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Abstract
PHASE SEPARATION BY SPINODAL 

DECOMPOSITION IN POLYMER BLENDS UNDER A 
SINGLE AND DOUBLE QUNECH:

A COMPUTATIONAL STUDY

Tuyet Tran

Master of Applied Science in Chemical Engineering, 2004 

Ryerson University

A mathematical model and computer simulations were used to describe the 

dynamics o f thermally induced phase separation (TIPS) by spinodal 

decomposition for polymer blends (single quench and double quench) using the 

nonlinear Cahn-Hilliard theory and the Flory-Huggins-de Gennes hee energy. 

The importance o f TIPS is to enhance material properties such as toughness, 

impact resistance, and elasticity. Therefore, controlling the moiphology is a 

critical factor in optimizing performance. The numerical results for the single 

quench are consistent with known characteristics of phase separation by spinodal 

decomposition observed in polymer blends. The numerical results for double 

quenching replicate recently published experimental and numerical work. Under 

a double quench the numerical work shows that a critical quench depth exists 

before secondary phase separation occurs, the growth rate of the primary and 

secondary structures are dependent on domain size and early stage dynamics for 

the secondary structures, after the second jump, appears to follow the linear Cahn- 

Hilliard theory.
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Chapter I: Inti'oduction

Chapter 1

Introduction

A number o f industrial processes use the technique of phase separation to produce 

materials for everyday use [Leblond, 2002]. Applications include the formation of 

membranes, for separation processes [Mulder, 1996], the formation o f polymer 

dispersed liquid crystal films for electro optical devices [Doane, 1989; 

Nwabunma et a i ,  2000], the production of high impact r esistant materials [Chow, 

1980; Utracki, 1991] in the plastics industry, coatings o f capsules [Leblond, 2002] 

in the pharmaceutical industry, and the production of low fat spreads [Harding et 

al., 1995] in the food industry. Therefore, research, both experimental and 

numerical, in understanding how phase separation occurs in polymer blends to 

control the morphology for specific applications is important.

1.1 The Mechanisms of Phase Separation in Polymer 
Blends

The mechanism o f phase separation depends on the location of a polymer blend in 

the phase diagram. Figure 1.1 shows a typical temperature versus composition 

phase diagram labeling the different regions of interest in studying phase 

separation kinetics. Figure 1.1 is called an upper critical solution temperature
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(UCST) type phase diagram. The filled black circle is the critical point Above 

this point, the system is in the homogeneous one-phase region and is stable. The 

solid thick black curve is the binodal (equilibrium) curve and the thin black line is 

the spinodal curve. The spinodal curve separates the two known mechanisms o f  

phase separation namely, (i) nucléation and growth (NG), and (ii) spinodal 

decomposition (SD). The regions between the bimodal

Homogeneous 
One-Phase Region

_ Meta-stable Region _ 
Nucléation and Growth

a Critical Point

1<u
CL

i
H

Binodal
Spinodal

Unstable Two-Phase Region 
Spinodal Decomposition

Composition

Figure 1.1: A temperature versus composition phase diagram at constant pressure 
for a binary polymer mixture showing an UCST. The solid thick black line is the 
binodal (equilibrium curve) and the thin black line is the spinodal curve 
separating the meta-stable region and the unstable region. In the metastable 
region, phase separation occurs by nucléation and growth (NG) and in the 
unstable region, phase separation occurs by spinodal decomposition (SD). The 
filled black circle represents the critical point.

and spinodal curve are the NG regions and the shaded grey area within the 

spinodal curve is the unstable region. Different types o f morphologies are
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Chapter 1: Introduction

developed for NG and SD. Figure 1.2 shows a phase diagram to illustrate these 

two mechanisms. When a homogeneous polymer mixture is quenched into the 

meta-stable region, this leads to the onset of nucléation and growth. The 

formation o f nuclei begins and gradually grows in size due to the increase in free 

energy of the mixture. The resulting structure is the formation of spherical

Spinodal Decom position

r<D0
1
H

Ti -

Nucléation and Growth

Composition

F igure 1.2: A temperature versus composition phase diagram for a binary 
polymer mixture showing the different morphologies that can be obtained 
depending on the location of the quench at temperature 'J\. If the polymer mixture 
is quenched into the meta-stable region, phase separation occurs by NG and the 
droplet type structure is formed. If the polymer mixture is quenched into the 
unstable region, phase separation occurs by SD and two morphologies are 
developed, droplet (off critical quench) and interconnected (critical quench). 
Depending on the location of the quench, the droplet type structure has a different 
continuous phase (surrounding matrix) and dispersed phase as indicated by the 
reversal o f  the black and white regions as shown in the SD structures, 
droplets rich in one contained within a continuous phase rich within the other

polymer. These droplets are randomly distributed and vary in size. In the unstable

region, spinodal decomposition occurs. This is the result o f a quench into the
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unstable region where the onset of small concentration fluctuations causes phase 

separation. Depending on the concentration of the polymer mixture, two types o f 

structures can be obtained. When the concentration of the polymer mixture is 

equal to the critical concentration, the structure obtained is interconnected. For 

polymer concentrations not equal to the critical concentration (off-critical 

quench), a droplet type structure is obtained. Also obsei'ved in Figure 1.2 is the 

difference in the continuous and dispersed phases depending on the location o f the 

quench in the phase diagram as illustrated with the di'oplet formation by SD. On 

the left hand side, the droplet type stmcture has a continuous phase where the 

sunounding matrix is represented by white and dispersed phase by black droplets. 

On the right hand side, the continuous and dispersed phases are reversed. 

Therefore, depending on the desired properties for the blend, the continuous and 

dispersed phases are obtained accordingly.

Figures 1.3 and 1.4 show the evolution o f the one-dimensional concentration 

profiles for phase separation by NG and SD respectively. In the meta-stable 

region, a sufficient increase in the composition fluctuations will cause a increase 

in the free energy o f the mixture and cause phase separation by NG. Nuclei are 

formed and grow where the diffusional flux is inward as indicated in Figure 1.3 

by the arrows at time i,. This process is an activated process in that an energy 

barrier must be overcome in order for this type o f phase separation to occur. The 

patterns that occur as time increases for NG upon overcoming the energy barrier 

are shown in Figure 1.3. In the unstable region, infinitely small concentration
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Chapter I; Introduction

fluctuations ate enough to di'ive the mixture to phase separate and therefore, there 

is no energy hairier to overcome. The composition fluctuations occur by “uphill 

diffusion where the gradient in composition moves hom  low concentration to 

high concentration as indicated by the airows in the initial profile of Figure 1.4. 

The different stages in the evolution of the composition fluctuations for the 

unstable region shows the initial growth to the coaisening of the mixture where 

the phase separated regions become larger. A detailed description of the three 

stages o f SD is presented in Chapter 3.

1.2 Thermally Induced Phase Separation (TIPS)

Phase separation of a binaiy polymer mixture may occur when rapid cooling or 

heating is applied, shear is applied or the initiation of a reaction occurs. Such 

methods are called thermally induced phase sepaiation (TIPS), shear induced 

phase separation (SIPS) and polymerization induced phase separation (PIPS), 

respectively. The simplest method to induce phase separation is by rapidly 

decreasing or increasing (depending on the shape of the phase diagram) the 

temperature o f the mixture from the one phase region into the two-phase region of 

the phase diagram. The temperature is rapidly increased for the lower critical 

solution temperature (LCST) phase diagram. For the UCST the temperature is 

rapidly decreased to induce phase separation. Thermally induced phase
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(i)
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Figure 1.3; A schematic o f the evolution o f phase separation by the mechanism 
of nucléation and growth (NG) form the initial fluctuations at time ti to the 
development and growth of domain sizes at time ti. The arrows in the initial time 
period indicate the direction o f the diffusion (downward) typical o f NG. The 
upper and lower equilibrium values are labeled as and cl respectively. The 
initial average composition is labeled as Co.
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Figure 1.4: A schematic o f the evolution of phase separation by the mechanism 
of spinodal decomposition (SD) from the initial fluctuations at time // to the 
development and growth of domain sizes at time ij. The arrows in the initial time 
period indicate the direction of the diffusion (upward) typical o f  SD. The upper 
and lower equilibrium values are labeled as cu and cl, respectively. The initial 
average composition is labeled as Co.
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separation is commonly used in the study of phase separation in polymer systems 

[Strobl, 1985; Chakrabarti et al., 1990; Takenaka et al., 1992; Tanaka, 1993; 

Zhang et al., 1995]. The TIPS method is described according to Figure 1.5. In 

this method, often a temperature versus composition phase diagram is constmcted 

to determine where the quench conditions should be made in order to form 

particular micro structures. In Figure 1.5, the system has an UCST, where the Tc is 

the critical point and is the highest temperature at which phase separation may 

occur. Initially, a homogeneous mixture of polymer 1 and polymer 2 is obtained 

at a temperature in region A. This mixture is then subjected to a rapid decrease in 

temperature well into the unstable region of the phase diagram to a temperature Tj 

(point B). Upon decreasing the temperature, the thermodynamic driving force is 

increased and in order to minimize the free energy, the mixture separates into two 

phases. The tie line connects the two phases coexisting phases at equilibrium. The 

resulting moiphology is then a continuous phase made of polymer 1 dispersed in 

the phase o f polymer 2.

1.3 Two-Step TIPS method

Another technique to generate different phase separated morphologies is the two- 

step or double quenching [Tanaka, 1993; Hashimoto et a i ,  2000a] TIPS method. 

The mechanisms of NG and SD are still applicable to this technique. Figure 1.6 

shows the phase diagram for a double quench case showing the different 

morphologies that are possible for the initial critical and initial off-
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H om ogeneous 
O ne-Phase Region

T ie line

Ti . .

Unstable Tw o-Phase  
Region

t tt
c,

F igure 1.5: Temperature versus composition phase diagram illustrating the TIPS 
method. Point A is the initial homogeneous phase. A deep quench is made into the 
unstable region (at Tj) where phase séparation occurs by SD as shown at point B. 
The horizontal line running across this phase diagram is a tie line that relates the
composition o f polymer 1 in the two coexisting phases, c /  and represents the
equilibrium compositions o f polymer 1.

critical quench by SD. In Figure 1.6, there are two types o f morphologies that can 

be obtained by double quenching. For an initial critical quench at temperature Ty, 

the interconnected structure is obtained and allowed to phase separate for a period 

of time. After a time, t, while the mixture is still within the spinodal region, the 

temperature is dropped again to T} and because the mixture is now in the off- 

critical state, the morphology is o f droplet type. Therefore, the resulting structure 

is interconnected with small droplets dispersed within. For the initial off-critical 

quench to Ty, the droplet type structure is obtained and allowed to phase separate 

for a period o f time before quenching to T;. At this point the mixture is still off- 

critical and droplets dispersed within droplets are observed as well as the 

formation o f droplets in the continuous phase. This two-step method is a
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Off-CriticalCritical Double Quench 
Process

T , --

nt t ft

Ti

Ty

Figure 1.6: A schematic of the method of double quenching and the morphology 
that may develop for a critical and an off-critical initial composition. The mixture 
is first quenched to Ty where it is allowed to phase separate by SD for a certain 
period o f time before it is quenched again to a temperature 71? (still within the 
unstable region). The smaller domains represent the secondary structures that 
form. On the left hand side, the critical quench case shows the interconnected 
structure as the primary structure and the smaller droplets as the secondary 
structure. On the right hand side, the off-critical quench shows larger droplets 
being the primary structure and smaller di'oplets as the secondary structure.

simplified version of the continuous cooling that is commonly observed in 

industrial processing and is important as a stepping stone to understand what 

occurs in more complex situations [Carmesin et. al, 1986].

1.4 Thesis Objectives

The following is a  list o f the objectives for this thesis where phase separation by 

SD is studied using mathematical modeling and computer simulations:

i. To study the single quench and two-step quench TIPS method for phase 

separation by SD in a symmetrical polymer blend by developing a
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mathematical model. This model will describe the dynamics o f phase 

separation via spinodal decomposition for polymer blends using the 

nonlinear Cahn-Hilliard theory and the Flory-Huggins-de Germes fi*ee 

energy. The mobility and the energy gradient coefficient ai e assumed to 

be composition dependent.

2. To solve the mathematical model in one dimension and two dimensions..

3. To present the 1-D and 2-D simulation results for a single quench to 

verify that this model shows the same known trends associated with 

spinodal decomposition using the TIPS method.

4. To present the 1-D results for a double quench to better understand the 

mechanism o f secondaiy phase separation and to verify the results fi'om 

the 1-D double quench model by comparison with published 

experimental work on two-step TIPS.

5. To present the pattern formation in two-step quenching to verify the 

experimental work of Hashimoto [Hashimoto et al., 2000; Hayashi et 

al., 2000a; Hayashi et a i, 2000b].

6. To expand the use of this model to study phase separation in food 

biopolymers by proposing possible approaches to adapting this model 

for analyzing food systems.

1.5 Methodology and Approach

This thesis is concerned with mathematical modeling and computer simulation o f 

phase separation for polymer blends by the mechanism of SD. The objectives o f
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this thesis will be completed according to the method and approach shown in the 

flow chart in Figure 1.7. The flow chart can be broken down into different tasks. 

The first stage involves a detailed search of the literature to determine the 

different models that have been used to describe phase separation by SD for 

polymer blends. The literature review will also involve reviewing published 

experimental work for different analytical techniques used for studying phase 

separation. The next step involves determining what is lacking in the literature 

and how mathematical modeling and computer simulations can help fill these 

gaps to further understand phase separation. This leads to the thesis objectives. 

To answer the objectives, the model is developed and tested with published 

experimental and numerical work. The model is then refined if the numerical 

work does not reflect what is known to occur experimentally.

1.6 Thesis Organization

The thesis is broken down into a total o f nine chapters and is organized in the 

following manner:

Chapter 1: This chapter introduces phase separation and the importance of 

studying it. It details the different mechanism involved in phase separation as 

well as the different methods to induce phase sepaiation. The focus is on the 

method o f thermally induced phase separation for a single step and a two-step 

process. This leads to the thesis objectives and the methodology and approach.
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Literature Survey
• Current work 

done
• New ideas

Thesis Objectives
•  Develop model to describe phase separation by SD  

expression witli com position dependent mobility and 
energy gradient coefncient
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Finite element
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Interpreting numerical results by:
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Figure 1.7; Flowchart detailing the methods and procedures for the mathematical 
modeling and computer simulation of TIPS for polymer blends undergoing single 
and double quenching.
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Chapter 2: This chapter is a literature review of phase séparation for the TIPS 

method detailed in two sections, isothermal quench and double quenching. It 

outlines the different experimental and numerical work that has been conducted 

and the important findings.

Chapter 3: This chapter discusses the theoretical background needed to develop 

the governing equation that describes phase sepaiation by SD. In this chapter the 

Cahn-Hilliard theory and Flory-Huggins free energy is introduced. Equations for 

the concentration dependence of mobility and the energy gradient coefficient are 

also presented.

Chapter 4; This chapter presents the model development and the method o f 

solution. The model is derived in one dimension and in two dimensions. Initial 

and boundary conditions are presented for solving the model.

Chapter 5 : This chapter presents the one-dimensional results for the single quench 

TIPS method. A critical and an off-critical quench case aie evaluated. There aie 

thiee quench temperatures and three different diffusion coefficients examined. 

The numerical work is validated through other published experimental and 

numerical work by standard analysis methods for phase separation by SD.

Chapter 6: This chapter presents the numerical results in one-dimension for two- 

step quenching. An initial critical and initial off-critical quench are studied. Two 

quench depths are examined to observe the effects on morphology. The same 

three different diffusion coefficients are used as in the single quench case to
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obsei"ve the effect of driving force on double phase separation. The numerical 

work is then compared with published experimental and numerical work.

Chapter 7; This chapter presents the numerical results in two dimensions where 

concentration profiles for single and double quenching are discussed. Two cases 

are examined, a critical and an off-critical case. Two quench depths are used to 

observe the change in the pattern development. This work is validated with 

published experimental and numerical work.

Chapter 8: This chapter details the possibility of extending this model developed 

for studying phase separation in polymer blends to food biopolymer blends. It 

includes recent literature on the evidence that phase separation in food 

biopolymers may follow the same mechanism as in polymer blends. Some 

suggestions are given in seaich of the literature that might be useful in 

detennining the parameters necessary for inputting into the program.

Chapter 9; This chapter concludes all the findings from the numerical results in 

one and two dimensions on single and double quenching.

15





Chapter 2: Literature Review

Chapter 2
Literature Review

The importance of phase separation and its application in many industries is 

introduced in this section. Being able to control the morphology of the phase 

separating material is a critical factor in optimizing the performance of these 

materials and therefore, studying the kinetics o f phase separation (experimentally 

and theoretically) is a vital part of the design process. This section summarizes 

the research that has been conducted to study phase separation by SD under the 

TIPS method for polymer blends. The fust section introduces earlier studies on a 

single temperature jump process. The second section describes a commonly 

obsei'ved phenomenon in experimental investigations of phase sepaiation, the 

secondary phase separated stiucture. The process used to develop this type of 

structure is what is called double quenching [Tanaka, 1993] or the two-step TIPS 

process [Hashimoto et a l,  2000]. Both numerical and experimental work has 

been used to investigate this phenomenon to better understand the morphological 

development in phase separation.
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2.1 Single Quench TIPS Studies on Polymer Systems

The interest in studying phase separation by SD is not only due to the large 

number o f applications it has in industi"y but also in helping to further understand 

the non-equilibrium thermodynamics o f phase separating mixtures [Hashimoto et 

a i ,  1986; Ohnaga and Inoue, 1989; Hashimoto et al., 2000]. The simplest 

method o f producing phase-separated microstmctures is by single quench TIPS 

and is used to experimentally study phase separation phenomena in polymer 

systems. From the single quench condition, the possible moiphologies and the 

control o f theii' formation are well understood with the vast amount o f both 

experimental and numerical work that has been published. Therefore, this section 

highlights the most important findings for chaiacterizing phase separation by SD 

in both experimental and numerical work.

O f particular importance to the experimental study of phase separation by SD is 

the work of Hashimoto et al. [Hashimoto et a i ,  1983; Izumitani et al., 1985; 

Izumitani and Hashimoto, 1985; Hashimoto et al., 1986a; Hashimoto et a i ,  

1986b; Inaba et al., 1986; Jinnai et al., 1986; Shibayama et al., 1986; Takenaka et 

al., 1987; Izumitani et a i ,  1990; Takenaka et al., 1990; Hashimoto et a i ,  1991; 

Jinnai et al., 1991; Takenaka et al, 1992; Hashimoto, 1993; Takenaka and 

Hashimoto, 1994; Hashimoto et al., 1994; Ribbe and Hashimoto, 1997; Yamada 

et al., 1988; Takeno and Hashimoto, 1998; Vaidya et al, 2001] who used light 

scattering techniques to characterize the evolution of phase separation by SD for 

various polymer blends. In their work on a mixture o f SBR/PB [Izumitani et al..
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1985], they were able to do an in-depth analysis on the kinetics of phase 

separation in the very early stages o f SD because of the slow rate of phase 

separ ation o f this mixture. They showed that the early stages of phase sépar ation 

by SD can be described by the linear ized Cahn-Hilliaid theory [Cahn, 1965] and 

the growth of the maximum scattering intensity in the early stages is exponential. 

They also showed the limit of the early stages before nonlinear growth patterns 

were observed. Following the study on of SBR/PB, they were able to char acterize 

the different stages of phase separation by SD into an early, intermediate and late 

stage [Hashimoto et al., 1986a] for a mixture of PS/PVME. It has been argued 

that the stages can be furlher broken down [Strobl, 1985], however, the three 

stages are most commonly presented in the literature (see Figure 1.4) and are 

representative o f the evolution of SD for polymer blends. In fiulher studies, after 

characterizing the three stages, attention was paid to individual stages for various 

mixtures. In the early stages of phase séparation by SD, for a mixture of 

PS/PVME under critical quench conditions, they were able to show that the 

linearized Cahn theory [Cahn, 1965] well predicted the early stages o f phase 

separation [Hashimoto et al., 1986a]. A number of other studies they conducted 

also show that the linearized Cahn-Hilliar d theory holds for the early stages o f SD 

for polymer blends [Hashimoto et al., 1983; Hashimoto et al., 1986b; Izumitani et 

al., 1990; Takenaka and Hashimoto, 1994]. A later study on the early stages of 

SD and the effects o f molecular weight distribution was examined [Takenaka and 

Hashimoto, 1994]. They found that the linear- Cahn-Hilliard theory also 

reasonably described the early stages of SD. The intermediate stage of phase
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separation by SD has been discussed both in the early stage and late stage 

publications [Hashimoto et al., 1986a; Hashimoto et a i,  1986b; Takenaka et al., 

1990; Hashimoto, 1993]. Remarks have been made on the composition 

fluctuations in the intermediate stage as well as the growth of the scaled structure 

factor. In the intermediate stages, the wavelength and the amplitude of the 

composition fluctuations continue to grow and are indicated by the new scaling 

relations introduced for wave number and intensity [Hashimoto et a i ,  1986b]. 

The morphology developed in the intermediate stage upon phase separation by 

SD can be described by the scaled structure factor. The scaled structure factor 

was found to increase with time and is not universal [Takenaka et al., 1990]. This 

indicates that phase separ ation has not reached thermodynamic equilibrium. In the 

study o f  the late stages o f phase separation by SD, the following results were 

obtained for understanding the growth patterns [Hashimoto et a i,  1986b; 

Izumitani et al., 1990; Takenaka et al, 1990; Jinnai et a i, 1991; Hashimoto et a i,  

1994]. They introduced reduced variables for the analysis o f the late stages o f 

SD, and found scaling laws to fit the late stages of SD. These scaling laws for the 

reduced wave number and reduced scattering intensity fall onto a master curve 

when plotted against reduced time at different quench conditions indicating that 

the late stage coar sening of SD is the same regardless of temperature [Hashimoto 

et al., 1986b]. The morphology developed upon phase separation by SD was 

described by the scaled structrrre factor for late stages. For a mixture o f 

PS/PVME under critical quench conditions, Hashimoto et al. [Hashimoto et al., 

1986a; Takenaka et al, 1992; Takenaka et al., 1990], were able to show that the
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scaled stiucture factor follows relatively well with the tlieory of late stage 

dynamics in metal alloys, small moleculai' liquids and glasses [Hashimoto et al., 

1986a]. Like the scaling laws for reduced scattering intensity, the scaled stiucture 

factor also falls onto a master cuiwe indicating that the growth of the pattern in the 

late stages grow with dynamical self-similaiity. Hashimoto et al. [Takenaka et 

al., 1987; Jmnai et al., 1993] also examined different parameters associated with 

SD, for instance, the temperature dependence of the Onsager kinetic coefficient. 

The Onsager coefficient is an important paiameter that describes the mobility of 

the blend. The reason for studying the temperature dependence of the Onsager 

coefficient was to validate the theoretical work by Pincus [1981] and Binder 

[1983] and the results were within reasonable agreement [Jinnai et a i,  1993].

Other experimental work that has been conducted in studying phase sepaiation by 

SD using the TIPS method [Celles and Frank, 1983; Okada and Han, 1986; Strobl 

et ah, 1986; Schwahn et a i, 1987; Bates and Wiltzius, 1989; Kyu and Saldanha, 

1998; Wiltzius et ah, 1988; Lee and Kyu, 1990; Schwahn et a i ,  1990; Kyu and 

Lim, 1991; Gorga et al., 2002]. The analysis of these mixtures also follows 

closely to the observations that were made by Hashimoto et al. except for the 

work o f Wiltzius et al. [1988] who observe a different scaling pattern for the late 

stages o f phase separation by SD in that the evolution of the scaled structure 

factor does not fall onto a master curve as was observed for Hashimoto s work.

In terms o f numerical work, there have been a number o f publications on 

modeling and computer simulation of phase separation by SD for binary polymer 

blends. The nonlinear Cahn-Hilliard (C-H) equation and the Flory-Huggins-de
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Gennes (F-H-de Geimes) free energy density are used in the model development 

to describe the dynamics o f phase separation by SD. The parameters contained 

within the C-H and F-H-de Gennes equations, mobility (containing the transport 

information of the individual polymers) and the energy gradient coefficient 

(accounting for the resistance to the phase separation process due to the 

development of interfaces to tiy and restore the system to its lowest energy level) 

have been assumed to be a function of composition [Zhang et al., 1995; 

Chakrabarti et a i ,  1990; Glotzer, 1995; Kontis and Muthukumar, 1992; 

Castellano and Glotzer, 1995; Aiiyapadi and Nauman, 1991; Castellano and 

Corberi, 2000]. Constant mobility has been used for simplicity by various authors 

in studying the dynamics of phase separation for polymer blends [Brown and 

Chakrabarti, 1993a; Ohnaga et a l, 1989; Brown and Chakiabaiti, 1993b; Roth et 

al., 2002; Chakiabarti et al., 1989]. Other more complex studies carried out using 

the nonlinear C-H and F-H-de Gennes free energy have been used to model a 

ternary polymer blend undergoing phase separation by SD in two-dimensions to 

observe pattern formation [Nauman and Qiwei, 1994] and SD in poly dispersed 

polymer mixtures [Takenaka et al., 1993].

Analysis from the numerical work has focused on a variety of different aspects. 

A common investigation is in the evolution of the concentration profiles in one- 

dimension [Ohnaga et a l,  1989; Nauman and Qiwei, 2001; Castellano and 

Glotzer, 1995] to further understand the mechanism of phase separation by SD. 

In observing pattern formation, a two-dimensional model is used where a critical 

quench produces an interconnected structure and an off critical quench produces a
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droplet type stiucture [Matsuoka and Yamamoto, 1995; C astellano and Glotzer, 

1995; Brown and Chakrabarti, 1993b; Castellano and Corberi, 2000; Nauman and 

Qiwei, 2001; Ariyapadi and Nauman, 1991]. There has also been modelling in 

three dimensions to investigate phase separation [Chakrabaili et al., 1989]. 

Analysis o f the stmcture obtained has been performed by evaluating the evolution 

o f the structure factor for critical [Chaki'abaili et al., 1990; Brown and 

Chakrabarti, 1993b; Kontis and Muthukumar, 1992; Zhang et al., 1995] and off 

critical quenches [Kontis and Muthukumai', 1992;, Zhang et al., 1995; Brown and 

Chakrabarti, 1993b]. Finally, investigating the pinning of phase separated 

structures has also been an area of interest for studying polymer blends 

[Castellano and Corberi, 2000; Castellano and Glotzer, 1995]. The analysis ties 

in very well with the experimentally observed chai acteristics of phase separation 

by SD. For instance, the one-dimensional model [Ohnaga et al., 1989] has shown 

the evolution of the phase sepai ation by SD according to the three stages describe 

by Hashimoto eta l. [Hashimoto et a i,  1986a]. In investigating the growth of the 

initial composition fluctuations in the early stages of SD, a single maximum wave 

number was observed and the evolution of the stmcture factor grow exponentially 

with time [Chakrabarti et a l,  1990]. This exponential growth in the stmctuie 

factor is also consistent with experimental investigations on the evolution o f the 

light scattering data [Okada and Han, 1986]. Also, in terms of the evolution of 

pattern formation for the critical and off critical quench, the numerical two- 

dimensional results show the interconnected stmcture for the off critical quench
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and the droplet type structure for the off critical quench case which have been 

observed in experiment [Hashimoto, 1993].

2.2 Two -  Step TIPS Studies in Polymer Systems

The drive for possibly obtaining more diverse moiphologies to be used has 

prompted new techniques to produced phase sepai ated materials. For instance, the 

introduction of a temperature gradient [Okinaka and Tran-Cong, 1995] and the 

introduction a concentration gradient [Lacasta et al., 1994] to develop new 

morphologies that are anisotropic in nature have found applications in holograms 

and pharmaceutical products. There is then motivation to consider double 

[Tanaka, 1993] or two-step phase [Hashimoto et a l,  2000] sepaiation as yet 

another kind of morphology that can perhaps be put to practical use. RefeiTing 

back to Figure 1.6, the method of double quenching and the types o f 

morphologies that have been observed in experiment for a critical quench [Tao et 

a i ,  1995] and an off critical quench [Tanaka, 1993] were shown. In the critical 

and the off-critical quench case the method of double quenching is the same. The 

mixture is quenched to Ti (within the unstable region of the phase diagram) where 

phase sepai ation by SD is allowed to proceed for a certain period of time before it 

is quenched again to the second temperature (the mixture is still within the 

unstable region). Double quenching [Tanaka, 1993] or two-step phase separation 

[Hashimoto et al., 2000] for polymer systems has been studied since the late 

1980s [Cai-mesin et al., 1986; Ohnaga et al., 1989] to 1990s [Yang et a l ,  1998; 

Tanaka and Araki, 1998; Clarke et a l,  1995; Tao et a l,  1995; Chen et a l ,  1994;
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Tanaka, 1994; Tanaka, 1993; Kwak et al., 1993; Ohnaga et al., 1994]. The 

majoiity o f these studies are focused on secondary stmctures experimentally with 

little theoretical explanation of the obsen ations. Some numerical work has been 

done in one-dimension to explore the effects of a double quench [Ohnaga et al., 

1989] and even continuous quenching [Ohnaga et al., 1994] on the concentration 

profiles but again, there was no in-depth analysis based on the fundamentals o f 

phase separation by SD. A 2-dimensional numerical study has been performed on 

fluid mixtures by Tanaka and Aiaki [Tanaka and Araki, 1998] but the model 

development and the finding do not pertain to polymer mixtures. More recently, 

double quenching was revisited experimentally by Hashimoto et al. [Hashimoto et 

al., 2000; Hay as hi et a i ,  2000a; Hay as hi et al., 2000b] who examined at a 

fundamental level, what was occurring under the quench conditions.

Furthermore, in industrial processing, heating and cooling are involved in a 

continuous sense and therefore, the simpler two-step quenching can provide a 

stepping stone for understanding more complex real systems [Carmesin et. al,

1986]. It is also worth mentioning that this type o f secondary structure has also 

been observed in polymer solutions (binaiy and ternary) [Tanaka, 1993; 

Yamamura et a i ,  2002; Graca et a i,  2002] and biopolymer mixtures related to 

food studies [Norton and Frith, 2001]. Therefore, an in-depth analysis o f 

secondai-y phase separation in polymer blends can also provide useful information 

for explaining the same phenomena that occurs in other systems. Future work, as 

suggested by Hashimoto et al. [Hayashi et a i ,  2000b], would be to revisit 

mathematical modeling and computer simulation o f double phase separation to
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see whether their experimental observations and in depth analysis of secondary 

phase separation also prevail in the modeling. A recent publication by Henderson 

and Clarke [2004] followed the method of Hashimoto et al. very closely [Hayashi 

et a l ,  2000b] to model double phase separation for polymer blends. Their 

numerical results on the investigation of double quenching at an initial critical 

composition were in agreement with the work of Hashimoto. Some important 

questions about the foimation of secondary stmctui'es are how it develops, when it 

develops and what effects it has on the final product formed. To answer some o f 

these questions, a summary of some of the key works in the literature on the study 

of double quenching and the formation of secondary structures is provided in 

chi'onological order. Ohnaga and Inoue [1989] perfoimed the first numerical 

study of double quenching and them study aimed at providing a framework for 

designing materials (polymers) that required continuous thermal treatment. They 

studied polymer mixtures of polystyrene/'poly(vinyl methyl ether) and 

polybutadiene/poly(styi ene co-butadiene) undergoing a double quench by 

mathematical modeling using the nonlinear C-H equation and computer 

simulations. The numerical results were presented in one-dimension for the 

polymer mixtures, one exhibiting a lower critical solution temperature (LCST) 

(polystyrene/polyCvinyl methyl ether)) and the other an UCST 

(polybutadiene/poly(styrene co-butadiene)) for an off-critical quench. Their 

investigation was split into two sections. First, the concentration fluctuations for 

an isothermal quench from the one-phase to the two-phase region were examined. 

