound segment was labelled qualitatively as click or non-click segment.

Ahmed [16] also present a novel algorithm for adaptive fuzzy segmentation of MRI 

data and estimation of intensity inhomogeneties using fuzzy logic. They used a differ

ent approach to segment images with intensity inhomogeneities is to simultaneously 

compensate for the shading effect while segmenting the image. This approach has 

the advantage of being able to use intermediate information from the segmentation 

while performing the correction.
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The whole project can be summarized in the following way

• Initial segmentation of VAG signals

• Model based adaptive segmentation

• Finding the model order for AR modeling

o Feature extraction, finding the LPC coefficients of the adaptive segments

3.2 In itia l Segm entation  (F ixed  W id th )

Figure 3.1 is showing the knee signal when the patient is moving his/her leg from 

135° - 0° extension. For the sake of simplicity while describing the whole procedure 

the same signal will be used. The signal is represented in time domain. The signals 

were sampled at 25KHz and two sets of data is shown in the graphs.

Initially for doing the fixed segmentation the ratio was around 17;N, where N is 

the length of each segment. So for the first half of the signal whose length was 3750, 

each segment length was 150, so the total no of initial segments was 25 (3750/150) 

for each VAG signal. So initially the total no of segments was 30X25=7500 for 30 

VAG signals, which was used in this experiment for doing the LPC modehng. Aft.er 

tha t we find out the LP coefficient for each segment. Figm'e 3.2 shows the initial 

segment for a signal (the same one shown in Figure 3.1), which has been recorded 

from a person who is having the knee problem.

In the Figure the lines are showing the fixed segmentation where the number 

of segments are 25, and each segment of width 150. The main problem with fixed 

segmentation is the fi:ced window constraint. The next section will show how the

-f:
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Figure 3.1: VAG when a person moving his leg from 135° - 0° extension

Fixed segmenlalion VAG signal obtained from abnormal knee joint
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Figure 3.2: Fixed segmentation of the signal shown in Figure 3.1
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proposed algorithm will adaptively reduce the number of segment without losing 

much information, which is needed for diagnosis.

3.3 M od el-B ased  A dap tive S egm en tation  o f  VAG  

Signals

As we know VAG is a non-stationary signal. So usually segmentation has been done 

on this type of signal to analysis the signal assuming that the signal is stationary for 

tha,t particular segment. The work in VAG signal processing carried out in such a 

way, that it can be used as an alternative way to get a precise indication of OA. The 

main approach to overcome the problem called the fixed window constraint. Analysis 

of non-stationary signals is usually carried out by means of time segmentation; the 

size of the segments is generally fixed, and it is based on some a priori modelization of 

the data. By relaxing most of these modeling assumptions and by allowing for a more 

general approach to signal segmentation, significant improvements can be achieved.

While analyzing each VAG signal, at first approach the segments was same in 

Wigth, but after finding out the LPC and choosing a minimum threshold the segments 

has been rebuilt. Basically, the length of signal has been decided according to the 

dynamics or the statistical changes occurring in the signal. As we know abnormal 

knees have rougher cartilage surfaces than normal knees hence VAG signals emitted 

from knees should have different frequency dynamics compared to the signal from 

normal knee. So in the proposed segmentation strategy it is hypothesized that the 

signal from abnormal Icnee will be having more number of segments with smaller 

length and on the other hand the signals from normal knees should have less no of
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VAG Signal obtained from abnorm al k n ee  joint

60

40

I
-4 0

-60

S eg m en ti 82 S eg n fe n tS
-100

-120
500 1000 1500 2000 

Tim e Sam ple
2500 40003000 3500

Figure 3.3: Adaptive segmentation of the signal

segments with higher segment length. Furthermore redundant segmentation could be 

been avoided using the proposed methodology.

This is the most challenging part of this project. After getting the initial fixed 

number of segments. LPC coefficients for each of the segments are computed and 

the Euclidean distance between each adjacent segment has been calculated. If the 

distance is less than a certain “min_dis” value (which is usually less than 1) then those 

two segments has been added and assumed them as a single segment, the adaptive 

segmentation algorithm can be summarized as follows:

Here is the pseudo-code (stepwise written) of the algorithm that has been used in 

this work:

Stepl: R ead ing  th e  Signal in  T im e D om ain

R o n rr\/H l i r 'o H  VA/itK r \û r m lc c l r \ r »  r \ f  f h a  a a rv x /r ir ih t  a iA /n a r  Ri i r+ h a r  if ,
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• Total length of the signal is 7500

• Half of the signal has been used for analysis, cause they are symmetric (1:3750) 

Step2: D oing th e Fixed Segm entation

•  Divide each half of the signal in 25 segments (3750/25)

• So the length of each segment is now 150

• Find out the LPC Coefficient of each segment

• The model order was 17 so each segment has 17 coefficient right now

• Store all the segments and coefficient in a Cell for total 30 signals 

Step3: D oing the A daptive Segm entation

• Define a threshold called min_dis, if the minimum distance between two seg

ments is less than that min_dis(this value has been selected adaptively), then 

the segments will be considered as a single segment

•  Check the distance between the adjacent segments

• If the distance is less than mimdis then add them up and assume them as a 

single segment

• Otherwise keep the old segment as it is 

Step4: Finding th e  LPC Coefficients

« So finally I got the adaptive segments for each signal, which is a lot less than 

the fixed segments number
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• Find out the LPC coeSicients for each segments

• Store all the adaptive segments and their coefficients in a different Cell

• These coefficients have been used as the variables while doing the classifications

For the simplicity the result of adaptive segmentation has been shown on the 

same signal tha t has been used in Figure 3.2. As it can be seen from Figure 3.3, after 

each signal gone through the proposed algorithm number of segments for tha t signal 

has been reduced remarkably. For the signal under illustration where the number 

of segments was 25 while doing the fixed segmentation and after going through the 

proposed adaptive the number of segments becomes 5. From the Figure this is also 

notable tha t for stationary part the number of segments are of higher width whereas 

for the non-stationary parts the segments became smaller in width.

3 .4  F in d in g  th e  M od el O rder

In this phase appropriate model order has been calculated. For maintaining the 

accuracy instead of taking one single signal, a number of signals (approximately 1 0  

signals has been averaged) has been taken into account. First each VAG signals 

transferred into frequency domain and then the average of those signals has been 

calculated. Figure 3.4 is showing the average of 10 VAG signal in FFT form. And 

from th a t averaged FFT signals, number of peaks has been calculate when the peaks 

are going above a certain threshold. Here one more thing has to be mentioned, while 

calculating the number of peaks the first half of the signals has been talcen into 

account, cause as we know from earlier knowledge th a t FFT gave us a symmetric 

representation for first half and the second half of the signal. So after counting the
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Figure 3.4: Averaged spectrum for finding the number of peaks

number of peaks for one side it has been doubled up and for getting the final order 

number a threshold value has been added with that.

The threshold line has been has been adjusted adaptively. Finally good result 

found out when the threshold value has been fixed at 0.75 times of the maximum 

peak value. So the number of peaks has been calculated whenever the signal crosses 

this threshold value. In this project the model order was 17 th a t has been calculated 

using the above method.

3.5 L P C  M o d elin g  o f  th e  S ignal

After getting the  final segmentation of the VAG signal, LPC modeling has been 

performed on each segments, which has to be analyzed. The basic procedure is to
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estimate the power spectral density (PSD) of the signal for each particular segment. 

The length of the segment is allowed to increase, as long the PSD is same for tha t 

part. The basis of LPC modeling is based on AR modeling and is explained as follows 

Based on the AR modeling , assume that the current signal (emitted from the 

knee) sample satisfies the following equation.

