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Abstract

Surface Roughness Estimation for FDM Systems

Master of Applied Science of Mechanical Engineering

Ryerson University, Toronto, 2011

Behnam Nourghassemi

By selecting the optimal build angle, the surface roughness of rapid prototyped

parts can be minimized. The objective of this study is to develop a model for esti-

mation of surface roughness as a function of build angle and other build parameters

for parts built by Fusion Deposition Modeling (FDM) machines. For that purpose,

principles of the FDM technique, along with other rapid prototyping techniques, are

reviewed and various standards for surface roughness measurements are introduced.

Different analytical models for the estimation of surface roughness for FDM systems,

which were proposed in the literature, are reviewed and reformulated in a standard

format for comparison reasons. A new hybrid model is proposed for analytical esti-

mation of the surface roughness based on experimental results and comparison of the

models. In addition, Least Square Support Vector Machine (LS-SVM) is applied for

an empirical estimation of the surface roughness. Robustness of the LS-SVM model

is studied and its performance is compared to the hybrid model. The experimental

results confirm better results for the LS-SVM model.
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Chapter 1

Introduction

The objective of this study is to develop a model for estimation of surface roughness

for parts built with Fusion Deposition Modeling (FDM) machines. FDM is one of

the rapid prototyping techniques. In the following, rapid prototyping techniques

are classified and their applications reviewed. In addition, CAD file preparation

methods for standard rapid prototyping files (stereolithography STL files) are in-

troduced. Moreover, different standards for surface roughness calculation and also

various models for surface roughness estimation of the FDM parts are reviewed.

1.1 History of Rapid Prototyping

Unlike subtractive or forming processes such as lathing, milling, grinding or coining

etc., in which form is shaped by material removal or plastic deformation [1], Rapid

Prototyping and Layered Manufacturing (RPLM), also known as Solid Freeform

Fabrication, represents a class of additive manufacturing processes in which objects

are constructed layer by layer, usually in terms of a sequence of parallel planner

laminae. RP started during early 1980s [1] with the enormous growth in Computer

Aided Design and Manufacturing (CAD/CAM) technologies. Historical develop-

ment of rapid prototyping and related technologies [1] is presented in Figure 1.1.
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Figure 1.1: Historical development of rapid prototyping and related technologies [1].

1.2 Application of Rapid Prototyping

RPLM was originally used for rapid prototyping to help the designer to verify part

geometry [2]. Poor surface finish, limited strength and accuracy are some of the

major limitations of RP systems. Finishing operations such as grinding, polishing

or NC machining [2, 3, 4, 5] are proposed to improve surface finish. With recent

advances and improvements, RPLM is also used to make production tooling, in-

cluding molds for casting and electrodes for electro discharge machining (EDM) and

manufacturing of one-off and small batch production parts [2]. Moreover, due to the

potential capability of RP technologies to reduce the required time from conception

design to market by 10 − 50 percent [1], their fields of application are increasing

rapidly. Some of the fields of application of RP technologies are shown in Figure

1.2. A typical part build by Fused Deposition Modeling method is shown in Figure

1.3.
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Figure 1.2: Typical application fields of RP technologies [1].

Figure 1.3: Picture of upper shell body of the telephone made by Fused Deposition
Modeling method [6].

1.3 Classification of Rapid Prototyping Technologies

Rapid prototyping technologies could be classified from different prospectives. For

instance, certain RPLM processes [2] require support structures to support overhang

or internal void structures or when the part has no underlying layer to build it on.

In the following a short introduction to various rapid prototyping technologies [1, 7,

2, 9, 10, 11] is presented.
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1.3.1 Photopolymer Solidification

In Photopolymer Solidification process, such as stereolithography (SL) or solid

ground curing (SGC), photosensitive liquid resin is used as a fundamental con-

cept [2]. Photosensitive liquid resin can be hardened and form a solid polymer

under exposure of the ultraviolet light or laser. StereoLithography machine [1] con-

sists of a build platform (substrate), which is mounted in a vat of resin and a UV

Helium-Cadmium or Argon ion laser. The laser scans the substrate and generates

the first layer. Platform is then lowered one slice thickness and left for short time

(dip-delay) so that liquid polymer settles to a flat and even surface and inhibits

bubbles forming. The new slice is then scanned. Schematic of Stereolithography

system is depicted in Figure 1.4.

Figure 1.4: Stereolithography machine [1].

1.3.2 Powder Solidification

Powder solidification processes, such as selective laser sintering or 3D printing (3DP),

use a similar concept as the previous technique. In this process, powdered material

layers are solidified by adding a binder or by sintering with a laser. In Selective Laser

Sintering (SLS) process, fine polymeric powder such as polystyrene, polycarbonate

or polyamide etc. with 20 to 100 micrometer diameter is spread on the substrate us-
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ing a roller. The temperature of the entire bed is raised just below its melting point

by infrared heating in order to minimize thermal distortion (curling) and facilitate

fusion to the previous layer. Then CO2 laser scans the layer for the sintering of a

slice. Once laser scanning cures a slice, bed is lowered and powder feed chamber is

raised so that a covering of powder can be spread evenly over the build area. In this

process support structures are not required [1] as the un-sintered powder remains

as a support structure. Schematic of SLS system is depicted in Figure 1.5.

Figure 1.5: Selective Laser Sintering system [1].

1.3.3 Material Deposition

In material deposition processes, layers are constructed by deposition of drops of

molten plastic or wax. An example of this process is Fused Deposition Modeling

(FDM) process, in which a thread of build material, such as ABS, is guided through

a nozzle. A heater attached to the tip of the nozzle, heats up the build material

slightly above (approximately 0.5◦C [1]) its melting temperature. The nozzle is

adjusted slightly above the desired thickness of the layer on top of the substrate

and can move and deposit the molten build material along a desired path on the

substrate. After deposition of the first layer, the nozzle height above the substrate

is increased by the thickness of the layer and deposition of the second layer starts.
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The molten drops solidifies within a very short time (approximately 0.1s [1]) after

extrusion and cold-welds to the previous layers. Slice thickness is affected by vari-

ous factors such as material extrusion rates and speed of the nozzle head. In this

method, the addition of support structures for overhanging features is necessary.

Schematic of FDM system is depicted in Figure 1.6.

Figure 1.6: Fused Deposition Modeling system [1, 9].

A modified version of polymer extrusion process, namely the Extruder Deposi-

tion Process (EDP), is also proposed by Reddy et. al. [12] and reported to overcome

with many of the shortcomings of the previous systems by manufacturing compo-

nents with higher bond strength.

