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Abstract 

PERFORMANCE MODELLING OF MULTI-TIER CLOUD 

APPLICATIONS USING SIMPY 

Dayle J. Chettiar 

Master of Engineering (M. Eng.), 2016 

Electrical and Computer Engineering, Ryerson University 

 

    Todays cloud deployed applications are mostly multi-tiered. Usually, the first tier consists of an 

Application Service Providers' (ASPs) web servers, the second tier has application servers and the 

third tier contains database servers. Tiered architectures are often difficult to evaluate in terms of 

performance. Existing performance models are very effective in finding the mean performance 

measures. However, metrics such as response-time percentiles are of greater importance to the end-

users since it is more desirable to reduce the variability of a system’s response time, rather than 

minimizing the mean response time. In this work, a multi-tier application is modeled as an open 

queuing network of 3-tiers and the response-time percentiles are estimated using discrete event 

simulation. Here, we assume that each tier is replicated into a number of copies and each copy runs 

on a separate Virtual Machine (VM). Although simulation models are computationally more 

expensive as compared to analytical models, they are much more general. The simulation model of 

this work can be used as decision support for ASPs in order to determine the optimal configuration 

of VMs for a given workload such that a required response-time percentile is within a given 

threshold. In this work, Simpy, a discrete event simulation framework, has been used. The results 

show that as the number of VMs are increased in a 3-tier open queueing network, the overall system 

performance (i.e. percentiles and mean response times) does not necessarily become better. The 

results further show that different system configurations containing the same number of VMs, yield 

different performance depending on the replication level in different tiers. 
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 CHAPTER 1  

INTRODUCTION  

    Application service providers (ASPs), which provide web services to customers have to 

ensure that their services are always live, ensure minimum delay and adhere to Service Level 

Agreement (SLA) requirements. ASPs typically buy virtual machines (VMs) from cloud 

providers in order to cut down their budgets and/ or avoid hosting physical servers at their 

own premises. Application service providers request cloud service providers for a fixed 

number of intial VMs to host their applications. Cloud service providers get the VM 

requirements from ASPs and then bill them i.e. ASPs on a monthly or contract basis [20, 21, 

22]. The model described in this research gives application service providers a decision 

support model in order to forecast how many VMs they should buy, keeping in mind customer 

Service Level Agreements (SLA) requirements and the workload of jobs that they receive to 

remain functional [19]. The main objective of this research is to arrive at an appropriate 

configuration of VMs for a workload of jobs arriving at a multi-tier open queueing system. 

    Modern cloud deployed applications are mostly multi-tiered. The performance of tiered 

architectures are often difficult to evaluate. There are two approaches that are commonly used 

in performance evaluation for computer systems: measurement and modeling. Measurement 

uses tools to generate an artificial workload to the system and measure its performance. 

Models, on the other hand, are used to gain an insight into systems that have not been built, or 

those which are running under conditions such that they are not available for measurements. 

Performance modeling includes simulation and analytical models. We prefer simulation 

models, because simulation models are much more general and impose fewer restrictions than 
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analytical models. However, they are computationally more expensive. 

    Since resources of application service providers are multi-tiered services, response time is 

an important statistic, which quantifies the Quality of Service (QoS) of application service 

providers. Response time generally denotes the amount of time a user waited for a response to 

a query, without taking into account the quality of the response [11]. Conventionally, the 

mean response time is an effective QoS metric. However, [14] argues that the response-time 

percentiles or more generally, the response-time distribution, are of higher importance to the 

end-users. Although the mean response time of a system may be very low, if we intend to 

measure performance of a system as the percentage of successful jobs which were processed 

within a certain response time threshold (percentile), we find that percentiles are a more 

effective performance criteria. Hence, percentiles (eg 90th  or 95th percentiles) are a better QoS 

metric for end users focussed on performance than mean response time. Along with low 

response time, end users consuming mission critical applications require that the services that 

they use are reliable. In this research we will be focussing more on percentiles as a QoS 

metric rather than average response time since we intend to use a performance metric which 

ensures that the system's behaviour is consitent rather than faster overall but occasionally 

inconsistent [14].  

    In this work, a 3-tier web application is modeled as an open queueing network with three 

stages with only feed-forward arcs. Here, we assume that each tier is replicated into a number 

of copies and each copy runs on a separate Virtual Machine (VM) [14]. Thus, the queuing 

network consists of a variable number of VMs in three stages. The first stage represents web 

server tier, the second stage represents the application server tier and the third stage represents 

the database server tier [13].  Each VM is modeled an M/M/1 queue.  

    Over or under-utilization of VMs could occur if an application service provider didn’t 

purchase enough number of VMs from the cloud provider for different stages of the open 
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queueing network to process the incoming jobs. For example, when the number of VMs 

purchased is too few to handle a given workload, the average response time will be too high 

and most of the jobs will not be processed within the required response time threshold. On the 

contrary, if too many VMs were purchased to handle relatively fewer number of jobs, the 

VMs will be under-utilized and this could lead to wastage of computational resources.  Hence, 

the challenge is to find an optimal configuration for the system consisting of the right number 

of VMs for each stage to process the incoming jobs that will ensure that a required response-

time percentile is within a given threshold.             