M
x{n) — — a[t)x{n — €) + w(n). (3.5.1)

e=i
Where M is the order of AR model for the stationary random signal x(n), a{£), i  

=  1 ,2 ,., M, are the AR parameters, and w{n) is some input, in the case of knee joint 

vibration signals, w(n) is totally unknown. From (3.5.1), the approximation of x(n) 

can be given by

M

x{n) — —'^ a { i ) x { n  — i). (3.5.2)
£=1

From (3.5.1) and (3.5.2), the resulting approximation error between x(n) and x{n) 

is given by

M

e(n) =  x{n) — x{n) = x{n) +  ^  a{tjx{n — i). (3.5.3)

The corresponding mean square error for x(n) is the expectation of the squared 

error given by

MgÆ7 = F;{|e(n)|^}. (3.5.4)

Hence the optimal AR parameters can be found by rn1rnmi7:ing (3.5.4) from (3.5.1), 

the transfer function H(z) of the AR model is given by
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It follows from (3.5.5) tha t the Power Spectral Density (PSD) of the model signal 

is given by

For processing and analyzing VAG signals, AR modeling technique can be utilized 

on locally-stationary segment to find the corresponding AR parameters o(^)'s. the 

corresponding PSD for each signal segment is computed from (3.5.6).

The poles of the transfer function H(z) given by (3.5.5) contain useful spectral 

features of the modelled signal and the dominant poles of the AR model represent 

the dominant peaks of the signal’s PSD. To analyze the VAG signals, the dominant 

poles can be utilized to show the maximum peak of the signal’s PSD.

The AR parameters of a VAG signal could also be used to determine the separabil

ity of the signal segments obtained from adaptive segmentation. Let Ufc(l), %(2), ..%(M) 

be the AR parameters obtained from the signal segment.

So using the above strategy, 17 coefficients [note the model order is 17 in this 

project] has been found for each segment, which was fed to the SPSS pattern recog

nition system based on variables. Appendix A provided the table for the coefficient. 

The segments were labelled as normal and abnormal segment depending on the clin

ical report obtained. LPC coding of VAG signal has been performed, the coding 

benefits of adaptive time segmentation and model selection have been tested.
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C hapter 4 

P a ttern  C lassification

Automated methods for making decisions based on inputs play a very important role 

both in engineering applications and in helping us understand how biological systems 

responds to their environments. As many engineers and cognitive scientists will attest, 

the term  “input” and “decision” for this pattern  classification problem are not clearly 

defined in  theory. In practice the problem is usually decomposed through design and 

analysis. A very simple method for making hard decision is the nearest neighbor 

classifier. This classifier keeps a database of labelled training pattern. Given a test 

pattern, the nearest neighbor classifier outputs the class of pattern  in its database 

th a t is “closest” to the test pattern. Any decision metric may be used, but typically 

Euclidean distance or one of its generalizations are used.

Typically the pattern classification problem can be improved in two techniques:

• Employ various multivariate data analysis techniques (e.g., linear discriminant 

analysis, neural network, decision trees, support vector machines), and compare 

them by assessing their model performance. The most accurate model is then 

used for prediction.

• Keep the multivariate analysis technique fixed and instead work on improving
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the feature representation, by either selecting the most relevant features, or by 

constructing new features.

In this project the second technique was consideration cause. Most classification 

algorithms are highly sensitive to the quality of the feature representation. And 

by selecting the most relevant features, data distribution is transformed to a form 

amenable to current classification techniques. The feature has been extracted us

ing LP modeling and extracted LPC features for each segment has fed to a linear 

discriminant analysis (LDA) technique for VAG signal classification.

4 .1  D ifferent P a ttern  C lassification  T echniques

In this section we will briefly discuss the different pattern classification technique that 

is being in use now a days for different application. The next section we will discuss 

on Linear Discriminant Analysis (LDA) elaborately cause we use LDA as a pattern 

classification technique in this project.

4 .1 .1  P r in c ip a l C o m p o n e n t A n a ly s is

The principal component analysis [22] or Karhunen-Loeve transform is a mathe

matical way of determining th a t linear transformation of a sample of points in N- 

dimensional space which exliibits the properties of the sample most clearly along the 

coordinate axes. Along the new axes the sample variances are extremes (maxima and 

minima), and uncorrelated. The name comes from the principal axes of an ellipsoid 

(e.g., the ellipsoid of inertia), which are just the coordinate axes in question.
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By their definition, the principal axes will include those along which the point 

sample has little or no spread (minima of variance). Hence, an analysis in terms of 

principal components can show (linear) interdependence in data. A point sample of 

N dimensions for whose N coordinates M linear relations hold, will show only (N-M) 

axes along which the spread is non-zero. Using a cutoff on the spread along each 

axis, a sample may thus be reduced in its dimensionality. The principal axes of a 

point sample are found by choosing the origin at the center of gravity and forming 

the dispersion matrix.

= (1/A") -  (æi))(a;i -  (a;;))]. (4.1.1)

where the sum is over the N points of the sample and the xi are the components 

of the point coordinates. The principal axes and the variance along each of them are 

then given by the eigenvectors and associated eigenvalues of the dispersion matrix.

4 .1 .2  G en etic  A lg o r ith m

Genetic algorithm neural network (GANN) [21] is often able to provide good answers 

to questions in the biomedical sciences. It is a procedure tha t may be used to search 

among sets of clinical variables for those that are the best predictors. When a neural 

network uses a genetic algorithm for training there is an increase in computational 

time, but compared with simple gradient descent, optimization does not fall into 

local minimum and be more accurate in prediction. A GANN was used to include 

those predictor variables which contain information to the predictive process. The 

probability that a variable would be selected was recalculated after each generation 

in their method. Because the outcome is also a binary indicator.
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4 .1 .3  L o g istic  R eg ressio n

The method of logistic regression addresses the task of concept learning. A linear 

model of the following form is constructed;

Y = 60 +  + 62 AT; + ..............bkXh,

where Y is the logit tranformation of the probability p.

The logit transformation of the probabihty of a value is defined as

where p is the probability of an outcome.

The finear fmiction can also be written as a prediction of the probability of a 

value, e.g.

1

P{class = pos)
1  - j -  g a + b j L X i + f e 2 æ 2 + . . . . . . . . . . . . . . . . . . bkXic

The constant a and the weights 61 ....  are chosen by a regi-ession method so

that the predictions for the class are optimal for a given set of classified examples. A 

number of tools are available for computing the weights.

4 .1 .4  M a x im u m  L ik elih ood  E stim a tio n

There is nothing visual about the maximum likelihood method - but it is a powerful 

method and, at least for large samples, very precise. Maximum likelihood estimation 

begins with writing a mathematical expression known as the Likelihood F u n c tio n  

of the sample data. Loosely speaking, the likelihood of a set of data is the probability
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of obtaining that particular set of data, given the chosen probability distribution 

model. This expression contains the unknown model parameters. The values of 

these parameters that maximize the sample likelihood are known as the M a x im u m  

Likelihood E s tim a te s  or M L E’s.

4 .1 .5  D e c is io n  T rees

Binary trees give an interesting and often illuminating way of looking at data in clas

sification problems. In last few decades, considerable research has been conducted on 

the use of decision trees to solve classification problems. One important feature of 

decision trees is their capabihty to break down a complex decision-making or classi

fying problem into a set of simplified problems. The purpose of a decision classifier is 

to draw a conclusion through the breaking down and solving of these simple problems 

that achieves the desired solution of the original complicated problem To construct 

a decision tree, the tree is first grown to completion so that the tree partitions the 

training sample into terminal regions of all one class. Tree construction uses the 

recursive partitioning algorithm, and its input requires a set of training examples, a 

splitting rule and a stopping rule.

