
i

DEPLOYMENT OF VIRTUAL MACHINES FOR TIERED APPLICATIONS IN

 CLOUD SYSTEMS WITH OPTIMIZED RESOURCE ALLOCATION

BASED ON AVAILABILITY SLAS

by

PRANEETH SAKHAMURI

Bachelor of Technology

GITAM University

Visakhapatnam, AP, INDIA 2014

A thesis presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2017

© Praneeth Sakhamuri 2017

ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of

scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in

total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

ABSTRACT

DEPLOYMENT OF VIRTUAL MACHINES FOR TIERED APPLICATIONS IN CLOUD

SYSTEMS WITH OPTIMIZED RESOURCE ALLOCATION BASED ON

 AVAILABILITY SLAS

Praneeth Sakhamuri, M.A.Sc.

Electrical and Computer Engineering

Ryerson University, 2017

Deploying and managing high availability-tiered application in the cloud is challenging, as it

requires providing necessary virtual machines to make the application available. An application is

available if it works and responds in a timely manner for varying workloads. Application service

providers need to allocate specified number of working virtual machine copies for each server with at

least a given minimum computing power, to meet the response time requirement. Otherwise, we may end

up with response time failures. This thesis formulates an optimization problem that determines the

number and type of virtual machines needed for each server to minimize the cost and at the same time

guarantees the availability SLA (Service-Level Agreement) for different workloads. The results

demonstrate that a diverse approach is more cost-effective than running on a single type of virtual

machine, and buying only the cheapest virtual machines for an application is not always economical.

iv

ACKNOWLEDGEMENTS

It is my privilege to thank the people who either directly or indirectly helped me in making this thesis a

success.

This thesis would not have been possible without my advisor, professor Dr. Olivia Das whose guidance

and advice helped me in completing the thesis. She played a major role in assisting and guiding me

through all these years. I would also like to thank the members of the defence committee, Dr. Bala

Venkatesh, Dr. Alagan Anpalagan and Dr. Truman Yang, for spending their valuable time and energy

reviewing my thesis and providing their humble responses which have been insightful.

I would also like to thank the anonymous reviewers who provided their valuable feedback on my paper,

which has been a part of this research work. Furthermore, I would like thank Ryerson University for

providing a great atmosphere and resources that helped to complete the thesis, and the financial support

they have provided in the form of graduate awards, assistantship and fellowship during my graduate

work.

I would finally like to acknowledge each and every member of my family for their tremendous support

and hardships they have endured to help me complete my thesis and my friends who always stayed by my

side when I was down. My parents’ support in helping me pursue my graduate studies and creating a

positive atmosphere around me helped me focus more on my research. My brother’s sense of humor

helped me cheer up in stressful situations and made me focus on the problem at-hand.

This thesis is dedicated to my amma and papa.

v

CONTENTS

Author’s Declaration ……………………………………………………………………. ii

Abstract ………………………………………………………………………………….. iii

Acknowledgements ……………………………………………………………………… iv

List of Tables ……………………………………………………………………………. ix

List of Figures …………………………………………………………………………... xi

Abbreviations ……………………………………………………………………………. xii

Chapter 1 Introduction 1

1.1 Introduction 1

1.2 What is Availability? 3

1.3 Research Problem 4

1.4 Research Overview 6

1.5 Related Works 7

1.6 Contributions 9

1.7 Thesis Outline 10

vi

Chapter 2 Background 11

2.1 Cloud Computing 11

2.1.1 History of Cloud Computing 12

2.1.2 Characteristics of Cloud Computing 13

2.1.3 Classification of Cloud Computing 13

Infrastructure as a Service 14

Platform as a Service 14

Software as a Service 14

2.1.4 Types of Clouds 15

 Private Cloud 15

 Public Cloud 15

 Community Cloud 16

 Hybrid Cloud 16

2.2 Research in SaaS Layer 16

2.3 Quality-of-Service 17

 2.3.1 SLAs in Cloud 18

vii

2.4 Availability based Quality-of-Service 20

 2.4.1 Availability of a component 21

 2.4.2 System Availability 22

 2.4.3 Availability in Cloud Computing 22

Chapter 3 Distribution of Virtual Machines 24

3.1 Three – Tier Cloud System 24

3.1.1 Architecture 25

3.1.2 Assumptions 26

3.1.3 Notations 26

3.2 Problem Description 27

3.2.1 VM Distribution 27

3.2.2 Difference in Steady-state Availability between cases 28

Chapter 4 Analysis and Results 32

4.1 Problem Analysis 32

4.2 Results 33

viii

4.2.1 Impact of using minimum type VMs on optimal solution and cost 34

4.2.2 Single type of VM instances vs. Different types of VM instances 37

4.2.3 Selection of VMs best suited for the application 45

4.3 Framework 51

Chapter 5 Conclusion and Future work 52

5.1 Summary 52

5.2 Conclusion 53

5.3 Future Works 53

Appendix 55

References 63

ix

LIST OF TABLES

1 minType allocation of VMs to the servers and total cost (where k1=k2=k3=1)

with SSAreq=0.99999 35

2 minType allocation of VMs to the servers and total cost (where k1=k2=k3=2)

with SSAreq=0.99999 36

3 fixType allocation of VMs to the servers and total cost (where k1=k2=k3=1)

with SSAreq=0.99999 37

4 fixType allocation of VMs to the servers and total cost (where k1=k2=k3=2)

with SSAreq=0.99999 38

5 A comparison of minType(1, 2, 3) and fixType(1, 2, 3) under case – 1 40

6 A comparison of minType(1, 2, 3) and fixType(1, 2, 3) under case – 2 40

7 Total Cost and number of VMs allocated for different SSAreqs through case -1

based on minType 41

8 Total Cost and number of VMs allocated for different SSAreqs through case – 2

between minType 42

9 Total Cost and number of VMs allocated for different SSAreqs through case – 2

between fixType 42

10 Total Cost and number of VMs allocated for different SSAreqs through case – 2

between fixType 43

11 Comparison of conditions 1, 2 and 3 under case – 1 47

x

12 Comparison of conditions 1, 2 and 3 under case – 2 49

xi

LIST OF FIGURES

1 Cloud Service Models 2

2 Types of Cloud Computing 15

3 Structure of SLA 19

4 Resource Attributes Model 20

5 System Layout 25

6 Effect of SSAreq on minType and fixType under case - 1 44

7 Effect of SSAreq on minType and fixType under case - 2 45

8 Cost comparison between conditions for different SSAreq values in case – 1 48

9 Cost comparison between conditions for different SSAreq values in case – 2 50

xii

ABBREVIATIONS

VM Virtual Machine

QoS Quality of Service

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

ASP Application Service Provider

1

Chapter 1

INTRODUCTION

1.1 Introduction

Cloud computing has been increasingly advancing as one of the major fields with its applications

in various areas of business and personal use like storage, developing virtual circuits, running various

applications and programs with its vast networking, operational and storage capabilities. Initially, through

cloud storage data was made available anyplace around the globe. Storing information in the cloud and

accessing it from any other place has made data management much easier and safe. Nowadays, cloud

services have increased from storing data to accessing various servers virtually and running various

applications through internet rather than connecting a server to the system or actually downloading the

application into the system. This way of computing usually provides a better way to access a shared pool

of resources for a better cost and on-demand.

Cloud services deployed through cloud computing are described by service models, which may

be a combination of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

2

Service (SaaS). All these services are differentiated based on the various tasks offered by the cloud. These

services mostly follow a hierarchy and may be interdependent [12]. IaaS model is the lowest-level in the

hierarchy and provides necessary infrastructure to the clients. It is followed by the PaaS model where

necessary application platform is delivered to the client and is dependent on IaaS for its resources. SaaS

model is the final layout available to the client and gives the client a complete access over all its

applications. The figure below shows a clear description of the various service models.

Figure 1. Cloud Service Models

When the service reaches the SaaS model, the application service provider (ASP) has to perform

necessary checks on the system such that the system has better Quality of Service (QoS) to provide a

better experience to the client.

There are different types of resources in cloud computing based on QoS with different functions

and attributes. Some of the key attributes are service time, service cost, availability and reliability with

which the service is offered. There are also different types of attributes based on the system requirement.

3

For example, storage can be considered an attribute when using storage services where storage capacity is

a main concern. Managing these attributes accordingly helps in providing the user with a better system

experience.

This can be achieved in two ways: High performance computing and high availability computing.

As the names suggest, high performance computing is used to make sure the system performance is at its

best. High availability computing is used to make sure the system’s availability is higher or the system

can be reliable [7].

1.2 What is Availability?

The term reliability means, the ability of a system to perform a required function, under

given environmental and operational conditions and for a stated period of time[13]. Reliability

can also be defined as the probability of a system in which no failure occurs in a give time period

(0,t). Instantaneous availability or point availability denoted as A(t), can be defined as the

probability that the system is working at an instant t, regardless of the number of times the system

might have failed and been repaired in the time interval (0,t)[30].

At an initial instant, the availability is 1 but later gradually decreases until it tends to a

constant limiting value known as steady-state availability. In a non-repairable system,

instantaneous availability A(t) is equivalent to reliability R(t). However, if the system is

repairable, availability can be expressed as:

𝐴(𝑡) = 𝑅(𝑡) + ∫ 𝑅(𝑡 − 𝑥)𝑚(𝑥) 𝑑𝑥
𝑡

0

 (1.1)

At any time t, availability is always greater than or equal to reliability. As it is already

stated that R(t) represents reliability of a system in a time period of (0,t), m(x) dx is the

4

probability that a renewal occurs at an instant x. R(t - x) represents the probability that the system

works in the time interval (0, t-x).

In general, steady-state availability of s component can be defined as

𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
 (1.2)

When it comes to formulating steady-state availability, it does not apply for general

system with internal redundancy, which means it only works for a system with a single UP state

and a single DOWN state[30]. The steady-state availability equation is also given as:

lim
𝑡→∞

𝐴(𝑡) =
𝜇

𝜆 + 𝜇
 (1.3)

The over-all steady-state availability of a system can be calculated by modeling the

system as an interconnection of different components in series or parallel.

1.3 Research Problem

Cloud computing is the result of the adaptation of existing technologies and their evolution into a

platform that allows clients to take advantage of all the technologies with low cost and task centered focus

rather than worrying about different parameters and obstacles. The main ideology behind cloud

computing is virtualization. It differentiates physical devices to virtual devices that are used in cloud

computing to perform different tasks.