    This work presents a discrete event simulation model to estimate the response time 

distribution and percentiles. Since it is simulation-based, the model is computationally 

intensive, however, it is an approximation technique and can accommodate general arrival and 

service distributions. The rest of the paper is organized as follows. First, background and 

related work is summarized in chapter 2, along with an introduction to queueing network 

systems and the types of queueing network systems. A model of the system is given in chapter 

3 along with a queueing network model of the system to be simulated. This chapter also 

presents the simpy [5] simulation framework along with the models used for incoming jobs 

and VMs. Chapter 4 details the results obtained with the different configurations used for an 

open queueing network model. Finally, a conclusion with future work is proposed in chapter 

5. 
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CHAPTER 2  

BACKGROUND 

    Application service providers request virtual machines from cloud service providers, for 

deploying their web applications to satisfy SLA requirements for their own customers. Rather 

than buying more and more servers as their demand or number of customers increases, 

application service providers buy virtual machines [20], from cloud service providers like 

Amazon, Google, Apple, Microsoft, etc.  

    Application service providers typically can have their resources modeled as a queuing 

network composed of a set of single-server queues. These single server queues can be thought 

of as a configuration of 2-3 tiers. Each tier of queues can be visualized as a collection of 

application or services which are responsible for the execution of requests at each tier. 

Conventionally, most application service providers have a configuration consisting of 3 tiers 

where the first tier consists of web servers, the second tier consists of application servers and 

the third tier consists of DBMS servers [13]. In this fashion, each queue in the single-server 

queues corresponds to a tier. The configuration can be shown in as in figure 1 below: 
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Fig 1. Modern Application Service Provider configuration 

 

    Fig. 1 is a sample configuration of an application service provider. The figure above 

denotes a configuration consisting of 4 VMs at the Web (HTTP) Server tier, 2 VMs at the 

Application Server tier and 3 VMs at the DBMS server tier.  The performance of a system like 

this can be analyzed using queuing networks, more specifically, open queuing networks. 

Extensive research has been performed on the problem of computing the response time 

distribution of queuing networks.  Obtaining the response time distribution in a network is 

generally cumbersome, particularly when a network is not overtake-free [15]. In such cases, 

approximations are made for response time distributions. An example of such an 

approximation technique is to divide the network into single server queues. Then, these split 

queues can be analyzed in isolation [14]. An M/M/c/b queue based approach based on the 

split queue technique was specified by Woolet [14]. Woolet's technique was further extended 

by Grottke et al. as in [12] which presents a phase time service distribution.  Approximation 

techniques on obtaining response time distribution for queuing networks with failures of VMs 

in tiers are presented as in [16] and [12].  

5 
 



    Analytical performance models exist for evaluating the performance of systems. Some 

examples of performance models include Markov chains [1, 2], Petri nets [18, 23, 24], 

Queueing Networks [1, 2], Layered Queueing Networks (LQN) [17], and the few others. Most 

of these models can be solved analytically in order to find the mean performance measures. In 

order to compute mean measures and response time percentiles, we have used simulation 

models. Simulation models are computationally more expensive as compared to analytical 

models. However, they are much more general. Simulation models have also been used for 

other purposes. G. Gagner et al [8] extend the concept of discrete event simulation (DES) 

towards a UML driven Business Process Modeling Notation (BPMN) for the purpose of 

simulation modeling. This approach was also used to identify BPMN patterns which were 

useful for obtaining good simulation models [8]. Pfitzinger et al [9] applied simulation models 

like Reliability Block Diagrams in order to analyze the efficiency of software and data 

updates in a mobile distributed electronic toll system. But for the scope of this research, we 

limit ourselves to the methods presented by [14, 16, 12], where response time distribution for 

queuing networks was approximated and analyzed. In this research, we are concerned with 

obtaining the response time distribution of an open queuing network system with replicated 

servers using discrete event simulation. Similar to R. Paharshingh in [3, 4] who developed a 

quantitative model for the analysis of hardware, software and response time faults in virtual 

systems with cloud services, our work is not analytical, but uses simulation using simpy [5]. 

All the methods presented in this literature review compute the performance of queuing 

networks using analytical methods, but this research focuses on obtaining performance 

metrics using simulation.  

    We first begin with an overview of Discrete Event Simulation in chapter 2.1, then queuing 

networks systems and the types of queuing network systems are discussed in chapter 2.2.  
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2.1 DISCRETE EVENT SIMULATION 

    Using Discrete Event Simulation (DES), the performance of a system can be obtained very 

accurately. However, it takes a long time to perform the simulation. Also, more resources are 

needed as compared to analytical models. In DES, it is assumed that no changes occur 

between successive events in the system to be analysed. The simulation can hop in time from 

one event to the next. As compared to continuous simulation, DES runs faster since it doesn’t 

have to simulate each and every time slice. Thus, Discrete Event Simulation (DES) 

approximates any given system as a discrete sequence of events in time [25, 26, 27].  

 

2.2 QUEUING NETWORK SYSTEMS 

    Queuing network models or systems are those models in which the entire system to be 

analyzed is represented as a network of queues. A network of queues is a collection of service 

centers, denoted by nodes. This collection of service centers represents system resources. The 

arrivals to these service centers can be users, jobs or transactions. Analytic evaluation 

involves using software to efficiently solve a set of equations induced by the network of 

queues and its parameters [10]. 

    There are two types of queuing network systems.  

2.2.1 OPEN QUEUING NETWORK SYSTEMS 

    Queueing network systems are called open if the queueing systems can have jobs enter and 

leave the system. A diagrammatic representation of an open queueing network system is 

shown in figure 2 [1, 2]. 
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            Fig 2: Open Queuing Network System 

    Thus the number of jobs at any given instance in an open queueing network system is 

variable, i.e. the number of jobs can increase or decrease. Jobs can enter the queueing system 

at any node and depart the network from any node [1, 2]. 