1.3.4 Lamination

In Laminated Object Manufacturing (LOM) system a 25 − 50 watt CO2 laser

beam [1] is used to cut slices from roll of material in desired contour. A new slice

is bonded to previously deposited slice by heat sensitive adhesive which activated

using a hot roller. In this process, materials that are relatively cheaper like paper,

cardboard, foil, ceramic or plastic roll can be used. The building speed is 5 − 10

6



times [1] as compared to other RP processes. The limitations of the process [1]

include fabrication of hollow models with undercuts and reentrant features. In addi-

tion, drops of the molten materials formed during cutting or bonding process should

be removed and there is also the danger of fire hazards.

Features of various rapid prototyping processes are demonstrated in Table 1.1.

Table 1.1: Features of rapid prototyping processes [10].
SL SGC FDM SLS 3DP LOM

Supports Yes No Yes No No No
required
Material Epoxy, Resin ABS, Nylon, Ceramic, Paper,
used Acrylic MABS, Metals, Metal, Plastic,

resin Wax, Wax, Ceramic
Elasto- Poly-
mers carbonate

Layer 50 100− 50− 76 177 76−
thickness 200 762 203
(µm)
x− y 200− 100 254 NA 508 203−
resolution 250 254
(µm)
Accuracy ±100 ±500 ±127 ±51 ±127 ±127
(µm)
Scan NA NA 380 0.001− 0.007 508
speed 0.008
(mm s−1)
Maximum 500× 500× 254× 330× 355× 813×
part 500× 350× 254× 380× 457× 559×
dimensions 584 500 254 425 355 508
(mm3)

1.4 Process Planning for Rapid Prototyping and
Layered Manufacturing

Basic planning for rapid prototyping and layered manufacturing (RPLM) [2, 13]

consists of creation of geometric model using a solid modeler, determination of suit-
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able object orientation during the build process, support structure design, part slic-

ing, path planning within each slice, packing of the artifacts into the workspace,

part manufacturing and finally post processing operations as required.

The most basic input to a RPLM system is the description of the shape of the

object to be manufactured. In computer aided design (CAD) [2], usually only sur-

face models are used to generate input for RPLM. However, Pratt et. al. [2] have

predicted that material information, which are not available in current RPLM data

formats, will be needed in future for a variety of purposes such as building multi-

color parts.

In order to transfer shape information form CAD to RPLM systems, several

types of shape representation methods [2] have been developed. In the polygonal

or faceted method (also called tessellation), the object boundary is represented by

a mesh of polygonal facets. The concept of tessellation of the surface of a spherical

shape by triangular facets is shown in Figure 1.7.

Figure 1.7: Tessellation of the surface of a spherical shape [9].

If all the facets of a tessellated shape are triangular, the model is consistent with

the STL format. The STL format, which is a faceted approximation of the initial
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CAD surface [14], was developed specially for the stereolithography processes [2].

In STL format, each triangular surface is expressed by four data items including

the three vertices coordinates aj , bj , cj and the normal vector ~p, while the whole

model is a collection of these vectors, as depicted in Figure 1.7. The area of the ith

triangular facet [6], Ai, calculated from Equation (1.1).

Ai =
1

2

(∣∣∣ a2 − a1 b2 − b1

a3 − a1 b3 − b1

∣∣∣+
∣∣∣ b2 − b1 c2 − c1

b3 − b1 c3 − c1

∣∣∣+
∣∣∣ c2 − c1 a2 − a1

c3 − c1 a3 − a1

∣∣∣) 1
2

(1.1)

In the STL format, the orientation of a shape represents its rotation about a refer-

ence axis by angle γ . The reference axis described by unit vector (nx, ny, nz) as

shown in Figure 1.8.

Figure 1.8: Rotation of tessellated CAD model [13].

The STL file corresponding to the rotated part [13] is calculated using the trans-

formation matrix given by Equation (1.2).

M =


n2xvγ + cγ nxnyvγ − nzsγ nxnzvγ + nysγ

nxnyvγ n2yvγ + cγ nynzvγ − sγ

nxnzvγ nynzvγ + nzsγ n2zvγ + cγ

 (1.2)
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where vγ = 1− cos γ , cγ = cos γ and sγ = sinγ.

STL file format is conceptually simple and easy to generate but they have dis-

advantages [2] of file size, numerical accuracy and errors that mostly arise from lim-

itations of triangulation. This can lead to insufficient slicing algorithms. Another

disadvantage of STL format [2] is that it does not carry information on tolerance,

surface finish and the build material.

Tessellated CAD model has become a standard for RP technologies [15]. In all

RP processes, the solid model of a component to be manufactured is created in a

CAD environment and is sliced before transferring the data to the RP machine [15].

The space between any two consecutive horizontal planes is referred to as a slice. In

part slicing, the input is usually the 3D object model and the output is a set of 2D

slice contours. Support regions for any orientation can be found by calculating the

shadows it casts on the slicing planes [2]. After generation of sliced model, the path

planning of each slice should be devised. The path planning output is a geomet-

ric representation of the generated paths. Criteria for path planning may include

minimization of build time and/or requirements on part stiffness and strength. Mi-

crostructure in most LM objects results from filament-wise accretion of material [2].

The bonding of adjacent strands is affected by the degree of hardening that has

occurred in the first strand by the time its neighbor is laid down. This is governed

by the speed of deposition and the area fill strategy used which will determine the

time difference between the deposition of adjacent filaments at any given adjacent

point. Bonding strengths between filaments will affect overall part strength [2]. In

some processes, molten or un-solidified material shrinks as it hardens on top of a

previously solidified layer. This generates residual stresses and consequent distortion

of the part [2]. A suitable choice of tool paths can minimize this effect.
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1.5 Accuracy of RPLM Systems

Poor surface finish is one of the major limitations for the RPLM processes which is

mainly influenced by tessellation of the original CAD model and slicing during the

manufacturing process. These factors will be discussed in this section.

1.5.1 Errors due to Tessellation of the Original CAD Model

As discussed in Section 1.4, any RPLM process starts with the 3D modeling of the

part and then the STL file is exported by tessellating the geometric 3D model. In

tessellation, various surfaces of a CAD model are approximated piecewise by series of

triangles. The maximum deviation between an original surface of a CAD model and

corresponding triangle in the tessellated model is referred as ”chordal error” [15],

which is demonstrated graphically in Figure 1.9.