4 .1 .6  L inear D iscrim in an t A n a ly sis

The main idea of this work is to classify between the abnormal and normal patients 

and we use Linear Discriminant Analysis (LDA) for classifying the data. Linear 

Discriminant Analysis easily handles the case where the witlfin class frequencies are 

unequal and their performances has been examined on randomly generated test data. 

As we know the Vibroarthrographic (VAG) signals i.e., the signal emitted from knee
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while it is naoving, is a nonstationary signal like all other biological signal. The method 

LDA maximizes the ratio of between class variance to the within class variance in 

any particular data set, thereby guaranteeing maximal separability. So LDA should 

successfully classify between the normal and abnormal patients analyzing the VAG 

signals. This technique has been applied for speech recognition as well as for image 

analysis and showed good results.

Linear discriminant analysis (LDA) is a classical statistical approach for classifying 

samples of unknown classes, based on training samples with known classes. There 

are many possible techniques for classification of data. Principal Component Analysis 

(PGA) and Linear Discriminant Analysis (LDA) are two commonly used techniques 

for data classification and dimensionality reduction. The prime difference between 

LDA and PGA is that PGA performs feature classification while LDA performs data 

classification. PGA changes both the shape and location of the data in its transformed 

space whereas LDA only provides more class separability by building a decision region 

between the classes. Linear Discriminant Analysis easily handles the case where the 

within-class frequencies are unequal and their performances has been examined on 

randomly generated test data. This method maximizes the ratio of between-class 

variance to the within-class variance in any particular data set thereby guaranteeing 

maximal separability.

So the goal of LDA is

« To perform dimensionahty reduction while preserving as much of the class dis

criminatory information as possible.

•  It seeks to find directions along which the classes are best separated.

It does so by taking into consideration the two approaches to LDA
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C lass-dependen t T ra n sfo rm a tio n :  Class-dependent LDA produces one trans

formation per class to discriminate that class from all other classes. This type of 

approach involves maximizing the ratio of between class variance to within class vari

ance. The main objective is to maximize this ratio so that adequate class separability 

is obtained. The class-specific type approach involves using two optimizing criteria 

for transforming the data sets independently.

C lass-independen t T ra n s fo rm a tio n :  Class-independent LDA produces a sin

gle transform to maximally separate all classes. This approach involves maximizing 

the ratio of overall variance to within class variance. This approach uses only one 

optimizing criterion to transform the data sets and hence all data points irrespective 

of their class identity are transformed using this transform. In this type of LDA, each 

class is considered as a separate class against all other classes.

M ath em a tica l O perations

For ease of understanding, in this section, the mathematical operations has been 

done using LDA will be analyzed for a two-class problem. Each data set has 100 2-D 

data points. The operations are showing in steps here:

S tep  1:. Suppose there are two classes. Class 1 and Class 2. Let p 2 are the mean 

vector of class 1 and class 2 respectively, ps is the of the entire data set. It has been 

calculates as

Ps  =  P1P1P2P2 (4.1.2)

where P I and P2 are the apriori  probabilities of the classes. In the case of this 

simple two class problem, the probability factor is assumed to be 0.5.

S tep  2: In LDA, within-class and between-class scatter are used to formulate criteria
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for class separability. Within-class scatter is the expected covariance of each of the 

classes. The scatter measures are computed using Equations 3 and 4.

S-u) — ^  yjPj ^ {coVj  ̂ (4.1.3)

Therefore, for the two-class problem,

Sw — 0.5 X  covx 4- 0.5 x (co%) (4.1.4)

All the covariance matrices are symmetric. Let covi and COV2  be the covariance 

of set 1 and set 2 respectively. Covariance matrix is computed using the following 

equation.

ccwj = -  A(j) X (%y -  ^j)^ (4.1.5)

The between-class scatter is computes using the following equation.

Sb =  ^ ( l ^ j  — Ms) X (4.1.6)
3

Note that Sb can be thought of as the covariance of data set whose members are 

the mean vectors of each class. As defined earlier, the optimizing criterion in LDA is 

the ratio of between-class scatter to the within-class scatter. The solution obtained 

by maximizing this criterion defines the axes of the transformed space. However for 

the class-dependent transform, the optimizing criterion is computed using equations

(5) and (6). It should be noted that if the LDA is a class dependent type, for L-class 

separate optimizing criterion are required for each class. The optimizing factors in 

case of class dependent type are computed as
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criterioiij =  inv(covj) x Sb (4.1.7)

For the class independent transform, the optimizing criterion is computed as

criteriorij = inv{Sw) x Sb (4.1.8)

S tep  3: For any L-class problem we would always have L-1 non-zero eigen values. 

This is attributed to the constraints on the mean vectors of the classes in Equation 2. 

Having obtained the transformation matrices, we can transform the data sets using 

the single LDA transform or the class specific transforms which ever the case may be. 

For the class dependent LDA,

trnasform ed^set-j — transform ^j'^  x set-j (4.1.9)

For the class independent LDA,

trn a s f ormed-set =  transform^spec^ x da ta^sef (4.1.10)

Similarly the test vectors are transformed and are classified using the Euclidean 

distance of the test vectors from each class mean, for proper classification. In this 

example the classes were properly defined but cases where there is overlap between 

classes, obtaining a decision region in original space will be very difficult.

S tep  4: Once the transformations are completed using the LDA transforms. Eu

clidean distance or RMS distance is used to classify data points. The Euclidean 

distance matric is the simplest and most commonly used distance metric for classi

fication of data. It is assumed that we can define a representative number for every
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class involved in the classification problem. The test sample then assigned the class to 

whose representative number is the closest. The classes may have significant overlap 

in the input space making the Euclidean distance metric ineffective. To counter this 

problem data is transformed to a feature space where the classes are better separated 

or the features are independent and the distance metric is more effective. Euclidean 

distance is computed using Equation 11 where /J,ntrans is the mean of the transformed 

data set, n, is the class index and x is the test vector. Thus for n classes, Euclidean 

distances are obtained for each test point.

distjn = {transform -n_specy x  x  — p.ntrans (4.1.11)

The smallest Euclidean distance among the distances classifies the test vector as 

belonging to class.

4.2 P a ttern  A n alysis  o f VAG

LDA helps us to discriminate between the normal abnormal signals as two separate 

classes based on linear classification rule. Here is a flow chart showing how LDA 

worked on our system. Here is a complete description of each block of the flow chart 

which will basically give a overview of the whole procedure tha t has been taken for 

doing this model based segmentation of VAG signal analysis.

In p u t Signal: 30 VAG signals have been used as the input signal. 16 signals 

have been taken from normal knee joint and 14 signals from abnormal knee joint.

A d ap tiv e  S egm en ta tion : Each signal has been adaptively segmented depending 

on the dynamics of the signal characteristics. After segmenting 30 signals, a total of 71

R eproduced with permission of the copyright owner. Further reproduction prohibited without oermission.



41

Transform Test 
Data

Complete
Euclidean
Distance

Input Signal

Obtain Model for 
each Class

Segmentation

Ciassify Based on 
Minimum Euciidean 

Distance

Feature Extraction

LDA Analysis

Figure 4.1: Flowchart of VAG Analysis

segments have been produced which has been used as for analyzing the VAG signals.

F e a tu re  E x trac tio n : After getting the segments the features has been extracted 

from th a t segments using Autoregressive modeling. In this part of the work a total 

of 17 coefficients were produces for each segments.

LD A  A nalysis: After getting the features, which are the LPC coefficients in this 

project, the transformation matrix is formed by the eigenvectors corresponding to the 

dominant eigenvalues of the optimizing criterion. This LPC coefficients worked as the 

variables to the linear discriminant analysis tool for classification of VAG signals.