They showed that their model o f the time evolution of the concentration
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fluctuations was consistent with the obseiA ed characteristics of piiase sepaiation 

by SD for the early to late stages [Hashimoto, 1993], The second test was for a 

double quench where the first quench was allowed to progress for a ceitain period 

o f time in the two-phase region before the second quench took place. They 

investigated the effects o f a shallower and deeper quench and concluded fi'om 

their simulations that when the second quench depth, A73 is less than half o f the

first quench depth, y  A7[, the concentration fluctuations decay from the original

concentration fluctuations o f AT]. When AT3 is between AT] and ^  AT], there

is an initial decay in the concentration fluctuations for a short period of time 

before it gradually grows and when A73 is greater than AT] , the concentration 

fluctuations originally from the first quench appear to show additional smaller 

waves (crests) forming in between the troughs. They also found that the smaller 

waves occuired only when the initial concentration fluctuations were well 

developed. Ohnaga and Inoue [ 1989] were able to deteimine the effects of deeper 

and shallower quenches for a polymer blend through observations o f the 

concentration profiles and the effects of quenching at an earlier time or later time 

to see the effects on the phase sepaiation process.

Experimental work is necessary to deteimine whether observations from 

simulation hold true for polymer systems as there are still many uncertainties in 

understanding double phase sepai ation. In terms of equilibrium thermodynamics, 

experimental work helps to answer many questions. For example, what changes 

are occurring when double phase separation is observed or when the growths o f
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the amplitude of the concentration fluctuations are just magnified, is there any 

relationship that can be made between the growth rates of the initial wavelengths 

and the secondary wavelengths, how is the development o f the initial wavelength 

affected by the rising of the second wavelengths, and how significant a value for 

the second wavelength is required before there is a significant change in the 

pattern formation (i.e. secondary stmcture forming within already initial phase 

separating stmcture)? Some of these questions were qualitatively answered 

though the experimental investigations o f forming secondary stmctures using both 

polymer blends and solutions in the work by Tanaka. [1993]. Tanaka 

experimentally studied a mixture of polystyrene (PS) /poly (vinyl methyl ether) 

(PVME) and PVME/water undergoing a double quench to examine the evolution 

of the morphology using phase-contrast microscopy. The composition used in 

this study for PS-PVME was 50-50 wt% mixture, and that for PVEM-water was 

5-95 wt% mixture. For both systems, a two-step quench was initiated and the 

formation of the droplet type secondary stmctures was observed. Three trials 

perfonned on the PS-PVME mixture to observe what occurs at different quench 

depths. Figure 2.1 shows a schematic representation of the quench sequence used 

in Tanaka’s work. The first case was from point I to point B (first temperature 

jump) and then horn point B to point C (second temperature jump). The second 

case the PS-PVME mixture was subjected to a shallower quench at A and then a 

deep quench into the unstable region to observe the pattern formation (point I to 

point A and then point C). Finally, the third trial was reversed from a deeper
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quench to a shallower quench from point I to point C (first temperature jump) and 

then point C to point B (second temperature jump).

In the first case (I to B to C), double phase separation was observed and small 

domains appeared within the large domains that were continuously phase 

separating. After the second temperature jump to T2 , the secondary droplets 

appeared after a certain period of time. The small droplets eventually disappeared 

as they combined and diffused towards the interface of the large domains. In the 

second case, for the same mixture at the same composition, there was a change in 

the initial temperature to a higher initial value and then quenched to T2 (I to A to 

C). The resulting morphology observed was very different from the first case. 

Double phase separation was observed at a much earlier time, almost immediately 

after the second jump. Rather than the large droplets observed in case one, the 

phase separated structure appeared like long round rods shifting in position before 

it became o f droplet type at a later time. The last case o f a deep quench to a 

shallow quench (I to C to B) showed laige droplets in the initial quench and after 

the second quench interface instability was observed because of the diffusion o f 

PVME through the interface towards the exterior o f the droplets causing the 

interface to deform. One trial was perfoimed for the polymer solution 

PVM E/water and double phase separation was obsei'ved much more readily as the 

diffusion process is much more rapid. Form these experimental observations, 

Tanaka concluded that in all cases, the variables that affect secondary phase 

formation are the initial and final quench temperatures (ATy and AT;) and the time 

taken before the first phase separation process to occur before making the second
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Composition
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Double Quench 

Process
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T

Figure 2.1: A temperature versus composition phase diagrams for a binary 
mixture o f PS-PVME showing the different test conditions in the double-quench 
experiment. The first test performed was from point I to point B (first temperature 
jump) and then from point B to point C (second temperature jump). The second 
test was from point I to point A and then point C. The third trial was a reversed 
from a deeper quench to a shallower quench from point I to C point (first 
temperature jump) then point C to point B (second temperature jump). [Adapted 
from Tanaka, 1993]

temperature jump. A schematic of a phase diagram was constructed by Tanaka to 

qualitatively explain the possible mechanisms that may be occurring to form 

secondary structures. Figure 2.4 shows the same asymmetric phase diagram with 

the possible mechanisms proposed by Tanaka excluding the reverse case from a 

deeper to a shallower quench [Adapted from Tanaka, 1993]. The location of the 

initial starting point for the second quench has a large impact on the possible 

formation o f the secondary phase separated regions. In his qualitative analysis, he 

points out that the growth o f the secondary structures may be a result o f NG for
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both phases, SD for both phases or a combination of NG for one phase and SD for 

the other.

More experimental work was performed on different polymer mixtures to obseiwe 

pattern formation by Kwak et al. [1993]. They experimentally investigated the 

emerging moiphology during a two-step phase separation process for a mixture of 

polystyi-ene/poly(2-chlorostyiene)/n-butyl phthalate blend exhibiting a LCST 

using an initial off critical composition for the temperature jump. Like Tanaka

[1993], Kwak et al. examined the effect of increasing the driving force on phase 

separation. An scarming electron microscope and light scattering apparatus was 

used to captme images and data of double phase separation and hom  the time 

evolution of then images, they were able to observe the same characteristics as 

Tanaka did for the PS-PVME mixture [Tanaka, 1993]. After the second jump, 

small domains started to appear and grew within the already existing domains 

until the small domains eventually stopped growing and gradually decreased in 

number. Finally, the small domains disappeared and only the large domains 

continued to grow. Light scattering (which has not yet been used as a method of 

analysis for double phase separation) was used to determine the change in the

characteristic length (defmed as T -  — ) before and after the second temperature
q

jump. T is the wavelength or the chaiacteristic length and q is the scattering 

vector. A plot o f the growth rate of the characteristic length with time before and 

after the second quench showed that the characteristic length o f the large 

domains, after the second quench, continued to grow but at a substantially slower 

rate than for a single quench. This piece of information provides a deeper insight
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into how the growth of the primary phase separating domains is affected by the 

second quench and by the formation of the secondary domains. An attempt was 

made by Kwak et al. [1993] to fonnulate an empirical expression to describe the 

change in the domain size upon making the second temperature jump. Their 

expression was only good for the early period of the second jump.

Following previous work by Ohnaga and Inoue [1989] on modeling and computer 

simulation of phase separ ation at different quench depths, Ohnaga et al. [1994] 

used the same ideas to study reaction induced phase sepai'ation in 

monomer/polymer mixtures, in this case, poly(ether sulfone) (PES)/ diglycidyl 

ether of bisphenol A (epoxy), by mathematical modeling and computer simulation 

in one-dimension under continuous quench conditions. A shift o f the phase 

diagram as the molecular weight of the epoxy increased thrusted the system into 

the unstable region of the phase diagram. This continuous quenching process was 

used to mimic the changes that occurred upon the shift of the phase diagram, 

towards higher critical solution temperatures, resulting in the mixture moving 

deeper and deeper into the unstable region. This study provided an analysis o f  the 

evolution of the concentration profiles upon a continuous change in temperature. 

The nonlinear C-H equation was used to describe the effects of polymerization- 

induced phase separation by SD. The interest in that research was to deteirnine 

whether reaction-induced phase separation follows the structure formation o f  the 

single quench case by SD. The system was allowed to phase separate 

isothermally for a period o f time before an additional quench was made and this 

was continuous for about four to five successive quenches deeper into the
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unstable region (given by /?). This profile refiects the observations made by 

Tanaka [1993] and Kwak et a/. [1993] where the secondary structures were 

observed almost instantly after the second quench. Ohnaga et a i  [1994] proposed 

a diagram o f the constructive and destructive interference that may be occurring 

between the initial development of the concentration profile with that in the 

second quench to explain the formation of the concentration profile observed. 

The following schematic is a reconstruction of the one shown by Ohnaga et a i

[1994];

Concentration profile at temperature

/ \

\ I  V I  \  I '
\ /  \ /  \ /

A A A A A A Combined concentration profile
V  V V V  V V o f T, and Tj

Concentration profile at temperature 7 j

F igure 2.2: Schematics o f the constructive and destructive interferences that may 
be occurring between the initial development of the concentration profile at T) 
and that in the second quench at T?. [Adapted from Ohnaga et a i,  1994]
Further evidence of double phase separation, after the one-dimensional

simulations by Ohnaga et a!. [1994], was presented by Clarke et a!. [1995] who

studied the phase behaviour of linear/branched polymer blends using the Flory-

Huggins (F-H) free energy expression. They presented experimental evidence of

double phase separation of an epoxy/polysulfone blend where the interconnected

structure was formed by primary phase separation and droplet type structures

formed from secondary phase separation, using scanning electron microscopy.
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Although they were able to induce secondary phase separating structui'es, they 

were only able to give qualitative reasons for the appeai ance of these structures. 

They surmised that the secondaiy domains may be due to the location of the 

system in the phase diagram (i.e. in the meta-stable region before it proceeds into 

the unstable region such that nucléation and growth takes place first before 

spinodal decomposition) or that cross-linking occurs in the coexisting phases 

during the phase separation process leading to further instability within the 

coexisting phases (secondary phase separation).

Tao et al. [1995] studied two-step phase separation for a mixture o f 

polystyi'ene/poly(2-cholorostyrene) having a LCST phase diagram using light 

scattering and scanning electron microscopy. Theii' images of double phase 

separation were similai' to those presented by [Clai'ke et al., 1995] with the 

intercormected structure from primary phase separation and droplet type 

morphology fi'om secondary phase separation. The purpose of their study of the 

two-step process was to give a basis for understanding more complex behaviour 

under continuous quench conditions that are often found in industrial processing. 

Like Tanaka [1993] and Kwak et al., [1993], they experimentally observed the 

effect of increasing the thermodynamic dr iving force on phase separation with the 

two-step method. However, a new focus in their paper was on the evolution of 

the emerging morphology after the second jump while making the second jump at 

the intermediate stages o f phase separation. Something to note is that their system 

was not strictly binary in that they added di-n-butyl phthalate (DBF) to the 

mixture to extend the experimental temperature range in studying phase
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sepaiation. Theii analysis looked at the growth of the characteristic length of the 

primat y intei connected structure during the first temperature juinp and after the 

second temperature jump. To investigate this, the characteristic length was 

calculated using the light scattering data fiom the secondary quench. They 

noticed that the growth of the chaiacteristic length increased for the primaiy 

interconnected stmcture when secondaiy droplets appeared. This observation is 

consistent with the initial work of Kwak et al. [1993]. They then altered the 

initial quench depth while keeping the second quench temperature constant to 

observe effects on the characteristic length, and found that droplets observed 

within the interconnected stmcture decreased when increasing the initial 

temperature. In terms o f the characteristic length, they saw no obvious changes in 

the growth rate o f the primaiy stmctures. An empirical scaling law was 

developed for deteimining the evolution of the characteristic length by the 

addition o f a term accounting for the difference in time from the initial 

temperatme jump to the second jump. But that expression was not derived fiom 

basic principles [Hashimoto et a i, 2000], and was only good up to the end o f the 

early stages before it diverged when comparing with the data they obtained.

Yang et al. [1998] looked at a mixture of diallyl phthalate (DAP)/poly (2,6- 

dknethyl-1,4-phynylene ether) (PPE) having an UCST phase diagram. The focus 

o f their work was on the morphology developed during curing using light 

scattering, Fourier transform infrared spectroscopy, and transmission electron 

microscopy for polymerization induced phase separation, where by they found 

secondary phase separation in the final stmcture. They showed that the primary
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and secondary structure were o f the droplet type, and proposed a possible 

explanation for this phenomenon. Figure 2.3 shows the evolution of the 

concentration profile for the secondary structure formation they proposed. This 

development of the concentration profile is similar to the ones observed by 

Ohnaga and Inoue [1989] in the one-dimensional numerical results o f double 

quenching. However, the amount of interference to the initial concentration 

profile from the secondary temperature jump was not as dramatic as shown here 

in the figure. Also, the system under study by Ohnaga and Inoue [1989] was not 

reaction-induced phase sépar ation.

Up to this point, most of the work done on double phase separation has been 

based on the formation of secondary stmctures and image analysis. There has 

been very little work or in-depth quantitative analysis o f the mechanism o f double 

phase separation in the literature [Hayashi et al., 2000a]. The first in a series o f 

papers written by Hashimoto et al. [2000; Hayashi et a i,  2000a and 2000b] have 

recently revisited the two-step phase separation phenomena to further understand, 

on a quantitative level based on light scattering data, the morphological 

development o f secondaiy phase separated regions within a polymer blend o f  

deuterated polybutadiene (DPB), and protonated polyiosprene (HPI) having an 

initial composition close to the critical composition for the initial quench. The 

polymers used in this study have very similar properties (i.e., very narrow 

molecular weight distributions, near ly symmetrical in terms of density, statistical 

segment length, monomeric friction coefficient and glass transition temperature). 

The system has a LCST phase diagram and the mixture was subjected to a critical
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Secondary Phase Separated Droplet Formation by SD for an Off-Critical Quench

c0

1
§

U

Distance %

Figure 2.3: A proposed 1-D concentration profile showing the evolution o f the 
concentration fluctuations for an off critical quench under a single quench (dashed 
lines) and a double quench (solid line). The introduction of multiple little peaks 
and troughs upon the second quench represents the formation o f secondary 
structures. The picture above the concentration profile illustrates a 2-D picture of 
the resulting morphology from this concentration profile. [Adapted from Yang et 
a l ,  1998].

quench. A number o f concerns were posed in trying to gain a better 

understanding of the mechanism for secondai'y structure formation within an 

already phase separated regime. In the attempt to answer these questions, 

Hashimoto et a l  [2000] have been able to fill in the gaps between what has been 

experimentally observed and how the process can be explained at a fundamental 

level. Their concerns were:

•  To determine whether there were scaling laws that could be used as a 

tool to predict the change from the initial structure (first quench) to the 

final structure at the second quench.
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•  If the formation o f secondary stmctures may be limited to a certain 

conditions (a critical time i.e. the early, intermediate and late stage of 

development)

•  To be able to describe, quantitatively, the evolution of the growth of 

both primary and secondary structures as described in previous studies

• To determine the theories that best describe the double quenching 

process (i.e. Is the C-H nonlinear equation applicable for double 

quenching?)

The procedure taken after the first temperature jump was to allow the system to 

phase separate until the equilibrium compositions of the two phases were reached 

before the second quench was made. The second quench was still within the 

unstable region of the phase diagram and therefore phase separation would be 

characterized by SD. From a set of experiments the size of the initial structure 

was varied before making the second quench and the light scattering profiles 

described the evolution of pattern formation for double quenching distinguishing 

three regimes [Hashimoto et al., 2000]. The three stages aie as follows, first, after 

the second temperature jump, there was a broad peak (secondary peak) that forms 

and grows with time. Second, this broad peak increased in intensity with time and 

third, the peak eventually decreased at longer times but the original peak intensity, 

from the first quench, continued to grow. The data was then used to develop new 

scaling laws to describe the spatial and temporal changes that occur in double 

quenching. An interesting result from the new scaling laws showed that after the 

second quench, the initial structure was relaxed and transformed into a new
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stm ctuie and grew according to the scaling laws of a single quench into the 

unstable legion by SD at the second temperature. The next paper written by 

Hayashi et al. [2000a], tackles the other questions regarding the evolution o f the 

stmcture of the primaiy and secondai-y domains by examining the evolution o f the 

stmcture factor. The same two-step quench process, and the same mixture of 

deuterated polybutadiene (DPB) and protonated polyiosprene (HPI) was 

investigated. They examined the effect of the initial domain size on the formation 

of secondai'y stmctures and found that at early stages of the initial quench where 

the initial domain size is not too large, secondaiy structures do not occur and the 

initial structures continued to grow after the second temperature jump. With 

larger domain sizes for the initial stmcture, secondaiy stmctures were observed. 

From their light scattering data used to evaluate the evolution of the stmcture 

factor, they found that initial domain size played a major role in the development 

o f secondary stmctures. Also, they were able to characterize the development 

into three stages like in the single quench case [Hayashi et a i,  2000a]. In stage 

one, the secondary structures formed and grew inside the primaiy stmctures. The 

growth of the secondary stmctures was similar to that of the eai'ly stage in a single 

quench case at the second temperature jump and was very evident. Also, the peak 

intensity o f the primary stmctures grew alongside the secondary ones. In stage 

two, both the primaiy and secondary stmctuies grew together at relative rates to 

each other and the secondary stmctures are still present in the initial stmctures. 

Finally, in stage three the secondary stmctures start to disappear and the time 

evolution o f growth of the stmctures approach the single quench values in the late
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j

stage at the second temperature. The results suggest that the growth of the 

secondary structures was affected by the size o f the initial stmctures as was 

mentioned in then first paper [Hashimoto et a i ,  2000]. Evaluation of the 

structure factor then answers the questions they pose on the development of the 

secondary stmcture within the primaiy stmcture being nonlinear in nature. The 

final paper was written to investigate the validity o f lineai'ized C-H theory for the 

early stage SD after the second temperature jump on the development the 

secondary stmctures [Hayashi et al., 2000b]. For the same mixture studied in 

their previous two papers and applying the same methods [Hashimoto et al., 2001; 

Hayashi et al., 2000a] they found that the linear theoiy for the single quench SD 

process holds for the eai'ly stages in the formation of the secondary stmctuies at 

the second jump. In this work, Hayashi et al. [2000b] also discussed the concept 

of confinement effect on the early stages of phase separation by SD noting that it 

has not been addiessed by Kwak et al. [1993], Tanaka [1993], nor Tao et al.

[1995] in theft experimental work of double phase separation. They introduce the 

concept o f a ft ee-SD process and confmed-SD process [Hayashi et al., ’2000b]. 

They define confmed-SD as the development of secondary stmctures in the 

primary stmctures where the primai y structure acts as a new medium in which the 

secondai'y phase sepai ation takes place and ft ee-SD is the typical SD of a regular 

single quench process. Another idea that was presented was the concept o f 

“superposed SD” [Hayashi et a i,  2000b]. This superposed SD is the result of 

taking the individual composition just before the second temperature jump and 

quenching them to the second temperature as if  they were single quenches. The
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result of supeiposed SD would then be a combination of the two individual cases 

o f bee SD to describe the double quenching process of confined SID because in 

theoiy, the process may be a linear combination of the individual quenches at the 

early stages o f SD. Early stages of SD on the evolution o f the composition 

fluctuations do not affect the chai acteristic wave number o f the dominant mode of 

the concentration fluctuations and affect only the values of the diffusion 

coefficients. They argue that on a qualitative level, these values are reasonable 

with then assumptions stated eaidier about the early stages for the confined and 

bee  SD. Comparing confmed-SD with superposed-SD they found major 

differences in the values for the diffusion coefficients. The values of the diffusion 

coefficient in the confmed-SD were roughly half that of the supeiposed-SD 

process. This leads them to believe that the differences in the diffusion 

coefficients stems from the idea of the confinement effect that the large domains 

have on the growth of the small domains. Therefore, from their analysis o f light 

scattering data for the confmed-SD, free-SD and supeiposed-SD, they conclude 

that small domains are not spatially affected (the scattering vector remained 

relatively constant) provided there was enough space for them to be generated. 

Growth rate o f the composition fluctuations o f the secondary structures was be 

coupled with the growth of the interface of the large domains (at a certain 

characteristic length) and therefore, slowed down compared to its growth rate in a 

free SD process. Upon analysis using the linear C-H theoiy, they found that the 

effect o f space confinement in the SD process. This reasoning was used to explain
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the discrepancies in the mutual diffusion coefficient for the confined and the 

superposed SD process.

An important final note made in the paper by Hayashi et al. [2000b] was the 

limitations o f the time resolved light scattering apparatus in observing the effects 

of using smaller domains sizes immediately before the second-step phase 

separation. To do this, they proposed the use o f time resolved neutron scatteiing 

[Hayashi et al., 2000b]. In this respect, modeling and computer simulation would 

be of a powerful means of studying the effects of having small domains sizes 

developed in the early stages of SD under a single quench before a second quench 

is made and observing the effects on structure development.

Recently, a publication by Henderson and Claike [2004] followed the method 

presented by Hashimoto et al. [2000] to model double phase separation for 

polymer blends. They examined a critical mixture and the second temperature 

jump was made at the late stages of phase separation by SD. Then model 

consisted of the nonlinear C-H equation and the F-H-de Gennes free energy 

expression. The mobility was assumed to be constant. They examined pattern 

formation for a critical quench in 2-D, the growth of the structure factor and the 

effect o f quench depth on the formation of secondary structures. What they 

observed was similar to the experimental work of Hashimoto [2000; Hayashi et 

a l ,  2000a and 2000b], however, their work was on the early stages o f phase 

separation by SD showed discrepancies in the calculation of amplification factor 

and maximum wave number.

- 41 -



Chapter 3: Theoretical Background

Chapter 3

Theoretical Background

This section presents the necessai'y theory in describing phase separation o f 

polymer blends. The nature of phase separation in a two-component system 

involves changes in energy, namely, Gibbs free energy. This chapter begins with 

thermodynamics where the process of phase separation from an initially 

homogeneous mixture is examined. It involves discussing mixing behaviour and 

the construction o f the phase diagram using the Flory-Huggins (F-H) theory. 

Subsequently, the nonlinear Cahn-Hilliard (C-H) theory is presented which is 

used to describe the dynamics of phase sepaiation by SD. In eaily studies o f 

metal alloys using the C-H theory, the mobility and the coefficient of the energy 

gradient were assumed to be constant [Langer et al., 1975; Copetti and Elliot, 

1990]. In some polymer studies, the mobility was assumed to be constant and the 

energy gradient coefficient was assumed to be a function of composition [Ohnaga 

et a i ,  1989; Chakrabarti et a i, 1989; Chakrabarti et al., 1990; Brown and 

Chakrabaiti, 1993a; Matsuoka and Yamamoto, 1995, Henderson and Clarke, 

2004]. In other polymer blend studies, the mobility was assumed to be a function 

o f  composition in the form of M{c) = NDc{\~c) where D is the self-diffusion 

coefficient, c is composition, and N  is the degree o f polymerization o f the
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polymer. The energy gradient was also assumed to be a function of composition 

[Ariyapadi and Naum an 1991; Kontis and Muthukumai', 1992; Glotzer, 1995; 

Aksimentiev et al., 2000; Castellano and Glotzer, 1995; Castellano and Corberi, 

2000]. Both mobility and the coefficient of the energy gradient are known to be 

composition dependent for polymer blends. The last section in this chapter will 

then present the development of the expressions for composition dependent 

mobility and gradient energy.

3.1 Thermodynamics of Phase Separation in Polymer 
Blends

The governing equation that describes the thermodynamic stability o f a mixture is 

the change in Gibbs free energy. Under constant temperature and pressure the 

change in Gibbs free energy is defined as;

ZIC?,, (3.1)

where AGm is the Gibbs free energy of mixing, A/iW is the enthalpy o f mixing, T 

is the absolute temperature of mixing and ASm  is the entropy of mixing. Stability 

(i.e. whether or not the system is miscible or immiscible) depends on the value of 

and AAm- When AG^ < 0, a homogeneous solution exists. This means that 

the Gibbs free energy o f the mixture is less than the Gibbs free energy of the sum 

of the pure components. This condition is necessary but not enough to ensure 

stability o f a system [Van Dijk and Wakker, 1997]. To ensure stability, the sign 

o f the second derivative of AĜ  ̂ with respect to the composition must to be 

evaluated. For ideal mixtures it is assumed that A//m= 0, therefore, only ASm is
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left in the fiee eneigy expression. Howe\er, for polymer mixtures, which are 

non-ideal, both the and AiSa/ must be considered.

3.1.1 The Flory-Huggins Theory

The F-H theory can be used to describe the fiee energy o f mixing for a polymer 

mixture. As mentioned earlier, polymer mixtures are non-ideal and therefore, the 

enthalpy o f  mixing cannot be ignored. The fi'ee energy o f mixing for polymer 

blends contains two parts, an entropie contribution and an enthalpic contribution. 

The entropie contribution is associated with the configuration of polymers within 

the mixture and the enthalpic contribution is associated with the interactions 

between different segments, in the mixture. The fi ee energy is determined through 

the assumption of an athermal polymer mixture (i.e. AHm = 0 and ASm is not 

ideal) [Van Dijk and Wakker, 1997]. A lattice model is used to describe the 

possible arrangements that can be obtained for binary polymer mixtures [Cowie, 

1998]. Since polymer chains are long segments, the number o f airangements 

possible is less than that for smaller molecules and therefore, the entropy of 

mixing is much smaller. The lattice model for polymer mixtures is based on 

Boltzm ann's law o f entropy. Boltzmann’s law is:

0 -2 )

where ks is the Boltzmann’s constant and /3 is  the number o f ways that Ni and N2  

segments can be arranged in the lattice [Van Dijk and Wakker, 1997]. After some 

mathematical manipulation the change in entropy due to mixing o f two polymers 

is given by:

- 44 -



Chapter 3: Theoretical Background

(3 3)

c is the volume fraction of polymer 1. This term describes the arrangement o f the 

polymer segments within the mixture and is relatively small for large degree o f 

polymerization. The enthalpy of mixing is given by .

(3.4)

The % parameter is a measure of the effective interactions between polymer 

segments. From this arrangement and through some mathematical manipulation, 

the F-H free energy for a polymer mixture can be described by the following 

equation;

/ ( c )  = ^  ^ l n c + t L ^ l n ( l - c )  + j c ( l - c )  (3,5)
V N 2 J

' ------------ V------------'
Entropie Enthalpic

contribution contribution

where /{c) is the free energy density, x  is the F-H interaction parameter [Flory, 

1953], V is the volume of a segment, and c is the composition of one polymer.

3.1.2 The Phase Diagram for Polymer Blends

Polymer blend phase diagrams can be determined experimentally or constructed 

using the F-H free energy expression. In Figure 3.1, some common phase 

diagrams for binary polymer mixtures are shown [Tanaka, 2000]. Figure 3.1 a) 

has an upper critical solution temperature UCST temperature type phase diagram. 

The UCST is the highest temperature at which first sign of phase separation can

- 4 5 -



Chapter 3: Theoretical Background

be obsei-ved. Figure 3.1 b) shows a lower critical solution temperature (LCST) 

type phase diagram. This point corresponds to the lowest temperature at which 

the first sign o f phase separation occurs. Finally, in Figure 3.1 c), the temperature 

versus composition phase diagram shows a mixture where both the UCST and the 

LCST exist. Graphically, the relationship between the fi'ee energy versus 

composition and temperature versus composition is shown in Figure 3.2. In the 

free energy phase diagram, as the temperature is decreased from 7i to T/, the free 

energy changes. Ti is taken as the example to show how the temperature versus 

composition phase diagram is constructed using the free energy plot. The binodal 

is also known as the equilibrium curve and is constructed through the 

con'esponding points of tangency on the free energy diagram. The condition for 

equilibrium between the two coexisting phases is when the chemical potential of 

component / ,  in one phase (1) is equal to the chemical potential o f  component i 

in the coexisting phase (2). This leads to the condition that the total change in

free energy o f component / is zero - — = ( / r / " - / / / ^ ’) = 0  . The tangent line
ÔC;

labelled / ? '- / ? "gives this condition where the chemical potential o f  the 

coexisting phases is equal. The spinodal curve is constnicted through the use o f

the inflection points ( — j- = 0 ) in the free energy diagram. The second derivative
dc

o f free energy with respect to composition determines the drive for phase

d"F à"F
separation around the inflection ( ^ ^  = 0 ) points where > 0 , stability or

meta-stability are possible and -j- < 0 results in instability for the binary
d&
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Figure 3.1 Typical temperature versus composition phase diagrams for binary 
polymer systems showing a) upper critical solution temperature, b) lower critical 
solution temperature or c) a combination of upper and lower critical solution 
temperature [Adapted from Tanaka, 2000],

mixture. For meta-stability, the second derivative of free energy with respect .to 

composition is greater than zero and if  the composition fluctuations are small, the 

energy barrier will not be crossed and the blend will be restored to its original 

composition. For instability, the second derivative of free energy with respect to 

composition is less than zero and small composition fluctuations are enough to 

create instability. The curvature of the second derivative o f free energy with 

respect to composition (change in sign) can then detail the degree of stability, 

alongside the knowledge of the first derivative of free energy with respect to 

composition, with concave downwards (local maximum) being unstable and 

concave upwards (local minimum) can be meta-stable or stable. At the spinodal 

points, there is no thermodynamic driving force to cause the mixture to phase 

separate or to restore the blend to its original composition upon small fluctuations. 

The spinodal then separates the meta-stable from the unstable region.
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Theoretically, to determine the equilibrium (binodal curve) compositions, the F-H 

free energy is used to find chemical potential of each component in their 

respective phases. Equations (3.6 a) through (3.6 d) are the chemical potentials 

for the two equilibrium phases of components i and 2. At equilibrium, the 

chemical potential is the same everywhere in the two phases o f components 1 and 

2 (i.e. for component 1 )• Equating equations (3.6 a) with (3.6 b) and

(3.6 c) with (3.6 d) the system o f equations can be solved for the values o f  C  and 

[Kurata, 1982] which represent the coexisting phases in equilibrium. The 

subscripts 1 and 2 for and identify the component in the mixture.

N.

Act = Actt ^

+

(3.6 a)

(3.6 b)

In

A c t  -  A c t t ^ s

N.

N.2 y

(3.6 c)

(3.6 d)

The spinodal curve is obtained by taking the second derivative o f the F-H free 

energy and setting it equal to zero.

ÔC
= 1 (3.7)c - 2 x N f ^ 2 x N f  =0

Equation (3.7) is a quadratic equation that can be solved to find the compositions 

at the spinodal.