Figure 1.9: Chordal error as the result of tessellation of a typical surface of CAD
model [1, 9].

The resolution of STL file is controlled by chordal error or facet deviation. In

other words, by reducing the size of the triangles, the deviation between the actual

surfaces and approximated triangles can be reduced. A more detailed discussion

about the choice of tessellation resolution and consequent chordal error is presented
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by Williams et. al. [16].

1.5.2 Errors due to Slicing of Tessellated CAD Model

Any RPLM process is characterized by ”build volume” [2], which determines

the largest single artifact that can be fabricated at one time. As mentioned in the

section 1.4, slicing of tessellated CAD model of any build volume is necessary for

part manufacturing in RPLM process planing. In certain circumstances, the slice

edges may be inside in certain portion of a tessellated CAD model and outside in

the other portion as shown in Figure 1.10 c and d. This phenomenon is called

”containment problem” [15] which leads to distortion of the original CAD model of

the designed shape.

Figure 1.10: Containment problem in RP parts [15].
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In addition to containment problem, deposition of sliced layers leads to another

problem called ”staircase” or ”stair-stepping” effect [15] which is shown in Figure

1.11.

Figure 1.11: Staircase effect in RP part [17].

In most of the commercial RP processes, the part is fabricated by deposition of

layers contoured in a (x-y) plane in two dimensions. The third dimension (z) results

from single layers being stacked up on top of each other, but not as a continuous

z-coordinate. Therefore, the prototypes are very exact on the x-y plane but have

stair-stepping effect in the z-direction [1]. Staircase effect is one of the major prob-

lems of RP processes, which results in a layer thickness that will have a significant

effect on the final surface roughness. Although reducing layer thickness improves

surface roughness, it increases the build time. Post processing surface treatments

also adds to the build time and leads to a degradation [7] of the geometrical defini-

tion of the model. Due the effect of stair stepping as the result of stacking layers,

geometrical gap occurs between the original CAD model and the fabricated LM part.

This error varies according to the surface angle [18].
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1.6 Surface Roughness

In section 1.5, poor surface roughness was introduced as the main limitation of the

RPLM processes. Characterization of surface topography is important in applica-

tions involving friction, lubrication, and wear [19]. The concept of roughness, which

is often described [19] with terms such as uneven, irregular, coarse texture or broken

by prominence, has statistical implications as it considers factors such as sample size

and sampling interval.

In rapid prototyping field, the surface measurement of the waviness is known

as the surface roughness. Surface roughness can be characterized [19] in two prin-

cipal planes. Using a sinusoidal curve as a simplified model of the surface profile,

roughness can be measured at right angles to the surface in terms of the wave am-

plitude and parallel to the surface in terms of the surface wavelength, which is also

recognized as texture. Roughness measurement limitations depends [19] on the mea-

surement instrument’s vertical and horizontal resolutions which correspond to the

smallest amplitude and wavelength that the instrument can detect. Similarly, the

largest amplitude and wavelength that can be measured by the instrument are the

vertical and horizontal ranges.

Many industrial countries have their own national roughness standards [19]. Pro-

file hight, Pt, was among the early parameters used for roughness measurement

(DIN 4771). The designation of this parameter was subsequently changed to ”peak-

to-valley height”, Rt, when electrical filters were incorporated. Rt defined as the

separation of the highest peak and lowest valley (DIN4762/1) as depicted in Fig-

ure 1.12. This parameter was further divided into Ru, namely, ”depth of surface

smoothness” and Rm, namely, leveling depth.

In the USA, MIL-STD-10 (1949), ”root-mean-square roughness” (RMS rough-
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Figure 1.12: Graphical description of Rt, Ru, and Rm [19].

ness) is a widely used standard which is indicated by Rq and defined [19] by Equation

(1.3).

Rq =

√
1

l

∫ l

0
z2(x)dx, (1.3)

where, l, z and x are the evaluation length, height and the distance along measure-

ment, respectively.

The ”arithmetic-mean-surface roughness”, Ra, is also defined [20] by Equation

(1.4).

Ra =
1

l

∫ l

0
|z(x)− zc|dx (1.4)

where z(x) is the value of the roughness profile, l is the evaluation length, and zc is

the position of the center line. Although Ra is not a standard method for expressing

surface roughness, however, it is typically used for rapid prototyping.

The distribution of heights p(z), is shown in Figure 1.13. The parameters used to

characterize such distributions are the central moments, defined by Equation (1.5).

µn =

∫ +∞

−∞
znp(z)dz (1.5)
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Figure 1.13: Profile height distribution p(z) [19].

The second moment µ2 is known as the variance and represents the deviation of

the distribution from its mean. Taking the square root of the variance results in the

standard deviation σ, which is numerically identical to the RMS roughness defined

by Equation (1.3). The third moment µ3 known as the skewness and is a measure

of the asymmetry of the distribution. Finally, the fourth moment µ4 is known as

the kurtosis and represents the shape of the distribution curve [19].

In addition to amplitude parameters, there are other parameters that are used

to characterize texture. One of them is high-spot count (HSC) [19], which is the

number of peaks per unit length. Its reciprocal, Sm, is the mean spacing between

peaks [19]. Another parameter used to evaluate texture is the profile length ratio

RL [19], which is the length of the profile divided by its nominal length. Other

parameters found in the literature have not received popular acceptance [19].

1.7 Surface Roughness Estimation Models for FDM
System

Any attempt to improve the quality of RPLM products requires a model for

prediction of the end surface roughness. For a given layer thickness, t, the surface
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roughness is dictated largely by the angle that each surface normal makes with the

vertical direction [1]. Once part deposition orientation is decided and slice thickness

is selected, the tessellated model is sliced and data are generated [1].

The average part surface roughness, which indicates the surface quality, can be

calculated [13] by Equation (1.6),

Raav =

∑
RaiAi∑
Ai

, (1.6)

where Raav is average surface roughness of the part, Rai is the roughness and Ai

is the area of the ith triangular facet in the STL file. Ai can be calculated from

equation 1.1.

By experimental measurement of surface roughness values for supported faces,

Pandey et. al. [15] observed that for the same build orientation, the surface rough-

ness of supported faces are approximately 1.2 times of upward facing surfaces. Based

on this observation, they proposed [21] that for a supported facet, surface roughness

can be calculated by Equation (1.7),

Rai(1 + w), (1.7)

where Rai is the surface roughness corresponding to ith trapezium if there is no

support below it and w is taken as 0.2 based on an experimentally measured surface

roughness for the supported area [22].