T ra in in g  an d  Testing: This part has been done by the SPSS system which has 

been used for discriminant analysis of the VAG signals. So the system got trained with 

the coefficient used for representing each segment. For testing the system ’’Leave-one- 

out” strategy has been taken, where one of the input signal assumed to be unknown 

and it has been classified based on the training set. After transforming the test data, 

it computes the Euclidean distance between the test vector and trained vector and 

perform the classification based on the Euclidean distance.
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C hapter 5

R esu lts  and C onclusion

5.1 M o tiv a tio n  for Our s tr a te g y

The main motivating factor for this project is to develop a non-invasive diagnostic tool 

using VAG signal for detecting some pathological condition such as Osteoarthritis. 

For fulfilling th a t objective a model based segmentation and analysis has been done 

on the knee signals, which is called as VAG. The propose scheme should have the 

following criteria

• The diagnosis should use advanced digital signal processing techniques, so it 

should have the ability to correctly diagnosis OA in early stage.

•  The process designed to an inexpensive way of diagnosis.

•  It should correctly localize the problem area (the angle where the surface is 

more rough)

•  The whole system set-up should have simple mechanism.

42
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Figure 5.1: Adaptive segmentation of the signal showing the localization

5.2  R esu lts  o f L ocalization  o f  P a th o lo g y

In this section it has been explained how the proposed scheme can analyze the non- 

stationarity and can do the localization of a VAG signal. For describing the procedure 

it is necessary to repeat the same figure tha t has been used in Chapter 3 when 

adaptive segmentation procedure was described. As the project is basically doing the 

model based segmentation, where the main concept is to segment the signal effectively 

which will correctly diagnosis and do the localization. This is a segmented form of a 

abnormal knee signal after doing the segmentation using the proposed model based 

segmentation.

After getting the adaptive segmentation using our model approach, we will get a 

scenario such as one in Table 5.1. The table is showing the width of each segment as
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No of Segments Starting Point Ending Point
1 1 1500
2 1501 1800
3 1801 1950
4 1951 2100
5 2101 3750

Table 5.1: Starting and End point of each segment after doing the adaptive segment

well as the starting and ending point for that particular segment. The above figure 

represents a total 5 segments of different width depending on the characteristics of 

the VAG signal.

It can be clearly seen from Figure 5.1 that the segments are localizing the problem 

area. The results of the localization are as follows:

• It can be notified from the table the segment length gets bigger when the signal 

is pretty stationary and its getting thinner when the signal become more non- 

stationary.

•  As it has been described in Chapter 3 the adaptive segmentation has been 

done on the signal after they segmented in a fixed width.Features have been 

extracted for each fixed width segment and distance between the segments has 

been calculated.

•  A threshold value was adjusted adaptively and if the distance between two 

adjacent segment is less than the threshold, then they assumed to be a single 

segment. This way the non-stationary part of the signal can be recognized, cause 

more non-stationary the signal, more number of segments will be obtained.

•  The localization can be more precise when the threshold is minimized between 

the adjacent segments. But on the other hand when threshold become lower
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the number of segment for each signal will be increased. So cost for analyzing 

for more number of segments will be higher.

5 .3  R esu lts

The analysis was done on 30 VAG signals obtained from subjects both normal and 

are from patients presenting with symptomatic knee. Among those 16 signals are 

from the abnormal loiee joint and the rest of the signals are from normal knee joint. 

After doing the adaptive segmentation for each VAG signal, each one was haying 

a different number of segments. A total of 71 segments have been used finally for 

analysis. Each segment has been named either as “Normal” or “Abnormal” segment 

as per the clinical report observed through arthroscopy. For analysis each segment has 

been classified in two categories, “1” for the segments from the normal VAG signal and 

“2” for the segments from the abnormal VAG signal. After doing the segmentation, 

features has been extracted from each segment using the AR modeling to obtain the 

LPC coefficients. The filter order has been selected using the criteria described in 

chapter 3, and the resulted order was 17. So each segment has 17 features, which 

was used as the variables while using the SPSS system for LDA pattern analysis. At 

the starting of doing the Discriminant analysis using SPSS software, it finds out the 

mean and standard deviation of all the variables. Then the LDA analysis has been 

performed. As shown in Table 5.2, 32 segments out of 71 were classified in categoryl 

and the rest of the segments were in category2.
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Actual Group No of Segments Predicted Group
Normal Abnormal

Normal 32 28 or 87.5% 4 or 12.5%
Abnormal 39 7 or 17.9% 32 or 82.1%

TotoZ 71 Overall Accuracy 84.5%

Table 5.2: Classification results using LDA

An acceptable number of segments have been experimented and the classification 

result suggests that VAG signal could be used as a diagnostic tool for detecting 

OA. The number and percentage of cases correctly classified and misclassified are 

tabulated. Out of 32 Normal segments 28 or 87.5 % has been classified properly 

whereas 4 or 12.5% segments have been misclassified. In other words, out of 32 

normal segments the system detects 28 segments as normal but 4 segments have 

been misclassified and detected as abnormal segments. For the case of 39 abnormal 

segments, 32 or 82.1% have been correctly classified i.e., detected as abnormal and 7 

or 17.9% got misclassified. So the overall accuracy of the classification become 84.5%.

For the classification using “Leave-one-out” method, one segment is used as a 

test vector while the others are used as the trained vector. While analyzing the VAG 

signals in this strategy, in case of normal 32 segments, 23 or 71.9% has been corrected 

classified, while 9 or 28.1% got misclassified. For analyze the abnormal 39 segments 

27 or 69.2% got correctly classified and 12 or 30.8% got misclassified. The overall 

accuracy for this case is 70.4%.

After doing the classification using the segments, it has calculated tha t how many 

segments from each signal has been correctly identified. If most of the segments from 

a particular signal has been classified correctly then its assumed th a t the signals has 

been classified correctly. Using that procedure out of 30 signals 26 signals has been
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Actual Group No of Segments Predicted Group
Normal Abnormal

Normal 32 23 or 71.9% 9 or 28.1%
Abnormal 39 12 or 30.8% 27 or 69.2%

Total 71 Overall Accuracv 70.4%

Table 5.3; Classification using leave-one-ont method

classified properly (either normal or abnormal) and 4 signals got misclassified. So the 

overall accuracy of this work can be said as 86.7%.

5.4 C onclusion

In conclusion, 30 signals have been adaptively segmented and analyzed to differentiate 

between the normal and abnormal knee sounds signal. The segmentation has taken 

care of the non stationarity of the VAG signal. The segmentation technique has also 

been used to localize the range of pathology in the signal.

5.5 P ossib le Future W ork D irection

Possible future work in this research can be to find out how early we can detect 

OA and how these signals can help us to determine the cause of Anterior knee pain. 

Moreover, PPG is also a non-stationary signal. So STFT or TFD and wavelet analysis 

can be performed on PPG signals.
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Appendix A

{ This is the resulted coefficients that have been extracted from the VAG signals and

I  used for analyzing the signals. A total of 71 segments from 30 signals have been

used. The name of the signals has been given in such a way so that it can be
\

j easily understood, from which signal the segment has been extracted Seg4.1 mean

] the first segment from 4th signal. Total 30 signals have been used which are numbered

I from signal 2 to signal 32. Start point and end point is showing the segment length,

j Category ‘1’ represent that the segment is from the normal VAG signffi while category

I ‘2’ represent that the segment is extracted from a abnormal VAG signal. Coef_l to

Coef_18 are the coefficients that has been extracted as the features of the segments 

and they are used as the variable for discriminant analysis.