    The external arrival rate (λ) of an open queuing network is the sum of the ‘arrival rates 

from outside the system’ and the ‘arrival rates at all other internal nodes in the system’ [1]. 

The arrival rate of an open queuing network is given in eq. 1 as follows: 

 

                                          eq. 1) 
 

where  denotes the arrival rate at the ith node, 

           denotes the arrival rate of incoming jobs from outside the system to the ith node, 

           denotes the arrival rates to all internal nodes in a system 
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    A Poisson process is a stochastic process which increments the number of events in the 

system. If the inter-arrival times between each pair of consecutive events is assumed to be 

independent of other inter-arrival times and the time between a pair of consecutive events has 

an exponential distribution with arrival rate (λ), then the random variable which denotes the 

number of incoming jobs has a Poisson distribution [1, 2]. 

    In this research, Poisson arrival rate is used. However, we could also have used a more 

general arrival rates. When the performance of an open queuing network is to be analysed 

using simulation, mostly, it is assumed that inter-arrival time distributions are exponential [1]. 

2.2.2 CLOSED QUEUING NETWORK SYSTEMS 

    Queuing network systems are called closed if the queuing system has a fixed number of 

jobs running through the system. Also, the jobs in a closed queuing system can neither enter 

nor leave the system. A diagrammatic representation of a closed queuing network system is 

shown in figure 3 [1, 2].  

 

            Fig 3. Closed Queuing network 
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    In fig. 3, μ1, μ2 and μ3 are the service rates of each of the system’s respective nodes. The 

number of jobs at all times in a closed queueing network system is fixed, i.e. the same number 

of jobs is serviced at the nodes in the closed model. A fixed number of jobs are initialized in 

the closed queueing system once and then those jobs get circulated throughout the closed 

queueing network and cannot leave the system [1, 2]. A major disadvantage in closed queuing 

networks is that while modeling the system, the designer is supposed to know the number of 

jobs that will enter the system in advance. 

    The external arrival rate (λ) of a closed queuing network is the sum of all the ‘arrival rates 

from all the nodes in the system’. The arrival rate of a closed queuing network is given in eq. 

2 as follows: 

                      eq. 2) 
  

since no jobs enter the closed system externally. 

where 

               denotes the arrival rates to all nodes in a closed queuing network. 

    Now, any queueing network system can be solved either analytically or using discrete event 

simulation. The methods presented in the literature have all discussed analytical models, but 

in this research, we are use simulation to obtain performance of the queuing network system.  
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CHAPTER 3 

MODEL 

The application architecture to be analyzed in this research is given in figure 4.       

 

Fig 4. Hardware and software virtual system 
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Figure 4 shows the architecture of a web app consisting of 3 tiers or servers. The first tier 

consists of web servers, the second tier consists of application servers and the third tier 

consists of database servers. From the fig. 4, there is a load balancer between the 3 tiers. The 

load, from Web Server 1 (WS1) will be equally distributed between Application Server 1 

(APP1) and Application Server 2 (APP2). Similarly, the load from Web Server 2 (WS2) will 

be distributed between APP1 and APP2. In the next stage, the load from Application Server 1 

(APP1) will be equally distributed between Database Server 1 (DB1) and Database Server 2 

(DB2). The load from Application Server 2 (APP2) will be distributed between DB1 and 

DB2. Also note that WS1 runs on top of Operating System 1 (OS1), which in turn runs on top 

of Virtual Machine 1 (VM1). Similarly, APP1 and DB1 run on top of Operating System 2 

(OS2), Virtual Machine 2 (VM2) and Operating System 3 (OS3), Virtual Machine 3 (VM3) 

respectively.  

    Identically, WS2, APP2 and DB2 run on Operating System 4 (OS4), Virtual Machine 4 

(VM4) and Operating System 5 (OS5), Virtual Machine 5 (VM5) and Operating System 6 

(OS6), Virtual Machine 6 (VM6) respectively similar to [3]. 

    We assume that each tier is replicated into a number of copies and each copy runs on a 

separate Virtual Machine (VM) [14]. 

    The above fig. 4 is an example configuration of (2, 2, 2). That is, 2 web servers in the first 

tier, followed by 2 application servers in the second tier and finally 2 database servers in the 

third tier. The model in figure 4 can have different configurations with varying number of 

servers (i.e. a configuration of (1, 1, 1) to (3, 3, 3)) in each of the three tiers depending on the 

workload of incoming jobs. 
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3.1 QUEUING NETWORK MODEL 

    The figure 4 can be modeled as an open queuing network, when resources, WS1 on VM1, 

APP1 on VM2, DB1 on VM3, WS2 on VM4, APP2 on VM5 and DB2 on VM6 are all 

operational as given in figure 5. Each VM is modelled as an M/ M/ 1 queue in this research. 

In this system, all jobs coming into the system will go out of it. Also, all incoming jobs have 

an exponential service time and their inter-arrival time is exponential.  

    In addition to that, note that there is a load-balancer between all 3 tiers in the replica, i.e. 

depending on the number of VMs in each tier, the load-balancer will balance the workload of 

jobs. Thus, the queuing network model for figure 4 is given in figure 5. Note that ‘λ’ denotes 

arrival rate and ‘μ’ denotes the service rate.  