There are several researches that discuss the use of cloud computing as a platform to reduce

system complexity and cost by opting virtual systems instead of physical systems. Further studies have

also explored the allocation of VMs from different levels of cloud based on performance. In [4], Anand

et. al. have given a solution to reduce VM migration based on performance SLAs which reduced the

5

overall migration of resources to a minimum by using integer programming. Authors in [15] consider the

minimization of power and migration cost through VM placement and have proposed an algorithm that is

based on dynamic programming and convex optimization method.

Availability constraints have been explored by Menascé et. al. in [10] which propose a near

optimal solution to allocation of VMs based on high availability in the IaaS layer which has also produced

an increase in revenue. A dynamic approach is proposed to evaluate reliability in clouds in [13] based on

fault tree analysis which helps in studying system reliability and also portrays the impact of reliability on

the cloud system.

Availability is one of the key features of cloud computing. Imagine a system where the

servers go down in the middle of a project. This would affect the user experience and in turn

leads to loss of customer usage. Therefore, maintaining high availability is very important in

cloud computing.

One of the most important traits of cloud computing is the ability to allocate virtual machines to

perform several tasks remotely from another location. These VMs are mostly allocated based on different

properties such as system utilization, machine performance, system availability, system response time,

system cost, memory and so on. Most of these properties are declared initially at the IaaS level and some

are developed during run time. In this thesis, only availability and cost are considered from the ASP

perspective to make the system work in an optimal condition such that the total system has high

availability with a relatively low cost.

There has been development of various techniques based on deployment of virtual machines in

cloud on the SaaS layer based on high performance computing. This thesis covers allocation of VMs in

the SaaS layer where the Application Service Providers (ASPs) process operations of the system and

optimize the number of VMs to be allocated to obtain a better result using high availability computing.

6

Initially, to run any computing application clients need to purchase necessary servers and

components for the tasks to work for which, in the long run leads to loss of resources and also high cost.

Using cloud computing however helps to virtually allocate machines through the network to produce

necessary setup for a required task producing a consistent output. Making these resources available for a

pay-per-use basis, monthly and yearly terms depending on the usage of resources reduces cost imparted

on the client.

The main concept of cloud computing arises from the idea of replacing physical machines with

virtually allocated machines from another location through an established network. The introduction of

VMs into the system facilitates easy allocation and de-allocation of physical machines serving the system

to meet necessary Quality of Service (QoS) objectives.

1.4 Research Overview

This thesis studies the effect of cost and availability of the virtual machines to acquire virtual

machines that can be allocated to different software servers based on their availability constraints. An

optimized model is developed that is run on an ILOG CP solver using AMPL. The steady state

availability of a three – tier system with each tier using different types of VMs in different situations are

studied, and the resulting solution that produces most cost-efficient output with minimum number of VMs

dispatched to solve the problem is selected.

A hypothetical three – tiered cloud application is analyzed in this thesis. The application consists

of three software servers: Web server, App server and Database server. Multiple copies of each server are

assumed to be running in each tier respectively. An optimization problem is formulated where the goal

was to minimize cost subject to SLA constraints. Availability is used as a constraint and a model is

generated to test the system in different situations. Two different cases are considered depending on the

7

number of working copies in each tier. Case – 1 is considered as a simple system with only copy working

for each server. Case – 2 describes multiple working copies in each tier.

Along the thesis, different conditions are described for both the cases and the outputs displayed

help the ASPs make their decisions on acquiring VMs. This thesis also shows that allocation of cheapest

VMs to reduce system cost is not always the best method to reduce the system cost and it is best preferred

to run the servers on different types of VM instances rather than a fixed type of VMs.

1.5 Related Works

For the last couple of years, the growth of cloud computing has demanded a lot of research on the

problems faced by cloud providers based on resource allocation. Although there have been many works

on resource allocation, very little has been done from the application service providers (ASPs)

perspective.

Authors in [8] provide a survey on a cloud system which uses QoS modeling and several other

early QoS management systems. In [6], a research survey has been done on management of clouds based

on resource allocation and different challenges faced by the cloud providers to achieve it. The main

problem faced in resource allocation is to decide the optimal way to allocate virtual machines to physical

machines. There have been many different methods discussed to formulate this problem by linking it to

response time, availability, cost and power constraints. The most common objective is by increasing the

revenue of the cloud provider. Authors in [25,29] present different solutions to this NP hard problem

based on bin-packaging formulation. However, scaling problems of bin-packing have called for heuristic

solutions [10, 15, 16, 17, 22, 34].

Authors in [10] discuss about an optimal allocation of cloud computing resources by proposing a

near optimal (NOPT) algorithm based on hill-climbing approach and the results are compared with best

8

fit strategy. Through this comparison it is observed that the NOPT approach gives 45% better revenue

compared to the best fit strategy and simultaneously maintaining an availability value very close to 1.

In [24], the authors have presented algorithms for minimizing the infrastructure cost based on

response time constraints. This requires converting the customer SLA requirements to infrastructure level

parameters. In [39], the authors propose evolutionary algorithms to minimize resource usage which

improves execution time. Authors in [38] consider minimizing resources used by clustering components

such that resource and communication requirements are not violated. In [40], authors discussed on a

resource management system to allocate data dynamically based on user demand. It mainly focuses on

minimizing cost by optimizing number of servers used.

Menascé et al. have presented in their recent work [2] two heuristic techniques that were used by

ASPs to determine the number of VMs to be leased for minimizing system cost subject to response time

constraints. In [32], the authors present an automated smartscale scaling framework which uses a

combination of vertical and horizontal scaling. It ensures the application converges to the desired level. A

heuristic algorithm has been proposed in [25] based on force-directed search where the upper bound profit

is calculated and is compared with the proposed resource consolidation technique.

In [3], the authors proposed a nash bargaining approach that discusses about a cost effective and

dynamic VM resource allocation method for handling media services in the cloud platform. The main

focus is on challenging the issue which is to reduce the overall cost of running servers while making sure

that the resources are being utilized at their maximum potential and the system completes the given job by

the deadline. Several experiments have been conducted in the paper and the results show that the

bargaining algorithm improves the resource utilization over time, with lesser VM migration overhead and

active servers.

Mao and Humphrey defined an auto-scaling mechanism in [26] that guarantees execution of all

the requests in given time. The main goal is to allocate resources that are only needed. It presents an

9

approach where the elements of the cloud, each of different costs and sizes, user specified performance

metrics for the jobs are specified and the aim is to make sure all the jobs are done within the pre-fixed

deadlines for a minimum cost. This is done by dynamic allocation/deallocation of VMs and scheduling

tasks on cost-effective instances on various workload patterns which show increased savings from 9.8%-

40.4% when compared to other approaches.

None of the above papers discussed consider availability constraint from the ASP perspective.

Although availability is considered as a constraint, they were mainly focused on the cloud provider. The

papers that have worked on the application provider considered response time or performance as their

constraints. As a part of the thesis, [28] has been developed and it helps in bridging the gap created in the

ASP level. It provides an optimization model to determine the number of VMs needed of each type for

each server that helps minimize the cost and at the same time guarantees the availability SLA. It uses an

ILOGCP solver to solve the model and helps the ASPs in taking decisions as to selecting the necessary

amount and types of VMs.

1.6 Contributions

Following are different contributions of this thesis:

• The model that is developed to meet the optimal requirements for the system reduces the

number of virtual machines that are allocated to the servers which assists in minimizing

allocation of unexploited VMs.

• Allocation of less number of VMs results in minimization of overall cost of the system.

• The optimized model also focuses on reducing the cost of the system by comparing the cost

of each type of VM and its availability together to comprehend the kind of VM that is better

suited for the job.

10

1.7 Thesis Outline

This thesis layout is arranged as follows: Chapter 2 discusses the background study on Cloud

computing, cloud computing in SaaS layer, system availability and allocation of virtual machines in the

cloud. Chapter 3 discusses the system model, availability of the system and distribution of virtual

machines to different layers. In Chapter 4, different cases involved in distribution of virtual machines

have been clearly elaborated. The framework and problem analysis are discussed in Chapter 5 and the

results obtained have been displayed. Chapter 6 presents the future work and concludes the thesis.

11

Chapter 2

BACKGROUND

Cloud computing is a popular term that is being used in various contexts in almost every industry

for a simple data transfer to performing multiple high – level operations by the help of virtual resources

for a comparatively cheaper cost on a pay-per-use basis. This chapter discusses about the structure of the

cloud, allocation of resources and the effect of system availability on the cloud.

2.1 Cloud Computing

Cloud computing is an internet-based service that delivers necessary facilities to the user. Its

operations can vary from simple mathematical calculations to running business operations on its agile

architecture [19].

12

The key features of cloud computing include:

• Service oriented architecture

• Greater flexibility

• Low cost

• Offer services on-demand

Cloud computing removes the need to spend money on expensive hardware that have limited

operating capabilities and also works only for a certain period of time.

2.1.1 History of Cloud Computing

Although the implementation of cloud computing started in the early 2000’s, the initial

formulation of the concept was by John McCarthy in the year 1960. Since its formulation, it has been

evolving gradually both in its operations and the fields of usage. According to IBM[20], it began in

1950 through mainframe computing where multiple users used to access the mainframe computers

through dumb terminals. In around 1970, the concept of virtual machines (VMs) has surfaced and led

to the creation of virtualization software like VMware which made it possible to execute several

operating systems simultaneously in an isolated environment. From the 1990s, virtualized private

network connections were offered by different telecommunication companies. Since then, there has

been huge research and development on Infrastructure as a service (IaaS) and Platform as a service

(PaaS) but there has been little research in Software as a service (SaaS). It began as a full-time

sharing solution on different platforms like Multics, Cambridge CTSS, and the early UNIX ports.

13

2.1.2 Characteristics of Cloud Computing

The use of cloud computing has become prominent due to its key characteristics. The

following are the characteristics of cloud computing [35]:

Resource Sharing – Users can access a pool of multiple resources with a variety of physical and

virtual resources with different configurations dynamically based the user’s needs.

Internet Access – Users can access the services provided by the cloud at any location through

internet. The network provides access to the resources through the protocols supporting various client

platforms.

Reduced Cost – Resources in the cloud can be accessed by the users on a pay-per-use basis. This

reduces the user’s need to buy all the necessary hardware. Instead, the user can just access the

required resources virtually and pay for them based on the deployment of those resources.

Scalability – One of the main advantages of cloud computing is on demand scaling. Resources are

evenly – distributed and thus allowing resource utilization to spread evenly among the servers

available.