Since the main focus of this research is on the surface roughness of Fused De-

position Modeling system (FDM), in following literature on the surface roughness

estimation is reviewed. For the sake of consistency, some of the original symbols and

formulae in the literature are modified. The general model parameters are depicted
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in Figure 1.14.

Figure 1.14: Surface roughness estimation model parameters. θ is the build orienta-
tion (build angle), t the layer thickness and θN the angle between vertical axis and
normal to surface axis [15].

1.7.1 Cusp Height Model by Dolenc et. al. 1994 [23]

Cusp height tolerance concept was introduced by Dolenc et. al. [23] and used as

interpretation of surface roughness. As demonstrated in Figure 1.15, the maximum

distance from the manufactured part surface perpendicular to the CAD model sur-

face is known as the cusp height, C. This depends on the angle θN and the layer

thickness, t. Thicker layers and/or high values of cos θN will produce larger values

for cusp height [14] and consequently a more inaccurate surface will be resulted.

Cusp height for a 2D plane can be calculated [14] by Equation (1.8),

C =


1000t|cos θN |, if |cos θN | 6= 1;

0, if |cos θN | = 1,

(1.8)

where C is the cusp height in micron as depicted in Figure 1.15, t the layer thickness

in mm and θN = 90− θ in which θ is the build angle in degree as depicted in Figure

1.14.
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Figure 1.15: Cusp height [15, 14].

However, a 3D part consists of multiple facets in different directions and each

may have different cusp height. Hence, facet area, Ai is used [14] as a relative

weighting function, which gives a weighted cusp height for each facet as given by

Equation (1.9),

Cw = C.Ai, (1.9)

in which Cw is the weighted cusp height, C cusp height and Ai area of the ith facet.

1.7.2 Roughness Model by Campbell et. al. 2002 [7]

A mathematical model for prediction of the arithmetic average surface roughness

applicable for various RP processes is introduced by Campbell et. al. [7] and given

by Equation (1.10),

Ra = 1000t sin
(90− θ

4

)
tan (90− θ), (1.10)

in which Ra is the arithmetic-mean-surface roughness in micron, t is the layer thick-

ness in mm, and θ is the build angle in degree, as depicted in Figure 1.14. This model

was tested [7] for small number of angles, none of which were downward facing. The

evaluation of this model for different RP methods including stereolithography, jet-

ting process, fused deposition modeling, lmaination process and selective bonding
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process (3DP) were investigated [7] and it was reported that there is at least range

of angles in which the surface roughness can be reasonably well predicted. For the

FDM process this range was reported [7] between 45◦ and 180◦. It was also observed

that most surfaces in FDM display much lower surface roughness than the calcula-

tion using Equation 1.10. This phenomenon was interpreted as a sort of smoothing

mechanism for FDM process. Campbell et. al. [7] also presented a colored map

which gives the idea of surface finish at different locations of the part.

1.7.3 Roughness Model by Pandey et. al. 2003 [15, 22]

One of the highly cited and most accepted models for surface roughness esti-

mation for FDM system [15, 3, 13, 6, 24] is developed by Pandey et. al. [15, 22].

Pandey et. al. [15] realized that layer thickness and build orientation are the two

most significant process variables that affect surface finish. According to their empir-

ical observation [15], the edge profiles of a layer manufactured part by FDM system

is parabolic. No gap was observed between roads for the case in which the build

angle reside in the range between 0◦ and 70◦ as shown in Figure 1.16a. They also

concluded [15] the radius of curvature effect on surface roughness can be thought of

independent as it varies within 5 percent over a wide range of curvature values.

Based on these observations, Pandey et. al. [22] proposed a semi-empirical model

by approximating the layer edge profile by a parabola with the base length t
cos θ and

height as 30− 35% of the base length as shown in Figure 1.17.

Using the center line average method for surface roughness evaluation, the Ra

value [22] was given by Equation (1.11).

Ra = 1000
A1 +A2 +A3

t
cos θ

(1.11)

which results in
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Figure 1.16: Edge profiles of FDM part surface; a) θ = 45◦, t = 0.254mm; b)
θ = 70◦, t = 0.254mm [15, 13].

Figure 1.17: Approximation of the layer edge by a parabola [22].

69.28
t

cos θ
≤ Ra(µm) ≤ 72.36

t

cos θ
for 0◦ ≤ θ ≤ 70◦, (1.12)

in which θ is the build angle in degree and t is the thickness of the deposited layer

in mm as shown in Figure 1.14.

However, they observed [13] that there is a gap between deposited roads if the
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build orientation is in between 70◦ and 90◦ as shown in Figure 1.16b. Hence, for this

range, surface roughness [13] was calculated by assuming linear variation between

Ra70◦ and Ra90◦ which is given by Equation (1.13).

Ra(µm) =
1

20

(
90Ra70◦ − 70Ra90◦ + θ

(
Ra90◦ −Ra70◦

))
for 70◦ ≤ θ < 90◦ (1.13)

For the case of horizontal surface, namely θ = 90◦, instead of parabola, surface

profile was idealized [13] by semicircle with base length t and height 0.5× t. There-

fore, surface roughness for this case is given [13] by Equation (1.14).

Ra(µm) = 112.6× t(mm) for θ = 90◦ (1.14)

Surface roughness for the case of θ = 90◦ was also given by Pandey et. al. [21]

with slightly different expression as in Equation (1.15).

Ra(µm) = 117.6× t(mm) for θ = 90◦ (1.15)

Application of support structures are required for build orientation in the range

between 90◦ and 180◦, namely the downward facing surfaces. Therefore, it can be

concluded that the surface roughness for this range can be calculated from Equation

(1.7) which was proposed by Pandey et. al. [21]. Hence, the model for estimation

of surface roughness for FDM systems based on the work of this research group can

be summarized by Equation (1.16).

Ra =



(69.28 ∼ 72.36) t
cos θ , if 0◦ ≤ θ ≤ 70◦;

1
20

(
90Ra70◦ − 70Ra90◦ + θ

(
Ra90◦ −Ra70◦

))
, if 70◦ < θ < 90◦;

117.6× t, if θ = 90◦;

Ra(θ−90)
(1 + w), if 90◦ < θ ≤ 180◦,

(1.16)
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in which Ra is the arithmetic-mean-surface roughness in micron, t is the layer thick-

ness in mm, θ is the build angle in degree, Ra(θ−90)
is the equivalent for the roughness

of the build angle (θ− 90)◦ and w is a dimensionless adjustment parameter for sup-

ported facets and chosen to be 0.2 for FDM system.