 

Fig 5. Queuing Network Model 

    In the scope of this research, both web servers, (WS1 and WS2), both application servers, 

(APP1 and APP2) and both database servers (DB1 and DB2) are operational. This 
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configuration is shown in the queuing network in Figure 5.  

    The fig. 5 is an example configuration of (2, 2, 2). That is, 2 VMs in the first tier, followed 

by 2 VMs in the second tier and finally 2 VMs in the third tier. The model in fig. 5 can have a 

range of different configurations with varying number of servers (i.e. a configuration of (1, 1, 

1) to (3, 3, 3)) in each of the three tiers. 

In the system, requests enter at a rate of ‘λ’ and are distributed equally in the first stage, 

among VM1 and VM4. After the requests are processed after the first stage, they are again 

distributed equally among VM2 or VM5. Finally, in the third stage, the requests are 

distributed between VM3 and VM6. Hence, it can be seen that the load is equally distributed 

at each stage of the multi-tiered system and the routing probabilities are determined based on 

how many servers there are in each tier. 

    This system in figure 5 can be simulated for performance to predict the number of VMs the 

application service provider will require at each of the 3 tiers (Web Server, Application Server 

and DBMS server) for a workload of jobs as discussed previously using DES. The application 

service provider is provided a decision support system to predict how many VMs he/ she will 

need to buy for a given workload of jobs. Also care has been taken to satisfy percentile 

requirements and response time requirements such that the workload of jobs arriving at the 3 

tier queueing network configuration satisfies the response time requirement (in seconds). 

 

3.2 SIMPY 

The framework 

    The 'Simpy' framework is a process based, discrete event simulation framework based on 

the python programming language. The latest version of the simpy simulation framework is 
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3.0.8 and can be found at [5]. Processes in simpy can be written using python generator 

functions. Some example scenarios that can be analyzed for performance using simpy are: 

i)  A number of cars arrive at a car wash shop. We are interested in finding out the optimal 

number of car wash shops for a given workload.  Also, the average response time for a car 

to get washed in this system can be obtained using simulation [5]. 

ii)  A number of customers arriving at multiple or a single cashiers of a fast food restaurant. 

iii)  A number of students arriving at the borrowing checkout of a library. 

    Resources are an important concept in simpy. Resources are a kind of container with 

limited capacity. If a resource is full or empty, they are supposed to enter a queue and wait for 

a signal [5].  Resources can be monitored for particular events to occur for future analysis. 

Example of resources are 'jobs', 'running processes' or even the 'time taken by a specific 

process to complete'. The monitored resources can then be used to simulate queueing network 

systems in order to obtain performance metrics like average response time, number of jobs 

completed successfully, throughput, proportion of jobs completed within a certain time frame 

as compared to total number of jobs in the system. Simulations in simpy can be performed for 

a certain specific time interval or infinity (ideally till all jobs are serviced) [5, 6, 7].  

    The function, 'environment.process()' can be used to start a process. The 'Process' instance 

in simpy is used for process interaction with other processes or models. Examples of process 

interactions are  

→ waiting for another interacting process to finish execution 

→ interrupting another process while it is waiting for another event. 

Also, 'Timeout' is an event that allows a process to sleep for a given amount of time. The 

'Timeout' event type is triggered after a certain simulation time or time threshold has passed. 

The function, 'interrupt()' can be used to interrupt a running process. Any process or a set of 
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processes can be set to 'monitored=true' as a parameter to monitor the process in order to 

analyze the process' performance [5, 6, 7]. 

 

3.2.1 MODELS AND PROCESS SETUP 

The model for a 'Source' is given in figure 6. 

        

Fig 6. Source process 

In this pseudocode, the class 'Source' generates jobs randomly. This is done in the Source 

class' 'generate()' function. The number=1000, which indicates that there will be 1000 

jobs in the system. 'arrRate' denotes the arrival rate of jobs from outside (source) to the 

open queueing network model. 'processors' denotes the number of VMs at any one of the 3 

tiers currently under consideration. The code which follows assigns jobs to the configured 

VMs in the tiers. Also, each of these jobs are generated exponentially with an interval of 

'expovariate(arrRate)', where arrRate is the arrival rate of incoming jobs. 

'__init__()' is a constructor for the 'Source' class which initializes default parameter values 
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for the 'Source' class.  

The model for an incoming 'job' is given in figure 7.  

 

            Fig 7. Model for an arriving job. 

    In this code, '__init__()' is a constructor for the 'Job' class which initializes default 

parameter values for the 'Job' class. In this class, a job arrives, chooses the shortest queue, gets 

served and leaves. This is done in the 'visit()' function. The arrival instant of each job is 
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recorded and displayed as in statement 'arrivalToSystem=now()'. The parameter 

'numberOfL1VMs' denotes the number of VMs to be used for simulation at the first tier. The 

python generator, 'yield request' is used to request a processor for an arriving job. The 

wait time between job arrival and the instant at which requested processor was assigned to a 

specific job is given by the statement 'wait = float(now() - arrive)'. The time in 

waiting, 'tiw' is exponential. The generator, 'yield hold' can be used to service the job for 

an exponential time. Then the generator, 'yield release' can be used to release the 

servicing of the job by a processor. Note that the above configuration for an arriving job is 

depicted for the first tier only as in figure 5. For the remaining two tiers, you need to have to 

repeat the pseudocode for parameters 'numberOfL2VMs' and 'numberOfL3VMs', which 

denote the number of VMs in the second and third tiers respectively. For a full reference of 

the 3 tier queuing network model refer the code appendix [appendix A]. 
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CHAPTER 4 

 RESULTS 

The initial parameters for performance of this queueing network model is given as in figure 8.     

