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ABSTRACT 

DEPLOYMENT OF VIRTUAL MACHINES FOR TIERED APPLICATIONS IN CLOUD 

SYSTEMS WITH OPTIMIZED RESOURCE ALLOCATION BASED ON  

 AVAILABILITY SLAS 

 

Praneeth Sakhamuri, M.A.Sc. 

Electrical and Computer Engineering 

Ryerson University, 2017 

 

Deploying and managing high availability-tiered application in the cloud is challenging, as it 

requires providing necessary virtual machines to make the application available. An application is 

available if it works and responds in a timely manner for varying workloads. Application service 

providers need to allocate specified number of working virtual machine copies for each server with at 

least a given minimum computing power, to meet the response time requirement. Otherwise, we may end 

up with response time failures. This thesis formulates an optimization problem that determines the 

number and type of virtual machines needed for each server to minimize the cost and at the same time 

guarantees the availability SLA (Service-Level Agreement) for different workloads. The results 

demonstrate that a diverse approach is more cost-effective than running on a single type of virtual 

machine, and buying only the cheapest virtual machines for an application is not always economical.  
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Cloud computing has been increasingly advancing as one of the major fields with its applications 

in various areas of business and personal use like storage, developing virtual circuits, running various 

applications and programs with its vast networking, operational and storage capabilities. Initially, through 

cloud storage data was made available anyplace around the globe. Storing information in the cloud and 

accessing it from any other place has made data management much easier and safe. Nowadays, cloud 

services have increased from storing data to accessing various servers virtually and running various 

applications through internet rather than connecting a server to the system or actually downloading the 

application into the system. This way of computing usually provides a better way to access a shared pool 

of resources for a better cost and on-demand.  

Cloud services deployed through cloud computing are described by service models, which may 

be a combination of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a 
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Service (SaaS). All these services are differentiated based on the various tasks offered by the cloud. These 

services mostly follow a hierarchy and may be interdependent [12]. IaaS model is the lowest-level in the 

hierarchy and provides necessary infrastructure to the clients. It is followed by the PaaS model where 

necessary application platform is delivered to the client and is dependent on IaaS for its resources. SaaS 

model is the final layout available to the client and gives the client a complete access over all its 

applications. The figure below shows a clear description of the various service models. 

 

Figure 1. Cloud Service Models 

 

When the service reaches the SaaS model, the application service provider (ASP) has to perform 

necessary checks on the system such that the system has better Quality of Service (QoS) to provide a 

better experience to the client. 

There are different types of resources in cloud computing based on QoS with different functions 

and attributes. Some of the key attributes are service time, service cost, availability and reliability with 

which the service is offered. There are also different types of attributes based on the system requirement. 
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For example, storage can be considered an attribute when using storage services where storage capacity is 

a main concern. Managing these attributes accordingly helps in providing the user with a better system 

experience. 

This can be achieved in two ways: High performance computing and high availability computing. 

As the names suggest, high performance computing is used to make sure the system performance is at its 

best. High availability computing is used to make sure the system’s availability is higher or the system 

can be reliable [7].  

 

1.2 What is Availability? 

The term reliability means, the ability of a system to perform a required function, under 

given environmental and operational conditions and for a stated period of time[13]. Reliability 

can also be defined as the probability of a system in which no failure occurs in a give time period 

(0,t). Instantaneous availability or point availability denoted as A(t), can be defined as the 

probability that the system is working at an instant t, regardless of the number of times the system 

might have failed and been repaired in the time interval (0,t)[30].  

At an initial instant, the availability is 1 but later gradually decreases until it tends to a 

constant limiting value known as steady-state availability. In a non-repairable system, 

instantaneous availability A(t) is equivalent to reliability R(t). However, if the system is 

repairable, availability can be expressed as: 

𝐴(𝑡) = 𝑅(𝑡) + ∫ 𝑅(𝑡 − 𝑥)𝑚(𝑥) 𝑑𝑥
𝑡

0

                                                            (1.1) 

At any time t, availability is always greater than or equal to reliability. As it is already 

stated that R(t) represents reliability of a system in a time period of (0,t),  m(x) dx is the 
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probability that a renewal occurs at an instant x. R(t - x) represents the probability that the system 

works in the time interval (0, t-x).  

In general, steady-state availability of s component can be defined as 

𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
                                                                          (1.2) 

When it comes to formulating steady-state availability, it does not apply for general 

system with internal redundancy, which means it only works for a system with a single UP state 

and a single DOWN state[30]. The steady-state availability equation is also given as: 

lim
𝑡→∞

𝐴(𝑡) =
𝜇

𝜆 + 𝜇
                                                                         (1.3) 

The over-all steady-state availability of a system can be calculated by modeling the 

system as an interconnection of different components in series or parallel.  

  

1.3 Research Problem 

Cloud computing is the result of the adaptation of existing technologies and their evolution into a 

platform that allows clients to take advantage of all the technologies with low cost and task centered focus 

rather than worrying about different parameters and obstacles. The main ideology behind cloud 

computing is virtualization. It differentiates physical devices to virtual devices that are used in cloud 

computing to perform different tasks.  

There are several researches that discuss the use of cloud computing as a platform to reduce 

system complexity and cost by opting virtual systems instead of physical systems. Further studies have 

also explored the allocation of VMs from different levels of cloud based on performance. In [4], Anand 

et. al. have given a solution to reduce VM migration based on performance SLAs which reduced the 
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overall migration of resources to a minimum by using integer programming. Authors in [15] consider the 

minimization of power and migration cost through VM placement and have proposed an algorithm that is 

based on dynamic programming and convex optimization method.  

Availability constraints have been explored by Menascé et. al. in [10] which propose a near 

optimal solution to allocation of VMs based on high availability in the IaaS layer which has also produced 

an increase in revenue. A dynamic approach is proposed to evaluate reliability in clouds in [13] based on 

fault tree analysis which helps in studying system reliability and also portrays the impact of reliability on 

the cloud system.  

Availability is one of the key features of cloud computing. Imagine a system where the 

servers go down in the middle of a project. This would affect the user experience and in turn 

leads to loss of customer usage. Therefore, maintaining high availability is very important in 

cloud computing.  

One of the most important traits of cloud computing is the ability to allocate virtual machines to 

perform several tasks remotely from another location. These VMs are mostly allocated based on different 

properties such as system utilization, machine performance, system availability, system response time, 

system cost, memory and so on. Most of these properties are declared initially at the IaaS level and some 

are developed during run time. In this thesis, only availability and cost are considered from the ASP 

perspective to make the system work in an optimal condition such that the total system has high 

availability with a relatively low cost.  

There has been development of various techniques based on deployment of virtual machines in 

cloud on the SaaS layer based on high performance computing. This thesis covers allocation of VMs in 

the SaaS layer where the Application Service Providers (ASPs) process operations of the system and 

optimize the number of VMs to be allocated to obtain a better result using high availability computing.  
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Initially, to run any computing application clients need to purchase necessary servers and 

components for the tasks to work for which, in the long run leads to loss of resources and also high cost. 

Using cloud computing however helps to virtually allocate machines through the network to produce 

necessary setup for a required task producing a consistent output. Making these resources available for a 

pay-per-use basis, monthly and yearly terms depending on the usage of resources reduces cost imparted 

on the client.  

The main concept of cloud computing arises from the idea of replacing physical machines with 

virtually allocated machines from another location through an established network. The introduction of 

VMs into the system facilitates easy allocation and de-allocation of physical machines serving the system 

to meet necessary Quality of Service (QoS) objectives.  

 

1.4 Research Overview 

This thesis studies the effect of cost and availability of the virtual machines to acquire virtual 

machines that can be allocated to different software servers based on their availability constraints. An 

optimized model is developed that is run on an ILOG CP solver using AMPL. The steady state 

availability of a three – tier system with each tier using different types of VMs in different situations are 

studied, and the resulting solution that produces most cost-efficient output with minimum number of VMs 

dispatched to solve the problem is selected.  

A hypothetical three – tiered cloud application is analyzed in this thesis. The application consists 

of three software servers: Web server, App server and Database server. Multiple copies of each server are 

assumed to be running in each tier respectively. An optimization problem is formulated where the goal 

was to minimize cost subject to SLA constraints. Availability is used as a constraint and a model is 

generated to test the system in different situations. Two different cases are considered depending on the 
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number of working copies in each tier. Case – 1 is considered as a simple system with only copy working 

for each server. Case – 2 describes multiple working copies in each tier.  

Along the thesis, different conditions are described for both the cases and the outputs displayed 

help the ASPs make their decisions on acquiring VMs. This thesis also shows that allocation of cheapest 

VMs to reduce system cost is not always the best method to reduce the system cost and it is best preferred 

to run the servers on different types of VM instances rather than a fixed type of VMs.  

 

1.5 Related Works 

For the last couple of years, the growth of cloud computing has demanded a lot of research on the 

problems faced by cloud providers based on resource allocation. Although there have been many works 

on resource allocation, very little has been done from the application service providers (ASPs) 

perspective.  