Pandey et. al. [22] also implemented standard statistical software (STATIS-

TICA) to find regression equations for hot cutter machined FDM which is given by

Equations (1.17) and (1.18).

Ra0 = 2.0 + 0.425x1 + 0.625x2 + 0.275x3 + 0.05x1x2 + 0.05x1x3 (1.17)

+ 0.1x2x3 + 0.375x4

Ra90 = 2.525 + 0.275x1 + 0.275x2 + 0.425x3 − 0.275x1x2

+ 0.125x1x3 − 0.175x2x3 − 0.675x4

with

x1 = vc−22.5
7.5 ; (1.18)

x2 = θ−27.5
17.5 ;

x3 = α−50
10 ;

x4 = β−45
45 ,

in which vc is the cutting speed in (mm/min), θ the build orientation in degree,

α the rake angle of hot cutter in degree and β the cutter movement direction with

respect to the layers.

Pandey et. al. [22] observed that application of these formulae for hot cutter

machined FDM part gives more than 99% correlation with the experimental date

and provides more than 97% confidence level for surface roughness prediction in the
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direction of HCM .

1.7.4 Roughness Model by Mason 2006 [5]

Mason [5] presented a model for prediction of the arithmetic-mean-surface rough-

ness which is given by Equation (1.19).

Ra =
1000t

2
cos (90− θ), (1.19)

in which, Ra is the arithmetic-mean-surface roughness in micron, t layer thickness

in mm and θN is the normal build angle in degree which is equals to 90◦ − θ.

Since for the range of 0◦ ≤ θ ≤ 180◦, |cos θN | = cos θN , therefore, it could be

concluded that the roughness in Mason model is indeed half of the Cusp height

presented by the equation (1.8). In other words, Ra = C
2 . This fact is also depicted

graphically in Figure 1.18.

Figure 1.18: Arithmetic-mean-surface roughness for Mason model.
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1.7.5 Roughness Model by Byun et. al. 2006 [20]

Byun et. al. [20] used fillet radius, R1, and corner radius, R2, as shown in Figure

1.19b, for profile roughness estimation of the surfaces made by layered manufacturing

processes. The profile roughness Ra as a function of f(t, θ, R1, R2) was given by

Equation (1.20).

Ra =



0, if θ = 0, π
2 , π;

1000t
4 cos (90− θ)− (R2

1+R
2
2)(1−

π
4
) sin (90−θ)

1000t

+

(
(R2

1−R2
2)(1−

π
4
)
)2

(1000t)3
tan (90− θ) sin (90− θ), otherwise,

(1.20)

where Ra is arithmetic-mean surface roughness in micron, t the constant layer thick-

ness for a facet in mm, θ the build angle in degree, R1 the radius of fillet in mm

and R2 the radius of the corner in mm. In Figure 1.19b, θN = 90− θ as compared

to Figure 1.14.

For SLA process, both of the fillet radius R1 and corner radius R2 were set to

0.015mm, all facets within 25◦ of a horizontal plane were considered as the overhang

area and the roughness of a support, Rc, was given as 0.25mm. For FDM process,

R1 and R2 were set to 0.045mm and 0.01mm respectively and the maximum over-

hang angle was set to 30◦. Finally, for SLS process, R1 and R2 were set to 0.02mm.

Ramax was also given as 15µm.

They proposed [20] the variable layer thickness can be calculated by specifying

the maximum allowable surface roughness, Ramax , in Equation 1.20 and can be cho-

sen from min(tmax,max(t, tmin)) in which tmax and tmin are the maximum and

minimum allowable thickness for the machine.
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Figure 1.19: a) Ideal manufactured surface with sharp edges; b) realistic manufac-
turing surface with round edges; R1 is the radius of fillet and R2 is the radius of the
corner and θN = 90− θ [20].

1.7.6 Roughness Model by Ahn et. al. 2008 [18]

A theoretical model for arithmetic-mean-surface roughness Ra was presented by Ahn

et. al. [18] and given by Equation (1.21).

Ra =
A

W
=

1000t

2

∣∣∣cos ((90− θ)− φ)

cosφ

∣∣∣, 0◦ < θ < 180◦ (1.21)

in which t denotes the layer thickness in mm, θ the build angle in degree, φ the

surface profile angle in degree, A the step area and W the step width as depicted in

Figure 1.20. In this figure, once again θN = 90◦ − θ as compared to Figure 1.14.
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Figure 1.20: Surface angles in Ahn et. al. roughness model [18].

They realized [18] that when the applied layer thickness is in the range of 0.025−

0.1mm, the profiles angle is 5◦ ≤ φ ≤ 15◦. For instance when layer thickness is

0.1mm, the profiles angles is 5◦. However, the actual distribution of the surface

roughness is different from that of the theoretical surface roughness. This is due

to various factors such as stair stepping effect, support removal burrs, material

properties and process attributes. Therefore, the actual average surface roughness

can be calculated by Equation (1.22).

Ractual = Rstep +Rburr +Rmaterial +Rprocess, (1.22)

in which Rstep represents portion of the actual roughness due to stair stepping

effect (calculated surface roughness value), Rburr due to support removal burrs in

supported area, Rmaterial due to different build material properties and Rprocess due

to build process attributes.

Based on this observation, Ahn et. al. [18] proposed the following distribution

expression for average surface roughness.

R(θ) = R(θp) +
R(θn)−R(θp)

θn − θp
(θ − θp), (1.23)

in which, R(θp) and R(θn) are the measured roughness values at the previous and

next surface angle θp and θn respectively. This idea is demonstrated in Figure 1.21.
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In this way, the accuracy of the calculated roughness values depends on the number

of the sample measured surface roughnesses.

Figure 1.21: Computing surface roughness value by interpolation of the measured
sample data [18].

1.8 Application of Surface Roughness Estimation Mod-
els for Optimization of Rapid Prototyping Process

Surface finish and part deposition time are two important contradicting quanti-

ties in rapid prototyping processes. However, surface finish cannot be enhanced up

to a level [22] and hence, a compromise should be made between the two aspects

pertaining to model building. A compromise between these two contradicting issues

can be achieved by using an adaptive slicing scheme. Moreover, selection of a proper

part deposition orientation will further provide an improved solution.