Transparency – The resources utilized by the user can be measured, monitored and reported by the

cloud provider providing transparency between the consumer and provider.

2.1.3 Classification of Cloud Computing

A basic cloud computing model can be classified into three different layers [31]:

1. Infrastructure as a Service

2. Platform as a Service

14

3. Software as a Service

• Infrastructure as a Service (IaaS)

IaaS manages the hardware resources of the cloud which includes servers, routers, cables and

switches. It is the lowest layer in the cloud. It offers a pool of resources through a virtual

datacenter that connects multiple virtual machines to a single physical server. Some of the leading

vendors that rely on IaaS layer are: Amazon’s product EC2, Amazon S3, Flexiscale and

Rackspace Cloud Servers.

• Platform as a Service (PaaS)

The second layer in the cloud is Platform. It deploys the environment for the resources which

includes APIs, frameworks and databases. It provides the infrastructure required through internet,

the environment best suited based on the architecture generated by the first layer. The main

vendors that use this layer are Microsoft Windows Azure and Google App Engine.

• Software as a Service (SaaS)

The final layer in cloud computing is Software. It delivers necessary software and data that

are hosted in the internet. It can be accessed through a thin client by the users. The users pay for

the service on a monthly basis based on usage.

15

2.1.4 Types of Clouds

Cloud has emerged as a convergence of multiple computing trends. Based on the physical

location and service distribution clouds can be classified into four different types which are

mentioned below [34].

Figure 2. Types of Cloud computing

• Private Cloud

Private cloud is restricted to an organization. The services provided by a private cloud are

only available for the people in that particular organization or third party vendors. Private clouds

can exist inside the premises or outside but the services cannot be accessed by the public.

• Public Cloud

Some organizations offer their cloud services on pay-per-use basis to general public. Various

businesses adopt public clouds to save the hardware or software cost. Public clouds are mostly

16

used for development, deployment and management of enterprise applications for a reasonable

cost. The major drawback for public clouds is its open access to anyone paying for the service as

it exposes the system to imminent threats compromising security. Therefore a proper validation

is required to access the public cloud.

• Community Cloud

Community cloud is similar to public cloud except that it can be accessed only by a

particular community of users. Its infrastructure can be present on premises or located

somewhere else at a third party organization. It can be accessed by the users of the same

community who have similar concerns like privacy requirements, policy, and security concerns

[34].

• Hybrid Cloud

 A hybrid cloud is an integration of two or more clouds: private, public and community

cloud. It helps the users to access the secure applications of private cloud, while also allowing

shared data access and cost benefit of the public cloud.

2.2 Research in SaaS Layer

There has been a wide range of researches on the IaaS and PaaS layers. But when it comes to

SaaS, very limited research has been done. The cloud infrastructure is leased by the SaaS providers by

instantiating VMs that are compatible and that are much suited for the consumer. The user pays for this

service on a pay-per-use basis based on the service provided. This states that the SaaS provider has to be

17

able to determine the total number of VMs required for the service to run perfectly, assuring that the

Quality of Service (QoS) is not compromised and the total amount spent on the VMs is minimum.

In [1, 2], Aldhalaan and Menascé have proposed two techniques that best satisfy the consumer

demands. In this paper, ScaleUpDown Algorithm and FillSlotsFirst Algorithm are the two algorithms

presented that can be used by the application service providers to determine the type and quantity of VMs

to be leased in order to satisfy the customer demands. It considers minimizing the cost and response time

constraints of the VMs. L. Wu, S. K. Garg and R. Buyya[24] have also worked on the SaaS layer and

proposed a different algorithm that also minimizes response time constraints while maintaining a

minimum cost of infrastructure. Their algorithm involves translating customer SLA requirements into

infrastructure level parameters.

[26] produced algorithms that reduce resource usage and improves execution time. Evolutionary

algorithm approach is used to face the problem.

2.3 Quality-of-Service

Cloud computing allows the access of different computing resources like servers, working

platforms, networks, storage spaces and applications. All these resources that are accessed through the

cloud network are called services[14]. These services are easily managed and are provided to the users on

demand. This means the user pays the provider for these services on a pay-per-use basis. These services

are offered depending on certain established agreements between the provider and the client called

Service-Level Agreements (SLAs). These SLAs specify certain values of system availability, response

time and other QoS parameters (or metrics) that the user and provider agree upon. These parameters are

therefore monitored continuously and the users are notified if there is any service disruption in case of

QoS degradation or when the services become unavailable, or to make sure the cloud provider does not

deviate from the QoS statements mentioned in the SLA.

18

Quality-of-Service (QoS) is the amount of reliability, availability or performance that is provided

by the infrastructure or platform that hosts it. The users refer to QoS as a parameter to select a cloud.

There have been several researches on QoS management to make sure the cloud resources produce a high

performance system to satisfy the user[27]. However, when it comes to availability, there hasn’t been

much research to study its effects on the cloud system.

2.3.1 SLAs in Cloud

Cloud computing does not offer proper control over services provided and this makes the

customer to take necessary precautions to counter loss of QoS. Therefore, SLAs have become a

part of cloud computing and most customers select a cloud provider based on their SLA

proposals. Service Level Agreements (SLAs) are the binding agreements signed between the

customer and cloud service provider to specify the level of service to be delivered as well the

steps to how measuring, reporting and handling of SLA violation should be done [5]. SLA mainly

focuses on the dependability of the system and specifies the rate for a particular time period, like

a month or a year. For example, Amazon EC2 SLA mentions its system dependability on an

annual basis and calls it as “Annual Uptime Percentage”. The company states its Annual Uptime

Percentage to be 99.99% and offers a 10% service credits if it deviates from the value. Similarly,

different cloud providers like Microsoft, Google, Rackspace offer different percentage values and

also provide different amount of credits to the customer when the servers go below the value.

These QoS values presented in the SLA proposals are specified in Service Level Specification

(SLS).

19

Figure 3. Structure of SLA

When working on a cloud, it is observed that offering only availability parameters in SLA is

not enough to ensure better service delivery to the customer. For example, if a system has an

availability of 99.99% and if its performance levels are too low or if the run time is too high it is

not considered an ideal choice by the customer. The cloud infrastructure has to keep changing

based on the user demands and has to automatically allocate resources based on the SLA

requirements. At the same time it should also detect violations and act accordingly to avoid

paying credits to the customer.

Although the system overcomes different SLA requirements, it still face a couple of

challenges such as:

• Allocation of resources based on SLA requirements

• Measurement and monitoring of system for violations

• Acting accordingly based on the observed violations

Service Level Agreement (SLA)

Measuring
Reporting
Violation Handling

Service Level Specification (SLS)

SLS Parameters
SLS Thresholds

20

If any violations are observed for availability, the system might have to add more resources in

standby to handle the failures. For performance violations, if the system is getting overloaded the

best case would be allocating VMs to other physical machines to reduce system overload.

2.4 Availability based Quality-of-Service

Availability of a system is the probability that the system can complete a required task in a given

period. To achieve high availability means the system should not fail at any point. Cloud providers use

different cloud resources to supply necessary services to customers. Various conventional studies made

on availability in the past are not particularly suited for the more dynamic and distributed field of cloud

computing. Originally, QoS does not consider availability as a resource in cloud computing. An

availability oriented QoS model produced in [36] that helps monitor availability of the cloud.

There are different attributes to cloud computing resources. The most common attributes would

be service time, cost of service, service credit rating and reliability of service offered by the cloud.

Figure 4. Resource Attributes Model[36]

21

To determine the quality of service of a cloud system, several modeling techniques[8] can be used

such as queuing models, Petri nets, reliability block diagrams and so on. All these models are classified

based on performance, dependability, black-box services, and simulation.

2.4.1 Availability of a component

In a cloud, availability refers to the amount of time the system is up and running without

any drop in its services. If the system goes off when there is any task running on the cloud it

affects the user’s experience and the customer would be inclined to opt for another provider.

Availability of a system is a factor of reliability. In other words, if the reliability increases,

availability increases [18].

Availability can be represented as a ratio of expected system uptime to the sum of

expected uptime and downtime (or) it is the measure of readiness of the system.

𝐴 =
𝑈𝑝𝑇𝑖𝑚𝑒

𝑈𝑝𝑇𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑇𝑖𝑚𝑒
 (2.1)

(or)

𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
 (2.2)

where,

MTTF is the mean time to failure of the system

MTTR is the mean time to repair

22

Many methods and analysis models are developed to calculate availability such as Fault

tree Analysis, Reliability block diagrams, Markov Chains, Petri Nets and so on.

2.4.2 System Availability

Availability of a system can be evaluated by modeling the entire system as a group of

series and parallel components. A system is said to be in series if one failed component in the

system results to the entire system failing. A system is said to be in parallel if when using a failed

component the operations of that particular component are being taken over by the other

component that is working (or the system fails only when all the components fail) [18]. Consider

a 2-component system where 𝐴𝑥 is the availability of component 𝑥 and 𝐴𝑦 is the availability of

component 𝑦.

The combined availability for a 2-component system in series is:

𝐴 = 𝐴𝑥𝐴𝑦 (2.3)

The combined availability for a 2-component system in parallel is:

𝐴 = 1 − (1 − 𝐴𝑥)(1 − 𝐴𝑦) (2.4)

 2.4.3 Availability in Cloud Computing

Maintaining system availability is one of the major issues in cloud computing [33]. If the

user wants to access the system during a heavy load situation, the system cannot be available as

there is a list of operations that are yet to be completed and no available resources for the system

to become ready to be used by the user. To achieve system availability, the system and its

23

resources have to be robust and highly reliable so that they offer maximum failure resistance and

in turn provide maximum availability. Also, the ASPs have to make sure that there is no hardware

failure and all the systems are well maintained. Sometimes, user errors also lead to loss in

availability.

Availability of the system can be increased by minimizing human errors. Also upgrading

a system when it is running other processes affects the availability. So such tasks have to be done

when the system is in an idle state. Regular system maintenance and selecting robust machines

also increase availability.

The main problem faced by the application service providers (ASPs) is to determine

minimum number of VMs and servers to the system such that the SLAs are not violated. The

major problem in cloud computing systems is, efficiently managing VM resources based on QoS

requirement. This problem is discussed in [3] which proposes a nash-bargaining approach. A

similar problem is discussed in [24]. This approach is done by studying the optimization problem

that considers a system with minimum cost and assigning a fixed availability value to the system.