Authors in [8] provide a survey on a cloud system which uses QoS modeling and several other 

early QoS management systems. In [6], a research survey has been done on management of clouds based 

on resource allocation and different challenges faced by the cloud providers to achieve it. The main 

problem faced in resource allocation is to decide the optimal way to allocate virtual machines to physical 

machines. There have been many different methods discussed to formulate this problem by linking it to 

response time, availability, cost and power constraints. The most common objective is by increasing the 

revenue of the cloud provider. Authors in [25,29] present different solutions to this NP hard problem 

based on bin-packaging formulation. However, scaling problems of bin-packing have called for heuristic 

solutions [10, 15, 16, 17, 22, 34]. 

Authors in [10] discuss about an optimal allocation of cloud computing resources by proposing a 

near optimal (NOPT) algorithm based on hill-climbing approach and the results are compared with best 
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fit strategy. Through this comparison it is observed that the NOPT approach gives 45% better revenue 

compared to the best fit strategy and simultaneously maintaining an availability value very close to 1.  

In [24], the authors have presented algorithms for minimizing the infrastructure cost based on 

response time constraints. This requires converting the customer SLA requirements to infrastructure level 

parameters. In [39], the authors propose evolutionary algorithms to minimize resource usage which 

improves execution time. Authors in [38] consider minimizing resources used by clustering components 

such that resource and communication requirements are not violated. In [40], authors discussed on a 

resource management system to allocate data dynamically based on user demand. It mainly focuses on 

minimizing cost by optimizing number of servers used.  

Menascé et al. have presented in their recent work [2] two heuristic techniques that were used by 

ASPs to determine the number of VMs to be leased for minimizing system cost subject to response time 

constraints. In [32], the authors present an automated smartscale scaling framework which uses a 

combination of vertical and horizontal scaling. It ensures the application converges to the desired level. A 

heuristic algorithm has been proposed in [25] based on force-directed search where the upper bound profit 

is calculated and is compared with the proposed resource consolidation technique.  

In [3], the authors proposed a nash bargaining approach that discusses about a cost effective and 

dynamic VM resource allocation method for handling media services in the cloud platform. The main 

focus is on challenging the issue which is to reduce the overall cost of running servers while making sure 

that the resources are being utilized at their maximum potential and the system completes the given job by 

the deadline. Several experiments have been conducted in the paper and the results show that the 

bargaining algorithm improves the resource utilization over time, with lesser VM migration overhead and 

active servers. 

Mao and Humphrey defined an auto-scaling mechanism in [26] that guarantees execution of all 

the requests in given time. The main goal is to allocate resources that are only needed. It presents an 
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approach where the elements of the cloud, each of different costs and sizes, user specified performance 

metrics for the jobs are specified and the aim is to make sure all the jobs are done within the pre-fixed 

deadlines for a minimum cost. This is done by dynamic allocation/deallocation of VMs and scheduling 

tasks on cost-effective instances on various workload patterns which show increased savings from 9.8%-

40.4% when compared to other approaches. 

None of the above papers discussed consider availability constraint from the ASP perspective. 

Although availability is considered as a constraint, they were mainly focused on the cloud provider. The 

papers that have worked on the application provider considered response time or performance as their 

constraints. As a part of the thesis, [28] has been developed and it helps in bridging the gap created in the 

ASP level. It provides an optimization model to determine the number of VMs needed of each type for 

each server that helps minimize the cost and at the same time guarantees the availability SLA. It uses an 

ILOGCP solver to solve the model and helps the ASPs in taking decisions as to selecting the necessary 

amount and types of VMs. 

 

1.6 Contributions 

Following are different contributions of this thesis: 

• The model that is developed to meet the optimal requirements for the system reduces the 

number of virtual machines that are allocated to the servers which assists in minimizing 

allocation of unexploited VMs.  

• Allocation of less number of VMs results in minimization of overall cost of the system. 

• The optimized model also focuses on reducing the cost of the system by comparing the cost 

of each type of VM and its availability together to comprehend the kind of VM that is better 

suited for the job. 
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1.7 Thesis Outline 

This thesis layout is arranged as follows: Chapter 2 discusses the background study on Cloud 

computing, cloud computing in SaaS layer, system availability and allocation of virtual machines in the 

cloud. Chapter 3 discusses the system model, availability of the system and distribution of virtual 

machines to different layers. In Chapter 4, different cases involved in distribution of virtual machines 

have been clearly elaborated. The framework and problem analysis are discussed in Chapter 5 and the 

results obtained have been displayed. Chapter 6 presents the future work and concludes the thesis.  
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Chapter 2 

BACKGROUND 

Cloud computing is a popular term that is being used in various contexts in almost every industry 

for a simple data transfer to performing multiple high – level operations by the help of virtual resources 

for a comparatively cheaper cost on a pay-per-use basis. This chapter discusses about the structure of the 

cloud, allocation of resources and the effect of system availability on the cloud. 

 

2.1 Cloud Computing 

Cloud computing is an internet-based service that delivers necessary facilities to the user. Its 

operations can vary from simple mathematical calculations to running business operations on its agile 

architecture [19].  
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The key features of cloud computing include: 

• Service oriented architecture 

• Greater flexibility 

• Low cost 

• Offer services on-demand 

Cloud computing removes the need to spend money on expensive hardware that have limited 

operating capabilities and also works only for a certain period of time. 

 

2.1.1 History of Cloud Computing 

Although the implementation of cloud computing started in the early 2000’s, the initial 

formulation of the concept was by John McCarthy in the year 1960. Since its formulation, it has been 

evolving gradually both in its operations and the fields of usage. According to IBM[20], it began in 

1950 through mainframe computing where multiple users used to access the mainframe computers 

through dumb terminals. In around 1970, the concept of virtual machines (VMs) has surfaced and led 

to the creation of virtualization software like VMware which made it possible to execute several 

operating systems simultaneously in an isolated environment. From the 1990s, virtualized private 

network connections were offered by different telecommunication companies. Since then, there has 

been huge research and development on Infrastructure as a service (IaaS) and Platform as a service 

(PaaS) but there has been little research in Software as a service (SaaS). It began as a full-time 

sharing solution on different platforms like Multics, Cambridge CTSS, and the early UNIX ports.  
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2.1.2 Characteristics of Cloud Computing 

The use of cloud computing has become prominent due to its key characteristics. The 

following are the characteristics of cloud computing [35]: 

Resource Sharing – Users can access a pool of multiple resources with a variety of physical and 

virtual resources with different configurations dynamically based the user’s needs. 

Internet Access – Users can access the services provided by the cloud at any location through 

internet. The network provides access to the resources through the protocols supporting various client 

platforms. 

Reduced Cost – Resources in the cloud can be accessed by the users on a pay-per-use basis. This 

reduces the user’s need to buy all the necessary hardware. Instead, the user can just access the 

required resources virtually and pay for them based on the deployment of those resources. 

Scalability – One of the main advantages of cloud computing is on demand scaling. Resources are 

evenly – distributed and thus allowing resource utilization to spread evenly among the servers 

available.  

Transparency – The resources utilized by the user can be measured, monitored and reported by the 

cloud provider providing transparency between the consumer and provider.  

 

2.1.3 Classification of Cloud Computing 

A basic cloud computing model can be classified into three different layers [31]: 

1. Infrastructure as a Service 

2. Platform as a Service 
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3. Software as a Service 

 

• Infrastructure as a Service (IaaS) 

IaaS manages the hardware resources of the cloud which includes servers, routers, cables and 

switches. It is the lowest layer in the cloud. It offers a pool of resources through a virtual 

datacenter that connects multiple virtual machines to a single physical server. Some of the leading 

vendors that rely on IaaS layer are: Amazon’s product EC2, Amazon S3, Flexiscale and 

Rackspace Cloud Servers. 

 

• Platform as a Service (PaaS) 

The second layer in the cloud is Platform. It deploys the environment for the resources which 

includes APIs, frameworks and databases. It provides the infrastructure required through internet, 

the environment best suited based on the architecture generated by the first layer. The main 

vendors that use this layer are Microsoft Windows Azure and Google App Engine.  

 

• Software as a Service (SaaS) 

The final layer in cloud computing is Software. It delivers necessary software and data that 

are hosted in the internet. It can be accessed through a thin client by the users. The users pay for 

the service on a monthly basis based on usage. 
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2.1.4 Types of Clouds 

Cloud has emerged as a convergence of multiple computing trends. Based on the physical 

location and service distribution clouds can be classified into four different types which are 

mentioned below [34]. 

 

Figure 2. Types of Cloud computing 

 

• Private Cloud 

Private cloud is restricted to an organization. The services provided by a private cloud are 

only available for the people in that particular organization or third party vendors. Private clouds 

can exist inside the premises or outside but the services cannot be accessed by the public. 