 

Fig 8. Initial parameters 

    From fig. 8, the system is simulated for 1000 jobs and for 2000 seconds which is 

approximately 33 minutes.  The arrival rate of jobs, 'arrRate' into the queueing network 

system is 100 jobs/second. The service rate of the jobs arriving at the first, second and third 

tier in the queueing network model is set to 60, 70 and 80 jobs per second respectively. There 

are 3 VMs ('numberOfL1VMs', 'numberOfL2VMs' and 'numberOfL3VMs') each, in the first, 

second and third tier of the system. For our research, we consider a response time threshold 
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range between 0.2 to 0.7 seconds. For the purpose of this run, this threshold is set to 

'responseTimeReq=0.7' where responseTimeReq denotes the response time requirement 

or threshold in order to compute percentiles. In order to ensure consistency and completeness, 

the system is simulated for 3 runs (as given by nrRuns) and the average of the three runs is 

obtained as the system performance. In this analysis, we use a configuration consisting of 

varying number of resources, depending on the number of VMs needed at each of the three 

tiers as in figure 5. 

    Using the initial parameters as in fig. 8, we can obtain performance metrics for the 

queueing network model described in figure 5. This is shown in figure 9. 
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Fig 9. Performance measurement 

In fig. 9, 'arrivalToSystem' is the instant at which a job arrives for getting serviced by a 

VM. Fig. 7 gave a model for a single tier. The model can be modified accordingly as in for 

different number of VMs in its tiers as in figure 9 in the 'visit()' module. 'responseTime' 
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is a performance metric for obtaining the response time of a job for getting itself processed. It 

is the difference between the current time and the time marked by the job's 'arrive' 

parameter. Also, from fig. 8, if any of the jobs' response time is lesser than the 

responseTimeReq for that iteration, then a counter, 'numberMeetDeadline' is 

incremented. The 'numberMeetDeadline' is used incrementally in order to compute the 

percentile of the current VM configuration. The statement 'observe(responseTime)' is 

used to monitor future jobs which meet the threshold. 

The figure 10 below gives the queueing network model as a whole. 

22 
 



 

Fig 10. Open queueing network model 

    This model is initialized using the statement 'initialize()'. It generates 1000 random 

jobs using the statement 'source = Source(self)'. The jobs are activated and arrive at 
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VMs using the statement 

 'activate(source,source.generate(num, arrInt, processors) at = 0.0) ' 

 

    Between two arrivals, the time is 1 / 100 seconds since arrTime = 100. The result is 

obtained as the number of jobs processed, average response time and total response time.  

    The final 2 statements in fig. 10 gives the 'average response time over 3 runs' and the 

probability that the jobs meet the threshold limit to get processed. This threshold limit can lie 

between the range of 0.2 to 0.7 seconds. 

    There can be 27 different configurations for fig 9 and 10 if we modify the 

'numberOfL1VMs', 'numberOfL2VMs' and 'numberOfL3VMs' parameters accordingly in fig. 

8, between (1, 1, 1) and (3, 3, 3). 

    The above configuration was for the system as in figure 5, consisting of 3 tiers which could 

have (1, 2, or 3) VMs at the first tier, (1, 2, or 3) VMs at the second tier and (1, 2, or 3) VMs 

at the third tier. The configuration can be modelled as having greater than 3 VMs at any tier. 

However, the intention is to find out whether we get a probability that the jobs meet the 

threshold limit of (0.2 to 0.7) seconds for a workload of 1000 jobs, which is shown to increase 

as the number of VMs is increased in the first stage.  

    Now, the average response time is given by, 

     , 

  

 
  

 

24 
 



So, for  

 arrival rate(λ) = 100 jobs/second,  

 service rate of tier 1 (μ1) = 60 jobs/second, 

  service rate of tier 2 (μ2) = 70 jobs/second, 

 service rate of tier 3 (μ3) = 80jobs/second 

and a response time requirement between 0.2 to 0.7 seconds. The code in figure 8, 9 and 10 

were modelled to have varying number of VMs and the following results were obtained. 

    For this research we assume that a percentile of greater than 70% is ideal and a percentile 

of less than 50% is wasteful since that would mean that only 50% of jobs satisfy a given 

response time requirement, which is not ideal. A table of results for average response times for 

different number of VMs in the three tier configuration is given in the table 1.  

 

Table 1: Average response times for VM configurations ranging between (1,1,1) to (3,3,3) 

    From table 1, it can be seen that as the sum of the number of VMs, increases in the three 

tiers of the configuration as in figure 5, in general, the average response time for processing 

all jobs decreases. For example, the average response time of the (1, 1, 1) configuration (sum 

= 3) is 3.517, while the average response time of the (2, 1, 1) configuration (sum = 4) is 

2.155.  
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    However, note the (2, 2, 2) configuration (sum = 6) which has a much lower mean response 

time than some configurations with higher sums of VMs (i.e. (1, 3, 3), (3, 1, 3) and (2, 3, 3)). 

In this case, when the (1, 3, 3) and (3, 1, 3) configurations are compared to the (2, 2, 2) 

configuration, there are a fewer number (i.e. in this case just 1) of VMs in either tiers 1 or 2 

respectively which process incoming jobs as compared to the (2, 2, 2) VM configuration. 

Hence, just the one VM in (1, 3, 3) and (3, 1, 3) configuration acts as a bottleneck for 

processing incoming jobs. Having a comparatively less number of VMs or servers in the 

configuration of a multi-tier open queuing network systems is a bottleneck in the system.  