-48



Chapter 3: Theoretical Background

The F-H interaction parameter is needed in order to evaluate equations (3.6) to

(3.7). It is commonly assumed to be a function of temperature and is expressed as 

a combination o f both enthalpic and entropie contributions.

(3 8)

A  and B  are determined experimentally and represent the entropie and enthalpic 

contributions, respectively. The entropie contribution accounts for the segment- 

segment interactions between the polymers within the mixture. The enthalpic 

terms accounts for the change in energy upon mixing of the polymers as a result 

of the interactions between segments.

The critical point in the phase diagram can be calculated by setting the second and

third derivatives of the F-H fiee energy expression to zero =  0
 ̂dc^ dc"

There are several critical values associated with the critical point and they are 

given below. The critical concentration is given as;

2
1

1+

The critical F-H interaction parameter is given by:

Xc=- -4-'

(3.(%

(3.10)
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%
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Critical Point
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Unstable
Region

Binodal

Composition

J3"

F igure  3.2; A plot o f the relationship between the free energy versus composition 
and temperature versus composition for a binary polymer mixture. The binodal is 
the equilibrium curve and is constructed by the tangent line labelled /? '- /? "  
where the change in the chemical potential o f the coexisting phases is equal The 
spinodal curve is constructed through the use o f the inflection points in the free 
energy diagram. As T  decreases, the miscibility decreases, representative o f the 
UCST only.
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Phase separation occurs for values of the F-H interaction parameter greater than 

the critical value % > . This increases the value of the enthalpy of mixing such

that the change in free energy is now positive and therefore the system is unstable.

2
For a symmetrical blend, the critical value Xc reduces to — . The critical value

of can also be used to determine the critical temperature. The critical 

temperature is given by;

,—  (3.11)

7̂  + -
,7 V /' T V /'y

- A

3.2 Spinodal Decomposition

3.2.1 Early, Intermediate and Late Stages of Spinodal 
Decomposition

The mechanism of spinodal decomposition can be broken down into three stages, 

early, intermediate and late. Each stage has distinct characteristics describe by 

sinusoidal waves of the changes in concentration as a function of position in one 

dimension. This is shown in Figure 1.4. In the initial stage, the concentration 

fluctuations are small at /, and as time increases to h, the amplitude o f the 

concentration mcreases but the wavelength remains constant. The depletion and 

migration of one of the polymers towards an increasingly rapid growth o f the 

concentration fluctuation is shown with arrows moving from low concentration to 

high concentration. This is characteristic o f the SD process to have uphill
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diffusion [Cahn, 1965; Chan, 1998], The initial stage is usually the most difficult 

to visualize since it happens at a fast rate. In the intermediate stage, Figui'e 1.4 

(ii), the concentration fluctuations aie still increasing with time fioni // to 

showing an increase in the amplitude of the concentration fluctuations. However, 

there is an increase in the wavelength of the concentration fluctuation spatially. 

Finally, in Figure 1.4 (iii), the late stage of SD, the concentration fluctuations 

increase until they reach their respective equilibrium concentrations (constant 

amplitude), labelled cn (upper concentration) and cl (lower concentration). The 

wavelength increases with time due coarsening.

3.2.2 The Cahn-Hilliard Theory

Cahn [1965] was the first to describe the kinetics of phase separation by SD for 

metals and glasses and has since been extended to study phase separation in 

polymer solutions and blends [de Germes, 1980]. The nonlinear C-H equation 

describes the spinodal process as a series of sinusoidal waves that govern the 

spatial and temporal evolution of the concentration fluctuations. It was developed 

from the continuity equation of mass where the diffusional flux is related to the 

driving force for phase separation (the chemical potential).

The continuity equation is given as:

* = - V . J  (3 12)
d t

where c is the composition , and J  is the interdiffusional flux of the components. 

J  is related to the gradient in chemical potential by the following expression:
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j  = -M V(//2-a ) '3)

A/ is a proportionality factor called the mobility and is known to be composition 

dependent. In the development of the C-H equation, the mobility is assumed to be 

constant. The composition dependence of mobility will be examined in another 

section below. //, and are the chemical potentials o f components 1 and 2. The 

concentration fluctuations in a polymer mixture are related to the change in the 

total free energy and can be broken down into two parts, a homogenous free 

energy teim and a term to take into account the increase in

free energy due to concentration fluctuations. The total free energy is then given 

as [Cahn, 1965]:

F  = ^ ^ f { c )  + K {V c f']^V  (3.14)

where j{c) is the free energy of the homogeneous polymer mixture and

x'(Vc)^ takes into account the increase in free energy, f i s  a positive constant

but is known to be a function of composition. It will be treated as a constant in 

deriving the C-H equation. The concentration dependence of k  will be discussed 

in another section. The homogeneous free energy term can be obtained from the 

F-H theory (equation 3.5). To insert equation (3.14) into the continuity equation 

the change in the chemical potential needs to be evaluated. The change in 

chemical potential is defined as;

(3.15)

The net flux of the binary polymer mixture is related to total free energy in the 

following expression:
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ÔC
(3.16)

By inserting equation (3.16) into the continuity equation (3.12) one obtains the 

nonlinear C-H equation:

ÔC

I t
V- M V

dc
-2^V "c (3.17)

For the early stage of SD, the C-H equation is linearized about an average 

concentration Co- The linearized C-H equation is valid for the early stage because 

the initial concentration fluctuations are small (weakly nonlinear), therefore, the 

linear C-H equation is:

dt dc-
(3.18)

^ is known as a collective diffusion coefficient [Cahn, 1965]. The
dc

collective diffusion coefficient is negative (uphill) when the first term o f  equation 

(3.18) is less than zero and this is the case in the unstable SD region. The solution 

to equation (3.18) uses Fourier series. The general solution for equation (3.18) is

given as:

/k -r

R ( V ) t

5 7 ( c )  I
dc

VlKk^

(3.19 a) 

(3.19 b)

(3,19 c)
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where —  and is the wavelength for fluctuation /. R{k) is known as the 
/i;

amplification factor. For R{k)>0,
dc-

> meaning that concentration

fluctuations only occur under this condition from equations (3.19 a) through (3.19 

c). This inequality is satisfied for the wave number range o f O < k <  kc. kcis the 

critical wave number and is defined as;

dc 2
(3.20)

In equation (3.19 b) the exponent contains the amplification factor, therefore, the 

concentration fluctuations that grows the fastest is:

(3.21)

3.2.3 Concentration Dependent Mobility and Mutual Diffusion

As mentioned above the mobility is known to be a function of composition. It can 

be expressed as a function of the mutual diffusion coefficient, which measures the 

rate at which the composition of the mixture is dispersed. According to equation 

(3.13) the diffusional flux was given as;

l  = - M ^ ^ V c  = -DWc (3 .22)

In equation (3.14) the mutual diffusion coefficient is the product of the mobility 

and the second derivative of the free energy with respect to composition. 

Rearranging equation (3.22), the total mobility as a function of composition is;
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(3-23)

ôc^

There are two theories used to describe the mobility o f polymers upon mixing, the 

slow mode theory and the fast mode theory [Kiamer et a i ,  1984]. The slow mode 

theoiy predicts that mutual diffusion of the binai y polymer blend is limited by the 

slower component in the mixture [Kiamer et a i ,  1984]. On the other hand, the 

fast mode theory predicts that the diffbsion rate is limited by the faster 

component. The expression for mutual diffusion in the slow and fast mode 

theories is made up of a thermodynamic teim i// and a kinetic term X [Jilge et a i ,  

1990;A kcasue/‘a/., 1995];

D {c)  = ij/X (3.24)

The thermodynamic factor is associated with the static anangement o f the 

polymer segments and the kinetic factor is associated with the self-diffusion of the 

polymer segments [Akcasu et a i,  1995]. The composition dependent total 

mobility for a polymer system was introduced by de Gennes [de Gennes, 1980] 

and as a  ratio of transport properties to that of the driving force for phase 

separation (chemical potential). The expression is:

A = _ M ^  (3.25)
A] + A 2

Where A,- (c) = is the Onsager coefficient o f the individual component

describing the diffusion in a polymer system with D\ and N\ as the self-diffusion 

coefficient and degree of polymerization for the individual components. The
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component Onsager coefficient is related to the individual mobility, M, ( c ) , o f the 

component by:

A ,(c) = Ag7M,(c) (3.26)

Equation (3.25) can be rewritten in terms of total mobility to give the slow mode 

theory [Kramer et al., 1984]:

-L  = _ L  + - L  (3.27)
M

Where M  is the total mobility and Mj and M 2 are the individual mobilities o f  

components 1 and 2 respectively. The individual mobilities of each component 

are expressed in terms of a self-diffusion coefficient:

M,
1

dc^ V W X l-c )

In equation (3.27), if it was assumed that component 2 had a larger mobility

(£>, «^cDJthan component I, would be very large and therefore, the total

mobility would be controlled by the mobility of component 1 (the slower moving 

component)

For the fast mode theory, the total mobility o f the mixture is written as [Kramer et 

al., 1984]:

A /= M , ( 1 - c)+M2C (3 29)
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Again if it was assumed that the faster component in the mixture was component 

2 then would be much larger in value than /V/, and therefore, the total 

mobility will be controlled by the faster moving component. Inserting equations 

(3.28 a) and (3.28 b) into the slow and fast mode theories and rearranging the 

expression, the total mobility becomes;

M  (c ) = (slow mode) (3.30)

V

M { c )  =
N^D^c (l -  c) V + N.p^cv  (I -  c)

k j
(fast mode) (3.31)

Whether the slow mode theory or the fast mode theory best describes the 

interdiffusion o f the polymer segments is still a topic o f debate amongst 

researchers. There have been publications that are in favour of using the slow 

mode theory [de Gennes, 1980; Green et a i ,  1985; Binder, 1983] while others 

believe the fast mode theoiy is a better prediction [Kramer et al., 1984; Composte 

and Kiamer, 1988]. The rest of the derivation for the total mobility will use the 

slow mode theory following the work of de Gennes [1980] in describing the 

dynamics o f phase separation in polymer blends as it well describes phase 

separation by SD [Pincus, 1981; Binder, 198j].

3.2.4 Reptation Theory and the Self-Diffusion Coefficient

The self-diffusion coefficients measure the rate at which individual components 

o f the mixture diffuse and are determined experimentally usmg labelmg 

techniques to  identify the components. There are two theories to describe the self-
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diffusion coefficient, the Rouse theoiy [Rouse, 1953] and the reptation theoiy [de 

Gennes, 1971]. Both theories describe the self-diffusion coefficient in terms o f 

physical properties o f the polymer. The Rouse model describes a polymer chain 

as a spring and bead model where the chains are considered flexible repeating 

units moving freely in a medium. There exists a resistance force caused by the 

interaction between the medium and the coil o f the spring called a frictional force 

and is incorporated into the self-diffusion coefficient of the polymer [Rouse, 

1953]. The self-diffusion coefficient using the Rouse model is:

(3.32)

Where N  is the degree of polymerization and ^ is monomer friction coefficient.

The reptation model describes the motion of a long polymer chain as a snake-like 

motion traveling through a constrained area [de Gennes, 1971]. The constraints 

are due to the entangled polymer coils in the mixture (unable to cross over another 

polymer chain) such that the only motion can be of a sliding or a creeping effect 

along the contours of the polymer length [de Gennes, 1971]. The self-diffusion 

coefficient described by the reptation model [Doi and Edwards, 1986] is:

_  kgTa r-i I'j'i
'-'rcptation-.scll

Where a is the step length o f a primitive chain, and b is the bond length. The 

difference in both theories lies in the dependence of on N, where in Rouse the 

dependence is and in reptation it is Equation (3.33) can be further

simplified by the following relationship between a and 6 [Doi and Edwards, 

1986].
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(3.34)

Where Ne in equation (3.34) is the degree o f polymerization between 

entanglements. Inserting (3.34) into (3.33), the self-diffusion coefficient becomes:

D rep-self 15^ (3.35)

There exists a crossover between Rouse to reptation dynamics [de Gennes, 1971; 

Klein, 1978; Brochaid et al., 1983]. Experimentally, there is a critical polymer 

length, Nc, where the physical property (viscosity) o f the polymer changes 

significantly as a function of N. The value of A(. is approximately 300-600 

monomer units [Klein, 1978; Brochard et a i ,  1983]. Brochaid et al. [1983] used 

this critical value in theh development of an expression for the mutual diffusion 

coefficient for N  < (the non-entanglement regime) and for N > Nc (the 

entanglement regime). The non-entanglement regime can be well described by 

the Rouse model and the entanglement regime the reptation model [Klein, 1978]. 

Therefore, the total mobility for the non-entanglement regime (N < Nc) using the

slow mode theoiy is:

M ( c )  =
VC (1-c) (3.36 a)

If  we assume that the monomeric fidction coefficient is the same for both

polymers =^[ — ^ 2  Iken equation (3.36 a) becomes;

M [ c )  =
VC ( l l f ) (3.36 b)
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For the entanglement regime {N > Nc) again using the slow mode theoiy, the total 

mobility is;

M (c )  =
4vA^„iV,2c(l-c)

(3.37 a)

If we assume that ^ = ^ , = ( ^ 2  (degree of polymerization

between entanglements of polymer 1 and 2 respectively) equation (3.37 a) 

becomes;

M { c )  -
4 v c ( l-c )

l5^(/V,c + JV ,(l-c))
(3.37 b)

In studying phase separation by SD for polymer blends the reptation theory has 

been used to describe the self-diffusion [de Gennes, 1980; Pincus, 1981].

3.2.5 Concentration-Dependent Gradient Energy

The energy gradient in the nonlinear C-H equation is the contribution to the free 

energy resulting from concentration fluctuations (non-homogeneous) and is 

related to the formation of interfaces between the two polymers, xr is assumed to 

be always greater than zero, de Gennes [1980] proposed that the gradient energy 

coefficient was made up of both enthalpic and entropie contributions and later 

discussed in a review paper on phase separation by Nauman and Qiwei [2001]:

(3.38)

The entropie effect is due to the connectivity of monomer units and therefore is 

only applicable to polymer systems [Hashimoto e ta l ,  1983]. This additional term 

into the free energy takes into account the changes in energy upon the spatial
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variations in the composition when phase separation occurs [de Gennes, 1080], It 

is expressed as a function of composition in a variety of forms:

K (c) =
36c 3 6 ( l - c )

J

a'
36c ( l - c )

~v
Entropie Enthalpic 

contribution contribution

(3.39 a)

- +

(1 -c )

A C
c ( l - c )

(c) =
1

2Â ( l - c )

(3.39 b)

(3.39 c)

(3.39 d)

In equation (3.39 a) [Castellano and Glozter, 1995] under conditions o f extreme 

incompatibility (% very small) is approximately zero and
36c ( l - c )

dominates, a  is the statistical length and X is the effective interaction distance 

between monomers and is assumed to be equal to the Kuhn length 5. The Kuhn 

length is related to the radius of gyration 7^, by the following expression;

(3.40)

Therefore, from equation (3.40) a = 5. Note that the entropie term is a function o f 

the relative size o f the polymer. The different arrangements o f the polymer 

segments in the mixture are limited by the size of the polymer chains and 

therefore, increase the free energy and opposing phase separation. Therefore, the
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value coefficient of the energy gradient, k  , renders a resistance to the phase 

separation process due to the development of interfaces to tiy and restore the 

system to its lowest energy level. Equations (3.39 b) [Lee et al., 1999], (3.39 c) 

[Ariyapadi and Nauman, 1991] and (3.39 d) [Jones and Richards, 1999] can also 

be simplified in the following manner. The difference in the coefficients comes 

fi'om using the random phase approximation (RPA), the Deybe function and 

placing restrictions on the range where the expression is valid (Equation (3.39 d)) 

[Jones and Richards, 1999]. Equation (3.39 a) is often used in computer 

simulations for studying phase sepaiation by SD as it is assumed that the polymer 

mixture undergoing phase separation is highly incompatible [Zhang et al., 1995; 

Chakrabarti et al., 1990; Glotzer, 1995; Matsuoka and Yamamoto, 1995].

-fU.
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Chapter 4

Model Development and Method of 
Solution

This section presents the model development and the method of solution for the

one-dimensional and two-dimensional study of phase sepaiation by SD for a

single quench and a double quench. The governing equations used in the model 

development will be presented to obtain a general spatial, time dependent, 

differential equation. From this, thi'ough algebraic simplification and 

reaiTangement, the dimensionless equation describing the dynamics o f phase 

separation by SD will be presented. The following conditions and assumptions 

have been applied in the model developed to describe phase separation of 

chemically identical polymer blends [de Gennes, 1980; Glotzer, 1995]:

• Phase separation occurs by the method of TIPS

• Polymer blend is of identical chemical structure {N\ = Nj — N  = \ 000)

• Entanglement properties are also identical (<̂  =(^2 > ■̂  = ■ .̂1 = ■ .̂2» ^

= S)

• % is a function of temperature only

• K and A/ are a function of composition

64 -



Chapter 4: Model Development and M ethod o f  Solution

The method used to solve the model is the Galerkin finite element (GFE) method 

with Hermitian basis functions. The following procedure was used for the GFE 

method in solving the dimensionless differential equation [Huebner et al., 1995]:

1. Choose elements, basis functions and mesh

2. Write equation in Galerkin form

3. Lower the order of the differential equation

4. Apply conditions

5. Write out equation set

6. Assemble matrix and residual vector

7. Solve resulting system

Only the implemented GFE method, the nondimensionalized equations, the initial 

and boundary conditions will be discussed.

4.1 Governing Equations Used to Describe Phase 
Separation by Spinodal Decomposition for a 
Polymer Blend

The model development is based on the fundamental equations introduced in 

Chapter 3. The concentration fluctuations in a polymer mixture are related to the 

change in total free energy in the form [Cahn, 1965]:

F = \\^f{c) + K(Vcf^^V  (4 .1)

The total fi-ee energy is broken down into two parts, a homogenous free energy o f 

mixing term and a term to take into account the increase in free energy due to 

concentration fluctuations. The homogeneous free energy of mixing can be
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desciibed by the F-H fiee energy expression containing the enthalpic and entropie 

conti ibutions o f  mixing in polymer blends described below [Flory, 1953]:

(4.2)

The term that takes into account the increase in free energy due to composition 

fluctuations and formation of interfaces between the two polymers has a 

composition dependent term k described by [de Gennes, 1980];

:(c )  =
a

3 6 c ( l - c )
(4.3)

The dynamics o f the concentration fluctuations is represented by the continuity 

equation containing the dr iving force for phase separation (the chemical potential) 

within the diffusional flux:

dc
¥

=  —V  • J (4.5)

The gradient in chemical potential is defined as the change in the total free energy 

with respect to composition and therefore, taking the derivative o f equation (4.1)

arrives at:

^ ( 4
dc

- 2 i f V  c (4.6)

M  is 3 . proportionality factor called mobility and is known to be composition- 

dependent. To determine an expression for the total mobility, the slow mode 

theory is applied [de Gennes, 1980]:

1 1 1 (4.7)
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This expression for total mobility relates the individual mobilities of the polymers 

and states that the slowest moving component is rate-controlling. To express the 

mobility in terms of diffusive transport properties, the reptation theory [Doi and 

Edwards, 1986] was applied to describe the self-diffusion of the polymers in the 

blend and the total mobility becomes;

A /(c) =
4vc(l - c )

\5^ [N x  + N , { \ - c))
(4.8)

Inserting equations (4.1) to (4.8) into the continuity equation, the following 

expression is used to describe the dynamics o f phase separation by SD;

dt
^ ( c )

dc
IfcV^c

J
(4.10)

Substituting equations (4.5) to (4.6), rearranging and collecting like terms 

equation (4.10) is then transformed into the following fourth order partial 

differential equation for the further development of 1-D and 2-D models;
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dc
à 15^

cNM~c]N,

d\^+fl-c)A|

c / ^ + ( 1 - c)A [

(1-^1 4 l-d (A :-A n
cN̂

c/% (l-c)A(
(Vc)-’

-2c{i-c)x (%)

15^

 ̂ ’ cN,+{l-c)N,
2c-l

+

+

+

+

c%+(l-c)A[

1
d%+(l-c)A{

1

dV,+(l-c)N,

I
cK+(l-c)Nf

1

cM+(l-c)Af

(2c-I)

2 ( c ^ r

(Vcf(V'c)

(Vcf(V»c)

2(c-c')

M
(cV )

(1- 4 -

(V=c)

(Vc)(Vc)

c(l-c){X-Aj)'
o%+(l-c)A[

(Vc)(Vc)

(Vc)
(4.11)

4.2 The One -Dimensional Model

In the 1-D model, 256 elements were used. The governing equation, transformed 

from equation (4.11) into dimensionless form in one dimension is:
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% = a T \  
a

( i - i V

4

- 4  -2
cA( '

% ^a-y

c  -1

1 1 -c  c

cA^4{iV ) a[JL 4  4
- 2 c ( \ - c ) z

f
’ 9

1 Tc'A ra-j
cA^-f|l-c)A[ (' cX4{1^-)A1 k J

cA^4(1-c )A[

cA^4{l-c’)i^J jc’-c

c7V,4{l-c)Af

.at’

Y(ÿc’\
^ *2

J lac J

■ _ c M ^ -

2c ( 1-c)

»\
CÙ ' â c

c A^4{1-c*)A[ [2

(4.12)

The dimensionless terms in equation (4.12) are dimensionless time, temperature, 

space and diffusion coefficient. The dimensionless terms are expressed in the 

order stated above as:
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t =
47V, a V

T*= —  
T

c = c

V * = V I

a

(4.13 a)

(4.13 b)

(4.13 c) 

(4.13 d)

(4.13 e)

4.3 Two-Dimensional Model

In the 2-D model, 20 by 20 elements mesh was used. The governing equation, 

transformed from equation (4.14) into dimensionless form in the two-dimension 

model is:
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c ( l V ) ( M- A ^ )

1

-2%
œ  à' - '1 cc cr

[fV

1

c  - I  C 
+ •

a-' a-'Ta-' a"

c K + ( \ - c )N,

c’yv, (i- c’Jm

^  %
a '/  a a

j l
9

1_2^* 1
/ Y 

-1 1 \dc do 
- 1-

a* &‘1

cWj +(i - c‘) a  ̂ (cV2+(i - c’) a;)" 2 / ( \ - c )  c ( l - c ) \ [ a ' dc 4 ’*J

d̂ c a c
dc o /

r'A4+(]-/) 7%

c N , + ( \ - c ) N ,

cX+(i-c)N,

/  ‘■'(i-'-') (1-4=

\d b J---- a ' a * '
f.—

[a* a" a"  ̂«2 ^ »2 
a  a

(1-4
a /  aa
or 4 '

a a  a a
dc a ’

c^c c a '  a"'

a  a a '" ^ a \

l-2c* c’(l-c )(M -A () a '  a'"
c‘M +(1-c ) a( -,*3 ' p. VÎ

a  a d c  a*

cN,+(1-c)n,
a a  a a

(4.14)

The dimensionless terms in the 2-D model are the same as those presented in the 

1-D model.

4.4 Initial and Boundary Conditions

To solve the one-dimensional and two-dimensional model, initial and boundaiy 

conditions are applied. The development of the program for the initial condition 

is detailed in a paper by Chan and Rey who looked at phase separation in polymer 

solutions [Chan and Rey, 1995a]. The homophase thermal fluctuations are used
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as an initial condition because the concentration is not unit'onn c\en in the 

homogeneous one phase region. There exists intlnitesimal de\ iations ft'oni the 

average concentration called homophase thermal fluctuations so that the initial 

condition is an average concentration plus a very small value, ô , where the 

M onte Carlo scheme is employed to determine the value of 5 . Mathematically, 

the initial condition expressed in dimensionless form is [Chan and Rey, 1995a]:

c {t* = O) = + 5  (4.15)

The boundary conditions in this model are the zero mass flux and the natural

boundary conditions. Zero mass flux is applied to the system where no mass is

exchanged with its suiToundings [Novick-Cohen and Segel, 1984; Elliot and 

Songmu, 1986]:

J  = - M ( c)V ( /^ 2 - a ) = 0 (4.16)

The natural boundary condition [Novick-Cohen and Segel, 1984] states that there 

is no spatial variation of concentration at the boundaries:

(V c)-n  = 0 (4.17)

The zero mass flux boundary condition in dimensionless form for the 1-D and 2- 

D study is [Chan and Rey, 1995a]:

In the one one-dimensional study

^  ^ - 0  at ^*>0, and x ‘ = 0  and x* = l (4.18)
0 / '

In the two-dimensional study

a t /* > 0 ,  and x * = 0  and x =1 (4,19a)
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4-  - 0  a t r* > 0 , and i’’ =O and / = !  (4.19b)

Natural boundary conditions in dimensionless form for the 1-D model contain 

equation (4.20) and the 2-D model contain equation (4.20) and (4.21) [Chan and 

Rey, 1995a];

dc
7  = 0 at t*> 0 ,  and x*=0 and x =1 (4-20)

dx

■ ^  = 0 at t*> 0 ,  and y* =0 and v =1 (421)

4.5 Method of Solution: The Galerkin Finite Element 

Method

The Galerkin finite element (GFE) method is a method of weighted residuals. It 

is a useful technique in solving equations whether they are partial differential 

equations, ordinal y differential equations or integral equations by approximating 

it at discrete points [Huebner et a l ,  1995]. This technique is advantageous 

because it can be used to solve systems of any geometry and complexity by 

dividing the system into subunits called elements, and allowing computational 

approximations to the solution at nodal points that link the elements. The divided 

solution region is called the element mesh and in the case of a one-dimensional 

study the mesh is a line and in a two-dimensional study the mesh is a plane. The 

following development of the general procedure to solving partial differential 

equations in two-dimensions is based on the developments given in finite element
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texts [Lapidus and Finder, 1982; Chung. 1978], To obtain the solution tor the 

one-dimensional case, the two-dimensional case can be smiplilled to ,v space and 

will not be presented.

Consider the following equation in two dimensions with the following 

boundaries:

L (ii)  = f { x , y j )  = 0 a < x < b  a < y < b  (4.22)

In the Galerkin method, the solution to the equation above assumes that u can be 

represented by an approximation of the form:

(4.23)
j=\

The approximate solution, u_^{x,yj), is then a finite series approximation where

(j)̂  (x ,y )  are the basis functions (weighted residuals) and u . (/) are the unknown

coefficients. Placing equation (4.23) into equation (4.22) yields:

R = (4.24)

The residual, R, is nonzero. If the approximate solution was zero (having a 

zero residual) then it would be the true analytic solution to L{iî). The objective 

then is to find a set of iî  it)  such that the approximate solution is forced to zero

and this will provide the best fit to the exact solution:

Z,(w^) = 0 (4.25)

To do this, the residual is multiplied by a weighting function (equal to the basis 

functions in the GFE method), set to zero and integrated over the element:
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F. = y)dxdy  = j*j*L (i/ _ ) (f>‘ (X, y) dxdy = 0

f o r / = 1 , 2 , . . . , ( 4 . 2 6 )

where F, is the residual vector, w, is the weighting function and N  is the number 

o f nodal points in the mesh. From equation (4.26), a system of N  non-linear 

equations is obtained and the 3-point Gauss quadrature method is used to evaluate 

the integrals. The system of equations can be an anged in the form:

[J]{u}=[F] (4.27)

dF
where \J] is the Jacobian matrix defined by J, = , Uj are the unknown

OUj

coefficients of interest and [F] is the residual vector. The Newton-Raphson 

iteration scheme is used to solve the set of equations obtained from equation 

(4.27) simultaneously and the convergence criterion is such that the difference of 

the length of the solution vector between two successive vectors is computed to 

be less than 10'*̂ .

So far, the development of the system of equations used a general expression for 

the basis function The choice o f basis functions to be inserted into

equation (4.26) is Hermitian bicubic basis functions. These basis functions 

inteipolate values of the function and the derivative at the nodes and are useful for 

solving the fourth order partial differential equation because the lowering o f the 

order o f the partial differential equation can be minimized [Lapidus and Finder, 

1982]. For detailed development of the Hermitian basis functions other sources 

can be referred to [Chung, 1978]. The Hermitian basis functions take the form:
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<j\ — a^+ 6 ,1̂  + function

^ 2  = Ü2 + ^2^  + slope

^3 -  üf; + ^3^  + function H-28)

^ 4  = « 4  + Z?4 <̂ + C4 <̂ " + (̂ 4^^ slope

In a one-dimensional study each element has 2 double nodes (one for the function 

and one for the slope) and four basis functions. In the two-dimensional case, each 

element has nodes 4 double nodes and 16 basis functions. The two-dimensional 

case is a product o f the one-dimensional basis functions. See Appendix A for the 

list o f Hermitian basis functions.

To lower the order of the partial differential (in this case the model equation being 

fourth order) the divergence theorem can be used:

Jj* aV 'VydA  -  J  an»\dT  -  j*J Va•xdQ. (4.29)
n r  D

where a  is any scalar, v is any vector, F  is the boundary of domain /3and n is the

unit normal vector. The terms in residual vector containing j J  op'dxdy and 

JJ* V*C(p‘dxdy can be broken down to:

J J = J^'n»V^C£/r- jc/F-rJJv cV <pdCl (4,30)
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4.6 Program Summary

The program developed for solving the 1-D and 2-D models was based Chan’s 

program [Chan, 1997] for studying phase separation by SD in polymer solutions 

where the mobility and interfacial parameters were kept constant. In the 1-D 

study, 256 elements were used to form the mesh size and in the 2-D model a 20 

by 20 element mesh was used. After employing the GFE method and setting up 

the set of equations in matrix form, the set of equations were solved using the 

Newton-Raphson iteration scheme. For time integration, the finite difference 

method and the Euler predictor coiTector method was used [Chan, 1997]. An 

adaptive step size controller was also used to save on computing time [Chan, 

1997]. When there is little variation in the function a large time step it taken and 

when there is more variation small time steps are used.
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Chapter 5: I-D TIPS Single Quench

Results and Discussion: 1-D TIPS Single 
Quench

This section presents the numerical results from the one-dimensional TIPS study 

with a single quench. The focus is in the formation of phase-separated stimctures 

and therefore studying the early and beginning of the intermediate stages is 

sufficient. The model parameters aie listed in Table 5.1. The model is based on a 

symmetrical blend with degree of polymerization of Ni = N2 = 1000. There are 

two initial average compositions that will be investigated, a critical quench (c„* -  

0.5) and an off-critical quench {Co = 0.6). The study also uses three different 

values for the dimensionless diffusion coefficient. The order of magnitude for the 

dimensionless diffusion coefficient directly reflects the parameters taken from 

experimental studies on the properties of polymers [Daould et al., 1975]. Key 

features are examined for a critical and an off-critical quench case to ensure that 

the one-dimensional model exhibits the same known trends for the early to the 

beginning of the intermediate stage typical o f phase separation by SD:

(i) The evolution of the concentration fluctuations

(ii) The evolution of the dimensionless structure factor

(iii) The effect of a shallow and deeper quench
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Additional analysis will be to investigate the effect of increasing the 

dimensionless diffusion coefficient D , the change in the chemical potential and 

the change in the second derivative of free energy with respect to composition 

upon phase separation by SD.

Table 5.1: Summary of the dimensionless parameters used in the 1-D TIPS study 
for a single quench.