A review on the slicing procedures in layered manufacturing is provided by

Pandey et. al. [15]. Accurate exterior and fast interior approach is proposed by

Sabourin et. al. [25] in which, adaptive slicing is used for precise exterior building,
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while the interior is built with thick and wide material application. In different

adaptive slicing procedures, slice thickness is decided [15] based on the geometry

of tessellated CAD model for a user specified maximum allowable cusp height or

surface roughness value Ra.

The surface roughness is greatly affected by the build and deposition orientation.

As demonstrated by Figure 1.22, the surface roughness is minimized in the regions

in which the build direction is horizontal (p1) or vertical (p4) to the build part surface.

Figure 1.22: Variation of the surface roughness in different slopes of the build surface
tangent [14].

RP build orientation optimization algorithms and strategies have been devel-

oped by several researchers. An approach based on volumetric error is attempted

by Rattanawong et. al. [26, 27], in which the difference in the volume of deposited

part and the CAD model is minimized for finding a suitable orientation.

Thrimurthulu et. al. [13] derived a single objective optimization problem for

the part deposition orientation determination as a function of the surface average

roughness and build time. In this approach, they applied Pandey’s roughness model

presented by Equations (1.12), (1.14) and (1.13).
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Li et. al. [6] also proposed an optimization model for surface roughness based

on Pandey’s surface estimation model presented by Equation 1.12. The same model

also used along with a model for build time evaluation of RP process by Padhye

et. al. [24] to form a multi-objective problem solving approach based on evolu-

tionary algorithms in order to simultaneously minimizing arithmetic-mean-surface

roughness Ra and build time T . For that purpose, they employed and integrated

multi-objective genetic algorithm NSGA-II and Multi-objective particle Swarm Op-

timization (MOPSO), with SQP (Sequential Quadratic Programming) based inter-

mittent local search for optimization purposes.

Pandey et. al. [3] realized that the part surface quality can be improved up to a

level of precision in rapid prototyping manufacturing systems and there is a need to

make modifications in this systems so that prototypes with better surface finish can

be produced without incurring high production costs. For that purpose, hot cutter

machining with numerically controlled x − y traversing mechanism is proposed to

machine the build edges (staircase) of ABS material. Mason [5] and Hur et. al. [4]

also proposed a hybrid-RP system which combines the advantages of a one-setup

process from RP and the high accuracy offered by CNC.
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Chapter 2

Study on Accuracy of Different
Surface Roughness Models

In Section 1.7, different models for estimation of arithmetic-mean surface rough-

ness for FDM system were reviewed. In this chapter, the accuracy of these models

will be studied in detail and an optimized analytical model will be introduced. The

structure of this chapter is as follows: in section 2.1, some experimental results in the

literature are reviewed. In section 2.2, several sample parts are designed and built

by a FDM machine and their surface roughness is measured with a laser scanner.

These results are used in section 2.3 for the evaluation of the accuracy of different

models and finally, an optimized analytical model is proposed to estimate the surface

roughness of FDM systems.

2.1 Review of Surface Roughness of FDM System

Pyramid shaped parts with different surface build angles are used by several re-

searchers as test parts for measurement of surface roughness [15, 22, 5]. The angle

between an upward vector tangent to surface with the vertical axis is called the

surface build angle. A pyramid shaped test part is shown in Figure 2.1, in which

surface build angles are respectively 15◦, 30◦, 45◦ and 60◦.

Pandey et. al. [22] reported the surface roughness measurement results for a
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Figure 2.1: Pyramid shaped test part for measurement of surface roughness for
various build angles. Borrowed from [22].

pyramid test part with side angles of 10◦, 15◦, 30◦ and 45◦ and layer thickness of

0.254 mm. The results are given in the third column of Table 2.1.

As shown in Table 1.1, for standard FDM machines, the layer thickness is in the

range between 0.05 mm and 0.762mm. However, Mason [5] developed a customized

FDM machine with the nozzle thickness of 2.0 mm to build test parts which resulted

in very rough surfaces with high surface roughness indexes. These results are given

in the forth column of Table 2.1.

Other researches, such as Campbell et. al. [7] and Ahn et. al. [18], proposed a

more comprehensive test part for evaluation of their models. This test part, which

was introduced and named ”turncheon ” by Campbell et. al. [7], has a geometry

which enables measurement of surface roughness for a range of build angles between

0◦ to 180◦. A sample turncheon test part is shown in Figure 2.2.

Campbell et. al. [7] reported surface roughness measurement results for a turn-

cheon test part built by layer thickness of 0.253 mm and incremental surface build

angle steps of θstep = 2◦. Ahn et. al. [18] reported surface roughness measurement

results for a turncheon test part built by layer thickness of 0.254 mm and incremen-

tal surface build angle steps of θstep = 3◦. These results are presented in the first
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Figure 2.2: Turncheon test part [7, 18].

and second columns of Table 2.1.

2.2 Experimental Test Parts Design and Build

In order to study the performance of different models in estimation of surface rough-

ness for different surface build angles and layer thicknesses, a turncheon [7] test part

with incremental step angle of θstep = 5◦ is chosen and designed in SolidWorks 2010.

The test part is built twice by UP! Personal Portable 3D Printer 1. In printing

process, the layer thickness of one of the test parts is set to t = 0.2mm and the other

test part is built with layer thickness of t = 0.4mm. The surface of the test parts are

scanned by NextEngine 3D Scanner 2 and the surface geometry data are collected.

These data are processed by MATLAB and arithmetic-mean surface roughnesses are

calculated by Equation (1.4). In the following sections, the design and building of

test parts and the measurement of the surface roughness will be explained in more

detail.

1www.PP3DP.com
2https://www.nextengine.com/
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Table 2.1: Reported surface roughness data for different test parts.