 

• Public Cloud 

Some organizations offer their cloud services on pay-per-use basis to general public. Various 

businesses adopt public clouds to save the hardware or software cost. Public clouds are mostly 
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used for development, deployment and management of enterprise applications for a reasonable 

cost. The major drawback for public clouds is its open access to anyone paying for the service as 

it exposes the system to imminent threats compromising security. Therefore a proper validation 

is required to access the public cloud.  

 

• Community Cloud 

Community cloud is similar to public cloud except that it can be accessed only by a 

particular community of users. Its infrastructure can be present on premises or located 

somewhere else at a third party organization. It can be accessed by the users of the same 

community who have similar concerns like privacy requirements, policy, and security concerns 

[34]. 

 

• Hybrid Cloud 

 A hybrid cloud is an integration of two or more clouds: private, public and community 

cloud. It helps the users to access the secure applications of private cloud, while also allowing 

shared data access and cost benefit of the public cloud.  

 

2.2 Research in SaaS Layer 

There has been a wide range of researches on the IaaS and PaaS layers. But when it comes to 

SaaS, very limited research has been done. The cloud infrastructure is leased by the SaaS providers by 

instantiating VMs that are compatible and that are much suited for the consumer. The user pays for this 

service on a pay-per-use basis based on the service provided. This states that the SaaS provider has to be 
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able to determine the total number of VMs required for the service to run perfectly, assuring that the 

Quality of Service (QoS) is not compromised and the total amount spent on the VMs is minimum.  

In [1, 2], Aldhalaan and Menascé have proposed two techniques that best satisfy the consumer 

demands. In this paper, ScaleUpDown Algorithm and FillSlotsFirst Algorithm are the two algorithms 

presented that can be used by the application service providers to determine the type and quantity of VMs 

to be leased in order to satisfy the customer demands. It considers minimizing the cost and response time 

constraints of the VMs. L. Wu, S. K. Garg and R. Buyya[24] have also worked on the SaaS layer and 

proposed a different algorithm that also minimizes response time constraints while maintaining a 

minimum cost of infrastructure. Their algorithm involves translating customer SLA requirements into 

infrastructure level parameters.  

[26] produced algorithms that reduce resource usage and improves execution time. Evolutionary 

algorithm approach is used to face the problem.  

 

2.3 Quality-of-Service 

Cloud computing allows the access of different computing resources like servers, working 

platforms, networks, storage spaces and applications. All these resources that are accessed through the 

cloud network are called services[14]. These services are easily managed and are provided to the users on 

demand. This means the user pays the provider for these services on a pay-per-use basis. These services 

are offered depending on certain established agreements between the provider and the client called 

Service-Level Agreements (SLAs). These SLAs specify certain values of system availability, response 

time and other QoS parameters (or metrics) that the user and provider agree upon. These parameters are 

therefore monitored continuously and the users are notified if there is any service disruption in case of 

QoS degradation or when the services become unavailable, or to make sure the cloud provider does not 

deviate from the QoS statements mentioned in the SLA.  
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Quality-of-Service (QoS) is the amount of reliability, availability or performance that is provided 

by the infrastructure or platform that hosts it. The users refer to QoS as a parameter to select a cloud. 

There have been several researches on QoS management to make sure the cloud resources produce a high 

performance system to satisfy the user[27]. However, when it comes to availability, there hasn’t been 

much research to study its effects on the cloud system.  

 

2.3.1 SLAs in Cloud 

Cloud computing does not offer proper control over services provided and this makes the 

customer to take necessary precautions to counter loss of QoS. Therefore, SLAs have become a 

part of cloud computing and most customers select a cloud provider based on their SLA 

proposals. Service Level Agreements (SLAs) are the binding agreements signed between the 

customer and cloud service provider to specify the level of service to be delivered as well the 

steps to how measuring, reporting and handling of SLA violation should be done [5]. SLA mainly 

focuses on the dependability of the system and specifies the rate for a particular time period, like 

a month or a year. For example, Amazon EC2 SLA mentions its system dependability on an 

annual basis and calls it as “Annual Uptime Percentage”. The company states its Annual Uptime 

Percentage to be 99.99% and offers a 10% service credits if it deviates from the value. Similarly, 

different cloud providers like Microsoft, Google, Rackspace offer different percentage values and 

also provide different amount of credits to the customer when the servers go below the value. 

These QoS values presented in the SLA proposals are specified in Service Level Specification 

(SLS).  
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Figure 3. Structure of SLA 

 

When working on a cloud, it is observed that offering only availability parameters in SLA is 

not enough to ensure better service delivery to the customer. For example, if a system has an 

availability of 99.99% and if its performance levels are too low or if the run time is too high it is 

not considered an ideal choice by the customer. The cloud infrastructure has to keep changing 

based on the user demands and has to automatically allocate resources based on the SLA 

requirements. At the same time it should also detect violations and act accordingly to avoid 

paying credits to the customer.  

Although the system overcomes different SLA requirements, it still face a couple of 

challenges such as: 

• Allocation of resources based on SLA requirements 

• Measurement and monitoring of system for violations 

• Acting accordingly based on the observed violations 

 

Service Level Agreement (SLA) 

Measuring 
Reporting 
Violation Handling 
 
Service Level Specification (SLS) 

SLS Parameters 
SLS Thresholds 
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If any violations are observed for availability, the system might have to add more resources in 

standby to handle the failures. For performance violations, if the system is getting overloaded the 

best case would be allocating VMs to other physical machines to reduce system overload. 

 

2.4 Availability based Quality-of-Service 

Availability of a system is the probability that the system can complete a required task in a given 

period. To achieve high availability means the system should not fail at any point. Cloud providers use 

different cloud resources to supply necessary services to customers. Various conventional studies made 

on availability in the past are not particularly suited for the more dynamic and distributed field of cloud 

computing. Originally, QoS does not consider availability as a resource in cloud computing. An 

availability oriented QoS model produced in [36] that helps monitor availability of the cloud.  

There are different attributes to cloud computing resources. The most common attributes would 

be service time, cost of service, service credit rating and reliability of service offered by the cloud. 

 

 

Figure 4. Resource Attributes Model[36] 
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To determine the quality of service of a cloud system, several modeling techniques[8] can be used 

such as queuing models, Petri nets, reliability block diagrams and so on. All these models are classified 

based on performance, dependability, black-box services, and simulation. 

 

2.4.1 Availability of a component 

In a cloud, availability refers to the amount of time the system is up and running without 

any drop in its services. If the system goes off when there is any task running on the cloud it 

affects the user’s experience and the customer would be inclined to opt for another provider. 

Availability of a system is a factor of reliability. In other words, if the reliability increases, 

availability increases [18]. 

Availability can be represented as a ratio of expected system uptime to the sum of 

expected uptime and downtime (or) it is the measure of readiness of the system. 

𝐴 =  
𝑈𝑝𝑇𝑖𝑚𝑒

𝑈𝑝𝑇𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑇𝑖𝑚𝑒
                                                         (2.1) 

(or) 

𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
                                                               (2.2) 

where,  

MTTF is the mean time to failure of the system 

MTTR is the mean time to repair 
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Many methods and analysis models are developed to calculate availability such as Fault 

tree Analysis, Reliability block diagrams, Markov Chains, Petri Nets and so on. 

 

2.4.2 System Availability 

Availability of a system can be evaluated by modeling the entire system as a group of 

series and parallel components. A system is said to be in series if one failed component in the 

system results to the entire system failing. A system is said to be in parallel if when using a failed 

component the operations of that particular component are being taken over by the other 

component that is working (or the system fails only when all the components fail) [18]. Consider 

a 2-component system where 𝐴𝑥 is the availability of component 𝑥 and 𝐴𝑦 is the availability of 

component 𝑦. 

The combined availability for a 2-component system in series is: 

𝐴 =  𝐴𝑥𝐴𝑦                                                                          (2.3) 

The combined availability for a 2-component system in parallel is: 

𝐴 =  1 − (1 − 𝐴𝑥)(1 − 𝐴𝑦)                                                    (2.4) 

   

 2.4.3 Availability in Cloud Computing 

Maintaining system availability is one of the major issues in cloud computing [33]. If the 

user wants to access the system during a heavy load situation, the system cannot be available as 

there is a list of operations that are yet to be completed and no available resources for the system 

to become ready to be used by the user. To achieve system availability, the system and its 
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resources have to be robust and highly reliable so that they offer maximum failure resistance and 

in turn provide maximum availability. Also, the ASPs have to make sure that there is no hardware 

failure and all the systems are well maintained. Sometimes, user errors also lead to loss in 

availability. 

Availability of the system can be increased by minimizing human errors. Also upgrading 

a system when it is running other processes affects the availability. So such tasks have to be done 

when the system is in an idle state. Regular system maintenance and selecting robust machines 

also increase availability.  