24

Chapter 3

DISTRIBUTION OF VIRTUAL

MACHINES

3.1 Three – Tier Cloud System

A cloud computing system is an internet-based computing system that provides shared resourcing

pool of processors and data to different devices on demand. A regular cloud computing application has

three different layers: Web server, Application server and Database server.

25

3.1.1 Architecture

Consider the following layout for the system to be discussed. The application consists of

three servers: Web Server, App Server and DB server. Each tier can have one or more copies

running. Let E1, E2 and E3 be the tiers with multiple copies each having an individual virtual

machine VM1, VM2 and VM3.

Figure 5. System Layout

For the above system to work, it is assumed that all the tiers E1, E2 and E3 have to work

successfully. This approach shows that the top tiers depend on bottom tiers. So for tier - 1 to work

both tier - 2 and tier - 3 need to be up. Also, all the copies in a tier and their respective VMs are

assumed to be identical. Since the process uses a failure state logic, the layout actually gives the

failure state of the system. Hence, if Āsys is the output unreliability of the system, Asys is the final

steady state availability acquired.

26

Asys = 1 – Āsys (3.1)

This unavailability value is substituted to the optimization model for the final output

conditions and the problem is solved. Before proceeding to solving the actual problem some

assumptions are also included to provide a simpler solution to the model.

3.1.2 Assumptions

For the system to work, different assumptions are made to support the model to be

discussed. These assumptions considered are as follows:

• The system works only if all the tiers in the system are working.

• Each tier has different number of layers or copies.

• Each tier is associated with its own virtual machine.

• All the layers in a particular tier are identical in their properties.

• All the layers of a virtual machine in a particular tier are identical in their properties.

3.1.3 Notations

The following are the list of different notations used in the paper.

• N : Total number of VM types provided by the cloud provider (1 ≤ 𝑗 ≤ 𝑁, 𝑗 ∈ ℕ).

• M : Number of tiers available in the system (1 ≤ 𝑖 ≤ 𝑀, 𝑖 ∈ ℕ).

• Aj : Steady-state availability of VM of type 𝑗.

• Āj : Steady-state unavailability of VM of type 𝑗.

Aj = 1 – Āj

• Cj : Cost of an individual VM of type 𝑗.

27

• Xj ≥ 0: Number of VMs of type 𝑗 provided by the cloud provider to make the system

work.

• X(i,j) ≥ 0 : Number of VMs of type 𝑗 provided by the cloud provider to tier 𝑖.

• 𝑘𝑖 : Minimum number of working replicas needed for server 𝑖 for the system to be up.

• ℂ : Total optimized amount to be paid to obtain the system with required steady-state

availability.

• SSAreq : Steady-State Availability requirement of the system by the SLA.

3.2 Problem Description

Deployment and managing applications in a cloud is challenging as it requires determining and

buying required number of VMs dynamically such that the application is available. The main problem

faced by the ASPs is allocation of VMs in the SaaS layer considering availability SLAs.

3.2.1 VM Distribution

Allocation of VMs to run the system with a required SSA requires a calculated and

optimized model to figure the number of VMs distributed across different layers. This model

considers the required values of SSA and the condition of having a minimum amount of cost to

be spent on the VMs. Although the overall optimized output is required to have better availability

with seemingly affordable cost. This process of distribution of VMs is described in two cases.

28

Case – 1:

This case covers the condition of having the least of one VM running in each level to

make the system to work.

Case – 2:

In this case, each level has a corresponding minimum number of VMs running to make

the system to work. This case can be considered the parent case and case – 1 is the extension with

minimum number of VMs for each level being unity.

3.2.2 Difference in Steady-State Availability between cases

As discussed above, the optimization has two different cases. Although a cumulative

model has been obtained both cases have their identity of their own. A detailed classification of

each case is described below:

Case – 1:

Consider a simple system that works when there is at least one replica from the available

multiple layers of tasks running and each layer can run only one type of VM. The optimization

model would be as follows:

29

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

ℂ = ∑(𝐶𝑗 ∗ 𝑋𝑗)

𝑗

 (3.2)

𝑠. 𝑡.

∏ (1 − (�̅�𝑗
𝑋𝑗)) ≥ 𝑆𝑆𝐴𝑟𝑒𝑞

𝑗

 (3.3)

where, Cj(j∈N) is the cost of VM of type j and Xj(j∈N) is the number of VM of type j

provided for the system to work by the cloud provider. Āj(j∈N) depicts the unavailability of the

VM with type j.

The model is then run through the solver to obtain the number of VMs of each type to be

dispatched by the cloud provider to get optimized steady-state availability for the entire system.

This model can be further extended to fit real-time scenarios using different type of VMs,

each with different system availability, response time and cost of item etc. The following

describes the optimization model for the system with a single working replica using any type of

VMs.

minimize

ℂ = ∑ ∑ (𝐶𝑗 ∗ 𝑋(𝑖,𝑗))

𝑁

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

𝑀

𝑖=1

 (3.4)

s.t.

30

inequality 1:

∏ (1 − ∏ (�̅�𝑗
𝑋(𝑖,𝑗))

𝑁

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

)

𝑀

𝑖

≥ 𝑆𝑆𝐴𝑟𝑒𝑞 (3.5)

inequality 2:

∑ 𝑋𝑗 ≥ 1 (3.6)

𝑀

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

The system generates outputs that give different number of VMs for each tier and type

required to provide a system with optimized availability and cost.

Case – 2:

This system discusses the concept of multiple working replicas. Working on a system that

can only use a single replica working from a cluster is easy, but it also has a loss of resources. In

this case, k number of replicas can be used or at least k replicas have to be working to make the

system to complete the given task. The main advantage of this system is, it helps reduce

processing time in case of large systems. The following is the optimized model for a k-out-of-n

system.

minimize

ℂ = ∑ ∑ (𝐶𝑗 ∗ 𝑋(𝑖,𝑗))

𝑁

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

𝑀

𝑖=1

 (3.7)

s.t.

31

inequality 1:

∏ (∑ ∏ (
𝑋(𝑖,𝑗)

𝑥𝑗
) 𝐴𝑗

𝑥𝑗�̅�𝑗
𝑋(𝑖,𝑗)−𝑥𝑗

𝑁

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

𝑋(𝑖,𝑗)

𝑥𝑗=0

)

𝑀

𝑖=1

≥ 𝑆𝑆𝐴𝑟𝑒𝑞 (3.8)

 s.t,

∑ 𝑥𝑗 ≥ 𝑘𝑖

𝑁

𝑗=1

 (3.9)

inequality 2:

∑ 𝑋(𝑖,𝑗) ≥

𝑁

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

𝑘𝑖, ∀𝑖 (3.10)

Equations (3.8) and (3.9) shows the probability that at least 𝑘𝑖 replicas have to be

working for server 𝑖. 𝑥𝑗 represents the number of working VMs of type 𝑗 allocated for

server 𝑖. The VM instances allocated to server 𝑖 should be 𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖 or higher.

Equation (3.10) helps the system make sure that the total number of VMs of type

𝑗 allocated to server 𝑖 should always be greater or equal to 𝑘𝑖 .

32

Chapter 4

ANALYISIS AND RESULTS

4.1 Problem Analysis

All the files are added to the database and the code is run through AMPL solver. Once the files

are added to the database solver is opened and AMPL is selected by typing “ampl” in the command line.

Then a new line with “ampl:” is opened where all the ampl codes can be run. The code is run by using

include command.

After running the code, the solver takes a while to compare all the values that can be used to solve

the problem and produces an optimized solution for the system. Different conditions are applied for the

type of VMs to be used by adding necessary inequality conditions. These conditions are compared and

graphical results are produced.

33

Case – 1:

As case – 1 discusses about using at least 1 VM working in all the tasks, different conditions are

set using only 1 type of VM at a time. To set a particular type to be used, the other type inequalities are

used. For example, if the client wants only type 1 VMs to be used, the inequalities 6, 7, 9, 10, 12, 13 are

removed from the comments and used in the code. This states that all the 3 tiers would be using type 1

VMs for solving the problem at hand as the other 2 types are set to zero. This method can be applied to

any combination and even all the types can be used however the system decides the best optimized

solution and allocates it to the system.

Case – 2:

This case focuses on a system with at least k number of VMs running in order to make the system

work. The same logic used in case -1 is used and different inequalities are set. But the major difference in

both cases is, in case-2 the condition of number of VMs can be changed to any number from 1 to

maximum number of VMs that can be made available.

4.2 Results

All the different conditions are compared with respect to each other. All results are recorded and

a comparison histogram is created. Both case-1 and case-2 are evaluated for different conditions that are

discussed in section-2.

34

4.2.1 Impact of using minimum type VMs on optimal solution and cost

In this paper, three tiers were used and each tier can use any of the three types of VMs

that are allocated for the task. To denote what VMs are used for a particular solution, we use

minType and fixType. Since we have considered 3 tiers, minType is represented as (minType1,

minType2, minType3) and fixType is represented as (fixType1, fixType2, fixType3), where ***Type1

denotes tier-1, ***Type2 denotes tier-2 and ***Type3 denotes tier-3. For example, (minType1,

minType2, minType3) = (1, 2, 3) (or simply denoted as minType(1, 2, 3)) denotes that tier 1 can

use VMs from type 1 to maximum type available (i.e., type 3), tier 2 can use type 2 and type 3

VMs, and tier 3 can use type 3 VMs to run the task. (fixType1, fixType2, fixType3) = (1, 2, 3)

(simply denoted as fixType(1, 2, 3)) implies that tier 1 can use only type 1, tier 2 can use only

type 2 and tier 3 can use only type 3 to run the given task.

In this thesis, we consider 10 different combinations for (minType1, minType2, minType3):

(1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 2, 3), (1, 1, 2), (1, 2, 2), (1, 1, 3), (1, 3, 3), (2, 2, 3), and (2, 3, 3).

All these combinations are run and their optimal solutions are recorded for both cases 1 and 2 for

a fixed steady-state availability of 0.99999.

35

Case-1: In this case, application is available if at least one working copy of each of the three

servers is available (i.e. k1 = k2 = k3 = 1).

, 1minType(

, 2minType

)3minType

Number and type

of VMs allocated

to Web server.

[n1, type1, n1, type2, n1,

type3]

Number and type

of VMs allocated

to Web server.

[n2, type1, n2, type2, n2,

type3]

Number and type

of VMs allocated

to Web server.