Layer Thickness (mm)
0.253 0.254 0.254 2.0

θ (◦) Reported Reported Reported Reported
roughness roughness roughness roughness
data [7]. data [18] . data [22]. data [5].
(µm) (µm) (µm) (µm)

0 28.57 33.47 NA NA

10 24.54 NA 18 NA

15 NA 46.30 19.25 NA

20 30 NA NA NA

30 32.31 49.23 22.1 199.03

40 26.54 NA NA NA

45 NA 29.56 25.2 273.76

50 23.59 NA NA NA

60 22.56 20.65 NA 273.76

70 20 NA NA NA

75 NA 18.58 NA 273.76

80 17.95 NA NA NA

90 17.43 16.73 NA NA

100 17.56 NA NA NA

105 NA 13.47 NA NA

110 17.69 NA NA NA

120 20.77 18.15 NA NA

130 21.15 NA NA NA

135 NA 28.36 NA NA

140 25.51 NA NA NA

150 34.36 49.34 NA NA

160 33.33 NA NA NA

165 NA 32.39 NA NA

170 27.56 NA NA NA

180 20 9.45 NA NA

2.2.1 Test Parts Design in SolidWorks and Parts 3D Printing

As shown in Figure 2.3, the turncheon test part consists of several equivalent and

parallel cuboids, in which the build angle of each cuboid is increasing by a constant

step angle with respect to a reference cuboid. Assuming an upward build direction,

the most left cuboid of turncheon is chosen as the reference cuboid and it is designed

in a way that the front side of the reference cuboid has a surface build angle of 0◦.
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The total number of cuboid in a turncheon depends on the step angle θstep and is

equal to 180◦

θstep
.

With this arrangement, as shown in Figure 2.3, the front side of turncheon part

spans build angles between 0◦ to 90◦ from the most left to the most right hand side;

the top side of turncheon part spans build angles between 0◦ to 90◦ from the most

right to the most left hand side; the bottom side spans build angles between 90◦ to

180◦ from the most left to the most right hand side; finally, the back side spans build

angles between 90◦ to 180◦ from the most right to the most left hand side of the part.

Figure 2.3: Geometry of turncheon part with step angle θstep = 5◦; front, top, back
and bottom view with corresponding surface build angles.

In order to ease laser scanning and process of the data, the dimensions of each

cuboid is chosen 1 × 5 × 5cm. In this arrangement, the width of the surface to

be scanned for surface roughness calculation is 1cm. With the choice of a step

angle θstep = 5◦, the turncheon part in total consists of 36 cuboid to span build

angles between 0◦ to 180◦. Therefore, the overall dimension of the turncheon part
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is 36 × 5 × 5cm. Due to the dimension limitations of the available 3D printer,

namely14 × 14 × 13.5cm build size, the turncheon part had to be divided to three

subparts; T30, T60 and T90; therefore, a reference cuboid is also inserted in the left

most hand side of T60 and T90 subparts.

These subparts were designed and STL files were generated in SolidWorks 2010.

The UP 3D Printer provides a choice for the build layer thickness between 0.2mm

and 0.4 mm with 0.1mm incremental steps. In order to study dependency of surface

roughness on layer thickness, two sets of test parts with layer thicknesses of 0.2mm

and 0.4mm were built. The UP 3D Printer setup options are shown in Figure 2.4

and a picture of the 3D Printer during printing is shown in Figure 2.5.

Figure 2.4: UP 3D Printer software setup.

The ABS material consumption and build time for each of individual subparts

with different layer thicknesses are given in Table 2.2.

In Figure 2.6, the top and side views of the T90 subpart with layer thickness of
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Figure 2.5: Turncheon test part printing by UP 3D Printer.

Table 2.2: ABS material consumption and build time for different subparts with
UP! 3D Printer.

T30 T60 T90

t = 0.2 mm
ABS Consumption (gr) 44.4 45.7 44.1
Build Time (min) 225 240 219

t = 0.4 mm
ABS Consumption (gr) 53.4 54.2 53.2
Build Time (min) 86 89 82

0.2mm is shown.

With this design, the front side of each of the T30, T60 and T90 subparts from

the left to the right hand side spans build angles respectively between 0◦ to 30◦,

35◦ to 60◦ and 65◦ to 90◦. The bottom side of each of these subparts from the left

to the right hand side spans build angles respectively between 90◦ to 120◦, 125◦ to

150◦ and 155◦ to 180◦. The front view of the complete turncheon part with layer

thickness 0.2mm is shown in Figure 2.7. In this figure, T30, T60 and T90 subparts

are placed respectively in the left, middle and right side.
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Figure 2.6: Top and side view of 3D printed T90 subpart.

Figure 2.7: Complete turncheon test parts with t = 0.2 mm; subparts from left to
right are respectively T30, T60 and T90.

2.2.2 Surface Roughness Measurement by Laser Scanner

The geometric coordinates of the surface of the printed test parts are measured

using NextEngine 3D scanner. According to the data sheet, the maximum accuracy

of the NextEngine scanner in macro mode is 127µm with a maximum 16 points

per mm [8]. The scanned data in macro mode are processed in MATLAB and the

geometric coordinates of the surface are linearly interpolated with the sftool in MAT-

LAB. For each build angle, the surface profiles in the build direction are extracted

and the arithmetic-mean surface roughnesses is calculated by Equation (1.4). The

average z profile for different build angles for the turncheon test parts in the build

direction are shown in Figure 2.8. Corresponding surface roughnesses are given in

Figure 2.9. The source codes for the MATLAB M-File for extracting surface profiles
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and calculation of surface roughness is given in Appendix 5.

Figure 2.8: Average z profile for the turncheon test parts with layer thickness t =
0.2mm and t = 0.4mm.

Figure 2.9: Measured surface roughness for the turncheon test parts with layer
thickness t = 0.2mm and t = 0.4mm.
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2.3 Comparison of the Accuracy of Different Models

Different models for the estimation of the surface roughness were introduced in

Section 1.7. These models represent the surface roughness as a function of layer

thickness t and build angle θ. The experimental results presented in sections 2.2

and 2.1 will be used to study the accuracy of different surface roughness models.

In this study, (1.8), (1.10), (1.16), (1.19), (1.20) and (1.21) will be referred to,

respectively, as Cusp, Campbell, Pandey, Mason, Byun and Ahn models. Since the

Mason model restates the Cusp model in the standard format and both models have

similar formulation, only the Mason model will be considered in this study.

2.3.1 Surface Roughness Estimation with Different Models

Figures 2.10 to 2.14 show the performance of Mason, Campbell, Pandey, Byun

and Ahn models for estimation of surface roughness for different build angles for the

turncheon part built with a layer thickness of t = 0.2mm. As seen in Figure 2.10,

the Mason model has a fair estimation of the surface roughness for the turncheon

part built with layer thickness of t = 0.2mm.

As seen in Figure 2.11, the Campbell model overestimates the surface roughness

for the build angles between 0◦ and 30◦ and also 155◦ and 180◦. Moreover, according

to the equation (1.10), the Campbell model is not able to estimate surface roughness

for the build angles of 0◦ and 180◦.