48
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No of Seg Seg name Start pt End pt Category Coef 1 Coef2 Coef 3 Coef 4 Coef 5 Coef 6 Coef 7
1 Seg4 1 1 150 2 1.00E+00 -1.10E+00 1.78E-01 -3.322-02 -7.982-03 -7.512-02 -4.562-02
2 Seg4 2 151 1200 2 1.00E+00 -1.02E+00 4.00E-02 -2.50E-02 1.842-01 -1.052-01 -2.512-02
3 Seg4 3 1201 1350 2 1.00E+00 -1.39E+00 7.39E-01 -6.692-02 -1.132-01 -4.392-02 5.452-02
4 Seg4 4 1351 3750 2 1.00E+00 -1.07E+00 2.47E-01 -2.192-01 1.532-01 -1.142-01 9.302-02
5 Seg5 1 1 2250 2 1.00E+00 -1.00E+00 4.44E-03 -2.662-02 8.132-02 -2.132-02 3.362-03
6 Sega 2 2251 3750 2 1.00E+00 -1.25E+00 2.30E-01 7.03E-02 3.082-03 -5.622-02 1.092-01
7 Seg6-1 1 3750 2 1.00E+00 -1.11E+00 3.25E-02 2.452-03 1.032-01 -9.872-03 -3.992-02
8 Seg7 1 1 3750 1 1.00E+00 -7.59E-01 -8.57E-02 -4.75E-02 •4.352-02 -3.042-02 2.942-02
9 ■ Seg8_1 1 3750 1 1.00E+00 -7.34E-01 -1.78E-01 -3.122-02 -4.192-02 7.922-03 6.912-04
10 Seg10_1 1 1800 1.00E+00 -6.64E-01 -1.68E-01 -1.722-02 -4.572-02 4.072-03 6.482-03
11 Seg10_2 1801 1950 1 1.00E+00 -1.62E+00 1.19E+00 -7.092-02 -3.702-01 2.712-01 -2.672-01
12 Seg10 3 1951 2100 1 1.00E+00 -1.462+00 7.51 E-01 1.522-01 -1.482-01 1.202-01 -2.732-01
13 Seg10_4 2101 2250 1 1.00E+00 -1.27E+00 7.22E-01 -5.042-02 1.802-01 -1.272-02 1.032-01
14 Seg10 5 2851 2400 1 1.00E+00 -1.74E+00 1.33E+00 -2.56E-01 -1.462-01 1.432-01 -4.622-02
15 SeglO 6 2401 2550 1 1.00E+00 -1.72E+00 1.10E+00 -1.702-01 1.012-03 -1.612-01 2.122-01
16 SeglO 7 2551 3750 1 1.00E+00 -B.55E-01 -1.33E-01 4.03E-02 5.062-02 -1.732-02 2.672-03
17 Seg12 1 1 1650 1 1.00E+00 -6.52E-01 -1.06E-01 -5.05E-02 5.882-03 -8.342-02 -2.262-02
18 Seg12.2 1651 1800 1.00E+00 -1.51E+00 1.26E-01 5.19E-01 1.132-01 -1.552-01 -4.702-02
19 Seg12_3 1801 3750 1.00E+00 -7.03E-01 -1.36E-01 -5,022-02 -3.672-02 -9.902-03 -1.952-02
20 Seg13_1 1 2400 2 1.00E+00 -8.53201 -2.68E-02 1.312-02 -1.332-02 -5.132-02 -3.702-02
21 Seg13 3 2551 2700 2 lOOE+00 -1.32E+00 4.69E-01 -1.512-01 2.212-01 -3.672-01 1.972-01
22 Seg13 4 2701 3700 2 1.0QE+00 -7.35E01 -2.43E-02 -1.532-01 -5.482-02 -2.602-03 2.242-02
23 Seg14_1 1 3750 1 1.00E+00 -5.89E-01 -1.072-01 -5.852-02 4.902-03 -3.992-02 -1.022-02
24 Seg15_1 1 1500 2 1.00E+00 -6.87E-01 -3.80E-02 -1.302-01 -2.742-02 -3.812-03 -1.412-03
25 Seg15 2 1501 1800 2 1.00E+00 -9.19E01 1.402-01 -4.722-02 7.742-02 3.472-02 -8.122-02
26 Seg15 3 1801 1950 2 1.00E+00 -1.73E+00 1,032+00 -2.852-01 3.442-01 -2.992-01 8.922-02
27 Seg15 4 ! 1951 2100 2 1.00E+00 -1.00E+00 3.50E-01 -4.33E-01 4.622-01 -3.672-01 1.572-01
28 Seg15 5 2101 3750 2 1.00E+00 -7.40E-01 -1.18E-01 -4.802-02 4.122-02 -1.052-02 -6.272-02
29 ■ Seg16 1 1 1500 1.00E+00 -8.80EO1 6.37E-02 7.992-03 -2.162-03 6.882-02 -7.712-02
30 Segia 2 1501 1650 1.00E+00 -1.552+00 5.172-01 2.562-01 -1.042-01 1.112-02 1.132-02
31 Seg16_3 1651 3750 1 lOOE+00 -1.17E+00 4.95E-02 1.312-01 4.702-02 1.002-01 -1.722-02
32 Seg16_4 2251 2400 1 1.00E+00 -1.37E01 -1.95E-01 -1.732-01 -1.302-01 -6.182-02 3.592-02
33 Seg17_1 1 1500 1 1.00E+00 -6.22E01 -8.38E-02 -1.332-01 -1.352-02 -1.682-02 -3.942-02
34 Seg17_2 1501 1 6 5 0 1 1 .0 0 E + 0 0 -1 .4 1 E + 0 0 1 .1 2 E + 0 0 -6.02E-01 1.10E-01 1 .59E -01 -2.23E-01
35 se g lB J 1 3750 1 1.G0E+00 -6.30EO1 -6.93E-02 -9.092-02 -3.732-02 -2.052-02 -2.052-02
36 seg19_1 1 1650 1 1.00E+00 -6.27E-01 -6.02E-02 -5.912-02 -4.792-02 1.842-02 -4.142-02
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I AR Coefficients of the VAG signais used in this project

D

D3
I

T)