[n3, type1, n3, type2, n3,

type3]

Total Cost ℂ (in

dollars)

(1, 1, 1) [0, 1, 1] [1, 0, 1] [0, 1, 1] 804.46

(2, 2, 2) [0, 1, 1] [0, 1, 1] [0, 1, 1] 808.11

(3, 3, 3) [0, 0, 2] [0, 0, 2] [0, 0, 2] 871.62

(1, 2, 3) [1, 0, 1] [0, 1, 1] [0, 0, 2] 825.63

(1, 1, 2) [1, 0, 1] [0, 1, 1] [0, 1, 1] 804.46

(1, 2, 2) [1, 0, 1] [0, 1, 1] [0, 1, 1] 804.46

(1, 1, 3) [0, 1, 1] [1, 0, 1] [0, 0, 2] 825.63

(1, 3, 3) [1, 0, 1] [0, 0, 2] [0, 0, 2] 846.8

(2, 2, 3) [0, 1, 1] [0, 1, 1] [0, 0, 2] 829.28

(2, 3, 3) [0, 1, 1] [0, 0, 2] [0, 0, 2] 850.45

Table 1. minType allocation of VMs to the servers and total cost (where k1=k2=k3=1)

with SSAreq = 0.99999

From the above table, it is observed that for different combinations of (minType1,

minType2, minType3), the allocation of VMs is different. For the combination of (3, 3, 3) the

overall cost is maximum (in this case $871. 62) and the overall minimum cost is 804.46.

36

Case – 2: In this case, the application is available if at least ki copies are working for server i (i.e.

k1 = k2 = k3 = 2).

, 1minType(

, 2minType

)3minType

Number and type

of VMs allocated

to Web server.

[n1, type1, n1, type2, n1,

type3]

Number and type

of VMs allocated

to Web server.

[n2, type1, n2, type2, n2,

type3]

Number and type

of VMs allocated

to Web server.

[n3, type1, n3, type2, n3,

type3]

Total Cost ℂ (in

dollars)

(1, 1, 1) [0, 0, 3] [0, 0, 3] [0, 1, 2] 1286.26

(2, 2, 2) [0, 0, 3] [0, 0, 3] [0, 1, 2] 1286.26

(3, 3, 3) [0, 0, 3] [0, 0, 3] [0, 0, 3] 1307.43

(1, 2, 3) [0, 0, 3] [0, 1, 2] [0, 0, 3] 1286.26

(1, 1, 2) [0, 0, 3] [0, 1, 2] [0, 0, 3] 1286.26

(1, 2, 2) [0, 0, 3] [0, 1, 2] [0, 0, 3] 1286.26

(1, 1, 3) [0, 1, 2] [0, 0, 3] [0, 0, 3] 1286.26

(1, 3, 3) [0, 1, 2] [0, 0, 3] [0, 0, 3] 1286.26

(2, 2, 3) [0, 1, 2] [0, 0, 3] [0, 0, 3] 1286.26

(2, 3, 3) [0, 1, 2] [0, 0, 3] [0, 0, 3] 1286.26

Table 2. minType allocation of VMs to the servers and total cost(where k1 = k2 = k3 = 2)

with SSAreq = 0.99999

37

From the table 3, similar to case - 1 maximum cost occurs in the combination (3, 3, 3).

However, in all the other cases due to a high availability condition, there exists only a fixed

combination for all the other combinations and the total cost recorded is similar.

4.2.2 Single type of VM instances vs. Different type of VM instances

As stated before, minType and fixType are used to find out the number of VMs required

to be allocated to obtain the optimized cost. The results are formulated for fixType using the same

above stated combinations and the optimal solutions are recorded for both case-1 and case-2. The

steady-state availability remains fixed at 0.99999.

Case-1: The application is said to be available if at least one working copy of each of the three

servers is available (i.e. k1 = k2 = k3 = 1).

 1Typefix(

, 2Typefix

)3Typefix

Number and type of

VMs allocated to

Web server.

[n1, type1, n1, type2, n1,

type3]

Number and type

of VMs allocated

to Web server.

[n2, type1, n2, type2,

n2, type3]

Number and type

of VMs allocated

to Web server.

[n3, type1, n3, type2, n3,

type3]

Total Cost ℂ (in

dollars)

(1, 1, 1) [3, 0, 0] [3, 0, 0] [3, 0, 0] 1084.05

(2, 2, 2) [0, 3, 0] [0, 3, 0] [0, 3, 0] 1116.9

(3, 3, 3) [0, 0, 2] [0, 0, 2] [0, 0, 2] 871.62

(1, 2, 3) [3, 0, 0] [3, 0, 0] [0, 0, 2] 1024.19

38

(1, 1, 2) [3, 0, 0] [3, 0, 0] [0, 3, 0] 1095

(1, 2, 2) [3, 0, 0] [0, 3, 0] [0, 3, 0] 1105.95

(1, 1, 3) [3, 0, 0] [3, 0, 0] [0, 0, 2] 1013.24

(1, 3, 3) [3, 0, 0] [0, 2, 0] [0, 0, 2] 942.43

(2, 2, 3) [0, 3, 0] [0, 3, 0] [0, 0, 2] 1035.14

(2, 3, 3) [0, 3, 0] [0, 0, 2] [0, 0, 2] 953.38

Table 3. fixType allocation of VMs to the servers and total cost (where k1=k2=k3=1) with

SSAreq = 0.99999

 The cheapest combination in this case occurs at (3, 3, 3) with the cost being $871.62 and

the combination with highest cost is at (2, 2, 2) with a cost of 1116.9.

Case – 2: In this case, the application is available if at least ki copies are working for server i (i.e.

k1 = k2 = k3 = 2).

, 1Typefix(

, 2Typefix

)3Typefix

Number and type of

VMs allocated to

Web server.

[n1, type1, n1, type2, n1,

type3]

Number and type

of VMs allocated

to Web server.

[n2, type1, n2, type2,

n2, type3]

Number and type

of VMs allocated

to Web server.

[n3, type1, n3, type2, n3,

type3]

Total Cost ℂ (in

dollars)

(1, 1, 1) [0, 0, 0] [0, 0, 0] [0, 0, 0] -

(2, 2, 2) [0, 4, 0] [0, 4, 0] [0, 4, 0] 1489.2

(3, 3, 3) [0, 0, 3] [0, 0, 3] [0, 0, 3] 1307.43

39

(1, 2, 3) [4, 0, 0] [0, 4, 0] [0, 0, 3] 1414.01

(1, 1, 2) [4, 0, 0] [4, 0, 0] [0, 4, 0] 1460

(1, 2, 2) [4, 0, 0] [0, 4, 0] [0, 4, 0] 1474.6

(1, 1, 3) [4, 0, 0] [4, 0, 0] [0, 0, 3] 1399.41

(1, 3, 3) [4, 0, 0] [0, 0, 3] [0, 0, 3] 1353.42

(2, 2, 3) [0, 4, 0] [0, 4, 0] [0, 0, 3] 1428.61

(2, 3, 3) [0, 4, 0] [0, 0, 3] [0, 0, 3] 1368.02

Table 4. fixType allocation of VMs to the servers and total cost(where k1 = k2 = k3 = 2)

with SSAreq = 0.99999

In case-2, the costliest model is at (2, 2, 2) with $1489.2 and the cheapest is at (3, 3, 3)

which is $1307.43. At (1, 1, 1) however, there is no possible allocation that would satisfy the

optimization model and hence the condition does not produce any results.

 A comparison is made between both strategies (minType and fixType) for both the cases

based on the outputs noted in tables 1 to 4. A fixed combination (type(1, 2, 3) (which represents

the configuration (1, 2, 3))) is taken to study the difference between the both strategies clearly.

Table 5 and table 6 show the difference in both strategies for case – 1 and case – 2 respectively

and the number of VMs dispatched to run the task.

40

Strategy Number and type of

VMs allocated to

Web server.

[n1, type1, n1, type2, n1,

type3]

Number and type

of VMs allocated

to App server.

[n2, type1, n2, type2,

n2, type3]

Number and type

of VMs allocated

to DB server.

[n3, type1, n3, type2, n3,

type3]

Total cost ℂ (in

dollars)

minType [1, 0, 1] [0, 1, 1] [0, 0, 2] 825.63

fixType [3, 0, 0] [3, 0, 0] [0, 0, 2] 1024.19

Table 5. A Comparison of minType(1, 2, 3) and fixType(1, 2, 3) strategies under case-1

Strategy Number and type of

VMs allocated to

Web server.

[n1, type1, n1, type2, n1,

type3]

Number and type

of VMs allocated

to App server.

[n2, type1, n2, type2,

n2, type3]

Number and type

of VMs allocated

to DB server.

[n3, type1, n3, type2, n3,

type3]

Total cost ℂ (in

dollars)

minType [0, 0, 3] [0, 1, 2] [0, 0, 3] 1286.26

fixType [4, 0, 0] [0, 4, 0] [0, 0, 3] 1414.01

Table 6. A Comparison of minType(1, 2, 3) and fixType(1, 2, 3) strategies under case-2

By observing the above tables, it is observed that when compared to minType and

fixType the results for minType are cheaper. This cost variance shows that in comparison

minType offers cheaper VMs for the same steady-state availability. Therefore, minType strategy

is considered a better pick.

To further study the effect of availability, both minType and fixType are compared for

different values of steady- state availability for a fixed combination (type(1, 2, 3)) and results are

41

noted. Table – 7 and table – 8 note the values of case – 1 and case – 2 respectively for a minType

combination. Table – 9 and table – 10 show the values of case – 1 and case – 2 respectively for a

fixType combination.

SSAreq Number and type of

VMs allocated to

Web server.

[n1, type1, n1, type2, n1,

type3]

Number and type

of VMs allocated

to App server.

[n2, type1, n2, type2,

n2, type3]

Number and type

of VMs allocated

to DB server.

[n3, type1, n3, type2, n3,

type3]

Total cost ℂ (in

dollars)

0.99999 [1, 0, 1] [0, 1, 1] [0, 0, 2] 825.63

0.9999 [1, 1, 0] [0, 2, 0] [0, 0, 2] 783.29

0.999 [0, 0, 2] [0, 0, 1] [0, 0, 1] 581.08

0.995 [0, 0, 1] [0, 0, 1] [0, 0, 1] 435.81

0.9 [1, 0, 0] [1, 0, 0] [0, 0, 1] 389.82

0.8 [1, 0, 0] [0, 1, 0] [0, 0, 1] 389.82

0.7 [1, 0, 0] [0, 1, 0] [0, 0, 1] 389.82

Table 7. Total cost and VMs allocated for different SSAreqs through case-1 based on minType

42

SSAreq Number and type of

VMs allocated to

Web server.