Parameter Value

Co* 0.5, 0.6

A; 1000

D* 200 000, 500 000, 800 000

t: 0.25 (quench temperature)

0.2 (deeper quench)

The results presented in this chapter for the critical and off-critical quench case 

are for a value of the dimensionless diffusion coefficient D* = 200 000 unless 

otherwise specified. The results for D* = 500 000 and 800 000 are shown in 

Appendix B

Note in a 1-D study, it is not possible to determine the type of structure that is 

obtained (interconnected or droplet type). The 1-D study can only well describe 

the characteristics pertaining to the kinetics of SD. Generally, a 1-D model can be 

used to fully describe the mechanism of phase separation by SD and a 2-D model 

is used to determine the type of microstructure obtained.
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5.1 Symmetrical Phase Diagram

The temperature versus composition phase diagram tor a symmetrical polymer 

blend used in this study is shown in Figure 5.1. The solid curve represents the 

binodal (equilibrium cui*ve) and the dashed curve is the spinodal curve. The two 

filled circles represent the two test conditions for a critical and an off-critical

quench with composition of c '  = 0.5 and c j  = 0 .6, respectively. The

composition shown in the phase diagram represents polymer 1. The degree of 

polymerization for the symmetric blend is -  1000 with a critical

temperature o f = 0.333, a critical composition of c*= 0.5, and a critical value

for the F-H interaction paiameter of Xc ~ 0.002. The expression for the F-H 

interaction parameter used in this study originally came from a mixture o f 

deuterated polybutadiene/protonated polybutadiene [Jinnai e /a /., 1993]. It was 

then nondimensionalized to the following form:

/= - 5 .3 4 x 1 0 -  (5.1)

For the single quench a dimensionless temperature o f 7] = 0.25 was chosen and 

will be used as the reference point for the double quenching to be discussed in the 

next chapter.

5.2 Spatial Concentration Profiles

Figure 5.2 shows the evolution of the dimensionless spatial concentration profiles 

for a single quench at the critical composition oiCc ~ 0.5, a dimensionless
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Figure 5.1: A model symmetrical phase diagram for a polymer blend o f degree o f 
polymerization = 1000. The dimensionless critical composition and

temperature for this blend are c /  = 0.50 and tJ  = 0.333 respectively. The binodal 
(equilibrium curve) is represented by the solid curve and spinodal with the dashed 
curve. The two circles represent the locations o f investigation (a critical ĉ * =0.5 

and off-critical =0.6 quench) at a dimensionless temperature o f = 0.25.

The upper and lower equilibrium values at 7j* = 0.25 are 0.912 and 0.0877 
respectively.

diffusion coefficient of D* = 200 000 and a dimensionless temperature o f T /  =

0.25. Recall that in Chapter 3, the evolution of concentration profiles were 

explained in terms of waves. In the early stage, the initial concentration 

fluctuations appear due to the growth of the most dominant wavelength and are 

weakly nonlinear. The wavelength remains constant while the amplitude changes. 

In the beginning of the intermediate stage, the concentration fluctuations continue 

to increase and into the intermediate stage the wavelength starts to change. All 

three figures for the critical quench are consistent with the known evolution o f the
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concentration fluctuations that are typical of phase sepiuation by SD for the early 

to beginning of the intermediate stages [Hashiinoto er al., 1986a], The 

dimensionless spatial concentration fluctuations increase with increasing 

dimensionless time as they approach the equilibrium values while maintaining 

constant position. Numerically, the results shown here are also consistent with 

other 1-D studies conducted for polymer blends [Ohnaga and I noue, 1989; 

Takenaka et al., 1995], However, the model and the method of solution differ 

from the numerical work in this thesis. Figures 5.3 shows the evolution of the 

dimensionless spatial concentration profiles for a single off-critical quench with 

an initial average composition of Co = 0.6 at a dimensionless quench temperature 

o f  Tj = 0.25 and a dimensionless diffusion coefficient o f D = 200 000. These 

concentration profiles are also consistent with the trends typical o f phase 

separation by SD for the early to beginning o f the intermediate stages [Hashimoto 

et al., 1986a]. A comparison between the dimensionless times for the critical and 

off-critical quench shows that for the critical quench (/ = 3.527 to 0.220 for D  = 

200 000 to 800 000), phase separation occurs at earlier times than the off-critical 

case {t* = 4.898 to 0.22878 for D* = 200 000 to 800 000). This can be explained 

by referring back to the phase diagram in Figure 5.1. The two filled circles 

indicate the locations of the quench at T/* = 0.25 for the critical and off-critical 

quench case. It is known that the driving force for phase sepai at ion is directly 

related to the distance of the temperature within the confines o f the spinodal line 

[Tao et a l ,  1995]. It can be observed that the distance from the spinodal curve at 

Ti* = 0.25 for the critical case is much farther inward than for the off-critical
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quench case. Recall from Chapter 3 that the location of the spinodal points are at

the inflection points ( ^  = 0 ) in the change in free energy curve. At these

points, there is no influence on the composition fluctuations to overcome energy 

barriers or to drive phase separation by SD therefore, there will be a smaller 

driving force for phase separation for the off-critical quench case since it is 

located closer to the spinodal curve. This explains the reason for the time 

differences in the critical and off-critical quench and was also observed in the a 

numerical study for polymer solutions [Chan, 1997].

5.3 The Evolution of the Dimensionless Structure Factor

The structure factor is an important parameter that is often used to characterize 

the shape of phase-separated domains by SD and relates numerical and 

experimental studies [Glotzer, 1995]. The numerical data of the computed 

composition fluctuations are used to calculate the stmcture factor by taking the 

fast Fourier transform [Glotzer, 1995]. The relationship between experimental 

(the scattering intensity ftom light scattering experiments) and numerical work 

(the structui-e factor) is of the following form [Strobl, 1985; Copetti and Elliot, 

1990; Skripov and Skripov, 1979]:

<xS{kJ) = I ^ A [ k j y ^  ior k= q ( 5 . 2 ) /

is the scattering intensity, q, is the scattering wave vector, S  is the structure factor, 

k  is the wave number in Fourier space and ^(A:,/)is the fast Fourier
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Figure 5.2: The evolution of the dimensionless spatial concentration profile for a 
single quench into the unstable region^ of the phase^ diagram at the following 
dimensionless times: (a) t = 3.527, (b) t = 3.843, (c) t = 4.014, and (d) t — 4.57. 
The dashed line through the center of the graph represents the initial average
concentration c ~ 0.5. The dimensionless diffusion coefficient for this case is

D *  =  200 000.
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Figure 5.3; The evolution of the dimensionless spatial concentration profile for a 
single quench into the uristable region o f the phase diagram at the following 
dimensionless times; (a) t* = 4.898, (b) t* = 5.092, (c) /  = 5.292, and (d) t* = 
5.703. The dashed line through the center o f the graph represents the initial 
average concentration 0.6. The dimensionless diffusion coefficient for this 
case is D* = 200 000.
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transfoim o f the composition fluctuations The e.xperiniental light

scattering data is then diiectly proportional to the structure factor and a detailed 

discussion o f the development of this expression can be found elsewhere [Skripov 

and Skripov, 1979]. The following summaiizes characteristics o f the early to the 

intermediate stages of phase separation by SD horn light scattering data 

[Hashimoto, 1993];

i. Early Stages: The scatteiing intensity grows exponentially and the 

scattering vector, q, is independent of time. The growth of the composition 

fluctuations is weakly nonlinear and the plotting the natural log o f the 

evolution o f the scattering intensity I [ q j ) - 1 [ q j  = 0 )exp (2 R [q )t)

should produce a straight line for the early stages o f SD.

ii. Intermediate Stages: The scattering intensity continues to increase but at a 

slower rate than in the eai'ly stages o f phase separation by SD and g 

decreases and T (wavelength) increases. The relation between q and X is

2tc

A typical plot o f the scattering intensity in the early to the beginning o f  the 

intermediate stages for phase separation by SD is shown in Figure 5.4. 

R e c a l l i s  the Fourier transform of the composition fluctuations, c{r , t ) .  

Following Equation (5.2), at the early and intermediate stages of phase separation 

by SD, the concentration fluctuations in Fourier space,,4(A ,/), should then also 

describe the same characteristics as discussed above regarding the development o f
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G

   -  . '

q

Figure 5.4: Typical light scattering profile showing the evolution o f phase 
separation by SD in the early to the beginning of the intermediate stages. Each 
profile represents the intensity at a certain time /. The increase in time is indicated 
by the arrow in the up direction. The scattering intensity is increasing with time 
while the position is constant, characteristic of the early stages of SD.

the scattering data (the visual representation is shown in Figure 5.4). To ensure 

that the numerical work in this study is in agreement with the known evolution of 

scattering profiles as related to the structure factor, the dimensionless structure 

factor was calculated at different dimensionless times, MATLAB was used to 

calculate the dimensionless structure factor where a small algorithm was written 

to determine the fast Fourier transform of the sample data at a specific time and 

the square of the magnitude of this result to determine the value of the structure 

factor. Figures 5.5 and 5.6 show the evolution of the dimensionless structure 

factor as a function of dimensionless wave number, k*, and dimensionless time 

for the critical quench case and the off-critical quench case with D* = 200 000. It 

can be observed that the value of the dimensionless structure factor increases
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exponentially with time in the eai'ly stages of phase separation bv SD and begins 

to slow down as it approaches the beginning of the intermediate staites where 

nonlineai' effects come into play. Also, during the early to the beginning of the 

intermediate stages, the wave number is constant and this is typical o f what 

should be observed [Hashimoto, 1993], Therefore, the evolution of the 

dimensionless structure factor (exponential growth and fixed wave number) for 

the critical quench and the off-critical quench case show the same trends that have 

been reported both in experiment [Okada and Han, 1986; Wiltzius et al., 1988; 

Hashimoto et al., 1986a] and numerical work [Chan, 1998; Chakrabarti e t  a i ,  

1990; Zhang et al., 1995]. Recall that the wave number is related to the

wavelength by k. = — . From this, the maximum value of the wavelength (the
T,.

dominant wavelength of the concentration fluctuations) or the characteristic 

length for the early stages of phase sepaiation by SD can be determined. The 

characteristic length is a common definition used to express the domain size o f  

the phase-separated regions by SD, T [Hashimoto, 1993]. It is defined as the 

inverse o f the wave number and in dimensionless form the expression is;

A- = ^  <5-3)
k.

For the critical and o f f  critical quench case, it can be observed that as the 

dimensionless diffusion coefficient increases, the value of the maximum wave 

number also increases {km — 4 to 7 refer to appendix B for D — 500 000 and 

800000) meaning a decrease in the characteristic length (smaller domain size)
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Figure 5.5: The evolution of the dimensionless structure factor for a single 
critical quench ( c j  = 0 . 5 ,  D *  =  200 000 and T *  = 0.25) into the unstable region o f 
the phase diagram at the following dimensionless times: t = 3.527 (thick grey 
line), t* = 3.843 (dash with two dots), t* = 4.014 (dash-dot line), t* = 4.186 (dotted 
line), t = 4.57 (long dashed line), 1* = 5.026 (solid line).
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Figure 5.6: The evolution of the dimensionless structure factor for a single ofF-
critical quench (c^ = 0 .6 , D = 200 000 and T* =0,25) into the unstable region
of the phase diagram at the following ÿmensionless times: t* = 4.579 (thick grey 
line), = 4.737 (dash with two dots), /* -  5.898 (dash-dot line), t* = 5.092 (dotted 
line), / = 5.292 (long dashed line), /  = 5.703 (solid line).
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since it has an inveise relationship. Table 5.2 summarizes the calculaied \alues o f 

the dimensionless characteristic lengths for the critical and off-critical quench

case. T, denotes the dimensionless characteristic length for the single quench

case. Later, foi the double quench case the subscript 2 will be used to identify the 

secondary characteristic length that forms.

Table 5.2; Dimensionless characteristic lengths in the early stages of SD for the 
structures formed at T* = 0.25 with increasing D*

Quench Temperature 7] =0.25

c„* =0.5, D ' = 200 000 1.570
Critical c j  =0.5, D ' = 500 000 1.047

c /= 0 ,5 ,  D* = 800 000 0.897

c /  =0.6, D ' = 200 000 1.570
Off-critical c j  =0.6, D ' = 500 000 1.256

c /= 0 ,6 ,  D*=800 000 0.897

5.3.1 The Growth of the Dimensionless Structure Factor in the 
Early Stages of SD

From experimental observation of the early stages of phase separation by SD in 

the work of Hashimoto et al. [1983; 1986b], the growth of the scattering intensity 

is exponential in the early stage and taking the natural log of these values should 

produce a straight line. Into the later stages of phase separation by SD, the 

growth rate slows down and nonlinear effects take place. This was thought to be 

due to the coarsening of the mixture [Hashimoto et al., 1986b], For the early 

stages from the linear theory, the following relation can be obtained to describe 

the light scattering data [Hashimoto et al., 1983];
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I {c} j ) ^  I { q j  = 0) t xp[ l R{q) t )  ( 5 - 4 )

Taking the natural log of equation (5.4) gives:

I n / [ q j )  = 2/^(r/)/ + l n / [q,l ~ O) (5-5)

Equation (5.5) is the equation of a line in the form j/ = mx + b where m  is the slope 

and h is the intercept. The slope is 2R{c[).  Since l { q j )  o . S { k J ) - ( . A { k J ^

for k = q  [Okada and Han, 1986], the evolution of the structure factor also follows 

the form of equation (5.4) and (5.5) and taking the natural log of the 

dimensionless structure factor should also show the same trends as the scattering 

intensity. Figure 5.7 and 5.8 show the plots of the natural log of the maximum 

value of the dimensionless structure factor versus dimensionless time for the 

critical and off-critical quench case with D* = 200 000, respectively.

2.00

*
^  100 

c

0.00

- 1.00
3.6 3 .9 4.2 4.5  4 .

♦
5.1 5.4 5.7

Figure 5.7: The evolution of the dimensionless maximum structure factor with 
dimensionless time from t* = 3.879 to /* = 5.212 for a single quench ( c j  = 0.5,

D — 200 000 and 7] = 0.25 ) into the unstable region of the phase diagram. At the 
early stages of phase separation by SD, the initial increase is linear and gradually 
slows down into the beginning of the intermediate stage where coarsening occurs. 
The dashed line indicates the linearity for the early stages before it deviates.
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Figure 5.8: The evolution of the dimensionless maximum structure factor with 
dimensionless time from t = 5.164 to 1* = 5.864 for a single quench {c* -  0 .6, D*

= 200 000 and 7j = 0.25) into the unstable region of the phase diagram. At the 
early stages of phase separation by SD, the initial increase is linear and gradually 
slows down into the beginning of the intermediate stage where coarsening occurs. 
The dashed line indicates the linearity for the early stages before it deviates.

From Figure 5.7 to 5.8, it can be observed that the evolution of the natural log of 

the dimensionless structure factor at the maximum wave number is linear for the 

early stages before nonlinear effects begin. The trends observed in experimental 

work [Hashimoto et al., 1986b; and 1983] and numerical work by Henderson and 

Clarke [2004].

5.4 The Dimensionless Diffusion Coefficient

The extent o f phase separation observed for the critical quench in Figures 5.2, B. 1 

and B.2 and for the ofif-critical quench in Figures 5.3, B.4 and B.5 show a gradual 

increase with increasing dimensionless diffusion coefficient, D  . This increase in 

the amount o f phase separation can be explained in terms of the definition o f the
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dimensionless diffusion coefficient, D*. The dimensionless diffusion coefficient 

is defined as the ratio of the driving force for phase sepai ation versus the resisting 

force and is expressed as;

n* _ driving force for phase separation
~ TT~T~\~ 1 (5.6)resisting forcea^v

\   ̂ J

The tenn in the numerator comes from the change in the free energy density (the

chemical potential) which is the driving force for phase separation (refer back to

equation 3.16) and the term in the denominator is attributed to the square gradient

energy (the inter facial energy) that acts to minimize the total free energy o f the

phase separating mixture by creating interfaces. As the value ofD*  (200 000, 500

000, 800 000) increases, the di'iving force for phase separation is larger and

therefore, more phase separated regions will develop. The increase in the number

of crests and troughs in the concentration profile for the critical quench from

Figures 5.2, B.l and B2 and the off-critical quench horn Figures 5.3, B.3 and B.4

show this observation. For instance, in the critical quench case. Figure 5.2 shows

three ciests evident at a dimensionless diffusion coefficient of D* = 200 000 and

in Figure B. 1 there are five crests at a dimensionless diffusion coefficient of D  =

500 000. Also, note that the dimensionless time at which the fust sign of phase

separation occurs decreases for the critical quench case from t* = 3.527 to 0.220

and for the off-critical quench case from t* = 4.898 to 0.22878 with increasing D*.

Therefore, by mcreasing the driving force for phase separation, the amount and 

the rate of phase separation increases.
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5.5 Quench Depth

Ftom the theory o f phase separation for the eaily to the beginning of the 

intermediate stages of phase separation by SD, it is known that as the temperature 

is deci eased (for the case of a system exhibiting an UCST type phase diagram), 

the system becomes increasingly unstable due to the increase in the hee energy 

and therefore more phase separated regions should appeal- [Ohnaga et al, 1989; 

Izumitani et al, 1990].

In this section, results will be shown for the off-critical quench case at two values 

o f dimensionless temperature Ti* = 0.25 and T2 * = 0.1 and a dimensionless 

diffusion coefficient of £> = 500 000. The trends for the critical quench case are 

the same and therefore aie not shown. The quench depth can is used to determine 

how deep a quench is relative to another. It is defined with reference to the 

critical temperature in the following dimensionless form:

= (5.7)

For the shallow quench case, at Tj* = 0.25, the value of the quench depth is Tq * =

0.08293 and for the deeper quench, at t/  = 0.2, the quench depth is 7 ^ / =

0.13293. Figure B.3 and Figure 5.9 shows the evolution of the concentration 

fluctuations for the shallow off-critical quench and the deeper off-critical quench, 

respectively. By compai ing the number of crests that are present in Figure B.3 

and Figure 5.9, it can be observed that there are more phase-separated regions. In 

the shallower quench, there are four crests and for the deeper quench there are 14 

crests. This has been observed in experiment by Izumitiani et al. [1990] for a
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mixture of polybutadiene (PB)/poly(styrene~i-butadiene) (SBR), where the 

amount of phase separated regions increased with increasing quench depth.

5.6 The Change in the Dimensionless Spatial Chemical 
Potential

The chemical potential, //,., is used to describe chemical equilibrium involving the 

diffusive transport of matter [Van Dijk and Wakker, 1997]. A/t for a polymer 

mixture in mathematical fbim for component / is defined as;

(^-8)

From the development of the general equation to describe phase separation by SD

Be
( —  + Vj = 0), the diffusional flux contains the thermodynamic driving force, the 

dt

change in the chemical potential, for the binary polymer mixture. Therefore, the 

plots o f the change in the chemical potential will provide useful information about 

the mixture in terms of equilibrium thermodynamics. The change in the chemical

potential of polymer 1,//,, in a mixture relative to its pure component, /r," , written

in terms of enthalpic and entropie contributions [Kurata, 1982; Van Dijk and 

Wakker, 1997]:

o f  N  ^
A//, In (c)+  1 - ^  + (5.9)

V ^2 J

The above equation can be written in dimensionless form as follows:

(5.10)
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Figure 5.9: The evolution of the dimensionless spatial concentration profile for a 
single quench into the unstable region o f the phase diagram at the following 
dimensionless times: (a) t -  0.2128, (b) ( = 0.2221, (c) I — 0.2323, and (d) 
r  = 0.2533. The dashed line through the center of the graph represents the initial
average concentration — 0.6. The dimensionless diffusion coefficient for this
case is D* = 500 000 and the dimensionless temperature is h  = 0.2.
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Equation 5.10 is used to calculate the change in the dimensionless spatial 

chemical potential of polymer 1 at different dimensionless times. Figure 5.10 and 

5.11 show the plots of the evolution of the change in the dimensionless spatial 

chemical potential for a single critical quench and a single off-critical quench at 

D* = 200 000. The discussion is divided into two aspects, one being the 

discussion of evolution of the spatial chemical potential at a fixed D and the 

other in discussing how the increase in D affects the change in the chemical 

potential.

Figure B. 14 for the critical quench case {D = 800 000) will be used as an 

example for the discussion of the change in the dimensionless spatial chemical 

potential of polymer 1. The same general trends are observed for the off-critical 

quench case at the same value of D*. From the profiles in Figure 5.10, B .l3 and 

B.14, it can be observed that there are regions where A/J\ increases with 

increasing dimensionless time to reach a local maximum and regions where A//i* 

decreases with increasing dimensionless time to reach a local minimum. This can 

be explained by combining the spatial chemical potential with the spatial 

concentration profile at a given dimensionless time. In Figure 5.12, a combined 

plot is shown for a dimensionless time of f = 0.2733, which corresponds to the 

last profile in Figure B.2 of the dimensionless spatial concentration profile and the 

dimensionless spatial chemical potential. In Figure 5.12, as the composition 

fluctuations approach the upper equilibrium value, the change in the 

dimensionless chemical potential decreases to a minimum (local minimum). In 

othei words, the chemical potential o f polymer 1 in the mixture is less than that of
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its pure phase, mix < /Y, pure and the change in hee energy is beinn minimized.

At the limit when c approaches 1 (rich in polymer 1), A / / , ’ =  0, meaning the

chemical potential o f polymer 1 in the mixture, //, , equals the value of the pure

component,//, pure. At the positions of the local maxima in Figure 5.12 b), the 

composition o f polymer 1 approaches the lower equilibrium value and these 

regions are rich in polymer 2. Eventually, the local maximum values will

decrease and A//, will approach zero. This being the condition for equilibrium 

where the change in the chemical potential of the coexisting phases becomes 

equal [Van Dijk and Wakker, 1997]. Going back to Figures 5.10, B. 13 and B. 14, 

the effect o f increasing the value of the dimensionless diffusion coefficient on the 

evolution o f the change in the dimensionless spatial chemical potential for a 

single critical quench and a single off-critical quench can be observed. Notice as 

D* increases from 200 000 to800 000, the rate of change in the dimensionless 

chemical potential also increases. At D = 200 000 to 500 000, for the critical 

quench, the evolution of the dimensionless spatial chemical potentials reach the

local maximum and local minimum values and approach equilibrium, A//, = 0, at 

times o f /  = 4.57 and t* = 0.6946 respectively. At D* = 800 000, towards the end 

o f the profile, the local maximum areas start to decrease towards lower values o f

A//, and similarly, the local minimum values increase towaids zero at a much 

faster rate ( /=  0.2733). Therefore, the increase of D* can be interpreted as 

stimulating a faster rate of separation and move towards stabilization o f the
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Figure 5.10; The evolution of the change in the dimensionless spatial chemical 
potential for a single quench into the unstable region o f the phase diagram at the 
following dimensionless times: (a) = 3.527, (b) /  = 3.843, (c) /  = 4.014, and
(d) t =4.57. The change in the dimensionless chemical potential is defined as the 
difference between the chemical potential polymer 1 in the mixture to that o f its
pure phase. The dimensionless initial concentration is c / =  0.5 and the 
dimensionless diffusion coefficient is D* = 200 000.
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Figure 5.11: The evolution of the change in the dimensionless spatial chemical 
potential for a single quench into the unstable region of the phase diagram at the 
following dimensionless times; (a) t = 4.898, (b) / = 5.092, (c) I -  5.292, and 
(d) t* = 5.703. The change in the dimensionless chemical potential is defined as 
the difference between the chemical potential polymer 1 in the mixture to that o f
its pure phase. The dimensionless initial concentration is — 0,6 and the
dimensionless diffusion coefficient isD = 200 000.
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Figure 5.12; A comparison between the dimensionless spatial concentration 
profile (a) to the change in the dimensionless spatial chemical potential (b) for a 
single critical quench with D* = 800 000 at a dimensionless time of t* -  0.2733,

polymer blend. The same can be said for the o ff  critical quench case. Lee et al. 

[2002] showed the same trends in their numerical work for polymer solutions on 

the investigation of the change in the dimensionless spatial chemical potential. 

The second derivative o f free energy with respect to composition of polymer I in 

dimensionless form is;

F * '= r
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The second derivative of fiee energy with respect to composition determines the

drive o f the composition fluctuations aiound the inflection ( ^  0 ) points
dc"

F  r-
where — y- > 0 stability or meta-stability are possible and — — < 0 results in

GC

instability for the binary mixture. Recall that for instability, the second derivative 

of free energy with respect to composition must be less than zero and small 

composition fluctuations are enough to create instability. The cui'vature o f the 

second derivative of free energy with respect to composition (change in sign) 

details the degree of stability, alongside the knowledge of the first derivative o f 

free energy with respect to composition, with concave downwards (local 

maximum) being unstable and concave upwards (local minimum) can be meta

stable or stable. Figures 5.13 and 5.14 show the evolution of the second 

derivative o f the free energy with respect to composition spatially. The critical 

and off-critical quench are at Ti = 0.25 with D = 200 000, respectively. From 

the plots for the critical and off-critical quench case for the change in the second 

derivative with respect to composition, it can be observed that the steepness in the 

rate o f change increases with time and with increasing D* (see Figures B .l7 to 

B.20 in Appendix B). This indicates an increase in the instability with time as the 

system phase separates [Hashimoto et al., 1983]. The values at which second

derivative o f free energy with respect to composition is zero, F  = 0 , reflect the 

points o f inflection in the free energy curve at the positions where the curvature 

changes sign and also at the ciitical point (Chapter 3). Therefore, the 

observations o f the profiles for the second derivative with respect to composition
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match the thermodynamic in describing instability o f phase separating mixtures 

[Van Dijk and Wakker, 1997].

Also refening back to the explanation given for the time discrepancy for the 

occurrence of phase separation by SD for the critical and off-critical quench, it 

can be observed that this explanation is valid. By comparing the plots o f the 

second derivative of free energy with respect to composition for the case where 

D -  200 000, it can be observed that the rate of change in the free energy is much 

faster for the critical quench than for the off-critical quench case. This indicates 

higher instability for the critical quench case.
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F igure  5.13: The evolution of the change in the dimensionless spatial second 
derivative o f  the free energy with respect to composition of component 1 for a 
single quench into the unstable region^ o f the phase^ diagram at the following 
dimensionless times: (a) / =3,527, (b )/ = 3.843, (c )/ = 4.014, and (d) t —4,57. 
The change in the dimensionless second derivative o f free energy is used to

determine the conditions of stability {F  > 0 ), meta-stability ( / ' > 0 ), and

instability ( F* < 0 ). The dimensionless initial concentration is c, = 0.5 and the
dimensionless diffusion coefficient is D  = 200 000.
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Figure 5.14: The evolution of the change in the dimensionless spatial second 
derivative o f the free energy with respect to composition of component 1 for a 
single quench into the unstable region of the phase diagram at the following 
dimensionless times; (a) t = 4.898, (b) t = 5.092, (c) t = 5.292, and (d) 
 ̂ ~ 5.703. The change in the dimensionless second derivative o f  free energy is

used to determine the conditions of stability {F* > 0 ), meta-stability ( F* > 0 ),

and instability ( F  <0). The dimensionless initial concentration is c / =  0.6 and 
the dimensionless diffusion coefficient is D* = 200 000.
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Chapter 6

Results and Discussion: 1-D TIPS Double 
Quench

This chapter presents the 1-D numerical results o f phase sepaiation by double 

quenching (within the unstable region of the phase diagram) of a polymer mixture 

to observe whether secondary phase separated regions are produced inside the 

already phase separating regions from the initial quench. Double quenching 

involves a two-step process whereby the initial quench is allowed to phase 

separate for a certain period of time before the next quench takes place. In 

experimental work, the second quench has been made at the intermediate stages 

[Tanaka, 1993; Tao et a i ,  1995] and the late stages [Tanaka, 1993; Tao et al., 

1995; Hashimoto et al., 2000] of phase separation after the first quench. In the 

method used by Hashimoto et al. the second quench was restricted to the unstable 

region such that the blend still phase separated by SD [Hashimoto et al., 2000]. 

In numerical studies Ohnaga et al. [1989], made the second quench at different 

specifications. There are three distinct time periods they quenched at, the eai ly 

stages o f phase separation by SD, when the concentration fluctuations were well- 

developed and when the concentration fluctuations reached their respective 

equilibrium values [Ohnaga et al., 1994]. Henderson and Clarke [2004] made
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their second jump at the late stage of phase separation by SD following the woik 

of Hashimoto et al. very closely [2000]. In this study, the second Jump is made at 

the beginning of the intermediate stages and the technique to determine the time 

for the temperature jump is based on the results presented by Hashimoto [1986b] 

in their experimental work on the different stages o f phase separation by SD. The 

second quench will still remain in the unstable region so that phase separation is 

still occurring by SD. The pai'ameters used in this section aie summarized in 

Table 6.1.

Table 6.1: Summary of the dimensionless parameters used in the 1-D numerical 
study for double quenching

Parameter Value

Co*

A:,, ^2

D'

K

T2 (temperature jump) 

T2 (temperature jump)

0.5 (critical), 0.6 (off-critical) 

1000

200 000, 500 000, 800 000

0.25 (initial quench temperature) 

0.2 (shallow quench)

0.1 (deeper quench)

An initial critical and an initial off-critical quench case are studied with different 

values of the driving force, D . The dimensionless temperature chosen for the 

initial quench is 7] = 0.25 and two dimensionless temperatures are chosen for the 

second temperature jump = 0.2 (shallow quench) and T*= 0.1 (deeper
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quench). In ordei to be able to mimic real systems that ha\ e been studied tor 

double quenching in experiments, the values chosen for this study re (I eel the 

order o f magnitude of the parameters used in experiment. In Hashimoto’s work 

[2000], for a critical quench, the dimensionless quench depth for the initial

temperature jum p was calculated to be 7], ’ =0.1667 and at the second 

temperature jump, the dimensionless quench depth was * = 0.9444. In

Tanaka’s work [1993], a shallow and a deeper quench were examined. The 

shallow dimensionless quench depth for the initial temperature jump was 

calculated to be =0.01667 and at the second temperature jump, the

dimensionless quench depth was =0.1298 . For a deeper quench, the initial

dimensionless quench depth was calculated to be =0.040476 and at the

second temperature jump, the dimensionless quench depth was =0.1274.

The reason that the quench depth for the second jump is roughly the same in 

Tanaka’s work is because he examined the effect of making the initial quench 

depth larger (i.e. a deeper initial quench). The values used in this study are 

comparable to the experimental values. In this study, for the shallow quench from 

an initial quench temperature of Ti = 0.25 to the second quench at T2 —0.2, 

the quench depth for the initial temperature jump is 7^^ =0.08295 and at the

second quench Tq =0.13295. For the deeper quench to T2 — 0.1 the quench 

depth is Tq =0.2330.
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The method used for double phase separation was shown in Figuie 1.6. The 

double quenching process takes place within the unstable region of the phase 

diagram so as to ensure that the system is still phase separating by SD. The initial 

quench is made and the system is allowed to phase separate for a certain period of 

time, t ,\  before the second quench. The time t* is the dimensionless transition 

time which corresponds the transition from the early to the beginning of the 

intermediate stages of phase separation. In the literature, the criterion for the 

second quench is based on the stage of SD (i.e. early, intermediate and late stage) 

[Tanaka, 1993; Tao et a i ,  1995; Hashimoto et al., 2000].