Thus, even if an ASP buys more VMs, it is not guaranteed that the mean response time of the 

configuration will be better.  

    Also in table 1, notice that for different configurations with the same sum of number of 

VMs, (i. e. For (2, 3, 3), (3, 2, 3), or (3, 3, 2) where sum of VMs is 8), the VM configuration 

which has a higher number of VMs in the first tier has a better average response time, 

followed by the VM configuration that has more VMs in the second tier and so on.  

    The current configuration has service rate of tier 1 (μ1) = 60 jobs/second, service rate of tier 

2 (μ2) = 70 jobs/second and service rate of tier 3 (μ3) = 80 jobs/second. i.e. μ1 < μ2 < μ3. 

Depending on the arrival rate (λ), the mean response time will vary if the service rate of tier 1 

(μ1) is higher than that of tier 2 (μ2) and tier 3 (μ3). This would just mean that jobs were 

processed at a faster rate in tier 1 than tiers 2 and 3. Hence, more jobs will be processed by 

tier 1 than tiers 2 and 3. Thus, the mean response time will be lower if μ1 > μ2 > μ3. 
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Table 2: Percentiles for different VM configurations between (1,1,1) to (3,3,3) 

    A table of results for percentiles for different number of VMs in the three tier configuration 

is given in the table 2. Note that a majority of the configurations have a percentile of less than 

50%. Since we assume that a percentile of greater than 70% is ideal and a percentile of less 

than 50% is wasteful, table 3 limits VM configurations to (2, 2, 2), (2, 3, 2), (2, 2, 3), (3, 2, 2), 

(3, 3, 2), (3, 2, 3), (2, 3, 3) and (3, 3, 3) since all other VM configurations have a percentile of 

less than 70%. This table also takes into account the response time requirement or threshold 

between the range of 0.2 seconds to 0.7 seconds. Table 3 is basically a condensed version of 

table 2, limited to percentiles greater than 0.7 (i.e. 70%). 

27 
 



   

Table 3: Percentiles for VM configurations which satisfy a performance criteria 

  

    From table 2 and 3, it can be seen that as the sum of the number of VMs, increases in the 

three tiers of the configuration as in figure 5, in general, the percentiles for processing all jobs 

increases for each of the given thresholds. For example, the percentile of the (1, 1, 1) 

configuration (sum = 3) and responseTimeReq = 0.4 seconds is 0.045, while the percentile 

of the (2, 1, 1) configuration (sum = 4) and responseTimeReq = 0.4 seconds is 0.081. These 

two configurations can be checked for the response time requirement range (0.2 to 0.7).  

    However, note the (2, 2, 2) configuration (sum = 6) as in table 2, which has a much better 

percentile than some configurations with higher sums of VMs (i.e. (1, 3, 3), (3, 1, 3) and (2, 3, 

3)) for different response time requirements. In this case, when the (1, 3, 3) and (3, 1, 3) 

configurations are compared to the (2, 2, 2) configuration, there are a fewer number (i.e. in 

this case just 1) of VMs in either tiers 1 or 2 respectively which process incoming jobs as 

compared to the (2, 2, 2) VM configuration. Hence, just the one VM in (1, 3, 3) and (3, 1, 3) 

configuration acts as a bottleneck for processing incoming jobs. Having a comparatively less 

number of VMs or servers in the configuration of a multi-tier open queuing network systems 

is a bottleneck in the system. Thus, even if an ASP buys more VMs, it is not guaranteed that 

the percentiles will be better. 
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    Also notice that for different configurations with the same sum of number of VMs, (i. e. for 

(2, 3, 3), (3, 2, 3), or (3, 3, 2) where sum of VMs is 8), the VM configuration which has a 

higher number of VMs in the first tier has a better percentile, followed by the VM 

configuration that has more VMs in the second tier and so on. 

    Similar to what was found with mean response time, depending on the arrival rate (λ), the 

percentiles will vary if the service rate of tier 1 (μ1) is higher than that of tier 2 (μ2) and tier 3 

(μ3). This would just mean that jobs were processed at a faster rate in tier 1 than tiers 2 and 3. 

Hence, more jobs will be processed by tier 1 than tiers 2 and 3. Thus, the percentiles will be 

greater if μ1 > μ2 > μ3. 

    A graph plotting the average response time for different VM configurations in the three tiers 

is shown separately in figures 11, 12 and 13 below:  

 

Fig 11: Average response times for 1st batch of VM configurations 
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Fig 12: Average response times for 2nd batch of VM configurations 

 

 

Fig 13: Average response times for 3rd batch of VM configurations 
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    Figures 11, 12 and 13 are a graphical representation of table 1. Also, note that only 8 

configurations from table 2 have a percentile of greater than 70% for a response time 

requirement range of 0.2 to 0.7 seconds. This is given in table 3. A graph plotting the 

percentiles for the 8 VM configurations, (2, 2, 2), (2, 3, 2), (2, 2, 3), (3, 2, 2), (3, 3, 2), (3, 2, 

3), (2, 3, 3) and (3, 3, 3) in the three tiers as in table 3 is shown in the figure 14. 