The main problem faced by the application service providers (ASPs) is to determine 

minimum number of VMs and servers to the system such that the SLAs are not violated. The 

major problem in cloud computing systems is, efficiently managing VM resources based on QoS 

requirement. This problem is discussed in [3] which proposes a nash-bargaining approach. A 

similar problem is discussed in [24]. This approach is done by studying the optimization problem 

that considers a system with minimum cost and assigning a fixed availability value to the system. 
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Chapter 3 

DISTRIBUTION OF VIRTUAL 

MACHINES 

 

3.1 Three – Tier Cloud System 

A cloud computing system is an internet-based computing system that provides shared resourcing 

pool of processors and data to different devices on demand. A regular cloud computing application has 

three different layers: Web server, Application server and Database server.  
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3.1.1 Architecture 

Consider the following layout for the system to be discussed. The application consists of 

three servers: Web Server, App Server and DB server. Each tier can have one or more copies 

running. Let E1, E2 and E3 be the tiers with multiple copies each having an individual virtual 

machine VM1, VM2 and VM3.  

 

Figure 5. System Layout 

 

For the above system to work, it is assumed that all the tiers E1, E2 and E3 have to work 

successfully. This approach shows that the top tiers depend on bottom tiers. So for tier - 1 to work 

both tier - 2 and tier - 3 need to be up. Also, all the copies in a tier and their respective VMs are 

assumed to be identical. Since the process uses a failure state logic, the layout actually gives the 

failure state of the system. Hence, if Āsys is the output unreliability of the system, Asys is the final 

steady state availability acquired. 
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Asys = 1 – Āsys     (3.1) 

This unavailability value is substituted to the optimization model for the final output 

conditions and the problem is solved. Before proceeding to solving the actual problem some 

assumptions are also included to provide a simpler solution to the model. 

 

3.1.2 Assumptions 

For the system to work, different assumptions are made to support the model to be 

discussed. These assumptions considered are as follows: 

• The system works only if all the tiers in the system are working. 

• Each tier has different number of layers or copies. 

• Each tier is associated with its own virtual machine. 

• All the layers in a particular tier are identical in their properties. 

• All the layers of a virtual machine in a particular tier are identical in their properties. 

 

3.1.3 Notations 

The following are the list of different notations used in the paper. 

• N : Total number of VM types provided by the cloud provider (1 ≤ 𝑗 ≤ 𝑁, 𝑗 ∈ ℕ). 

• M : Number of tiers available in the system (1 ≤ 𝑖 ≤ 𝑀, 𝑖 ∈ ℕ). 

• Aj : Steady-state availability of VM of type 𝑗. 

• Āj : Steady-state unavailability of VM of type 𝑗. 

Aj = 1 – Āj 

• Cj : Cost of an individual VM of type 𝑗. 
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• Xj ≥ 0: Number of VMs of type 𝑗 provided by the cloud provider to make the system 

work. 

• X(i,j) ≥ 0 : Number of VMs of type 𝑗 provided by the cloud provider to tier 𝑖. 

• 𝑘𝑖 : Minimum number of working replicas needed for server 𝑖 for the system to be up. 

• ℂ : Total optimized amount to be paid to obtain the system with required steady-state 

availability. 

• SSAreq : Steady-State Availability requirement of the system by the SLA. 

 

3.2 Problem Description 

Deployment and managing applications in a cloud is challenging as it requires determining and 

buying required number of VMs dynamically such that the application is available. The main problem 

faced by the ASPs is allocation of VMs in the SaaS layer considering availability SLAs. 

 

3.2.1 VM Distribution 

Allocation of VMs to run the system with a required SSA requires a calculated and 

optimized model to figure the number of VMs distributed across different layers. This model 

considers the required values of SSA and the condition of having a minimum amount of cost to 

be spent on the VMs. Although the overall optimized output is required to have better availability 

with seemingly affordable cost. This process of distribution of VMs is described in two cases.  
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Case – 1: 

This case covers the condition of having the least of one VM running in each level to 

make the system to work.  

 

Case – 2: 

In this case, each level has a corresponding minimum number of VMs running to make 

the system to work. This case can be considered the parent case and case – 1 is the extension with 

minimum number of VMs for each level being unity. 

 

3.2.2 Difference in Steady-State Availability between cases 

As discussed above, the optimization has two different cases. Although a cumulative 

model has been obtained both cases have their identity of their own. A detailed classification of 

each case is described below: 

 

Case – 1: 

Consider a simple system that works when there is at least one replica from the available 

multiple layers of tasks running and each layer can run only one type of VM. The optimization 

model would be as follows: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

ℂ = ∑(𝐶𝑗 ∗ 𝑋𝑗)                                    

𝑗

                                     (3.2) 

   

𝑠. 𝑡.  

∏ (1 − (�̅�𝑗
𝑋𝑗)) ≥ 𝑆𝑆𝐴𝑟𝑒𝑞 

𝑗

                                                         (3.3) 

 

where, Cj(j∈N) is the cost of VM of type j and Xj(j∈N) is the number of VM of type j 

provided for the system to work by the cloud provider. Āj(j∈N) depicts the unavailability of the 

VM with type j. 

The model is then run through the solver to obtain the number of VMs of each type to be 

dispatched by the cloud provider to get optimized steady-state availability for the entire system.  

This model can be further extended to fit real-time scenarios using different type of VMs, 

each with different system availability, response time and cost of item etc. The following 

describes the optimization model for the system with a single working replica using any type of 

VMs.  

minimize 

ℂ = ∑ ∑ (𝐶𝑗 ∗ 𝑋(𝑖,𝑗))

𝑁

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

𝑀

𝑖=1

                                                  (3.4) 

s.t. 
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inequality 1: 

∏ (1 − ∏ (�̅�𝑗
𝑋(𝑖,𝑗))

𝑁

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

)

𝑀

𝑖

≥ 𝑆𝑆𝐴𝑟𝑒𝑞                                            (3.5) 

inequality 2: 

∑ 𝑋𝑗 ≥ 1                                                                   (3.6)

𝑀

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

 

The system generates outputs that give different number of VMs for each tier and type 

required to provide a system with optimized availability and cost. 

 

Case – 2: 

This system discusses the concept of multiple working replicas. Working on a system that 

can only use a single replica working from a cluster is easy, but it also has a loss of resources. In 

this case, k number of replicas can be used or at least k replicas have to be working to make the 

system to complete the given task. The main advantage of this system is, it helps reduce 

processing time in case of large systems. The following is the optimized model for a k-out-of-n 

system. 

minimize 

ℂ = ∑ ∑ (𝐶𝑗 ∗ 𝑋(𝑖,𝑗))

𝑁

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

𝑀

𝑖=1

                                                                (3.7) 

s.t. 
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inequality 1: 

∏ ( ∑ ∏ (
𝑋(𝑖,𝑗)

𝑥𝑗
) 𝐴𝑗

𝑥𝑗�̅�𝑗
𝑋(𝑖,𝑗)−𝑥𝑗

𝑁

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

𝑋(𝑖,𝑗)

𝑥𝑗=0

)

𝑀

𝑖=1

≥ 𝑆𝑆𝐴𝑟𝑒𝑞                                   (3.8) 

 s.t,  

∑ 𝑥𝑗 ≥ 𝑘𝑖

𝑁

𝑗=1

                                                                                     (3.9) 

inequality 2: 

∑ 𝑋(𝑖,𝑗) ≥

𝑁

𝑗=𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖

𝑘𝑖, ∀𝑖                                                            (3.10) 

Equations (3.8) and (3.9) shows the probability that at least 𝑘𝑖 replicas have to be 

working for server 𝑖. 𝑥𝑗 represents the number of working VMs of type 𝑗 allocated for 

server 𝑖. The VM instances allocated to server 𝑖 should be 𝑚𝑖𝑛𝑇𝑦𝑝𝑒𝑖 or higher.  

Equation (3.10) helps the system make sure that the total number of VMs of type 

𝑗 allocated to server 𝑖 should always be greater or equal to 𝑘𝑖 . 
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Chapter 4 

ANALYISIS AND RESULTS 

 

4.1 Problem Analysis 

All the files are added to the database and the code is run through AMPL solver. Once the files 

are added to the database solver is opened and AMPL is selected by typing “ampl” in the command line. 

Then a new line with “ampl:” is opened where all the ampl codes can be run. The code is run by using 

include command.  

After running the code, the solver takes a while to compare all the values that can be used to solve 

the problem and produces an optimized solution for the system. Different conditions are applied for the 

type of VMs to be used by adding necessary inequality conditions.  These conditions are compared and 

graphical results are produced. 
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Case – 1: 

As case – 1 discusses about using at least 1 VM working in all the tasks, different conditions are 

set using only 1 type of VM at a time. To set a particular type to be used, the other type inequalities are 

used. For example, if the client wants only type 1 VMs to be used, the inequalities 6, 7, 9, 10, 12, 13 are 

removed from the comments and used in the code. This states that all the 3 tiers would be using type 1 

VMs for solving the problem at hand as the other 2 types are set to zero. This method can be applied to 

any combination and even all the types can be used however the system decides the best optimized 

solution and allocates it to the system.  