The overall direction of the numerical work presented in this section will examine 

the following points to provide a better understanding of the mechanism behind 

double phase separation by SD:

(i) Does the evolution of the concentration fluctuations follow the same 

trends that are observed for a single quench?

(ii) How is the stiaicture factor affected by the double quench and how can 

it be used to describe the appearance of secondary stmctures?

(iii) How does the di'iving force (increase in the dimensionless diffusion 

coefficient D ) affect the foi'mation of secondary structures?

(iv) How does quench depth affect the formation of secondary structures 

(shallow and deeper quench)?

(v) Are there any significant differences that appear between a critical and 

an off-critical quench in terms of growth dynamics for secondary 

phase separation?
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(vi) At what point after the second temperature jump do the secondary 

structures start to form?

(vii) How does the growth of the primary and secondary stmctures evolve 

during the second temperature jump?

(viii) Does the secondary phase separation follow the linear C-H theory in 

the early stages of phase separation?

The interest o f this thesis still lies in the formation of the phase-separated 

structures and therefore only the eaily to the intermediate stages will be 

examined. The results presented in this chapter for the critical and off-critical 

quench case are for a value of the dimensionless diffusion coefficient D* = 200 

000 unless otherwise specified. The results for D* = 500 000 and 800 000 aie 

shown in Appendix C.

6.1 Dimensionless Transition Time (tt ) for the Second 
Quench

Before the second quench is applied, it is necessaiy to use a consistent method for 

determining at what point a second temperature jump should be applied in all the 

simulations. From the dimensionless spatial concentration profiles, the 

composition fluctuations represented the early to intermediate stages o f phase 

separation by SD. The transition point from the early to the intermediate stages 

can be determined through the evolution o f the dimensionless structure factor at 

the maximum wave number, k,„, with time. In the work by the Hashimoto et al. 

[1986b] the growth of the scattering intensity is exponential in the early stage and
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taking the natural log of these values should produce a straight line. Into the later 

stages of phase separation by SD, the growth rate slows down where nonlinear 

effects take place. This was thought to be due to the coarsening of the mixture 

[Hashimoto e/ cil., 1986b]. The dimensionless transition time, t t , is defined as the 

time at which phase separation moves away from the early stage dynamics and 

enters into the beginning of the intermediate stages. How this time is determined 

is shown in Figure 6.1 for the critical quench case.

2.4

2.2

2.0

S

0.9

0.7

0.5

0.3

3.80 4.22 4.65 5.07 5.50

t

Figure 6.1: The evolution of the dimensionless maximum structure factor with 
dimensionless time from /* = 0.8594 to t = 1.00 for a single quench {c*  = 0.5, D*

= 200 000 and 7] =0.25) into the unstable region of the phase diagram. The 
dimensionless transition time is 4.720. At the early stages of phase separation by 
SD the initial increase is linear and gradually slows down into the beginning o f  
the intermediate stage where coarsening occurs. The transition point occurs where 
the two tangent lines intersect.
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From the plot o f the maximum values ot the dimensionless structure factor at 

given dimensionless times for the single quench, the dimensionless transition time 

can be obtained by making two tangent lines where the change in the growth rate 

is obvious. In Figure 6.1, the two tangent lines aie drawn and the point of 

intersection is where the transition time is located. Figuie 6.1 is an actual plot for

the critical quench case at c„* =0.5, D = 200 000 and 7]' =0.25. The values 

correspond to the plot of the structure factor shown in Chapter 5 (Figure 5.3.). 

Since one of the interests in this section is to determine how driving force affects 

the formation o f secondary stmctures, a summaiy of the transitions times at each 

given condition to be tested is summarized in Table 6.2.

T able 6.2: A summaiy of the dimensionless transition times (at =0.25)
deteimined from plotting the maximum values of the dimensionless structure 
factor with dimensionless time.

Quench Parameters
Dimensionless Transition 

Time t,

c /= 0 .5 ,  D ' = 200 000 4.720

Critical c /= 0 .5 ,  D ' = 500 000 0.650

c /= 0 .5 ,  D '= 8 0 0  000 0.256

Cg =0.6, D =200 000 5.520

Off-critical =0.6, D =500 000 0.903

= 0.6, D = 800 000 0.323

From Table 6.2, the trend observed with the increase in the dimensionless 

diffusion coefficient is a decrease in the dimensionless transition time. This 

should be expected since phase separation occurs at a much faster rate with
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increasint; D and therefore, should reach the beginning of the intermediate stage 

much faster.

The plots to determine the dimensionless transition tune for all other cases will 

not be shown since the evolution of the maximum value of the dimensionless 

structure factor with dimensionless time show the same general trend.

There is now a consistent method of determining when the second temperature 

jump should take place and in the analysis, the jump will be made at the transition 

time.

6.2 Dimensionless 1-D Spatial Concentration Profiles

Figure 6.2 shows the evolution of the dimensionless spatial concentration profile 

(for an initial critical) quench after the second temperature jump. The initial 

phase separation temperature is Ti = 0.25 and the second temperature jump is 

T2 = 0.2 at the transition time. The transition times is t* = 4.72 for D* = 200 

000. For each case (also refen ing also to Figures C. 1 and C.2 in appendix C), 

after the second temperature jump, there is no evidence of double phase 

separation. What is observed in the evolution of the spatial concentration profiles 

is a continuous growth of the already growing initial profiles presented in Figures 

5.2, B. 1 and B.2 for D = 200 000 to 800 000. Hashimoto et al. [2000; Hayashi et 

al., 2000a] have observed this continuous growth in their experimental work 

when investigating the effect of initial domain size on secondary phase separation. 

Numerically, Henderson and Clarke [2004] have also observed this in theft 2-D
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study on double quenching in the late stages of phase separation by SD at a 

shallowei quench depth. After the second teinperatiue jump, there is a lag time 

that exists before a significant increase is observed in the growth of the 

concentration profiles approaching the new upper (Cj, =0.9695) and lower

(C[ =0.03049) equilibrium composition values at Tj * = 0.2. This lag time 

appears because the mixture, upon subjection to a change in conditions, requires 

time to adjust to the new environment and therefore, experiences a lag or a 

transition period before reaching the new state. For the initial critical quench 

case, the lag times decrease ftom 0.014 to 0.0006 as D* increases. The decrease 

in the lag time as D* increases is expected since D* increases the rate of phase 

separation.

Figure 6.3 shows the evolution of the dimensionless spatial concentration profiles 

(for an initial off-critical quench) after the second temperature jump. Again the 

initial temperature jump is at a temperature of Ti = 0.25 and the second 

temperature jump is Tj* = 0.2 at the transition times. The transition time in this 

case for D* = 200 000 is t* = 5.52. The observations made for the critical quench 

case can also be applied to the off-critical quench case in that the growth of the 

concentration fluctuations ftom the initial quench are amplified by the second 

temperature jump with no sign of double phase separation present. However, 

there is a slight difference in the concentration profile at D — 500 000 and 800 

000 (See Figures C.3 and C.4 in Appendix C). In Figures C.3 and C.4 there is 

slight destructive interference that can be observed in peak 3
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Figure 6.2; The evolution of the dimensionless spatial concentration profile for a 
double quench from T, *= 0.25 to T; ' = 0.2 at the transition time o f 4. 72 at 
the following dimensionless times: (a) t = 4.731, (b) t = 4.745, (c) /* = 4.798, 
and (d) t — 4.861. The dashed line through the center of the graph represents the 
initial average concentration ~ 0.5. The dimensionless diffusion coefficient for 
this case is D* = 200 000.
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(Figuie C.3) and peak 1 (Figure C.4). However, tliis increase in D* is not 

sufficient to cause the mixture to reach a new instability as it appears to restore 

itself to match the evolution of the other peaks in the profile. A lag time also 

exists for the off-ci itical quench case after the second quench before a significant 

growth o f the concentration fluctuations is obseiwed. The lag times decrease fi'om 

0.041 to 0.0063 as D increases.

Figui'e 6.4 shows the evolution of the dimensionless spatial concentration profiles 

(for the initial critical quench) after the second temperature jump at a deeper 

quench depth o f  72 = 0 .1 . The second quench is made at the same transition 

times shown in Table 6.2. The initial temperature was kept constant at T*=  0.25 

to be consistent with the shallower quench to obseiwe the effect of making a 

deeper second quench. The concentration profiles in this case look different fi'om 

the single quench and the shallower quench at 7) = 0.2. In Figure 6.4, at i = 

4.748, there aie noticeable obstructions in the peaks and troughs o f the 

concentration profile. The obstmctions gradually increase with time as the 

primary peaks approach the new equilibrium values at the second temperature and 

they decrease at the troughs as the lower equilibrium values are approached. 

These profiles are similar to the ones generated by Ohnaga et al. [1994], in their 

investigation o f  reaction induced phase separation (see Chapter 2 foi details). A 

lag time exists after the second quench before the first sign of double phase 

separation is observed. The lag times are 0.02, 0.0041 and 0.0011 and decreases 

with increasing D  . This is consistent the increase in the rate and
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Figure 6.3: The evolution of the dimensionless spatial concentration profile for a 
double quench from Tj *=0.25 to 7  ̂ '  = 0.2 at the transition time of 4 = 5.52 at 
the following dimensionless times; (a) t* = 5.534, (b) t* = 5.575, (c) t* = 5,625, 
and (d) t =5.671. The dashed line through the center of the graph represents the 
initial average concentration c /= 0 .6 . The dimensionless diffusion coefficient for 
this case is D* = 200 000.
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amount o f phase separation with increasing D . The same trends hold for D 

500 000 and 800 000 shown in Appendix C.

Figuie 6.5 shows the evolution of the dimensionless spatial concentration profiles 

(for the initial off-critical quench) after the second temperature jump to a deeper 

quench depth o f Ti* -  0.1 for the same transition times in Table 6.2. The initial 

temperature was kept constant at z /  = 0.25. The effect of making a deeper 

second quench showed noticeable obstructions on the concentration profiles in the 

peaks and troughs as in the case of the critical quench similai- to the ones 

generated by Ohnaga et al. [1994]. The obstmctions to the peaks o f the 

composition fluctuations aie larger compaied to the critical quench case. The 

troughs in the composition profiles show almost no secondary obstmctions. This 

is attributed to the location of the compositions in the phase diagram before the 

second quench is made and will be discussed later on. The lag times before the 

appearance o f double phase sepaiation after the second quench aie 0.025, 0.0047, 

and 0.0017 for increasing D*. This lag time decreases with increasing D  . The 

lag times are larger for the initial off-critical quench than for the critical quench. 

This observation made for the single quench case and was shown to be dependent 

on the location o f the quench as compared to the spinodal curve.
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Figure 6.4: The evolution of the dimensionless spatial concentration profile for a 
double quench from Ti * = 0.25 to T’a * = 0.1 at the transition time of i*= 4.72 at 
the following dimensionless times, (a) t* = 4.726, (b) t* = 4.740, (c) t* = 4.748, 
and (d) t* -  4.769. The dashed line through the center of the graph represents the
initial average concentration = 0.5. The numbers on top of the graph are used
to identify the number of peaks for a dimensionless diffusion coefficient D* = 200 
000.

-119-



Chapter 6: 1-D TIPS Double Quench

*

*

1.0

0.8

0.6

0.4
0.2

0.0

1.0

0.8

0.6

0.4
0.2

0.0

a)

b)

* c )

F igu re  6.5: The evolution of the dimensionless spatial concentration profile for a 
double quench from T\ * = 0.25 to Tj * = 0.1 at the transition time o f U = 5,52 at 
the following dimensionless times: (a) t = 5,526, (b) / = 5.545, (c) t = 5.549, 
and (d) /* = 5.565, The dashed line through the center o f the graph represents the
initial average concentration = 0.6, The dimensionless diffusion coefficient for

this case is D *  = 200 000.
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6.3 The Evolution of the Dimensionless Structure Factor 
After the Second Temperature Jump

This section is split into two parts to describe the observations of the evolution o f 

the dimensionless structure factor after the second quench to Ti — 0.2 and Ti = 

0.1 for the initial critical and initial off-critical quench case. Analysis o f the 

growth rates of the primary and secondai y peaks (if they form) will be discussed 

in a later section. Here, the focus is on physical obseivations and relating what is 

observed here to the observations made for the evolution of the dimensionless 

spatial concentration profiles. The dimensionless structure factor is calculated in 

the same way as described m Chapter 5 for the single quench case. The evolution 

of the dimensionless structure factor for each case is shown right after the second 

quench is made at the specified dimensionless transition times in Table 6.2. 

Unfortunately, it was not possible to examine the entfte process of the growth and 

decay of the secondary stmctures (when they occurred), which has been done 

experimentally, due to numerical problems encountered as the mixture reached 

the equilibrium compositions at Ti*. Refening to Chapter 4, in the 1-D model, as

* * J I
c A  0 and c A  1 the teims in the model with — and-   approached infinity

c (1 -c )

respectively.

To relate the numerical results to experimental results, the numerical work should 

reflect the same evolution in pattern formation detailed in the structure factor as in 

the work of Hashimoto et al. [Hayashi et al., 2000a] and in the 2-D numerical 

study by Henderson and Clarke [2004]. In the experimental work after the second
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quench at a certain domain size formed fiom the first quench, tlicro appeared a 

second broad peak that grew with time in the light scattering profile. I his 

observation from the light scattering data was a result o f the formation of 

secondary domains. The structure factor from the numerical work should also 

show the emergence and growth of a broad peak. Henderson and Clarke [2004] 

have observed the appearance and growth of a second broad peak in the evolution 

o f the stmcture factor after a second quench at the late stages of phase separation 

by SD in their numerical study. This is the basis of compai ison for the numerical 

work presented in the next two sections.

6.3.1 Second Temperature Jump to T i =  0.2

Figure 6.6 shows the evolution of the dimensioriless structure factor after the 

second quench to T2 * = 0.2 from the initial critical quench at T\ = 0.25 for D -  

200 000. Recall from the evolution of the concentration profiles for the initial 

critical quench, (Figures 6.2), after the second quench, the concentration profiles 

were amplified from the initial single quench profiles. There was no sign of 

double phase separation present and therefore, the growth of the structure factor 

should also show an increase in the intensity of the primary peak but no 

occurrence o f a secondary peak forming. This result is in accordance to the 

definition o f the stiiicture factor (Chapter 5) and is observed in the evolution of 

the dimensionless structure factor for the initial critical quench case at all values 

o f D* investigated. A similar trend was observed experimentally in Hashimoto’s 

work, where there was no appearance o f the second broad peak in at the condition
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of a smaller domain size before making the second temperature jump [Hayashi et 

a i,  2000a], However, the difference in their work and the work presented here is 

that the dependent variable is the value of the second temperature Jump that takes 

place and not the different domain sizes. Numerically, Henderson and Clarke 

[2004] also observed the same continuous growth for a shallow quench following 

Hashimoto’s work. The reason that there is no occuirence of a second peak is 

because the quench depth at T2 = 0.2 was not significant enough to cause the 

mixture to destabilize in a secondary sense. This will be explained through the 

investigation of the change in the chemical potential and the second derivative o f 

the free energy with respect to composition in a later section. A comparison of 

the structure factor presented here and for the single quench at Ti = 0.25 show the 

same values for for each case, indicating that there is no change in the 

maximum value of the wave number which encompasses the dominant mode of 

the composition fluctuations, for the primary structures, in the early period of the 

second quench. The second quench does not have an effect on the maximum 

wave number o f the primary structure. Just the intensity o f the phase separation 

process in the early period after the second quench. This is consistent with the 

work by Hayashi et al. [2000a] and Henderson and Claike [2004]. In terms of the 

relative size of the phase-separated regions after the second quench, the 

information of constant k ,„ax signifies that the primary structure does not change 

in size in the early period. Recall the relationship between k  ,„ax and 

dimensionless characteristic length which measures the relative size o f the phase-

separated domains, À = — . This observation is consistent with the
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expeiimentally obsei'ved evolution of the light scattering data in the work by 

Hashimoto et al. [2000] when investigating the growth ot the primary structure 

after the second quench. Furthermore, the growth of the dimensionless structuie 

factor with time looks the same as for a single quench case in the early stages of 

SD. After the second quench, the growth of the dimensionless structure factor 

continues as if  in the early stages of SD and proceeds to take the same course as a 

single quench into the intermediate stages (composition reaching the upper and 

lower equilibrium values). Hashimoto et al. [2000] also confirmed this 

experimentally for the case where no broad secondary peak was observed and 

only the primary peak continued to grow. Table 6.3 summarizes the values for 

the characteristic length for the critical quench at a second temperature jump of 

72* = 0.2.

Figure 6.7 shows the evolution of the dimensionless stmcture factor after the 

second quench to Tj* = 0.2 hom the initial off-critical quench at 7] = 0.25 for D  

= 200 000. In the off-critical quench case, the results are different from the 

evolution o f  the dimensionless stmcture factor observed for the critical quench 

case. There appeal's to be a secondai y broad peak foi-ming in the evolution o f  the 

dimensionless stmcture factor. In Figure 6.7, the peak is extremely small and 

broad. This small broad peak does not reflect in the evolution o f the 

dimensionless spatial concentration profile in Figure 6.7 and a continuous 

increase o f the original growth of the concentration fluctuations is obseiwed. 

This secondary peak is more obvious and increases as D  increases (see Figure 

C .I l  and C.12 in Appendix C). The effect of increasing the dimensionless
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Figure 6.6; The evolution of the dimensionless structure factor for a double 
quench from T\ *= 0.25 to 7̂  * = 0.2 (second temperature jump made at transition 
time of t*= 4.72) at the following dimensionless times: 1* = 4.731 (light grey solid 
line), 1* = 4.745 (dash-dot line), t = 4.798 (dashed line), and t* = 4.861 (solid
black line). The initial average concentration c j=  0.5. The dimensionless
diffusion coefficient is D* = 200 000.

diffusion coefficient (increasing the driving force for phase separation) with the 

second temperature jump causes the formation of the secondary peak for the 

initial off-critical quench case and will be discussed in a later section. The growth 

rate of the primary and secondary peaks is consistently increasing with time. 

How they grow relative to each other will be explored in a later section. Note that 

the appearance o f a secondary peak was not sufficient enough to cause the 

mixture to develop secondary structures. However, small destructive interference 

was observed in the concentration profiles (see Figure C.3 and Figure C.4 in 

Appendix C). The structure factor for the double and single quench show the 

same values for k ,„ax for each case, indicating that there is no change in the
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maximum value o f the \va\ e number in the early period of the seeond quench. 

The second quench does not have an effect on the maximum wave number for the 

initial off-critical quench case either, just the intensity o f the phase separation 

process in the early period after the second quench. The relative size o f the 

primary phase-separated regions after the second quench does not change in size 

in the early period. The characteristic lengths of the primary and secondary peaks

after a second quench to T  =0.2 for initial off-critical case are summarized 

below in Table 6.3.

In summary, the shallower second quench does not show secondary phase 

separation in the initial critical or off-critical quench case. There is only an 

amplification o f the dimensionless stmcture factor. The maximum wave number 

remains constant with the same value as the initial quench case in the early period 

after the second quench.

6.3.2 Second Deeper Temperature Jump to T2 * = 0.1

A deeper quench was made to test for secondary stmcture formation. Figure 6.8 

shows the evolution o f the dimensionless stmcture factor after the second quench 

to T2 *— 0.1 from the initial critical quench at Ti = 0.25 for D = 200 000. Recall 

that in the dimensionless spatial concentration profiles (Figures 6.4) for the initial 

critical quench at Ti = 0.25 and then to a second quench at 7] ~ 0.1, there was 

the appearance o f constructive and destmctive interferences. The interference 

patterns were more obvious in the evolution o f the dimensionless spatial 

concentration profiles as the value o f D increased (see Figures C.5 and C.6).
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Figure 6.7: The evolution of the dimensionless structure factor for a double 
quench from T\ * = 0.25 to Tj* = 0.2 (second temperature jump made at a 
transition time of //=  5.52) at the following dimensionless times; / = 5,534 (li^ht 
grey solid line), /* = 5.575 (dash -  two dots line), /* = 5.625 (dotted line), and / =
5.671 (solid black line). The initial average concentration -  0.6. The
dimensionless diffusion coefficient for this case is D* = 200 000.

Table 6.3: Dimensionless characteristic lengths for the primary structures 
(7J* = 0.25 ) and the secondary peaks -  0.2 ) formed

Initial Quench Parameter 
Temperature Jump from

-  0.25 to 7:' = 0.2
/L'

c /  =0.5, D ' = 200 000 1.57 NA
Critical c /= 0 .5 , D ' = 500 000 1.047 NA

c /= 0 .5 , D ' = 800 000 0 897 NA

c /  = 0.6, D* = 200 000 1.57 NA
Off-critical c* = 0.6, D* = 500 000 T256 0.698

c* = 0.6, D*=800 000 0.897 0.523
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These observations aie in agreement with the e\olution of the dimensionless 

structuie factoi. Theie are obvious secondary peaks that form right after the 

second quench at T2 — 0.1. In the profile, both the primary and the secondary 

peak grow with time. This reflects in the growth of the concentration fluctuations 

with time as the primary peaks and troughs start to approach the upper and lower 

equilibrium values and the secondary peaks and troughs start to increase in value 

as well at T2 = 0 .1 . Hayashi et al. [2000a] and Henderson and Claike [2004] 

have observed the same effects to the growth of the stmcture factor when 

secondary structures form. Note that the intensity of the primary peak decreases 

with increasing D  when comparing Figure 6.8 to Figure C. 13 and C.14. This 

may be due to the fact that the formation and the increase in growth rate o f the 

secondary peaks is affecting the growth of the primary peaks with time as it 

approaches the new equilibrium values at T2 = 0 .1 . Also, the value o f the 

maximum wave number for the primary peak does not shift when the quench 

depth is lowered. There is only an increase in the intensity o f  the primary peak 

and the appearance and growth of a secondary peak. The interfer ences observed 

in the dimensionless spatial concentration profiles where secondary phase 

separation is observed can be explained by evaluating the dimensionless

characteristic length, T* = —;— , which is equal to the wavelength of the

dominant wave in SD. As gets larger (smaller), À* gets smaller (larger) and 

therefore, the result o f adding the two wavelengths together from the initial 

quench and the second quench will cause the interferences in the concentration 

profiles. This explanation was also given by Ohnaga et al. [1989] and Yang et

- 1 2 8 -



Chapter 6 : 1-D TIPS Double Quench

al. [1998], The characteristic lengths o f the primary and secondary structures 

after a second quench to =0.1 for the critical case are summarized in Table 

6.4. As the dimensionless diffusion coefficient increases, both the primary and 

secondary characteristic lengths decrease. This should be expected since D  

increases the amount of phase separation.

*
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Figure 6.8: The evolution of the dimensionless spatial concentration profile for a 
double quench from T = 0.25 to T =0.1 (at the transition time o f /,*= 4.72) at 
the following dimensionless times: t* = 4.726 (light grey line), t* = 4.740 (dash- 
dot line), t = 4.748 (dotted line), and t = 4.769 (solid line). The initial average 
concentration 0.5. The dimensionless diffusion coefficient is D* = 200 000.

Figure 6.9 shows the evolution of the dimensionless structure factor after the 

second quench to 72*= 0.1 from the initial off-critical quench at 7 /  = 0.25 for D* 

— 200 000. Like the initial critical quench case, the dimensionless spatial 

concentration profiles in Figures 6.5 shows an increasing amount of constructive 

and destructive interferences for the initial off-critical quench case. These 

interferences increase as D* increases (see Figures C.7 and C.8 in Appendix C).
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In the evolution o f the dimensionless structure factor, this is rcllected in the 

fotmation o f secondary peaks which can be observed to increase in intensity as D* 

increases (see Figures C. 15 and C. 16). Comparing back to the case where the 

second quench was to Ti = 0.2, the intensity o f the secondary peak is higher here 

for all three plots. This can be explained by comparing the location of the quench 

with respect to the spinodal at Ti* = 0.2 as opposed to T2 * = 0 .1  and will be 

examined in the next section on quench depth and double phase separation. The 

value o f the maximum wave number for the off-critical initial quench and for the 

second quench does not change for the primary peak in the structure factor plots 

even with a deeper quench. The characteristic lengths o f the primary and

secondary structures after a second quench to 72 =0.1 for the off-critical case are 

summarized in Table 6.4. The characteristic lengths also decrease with increasing 

D* as in the critical quench case.

Overall, the same trends hold for the initial critical and off-critical quench case in 

the evolution o f the dimensionless structure factor after the second deeper quench. 

The deeper second quench shows secondary phase separation with the formation 

and growth o f a secondary peak. The primary peak also grows after the second 

quench in intensity but the maximum wave number remains constant in the early 

period after the second temperature jump.
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Figure 6.9: The evolution of the dimensionless spatial concentration profile for a 
double quench from T,* = 0.25 to Tz* = 0.1 (at the transition time of /,*= 5.52) at 
the following dimensionless times: t = 5.526 (dash-dot line), t == 5.545 (light 
grey line), 1* = 5.549 (dotted line), and t* = 5.565 (solid line). The dashed line
through the center of the graph represents the initial average concentration =
0.6. The dimensionless diffusion coefficient for this case is D *  = 200 000.

Table 6,4: Dimensionless characteristic lengths for the primary structures 
{T* = 0 2 5 )  and the secondary stmctures (7(*=0.1) formed upon further 
quenching from after the determined dimensionless transition times.

Initial quench
Parameter 

Temperature jump from
T* =025 to 7;* =0.1

4*

c,* =0.5, 79* =200 000 1.57 0 628
Critical c /  =0.5, D* = 500 000 1.047 0 393

c /  = 0.5, 79* =800 000 0 897 0.349
c* = 0.6, 79* = 200 000 1.57 0.897

Off-critical c /  = 0.6, 79* = 500 000 1.256 0.698
c /  =0.6, 7)* =800 000 0.897 0.523
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6.4 Quench Depth and Secondary Phase Separation

The dimensionless spatial concentration profiles for the shallower and deeper 

second quench showed a difference in the evolution of phase separation. At the 

second jum p o f  T% = 0.2, the evolution of the spatial concentration profiles were 

amplified fiom the original quench atT j = 0,25, eventually approaching the new 

equilibrium values at the second temperature. At the second jump o f Tz* = 0.1, 

the evolution of the spatial concentration profiles showed the formation of troughs 

(crests) within the crests (troughs) of the original phase separating profile. This 

change in the concentration profile can be attributed to the formation o f the 

secondary phase separated regions. Also, for the initial off-critical quench, after 

the second jum p to Ti* = 0.1, the obstructions were more evident in the peaks o f 

the composition fluctuations rather than at the troughs. To examine why these 

differences occur in the dynamics of phase separation between the two quench 

depths requires examining the phase diagram. The quench depths are

7% *=0.13295 for the shallower quench and =0.2330 for the deeper^ j J

quench. Figure 6.10 shows the phase diagram for the symmetrical blend studied 

showing the specific regions of interest for the two quench depths at the critical 

and the off-critical quench case using the case where D = 500 000 to explain the 

observations (see Figure B. 1 and Figure B.3 in Appendix B). The same trends 

hold for the other values o f D . This provides information about the mechanism 

o f  phase separation. Tanaka [1993] proposed similar mechanisms where by the
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Figure 6.10: A model symmetrical phase diagram for a polymer blend of degree 
of polymerization vV, = A. = 1000. The two open triangles represent the

locations of investigation (a critical c* = 0.5 and off-critical = 0.6 quench) at

the initial dimensionless temperature jump of T* = 0.25 with D* = 500 000. The 
open circles represent the locations of the phase separating system when it has 
reached the transition time I* = 0.65 (critical quench) and the open squares 
represent the phase separating system when it has reached the transitions time t* = 
0.903 (off-critical quench) where the second temperature jump is made. The 
filled circles show the location of the system at the start of the second shallower 
temperature jump (7' = 0.2) and the deeper temperature jump {T* = 0 .1) for the 
critical quench case. The filled squares show the location of the system at the start 
o f the second shallower temperature jump {T = 0.2) and the deeper temperature 
jump ( T* = 0.1 ) for the off-critical quench case.

location of the compositions before and after the second quench made a 

significant impact on the formation of secondary phase-separated regions.

In Figure 6.10, the unfilled triangles denote the locations o f the initial critical and 

off-critical quench compositions at T, = 0.25. The unfilled circles represent the
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compositions o f polymer 1 right before the second quench is made to / t),2

and T2 — 0.1 for the initial critical quench. The unfilled squares represent the 

compositions o f polymer I right before the second quench is made to T2 * = 0.2 

and T2 — 0.1 for the initial off-critical quench. The filled circles and squares then 

represent the position of the initial composition for the second quench within the 

phase diagram for each temperature jump ( T /  = 0.2 and T2 * = 0.1). From the 

phase diagram, two distinct observations can be made. First, the locations o f the 

compositions for the critical and the off-critical quench at the transition times are 

slightly different. For the critical quench, the two phase-separated compositions 

are equidistant fi'om the initial value of 0.5 and are located at approximately the 

same locations on opposite ends close to the spinodal line. For the off-critical 

quench case, the two phase-separated compositions are shifted in that one is still 

located within the spinodal while the other is located beyond the spinodal into the 

meta-stable region. The second observation is the new location o f the 

composition in the phase diagram after the jump to the second temperature in 

relation to the position of the spinodal curve (filled circles and squares). For the

shallower second quench {Tg =0.13295), the location of the initial starting

point at F2 = 0.2 is much closer to the spinodal curve for both the critical and the 

off-critical quench case than compaied to the quench at r 2 = 0 .1 . Recall from 

Chapter 3 that the location of the spinodal points are at the inflection points

( .^ - ^  = 0 )  in the change in free energy curve. At these points, there is no
dc^

influence on the composition fluctuations to over come energy barriers or to drive
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phase separation by SD. These two observations can be used to explain 

differences in the interferences in the spatial concentration profiles for the initial 

off-critical quench case, at a second temperature jump of 7’2 = 0 .1 , where the 

peak positions have more obstmctions than at the trough positions. Because there 

is this difference in the locations of the composition for the second quench, the 

instability at each composition is different and therefore, the difference in the 

intensity of the obstmctions obsemed. In terms of the two quench depths, it is 

known that the driving force for phase separation is directly related to the distance 

of the temperature within the confines of the spinodal curve [Tao et a l,  1995]. 

For the second quench made not too fai' horn the spinodal curve at T2 = 0.2 there 

will be a smaller diiving force for phase separation. A deeper quench to Tj =0.1 

has a larger driving force (further inwai'd into the unstable region) where a new 

instability is observed and double phase separation occurs. Therefore, the deeper 

the quench depth and the further inward it is into the unstable region, the more 

likely a new instability will occur and cause double phase sepaiation. Perhaps 

there is a critical quench depth that must be attained before a new instability will 

form and cause double phase separation. To investigate this, more simulations 

will have to be performed and is beyond the scope of this thesis.