[n1, type1, n1, type2, n1,

type3]

Number and type

of VMs allocated

to App server.

[n2, type1, n2, type2,

n2, type3]

Number and type

of VMs allocated

to DB server.

[n3, type1, n3, type2, n3,

type3]

Total cost ℂ (in

dollars)

0.99999 [0, 0, 3] [0, 1, 2] [0, 0, 3] 1286.26

0.9999 [1, 0, 2] [0, 3, 0] [0, 0, 3] 1219.1

0.999 [3, 0, 0] [0, 3, 0] [0, 0, 3] 1169.46

0.995 [0, 0, 2] [0, 0, 2] [0, 0, 2] 871.62

0.9 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64

0.8 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64

0.7 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64

Table 8. Total cost and VMs allocated for different SSAreqs through case-2 based on minType

SSAreq Number and type of

VMs allocated to

Web server.

[n1, type1, n1, type2, n1,

type3]

Number and type

of VMs allocated

to App server.

[n2, type1, n2, type2,

n2, type3]

Number and type

of VMs allocated

to DB server.

[n3, type1, n3, type2, n3,

type3]

Total cost ℂ (in

dollars)

0.99999 [3, 0, 0] [3, 0, 0] [0, 0, 2] 1024.19

0.9999 [3, 0, 0] [0, 2, 0] [0, 0, 2] 900.09

0.999 [2, 0, 0] [0, 2, 0] [0, 0, 1] 634.37

0.995 [2, 0, 0] [0, 2, 0] [0, 0, 1] 634.37

0.9 [1, 0, 0] [1, 0, 0] [0, 0, 1] 389.82

43

0.8 [1, 0, 0] [0, 1, 0] [0, 0, 1] 389.82

0.7 [1, 0, 0] [0, 1, 0] [0, 0, 1] 389.82

Table 9. Total cost and VMs allocated for different SSAreqs through case-1 based on fixType

SSAreq Number and type of

VMs allocated to

Web server.

[n1, type1, n1, type2, n1,

type3]

Number and type

of VMs allocated

to App server.

[n2, type1, n2, type2,

n2, type3]

Number and type

of VMs allocated

to DB server.

[n3, type1, n3, type2, n3,

type3]

Total cost ℂ (in

dollars)

0.99999 [4, 0, 0] [0, 4, 0] [0, 0, 3] 1414.01

0.9999 [4, 0, 0] [0, 3, 0] [0, 0, 3] 1289.91

0.999 [3, 0, 0] [0, 3, 0] [0, 0, 3] 1169.46

0.995 [0, 0, 2] [0, 0, 2] [0, 0, 2] 871.62

0.9 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64

0.8 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64

0.7 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64

Table 10. Total cost and VMs allocated for different SSAreqs through case-2 based on fixType

At any instant (say when using type(1, 2, 3) configuration), it is observed that using a

fixed type of VM may reduce using multiple resources (VMs) to only a single type of VM but the

overall cost is increased. However, allowing the use of different types of VMs provides similar

results for a lesser cost. This shows that using different types of VMs is better compared to a

fixed type.

44

There is another variable which changes the output of the system, which is steady-state

availability. Having a higher SSA results in making the system more effective but what changes

does it make to the final output are studied from the below table for a fixed type (type(1, 2, 3)).

Using these values, a histogram can be developed to show the effect of minType and

fixType on both the cases (case – 1 and case – 2)

Figure 6 shows the effect of SSA on optimized cost for case – 1 and figure 7 shows the

effect of SSA on optimized cost for case – 2.

Figure 6. Effect of SSAreq on cost in minType and fixType under case – 1

0

200

400

600

800

1000

1200

0.99999 0.9999 0.999 0.995 0.9 0.8 0.7

C
o

st

SSAreq

minType

fixType

45

Figure 7. Effect of SSAreq on cost in minType and fixType under case - 2

4.2.3 Selection of VMs best suited for the application

In a general situation, the ASPs incline on buying the cheapest VM for running the

application. But is it the best option? Does it really justify the money spent on buying the

cheapest VM? Are the ASPs saving any money by doing this? All these questions are unravelled

in this section. In this section, three conditions are considered: the first one is to go for only

cheapest VMs, the second is to pick the most expensive VMs, and the third is to allow a mixture

of all available VMs to run the application.

Condition – 1: It is considered that all the servers must only run by using type 1 VM instances,

since type 1 VMs are the cheapest among the three VMs considered. This refers to the

combination (fixType1, fixType2, fixType3) = (1, 1, 1) (also represented as fixType(1, 1, 1)).

0

200

400

600

800

1000

1200

1400

1600

0.99999 0.9999 0.999 0.995 0.9 0.8 0.7

C
o

st

SSAreq

minType

fixType

46

This case is implemented by adding the following constraints to the optimization problem

given by (3), (4) and (5):

ni,j = 0,∀𝑖,𝑗 where 𝑗 ≠ 1

i.e. for server i, set ni,j = 0 for j = 2, 3.

Condition – 2: In this condition, all the servers must run only on type 3 VM instances. Among

the three types, type 3 VM instances are the most expensive ones. This refers to the combination

(fixType1, fixType2, fixType3) = (3, 3, 3) (or fixType(3, 3, 3)).

This case is implemented by adding the following constraints to the optimization problem

given by (3), (4) and (5):

ni,j = 0,∀𝑖,𝑗 where 𝑗 ≠ 3

i.e. for server i, set ni,j = 0 for j = 1, 2.

Condition – 3: This condition uses a mixture of all three VM instances to run the application i.e.,

in this condition, the Web server can run on VMs of type 1 or higher, App server can run on VMs

of type 1 or higher and DB server can also run on VMs of type 1 or higher. This refers to the

combination (minType1, minType2, minType3) = (1, 1, 1) (or minType(1, 1, 1)).

All these 3 conditions are compared to obtain optimized cost for a fixed availability

requirement, SSAreq = 0.99999.

47

For Case – 1:

Table 11 shows the optimal cost and VM allocation for conditions 1, 2 and 3 for a fixed

SSA requirement of 0.99999.

Condition Number and

type of VMs

allocated to

Web server.

[n1, type1, n1, type2,

n1, type3]

Number and

type of VMs

allocated to App

server.

[n2, type1, n2, type2,

n2, type3]

Number and

type of VMs

allocated to DB

server.

[n3, type1, n3, type2,

n3, type3]

Total cost ℂ (in

dollars)

fixType(1, 1, 1) [3, 0, 0] [3, 0, 0] [3, 0, 0] 1084.05

fixType(3, 3, 3) [0, 0, 2] [0, 0, 2] [0, 0, 2] 871.62

minType(1, 1, 1) [0, 1, 1] [1, 0, 1] [0, 1, 1] 804.46

Table 11 Comparison of conditions 1, 2, 3 under case – 1

From Table 11, it is observed that Condition 1 allocates the highest number of VMs when

compared to conditions 2 & 3. Condition 1, which uses the cheapest VMs allocates 9 VMs and as

a result has the highest cost. When considering both condition 2 & condition 3, they each allocate

6 VMs. From the 3 conditions, condition 3 offers the best optimized output with comparatively

low cost and less number of VMs. It is also observed that even the condition with allocating

highest number of VMs is offered at lower cost than the condition that allocates the cheaper VMs.

48

The above discussed conditions are further tested for the effect of steady state availability

on the system and VM allocation. They are tested for different SSAreq values and a histogram is

developed to display the outcomes of all the three conditions.

Figure 8. Cost comparison between conditions for different SSAreq values in case – 1

 Figure 8 shows that if the application’s availability requirement is 0.95 or less, only one

VM is allocated for each server. For Condition – 1 and Condition – 3, the allocation is quite

similar for all the servers, which is one type 1 VM with a minimum cost of $361.35. Also when

all values are considered, condition – 3 has a minimum cost and is regarded as the better option.

0

200

400

600

800

1000

1200

C
o

st

SSAreq

Condition 1

Condition 2

Condition 3

49

For Case – 2:

In this case, the application is available if at least ki copies are working for server i. We

assume k1 = k2 = k3 = 2. Table 12 shows the optimal VM allocation and cost for all the three

conditions. The results shown are for a fixed steady – state availability of 0.99999.

Condition Number and

type of VMs

allocated to

Web server.

[n1, type1, n1, type2,

n1, type3]

Number and

type of VMs

allocated to App

server.

[n2, type1, n2, type2,

n2, type3]

Number and

type of VMs

allocated to DB

server.

[n3, type1, n3, type2,

n3, type3]

Total cost ℂ (in

dollars)

fixType(1, 1, 1) [0, 0, 0] [0, 0, 0] [0, 0, 0] -NA-

fixType(3, 3, 3) [0, 0, 3] [0, 0, 3] [0, 0, 3] 1307.43

minType(1, 1, 1) [0, 0, 3] [0, 0, 3] [0, 1, 2] 1286.26

Table 12 Comparison of conditions 1, 2, 3 under case – 2

Table 12 shows the VM allocation and cost for all the conditions where SSA = 0.99999.

It is observed from Table – 12 that for condition – 1 there is no possible allocation to satisfy the

optimal problem. It is also observed that, condition – 2 & condition - 3 allocate 9 VMs and

condition – 2 has the highest cost. Similar to case – 1, it is better to buy a mixed set of VMs rather

than buying the cheapest VMs. The problem being, allocating cheapest VMs reduces the system

availability and in result requires more VMs to run the application. In this case, both the working

conditions condition – 2 & condition – 3 allocates 9 VMs but in condition – 2, all the 9 VMs are

of type 3. In condition – 3 however, 8 VMs are of type – 3 and 1 VM is of type – 2.

50

Similar to case – 1, the above conditions are further tested with different values of SSAreq

to study the effect of availability on VM allocation and cost. A histogram is developed to

compare the three conditions.

Figure 9. Cost comparison between conditions for different SSA values in case - 2

 From the figure, it is observed that compared to all the three conditions, the condition – 3

has a lesser cost. The minimum being $722.7 for systems with SSAreq = 0.9 and less. The VM

allocation stays constant from 0.9 with ach server using 2 VMs of type – 1. The number of VMs

further decreases when the steady – state availability reaches values less than 0.5.