 

Case – 2: 

This case focuses on a system with at least k number of VMs running in order to make the system 

work. The same logic used in case -1 is used and different inequalities are set. But the major difference in 

both cases is, in case-2 the condition of number of VMs can be changed to any number from 1 to 

maximum number of VMs that can be made available. 

 

4.2 Results 

All the different conditions are compared with respect to each other. All results are recorded and 

a comparison histogram is created. Both case-1 and case-2 are evaluated for different conditions that are 

discussed in section-2.  
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4.2.1 Impact of using minimum type VMs on optimal solution and cost 

In this paper, three tiers were used and each tier can use any of the three types of VMs 

that are allocated for the task. To denote what VMs are used for a particular solution, we use 

minType and fixType. Since we have considered 3 tiers, minType is represented as (minType1, 

minType2, minType3) and fixType is represented as (fixType1, fixType2, fixType3), where ***Type1 

denotes tier-1, ***Type2 denotes tier-2 and ***Type3 denotes tier-3. For example, (minType1, 

minType2, minType3) = (1, 2, 3) (or simply denoted as minType(1, 2, 3)) denotes that tier 1 can 

use VMs from type 1 to maximum type available (i.e., type 3), tier 2 can use type 2 and type 3 

VMs, and tier 3 can use type 3 VMs to run the task. (fixType1, fixType2, fixType3) = (1, 2, 3) 

(simply denoted as fixType(1, 2, 3)) implies that tier 1 can use only type 1, tier 2 can use only 

type 2 and tier 3 can use only type 3 to run the given task. 

In this thesis, we consider 10 different combinations for (minType1, minType2, minType3): 

(1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 2, 3), (1, 1, 2), (1, 2, 2), (1, 1, 3), (1, 3, 3), (2, 2, 3), and (2, 3, 3). 

All these combinations are run and their optimal solutions are recorded for both cases 1 and 2 for 

a fixed steady-state availability of 0.99999.  
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Case-1: In this case, application is available if at least one working copy of each of the three 

servers is available (i.e. k1 = k2 = k3 = 1). 

 

, 1minType(

, 2minType

)3minType 

Number and type 

of VMs allocated 

to Web server. 

[n1, type1, n1, type2, n1, 

type3] 

Number and type 

of VMs allocated 

to Web server. 

[n2, type1, n2, type2, n2, 

type3] 

Number and type 

of VMs allocated 

to Web server. 

[n3, type1, n3, type2, n3, 

type3] 

Total Cost ℂ (in 

dollars) 

(1, 1, 1) [0, 1, 1] [1, 0, 1] [0, 1, 1] 804.46 

(2, 2, 2) [0, 1, 1] [0, 1, 1] [0, 1, 1] 808.11 

(3, 3, 3) [0, 0, 2] [0, 0, 2] [0, 0, 2] 871.62 

(1, 2, 3) [1, 0, 1] [0, 1, 1] [0, 0, 2] 825.63 

(1, 1, 2) [1, 0, 1] [0, 1, 1] [0, 1, 1] 804.46 

(1, 2, 2) [1, 0, 1] [0, 1, 1] [0, 1, 1] 804.46 

(1, 1, 3) [0, 1, 1] [1, 0, 1] [0, 0, 2] 825.63 

(1, 3, 3) [1, 0, 1] [0, 0, 2] [0, 0, 2] 846.8 

(2, 2, 3) [0, 1, 1] [0, 1, 1] [0, 0, 2] 829.28 

(2, 3, 3) [0, 1, 1] [0, 0, 2] [0, 0, 2] 850.45 

Table 1. minType allocation of VMs to the servers and total cost (where k1=k2=k3=1)  

with SSAreq = 0.99999 

 

From the above table, it is observed that for different combinations of (minType1, 

minType2, minType3), the allocation of VMs is different. For the combination of (3, 3, 3) the 

overall cost is maximum (in this case $871. 62) and the overall minimum cost is 804.46. 
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Case – 2: In this case, the application is available if at least ki copies are working for server i (i.e. 

k1 = k2 = k3 = 2). 

 

, 1minType(

, 2minType

)3minType 

Number and type 

of VMs allocated 

to Web server. 

[n1, type1, n1, type2, n1, 

type3] 

Number and type 

of VMs allocated 

to Web server.  

[n2, type1, n2, type2, n2, 

type3] 

Number and type 

of VMs allocated 

to Web server.  

[n3, type1, n3, type2, n3, 

type3] 

Total Cost ℂ (in 

dollars) 

(1, 1, 1) [0, 0, 3] [0, 0, 3] [0, 1, 2] 1286.26 

(2, 2, 2) [0, 0, 3] [0, 0, 3] [0, 1, 2] 1286.26 

(3, 3, 3) [0, 0, 3] [0, 0, 3] [0, 0, 3] 1307.43 

(1, 2, 3) [0, 0, 3] [0, 1, 2] [0, 0, 3] 1286.26 

(1, 1, 2) [0, 0, 3] [0, 1, 2] [0, 0, 3] 1286.26 

(1, 2, 2) [0, 0, 3] [0, 1, 2] [0, 0, 3] 1286.26 

(1, 1, 3) [0, 1, 2] [0, 0, 3] [0, 0, 3] 1286.26 

(1, 3, 3) [0, 1, 2] [0, 0, 3] [0, 0, 3] 1286.26 

(2, 2, 3) [0, 1, 2] [0, 0, 3] [0, 0, 3] 1286.26 

(2, 3, 3) [0, 1, 2] [0, 0, 3] [0, 0, 3] 1286.26 

Table 2. minType allocation of VMs to the servers and total cost( where k1 = k2 = k3 = 2) 

with SSAreq = 0.99999 
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From the table 3, similar to case - 1 maximum cost occurs in the combination (3, 3, 3). 

However, in all the other cases due to a high availability condition, there exists only a fixed 

combination for all the other combinations and the total cost recorded is similar.  

 

4.2.2 Single type of VM instances vs. Different type of VM instances 

As stated before, minType and fixType are used to find out the number of VMs required 

to be allocated to obtain the optimized cost. The results are formulated for fixType using the same 

above stated combinations and the optimal solutions are recorded for both case-1 and case-2. The 

steady-state availability remains fixed at 0.99999. 

 

Case-1: The application is said to be available if at least one working copy of each of the three 

servers is available (i.e. k1 = k2 = k3 = 1). 

 

 1Typefix(

, 2Typefix

)3Typefix 

Number and type of 

VMs allocated to 

Web server. 

[n1, type1, n1, type2, n1, 

type3] 

Number and type 

of VMs allocated 

to Web server.  

[n2, type1, n2, type2, 

n2, type3] 

Number and type 

of VMs allocated 

to Web server.  

[n3, type1, n3, type2, n3, 

type3] 

Total Cost ℂ (in 

dollars) 

(1, 1, 1) [3, 0, 0] [3, 0, 0] [3, 0, 0] 1084.05 

(2, 2, 2) [0, 3, 0] [0, 3, 0] [0, 3, 0] 1116.9 

(3, 3, 3) [0, 0, 2] [0, 0, 2] [0, 0, 2] 871.62 

(1, 2, 3) [3, 0, 0] [3, 0, 0] [0, 0, 2] 1024.19 
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(1, 1, 2) [3, 0, 0] [3, 0, 0] [0, 3, 0] 1095 

(1, 2, 2) [3, 0, 0] [0, 3, 0] [0, 3, 0] 1105.95 

(1, 1, 3) [3, 0, 0] [3, 0, 0] [0, 0, 2] 1013.24 

(1, 3, 3) [3, 0, 0] [0, 2, 0] [0, 0, 2] 942.43 

(2, 2, 3) [0, 3, 0] [0, 3, 0] [0, 0, 2] 1035.14 

(2, 3, 3) [0, 3, 0] [0, 0, 2] [0, 0, 2] 953.38 

Table 3. fixType allocation of VMs to the servers and total cost (where k1=k2=k3=1) with 

SSAreq = 0.99999 

 

 The cheapest combination in this case occurs at (3, 3, 3) with the cost being $871.62 and 

the combination with highest cost is at (2, 2, 2) with a cost of 1116.9.  

 

Case – 2: In this case, the application is available if at least ki copies are working for server i (i.e. 

k1 = k2 = k3 = 2). 

 

, 1Typefix(

, 2Typefix

)3Typefix 

Number and type of 

VMs allocated to 

Web server. 

[n1, type1, n1, type2, n1, 

type3] 

Number and type 

of VMs allocated 

to Web server.  

[n2, type1, n2, type2, 

n2, type3] 

Number and type 

of VMs allocated 

to Web server.  