No of Seg Coef 8 Coef 9 Coef 10 Coef 11 Coef 12 Coef 13 Coef 14 Coef 15 Coef 16 Coef 17 Coef 18
37 5.68E-02 -5.98E-02 -1.25E-01 4.48E-02 4.332-02 2.222-02 -4.92E-02 2.56E-02 2.30E-02 -1.04E-01 -3.52E-03
38 -2.092-01 2.81 E-02 2.49E-01 -2.33E-01 1.972-01 -1.042-02 -8.91 E-02 -1.672-01 2.56E-01 -1.98E-01 6.33E-02
39 2.82E-02 -6.21 E-02 -G.4SE-02 4.242-03 -1.83E-02 2.95E-02 -1.21E-02 2.51 E-02 -4.43E-03 -2.70E-02 1.812-02
40 2.10E-02 -4.55E-02 2.89E-02 -1.242-02 -9.13E-03 -2.76E-02 -8.08E-04 3.34E-02 -6.05E-03 -4.99E-03 -1.272-03
41 -1.12E-01 -6.2ÛE-03 -2.01 E-02 1.07E-01 -1.162-01 -7.962-02 -5.002-03 -1.17E-01 2.25E-01 -2.11 E-02 -9.892-02
42 5.93E-02 9.26E-03 -1.22E-01 -1.11 E-01 -5.64E-02 -2.09E-02 1.01 E-03 -5.59E-02 -4.58E-02 6.60E-02 -1.222-01
43 2.43E-02 -2.76E-02 4.70E-02 -1.732-02 -1:172-01 2.262-02 6.06E-02 -1.12E-03 1.242-01 -1.722-01 -9.30E-03
44 -8.54E-02 1.55E-01 -2.90E-02 2.19E-02 -1.402-01 6.47E-02 -5.28E-02 8.002-02 4.90E-02 -5.70E-02 -4.052-03
45 1.48E-02 -5.71 E-02 8.42E-02 -9.99E-02 -4.332-03 5.98E-02 -3.93E-02 3.06E-02 -5.80E-02 -4.092-02 9.122-02
46 2.01 E-02 -2.25E-03 2.10E-03 -8.82E-04 -6.142-03 -4.78E-02 3.29E-02 -1.67E-02 -1.282-02 -1.432-02 -7.262-03
47 7.68E-03 -3.96E-02 -1 .452-03 -2.64E-02 -2.672-02 3.34E-03 -1.282-02 1.632-02 -4.432-02 1.812-03 -6.922-03
48 9.20E-02 -4.97E-02 -9.04E-02 1.77E-01 -2.67E-01 1.45E-01 -1.39E-01 1.04E-01 -1.69E-02 -7.96E-02 2.462-02
49 5.10E-02 -1.62E-02 5.01 E-02 -4.87E-02 1.74E-02 -3.22E-02 -4.482-02 -2.44E-03 1.262-02 -2.392-02 3.122-02
50 4.90E-02 -3.51 E-02 3.08E-03 -5.05E-02 2.21 E-02 -4.06E-03 -1.96E-02 2.25E-02 -1.432-02 -6.462-03 2.742-02
51 -1.80E-01 6.10E-02 1.182-02 -5.66E-02 2.362-02 6.53E-03 -2.74E-02 9.702-02 -1.57E-01 8.122-02 -1.472-02
52 1.57E-02 -2.63 E-02 3.38E-03 -5.42E-02 -1.952-02 8.30E-02 -4.46E-02 2.382-02 -4.86E-02 1.112-02 2.772-02
53 3.09E-02 -9.17E-02 3.262-02 -1.58E-02 -3.11 E-02 8.21 E-02 -1.07E-01 6.91 E-02 -5.142-02 -4.122-02 4.942-02
54 3.06E-03 1.47Ë-01 -1.31 E-01 -1.792-02 -1.02E-G2 1.17E-01 -1.24E-01 6.10E-02 -2.04E-01 2.09E-01 4.232-02
55 6.39E-03 9.05E-02 -2.622-02 -2.23E-02 3.59E-02 -6.69E-02 7.33E-02 4.61 E-03 -4.80E-02 5.202-02 -8.752-02
56 3.28E-02 6.36E-02 -1.70E-01 1.44E-01 -9.872-02 2.13E-01 -1.36E-01 -8.85E-02 1.79E-G1 -3.06E-03 -6.832-02
57 3.16E-02 1.29E-02 6.292-02 -9.69E-02 4.31 E-02 -4.882-02 -3.992-02 5:60E-02 -7.06E-04 4.552-03 2.122-02
58 3.46E-02 1.4 IE-02 -2.31 E-02 -4.71 E-02 2.562-02 -2.802-02 9.09E-04 4.59E-02 -4.382-02 -2.032-02 3.372-02
59 -3.98E-02 -1.56E-02 1.2 IE-01 -6.842-02 4.02E-02 1.83E-02 -9.972-02 4.26E-02 1.07E-02 -3.082-02 1.032-02
60 2.05E-01 -2.26E-01 2.442-01 -2.64E-02 -1.36E-01 1.31 E-01 -4.35E-02 -9.24E-03 -2.312-02 9.102-05 5.082-02
61 -1.91 E-04 2.98E-02 -5.592-02 3.312-02 1.01 E-02 1.44E-03 -6.26E-02 6.66E-02 2.35E-02 -6.432-02 2.372-02
62 -3.96E-02 -1.43E-02 -2.772-02 -2.562-02 7.542-03 3.0ÜE-02 -1.25E-02 1.16E-02 -1.892-02 -3.632-02 -3.002-03
63 1.24E-02 2.43E-02 1.63E-02 -4.57E-03 3.752-03 4.192-03 5.89E-02 -3.01 E-02 1.60E-02 -6.192-02 -2.082-03
64 -2.05E-02 -1.37E-02 -9.76E-03 -3.54E-02 2.532-02 -3.37E-02 -3.32E-02 3.79E-02 -1.97E-02 6.432-03 -2.31 E-03
65 -2.31 E-02 -3.02E-02 -1.76E-03 -2.44E-02 -6.08E-04 2.46E-02 -2.78E-02 7.48E-03 -2.57E-02 1.822-02 3.842-02
66 4.21 E-02 5.02E-03 -5.672-02 6.64E-02 -7.27E-02 7.05E-02 5.40E-03 6.742-02 2.892-02 -1.162-01 -2.822-03
67 -1.66E-01 9.83E-02 -1.932-01 5.472-02 3.18E-01 -2.25E-01 -3.87E-02 3.17E-02 ■7.56E-02 -1.232-01 3.032-02
68 2.84E-02 -3.29E-03 2.08E-02 -2.042-02 2.562-03 2.922-02 8.92E-03 1.67E-02 -8.64E-03 -5.502-03 -6.362-03
69 2.98E-02 -4.77E-02 5.59E-02 -2.382-02 -1.402-02 -2.402-02 5.68E-02 -1.252-02 2.83E-02 -3.262-02 -1.462-02
70 1.06E-01 1.28E-02 -1.62E-01 6.95E-02 -1.45E-02 -1.13E-02 -5.73E-02 2.23E-01 -1.75E-01 4.50E-02 3.41 E-03
71 1.12E-02 -1.50E-Q2 3.47E-02 3.18E-04 -3.722-02 6.682-02 -3.562-02 -5.53E-03 -2.45E-02 3.35E-02 -1.992-02

s
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No of Seg Coef 8 Coef 9 Coef 10 Coef 1' Coef 12 Coef 13 Coef 14 Coef 15 Coef 16 Coef 17 Coef 18
1 1.63E-01 -2.52E-01 2.29E-01 -9.21 E-02 6.94E-02 2.48E-02 -1.74E-01 2.62E-01 -2.06E-01 5.76E-02 2.44E-02

2 -2.01 E-02 -9.92E-02 3.92E-02 1.60E-02 -1.44E-02 2.13E-02 -4.27E-02 -4.68E-03 2.68E-02 -5.55E-02 4.34E-02

3 8.35E-03 -1.10E-01 3.74E-02 -3.88E-03 -1.83E-02 -4.23E-02 2.61 E-02 5.72E-02 -1.16E-01 8.66E-02 -7.56E-02

4 -7.5 IE-02 4.51 E-02 1.48E-02 1.91 E-02 9.96E-03 -8.79E-02 3.00E-02 -1.402-02 2.68E-02 -3.16E-02 4.52E-03
5 1.40E-02 1.29E-02 7.12E-04 -2.19E-02 -4.00E-02 3.77E-02 -8.60E-03 -2.31 E-02 1.10E-02 -6.24E-02 6.31 E-02
6 -9.46E-02 -9 .9 8 E -0 3 8 .3 8 E -0 2 -4 .0 5 E -0 2 -8 .1 3 E -0 2 4 .7 2 E -0 2 4 .3 0 E -0 3 4 .6 4 E -0 2 -1 .0 5 E -0 2 -1 .3 3 E -0 2 1 .36E -03