6.5 Change in the Dimensionless Spatial Chemical 
Potential and the Second Derivative of Free Energy 
For Double Quenching

Figure 6.11 and Figure 6.12 show the evolution of the dimensionless spatial 

chemical potential after the second quench to T2 — 0.2 at the transition time
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con-esponding to D* = 200 000 for the initial critical and initial off-critical quench 

case, lespectively. Recall, the diffusional flux within the goveming equation that 

describes phase separation by SD contains the thermodynamic drivinu force, the 

change in the chemical potential, for the binaiy polymer mixture. Diffusion 

occurs to minimize the free energy and therefore, as the mixture separates and 

approaches equilibrium, the gradient in the free energy (change in the chemical 

potential) should eventually approach zero, as defined in Chapter 3,

^  = = 0 . In Figure 6.11 and Figure 6.12, after the second
dC; '' ^

temperature jump, the same trends aie observed. The only difference is the rate at 

which the blend approaches stability because of the difference in the values o f D* 

(see Figures C.17 and C.20 in Appendix C). The profiles look the same as the 

ones observed for a single quench. However, the rate of change in the chemical 

potential is much faster than in the single quench case because o f the increased 

quench depth. There are regions where A//i* increases with increasing

dimensionless time to a local maximum and regions where A//i* decreases with 

increasing dimensionless time to a local minimum. As the composition 

fluctuations approach the new upper and lower equilibrium values after the 

second quench, the change in the dimensionless chemical potential plateaus 

before it starts to move towards equilibrium. At the local minimum positions, 

when the blend is stabilizing and at the limit when c approaches 1 (rich in 

polymer 1), A//,*= 0, meaning the chemical potential o f polymer 1 in the

mixture, /j*m!x, equals the value of the pure component, /i, pure. At the positions o f
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the local maximums, the composition of polymei 1 appioaches the lower 

equilibrium value and these regions are rich in polymer 2. Eventually, the local 

maximum values will decrease and A/t, will approach zero. This being the 

condition for equilibrium where the change in the chemical potential of the 

coexisting phases becomes equal [Van Dijk and Wakker, 1997].

Figures 6.13 and Figure 6.14 show the evolution of the dimensionless spatial 

chemical potential after the second deeper quench to Tj =0.1 (at the transition 

times corresponding to D* = 200 000) for the initial critical and initial off-critical 

quench case, respectively. For Z) = 500 000 and 800 000 refer to Figures C.21 to 

C.24. The profiles after the second temperature jump show the same trends but

are slightly different than the shallower second quench case. A//, shows a 

plateau after the second quench and flattens out at the local maxima and minima. 

The flattening of the local maxima and minima can be attributed to the adjusting 

of the blend to the change in quench conditions. The introduction of the smaller 

obstructions that are occuiaing within the peaks and troughs of the concentration 

profiles are new instabilities and create a small change in the chemical potential 

around the local maxima and minima, hence, the flattening at these areas. If 

allowed to proceed further, until the secondary phase separation disappears 

(merging with the primary stmctures), the change in the dimensionless spatial 

chemical potential should follow the same trend as observed for the shallower 

second quench case. As the secondary phase sepai ation occurs, the primary peaks 

and troughs approach the new equilibrium values and the chemical
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F ig u re  6.11; The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T*=  0.25 to Ti* = 0.2 at the transition time o f  
tt ~  4.72 at the following dimensionless times: (a) t* = 4.731, (b) t* = 4.745, (c) t* 
= 4.798, and (d) /  = 4.861. The change in the dimensionless chemical potential is 
defined as the difference between the chemical potential polymer 1 in the mixture
to that o f  its pure phase. The dimensionless initial concentration is c„*= 0.5 and
the dimensionless diffusion coefficient is D *  =  200 000.

-138-



Chapter 6 : 1-D TIPS Double Quench

0.16
0.13
0.09
0.06
0.02

- 0.01

a)

0.16
0.13
0.09
0.06
0.02

- 0.01

b)

0.16 
0.13 

''ZZL 0.09 
0.06 
0.02 

- 0.01

c)

0.16 
0.13 

’ : : l  0.09 
^  0.06 

0.02 
- 0.01

0.0 0.2 0.4 0.6 0.8 1.0

d )

Figure 6.12: The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T\ = 0.25 to T2 = 0.2 at the transition time of 

= 5.52 at the following dimensionless times: (a) t* = 5.534, (b) t* = 5.575, (c) t* 
— 5.625, and (d) t — 5.671. The change in the dimensionless chemical potential is 
defined as the difference between the chemical potential polymer 1 in the mixture
to that of its pure phase. The dimensionless initial concentration is 0.6 and 
the dimensionless diffusion coefficient is D* = 200 000.
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potential o f polymer 1 in the mixture.//, approaches the \alue of the pure 

component,/./, pm-e and A/./, approaches zero.

Figures 6.15 and 6.16 show the evolution of the second derivative of the free 

energy with respect to composition spatially after the second quench to Ti* = 0.2 

from the initial critical and off-critical quench, respectively. Recall in the 

unstable region, infmitesimally small composition fluctuations are enough to 

create instability. The second derivative of free energy with respect to 

composition determines the drive of the composition fluctuations around the

d^F c"F
inflection ( — — = 0 ) points where — — > 0 stability or meta-stability aie possible

d^F
and — — < 0 results in instability for the binaiy mixture. The curvature of the 

dc

second derivative o f ftee energy with respect to composition can then detail the 

degree o f  stability, alongside the knowledge o f the first derivative o f ft ee energy 

with respect to composition, with concave downwards (local maximum) being 

unstable and concave upwards (local minimum) can be meta-stable or stable. The 

additional increase in the free energy and thus the amount of instability will 

depend on how fai away the system is ftom the spinodal curve. From the plots of 

the second derivative o f the free energy with respect to composition for the initial 

critical and initial off-critical quench case, second quench where the impact o f  the 

second quench has not fully affected the phase separation rate of the mixture 

(adjustments to new conditions take into effect). There is a significant increase in 

the steepness o f the curve after the second temperature jump and this increase in
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the steepness (increasing the theiTnodynamic driving force Figuies C.25 to C.28) 

then results in the amplification of the phase separation occurring in the 

composition profiles where the initial primary fluctuations are amplified and 

approach the new equilibrium values at the second temperature.

Figures 6.17 and Figures 6.18 show the evolution of the second derivative o f the 

free energy with respect to composition spatially after the second deeper quench 

to F2* = 0.1 form the initial critical and off-critical quench, respectively. For the 

deeper quench, the profiles show the same trend for the second derivative o f the 

fi-ee energy with respect to composition for the initial critical and initial off- 

critical quench case. The second derivative of free energy with respect to 

composition in this case looks much different than the plots for the shallower 

quench case. Notice that shortly after the second deeper jump there is a dip in the 

local maximums and gradually grows. In the local minimums, shortly after the 

second jump, the emergence and growth of a peak occurs and further divides into 

a double well shape. The foimation of this new double well within the already 

existing double well becomes more defrned as D is increased (see Figures C.29 

to C.32). This new double well can account for the new instability that occurs 

when secondary phase separated regions form. The steepness of the curve after 

the second temperature jump increases (increasing the thermo dynamic driving 

force) in both double well-shaped instabilities. This reflects in the shorter time 

periods taken for the primaiy composition fluctuations from h *  = 0.25 to reach 

the new equilibrium values at T2 =0.1 and for the growing of the new secondary 

structures. This additional increase in the free energy relating to distance
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F ig u re  6.13; The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T\ *= 0.25 to Tj* = 0. \ at the transition time o f  
t, = 4.72 at the following dimensionless times: (a) t = 4.726, (b) t -  4.740, (c) t 
= 4.748, and (d) t* = 4.769. The change in the dimensionless chemical potential is 
defined as the difference between the chemical potential polymer 1 in the mixture
to that o f  its pure phase. The dimensionless initial concentration is c / =  0.5 and
the dimensionless diffusion coefficient is £> = 200 000.
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Figure 6.14: The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from 0.25 to 7% = 0.1 at the transition time of 
U = 5.52 at the following dimensionless times: (a) t = 5.526, (b) /  = 5.545, (c) t 
= 5.549, and (d) i = 5.565. The change in the dimensionless chemical potential is 
defined as the difference between the chemical potential polymer 1 in the mixture
to that of its pure phase. The dimensionless initial concentration is = 0 .6  and
the dimensionless diffusion coefficient is D *  = 200 000.
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fiom the spinodal curve shows that there exists a point where the instability 

crosses ovei from just a further amplification of the composition fluctuations to 

creating a new instability that renders new fluctuation patterns.

6.6 Growth of Primary Structures After the Second 
Temperature Jump to T 2* =  0.2

Earlier on in the discussion of the shallower quench from h *  = 0.25 to T2 * = 0.2, 

the dimensionless structure factor from the original quench grew with time and at 

the same constant wave number as at = 0.25. How the second quench affected 

the growth rate o f the primaiy and the secondary structures (if formed) was not 

discussed. In this section the analysis will be on the affect of the second quench 

on the growth rates of the maximum values of the primary and secondary 

structure factors (peak values) formed during phase sepaiation by SD. The 

growth rate of the maximum value of the structure factor after the second quench 

is plotted against a reduced time, , which is defined as [Hashimoto et al., 

1986a; Chan, 1998]:

r ;  = 4  (6.1)

The reduced time is used so that a general analysis can be made over all the 

different transition times used from Table 6.2. The maximum values o f the 

dimensionless structure factors remain unchanged. Figure 6.19 shows the growth 

o f the maximum value of the dimensionless structure factor with dimensionless 

reduced time after the second shallower quench for the initial critical quench case.
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The values plotted are taken right after the second quench is made and there are 

three regions that can be identified for the growth of the primary structure. In the 

stage 1, right after the second quench, there is a steady increase in the growth rate, 

meaning that the primary stiuctui'es are fuither separating as the new conditions 

are imposed, Tj* ^  0.2. Stage I can also be considered the early stages of SD at 

the primary stmcture is slowing down and there is a slight dip in the growth rate 

before it starts to increase again into stage III. The growth rate is nonlinear and 

can be attributed to the change in the composition fluctuations towards the new 

equilibrium values at Tj* ^  0.2. In this stage, the blend is adjusting to the new 

conditions while still phase separating. Finally, in stage III the growth rate 

increases again and plateaus as the blend has reached the new equilibrium values 

at the new conditions. The evolution of the growth of the dimensionless structure 

factor is very similar to the plot for the single critical quench case shown in 

Figure 6.1 where the dimensionless transition time was determined. The 

difference in the profiles lies in stage II where the composition starts to adjust to 

the new conditions of the second quench before further separating into their 

respective phases. The late stages of phase separation was not examined for the 

single quench case because the interest was in forming the phase separated 

morphology and not to examine the coarsening dynamics. Overall, the three 

stages in the growth rate of the maximum value of the dimensionless structure 

factor after the second quench takes roughly the same form as a single quench 

case when there is no appearance of the secondary peak and only an amplification 

of the primary peak from the initial critical quench. As D increase, the same
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F igu re  6.15: The evolution of the change in the dimensionless spatial second 
derivative o f the free energy with respect to composition o f component 1 for a 
double quench from T /= 0 .2 5  to T z '-  0,2 at the transition time o f 4.72 at the 
following dimensionless times: (a) t = 4.731, (b) / = 4.745, (c) / -  4.798, and 
(d) t = 4.861. The change in the dimensionless second derivative o f free energy

is used to determine the conditions of stability ( /' > 0 ), meta-stability (F ’ > 0 ),

and instability ( F* < 0 ). The dimensionless initial concentration is — 0.5 and
the dimensionless diffusion coefficient \sD  = 200 000.
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Figure 6.16: The evolution of the change in the dimensionless spatial second 
derivative of the free energy with respect to composition o f component 1 for a 
double quench from T\ = 0.25 to T2 = 0.2 at the transition time of t *= 5.52 at the 
following dimensionless times; (a) t* = 5.534, (b) t = 5.575, (c) t = 5.625, and 
(d) t = 5 .671. The change in the dimensionless second derivative o f free energy

is used to determine the conditions of stability {F* > 0 ), meta-stability {F* > 0 ), 

and instability ( F  < 0 ). The dimensionless initial concentration is c*  — 0.6 and 
the dimensionless diffusion coefficient is D* = 200 000.
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F igure  6.17: The evolution of the change in the dimensionless spatial second 
derivative o f the free energy with respect to composition of component 1 for a 
double quench from Ti*= 0.25 to T i =  0.1 at the transition time o f  U = 4.72 at the 
following dimensionless times; (a) t = 4.726, (b) t = 4.740, (c) i -  4.748, and 
(d) t* = 4.769. The change in the dimensionless second derivative o f free energy

is used to determine the conditions of stability ( F  > 0 ), meta-stability ( F  > 0 ),

and instability ( F* < 0 ). The dimensionless initial concentration is — 0.5 and
the dim ensionless diffusion coefficient is D  = 200 000.

148-



Chapter 6 : 1-D TIPS Double Quench

0.22 
0.02 

; -0.19
^  -0.39 

-0.60 
-0.80

0.22 
0.02 

% 4)19
-0.39 
-0.60 
-0.80

b)

0.22 
0.02 

% -0.19
^  -0.39 

-0.60 
-0.80

c)

0.22 
0.02 

Î  -0.19 
^  -0.39 

-0.60 
-0.80

0.0 0.2 0.4 0.6 0.8 1.0
*

d )

X

Figure 6.18: The evolution of the change in the dimensionless spatial second 
derivative of the free energy with respect to composition of component 1 for a 
double quench from T, * = 0.25 to 7̂ * = 0,1 at the transition time o f /, = 5.52 at the 
following dimensionless times: (a) /  = 5.526, (b) f* = 5.545, (c) t* = 5.549, and 
(d) t — 5.565. The change in the dimensionless second derivative o f free energy

is used to determine the conditions of stability (F* > 0 ), meta-stability {F* > 0 ),

and instability ( F  <0). The dimensionless initial concentration is c j  = 0.6 and 
the dimensionless diffusion coefficient is D* ^  200 000.
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F igu re  6.19: The evolution of the maximum value of the dimensionless structure 
factor o f the primary structure formed just after the second temperature Jump to 
Ti = 0.2, plotted against dimensionless reduced times for a critical quench case. 
The second Jump was made at a transition time o f t * = 4.72 with a dimensionless 
diffusion coefficient D* = 200 000.

trends as those observed (see Figures C 33 and C.34). The only difference being 

the steepness o f  the growth rate as the value of D* increases.

Figure 6.20 shows the growth of the dimensionless structure factor with 

dimensionless reduced time after the second shallower quench for the initial off- 

critical quench case. The values plotted are taken right after the second quench is 

made and as in the case of the initial critical quench, there are three regions that 

can be identified for the growth of the primary structure. For D = 500 000 and 

80 000, Figures C 35 and C.36 in Appendix C, there is the emergence o f 

secondary peaks (refer back to Figures C .ll and C.12) in the growth of the 

maximum value o f the dimensionless structure factor that have a very small 

impact on the evolution of the original composition fluctuations as discussed 

previously in section 6.2. The trends in Figure 6.20 will be discussed separately
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from those in Figures C.35 and C.36. In Figure 6.20, the three different growth 

regions are similar to those observed for the initial critical quench case. In the 

stage I, right after the second quench, there is a steady increase in the growth rate 

and the primary structures are further separating as the new conditions are 

imposed, T2 * = 0.2. In stage II, the growth of the primary structure is slowing 

down and again there is a slight dip in the growth rate before it starts to pick up 

again into stage III. The nonlinear growth rate is a result of the adjustments in the 

composition fluctuations from the initial quench condition at Fi = 0.25 towards 

the new equilibrium values at T2 * = 0.2, Finally, in stage III the growth rate 

increases again and staits to level off as the blend reaches the new equilibrium 

compositions. In Figures C.35 and C.36 there are two graphs plotted, one for the 

growth of the primary peak (top graph) and one for the secondary peak observed 

in the plot of the dimensionless stmcture factor (bottom). Both are plotted against 

reduced times so that a compai ison can be made between the growth rates of the 

two peaks simultaneously. As D increases, the growth of the secondary peak was 

more obvious and its effect on the growth rate o f the primary stmcture should 

have a larger impact. This can be observed when comparing Figures C.35 and 

C.36 where D* increases from 500 000 to 800 000 respectively. In Figure C.35, 

the introduction and the growth of the secondary peak does not seem to have 

much impact on the growth of the primary peak as can be observed from the 

profile of the primary peak growth rate. The growth of the primary peak seems to 

be identical to the growth of the dimensionless stmcture factor for a single quench 

case. There are still three distinct regions that can be observed for both the
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piim aiy and secondary peak growth. Initially in stage 1, the growth of both 

piim aiy and secondary peak increases steadily and the blend is still phase 

separating under the new conditions. In stage II, the growth of the primary peak 

slows down as the composition fluctuations are approaching the new equilibrium 

values and the secondary peak still continues to grow but at a slower rate. The 

growth of the primary peak is dominating and therefore, the growth of the 

secondary peak has little effect on the composition fluctuations. In stage III, the 

primary peak plateaus in growth rate and the secondary peak continues to grow 

steadily. To determine the full evolution of the secondary peak growth, the late 

stages need to be evaluated and does not fall into the scope of this thesis. In 

Figure C.36, the effect of the growth of the secondary peak is more obvious. 

Again, the profile has been broken down into tbree regions. The top graph 

represents the growth of the dimensionless stmcture factor of the primary peak 

and the bottom graph for the growth of the secondary peak at the same reduced 

times. In stage I, there is only a short period of steady increase in growth of both 

the primary and secondary peaks. This is because as D is increased, the rate of 

phase separation increases and therefore, the blend is quick to respond to the 

change of conditions to the new temperature. In stage II, there is a steeper 

increase in the growth rate for both the primary and secondary peaks as the blend 

approaches the new equilibrium values at Tj . However, the growth of the 

secondary peak has only a slight effect on the growth of the primary peak and this 

is reflected in the dimensionless spatial concentration profiles shown in section 

6.2. In stage III, the growth of the primary peak levels off while the secondary
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peak continues to grow. There is a slight dip in the growth of the secondary peak 

before it starts to increase again. The reason for this in stage III is not certain. At 

this point for the off-critical quench case, although there is the appearance of a 

secondary peak growing and forming, its growth does not significantly affect the 

growth of the primary structur es that form.

6.7 A Comparison of the Growth of Primary and 
Secondary Structures After the Second 
Temperature Jump to T i  = 0.1

A deeper second quench from T,* = 0.25 to = 0.1 shows secondary phase 

separation as observed in the dimensionless spatial concentration profiles. The 

dimensionless structure factor from the original quench grew with time and at the 

same constant wave number as at f t = 0.25. The emergence and growth of a 

secondary peak after the second temperature jump was observed in the evolution 

of the dimensionless stmcture factor. The second deeper quench and its effects on 

the growth rate of the primary and the secondary stmctures can be broken down 

into three regions as in the shallower quench case. The growth rate of the 

maximum value of the dimensionless stmcture factor after the second quench is

plotted against a reduced time, . Figure 6.21 shows the growth rate of the 

primary (top) and secondary (bottom) peaks of the maximum stmcture factor after 

the second deeper quench at the transition times for the initial critical quench case 

for D -200 000. Figure 6.21 shows slightly different evolutions in the growth 

rate of the primaiy and secondary peaks due the increase in value of the
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F igure  6.20: The evolution of the maximum value of the dimensionless structure 
factor o f the primary structui e formed just after the second temperature jump to 
T’2 = 0.2, plotted against dimensionless reduced times for an off-critical quench 
case. The second jump was made at a transition time of t* = 5.52 with a 
dimensionless diffusion coefficient D* = 200 000.

dimensionless diffusion coefficient (see Figures C.37 and C.38 in Appendix C for 

D  = 500 000 and 800 000, respectively). Generally, the trends seem to be pretty 

consistent for the three stages in all cases o f D studied. In the stage I, right after 

the second quench, there is a steady increase in the growth rate of the primary 

peak. The emergence and the growth of the secondary peak stalls out at a slower 

rate than the primaiy peak in stage I. In stage II, the growth of the primary peak 

increases slightly and steadily and the growth of the secondary peak increase at a 

much faster rate having a steeper slope. In stage III, both the growth o f the 

prim aiy and secondary peaks slow down and ai e roughly at the same rate. At this 

point, the primaiy structures have reached the equilibrium compositions at the 

new temperature while the secondary phase is still developing. These 

observations are different fi'om those observed experimentally by Hay ash i et al.
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[2000a] tor the growth of the maximum scattering intensity with time. Their three 

stages differ from the one in this study. In stage I, they observe a faster increase 

in the secondary peak intensity than the primary peak intensity. In stage II, both 

the growth of the primary and secondary peaks intensities grow at the same rate 

and in stage III, the growth of the primary peak intensity becomes larger that the 

secondary peak intensity. The reason for the discrepancy between the 

observations in this study and in Hashimoto’s work maybe due to the time that the 

second jump was made. Also, stage III describes the late stages in Hashimoto's 

work and is omitted from this numerical work. Perhaps the evolution o f the 

secondary structures is dependent on the domain size. Hayashi et al. [2000a] 

have suggested this possibility and also introduced the confinement effect where 

the size of the primary structure acts as a new medium for the growth of the 

secondar y structures. The smaller- the domain size of the primary structures, the 

less room for growth of the secondary structures to form and therefore, different 

growth rates will be observed for the primary and secondary structures. By 

comparing the two different observations from making a temperature jump at the 

beginning of the intermediate stages (in the numerical work of this thesis) and the 

late stages (experimental work by Hashimoto) shows that the domain size has an 

effect on the growth patterns.

Figure 6.22 shows the growth rate of the primary (top) and secondary (bottom) 

peaks of the structure factor after the second deeper quench at the transition times 

for the initial off-critical quench case for D = 200 000. In the dimensionless 

maximum structure factor profiles after the second quench, the peak from the
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oiiginal initial quench grew with time and at the same constant wave number as at 

T\ — 0.25 and there is the emergence and growth of the secondary peak at a larger 

wave number. The second deeper quench for the initial off-critical quench 

and its effects on the growth rate of the primary and the secondary structures 

be broken down into three regions. The growth rate o f the maximum structure 

factor after the second quench is plotted against a reduced time, . Figure 6.22

and Figure C. 39 (£) = 500 000) show similar- evolutions in the gr owth rate o f the 

primary and secondary peaks and Figure C.40 {D* = 800 000) shows the same 

trend as Figures C.37 and C.38 in stages I, II and III. In the stage I, right after the 

second quench, there is a steady increase in the growth rate of the primary peak 

for all values o f  D  investigated. The emergence and the growth of the secondar y 

peak starts out at a slower rate than the primary peak in stage I with a smaller 

slope. In stage II, the growth of the primary peak increases slightly and steadily 

and the growth o f the secondary peak increase at a much faster rate having a 

steeper slope. There is slight curvatur e in all three plots of stage II. This may 

possible be due to the reorganizing of the phase separating mixture to the new 

composition fluctuations present. In stage III, for Figure 6.22 and C.39, both the 

growth o f the primary and secondary peaks continue to increase with the 

secondary peak increasing at a much faster rate. At this point, the primary and 

secondary structures are still developing. In stage III for Figure C.40, both the 

growdh o f the primary and secondary peak starts to level off, indicating that the 

primary structures have reached their equilibrium values while the secondary 

peaks have growm to a sufficient size. Perhaps, further investigation would lead
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to the decrease in the growth of the secondary peak when the composition 

fluctuations from the primary and secondary structures merge together at later 

stages. This has been obser\'ed experimentally by Hayashi et al. [2000a] and 

numerically by Henderson and Clarke [2004] for an initial critical quench and a 

second jump at the late stages of phase separation by SD and not at the beginning 

of the intermediate stages as described here.

6.8 Remarks on the Early Stages of Phase Separation 
After the Second Temperature Jump to T 2 = 0.1 
where Secondary Structures are Observed

In the experimental work by Hashimoto et al. [2000] and numerical work by 

Henderson and Clarke [2004] the evolution of the secondary phase separation, 

after the second quench, was found to reasonably follow the linear theory in the 

early stages of phase separation by SD for a single quench case. To determine if 

the numerical work presented in this section on the formation of secondary 

structures also follows the lineai' theory in the early stages right after the second 

quench to J 2 = 0 .1 , the plots of the natural log of the dimensionless stmcture 

factor versus dimensionless reduced time is presented in Figures 6.23 and 6.24 for 

the initial critical and initial off-critical quench case for D* = 200 000, 

respectively. Recall that the plot of the natural log of the dimensionless maximum 

stmcture factor versus dimensionless time should have a linear' region in the early 

stages of phase separation by SD. As observed for all the profiles, there exists a 

small linear region after the second quench when the secondary stmctures are

157-



Chapter 6: 1-D TIPS Double Quench

20

1.003 1.005 .0017 1. 009

1 . 00

0 .4  0

0 . 20

0 . 0 0

1 . 0 1 11. 0091. 0071.0051. 0031 . 0 0 1

a)

b)

F ig u re  6.21: The evolution of the dimensionless structure factor o f the (a) 
primary and (b) secondary structures formed just after the second temperature 
jum p to 7 2 * = 0.1 plotted against dimensionless reduced times for a critical 
quench case. The second temperature jump was made at t/ — 4.72. The 
dimensionless diffusion coefficient is D = 200 000.
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forming. Therefore, the numerical work presented here is consistent with what 

has been obser\ed by Hashimoto et al. [2000] in experiment and by Henderson 

and Clarke [2004] in their numerical study on double quenching. Furthermore, it 

can be observed that in the early stages, the growth of the secondary structures 

appears to be steeper for D* = 200 000 than 500 000 and 800 000 (refer to Figures 

C.41 to C.44 in Appendix C). Perhaps, the larger domain size provides a better 

medium to create new instabilities for phase separation for the secondary 

structures to form more readily. It has been suggested that the primary structure 

acts as an individual phase where phase separation occurs as if in a single quench, 

but within the already separating initial structures [Norton and Frith, 2001]. The 

observations presented here are consistent with the work by Hayashi et al. [2000a 

and 2000b], when investigating the initial domain size and its effects on double 

phase separation. They observed that if the size of the initial structure is large, 

then the growth rate of the secondary structiue is faster than for an initial smaller 

domain size. The critical size to which double phase separation is observed is not 

known and further analysis both experimentally and numerically is required 

[Hayashi et al., 2000a].
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F ig u re  6.22; The evolution of the dimensionless structure factor o f the (a) 
primary and (b) secondary structures formed just after the second temperature 
jum p to T2 * = 0.1 plotted against dimensionless reduced times for an off-critical 
quench case. The second temperature jump was made at tt = 5.52. The 
dimensionless diffusion coefficient is Z) = 200 000.
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Chapter 7
Results and Discussion: 
2-D TIPS Single and Double Quench

In Chapter 5 and 6, the results fiom the one-dimensional model was presented and 

discussed based on the non lineai' C-H theoi'y and the F-H-de Gennes free energy 

for a single and a double quench respectively. The results replicated frequently 

observed trends o f phase sepaiation by SD in experimental and numerical work. 

Recall that in analyzing SD, the one-dimensional model provides the detail 

necessary to describe the dynamics of phase sepaiation with the exception of 

detailing the type o f sti'uctui'e formed. This section presents the results o f  pattern 

formation for a critical and off-critical quench and a brief discussion on the 2-D 

numerical work. The patterns formed are typical of those formed by SD for the 

single and double quench. For the single quench, the dimensionless temperature 

and diffusion coefficient are adjusted to observe the effects on pattern formation 

and its consistency with the predictions from the 1-D model. For double 

quenching, the patterns formed from an initial critical and an initial off-critical 

quench are presented. With the double quench, in order to verify the pattern 

formation predicted from experimental work by Hayashi et al. [2000a], the 

second quench was made at the late stages and not at the beginning o f  the
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intermediate stage as in the 1-D study. Because of the amount of time required to 

run the 2-D simulations, only selected runs were made for the analysis. Table 7.1 

summarizes the dimensionless parameters used in this 2-D study.

Table 7.1 : Summary of the dimensionless parameters used in the 2-D numerical 
study for a single eritical and off-critical quench

Parameter Value

0.5, 0.6

1000

D' 200 000, 500 000

t: 0.25 and 0.2

7.1 Single TIPS Critical Quench

Figure 7.1 shows a 2-D structure development (left) and a profile o f  the 

concentration fluctuations (right) for a critical quench, Co* = 0.5, at a single 

temperature jump of T/ = 0.25, with a dimensionless diffusion coefficient ofD* — 

200 000. The grey scale at the bottom right hand comer of Figure 7.1 shows the 

different levels of the concentration ranging from c* = 0.0 to c* = 1.0. It has been 

determined in experiments that the critical quench produces the interconnected 

structure and the off-critical quench produces the droplet type structure 

[Hashimoto, 1993]. The structure development on the left shows that the model 

in this thesis is able to predict the same interconnected structure known for critical 

quench conditions. Note the change in the color intensity o f the structure
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development as the concentration fluctuations increase upon pliase separation 

(right).

In order to test the effect of D on the critical quench, the value of D* was 

increased from 200 000 to 500 000. Figure 7.2 shows the evolution of pattern 

formation at £> = 500 000 for the critical quench while maintaining all other 

parameters the same as in Figure 7.1. From the 1-D model, it was observed that 

increasing the dimensionless diffusion coefficient increased the rate as well as the 

amount o f phase separation that occuned. Therefore, this trend should also be 

observed in the 2-D stmcture development. When comparing the results o f 

Figure 7.1 and Figure 7.2 it is clear that the rate as well as the amount o f phase 

separation increased with increasing dimensionless diffusion coefficient. The 1-D 

and 2-D models aie in agreement with each other for the critical quench case in 

examining the properties of interest.

7.2 Single TIPS Off-Critical Quench

Figure 7.3 shows a 2-D stmcture development (left) and a profile o f  the 

concentration fluctuations (right) for an off-critical quench, c„ = 0.6, at a single 

temperature jump of Ty = 0.25, with a dimensionless diffusion coefficient o f D = 

200 000. The grey scale in the bottom right hand comer in Figure 7.3 shows the 

different levels o f  the concentration ranging fiom c = 0.0 to c — 1.0. The off- 

critical quench produces the droplet type stmcture from experimental 

observations. The evolution of stmcture development on the left shows the same 

droplet stmcture known for an off-critical quench conditions indicating that the
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model developed is in good agreement with experimental work. Notice that as the 

concentration fluctuations increase (right) the structure development profile 

shows a range of shades, indicating the change in concentration, as the mixture is 

phase separating. One more feature that is captured in the 2-D structure evolution 

is the spatial distribution of the composition fluctuations are fairly uniform, which 

is expected in phase separation by SD. In order to test the effect of D  on the off- 

critical quench, the value of D* was increased from 200 000 to 500 000. Figure 

7.4 shows the evolution of pattern formation at D* = 500 000 for the critical 

quench while maintaining all other the saiue as in Figure 7.3. From the 1-D 

model, it was observed that increasing the dimensionless diffusion coefficient 

increases the rate as well as the amount of phase separation that occurs. 

Therefore, this trend should also be observed in the 2-D structure development. 