[n3, type1, n3, type2, n3, 

type3] 

Total Cost ℂ (in 

dollars) 

(1, 1, 1) [0, 0, 0] [0, 0, 0] [0, 0, 0] - 

(2, 2, 2) [0, 4, 0] [0, 4, 0] [0, 4, 0] 1489.2 

(3, 3, 3) [0, 0, 3] [0, 0, 3] [0, 0, 3] 1307.43 
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(1, 2, 3) [4, 0, 0] [0, 4, 0] [0, 0, 3] 1414.01 

(1, 1, 2) [4, 0, 0] [4, 0, 0] [0, 4, 0] 1460 

(1, 2, 2) [4, 0, 0] [0, 4, 0] [0, 4, 0] 1474.6 

(1, 1, 3) [4, 0, 0] [4, 0, 0] [0, 0, 3] 1399.41 

(1, 3, 3) [4, 0, 0] [0, 0, 3] [0, 0, 3] 1353.42 

(2, 2, 3) [0, 4, 0] [0, 4, 0] [0, 0, 3] 1428.61 

(2, 3, 3) [0, 4, 0] [0, 0, 3] [0, 0, 3] 1368.02 

Table 4. fixType allocation of VMs to the servers and total cost( where k1 = k2 = k3 = 2)  

with SSAreq = 0.99999 

 

In case-2, the costliest model is at (2, 2, 2) with $1489.2 and the cheapest is at (3, 3, 3) 

which is $1307.43. At (1, 1, 1) however, there is no possible allocation that would satisfy the 

optimization model and hence the condition does not produce any results.  

 A comparison is made between both strategies (minType and fixType) for both the cases 

based on the outputs noted in tables 1 to 4. A fixed combination (type(1, 2, 3) (which represents 

the configuration (1, 2, 3))) is taken to study the difference between the both strategies clearly. 

Table 5 and table 6 show the difference in both strategies for case – 1 and case – 2 respectively 

and the number of VMs dispatched to run the task. 
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Strategy Number and type of 

VMs allocated to 

Web server. 

[n1, type1, n1, type2, n1, 

type3] 

Number and type 

of VMs allocated 

to App server.  

[n2, type1, n2, type2, 

n2, type3] 

Number and type 

of VMs allocated 

to DB server. 

[n3, type1, n3, type2, n3, 

type3] 

Total cost ℂ (in 

dollars) 

minType [1, 0, 1] [0, 1, 1] [0, 0, 2] 825.63 

fixType [3, 0, 0] [3, 0, 0] [0, 0, 2] 1024.19 

Table 5. A Comparison of minType(1, 2, 3) and fixType(1, 2, 3) strategies under case-1 

 

Strategy Number and type of 

VMs allocated to 

Web server. 

[n1, type1, n1, type2, n1, 

type3] 

Number and type 

of VMs allocated 

to App server.  

[n2, type1, n2, type2, 

n2, type3] 

Number and type 

of VMs allocated 

to DB server. 

[n3, type1, n3, type2, n3, 

type3] 

Total cost ℂ (in 

dollars) 

minType [0, 0, 3] [0, 1, 2] [0, 0, 3] 1286.26 

fixType [4, 0, 0] [0, 4, 0] [0, 0, 3] 1414.01 

Table 6. A Comparison of minType(1, 2, 3) and fixType(1, 2, 3) strategies under case-2 

   

By observing the above tables, it is observed that when compared to minType and 

fixType the results for minType are cheaper. This cost variance shows that in comparison 

minType offers cheaper VMs for the same steady-state availability. Therefore, minType strategy 

is considered a better pick.  

To further study the effect of availability, both minType and fixType are compared for 

different values of steady- state availability for a fixed combination (type(1, 2, 3)) and results are 
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noted. Table – 7 and table – 8 note the values of case – 1 and case – 2 respectively for a minType 

combination. Table – 9 and table – 10 show the values of case – 1 and case – 2 respectively for a 

fixType combination. 

 

SSAreq Number and type of 

VMs allocated to 

Web server. 

[n1, type1, n1, type2, n1, 

type3] 

Number and type 

of VMs allocated 

to App server.  

[n2, type1, n2, type2, 

n2, type3] 

Number and type 

of VMs allocated 

to DB server. 

[n3, type1, n3, type2, n3, 

type3] 

Total cost ℂ (in 

dollars) 

0.99999 [1, 0, 1] [0, 1, 1] [0, 0, 2] 825.63 

0.9999 [1, 1, 0] [0, 2, 0] [0, 0, 2] 783.29 

0.999 [0, 0, 2] [0, 0, 1] [0, 0, 1] 581.08 

0.995 [0, 0, 1] [0, 0, 1] [0, 0, 1] 435.81 

0.9 [1, 0, 0] [1, 0, 0] [0, 0, 1] 389.82 

0.8 [1, 0, 0] [0, 1, 0] [0, 0, 1] 389.82 

0.7 [1, 0, 0] [0, 1, 0] [0, 0, 1] 389.82 

Table 7. Total cost and VMs allocated for different SSAreqs through case-1 based on minType 
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SSAreq Number and type of 

VMs allocated to 

Web server. 

[n1, type1, n1, type2, n1, 

type3] 

Number and type 

of VMs allocated 

to App server.  

[n2, type1, n2, type2, 

n2, type3] 

Number and type 

of VMs allocated 

to DB server. 

[n3, type1, n3, type2, n3, 

type3] 

Total cost ℂ (in 

dollars) 

0.99999 [0, 0, 3] [0, 1, 2] [0, 0, 3] 1286.26 

0.9999 [1, 0, 2] [0, 3, 0] [0, 0, 3] 1219.1 

0.999 [3, 0, 0] [0, 3, 0] [0, 0, 3] 1169.46 

0.995 [0, 0, 2] [0, 0, 2] [0, 0, 2] 871.62 

0.9 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64 

0.8 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64 

0.7 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64 

Table 8. Total cost and VMs allocated for different SSAreqs through case-2 based on minType 

 

SSAreq Number and type of 

VMs allocated to 

Web server. 

[n1, type1, n1, type2, n1, 

type3] 

Number and type 

of VMs allocated 

to App server.  

[n2, type1, n2, type2, 

n2, type3] 

Number and type 

of VMs allocated 

to DB server. 

[n3, type1, n3, type2, n3, 

type3] 

Total cost ℂ (in 

dollars) 

0.99999 [3, 0, 0] [3, 0, 0] [0, 0, 2] 1024.19 

0.9999 [3, 0, 0] [0, 2, 0] [0, 0, 2] 900.09 

0.999 [2, 0, 0] [0, 2, 0] [0, 0, 1] 634.37 

0.995 [2, 0, 0] [0, 2, 0] [0, 0, 1] 634.37 

0.9 [1, 0, 0] [1, 0, 0] [0, 0, 1] 389.82 
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0.8 [1, 0, 0] [0, 1, 0] [0, 0, 1] 389.82 

0.7 [1, 0, 0] [0, 1, 0] [0, 0, 1] 389.82 

Table 9. Total cost and VMs allocated for different SSAreqs through case-1 based on fixType 

 

SSAreq Number and type of 

VMs allocated to 

Web server. 

[n1, type1, n1, type2, n1, 

type3] 

Number and type 

of VMs allocated 

to App server.  

[n2, type1, n2, type2, 

n2, type3] 

Number and type 

of VMs allocated 

to DB server. 

[n3, type1, n3, type2, n3, 

type3] 

Total cost ℂ (in 

dollars) 

0.99999 [4, 0, 0] [0, 4, 0] [0, 0, 3] 1414.01 

0.9999 [4, 0, 0] [0, 3, 0] [0, 0, 3] 1289.91 

0.999 [3, 0, 0] [0, 3, 0] [0, 0, 3] 1169.46 

0.995 [0, 0, 2] [0, 0, 2] [0, 0, 2] 871.62 

0.9 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64 

0.8 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64 

0.7 [2, 0, 0] [0, 2, 0] [0, 0, 2] 779.64 

Table 10. Total cost and VMs allocated for different SSAreqs through case-2 based on fixType 

 

At any instant (say when using type(1, 2, 3) configuration), it is observed that using a 

fixed type of VM may reduce using multiple resources (VMs) to only a single type of VM but the 

overall cost is increased. However, allowing the use of different types of VMs provides similar 

results for a lesser cost. This shows that using different types of VMs is better compared to a 

fixed type.  
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There is another variable which changes the output of the system, which is steady-state 

availability. Having a higher SSA results in making the system more effective but what changes 

does it make to the final output are studied from the below table for a fixed type (type(1, 2, 3)). 

Using these values, a histogram can be developed to show the effect of minType and 

fixType on both the cases (case – 1 and case – 2) 

Figure 6 shows the effect of SSA on optimized cost for case – 1 and figure 7 shows the 

effect of SSA on optimized cost for case – 2. 

 

 

Figure 6. Effect of SSAreq on cost in minType and fixType under case – 1 
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Figure 7. Effect of SSAreq on cost in minType and fixType under case - 2 

 

4.2.3 Selection of VMs best suited for the application 

In a general situation, the ASPs incline on buying the cheapest VM for running the 

application. But is it the best option? Does it really justify the money spent on buying the 

cheapest VM? Are the ASPs saving any money by doing this? All these questions are unravelled 

in this section. In this section, three conditions are considered: the first one is to go for only 

cheapest VMs, the second is to pick the most expensive VMs, and the third is to allow a mixture 

of all available VMs to run the application. 