7 6.13E-02 -2.96E-02 -6.13E-03 5.85E-06 7.48E-03 -4.07E-03 -3.05E-02 -1.72E-03 1.72E-02 -1.092-02 2.66E-02
8 -2.51 E-02 -3.36E-03 9.06E-03 -7.96E-03 2.83E-02 -2.43E-02 1.90E-02 -2.30E-02 7.13E-03 -1.502-02 2.64E-03
9 1.19E-02 1.55E-02 2.92E-02 2.92E-02 -3.59E-02 1.79E-02 3.85E-02 -1.65E-02 2.17E-02 -5.29E-02 -4.00E-02
10 -3.63E-02 -5.02E-02 -2.90E-03 2.06E-02 4.23E-02 -3.37E-02 -2.72E-02 2.55E-03 5.11 E-02 -1.922-02 -3.86E-02
11 3.54E-01 -3.77E-01 7.39E-02 1.44E-01 -3.32E-01 2.24E-01 -1.74E-01 8.01 E-02 -1.04E-G1 2.40E-02 -7.92E-03
12 6.36E-02 3.20E-01 -3.29E-01 -3.02E-02 1.22E-01 -1.76E-01 1.38E-01 -7.70E-02 -1.70E-01 2.70E-01 -1.64E-01
13 -1.13E-01 1.93E-01 -1.67E-01 2.97E-01 -9.87E-02 1.53E-01 -2.04E-01 1.49E-01 -6.93E-02 1.79E-01 -1.21 E-01
14 2.66E-02 1.80E-01 -2.19E-01 1.97E-03 2.22E-01 -2.39E-01 3.06E-01 -2.53E-01 3.99E-02 1.06E-01 -6.70E-02
15 -2.18E-01 1.41 E-01 -4.17E-02 -1.04E-01 1.64E-01 -5.34E-Q3 -2.45E-01 1.62E-01 1.02E-01 -1.70E-01 3.38E-02
16 3.23E-02 -5.32E-02 -3.39E-02 -3.27E-02 8.82E-02 -3.88E-02 4.28E-02 -3.43E-02 -1.56E-02 -4.07E-02 3.2 IE-02
17 4.43E-02 -3.41 E-02 3.92E-02 -3.48E-02 -1.15E-03 -2.88E-02 2.99E-02 -4.72E-03 3.25E-02 -3.19E-02 -1.01 E-02
18 5.30E-02 3.80E-03 9.84E-02 -1.69E^01 -4.72E-02 2.09E-01 -1.62E-01 9.17E-02 -5.24E-02 6.82E-02 -3.60E-02
19 -2.43E-03 -2.96E-02 3.75E-02 1.16E-02 -3.17E-02 7.52E-02 -3.73E-02 -1.71 E-02 -1.54E-02 5.24E-02 -3.83E-02
20 6.18E-Q2 1.07E-02 1.75E-02 3.40E-03 -3.67E-02 7.13E-02 1.22E-02 -7.10E-02 -5.40E-02 3.02E-02 -5.92E-02
21 -3.36E-02 6.32E-02 1.16E-03 3.17E-02 -9.47E-02 1.66E-01 -7.14E-02 -1.37E-03 -1.52E-01 1.69E-01 -7.93E-02
22 2.58E-Q3 1.67E-02 -3.90E-03 -5.19E-03 -3.04E-02 6.78E-03 -2.90E-02 5.34E-02 -7.10E-02 4.89E-02 -1.23E-02
23 -5.21 E-03 -4.08E-02 -1.56E-02 -5.49E-Ü2 5.00E-03 1.04E-02 -2.03E-02 2.48E-02 -3.52E-02 -1.68E-02 -2.10E-02
24 -1.23E-02 5.27E-02 -4.85E-D2 8.52E-02 -5.14E-02 -3.28E-02 7.99E-03 5.40E-03 -7.51 E-03 -3.64E-02 -3.56E-03
25 3.58E-02 -1.29E-01 1.59E-01 -1.19E-01 2.96E-02 -1.17E-02 4.57E-Ü2 -1.04E-01 3.42E-02 -7.03E-02 3.16E-02
26 -8.91 E-02 2.27E-01 -2.20E-01 5.43E-02 1.08E-01 -1.9.1 E-01 1.08E-01 8.58E-02 -7.73E-02 -9.58E-02 ■9. I 8E-O2
27 -1.50E-01 2.00E-01 -8.74E-02 6.20E-02 -1.82E-02 -2.75E-02 -4.83E-02 -1.16E-02 -7.77E-02 -2:862-02 8.24E-02
28 2.63E-03 -3.66E-02 3.91 E-02 1.12E-02 -3.56E-02 -1.37E-02 3.53E-02 -8.80E-03 -1.92 E-02 -2.09E-02 1.52E-02
29 -3.82E-03 -7.97E-02 -2.35E-03 -4.84E-02 -2.37E-02 1.58E-02 -6.32E-02 3.71 E-02 -2.57E-02 -1.99E-02 4.54E-02
30 -1.84E-01 3.59E-02 2.04E-01 -1.02E-01 -9.36E-02 1.66E-01 -1.74E-01 4.79E-02 -7.81 E-02 1.51 E-01 -8.14E-02
31 -3.99E-02 6.11 E-02 -1.10E-01 -4.45E-02 -8.03E-03 7.6 IE-02 2.85E-02 -9.38E-02 6.17E-02 9.49E-03 -6.38E-02
32 6.40E-02 6.59E-02 4.35E-02 2.80E-02 5.66E-03 5.96E-03 7.07E-03 1.19E-G2 1.31E-02 4.19E-03 -8.30E-03
33 -2.48E-02 -4.44E-03 4.19E-03 1.03E-02 -3.55E-02 -3.20E-02 1.27E-02 -8.71 E-03 2.69E-02 -2.06E-02 5.77E-03
34 1.16E-01 2.18E-Q2 -8.21 E-02 1.11E-01 -5.13E-02 -2.54E-02 1.14E-01 -9.69E-02 4.06E-02 3.63E-02 -5.28E-02
35 -1.08E-02 -1.74E-02 -1.18E-02 -1.91 E-02 -9.41 E-03 -2.26E-02 -2.34E-03 2.20E-02 -3.20E-02 3.70E-02 -2.39E-02
36 1.43E-02 -8.66E-02 1.52E-G2 1.64E-03 -5.25E-02 -1.51 E-03 -3.57E-02 4.77E-02 8.46E-03 -1.73E-02 -1.02E-02
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No of Seg Seg_name Start_pt End_pt Category Coef 1 Coef2 Coef 3 Coef 4 Coef 5 Coef 6 Coef 7
37 seg19_4 1951 2400 1 1.00E+00 -7.05E-01 -1.55E-01 -3.54E-02 3.15E-Û2 -6.40E-02 8.26E-02
38 seg 1 9 5 2401 2550 1 1.Û0E+00 -7.94E-01 2.32E-02 -3.12E-02 3.522-02 -2.08E-01 1.94E-01
39 seg19_6 2551 3750 1 1.00E+00 -6.18E-01 -1.51 E-01 -6.10E-02 -2.342-02 -5.282-02 1.472-02
40 Seg20_1 1 3750 1 1.00E+00 -7.37E-01 -8.43E-02 -4.99E-02 -4.25E-02 -4.71 E-02 1.19E-02
41 Seg21_2 1651 1800 2 1.00E+00 -6.67E-01 -1.28E-01 -3.67 E-02 2.64E-02 -5.582-02 1.872-01
42 Seg21_3 1801 1550 2 1.00E+00 -4.70E-01 -1.48E-01 -6.79E-02 3.57E-02 9.692-02 -2.242-02
43 Seg21_4 2551 2700 2 1.00E+00 -1.25E+00 1.30E-01 3.62E-01 -1.462-02 -2.45E-03 -1.402-02
44 Seg21.5 2701 3000 2 1.00E+00 -1.24E+00 2.59E-01 -2.16E-01 5.40E-01 -1.56E-01 1.842-02
45 Seg21_6 3001 3750 2 1.00E+00 -7.97E-01 -1.35E-01 -7.72E.02 2.80E-02 -6.30E-03 3.892-02
46 • Seg22^1 1 3750 2 1.00E+00 -6.70E-01 -1.34E-01 -3.72E-02 -2.84E-02 -4.342-02 -1.522-02
47 Seg23_1 1 2100 2 1.00E+00 -6.98E-01 -6.72E-02 -3.15E-02 -2.32E-03 -6.052-02 4.452-02
48 Seg23_2 2101 2250 2 1.00E+00 -1.31E+00 5.48E-01 -1.952-01 1.72E-01 -1.652-01 1.302-01