 

     Fig 14: Graph of VM configurations' percentiles 

   The figure 14 shows that each of the 8 VM configurations had their percentiles gradually 

increase as the response time requirement increased from 0.2 to 0.7 seconds. Fig. 14 also 

shows that with a response time requirement of 0.7 seconds, all of the 8 considered VM 

configurations had a percentiles of 100%. However for VM configurations with response time 
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requirements between 0.2 to 0.6 seconds, as the number of VMs in the first tier increases, the 

percentiles approach close to 100%. Note that from table 3, the percentiles for the VM 

configurations, (3, 3, 2) and (3, 3, 3) are identical for the response time requirement range (0.2 

to 0.7 seconds). Hence in the fig. 14, these two configurations overlap. 

    As an Application Service Provider (ASP), if a response time requirement of 0.3 seconds 

and 95% percentile was desired, then from fig 14, only 5 VM configurations, i.e. (2, 3, 2), (3, 

2, 2), (3, 2, 3), (3, 3, 2) and (3, 3, 3) satisfy the requirement. Note that from table 3, the VM 

configurations ((3, 3, 2) and (3, 3, 3)) have overlapping values. The remaining 3 

configurations, (2, 2, 2), (2, 2, 3) and (2, 3, 3) do not satisfy the above performance criteria. 

    Although their mean response times for all 8 configurations in fig. 14 are very low (i.e. 

lower than 0.2 seconds from table 1), it tells us that if an ASP wants the percentile to be 

greater than 95%, then the last 3 VM configurations ((2, 2, 2), (2, 2, 3) and (2, 3, 3)) will not 

satisfy the requirement. If the ASP wants more than 95% of incoming jobs to be processed for 

a mean response time lower than 0.3 seconds, then the (3, 3, 3), (3, 3, 2) and (3, 2, 2) are the 

best possible configurations (99.4% jobs processed) followed by (3, 2, 3)  and (2, 3, 2) 

configurations.  

    However, if the ASP wants more than 95% of incoming jobs to be processed for a mean 

response time lower than 0.2 seconds, then from table 3 and figure 14, none of the 8 VM 

configurations satisfy this criteria.  

    Now, if the service rate of tier 1 (μ1) = 90 jobs/second, service rate of tier 2 (μ2) = 80 

jobs/second and service rate of tier 3 (μ3) = 70 jobs/second, i.e. μ1 > μ2 > μ3, we obtain the 

figure 15 below.  
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Fig 15: Graph of VM configurations' percentiles for (μ1, μ2, μ3) = (90, 80, 70) 

    Note that from fig. 15, the VM configurations ((3, 3, 2) and (3, 3, 3)) don’t have 

overlapping values. Also, from fig. 15, there are 4 configurations which satisfy the criteria of 

an ASP wanting more than 95% of incoming jobs to be processed for a mean response time 

lower than 0.2 seconds. These configurations are (3, 3, 3), (2, 3, 3), (3, 2, 3) and (2, 2, 3). 

Thus, the percentiles will be higher if μ1 > μ2 > μ3.   

    Thus, the mean response time performance metric doesn’t give much information about 

overall system performance. Hence percentiles is very important as compared to mean 

response times.    
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CHAPTER 5 

 CONCLUSION 

 
    Discrete event simulation (DES) has the advantage of modelling the performance of a 

system using simulation rather than analytical methods. DES gives an approximate measure 

of performance of a system. The model in this paper allows application service providers to 

simulate their requirements and arrive at an ideal configuration or number of VMs they would 

need for their operations, which in turn they could request to be purchased from a cloud 

service provider. A 3-tier architecture was used in this research to model the architecture of an 

open queuing system. This queuing network was simulated using a discrete event simulation 

framework, simpy in order to find out how many replicas of VMs an ASP will need at each 

tier to handle a given workload of jobs. A threshold of between 0.2 to 0.7 seconds was used to 

determine which VM configuration had more jobs processed within that threshold. The results 

showed that for a large number of jobs to be processed, if the number of VMs were to be 

increased, it doesn’t mean that the performance (viz. mean response time or percentiles) of the 

system is better. The performance of a system depends on the service rates, arrival rates as 

well as the number of VMs in any given tier. Within a set of VM configurations, if any one of 

the VM configurations had a comparatively lower number of VMs in any given tier, then that 

tier could act as a potential bottleneck for processing incoming jobs for that particular VM 

configuration. Also, for a set of VM configurations having the same total number of VMs in 

them, the VM configuration which has more VMs in the first tier was found to have a lower 

mean response time and higher percentile followed by the VM configuration that has more 

VMs in the second tier and so on. The results also showed that for a varying number of VMs 
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in a 3-tier open queuing network configuration, percentile was a more efficient performance 

metric as compared to mean response time. This was because details about the ratio of 

incoming jobs which were actually processed to the total number of jobs within a given 

response time range gives a customer or Application Service Provider more details than just 

mean response time, which could be low for all VM configurations. 

    Future work could consider performance impacts of failures of VMs at any tier (i.e. Tier 1, 

tier 2 or tier 3). Also, along with the model presented in this research, an approximation 

technique could be used in addition to an optimisation model to find an optimal configuration 

of a set of services rather than running the simulation repeatedly.  
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APPENDIX A 

""" FCFS queues""" 

from SimPy.Simulation import * 

from math import * 

from decimal import * 

from random import expovariate, seed 

 

## Model components ------------------------ 

class QN():    

    def model(self, nrRuns, num, arrRate, endTime): 

        averageRespTimeSum = 0.0 

        probMetDeadlineSum = 0.0 

        for runNr in range(nrRuns): 

            self.wm1 = Monitor(name='ResponseTime') 

            self.numberMeetDeadline = 0 

             

            initialize() 

            source = Source(self) 

            activate(source,source.generate(num, arrRate, processors), at=0.0) 

            simulate(until=endTime) 