 

Condition – 1:  It is considered that all the servers must only run by using type 1 VM instances, 

since type 1 VMs are the cheapest among the three VMs considered. This refers to the 

combination (fixType1, fixType2, fixType3) = (1, 1, 1) (also represented as fixType(1, 1, 1)). 
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This case is implemented by adding the following constraints to the optimization problem 

given by (3), (4) and (5): 

ni,j = 0,∀𝑖,𝑗 where 𝑗 ≠ 1  

i.e. for server i, set ni,j = 0 for j = 2, 3. 

 

Condition – 2:  In this condition, all the servers must run only on type 3 VM instances. Among 

the three types, type 3 VM instances are the most expensive ones. This refers to the combination 

(fixType1, fixType2, fixType3) = (3, 3, 3) (or fixType(3, 3, 3)). 

This case is implemented by adding the following constraints to the optimization problem 

given by (3), (4) and (5): 

ni,j = 0,∀𝑖,𝑗 where 𝑗 ≠ 3  

i.e. for server i, set ni,j = 0 for j = 1, 2. 

 

Condition – 3:  This condition uses a mixture of all three VM instances to run the application i.e., 

in this condition, the Web server can run on VMs of type 1 or higher, App server can run on VMs 

of type 1 or higher and DB server can also run on VMs of type 1 or higher. This refers to the 

combination (minType1, minType2, minType3) = (1, 1, 1) (or minType(1, 1, 1)). 

All these 3 conditions are compared to obtain optimized cost for a fixed availability 

requirement, SSAreq = 0.99999. 

 

 



47 
 

For Case – 1: 

Table 11 shows the optimal cost and VM allocation for conditions 1, 2 and 3 for a fixed 

SSA requirement of 0.99999.  

 

Condition Number and 

type of VMs 

allocated to 

Web server. 

[n1, type1, n1, type2, 

n1, type3] 

Number and 

type of VMs 

allocated to App 

server.  

[n2, type1, n2, type2, 

n2, type3] 

Number and 

type of VMs 

allocated to DB 

server. 

[n3, type1, n3, type2, 

n3, type3] 

Total cost ℂ (in 

dollars) 

fixType(1, 1, 1) [3, 0, 0] [3, 0, 0] [3, 0, 0] 1084.05 

fixType(3, 3, 3) [0, 0, 2] [0, 0, 2] [0, 0, 2] 871.62 

minType(1, 1, 1) [0, 1, 1] [1, 0, 1] [0, 1, 1] 804.46 

Table 11 Comparison of conditions 1, 2, 3 under case – 1 

 

From Table 11, it is observed that Condition 1 allocates the highest number of VMs when 

compared to conditions 2 & 3. Condition 1, which uses the cheapest VMs allocates 9 VMs and as 

a result has the highest cost. When considering both condition 2 & condition 3, they each allocate 

6 VMs. From the 3 conditions, condition 3 offers the best optimized output with comparatively 

low cost and less number of VMs. It is also observed that even the condition with allocating 

highest number of VMs is offered at lower cost than the condition that allocates the cheaper VMs. 
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The above discussed conditions are further tested for the effect of steady state availability 

on the system and VM allocation. They are tested for different SSAreq values and a histogram is 

developed to display the outcomes of all the three conditions.  

Figure 8. Cost comparison between conditions for different SSAreq values in case – 1 

 

 Figure 8 shows that if the application’s availability requirement is 0.95 or less, only one 

VM is allocated for each server. For Condition – 1 and Condition – 3, the allocation is quite 

similar for all the servers, which is one type 1 VM with a minimum cost of $361.35. Also when 
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For Case – 2: 

In this case, the application is available if at least ki copies are working for server i. We 

assume k1 = k2 = k3 = 2. Table 12 shows the optimal VM allocation and cost for all the three 

conditions. The results shown are for a fixed steady – state availability of 0.99999. 

 

Condition Number and 

type of VMs 

allocated to 

Web server. 

[n1, type1, n1, type2, 

n1, type3] 

Number and 

type of VMs 

allocated to App 

server. 

[n2, type1, n2, type2, 

n2, type3] 

Number and 

type of VMs 

allocated to DB 

server. 

[n3, type1, n3, type2, 

n3, type3] 

Total cost ℂ (in 

dollars) 

fixType(1, 1, 1) [0, 0, 0] [0, 0, 0] [0, 0, 0] -NA- 

fixType(3, 3, 3) [0, 0, 3] [0, 0, 3] [0, 0, 3] 1307.43 

minType(1, 1, 1) [0, 0, 3] [0, 0, 3] [0, 1, 2] 1286.26 

Table 12 Comparison of conditions 1, 2, 3 under case – 2 

 

Table 12 shows the VM allocation and cost for all the conditions where SSA = 0.99999. 

It is observed from Table – 12 that for condition – 1 there is no possible allocation to satisfy the 

optimal problem. It is also observed that, condition – 2 & condition - 3 allocate 9 VMs and 

condition – 2 has the highest cost. Similar to case – 1, it is better to buy a mixed set of VMs rather 

than buying the cheapest VMs. The problem being, allocating cheapest VMs reduces the system 

availability and in result requires more VMs to run the application. In this case, both the working 

conditions condition – 2 & condition – 3 allocates 9 VMs but in condition – 2, all the 9 VMs are 

of type 3. In condition – 3 however, 8 VMs are of type – 3 and 1 VM is of type – 2. 
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Similar to case – 1, the above conditions are further tested with different values of SSAreq 

to study the effect of availability on VM allocation and cost. A histogram is developed to 

compare the three conditions. 

 

 

 

 

 

 

 

 

 

Figure 9. Cost comparison between conditions for different SSA values in case - 2 
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application is not a best decision. To get an optimal VM allocation with minimized system cost, it 

is always preferred to consider a combination of all available VMs. 

 

4.3 Framework 

This section shows the layout of running the code discussed in chapter 3. The entire code is 

written in AMPL and is divided into 3 different levels. They are: mod file, data file and run file. 

The code for these 3 files can be written in notepad and saved as a respective file type by adding 

an extension. The solution model to be solved is entered into the mod file. Once the model is entered into 

a text file, the file is saved with a .mod extension and saved in the database. Similarly, the necessary data 

required for the model to run is saved in the data file with a .dat extension. The order of running the code 

and output structure is presented in the run file. This is created by using the .script.run extension [11, 21, 

23, 37].  

All these files together create the final framework of the code. Once the files are created, the 

solver is run to generate output. In the solver, ampl is entered to specify the type of language being used. 

To open or run a file the command used is include file_name. file_name is the name of the file that is 

being used to solve the code. For example, consider a code example1 having 3 different files 

example1.mod, example1.dat and example1.script.run. The main layout of the code is presented in 

example1.script.run and this is considered to be the run file. So, different commands entered in the solver 

are as follows: 

sw: ampl 

ampl: include example1.script.run 

This command opens the run file and all the commands in the file are run. The final output is 

displayed after the solver finds an optimal output.   
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Chapter 5 

CONCLUSION AND FUTURE WORK 

5.1 Summary 

The main task of an ASP is to provide the required number of VMs depending on the workload so 

that the application runs smoothly without any drop in QoS. They have to determine the number of VMs 

required for each type to run the copies of each server.  

 In this thesis, a three - tiered cloud system has been proposed with each tier having multiple 

copies of servers. Each tier is assumed to have one or more VMs, each running a single instance of server 

relevant to the tier. Another assumption made is that the workload is equally distributed among the 

servers at any given tier. 

The user’s request is first sent to a web server for processing and the request is processed exactly 

once at each tier. After the processing is done at the third tier, the response is returned to the user. Some 

other assumptions made are that the software servers do not fail, the application’s availability depends on 
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the availability of the VMs and the minimum number of copies needed for each server and the minimum 

computing power of VM instances are specified as input.  

An optimization approach is developed which helps the ASPs in making decisions on some 

important questions faced related to VM acquisition. The model proposed is non-linear in nature and uses 

ILOGCP solver developed by IBM to solve the problem. This approach benefits the ASPs in answering 

questions such as, will it more cost-effective to run the server copies on a fixed type of VMs or on 

different types of VM instances? Will it be more cost-effective to buy cheapest VMs or a combination of 

VMs?  

 

5.2 Conclusion 

Through this thesis, it can be decided that when it comes to selecting between the cheapest VMs 

and combination of different types of VMs, it is always best to go with a combination of VMs because 

although the cost is reduced by selecting the cheapest VMs, the total system availability is greatly 

affected and to produce the given availability SLA the application has to allocate additional VMs. In case 

of selecting if it is best to run the servers on a fixed type of VMs or different types of VMs, it is observed 

that running on different types of VMs provides a similar result for a cheaper cost when compared to a 

fixed type.  