- 49 Seg23_3 2251 3750 2 1.00E+00 -9.07E-01 -3.90E-02 -3.20E-02 -6.172-02 2.732-02 3.41 E-02
50 Seg24_1 1 . 2700 2 1.00E+00 -1.04E+00 5.67E-02 -3.87E-02 4.782-02 -1.122-02 -1.672-03
51 Seg24_2 2701 3750 2 1.00E+00 -8.00E-01 -4.75E-02 -3.852-04 5.60E-02 -1.862-01 1.452-01
52 Seg25_1- 1 3750 2 1.00E+00 -9.63E-01 5.60E-02 -7.222-02 4.302-02 -1.042-02 -2.142-02
53 Seg26_1 1 1950 2 1.00E+00 -1.19E+00 1.36E-01 7.31 E-02 1.35E-01 -1.092-01 3.502-02
54 Seg26_2 1951 2100 2 1.00E+00 -1.30E+00 4.39E-01 -3.402-01 4.74E-01 -3.152-01 1.212-01
55 Seg26_3 2101 2550 2 1.00E+00 -1.12E+00 1.39E-01 1.362-02 1.362-02 3.792-02 -5.142-02
56 Seg26_4 2551 2850 2 1.00E+00 -1.04E+00 3.03E-02 6.49E-03 -5.91 E-02 4.362-02 -1.64E-02
57 ^ 2 6 _ 5 2851 3750 2 1.00E+00 -1.24E+00 8.73E-02 1.57E-01 4.962-02 -9.732-02 1.482-02
58 Seg27_1 1 ■ 1350 2 1.00E+00 -1.10E+00 1.50E-01 -5.942-02 4.482-02 4.792-02 -2.852-02
59 Seg27_2 1351 2850 2 1.00E+00 -1.20E+00 1.16E-01 1.372-02 6.082-02 7.972-03 3.112-02
60 8eg27_3 2851 3000 2 1.00E+00 -1.69E+00 1.19E+00 -5.592-01 7.47E-02 1.092-01 -1.932-01
61 Seg27_4 3001 3750 2 1.00E+00 -1.27E+00 3.62E-01 -4.932-02 -2.292-02 1.332-02 2.822-02
62. Seg28_1 1 2400 2 1.00E+00 -7.68E-01 -3.95E-02 -6.692-02 -2.482-02 2.402-03 3.32E-02
63 Seg28_2 2401 3750 2 1.00E+00 -9.18E-01 1.51E-01 -1.18E-01 4.102-02 -6.5 IE-02 -1.392-02
64 Seg29_1 1 3750 2 1.00E+00 -7.46E-01 3.48E-02 -3.66E-02 -5.63E-04 -2.13E-02 -1.172-02
65 Seg30_1 1 3750 1 1.00E+00 -9.10E-01 -1.08E-01 1.502-02 1.232-01 -4.002-02 -1.792-02
66 Seg31.1 1 750 1 1.00E+00 -7.09E-01 -7.32E-02 -1.292-01 4.022-02 -3.262-03 -4.652-02
67 Seg31_2 751 900 1 1.00E+00 -1.19E+00 1.37E-03 2.552-01 2.382-02 1.572-01 -4.182-02
68 Seg31_3 901 3750 1 1.00E+00 -7.33E-01 -1.83E-01 -2.94E-02 -5.472-02 -3.762-02 9.302-03
69 Seg32_1 1 1350 1 1.00E+00 -6.59E-01 -1.00E-01 -4.542-02 -1.462-02 -7.372-02 -1.902-02
70 Seg32 2 1351 1500 1 1.00E+00 -1.53E+00 2.60E-01 3.41 E-01 1.80E-01 -2.63E-01 7.9GE-02
71 Seq32 3 1501 3750 1 1.00E+00 -7.16E-01 -1.26E-01 -4.382-02 -3.79E-02 -4.902-03 -2.732-02

to



A ppendix B
Here is the results that has been produced from the SPSS software 
when
Discriminant analysis on VAG signals has been performed

Discriminant
Notes

Output Created 09-DEC-2003 15:16:14
Comm ents
Input Filter <none>

W eight <none>
Split File <none>
N of Rows in Working 72Data File

Missing Value Definition of Missing User-defined missing values are
Handling treated a s  missing in the. analysis 

phase.
C a se s  Used In the analysis phase, c a se s  with no 

user- or system-missing values for 
any predictor variable are used. 

C ases with user-, system-missing, or 
out-of-range values for the grouping 

variable are always excluded.
Syntax DISCRIMINANT 

/GROUPS=category(1 2) 
A/ARIABLES=coef2 coef_3 coef_4 

coef_5 coef_6 coef_7 coef_8 coef_9 
coef_10 coef_11 coef_12 ccef_13 
coef 14 coef 15 coef 16 coef 17 

coef 18 /ANALYSIS ALL /PRIORS 
EQUAL /STATISTICS=MEAN 

STDDEV UNIVF BOXM COEFF 
RAW CORR COV GCOV TCOV 

TABLE CROSSVALID 
/PLOT=COMBINED SEPARATE 

MAP /PLOT=CASES 
/CLASSIFY=NONMISSING 

POOLED.
R esources Elapsed Time

0:00:00.77

53

Reproduced with permission of the  copyright owner. Further reproduction prohibited without permission.



A nalysis 1 

Box's Test of Equality of Covariance Matrices

Log Determinants

54

Log
CATEGORY Rank Determinant
1 17 -96.386
2 17 -99.790
Pooled within-g roups 17 -90.942

The ranks and natural logarithms of determinants printed are those of the group covariance m atrices.

Test Results

Box's M 504.993
F Approx. 2,417

df1 153
df2 13517.224
Sig. .000

T ests  null hypothesis of equal population covariance matrices.

Summary of Canonical Discriminant Functions

Eigenvalues

Function Eigenvalue % of Variance • Cumulative %
Canonical
Correlation

1 .883(a) 100.0 100.0 .685
a First 1 canonical discriminant functions were used in the analysis.

Wilks' Lambda

T est of Function(s)
Wilks’ . 

Lambda Chi-square df Sig.
1 .531 38.304 1 17 .002

Functions at Group Centroids

Function
CATEGORY 1
1 1.023
2 -.839

U nstandardized canonical discriminant functions evaluated at group m eans

R eorodu ced  with oerm ission  of the coovriaht ow ner. Further reoroductinn n rn h ih i t e d  w ith o u t  nermi.c^inn
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Classification Statistics

Classification Processing Summary

P ro cessed 72
E xcluded Missing or out-of-

• range group codes 0

At least one missing
discriminating
variable

1

U sed  in Output 71

Classification Results(b,c)

CATEGORY

Predicted Group 
Membershio

Total1 2
Original C ount 1 28 4 32

2 7 32 39
% 1 87.5 12.5 100.0

2 17.9 82.1 100.0
C ro ss- C ount 1 23 9 32validated(a) 2 12 27 39

% 1 71.9 28.1 100.0
2 30.8 69.2 100.0

classified by the functions derived from all c a se s  o ther than that case, 
b 84.5%  of original grouped c a se s  correctly classified, 
c  70 .4%  of cross-validated grouped c a se s  correctly classified.

R eoroduced  with oermission of the coovriaht ow ner. Further reoroduction n rn h ih i t e d  w i th o u t  n e r m ic s i n n
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