             

            if(self.wm1.count() > 0): 

                result1 = self.wm1.count(), self.wm1.mean(), self.wm1.total() 

                averageRespTimeSum = averageRespTimeSum + self.wm1.mean() 

                print("Average response time for %3d completions was %3.3f 
seconds. Total response time = %3.5f." % result1) 

                probMetDeadline = 
float(self.numberMeetDeadline)/self.wm1.count() 

                probMetDeadlineSum = probMetDeadlineSum + probMetDeadline 

                print("%d out of %d Jobs met the response time requirement of 
%f" % (self.numberMeetDeadline, self.wm1.count(), responseTimeReq)) 

                print("Probability of Jobs that met the response time 
requirement of %3.2f is %3.3f" % (responseTimeReq, probMetDeadline)) 

                print ("%s run(s) completed" %(runNr + 1)) 

 

        
print("*************************************************************************
***") 
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        print("Configuration is (%d,%d,%d)" % 
(numberOfL1VMs,numberOfL2VMs,numberOfL3VMs)) 

        print("Average response time over %d runs is %3.3f seconds." % (nrRuns, 
averageRespTimeSum/nrRuns)) 

        print("Probability of Jobs that met the response time requirement of 
%3.2f over %d runs is %3.3f"  

    % (responseTimeReq, nrRuns, float(probMetDeadlineSum)/nrRuns)) 

        
print("*************************************************************************
***") 

                 

 

class Source(Process): 

    """ Source generates jobs randomly""" 

    def __init__(self,sys): 

        Process.__init__(self) 

        self.sys = sys 

 

    def generate(self, number, arrRate, processors): 

        for i in range(number): 

            c = Job("Job%02d" % (i), i, self.sys) 

            activate(c, c.visit(processors)) 

            t = expovariate(arrRate) 

            yield hold, self, t 

 

class Job(Process): 

    """ Job arrives, chooses the shortest queue 

        is served and leaves 

    """ 

    def __init__(self,name,i,sys): 

        Process.__init__(self) 

        self.name=name 

        self.i=i 

        self.sys = sys 

         

     

    def visit(self, processors): 

        arrivalToSystem = now() 

        print ("%8.5f %s: Arrives     "%(now(),self.name)) 

 

        arrive = now() 

        ##Job then moves to first level of servers 
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        p = numberOfL1VMs 

        j = random.randint(1, p) 

        yield request,self,processors[j-1] 

        wait = float(now()-arrive) 

        print ("%3.8f %s: Waited for %3.8f for %s"%(now(),self.name,wait, 
processors[j-1].name)) 

        tiw = expovariate(serviceRateL1) 

        yield hold,self,tiw                       

        yield release,self,processors[j-1] 

 

        arrive = now() 

        ##Job then moves to second level of servers 

        q = numberOfL2VMs 

        k = random.randint(1, q) 

        yield request,self,processors[numberOfL1VMs+k-1] 

        wait = float(now()-arrive) 

        print ("%3.8f %s: Waited for %3.8f for %s"%(now(),self.name,wait, 
processors[numberOfL1VMs+k-1].name)) 

        tiw = expovariate(serviceRateL2) 

        yield hold,self,tiw                       

        yield release,self,processors[numberOfL1VMs+k-1] 

 

        arrive = now() 

        ##Job then moves to third level of servers 

        r = numberOfL3VMs 

        l = random.randint(1, r) 

        yield request,self,processors[numberOfL1VMs+numberOfL2VMs+l-1] 

        wait = float(now()-arrive) 

        print ("%3.8f %s: Waited for %3.8f for %s"%(now(),self.name,wait, 
processors[numberOfL1VMs+numberOfL2VMs+l-1].name)) 

        tiw = expovariate(serviceRateL3) 

        yield hold,self,tiw                       

        yield release,self,processors[numberOfL1VMs+numberOfL2VMs+l-1] 

             

                 

        ## Job processing is done and the job leaves the network 

        print ("%8.5f %s: Finished      "%(now(),self.name)) 

        responseTime = now() - arrivalToSystem 

        print("%8.5f %s Response time: %2f" % (now(), self.name, responseTime)) 

        if responseTime <= responseTimeReq: 

            self.sys.numberMeetDeadline = self.sys.numberMeetDeadline + 1 
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        self.sys.wm1.observe(responseTime) 

         

 

## Parameters ------------------------- 

 

maxNumber = 1000 

endTime = 2000.0    # seconds 

serviceRateL1 = 60  # 60 jobs per second 

serviceRateL2 = 70  # 70 jobs per second 

serviceRateL3 = 80  # 80 jobs per second 

arrRate = 100     # 100 arrivals per second 

nrRuns = 3       # number of simulation runs 

theseed = 787878 

processors = [] 

 

responseTimeReq = 0.7 

numberOfL1VMs = 3 

numberOfL2VMs = 3 

numberOfL3VMs = 3 

 

for x in range(numberOfL1VMs): 

    processors.append(Resource(name="L1VM"+str(x+1))) 

for y in range(numberOfL2VMs): 

    processors.append(Resource(name="L2VM"+str(y+1))) 

for z in range(numberOfL3VMs): 

    processors.append(Resource(name="L3VM"+str(z+1))) 

 

 

## Model ------------------------------ 

 

seed(theseed) 

plt=QN() 

plt.model(nrRuns, maxNumber, arrRate, endTime) 
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