 

5.3 Future Works 

 The future works might include eliminating some of the assumptions. The following are some of 

the proposed future works: 
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i. The proposed model can be further developed to produce a heuristic method that is much 

efficient compared to the discussed optimal solution. 

ii. In this thesis, the usage of VMs has been limited to a specific set for each tier which can 

be explored and can be made to choose freely across different tiers. This might further 

reduce the number of VMs needed to run the application leading to a cheaper system.  

iii. Addition of other QoS attributes such as system response time is also recommended to 

improve the user’s experience. 
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Appendix 

Case – 1: 

mod file: 

set TIER; 

set VM; 

 

param cost {VM} > 0; 

param unavail {VM} > 0; 

 

var Buy{TIER,VM} integer >= 0, <= 10; 

 

minimize Total_Cost: sum {j in VM} ( cost[j] * (sum {i in TIER} Buy[i,j]) ); 

 

subject to inequality1: 

prod {i in TIER} (1- (prod{j in VM} (unavail[j])^ Buy[i,j] )) >= 0.999; 

 

subject to inequality2: 

#sum {j in VM} Buy[i,j] >= 1; 

Buy["TIER1","TYPE1"] + Buy["TIER1","TYPE2"] + Buy["TIER1","TYPE3"] >= 1; 

subject to inequality3: 

Buy["TIER2","TYPE1"] + Buy["TIER2","TYPE2"] + Buy["TIER2","TYPE3"] >= 1; 

subject to inequality4: 

Buy["TIER3","TYPE1"] + Buy["TIER3","TYPE2"] + Buy["TIER3","TYPE3"] >= 1; 
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/* 

subject to inequality5: 

Buy["TIER1","TYPE1"] = 0; 

*/ 

subject to inequality6: 

Buy["TIER1","TYPE2"] = 0; 

 

subject to inequality7: 

Buy["TIER1","TYPE3"] = 0; 

 

 

subject to inequality8: 

Buy["TIER2","TYPE1"] = 0; 

/* 

subject to inequality9: 

Buy["TIER2","TYPE2"] = 0; 

*/ 

subject to inequality10: 

Buy["TIER2","TYPE3"] = 0; 

 

 

subject to inequality11: 

Buy["TIER3","TYPE1"] = 0; 

 

subject to inequality12: 
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Buy["TIER3","TYPE2"] = 0; 

/* 

subject to inequality13: 

Buy["TIER3","TYPE3"] = 0; 

*/ 

 

dat file: 

data; 

 

set TIER := TIER1 TIER2 TIER3 ; 

set VM := TYPE1 TYPE2 TYPE3 ; 

 

param: cost unavail := 

TYPE1 120.45 0.01 

TYPE2 124.10 0.005 

TYPE3 145.27 0.0005; 

 

run file: 

reset; 

model Case1.mod; 

data  Case1.dat; 

option solver ilogcp; 

let Buy["TIER1","TYPE2"] := 0; 

let Buy["TIER1","TYPE3"] := 0; 

solve; 
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display Buy; 

display Total_Cost; 

 

 

 

Case – 2: 

mod file: 

 

set TIER; 

set VM; 

 

param cost {VM} > 0; 

param unavail {VM} > 0; 

 

var Buy{TIER,VM} integer >= 0, <= 4;  

 

minimize Total_Cost: sum {j in VM} ( cost[j] * (sum {i in TIER} Buy[i,j]) ); 

 

subject to inequality1: exists {k in 0..4} k = Buy["TIER1","TYPE1"] &&  

                        exists {l in 0..4} l = Buy["TIER1","TYPE2"] && 

   exists {m in 0..4} m = Buy["TIER1","TYPE3"] && 

   exists {a in 0..4} a = Buy["TIER2","TYPE1"] &&  

                        exists {b in 0..4} b = Buy["TIER2","TYPE2"] && 

   exists {c in 0..4} c = Buy["TIER2","TYPE3"] && 
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   exists {d in 0..4} d = Buy["TIER3","TYPE1"] &&  

                        exists {e in 0..4} e = Buy["TIER3","TYPE2"] && 

   exists {f in 0..4} f = Buy["TIER3","TYPE3"] && 

   ( sum {x in 0..k, y in 0..l, z in 0..m: x+y+z>=2}  

          ((prod {p in 0..k} if p = 0 then 1 else p)/((prod {p in 0..(k-x)} if p = 0 then 1 else 

p)*(prod {p in 0..x} if p = 0 then 1 else p)) * (1-unavail["TYPE1"])^x * unavail["TYPE1"]^(k-x)) * 

   ((prod {q in 0..l} if q = 0 then 1 else q)/((prod {q in 0..(l-y)} if q = 0 then 1 

else q)*(prod {q in 0..y} if q = 0 then 1 else q)) * (1-unavail["TYPE2"])^y * unavail["TYPE2"]^(l-y)) 

* 

   ((prod {r in 0..m} if r = 0 then 1 else r)/((prod {r in 0..(m-z)} if r = 0 then 1 

else r)*(prod {r in 0..z} if r = 0 then 1 else r)) * (1-unavail["TYPE3"])^z * unavail["TYPE3"]^(m-z)) ) 

* 

   ( sum {x in 0..a, y in 0..b, z in 0..c: x+y+z>=2}  

          ((prod {p in 0..a} if p = 0 then 1 else p)/((prod {p in 0..(a-x)} if p = 0 then 1 else 

p)*(prod {p in 0..x} if p = 0 then 1 else p)) * (1-unavail["TYPE1"])^x * unavail["TYPE1"]^(a-x)) * 

   ((prod {q in 0..b} if q = 0 then 1 else q)/((prod {q in 0..(b-y)} if q = 0 then 1 

else q)*(prod {q in 0..y} if q = 0 then 1 else q)) * (1-unavail["TYPE2"])^y * unavail["TYPE2"]^(b-y)) 

* 

   ((prod {r in 0..c} if r = 0 then 1 else r)/((prod {r in 0..(c-z)} if r = 0 then 1 else 

r)*(prod {r in 0..z} if r = 0 then 1 else r)) * (1-unavail["TYPE3"])^z * unavail["TYPE3"]^(c-z)) ) * 

   ( sum {x in 0..d, y in 0..e, z in 0..f: x+y+z>=2}  

          ((prod {p in 0..d} if p = 0 then 1 else p)/((prod {p in 0..(d-x)} if p = 0 then 1 else 

p)*(prod {p in 0..x} if p = 0 then 1 else p)) * (1-unavail["TYPE1"])^x * unavail["TYPE1"]^(d-x)) * 

   ((prod {q in 0..e} if q = 0 then 1 else q)/((prod {q in 0..(e-y)} if q = 0 then 1 

else q)*(prod {q in 0..y} if q = 0 then 1 else q)) * (1-unavail["TYPE2"])^y * unavail["TYPE2"]^(e-y)) 
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* 

   ((prod {r in 0..f} if r = 0 then 1 else r)/((prod {r in 0..(f-z)} if r = 0 then 1 else 

r)*(prod {r in 0..z} if r = 0 then 1 else r)) * (1-unavail["TYPE3"])^z * unavail["TYPE3"]^(f-z)) ) >= 

0.9999; 

   

 

subject to inequality2: 

Buy["TIER1","TYPE1"] + Buy["TIER1","TYPE2"] + Buy["TIER1","TYPE3"] >= 2; 

subject to inequality3: 

Buy["TIER2","TYPE1"] + Buy["TIER2","TYPE2"] + Buy["TIER2","TYPE3"] >= 2; 

subject to inequality4: 

Buy["TIER3","TYPE1"] + Buy["TIER3","TYPE2"] + Buy["TIER3","TYPE3"] >= 2; 

 

/* 

subject to inequality5: 

Buy["TIER1","TYPE1"] = 0; 

*/ 

subject to inequality6: 

Buy["TIER1","TYPE2"] = 0; 

 

subject to inequality7: 

Buy["TIER1","TYPE3"] = 0; 

 

 

subject to inequality8: 



61 
 

Buy["TIER2","TYPE1"] = 0; 

/* 

subject to inequality9: 

Buy["TIER2","TYPE2"] = 0; 

*/ 

subject to inequality10: 

Buy["TIER2","TYPE3"] = 0; 

 

 

subject to inequality11: 

Buy["TIER3","TYPE1"] = 0; 

 

subject to inequality12: 

Buy["TIER3","TYPE2"] = 0; 

/* 

subject to inequality13: 

Buy["TIER3","TYPE3"] = 0; 

*/ 

 

dat file: 

data; 

 

set TIER := TIER1 TIER2 TIER3 ; 

set VM := TYPE1 TYPE2 TYPE3 ; 
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param: cost unavail := 

TYPE1 120.45 0.01 

TYPE2 124.10 0.005 

TYPE3 145.27 0.0005; 

 

run file: 

reset; 

model Case2.mod; 

data  Case2.dat; 

option solver ilogcp; 

solve; 

display Buy; 

display Total_Cost; 
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