 From Figure 5.2.3 and 5.2.4, it is concluded that when the cost of the system is

considered, buying only the cheapest VMs or expensive VMs (high availability VMs) to run an

0

200

400

600

800

1000

1200

1400

1600

C
o

st

SSAreq

Condition 1

Condition 2

Condition 3

51

application is not a best decision. To get an optimal VM allocation with minimized system cost, it

is always preferred to consider a combination of all available VMs.

4.3 Framework

This section shows the layout of running the code discussed in chapter 3. The entire code is

written in AMPL and is divided into 3 different levels. They are: mod file, data file and run file.

The code for these 3 files can be written in notepad and saved as a respective file type by adding

an extension. The solution model to be solved is entered into the mod file. Once the model is entered into

a text file, the file is saved with a .mod extension and saved in the database. Similarly, the necessary data

required for the model to run is saved in the data file with a .dat extension. The order of running the code

and output structure is presented in the run file. This is created by using the .script.run extension [11, 21,

23, 37].

All these files together create the final framework of the code. Once the files are created, the

solver is run to generate output. In the solver, ampl is entered to specify the type of language being used.

To open or run a file the command used is include file_name. file_name is the name of the file that is

being used to solve the code. For example, consider a code example1 having 3 different files

example1.mod, example1.dat and example1.script.run. The main layout of the code is presented in

example1.script.run and this is considered to be the run file. So, different commands entered in the solver

are as follows:

sw: ampl

ampl: include example1.script.run

This command opens the run file and all the commands in the file are run. The final output is

displayed after the solver finds an optimal output.

52

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Summary

The main task of an ASP is to provide the required number of VMs depending on the workload so

that the application runs smoothly without any drop in QoS. They have to determine the number of VMs

required for each type to run the copies of each server.

 In this thesis, a three - tiered cloud system has been proposed with each tier having multiple

copies of servers. Each tier is assumed to have one or more VMs, each running a single instance of server

relevant to the tier. Another assumption made is that the workload is equally distributed among the

servers at any given tier.

The user’s request is first sent to a web server for processing and the request is processed exactly

once at each tier. After the processing is done at the third tier, the response is returned to the user. Some

other assumptions made are that the software servers do not fail, the application’s availability depends on

53

the availability of the VMs and the minimum number of copies needed for each server and the minimum

computing power of VM instances are specified as input.

An optimization approach is developed which helps the ASPs in making decisions on some

important questions faced related to VM acquisition. The model proposed is non-linear in nature and uses

ILOGCP solver developed by IBM to solve the problem. This approach benefits the ASPs in answering

questions such as, will it more cost-effective to run the server copies on a fixed type of VMs or on

different types of VM instances? Will it be more cost-effective to buy cheapest VMs or a combination of

VMs?

5.2 Conclusion

Through this thesis, it can be decided that when it comes to selecting between the cheapest VMs

and combination of different types of VMs, it is always best to go with a combination of VMs because

although the cost is reduced by selecting the cheapest VMs, the total system availability is greatly

affected and to produce the given availability SLA the application has to allocate additional VMs. In case

of selecting if it is best to run the servers on a fixed type of VMs or different types of VMs, it is observed

that running on different types of VMs provides a similar result for a cheaper cost when compared to a

fixed type.

5.3 Future Works

 The future works might include eliminating some of the assumptions. The following are some of

the proposed future works:

54

i. The proposed model can be further developed to produce a heuristic method that is much

efficient compared to the discussed optimal solution.

ii. In this thesis, the usage of VMs has been limited to a specific set for each tier which can

be explored and can be made to choose freely across different tiers. This might further

reduce the number of VMs needed to run the application leading to a cheaper system.

iii. Addition of other QoS attributes such as system response time is also recommended to

improve the user’s experience.

55

Appendix

Case – 1:

mod file:

set TIER;

set VM;

param cost {VM} > 0;

param unavail {VM} > 0;

var Buy{TIER,VM} integer >= 0, <= 10;

minimize Total_Cost: sum {j in VM} (cost[j] * (sum {i in TIER} Buy[i,j]));

subject to inequality1:

prod {i in TIER} (1- (prod{j in VM} (unavail[j])^ Buy[i,j])) >= 0.999;

subject to inequality2:

#sum {j in VM} Buy[i,j] >= 1;

Buy["TIER1","TYPE1"] + Buy["TIER1","TYPE2"] + Buy["TIER1","TYPE3"] >= 1;

subject to inequality3:

Buy["TIER2","TYPE1"] + Buy["TIER2","TYPE2"] + Buy["TIER2","TYPE3"] >= 1;

subject to inequality4:

Buy["TIER3","TYPE1"] + Buy["TIER3","TYPE2"] + Buy["TIER3","TYPE3"] >= 1;

56

/*

subject to inequality5:

Buy["TIER1","TYPE1"] = 0;

*/

subject to inequality6:

Buy["TIER1","TYPE2"] = 0;

subject to inequality7:

Buy["TIER1","TYPE3"] = 0;

subject to inequality8:

Buy["TIER2","TYPE1"] = 0;

/*

subject to inequality9:

Buy["TIER2","TYPE2"] = 0;

*/

subject to inequality10:

Buy["TIER2","TYPE3"] = 0;

subject to inequality11:

Buy["TIER3","TYPE1"] = 0;

subject to inequality12:

57

Buy["TIER3","TYPE2"] = 0;

/*

subject to inequality13:

Buy["TIER3","TYPE3"] = 0;

*/

dat file:

data;

set TIER := TIER1 TIER2 TIER3 ;

set VM := TYPE1 TYPE2 TYPE3 ;

param: cost unavail :=

TYPE1 120.45 0.01

TYPE2 124.10 0.005

TYPE3 145.27 0.0005;

run file:

reset;

model Case1.mod;

data Case1.dat;

option solver ilogcp;

let Buy["TIER1","TYPE2"] := 0;

let Buy["TIER1","TYPE3"] := 0;

solve;

58

display Buy;

display Total_Cost;

Case – 2:

mod file:

set TIER;

set VM;

param cost {VM} > 0;

param unavail {VM} > 0;

var Buy{TIER,VM} integer >= 0, <= 4;

minimize Total_Cost: sum {j in VM} (cost[j] * (sum {i in TIER} Buy[i,j]));

subject to inequality1: exists {k in 0..4} k = Buy["TIER1","TYPE1"] &&

 exists {l in 0..4} l = Buy["TIER1","TYPE2"] &&

 exists {m in 0..4} m = Buy["TIER1","TYPE3"] &&

 exists {a in 0..4} a = Buy["TIER2","TYPE1"] &&

 exists {b in 0..4} b = Buy["TIER2","TYPE2"] &&

 exists {c in 0..4} c = Buy["TIER2","TYPE3"] &&

59

 exists {d in 0..4} d = Buy["TIER3","TYPE1"] &&

 exists {e in 0..4} e = Buy["TIER3","TYPE2"] &&

 exists {f in 0..4} f = Buy["TIER3","TYPE3"] &&

 (sum {x in 0..k, y in 0..l, z in 0..m: x+y+z>=2}

 ((prod {p in 0..k} if p = 0 then 1 else p)/((prod {p in 0..(k-x)} if p = 0 then 1 else

p)*(prod {p in 0..x} if p = 0 then 1 else p)) * (1-unavail["TYPE1"])^x * unavail["TYPE1"]^(k-x)) *

 ((prod {q in 0..l} if q = 0 then 1 else q)/((prod {q in 0..(l-y)} if q = 0 then 1

else q)*(prod {q in 0..y} if q = 0 then 1 else q)) * (1-unavail["TYPE2"])^y * unavail["TYPE2"]^(l-y))

*

 ((prod {r in 0..m} if r = 0 then 1 else r)/((prod {r in 0..(m-z)} if r = 0 then 1

else r)*(prod {r in 0..z} if r = 0 then 1 else r)) * (1-unavail["TYPE3"])^z * unavail["TYPE3"]^(m-z)))

*

 (sum {x in 0..a, y in 0..b, z in 0..c: x+y+z>=2}

 ((prod {p in 0..a} if p = 0 then 1 else p)/((prod {p in 0..(a-x)} if p = 0 then 1 else

p)*(prod {p in 0..x} if p = 0 then 1 else p)) * (1-unavail["TYPE1"])^x * unavail["TYPE1"]^(a-x)) *

 ((prod {q in 0..b} if q = 0 then 1 else q)/((prod {q in 0..(b-y)} if q = 0 then 1

else q)*(prod {q in 0..y} if q = 0 then 1 else q)) * (1-unavail["TYPE2"])^y * unavail["TYPE2"]^(b-y))

*

 ((prod {r in 0..c} if r = 0 then 1 else r)/((prod {r in 0..(c-z)} if r = 0 then 1 else

r)*(prod {r in 0..z} if r = 0 then 1 else r)) * (1-unavail["TYPE3"])^z * unavail["TYPE3"]^(c-z))) *

 (sum {x in 0..d, y in 0..e, z in 0..f: x+y+z>=2}

 ((prod {p in 0..d} if p = 0 then 1 else p)/((prod {p in 0..(d-x)} if p = 0 then 1 else

p)*(prod {p in 0..x} if p = 0 then 1 else p)) * (1-unavail["TYPE1"])^x * unavail["TYPE1"]^(d-x)) *

 ((prod {q in 0..e} if q = 0 then 1 else q)/((prod {q in 0..(e-y)} if q = 0 then 1

else q)*(prod {q in 0..y} if q = 0 then 1 else q)) * (1-unavail["TYPE2"])^y * unavail["TYPE2"]^(e-y))

60

*

 ((prod {r in 0..f} if r = 0 then 1 else r)/((prod {r in 0..(f-z)} if r = 0 then 1 else

r)*(prod {r in 0..z} if r = 0 then 1 else r)) * (1-unavail["TYPE3"])^z * unavail["TYPE3"]^(f-z))) >=

0.9999;

subject to inequality2:

Buy["TIER1","TYPE1"] + Buy["TIER1","TYPE2"] + Buy["TIER1","TYPE3"] >= 2;

subject to inequality3:

Buy["TIER2","TYPE1"] + Buy["TIER2","TYPE2"] + Buy["TIER2","TYPE3"] >= 2;

subject to inequality4:

Buy["TIER3","TYPE1"] + Buy["TIER3","TYPE2"] + Buy["TIER3","TYPE3"] >= 2;

/*

subject to inequality5:

Buy["TIER1","TYPE1"] = 0;

*/

subject to inequality6:

Buy["TIER1","TYPE2"] = 0;

subject to inequality7:

Buy["TIER1","TYPE3"] = 0;

subject to inequality8:

61

Buy["TIER2","TYPE1"] = 0;

/*

subject to inequality9:

Buy["TIER2","TYPE2"] = 0;

*/

subject to inequality10:

Buy["TIER2","TYPE3"] = 0;

subject to inequality11:

Buy["TIER3","TYPE1"] = 0;

subject to inequality12:

Buy["TIER3","TYPE2"] = 0;

/*

subject to inequality13:

Buy["TIER3","TYPE3"] = 0;

*/

dat file:

data;

set TIER := TIER1 TIER2 TIER3 ;

set VM := TYPE1 TYPE2 TYPE3 ;

62

param: cost unavail :=

TYPE1 120.45 0.01

TYPE2 124.10 0.005

TYPE3 145.27 0.0005;

run file:

reset;

model Case2.mod;

data Case2.dat;

option solver ilogcp;

solve;

display Buy;

display Total_Cost;

63

References

[1] A. Aldhalaan and D. A. Menascé, “Autonomic Allocation of Communicating Virtual Machines in

Hierarchical Cloud Data Centers”, In International Conference on Cloud and Autonomic Computing

(ICCAC 2014), pp. 161-171, September 2014.