When comparing the results of Figure 7.3 and Figure 7.4 it is clear that the rate as 

well as the amount of phase separation increased with increasing dimensionless 

diffusion coefficient. In the formation of the droplet type structure, another 

parameter was tested to verify the agreement of the results from the 1 -D study and 

the 2-D study. The dimensionless temperature was decreased from T* = 0.25 to 

Ti = 0.2 keeping all other parameters the same as in Figure 7.4. By comparing 

both profiles generated in Figure 7.4 and Figure 7.5, it can be observed that the 

amount of phase-separated regions increased with time. This was consistent with 

the observations in the 1-D model when tested for an off-critical quench case. 1-D 

and 2-D models are in agreement with each other for the off-critical 

quench case in examining the properties that were o f interest.
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a) t' =3.267

b ) t* =3.633

|0

10

c) /  =3.869

d ) /* =4.931

X

c =0.0 /  = 1.0

F ig u re  7.1: A plot o f the 2-D dimensionless spatial concentration profiles, 
c (x%_y'), showing the evolution of structure development (left) and the growth 
o f the concentration fluctuations (right) for a single critical (Co = 0.5) quench to 
T *  = 0.25 with D* = 200 000 at the following dimensionless times: (a) t ’ = 3.267, 
(b) t* = 3.633, (c) t*= 3.869, and (d) t ‘ = 4.931. The grey scale represents the 
compositions o f the phase separating blend on the bottom right.

166



Chapter 7: 2-D TIPS Pattern Formation (1 <&. 2 Step)

a) /  = 0.5053

b ) /  =0.5317

c) /  = 0.5965

y
c

d'l t* = 0.6552

c = 0.0 c =1.0

Figure 7.2: A plot of the 2-D dimensionless spatial concentration profiles, 
c (x ,>■ ) , showing the evolution of structure development (left) and the growdh 
of the concentration fluctuations (right) for a single critical {Co = 0.5) quench to 
7’/ = 0.25 with D = 500 000 at the following dimensionless times: (a) t* = 
0.5053, (b) t = 0.5317, (c) t =0.5965, and (d) /  = 0.6552. The grey scale 
represents the compositions of the phase separating blend on the bottom right.

167 -



___________________ Chapter 7: 2-D TIPS Pattern Formation (1 & 2 Step)

7.3 Two-Step Phase Separation: Critical Quench

The two-step process used for the 2-D study is different ftom that used in the 1 -D 

analysis. The 2-D analysis here was done to observe pattern formation as 

predicted horn the experimental work by Hashimoto et al. [2000] and Hayashi et 

al. [2000a and 2000b] in their 2-step phase sepaiation process to see whether the 

secondary structures can be observed numerically under the same quenching 

methods. Recall in the 1-D study, the second temperature jump was made at a 

dimensionless transition time, which characterized the end of the eai'ly stages and 

the beginning o f the intermediate stages of SD for the single quench. In this 

section, the second temperature jump was made in the late stages o f phase 

separation by SD where the mixture has reached their respective equilibrium 

compositions. This method was also used by Tanaka [1993] and Tao et al., 

[1995] in their experimental study of double quenching. Fuithermore, to follow 

closely to Hashimoto's work [2000], the second quench was made such that the 

mixture was still within the unstable region and therefore, was still phase 

separating by SD. As mentioned in the previous section on the single quench 

conditions, due the amount of computing time required for one 2-D simulation, 

the results shown here are restricted to certain values of T and D that best reflect 

the objectives o f this thesis. In Figure 7.6 the dimensionless spatial concentration

profiles, c ‘ (x*,y*), show the evolution o f structure development for a  double

critical (Co* — 0.5) quench from Tj -  0.25 to Tj = 0 .1  with D  — 200 000.
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10

=4.416

b) /*= 4.619

1.0

c) r  =5.048

y

3
lO

n

c =  0.0

d) /*= 5.292

c =1.0

Figure 7.3: A plot of the 2-D dimensionless spatial concentration profiles, 
e (x showing the evolution of structure development (left) and the growth 
of the concentration fluctuations (right) for a single off-critical (c ,' = 0.6) quench 
to T/ =0.25 with D = 200 000 at the following dimensionless times: (a) t* = 
4.416, (b) t -  4.619, (c) t = 5.048, and (d) t* -  5.292 The grey scale represents 
the compositions of the phase separating blend on the bottom right.
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b ) / =  0.7055

c) / =  0.7744

d ) /  =0.8451

y
c =0.0 c* = 1 . 0

Figure 7.4: A plot o f the 2-D dimensionless spatial concentration profiles, 
c * { x \ y ‘) ,  showing the evolution of structure development (left) and the growth 
o f  the concentration fluctuations (right) for a single off-critical (co -  0.6) quench 
to Ti* = 0.25 with D* = 500 000 at the following dimensionless times: (a) =
0.5053, (b) t* = 0.5317, (c) / ’ =0.5965, and (d) t' = 0.6552. The grey scale 
represents the compositions of the phase separating blend on the bottom right.
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- ; . - v

a) /■ =0.1812

1.0

b) /* = 0.2029

* #

y
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c =0 .0

c) /  =0.21.11

d'i /  = 0.21X7

c ’ = 1 . 0

Figure 7.5: A plot of the 2-D dimensionless spatial concentration profiles, 
c (x ,}" ) , showing the evolution of structure development (left) and the growth 
of the concentration fluctuations (right) for a single off-critical (c„* -  0.6) quench 
to T/ = 0.2 with D = 500 000 at the following dimensionless times: (a) t* = 
0.1812, (b) t = 0.2029, (c) t = 0.2133, and (d) /* = 0.2187. The grey scale 
represents the compositions of the phase separating blend on the bottom right.
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The dimensionless times conespond to profiles made after the second jimip at a 

dimensionless time of t ' = 4.931 (a) i' = 4.935, (b) t' = 4.941, (c) 4.95Ü,

and (d) t -  4.952 (e) t = 4.953 and (f) 4.9531. For a critical quench, the 

interconnected stmctuie is formed. Upon making the second quench, at the late 

stage of SD, the initial composition for the second quench corresponds to the 

values just before the second quench and are off-critical. Off-critical quenches 

result in droplet type moiphologies. In Figure 7.6 this interconnected structure is 

the result o f the primary quench and the droplet type structure is the result of the 

secondary quench. This pattern formation is consistent with the patterns formed 

experimentally by Tao et al. [1995] and Tanaka [1993] and numerically with the 

work o f Fïenderson and Clarke [2004]. In Figure 7.6 b), shortly after the second 

quench, the phase separating regions aie shifting and changing in shape as well as 

concentration (color intensity). This is consistent with what has been observed by 

Tanaka in his experimental work where the initial phase separated structure was 

reorganized when the second quench was made [Tanaka, 1993]. This reorganizing 

o f the primary stiaictures continues with time and is not so obvious to the naked 

eye once the secondary structures start to appear. The first sign of secondary 

phase separated regions occurs in Figure 7.6 c) at t = 4.950 and gradually 

increases in number as shown through Figures 7.6 d) to f). The amount of 

secondary droplets formed after the second quench were few in number which can 

be explained by the location of the second temperature jump relative to the 

spinodal curve. The second quench made in this study was not too far from the 

spinodal curve, and since the driving force for phase separation is directly related
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to the distance of the temperature within the confines of the spinodal curve [Tao 

et al., 1995], there will be a smaller driving phase separation force. Figure 7.7 

shows the evolution of the concentration fluctuations for the same conditions as in 

Figure 7.6. After the second quench, the composition fluctuations are still rather 

smooth until f  = 4.950, where the first sign of secondary phase separated regions 

occur. The profile becomes rough and continues to develop this way for the rest 

of the structure development. From these profiles, especially from a bird’s eye 

view, the dipping of the crests in certain regions are very noticeable, indicating 

the occurrence of the constructive and destructive interferences that are occurring 

from the second quench.

7.4 Two-Step Phase Separation: Off-critical Quench

In the off-critical double quench case, the method for double phase separation is 

the same as described for the critical quench case. The second quench is made in 

the late stages o f phase separation by SD and lies within the unstable region to 

ensure phase separation still occurs by SD. Figure 7.8 shows the 2-D

dimensionless spatial concentration profiles, c * {x \y* ) ,  o f the evolution o f 

structure development for a double off-critical ( c /  = 0.6) quench from T *  = 0.25 

to T/ -  0.1 with D ~ 200 000. The dimensionless times correspond to profiles 

made after the second jump at /  = 5.292; (a) t* = 5.294, (b) /  = 5.307, (c) t* =

5.313, and (d) t -  5.315 (e) t = 5.317 and (t) 5.320. For an o f f  critical double 

quench, both the primary and secondary structures developed should be of droplet 

type and this can be observed in Figure 7.8. Tanaka [1993] and Tao et al. [1995]

-1 7 3 -



___________________ ^h^pter 7: 2-D TIPS Pattern Formation (1 & 2 Step)

have also observed this pattern formation for the off- critical double quench 

expeiimentally. Shortly after the second quench in Figure 7.8 b), there is a 

noticeable change in the pattern and concentration of the primary structui'es. 

Again, like in the critical double quench case, the contours seem to be rougher as 

the blend adjusts to the new conditions. There is also a noticeable increase in the 

contrast as the blend evolves with time indicating that the blend is approaching 

the new equilibrium conditions of the second quench. The fu st sign of secondary 

phase separation occurs in Figure 7.8 c) at = 5.313 and the amount of secondary 

droplet type structures gradually increases with time. Again, the amount of 

secondary droplets formed after the second quench is related to location o f the 

temperature for phase separation within the confines o f the spinodal curve [Tao et 

al., 1995]. Figure 7.9 shows the evolution of the concentration fluctuations for 

the same conditions as in Figure 7.8. After the second quench, the composition 

fluctuations are still rather smooth until /*= 5.313, where the first sign of 

secondary phase separated regions occur. The profile becomes rough and 

continues to develop this way for the rest o f the structure development. From 

these profiles, after r*= 5.313, there is noticeable occurrence o f constmctive and 

destructive interferences that are occurring from the second quench.
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a)

b)

c)

0.0
0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  i .0

0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1.0

d)

e)

0

0.0 c =1.0

Figure 7.6: A plot of the 2-D dimensionless spatial concentration profiles, 
c (x showing the evolution of structure development for a double critical 
(Co* = 0.5) quench from T*  = 0.25 to T,* -  0.1 with D* = 200 000. The following 
dimensionless times correspond to profiles made after the second jump at t* = 
4.931: (a) f  = 4.935, (b) /  = 4.941, (c) t'=  4.950, and (d) f  = 4.952 (e) /  = 
4.953 and (f) 4.9531. The first sign of secondary phase separation occurs in c) at
t ~ 4.950. The grey scale represents the compositions of the phase separating 
blend on the bottom right.
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a) t

& m

d)

b)
2

L.«
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I»

e)

c)

1.0 1.0

F igure  7.7: A plot o f the 3-D dimensionless spatial concentration profiles, 
c* (x* ,y* ), showing the evolution of concentration fluctuations for a double 
critical (cq* — 0.5) quench from Ti = 0.25 to Ti =0.1  with D  = 200 000 The 
following dimensionless times correspond to profiles made after the second jump 
at t* = 4.931: (a) = 4.935, (b) t* = 4.941, (c) /*= 4.950, and (d) /* = 4.952 (e)
/  = 4.953 and (f) 4.9531. The first sign of secondary phase separation occurs in
c) at t*= 4.950.
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d)

e)

f)

c =0.0 c =1.0

Figure 7.8: A plot of the 2-D dimensionless spatial concentration profiles, 
^ ) ’ showing the evolution of structure development for a double off-
critical {Co* = 0.6) quench from T,* = 0.25 to Tj* = 0.1 with D* = 200 000. The 
following dimensionless times correspond to profiles made after the second jump 
at /  = 5.292: (a) /  = 5.294, (b) t ' = 5.307, (c) /*= 5.313, and (d) t* = 5.315 (e) 
t — 5.317 and (1) 5.320. The first sign of secondary phase separation occurs in c)
at t — 5.313. The grey scale represents the compositions of the phase separating 
blend on the bottom right.
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t.o 1.0
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1.0 1.0
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c)
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f)

F igure  7.9: A plot o f the 3-D dimensionless spatial concentration profiles, 
c*(x* ,y* ), showing the evolution of concentration fluctuations for a double off-
critical (Co* = 0.6) quench from Ti = 0.25 to Tj =0.1  with D = 200 000, The 
following dimensionless times correspond to profiles made after the second jump 
at i* = 5.292: (a) /* = 5.294, (b) /* = 5.307, (c) /*= 5.313, and (d) /* = 5.315 (e) 
t* = 5.317 and (f) 5.320. The first sign of secondary phase separation occurs in c) 
at /*= 5.313.
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Chapter 8: Conclusions

Chapter 8
Conclusions

A mathematical model and computer simulations were used to describe the 

dynamics o f phase separation by spinodal decomposition for the TIPS method 

(single quench and a double quench) using the nonlinear Cahn-Hilliard theory and 

the Flory-Huggins-de Gennes free energy. The composition dependent mobility 

was t reated us ing t he s low m ode t heory and t he r eptation t heory was used t o 

describe the self-diffusion coefficient of the individual polymers in the blend. 

The composition dependent energy gradient coefficient was treated with the 

introduction o f an additional entropie term into the F-H free energy, due to the 

connectivity o f monomer units, to take into account changes in energy due to the 

creation o f interfaces upon phase separation.

In the first part o f this thesis, for the single critical and off-critical quench case, 

the numerical results in one and two dimensions replicated frequently observed 

trends o f phase separation by spinodal decomposition in published experimental 

and numerical work.
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In the one-dimensional model, in the early stages o f phase separation by SD, the 

composition fluctuations grew with time at fixed wavelength and the evolution of 

the structure factor was exponential. In the beginning of the intermediate stages, 

the composition fluctuations were still increasing and nonlinear effects started to 

take place. This was evident in the evolution of the structure factor. It was found 

that in the critical quench, phase separation occurred earlier than that for the off- 

critical quench case at a fixed temperature, and this was due to the location of the 

quench within the spinodal. The further away (inward) the quench was from the 

spinodal curve, the more unstable the mixture was with a faster the occurrence of 

phase separation. In the investigation of the quench depth, from a shallower to a 

deeper quench, the degree of phase separation observed in the spatial composition 

profiles increased due to the increase in the driving force for phase separation. 

The time it took to observe the first sign of phase separation decreased with an 

increase in quench depth. The dimensionless diffusion coefficient showed an 

increase in the rate as w ell as the degree of phase separation in the range of 

D = 200 000 to 800 000. Also, the increase dimensionless diffusion coefficient 

showed a decrease in the characteristic length (domain size), which was 

calculated from the plots of the structure factor using the maximum values o f the 

wave number. From a thermodynamic point of view, the plots o f the change in 

the spatial chemical potential, the driving force for phase separation, showed how 

equilibrium conditions were approached. The second derivative o f the free 

energy with respect to composition showed the relative steepness in the curvature 

o f the change in free energy (stability, instability and meta-stability) and the
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increase in the value of D showed and increasing steepness. I'his renects the 

increasing rate o f phase separation observed in the spatial concentration profiles 

with increasing D*.

In the two-dimensional study, the interest was in obseiving the pattem formation 

for the critical and off-critical quench was examined. The patterns formed are 

typical patterns observed in experimental and numerical work. The critical quench 

case showed the Interconnected type structure, while the off-critical quench case 

showed the droplet type structure.

In the second part o f this thesis, for the two-step quenching with an initial critical 

and an initial off-critical quench case, the numerical results in one and two 

dimensions replicated the observed trends of double phase separation by spinodal 

decomposition in recently published experimental and numerical work.

In the one-dimensional model, the evolution of the spatial concentration profiles 

showed two different trends depending on the quench depth. For the shallower 

second quench to T2 * ^  0.2, the original composition fluctuations fi-om Ti*= 0.25 

continued to increase to the new equilibrium compositions with time and no sign 

o f secondary phase-separated regions occurred. At a deeper second quench to Tj 

= 0.1, the original composition fluctuations from T\ = 0.25 continued to increase 

to the new equilibrium compositions with time. However, the composition 

fluctuations started to show the appearance of constructive and destructive 

interference as time increased. Therefore, between the two quench depths
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investigated, it was suggested that there existed a critical quench depth in order 

for double phase separation to occur where secondary structures are formed. 

Furthermore, the structure factor for the shallower quench case showed a 

continuous increase from the original plot of the stimcture factor at Fi = 0.25 with 

no evidence of a secondary peak forming and for a deeper second quench, the 

evolution of the structure factor showed an increase in the original peak observed 

in the initial quench with the introduction of a secondary peak that continued to 

increase with time. The effect of the increase in the dimensionless diffusion 

coefficient showed an increase the rate as well as the amount o f phase separation 

for both the shallower and deeper quench. A lag time was observed before the 

occunence of secondary phase separation and it decreased with increase 

dimensionless diffusion coefficient. It was found that the growth rate of the 

secondary structures was faster with lower D . This was considered to be due to 

the larger domain size formed at lower D* of the primaiy structure providing a 

larger confinement for the growth of the secondary structures. The growth of the 

primary and secondaiy structures after, the second temperature jump, for a 

shallow quench case was similar to the growth rate of the single quench case. The 

growth of the primary and secondary structuies after, the second temperature 

jump, for the initial critical and initial off-critical quench case showed different 

growth dynamics. The growth rates of the primary and secondary peaks were 

broken down into three stages. The difference in the time at which the first sign of 

phase separation occurs and the growth dynamics was determined to be dependent 

on the location of the first and second quench within the spinodal and the value o f

-182



Chapter 8: Conclusions

D  . For the initial critical quench, phase separation occurs at earlier ami tlie 

formation o f secondary structures is faster than tor the initial off-critical quench 

case. In terms of evolution of the secondary structures and the linear C-H theory, 

it was found that the early stages of the formation of the secondary structures 

followed the linear C-H theory shown through plots ot the natural log of the 

structure factor with time similar to the single quench profiles. From a 

thermodynamic point of view, the shallower second quench showed similar 

results in the change in chemical potential and second derivative as for a single 

quench case. The only difference being at an increased rate. For the second 

deeper quench case, the change in the chemical potential showed a plateau when 

double phase separation was observed. Tbis fattening of tbe change in chemical 

potential w as t bought to  b e due to  tbe  r eorganizing o f  t be c omposition in t be 

mixture as subjected to the new imposed conditions. In the plot of the second 

derivative with respect to composition for the second deeper quench, evidence of 

the formation and evolution of a new instability was observed shortly after the 

second deeper jump where the local maximum between the two local minimums 

further divided into a double well shape. This new double well witbin already 

existing double well became more defined as D was increased.

In the two-dimensional study, the interest was in observing the pattem formation 

for a double quench with an initial critical quench to see if the model developed 

was able to predict the experimental work of Hashimoto and in the numerical 

work p ublished b y H enderson and C larke in t heir s tudy of do uble que nching. 

Therefore, the second quench was made in the late stages. The observed pattern
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formation was consistent with that predicted by Hashimoto and in the numerical 

work of Henderson and Clarke where the second jump after the initial critical 

quench showed the interconnected structure with droplet type secondary 

structures forming. In addition to the work of Hashimoto and Henderson and 

Clarke, the second jump (late stages) after an initial off-critical quench was also 

presented where the observed pattem was droplet type for both the primary and 

secondary structures. This morphology is consistent with the experimental work 

of Tanaka.

The model using the nonlinear C-H and the F-H-deGennes free energy provided a 

better understanding of the formation and evolution of phase separation by SD for 

the single and double quench. In particular, for the formation of secondary phase- 

separated structures, with the limited amount of both experimental and numerical 

work published, the numerical work in this thesis provides a better understanding 

of the evolution of secondary phase separation and how the following areas are 

affected, the composition fluctuations, the structure factor, quench depth, 

dimensionless diffusion coefficient, evolution of the growth rate o f primary and 

secondary structures, and the change in chemical potential and the second 

derivative o f free energy.
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Appendix A

Galerkin Finite Element Method: 
Hermitian Basis Functions

In the method o f solution for the fourth order partial differential equation, the 

Galerkin Finite Element Method was employed. Hermitian basis functions were 

used as the interpolating functions and are listed in this appendix for the one

dimensional and two-dimensional study.

In a one-dimensional study, each element has 2 double nodes (one for the function 

and one for the slope) and four basis functions. The basis functions are:

(A I)

(A.2)

(A.3)

(A.4)

For the two-dimensional study, each element has nodes 4 double nodes and 16 

basis functions. The two-dimensional case is a product o f the one-dimensional 

basis functions in the x  and y  direction. In the 2-D model, the x, y  coordinates are 

represented by new coordinates in ^,rj space. The four nodes in ^ , 7  space are.
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+ (A.5)

(A.6)

= (A.7)

F , { 4 ) = { 4 ' - f )  (A.8)

f j (? )  = ( l - 3 ? : + 2 ? : )  (A.9)

F,(ri) = (>t-2n'+t l^)  (A. 10)

F ,(7 )= (3 ,=  - 2 7 ’ ) (A.1I)

f;  (A. 12)

The 16 basis functions are obtained from the product o f the one-dimensional basis 

functions 1^,7 space;

,p ,= {\-3 ^^-+ 2 f){ \-3 rj^+ 2 rj^)  (A. 13)

A = ( [^ -2 ^ ^  +^^]A x)(1- 3 7 ^ + 2 7 ’ ) (A. 14)

A +2^^) ( [ 7 - 2 7 ' + 7 ^] A;;) (A. 15)

A = ( [ ^ - 2 ^ '+ ^ ^ ] A x)([7-27 '+ ;7^]A ;^) (A. 16)

1̂ 5 = (1 - 3^^+2^-’ ) (3 7 ^ - 2 7 ^) (A. 17)

f^.=([^-2^'+^']A%)(377'_2;;') (A.IS)

= (1 -3 ^ '+ 2 ^ ') ( [7 ' -7 ' ]A ; ;  ) (A. 19)

A = ( [ # - 2 # '+ # ^ ]A x )([;;^_ ;;^ ]A ;,)  (A.2 0 )
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( A . 21 )

= ( [ ^ '- ^ '] A x ) ( l - 3 /7 '+ 2 ; ; - ')  (y^2 2 )

V + 7 ’’] a>̂ ) (A.23)

<̂12 = ( [ ^ ' - ^ ' ] A x) ( [ t7-2;7'+7-^]Aj ) (A.24)

( ^ ,3 = (3 # '-2 # ')W '-2 /7 ')  (A.25)

<̂14 = ( [ ^ ' - ^ ' ] A x) (3 7 ^ -2 7 ')  (A.26)

(̂ 15 =(3^^ - 2 ^ ’ ) ( [ t7^-77^]Aj ) (A.27)

(A.28)
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Appendix B

Single Quench: 
Dimensionless I-D Critical and Off- 
Critical Quench Results

1-D Dim ensionless Spatial Concentration Profiles

Figures B .l and B.2 show the evolution of the dimensionless spatial concentration 

profiles for a single quench at the critical composition of Cc = 0.5, a dimensionless 

temperature o f  T *  = 0.25, and dimensionless diffusion coefficients o f D* = 500 

000 and 800 000, respectively. Figures B.3 and B.4 show the evolution o f the 

dimensionless spatial concentration profiles for a single quench at an off-critical 

composition o f Cc = 0.6, a dimensionless temperature of T/* = 0.25, and 

dimensionless diffusion coefficients o f D* = 500 000 and 800 000, respectively. 

For all four figures the evolution of the one-dimensional dimensionless spatial 

concentration profiles show the same trends as observed in experiment. In the 

early stage, the initial concentration fluctuations appear due to the growth o f the 

m ost dominant wavelength and are weakly nonlinear. The wavelength remains 

constant while the amplitude changes. In the beginning of the intermediate stage, 

the concentration fluctuations continue to increase and into the intermediate stage
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the wavelength starts to change. The only difference in the composition 

fluctuations is the effect of increasing D*. As the value of D (200 000, 500 000, 

800 0 0 0 ) increases, the driving force for phase separation is larger and therefore, 

more phase separated regions are developed as discussed in the Chapter 5.

E volu tion  o f  the D im ension less S tru ctu re  F actor

Figures B.5 and B.6  show the evolution of the dimensionless structure factor as a 

function of dimensionless wave number, k*, and dimensionless time for the 

critical quench case with D = 500 000 and 800 000, respectively. Figures B.7 

and B .8  show the evolution of the dimensionless structure factor as a function o f 

dimensionless wave number, k \  and dimensionless time for the off-critical 

quench case with D* = 500 000 and 800 000, respectively. In all four figures, the 

quench temperature is T = 0.25. The critical and off-critical quench case show 

that the value of the dimensionless structure factor increases exponentially with 

time in the early stages of phase separation by SD the wave number is constant 

and begins to slow down as it approaches the beginning of the intermediate stages 

where nonlinear effects c ome into play. These results are c onsistent w ith the 

observations made in Chapter 5.
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F igure  B .l:  The evolution of the dimensionless spatial concentration profile for a 
single quench into the unstable region of the phase diagram at the followmg 
dimensionless times: (a) t = 0.552, (b) t = 0.5956, (c) / -  0.6252, and (d) / — 
0.6946. The dashed line through the center of the graph represents the initial
average concentration — 0.5. The dimensionless diffusion coefficient for this 

case is D* =  500 000.
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Figure B.2: The evolution of the dimensionless spatial concentration profile for a 
single quench into the unstable region of the phase diagram at the following 
dimensionless times: (a) t* = 0 .2 2 , (b) {  = 0.2278, (c) t* = 0.2479, and (d) t* = 
0.2733. The dashed line through the center o f the graph represents the initial 
average concentration — 0.5. The dimensionless diffusion coefficient for this 
case is D* = 800 000.
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F igure  B.3: The evolution of the dimensionless spatial concentration profile for a 
single quench into the unstable region o f the phase diagram at the following 
dimensionless times; (a) t — 0.7519, (b) I = 0.7775, (c) t -  0.842, and (d) t — 
0.914. The dashed line through the center o f the graph represents the initial
average concentration — 0.6. The dimensionless diffusion coefficient for this 

case is D* = 500 000.
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Figure B.4: The evolution of the dimensionless spatial concentration profile for a 
single quench into the unstable region of the phase diagram at the following 
dimensionless times: (a) t* = 0.2878, (b) t* = 0.3068, (c) t* = 0.3312, and (d) t* = 
0.3453. The dashed line through the center of the graph represents the initial 
average concentration — 0.6. The dimensionless diffusion coefficient for this 
case is D* = 800 000.
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F igure  B.5: The evolution of the dimensionless structure factor for a single 
critical quench ( = 0.5, D = 500 000 and T = 0.25 ) into the unstable region of
the phase diagram at the following dimensionless times: t* = 0.552 (thick grey 
line), t* = 0.5709 (dash with two dots), /* = 0.5956 (dash-dot line), / = 0.6252 
(dotted line), t = 0.6548 (long dashed line), t* = 0.6946 (solid line).
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F igure  B.6 : The evolution of the dimensionless structure factor for a single 
critical quench ( c„’ = 0.5, D* = 800 000 and t  = 0.25 ) into the unstable region of
the phase diagram at the following dimensionless times; / — 0 .2 2  (dash with two 
dots), t = 0.2278 (dash-dot line), t — 0.2377 (dotted line), t — 0.2479 (long 
dashed line), /* -  0.2733 (solid line).
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Figure B.7: The evolution of the dimensionless structure factor for a single off-
critical quench (c„* = 0.6, D* = 500 000 and 7* = 0.25) into the unstable region
of the phase diagram at the following dimensionless times: t* = 0.7519 (thick grey 
line), t = 0.7775 (dash with two dots), t* -  0.842 (dash-dot line), t* = 0.8748 
(dotted line), /* = 0.914 (long dashed line), t* = 0.9292 (solid line).

4

3

0

5 6

k*

Figure B.8 : The evolution of the dimensionless structure factor for a single off-
critical quench ( c j  = 0.6, D* = 800 000 and 7* = 0.25) into the unstable region
of the phase diagram at the following dimensionless times: t* = 0.2959 (dash with 
two dots), t* = 0.3068 (dash-dot line), (* = 0.3195 (dotted line), t* = 0.3312 (long 
dashed line), t* = 0.3453 (solid line).

-2 0 2



_____________________________________________________   Appcmiix B

The Growth of the Dimensionless Structure Factor in the Fariy 
Stages o f SD

Figures B.9 to B12 show the plots of the natural log of the maximum value of the 

dimensionless structure factor versus dimensionless time for the critical and off- 

critical quench case with D* = 500 000 and 800 000, respectively. For all four 

cases, the natural log of the dimensionless structure factor at the maximum wave 

number is linear for the early stages before nonlinear effects begin.

2.00

*
*

g  0.00

-1.00

-2.00
0.5 0.7 0.80.6

F igu re  B.9: The evolution of the dimensionless maximum structure factor with 
dimensionless time from t* = 0.5579 to t* = 0.7104 for a single quench (c„ = 0 .5 ,

D* = 500 000 and T* = 0.25) into the unstable region of the phase diagram. At the 
early stages o f phase separation by SD, the initial increase is linear and gradually 
slows down into the beginning of the intermediate stage where coarsening occurs. 
The dashed line indicates the linearity for the early stages before it deviates.
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Figure B.IO: The evolution of the dimensionless maximum structure factor with 
dimensionless time from t* = 0.2382 to t* = 0.2771 for a single quench (c,, = 0.5,

D* = 800 000 and = 0.25) into the unstable region of the phase diagram. At the 
early stages o f phase separation by SD, the initial increase is linear and gradually 
slows down into the beginning of the intermediate stage where coarsening occurs. 
The dashed line indicates the linearity for the early stages before it deviates.
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Figure B .ll:  The evolution of the dimensionless maximum structure factor with 
dimensionless time from t* -  0.8594 to /  = 1.00 for a single quench ( c,, = 0.6 , D

= 500 000 and = 0.25 ) into the unstable region of the phase diagram. At the 
early stages of phase separation by SD, the initial increase is linear and gradually 
slows down into the beginning of the intermediate stage where coarsening occurs. 
The dashed line indicates the linearity for the early stages before it deviates.
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F igure  B.12: The evolution of the dimensionless maximum structure factor with 
dimensionless time from t* = 0.296 to t* = 0.344 for a single quench ( c,/ = 0.6 , D*

= 800 000 and = 0.25) into the unstable region of the phase diagram. At the 
early stages o f phase separation by SD, the initial increase is linear and gradually 
slows down into the beginning of the intermediate stage where coarsening occurs. 
The dashed line indicates the linearity for the early stages before it deviates.