[2] A. Aldhalaan and D. A. Menascé, “Near-optimal Allocation of VMs from IaaS Providers by SaaS

Providers,” In International Conference on Cloud and Autonomic Computing (ICCAC 2015), pp. 228-

231, September 2015.

[3] A. Alamri, M. M. Hassan, “Virtual Machine Resource Allocation for Multimedia Cloud: A Nash

Bargaining Approach”, In International Symposium on Emerging Inter-networks, Communication and

Mobility (EICM-2014), vol. 34, pp. 571-576, December 2014.

[4] A. Anand, J. Lakshmi, and S. K. Nandy, “Virtual Machine Placement Optimization supporting

Performance SLAs”, In 5th International Conference on Cloud Computing Technology and Science

(CloudCom), pp. 298-305, December 2013.

[5] A. Undheim, A. Chilwan, and P. Heegaard, “Differentiated Availability in Cloud Computing SLAs”,

In 12th IEEE/ACM International Conference on Grid Computing (GRID), pp. 129-136, September

2011.

[6] B. Jennings and R. Stadler, “Resource management in Clouds: Survey and research challenges,”

Journal of Network and Systems Management, vol. 23, no. 3, pp. 567-619, July 2015.

[7] D. A. Menascé and P. Ngo, “Understanding Cloud Computing: Experimentation and Capacity

Planning,” In International Computer Measurement Group Conference, January 2009.

[8] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang, “Quality-of-Service in Cloud

Computing: Modeling techniques and their applications,” In Journal of Internet Services and

Applications, vol. 5, no. 1, pp. 1-17, January 2014.

[9] D. Petcu, G. Macariu, S. Panica, C. Crăcium, “Portable Applications – From theory to Practice”, In

Future Generation Computer Systems, vol. 29, no. 6, pp. 1417-1430, August 2013.

64

[10] E. Casalicchio, D. A. Menascé, and A. Aldhalaan, “Autonomic Resource Provisioning in Cloud

Systems with Availability Goals,” In Proceedings of the 2013 ACM Cloud and Autonomic Computing

Conference (CAC 2013), August 2013.

[11] E. D. Dolan, “The NEOS Server 4.0 Administrative Guide”, In Technical Memorandum ANL/MCS-

TM-250, Mathematics and Computer Science Division, Argonne National Laboratory, 2001. This

technical report, which discusses the implementation of the server and its use in detail, is available for

download in PDF format.

[12] E. Gorelik, “Cloud Computing Models: Comparison of Cloud Computing Service and Deployment

Models”, Masachusetts Institute of Technology, Cambridge.

[13] E. K. Mece, E. Driza, “An Approach to Evaluate the Reliability of Web Applications in Cloud

Computing using Dynamic Fault Tree”, In Balkan Conference in Informatics, Thessaloniki, Greece,

pp. 19-21, January 2013.

[14] G. Alves, C. Silva, E. Cavalcante, T. Batista and F. Lopes, “Relative QoS: A New Concept for Cloud

Service Quality”, In 2015 IEEE Symposium on Service-Oriented System Engineering(SOSE 2015), pp.

59-68, April 2015.

[15] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic method of fair resource

allocation for cloud computing services,” In The Journal of supercomputing, vol. 54, no. 2, pp. 252-

269, November 2010.

[16] H. Goudarzi, M. Ghasemazar, and M. Pedram, “SLA-based optimization of power and migration cost

in cloud computing,” In 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGRID 2012), pp. 172-179, May 2012.

[17] H. Goudarji and M. Pedram, “Multi-dimensional SLA-based resource allocation for multitier cloud

computing systems,” In IEEE International Conference on Cloud Computing (CLOUD 2011), pp. 324-

331, July 2011.

[18] http://www.eventhelix.com/RealtimeMantra/FaultHandling/system_reliability_availability.html, Date

accessed: January 6, 2017

[19] H. Kamal Idrissi, A. Kartit, M. El. Marraki, “A Taxonomy and Survey of Cloud Computing”, In 2013

National Security Days (JNS3), April 2013.

http://info.mcs.anl.gov/pub/tech_reports/reports/TM-250.pdf
http://www.eventhelix.com/RealtimeMantra/FaultHandling/system_reliability_availability.html

65

[20] IBM Archives, A Brief History of Cloud Computing, https://www.ibm.com/blogs/cloud-

computing/2014/03/a-brief-history-of-cloud-computing-3/, Date accessed: January 6, 2017

[21] ILOG CP solver, Demo version of AMPL and solvers. http://www.ampl.com/try-ampl/download-a-

free-demo/, 2016.

[22] I. Rodero, E. K. Lee, D. Pompili, M. Parashar, M. Gamell, and R. J. Figueiredo, “Towards energy-

efficient reactive thermal management in instrumented datacenters,” In 11th IEEE/ACM International

Conference on Grid Computing, pp. 321-328, November 2010.

[23] J. Czyzyk, M. P. Mesnier, and J. J. Moré, “The NEOS Server”,In IEEE Journal on Computational

Science and Engineering, vol. 5, no. 3, pp. 68-75, July 1998. This paper discusses the design and

implementation of the NEOS Server.

[24] L. Wu. S. K. Garg, and R. Buyya, “SLA-based resource allocation for Software-as-a-service provider

(SaaS) in cloud computing environments,” In 11th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGRID 2011), pp. 195-204, May 2011.

[25] M. Hadji and D. Zeghlache, “Minimum cost maximum flow algorithm for dynamic resource

allocation in clouds,” In IEEE 5th International Conference on Cloud Computing (CLOUD 2012), pp.

876-882, June 2012.

[26] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet application deadlines in cloud

workflows,” In Proceedings of International Conference for High Performance Computing,

Networking, Storage and Analysis (SC 2011), November 2011.

[27] O. Das, “Availability Modeling”, Lecture notes for Computer Systems Modeling (EE8214), Ryerson

University, Toronto, 2014.

[28] P. Sakhamuri, O. Das, “Acquisition of Virtual Machines for Tiered Applications with Availability

Constraints”, In 18th International Symposium on High Assurance Systems Engineering (HASE 2017),

Singapore, January 2017. Accepted for publication.

[29] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Dynamic service placement in

geographically distributed clouds,” In IEEE Journal on Selected Areas in Communications, vol. 31,

no. 12, pp. 762-772, December 2013.

https://www.ibm.com/blogs/cloud-computing/2014/03/a-brief-history-of-cloud-computing-3/
https://www.ibm.com/blogs/cloud-computing/2014/03/a-brief-history-of-cloud-computing-3/
http://www.ampl.com/try-ampl/download-a-free-demo/
http://www.ampl.com/try-ampl/download-a-free-demo/

66

[30] R. Sahner, K. S. Trivedi and A. Puliafito, “Performance and Reliability Analysis of Computer

Systems – An Example-Based Approach using SHARPE Software Package”, ISBN 978-1-4613-6005-

6, Kluwer Academic Publishers, 1996.

[31] S. B. Shaw, A. K. Singh, “A Survey on Cloud Computing”, In International Conference on Green

Computing Communication and Electrical Engineering (ICGCCEE), March 2014.

[32] S. Dutta, S. Gera, A. Verma, and B. Viswanathan, “Smartscale: Automatic Application Scaling in

Enterprise Clouds,” In IEEE 5th International Conference on Cloud Computing (CLOUD 2012), pp.

221-228, June 2012.

[33] S. Hassan, A. A. Kamboh and Dr. Farooque Azam, “Analysis of Cloud Computing Performance,

Scalability, Availability & Security”, In International Conference on Information Science and

Applications (ICISA), pp. 1-5, May 2014.

[34] S. Kamboj, N. S. Ghumman, “A Survey on Cloud Computing and Its Types”, In 3rd International

Conference on Computing for Sustainable Global Development (INDIACom), pp. 2971-2974, March

2016.

[35] V. Prakash, and S. Gopalakrishnan, “Cloud computing solution – Benefits and testing challenges”,

Journal of Theoretical and Applied Information Technology, vol. 39, no. 2, pp. 114 – 118, May 2012.

[36] W. E. Dong, W. Nan, and L. Xu, “QoS – oriented Monitoring Model of Cloud Computing Resources

Availability”, In 5th International Conference on Computational and Information Sciences (ICCIS), pp.

1537-1540, June 2013.

[37] W. Gropp, and J. J. Moré, “Optimization Environments and the NEOS Server”, In Approximation

Theory and Optimization, M. D. Buhmann and A. Iserles, eds., Cambridge University Press, pp. 167-

182, March 1997. This paper discusses the NEOS Server as a problem-solving environment that

simplifies the formulation of optimization problems and the access to computational resources.

67

[38] Z. I. M. Yoush and M. Tang, “A penalty-based grouping genetic algorithm for multiple composite

SaaS components clustering in cloud,” In IEEE International Conference on Systems, Man, and

Cybernatics (SMC 2012), pp. 1396-1401, October 2012.

[39] Z. I. M. Yuosh and M. Tang, “Composite SaaS placement and resource optimization in cloud

computing using evolutionary algorithms,” In IEEE 5th International Conference on Cloud Computing

(CLOUD 2012), pp. 590-597, June 2012.

[40] Z. Xiao, W. Song, and Q. Chen, “Dynamic Resource Allocation using Virtual Machines for Cloud

Computing Environment,” In IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6,

pp:1107-1117, June 2013.