The Change in the Dimensionless Chemical Potential

Figures B .l3 to B .l6 show the plots of the evolution of the change in the 

dimensionless spatial chemical potential for a single critical quench and a single 

off-critical quench at Z) = 500 000 and 800 000, respectively. Increasing the 

value o f the dimensionless diffusion coefficient on the increases the rate o f 

change in the evolution of the dimensionless spatial chemical potential for a 

single critical quench and a single off-critical quench. Refer back to Chapter 5 

for the discussion o f the observations.
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Figure B .l3: The evolution of the change in the dimensionless spatial chemical 
potential for a single quench into the unstable region of the phase diagram at the 
following dimensionless times: (a) t* = 0.552, (b) t* = 0.5956, (c) t = 0.6252, and 
(d) t -  0.6946. The change in the dimensionless chemical potential is defined as 
the difference between the chemical potential polymer 1 in the mixture to that of
its pure phase. The dimensionless initial concentration is c *  =  0.5 and the
dimensionless diffusion coefficient is D *  = 500 000.
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F igu re  B.14: The evolution of the change in the dimensionless spatial chemical 
potential for a single quench into the unstable region of the phase diagram at the 
following dimensionless times: (a) t — 0.22, (b) t = 0.2278, (c) t = 0.2479, and 
(d) t* = 0.2733. The change in the dimensionless chemical potential is defined as 
the difference between the chemical potential polymer 1 in the mixture to that o f
its pure phase. The dimensionless initial concentration is — 0.5 and the
dimensionless diffusion coefficient i s  D  =  800 000.
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Figure B .l5: The evolution of the change in the dimensionless spatial chemical 
potential for a single quench into the unstable region of the phase diagram at the 
following dimensionless times: (a) t* = 0.7519, (b) t* = 0.7775, (c) t* -  0.842, and 
(d) t* = 0.914. The change in the dimensionless chemical potential is defined as 
the difference between the chemical potential polymer 1 in the mixture to that of
its pure phase. The dimensionless initial concentration is c^=  0.6 and the
dimensionless diffusion coefficient is D * =  500 000.
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F igure  B.16: The evolution of the change in the dimensionless spatial chemical 
potential for a single quench into the unstable region of the phase diagram at the 
following dimensionless times: (a) t* = 0.2878, (b) /  = 0.3068, (c) t -  0.3312, 
and (d) t* = 0.3453. The change in the dimensionless chemical potential is 
defined as the difference between the chemical potential polymer 1 in the mixture
to that o f  its pure phase. The dimensionless initial concentration is c„ = 0.6 and
the dimensionless diffusion coefficient is Z) = 800 000.
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The Second Derivative of Free Energy with Respect to 
Composition

Figures B .l7 to B.20 show the evolution of the second derivative o f the free 

energy with respect to composition spatially the critical and off-critical quench 

T2 * = 0.25 with D* = 500 000 and 800 000, respectively. As D* increases, the 

steepness in the profiles also increases. This indicates an increase in the 

instability with time as the system phase separates.
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F igure  B.17: The evolution of the change in the dimensionless spatial second 
derivative o f the free energy with respect to composition of component 1 for a 
single quench into the unstable region of the phase diagram at the following 
dimensionless times; (a) t = 0.5520, (b) ( = 0.5956, (c) ( = 0.6252, and (d) / = 
0.6946. The change in the dimensionless second derivative o f free energy is used

to determine the conditions of stability {F  > 0 ), meta-stability { F  > 0 ) , and

instability (F* < 0 ). The dimensionless initial concentration is c„*= 0.5 and the
dimensionless diffusion coefficient is D =500 000.
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Figure B.18: The evolution of the change in the dimensionless spatial second 
derivative of the free energy with respect to composition of component 1 for a 
single quench into the unstable region of the phase diagram at the following 
dimensionless times; (a) t* = 0.22, (b) /  = 0.2278, (c) t* -  0.2479, and (d) t* = 
0.2733. The change in the dimensionless second derivative o f free energy is used

to determine the conditions of stability (F* > 0 ), meta-stability (F* > 0 ), and 

instability (F* < 0). The dimensionless initial concentration is c * -  0.5 and the 
dimensionless diffusion coefficient is D* = 800 000.

-212



A p p e n d i x  B

a)

- b)

*

*

0.72

0.52

0.31

0.11

-0.10

-0.30

0.72

0.52

0.31

-0.10

-0.30
0.80.60.40.20.0

c )

d )

1.0

F igure B.19: The evolution o f the change in the dimensionless spatial second 
derivative o f  the free energy with respect to composition of component 1 for a 
single quench into the unstable region of the phase diagram at the following 
dimensionless times: (a) t = 0.7519, (b) t = 0.7775, (c) t = 0.842, and (d) / = 
0.914. The change in the dimensionless second derivative of free energy is used to

determine the conditions of stability (F* > 0 ), meta-stability ( F  > 0 ) , and

instability (F* < 0 ). The dimensionless initial concentration is c j ^  0.6 and the
dimensionless diffusion coeffrcient isD  -  500 000.
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Figure B.20; The evolution of the change in the dimensionless spatial second 
derivative of the free energy with respect to composition of component 1 for a 
single quench into the unstable region of the phase diagram at the following 
dimensionless times: (a) t* = 0.2878, (b) t* = 0.3068, (c) t* -  0.3312, and (d) t = 
0.3453. The change in the dimensionless second derivative o f free energy is used

to determine the conditions of stability {F* > 0 ), meta-stability ( F* > 0 ) , and

instability ( f  ' < 0 ). The dimensionless initial concentration is c*  = 0.6 and the 
dimensionless diffusion coefficient is D* = 800 000.
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Appendix C
Double Quench: 
Dimensionless 1-D Critical and Off- 
Critical Quench Results

1-D Dim ensionless Spatial Concentration Profiles After the 
Second Quench

Figures C. 1 to C.4 show the evolution of the dimensionless spatial concentration 

profile (for an initial critical and an initial off-critical quench) after the second 

temperature jump. The initial phase separation temperature is 7\ * = 0.25 and the 

second temperature jump is T2 * -  0.2 at the transition time. The dimensionless 

diffusion coefficients are D* = 500 000 and 800 000. The transitions times are 

summarized in Table 6.2. There is no sign of double phase separation in Figures 

C .l to C.4. However, notice that in Figures C.3 and C.4, for the initial off-critical 

quench, there is slight constructive and destructive interference in peak three and 

peak one for D* = 500 000 and 800 000, respectively. Figures C.5 to C.8 show 

the evolution o f the dimensionless spatial concentration profile (for an initial 

critical and an initial off-critical quench) after the second temperature jump to Ti * 

= 0.1 at the transition times for D* = 500 000 and 800 000, respectively. There
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are noticeable constructive and destructive interferences observed for the deeper 

quench attributed to the formation of secondary structures. Refer to Chapter 6 for 

discussion.

Evolution of the Dimensionless Structure Factor After the Second 

Quench

Figures C.9 and C.IO show the evolution of the dimensionless structure factor 

after the second quench to Ti* = 0.2 from the initial critical quench aiT\* = 0.25 

for D* = 500 000 and 800 000, respectively. Figures C .ll and C.12 show the 

evolution of the dimensionless structure factor after the second quench to Tj = 

0.2 from the initial off-critical quench a tf f  = 0.25 for D* = 500 000 and 800 000, 

respectively. The box in the right hand comer o f Figure C.l 1 and Figure C.12 

shows an enlarged plot o f  the g rowth of the secondary peak. The results are 

different from the evolution of the dimensionless structure factor observed for the 

critical quench case and for the initial off-critical quench case. There was no sign 

of double phase separation present and for the initial critical quench case and the 

growth of the structure factor showed an increase in the intensity o f the primary 

peak but no occurrence of a secondary peak forming. For the intial off-critical 

quench case, a slight secondary peak was observed to form with increasing D*. 

However, the impact was minimal and no secondary phase separated regions 

formed.
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Figure C .l ;  The evolution of the dimensionless spatial concentration profile for a 
double quench from T, * =" 0.25 X0 T2 * = 0.2 at the transition time of t,*~ 0.650 at 
the following dimensionless times; (a) t = 0.6509, (b) t = 0.656, (c) t — 0.6602, 
and (d) t* = 0.6795. The dashed line through the center of the graph represents the
initial average eoncentration c„* = 0.5. The dimensionless diffusion coefficient for 

this case is D* = 500 000.
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Figure C.2: The % evolution o f the
dimensionless spatial concentration profile for a double quench from T\ * = 0.25 
to T2 -  0.2 at the transition time of t, = 0.256 at the following dimensionless 
times: (a) /* = 0.2561, (b) /* = 0.2596, (c) t* = 0.2619, and (d) t* -  0.2656. The 
dashed line through the center of the graph represents the initial average
concentration = 0.5. The dimensionless diffusion coefficient for this case is D* 
= 800 000.
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F igu re  C.3: The evolution of the dimensionless spatial concentration profile for a 
double quench from T\ *=0.25 io T j*  = 0.2 at the transition time o f / /=  0.903 at 
the following dimensionless times; (a) t = 0.9057, (b) / =0.912, (c ) /  =0,9172, 
and (d) t = 0.9421. The dashed line through the center o f the graph represents the
initial average concentration = 0.6. The dimensionless diffusion coefficient for

this case is D *  = 500 000.
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Figure C.4: The evoluhon of the dimensionless spatial concentration profile for a 
double quench from T, *=0.25 to T2 * = 0.2 at the transition time o f //=  0.323 at 
the following dimensionless times: (a) /  = 0.3235, (b) /* = 0.325, (c) /* = 0.3298, 
and (d) t — 0.3345. The dashed line through the center o f the graph represents the 
initial average concentration = 0.6. The dimensionless diffusion coefficient for 
this case is D* = 800 000.
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F igu re  C.5: The evolution of the dimensionless spatial concentration profile for a 
double quench from T\* = 0.25 to 72 * = 0 .1 at the transition time of t*= 0.650 at 
the following dimensionless times: (a) t* = 0.6511, (b) /* = 0.6541, (c) t* = 0.6562, 
and (d) t* = 0.6584. The dashed line through the center o f the graph represents the
initial average concentration = 0.5. The dimensionless diffusion coefficient for
this case is D *  =  500 000.
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Figure C.6: The evolution of the dimensionless spatial concentration profile for a 
double quench from T\ * = 0.25 to 72 * = 0.1 at the transition time of 0.256 at 
the following dimensionless times: (a) t* = 0.256, (b) t* = 0.2571, (c) t* = 0.2577, 
and (d) t = 0.2587. The dashed line through the center of the graph represents the
initial average concentration = 0.5. The dimensionless diffusion coefficient for
this case is D *  =  800 000.
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F igu re  C .l:  The evolution of the dimensionless spatial concentration profile for a 
double quench from T\ * = 0.25 to 72 * = 0.1 at the transition time o f / /=  0,903 at 
the following dimensionless times; (a) t -  0.9045, (b) t = 0.9077, (c) i = 0.9082, 
and (d) t* = 0.9106. The dashed line through the center of the graph represents the
initial average concentration c„* = 0.6. The dimensionless diffusion coefficient for
this case is D *  = 500 000.
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Figure C.8; The evolution of the dimensionless spatial concentration profile for a 
double quench from T\* = 0.25 to 7% * = 0.1 at the transition time of = 0.323 at 
the following dimensionless times: (a) t* = 0.3235, (b) t = 0.3247, (c) t* = 0.3257, 
and (d) t* = 0.3265. The dashed line through the center of the graph represents the
initial average concentration c*  = 0.6. The dimensionless diffusion coefficient for
this case is D * =  800 000.
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Figures C.13 and C. 16 show the e\ olution of the dimensionless struetiire hietor 

(initial critical and initial off critical quench) after the second quench to 7] =0.1 

from the initial critical quench at T,* = 0.25 for D" = 500 000 and 800 000. 

respectively. There are obvious secondary peaks that form right after the second 

quench at 72 = 0 .1 . In the profile, both the primary and the secondary peak grow 

with time. This reflects in the growth of the concentration fluctuations with time 

as the primary peaks and troughs start to approach the upper and lower 

equilibrium values and the secondary peaks and troughs start to increase in value 

as well at T?* = 0.1. See Chapter 6 for discussion of results.
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Figure C.9: The evolution of the dimensionless structure factor for a double 
quench from T, * = 0.25 to 7% '  = 0.2 (second temperature jump made at a 
transition time of (*= 0.650) at the following dimensionless times: I* = 0.6509 
(light grey solid line), t — 0.656 (dash-two dot line), t = 0.6602 (dash-dot line),
and t* = 0.6795 (solid black line). The initial average concentration = 0.5. The
dimensionless diffusion coefficient is 7) = 500 000.
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Figure C.IO: The evolution of the dimensionless structure factor for a double 
quench from T\ * = 0.25 to 73 * = 0.2 (second temperature jump made at a 
transition time of t*= 0.256) at the following dimensionless times: t = 0.2561 
(light grey solid line), t* = 0.2596 (dotted line), /  = 0.2619 (dashed line), and t* =
0.2656 (solid black line). The initial average concentration = 0.5. The
dimensionless diffusion coefficient for this case is D* = 800 000.
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Figure C .l l :  The evolution of the dimensionless structure factor for a double 
quench from T\ * = 0.25 to T2 * = 0.2 (second temperature jump made at a 
transition time of //=  0.903) at the following dimensionless times: t = 0.9057 
(dash-dot line), f  = 0.912 (dotted line), t* = 0.9172 (dashed line), and t* -  0.9421
(solid black line). The initial average concentration c* ~ 0.6. The dimensionless
diffusion coefficient for this case is D *  = 500 000.
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F igure  C.12: The evolution of the dimensionless structure factor for a double 
quench from Ti = 0.25 to Ti = 0.2 (second temperature jump made at a transition 
time o f tt =  0.323) at the following dimensionless times: I* = 0.3235 (light grey 
solid line), t* -  0.325 (dotted line), t* = 0.3298 (dashed line), and t* = 0.3345
(solid black line). The initial average concentration = 0.6. The dimensionless
diffusion coefficient for this case is D* = 800 000.
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F igu re  C.13: The evolution of the dimensionless spatial concentration profile for 
a double quench from T|*= 0.25 to T2 * = 0.1 (at the transition time of / /=  0.650) 
at the following dimensionless times: t = 0.6511 (dash-two dots line), t* = 0.6541 
(dash-dot line), t* = 0.6562 (dotted line), and t* = 0.6584 (solid line). The initial
average concentration c*=  0.5. The dimensionless diffusion coefficient for this
case is D* = 500 000.
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Figure C.14: The evolution of the dimensionless spatial concentration profile for 
a double quench from T* = 0.25 to 72 * = 0.1 (at the transition time o f 0.256) 
at the following dimensionless times: t* = 0.256 (dotted line), t* = 0.2571 (dash- 
dot line), t* = 0.2577 (dashed line), and t* = 0.2587 (solid line). The initial average
concentration = 0.5. The dimensionless diffusion coefficient for this case is D
= 800 000.
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Figure C IS: The evolution of the dimensionless spatial concentration profile for 
a double quench from T* = 0.25 to Ti =0.1 (at the transition time of t, = 0.903 at 
the following dimensionless times: t -  0.9045 (dash-dot line), t* = 0.9077 (light 
grey line), t = 0.9082 (dashed line), and t* = 0.9106 (solid line). The initial
average concentration = 0 .6 . The dimensionless diffusion coefficient for this
case is D* = 500 000.
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F igure  C.16: The evolution of the dimensionless spatial concentration profile for 
a double quench from T| * = 0.25 to T 2* = 0.1 (at the transition time of 0.323) 
at the following dimensionless times: t* = 0.3235 (light grey line), /* = 0.3247 
(dash-dot line), t* = 0.3257 (dashed line), and i* = 0.3265 (solid line). The initial
average concentration = 0.6. The dimensionless diffusion coefficient for this
case is D* ^  800 000.

Change in the Dimensionless Spatial Chemical Potential

Figures C .l7 to C.20 show the evolution of the dimensionless spatial chemical 

potential after the second quench to Tj* = 0.2 at the transition time corresponding 

to D* = 500 000 and 800 000 for the initial critical and initial off-critical quench 

case, respectively. The evolution of the change in the dimensionless spatial 

chemical potential shows the same trends as for the single quench case. Figures 

C.21 to C24 show the evolution of the dimensionless spatial chemical potential 

after the second quench to Ti =0.1 at the transition time corresponding to D* = 

500 000 and 800 000 for the initial critical and initial off-critical quench case, 

respectively. New trends are observed upon a deeper quench into the unstable 

region as discussed in Chapter 6. The observation of the flattening o f the local
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maxima and minima can be attributed to the adjusting of the blend to the change 

in quench conditions.

Change in the Dimensionless Spatial Second Derivative of Free 
Energy with Respect to Composition After the Second Quench

Figures 6.25 to C.28 show the evolution of the second derivative o f the free 

energy with respect to composition spatially after the second quench to Ti* = 0.2 

from the initial critical and off-critical quench with D* = 500 000 and 800 000, 

respectively. The evolution of the change in the dimensionless spatial second 

derivative of free energy with respect to composition shows the same trends as for 

the single quench case. Figures 6.29 to C.32 show the evolution of the second 

derivative of the free energy with respect to composition spatially after the second 

quench to T2 * = 0.1 from the initial critical and off-critical quench with D* = 500 

000 and 800 000, respectively. New trends are observed upon a deeper quench 

into the unstable region as discussed in Chapter 6. The observation o f the 

formation o f  ne w ins tabilities is o bserved in t he f  orm o f  a do uble w ell s hape 

within the existing maxima and minima locations.
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F igure  C.17: The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T* -  0.25 to Tj* = 0.2 at the transition time of 
U — 0.650 at the following dimensionless times: (a) t* = 0.6509, (b) t* = 0.656, (c) 
t* = 0.6602, and (d) t* = 0.6689. The change in the dimensionless chemical 
potential is defined as the difference between the chemical potential polymer 1 in 
the mixture to that o f its pure phase. The dimensionless initial concentration is
c *  — 0.5 and the dimensionless diffusion coefficient isD  = 500 000.
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Figure C.18: The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T* = 0.25 to Tj* ~ 0.2 at the transition time of 
//=  0.256 at the following dimensionless times: (a) t* = 0.2561, (b) t* = 0.2596, 
(c) t -  0.2619, and (d) t = 0.2656. The change in the dimensionless chemical 
potential is defined as the difference between the chemical potential polymer 1 in 
the mixture to that of its pure phase. The dimensionless initial concentration is

= 0.5 and the dimensionless diffusion coefficient is D *  -  800 000.
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F igure  C.19: The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T \*-  0.25 to T2 * = 0.2 at the transition time o f 
t*= 0.903 at the following dimensionless times; (a) t* = 0.9057, (b) /* = 0.9172, 
(c) t* = 0.9260, and (d) t* = 0.9421. The change in the dimensionless chemical 
potential is defined as the difference between the chemical potential polymer 1 in 
the mixture to that o f its pure phase. The dimensionless initial concentration is
c *  ~  0.6 and the dimensionless diffusion coefficient is D *  =  500 000.
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Figure C.20: The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T\* = 0.25 to T2 = 0.2 at the transition time of 
t*= 0.323 at the following dimensionless times; (a) t* = 0.3235, (b) t -  0.325, (c) 
t* = 0.3298, and (d) t* = 0.3345. The change in the dimensionless chemical 
potential is defined as the difference between the chemical potential polymer 1 in 
the mixture to that of its pure phase. The dimensionless initial concentration is
Cq = 0.6 and the dimensionless diffusion coefficient is D *  = 800 000.
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F igure  C.21; The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T\ = 0.25 to Ti =0.1 at the transition time o f 
t*= 0.650 at the following dimensionless times: (a) = 0.6511, (b) /  = 0,6541,
(c) /  = 0.6562, and (d) t* = 0.6584. The change in the dimensionless chemical 
potential is defined as the difference between the chemical potential polymer 1 in 
the m ixture to that o f its pure phase. The dimensionless initial concentration is
c*  — 0.5 and the dimensionless diffusion coefficient is Z) = 500 000.
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Figure C.22: The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T\* = 0.25 to Ti =0.1 at the transition time of 
t* -  0.256 at the following dimensionless times: (a) t* = 0.256, (b) t* = 0.2577, (c) 
t* = 0.2580, and (d) /* = 0.2587. The change in the dimensionless chemical 
potential is defined as the difference between the chemical potential polymer 1 in 
the mixture to that of its pure phase. The dimensionless initial concentration is
c *  =  0.5 and the dimensionless diffusion coefficient is D *  =  800 000.
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Figure C.23: The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T\*= 0.25 to T2* = 0.1 at the transition time o f  

0.903 at the following dimensionless times: (a) t* = 0.9045, (b) /* = 0,9077, 
(c) t* = 0.9082, and (d) t* = 0.9106. The change in the dimensionless chemical 
potential is defined as the difference between the chemical potential polymer 1 in 
the mixture to that of its pure phase. The dimensionless initial concentration is
c *  = 0.6 and the dimensionless diffusion coefficient is D *  -  500 000.

237-



Appendix C

0.414

3  0.247

-0.003

a)

'  Zï^O.247 
^  0.164 

0.080 
-0.003

- b )

0.414

^ 0 .2 4 7
0.164
0.080

-0.003

r

- c )

0.414

^ 0 .2 4 7
0.164

-0.003

Figure C.24: The evolution of the change in the dimensionless spatial chemical 
potential for a double quench from T\* = 0.25 to T2 * = 0.1 at the transition time of 
tf = 0.323 at the following dimensionless times; (a) t* = 0.3235, (b) t* = 0.3247, 
(c) t = 0.3257, and (d) t = 0.3265. The change in the dimensionless chemical 
potential is defined as the difference between the chemical potential polymer 1 in 
the mixture to that of its pure phase. The dimensionless initial concentration is

= 0.6 and the dimensionless diffusion coefficient is D *  =  800 000.
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F igu re  C.25: The evolution of the change in the dimensionless spatial second 
derivative o f  the free energy with respect to composition of component 1 for a 
double quench from T\* = 0.25 to Tj* = 0.2 at the transition time o f t*= 0.650 at 
the following dimensionless times: (a) t* = 0.6509, (b) t* = 0.656, (c) I* = 0.6602, 
and (d) t = 0.6689. The change in the dimensionless second derivative o f free

energy is used to determine the conditions o f stability (F* > 0 ), meta-stability 

( F  > 0 ) ,  and instability ( F  < 0 ). The dimensionless initial concentration is 
= 0.5 and the dimensionless diffusion coefficient is D* = 500 000.
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Figure C.26: The evolution of the change in the dimensionless spatial second 
derivative of the free energy with respect to composition of component 1 for a 
double quench from T\ -  0.25 to J2 = 0.2 at the transition time of tt — 0.256 at 
the following dimensionless times: (a) t* = 0.2561, (b) t* = 0.2596, (c) t* = 0.2619, 
and (d) t = 0.2656. The change in the dimensionless second derivative of free

energy is used to determine the conditions of stability (F* > 0 ), meta-stability

(F* > 0), and instability ( F  <0). The dimensionless initial concentration is
c *  = 0.5 and the dimensionless diffusion coefficient is D *  = 800 000.
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F igu re  C.27: The evolution of the change in the dimensionless spatial second 
derivative o f the free energy with respect to composition of component 1 for a 
double quench from T\* = 0.25 to T2 * = 0.2 at the transition time o f t*= 0.903 at 
the following dimensionless times: (a) / = 0 .9 0 5 7 ,(6 ); =0.9172, (c ); =0.9260, 
and (d) t* = 0.9421. The change in the dimensionless second derivative o f free

energy is used to determine the conditions o f stability ( F  > 0 ), meta-stability

(F*  > 0 ) ,  and instability (F* < 0). The dimensionless initial concentration is
c *  =  0.6 and the dimensionless diffusion coefficient is £> = 500 000.
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Figure C.28: The evolution of the change in the dimensionless spatial second 
derivative of the free energy with respect to composition of component 1 for a 
double quench from T\* = 0.25 to Ti* = 0.2 at the transition time o f /,*= 0.323 at 
the following dimensionless times: (a) = 0.3235, (b) t* = 0.325, (c) t* = 0.3298,
and (d) t = 0.3345. The change in the dimensionless second derivative o f free

energy is used to determine the conditions of stability (F* > 0 ), meta-stability
•" . . .  •"

( F  > 0), and instability ( F  <0). The dimensionless initial concentration is
c„* = 0.6 and the dimensionless diffusion coefficient is D *  = 800 000.
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Figure  C.29: The evolution of the change in the dimensionless spatial second 
derivative o f the free energy with respect to composition of component 1 for a 
double quench from T\* = 0.25 to Tj* = 0.1 at the transition time o f i, = 0.650 at 
the following dimensionless times: (a) t* = 0.651 l ,( b ) f  = 0.6541, (c) t = 0.6562, 
and (d) t* = 0.6584. The change in the dimensionless second derivative o f  free

energy is used to determine the conditions o f stability {F* > 0 ) , meta-stability

(F*  > 0 ) ,  and instability (F* < 0 ). The dimensionless initial concentration is
= 0.5 and the dimensionless diffusion coefficient is £> = 500 000.
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Figure C.30; The evolution of the change in the dimensionless spatial second 
derivative of the free energy with respect to composition of component 1 for a 
double quench from T* = 0.25 to Ti =0.1 at the transition time of t* -  0.256 at 
the following dimensionless times: (a) t* = 0.256, (b) t* -  0.2577, (c) t* = 0.2580, 
and (d) t = 0.2587. The change in the dimensionless second derivative of free

energy is used to determine the conditions o f stability (F* > 0 ), meta-stability

(F* > 0 ), and instability (F* <0). The dimensionless initial concentration is
c .  =0.5 and the dimensionless diffusion coefficient is D *  = 800 000.
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F igure  C.31: The evolution of the change in the dimensionless spatial second 
derivative o f the free energy with respect to composition of component 1 for a 
double quench from = 0.25 to Ti* = 0.1 at the transition time o f 0.903 at 
the following dimensionless times: (a) t = 0.9045, (b) t = 0.9077, (c) t = 0.9082, 
and (d) t* = 0.9106. The change in the dimensionless second derivative o f free

energy is used to determine the conditions o f stability {F  > 0 ), meta-stability

{F* > 0 ), and instability {F* < 0 ). The dimensionless initial concentration is
r  = 0.6 and the dimensionless diffusion coefficient is D = 500 000.
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Figure C.32: The evolution of the change in the dimensionless spatial second 
derivative of the free energy with respect to component 1 for a double quench 
from T\* = 0.25 to Tj* = 0.1 at the transition time of t*~ 0.323 at the following 
dimensionless times; (a) t* = 0.3235, (b) t* = 0.3247, (c) t* = 0.3257, and (d) t  = 
0.3265. The change in the dimensionless second derivative o f free energy is used

to determine the conditions of stability ( F *  > 0 ), meta-stability ( F '  > 0 ), and

instability ( F *  < 0). The dimensionless initial concentration is — 0.6 and the
dimensionless diffusion coefficient is D *  =  800 000.
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G rowth of Primary Structures After the Second Temperature 
Jum p to T i  = 0.2

Figure C.33 to C36 shows the growth ot the maximum value of the dimensionless 

structure factor with dimensionless reduced time atter the second shallower 

quench for the initial critical quench and initial off-critical quench case for D* — 

500 000 and 800 000, respectively. The values plotted are taken right after the 

second quench is made and there are three regions and discussed in Chapter 6. 

Figures C.35 and C.36 shows the growth rate o f the primary (top) and secondary 

(bottom) peaks o f the maximum structure factor after the second shallow quench. 

The difference in the profiles for the initial critical and initial off-critical quench 

cases were also discussed in Chapter 6.

A Com parison of the Growth of Primary and Secondary 
Structures After the Second Temperature Jump to T j  = 0.1

Figure C.37 to C.40 shows the growth rate o f the primary (top) and secondary 

(bottom) peaks o f the maximum structure factor after the second deeper quench at 

the transition times for the initial critical and initial off-critical quench case with 

D* = 50 0 0 0 0  and  80 0 000, r espectively. T he g rowth w as divided in to  t hree 

stages. Generally, the trends are consistent for the three stages and were 

discussed in Chapter 6.
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Figure C.33: The evolution of the dimensionless structure factor o f the primary 
structure formed just after the second temperature jump to T2 -  0.2, plotted 
against dimensionless reduced times for a critical quench case. The second jump 
was made at a transition time of t, = 0.650 with a dimensionless diffusion 
coefficient D* = 500 000.

s

14

13

12

1 1

10

9

8

7

6

1.00 1 . 0 1 1 . 0 2 1.03 1 .04

Figure C.34: The evolution of the dimensionless structure factor of the primary 
structure formed just after the second temperature jump to Tj -  0.2, plotted 
against dimensionless reduced times for a critical quench case. The second jump 
was made at a transition time of / /  = 0.2560 with a dimensionless diffusion 
coefficient D* = 800 000.
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F ig u re  C.35: The evolution of the dimensionless structure factor o f the (a) 
prim ary and (b) secondary peaks formed just after the second temperature jum p to 
Tj* = 0.2 plotted against dimensionless reduced times for an off-critical quench 
case. The second temperature jump was made at tt = 0.903. The dimensionless 
diffusion coefficient is D* = 500 000.
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Figure C.36: The evolution of the dimensionless structure factor of the (a) 
primary and (b) seeondary peaks formed just after the second temperature Jump to 
T2 -  0.2 plotted against dimensionless reduced times for an off-critical quench 
case. The second temperature jump was made at t,* = 0.323. The dimensionless 
diffusion coefficient is D* = 800 000.
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F ig u re  C.37: The evolution of the dimensionless structure factor o f the (a) 
prim ary and (b) secondary structures f  ormed just after the second temperature 
jum p to 7 2 * = 0.1 plotted against dimensionless reduced times for a critical 
quench case. The second temperature jump was made at t, = 0.650. The 
dimensionless diffusion coefficient is Z) = 500 000.
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Figure C.38: The evolution of the dimensionless structure factor o f the (a) 
primary and (b) secondary structures formed just after the second temperature 
jump to T2 =0 . 1  plotted against dimensionless reduced times for a critical 
quench case. The second temperature jump was made at t* = 0.256. The 
dimensionless diffusion coefficient is D* -  800 000.
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F igu re  C.39: The evolution of the dimensionless structure factor o f the (a) 
prim ary and (b) secondary structures f  ormed just after the second temperature 
jum p to T-i -  0.1 plotted against dimensionless reduced times for an off-critical 
quench case. The second temperature jump was made at t, = 0.903. The 
dimensionless diffusion coefficient is D = 500 000.
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Figure C.40: The evolution of the dimensionless structure factor of the (a) 
primary and (b) secondary structures formed just after the second temperature 
jump to T2 = 0.1 plotted against dimensionless reduced times for an off-critical 
quench case. The second temperature jump was made at r /  = 0.323. The 
dimensionless diffusion coefficient is D* = 800 000.
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R em arks on the Early Stages of Phase Separation After the 
Second Temperature Jump to 7% = 0.1 where Secondary
Structures are Observed

Figures C.41 to C.44 show the plots of the natural log of the dimensionless 

structure factor versus dimensionless reduced time for the initial critical and 

initial off-critical quench case with Z)* = 500 000 and 800 000, respectively. 

These plots were used to determine if  the numerical work presented in this section 

on the formation o f secondary structures also follows the linear theory in the early 

stages right a fter t he s econd que nch to  = 0 .1. A l l f  our F igures s how t he 

existence o f a small linear region after the second quench when the secondary 

structures were forming.
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F igure  C.41: The evolution o f the growth o f the dimensionless structure factor o f 
the secondary structure formed at the second temperature jump, T2 — 0.1, plotted 
against dimensionless reduced times for a critical quench with D  — 500 000
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Figure C.42: The evolution of the growth of the dimensionless structure factor of 
the secondary structure formed at the second temperature jump, Tj =0 .1 , plotted 
against dimensionless reduced times for a critical quench with D = 800 000
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Figure C.43: The evolution of the growth of the dimensionless structure factor of 
the secondary structure formed at the second temperature jump, T2 = 0 .1 , plotted 
against dimensionless reduced times for an off-critical quench with D* -  500 000
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F ig u re  C.44: The evolution o f the growth of the dimensionless structure factor o f 
the secondary structure formed at the second temperature jump, T2 = 0 .1 , plotted 
against dimensionless reduced times for an off-critical quench with D  = 800  000
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