Figure 2.12 shows that for the turncheon part built with layer thickness of

t = 0.2mm, the Pandey model has relatively good estimation of the surface rough-

ness especially for the range of build angles between 155◦ to 180◦. However, the

model underestimates surface roughness especially for the range of build angles be-

tween 90◦ to 150◦.
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Figure 2.10: Estimation of surface roughness by the Mason model for the turncheon
part built with t = 0.2mm.

Figure 2.11: Estimation of surface roughness by the Campbell model for the turn-
cheon part built with t = 0.2mm.

As shown in Figure 2.13, the Byun model also underestimates surface roughness

for most of the build angles. However, the underestimation error is larger at the

range of build angles between 95◦ to 150◦, while for the range of build angles be-

tween 20◦ to 90◦ the estimation error is smaller.
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Figure 2.12: Estimation of surface roughness by the Pandey model for the turncheon
part built with t = 0.2mm.

Figure 2.13: Estimation of surface roughness by the Byun model for the turncheon
part built with t = 0.2mm.

According to the equations (1.21) and (1.19), the Ahn model has a phase shift

of φ relative to the Mason model. Therefore, as seen in Figure 2.14, the Ahn model

provides similar estimation like Mason model with a phase shift of φ = 5◦ as com-

pared to Figure 2.10.

42



Figure 2.14: Estimation of surface roughness by the Ahn model for the turncheon
part built with t = 0.2mm.

2.3.2 Roughness Estimation Error for Different Models

In section 2.3.1, performance of different models for estimation of surface rough-

ness was studied for different build angles for the turncheon part built with layer

thickness of t = 0.2mm. In order to have a better understanding about the estima-

tion performance of different models, all of the experimental results measured for

the turncheon parts built with layer thicknesses t = 0.2mm and t = 0.4mm and also

the reported results for the parts built with the layer thicknesses t = 0.253mm and

t = 0.254mm are also considered. Since Mason only reported surface roughnesses

for four build angles corresponding to four sides of a pyramid shaped part built with

layer thickness t = 2.0mm, as given in fourth column of Table 2.1, these results are

not considered in this study.

The average estimation error for all of the above mentioned parts in equally

incremental range of build angles are given in Table 2.3 and visually compared in
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Figures 2.15 to 2.18. As seen in these Figures, for the range of build angles be-

tween 0 ≤ θ ≤ 135◦, the Pandey model has the best performance, while for the

range of build angles between 135 < θ ≤ 180, the Ahn model had slightly better

performance. Moreover, as seen in Figures 2.15 to 2.18, in the full range of build

angles, the average estimation errors for the Pandey and Byun models are robust as

they varies slightly at each range of build angles. However, for other models, there

is big variation for the average estimation error in different ranges of build angles.

Therefore, other models are not as robust as the Pandey or Byun models.

Table 2.3: Estimation errors in equally incremental ranges of build angles for layer
thicknesses t = 0.2mm, t = 0.253mm, t = 0.254mm and t = 0.4mm.

Surface Roughness Model (µm)
θ (◦) Mason Campbell Pandey Byun Ahn

0 ≤ θ ≤ 45 50.66 1190.1 31.91 64.88 79.16

45 < θ ≤ 90 284.99 63.61 25.41 64.00 296.20

90 < θ ≤ 135 277.34 45.84 37.00 69.07 264.39

135 < θ ≤ 180 31.35 657.22 33.61 79.39 26.34

Figure 2.15: Average estimation errors for different models for the range of build
angles between 0◦ and 45◦.
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Figure 2.16: Average estimation errors for different models for the range of build
angles between 45◦ and 90◦.

Figure 2.17: Average estimation errors for different models for the range of build
angles between 90◦ and 135◦.

2.3.3 Hybrid Model for Surface Roughness Estimation

Based on the observation of the previous section, by comparison of the average

estimation error for different models at each range of build angles, a hybrid model is

proposed for estimation of arithmetic-mean-surface roughness for the FDM systems

which is defined by equation (2.1).
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Figure 2.18: Average estimation errors for different models for the range of build
angles between 135◦ and 180◦.

Ra =



(69.28 ∼ 72.36) t
cos θ , if 0◦ ≤ θ ≤ 70◦;

1
20

(
90Ra70◦ − 70Ra90◦ + θ

(
Ra90◦ −Ra70◦

))
, if 70◦ < θ < 90◦;

117.6× t, if θ = 90◦;

Ra(θ−90)
(1 + w), if 90◦ < θ ≤ 135◦;

1000t
2

∣∣∣ cos ((90−θ)−φ)cosφ

∣∣∣, if 135◦ < θ ≤ 180◦,

(2.1)

where t is the deposition layer thickness in mm, θ the build angle in degree, w

a dimensionless adjustment factor and chosen to be 0.2, and φ a phase shift in the

range of 5◦ ≤ φ ≤ 15◦ depending on the layer thickness and chosen to be 5◦.

The average estimation error for different models in the full build angle range

between 0◦ to 180◦ is also given in Figure 2.19. As seen in this figure, the Campbell

model has the worst estimation error, while the Pandey model has the best perfor-

mance among all the other models. However, the hybrid model further improves

estimation performance of the Pandey model by 3.48%.
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Figure 2.19: Comparison of the average percentage errors for the proposed model
and all other roughness models.
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Chapter 3

Support Vector Machine

In Section 1.7, different models for analytical estimation of surface roughness for

the FDM system were introduced. Their accuracy was studied extensively in Chap-

ter 2. All of these models represent surface roughness as a function of layer thickness

t and build angle θ. However, in some applications it might be desired to study re-

lationships between surface roughness and other manufacturing parameters, such

as build time, nozzle or build platform temperatures, nozzle speed, environmental

vibration and noise, etc. Moreover, the accuracy of FDM machines are different and

hence, the surface roughness of two parts built by different machines with exactly

the same build angles, may have different surface roughnesses. In order to address

these shortcomings, introduction of an intelligent model for prediction of the surface

roughness rather than its analytical calculation is necessary.

Since dependency of surface roughness to parameters, such as the build angle

and layer thickness is nonlinear, Neural Networks have been a good choice to relate

these nonlinear parameters. However, a large data set is required for the training

of the classical Neural Networks. In addition, classical Neural Networks, such as

multi-layer perceptrons (MLP) and radial basis function (RBF) have the possibility

of being trapped in local minimal in training and the risk of over-fitting [28]. Selec-

tion of the number of hidden layers [28] is also another challenge for this method.

Therefore, application of an alternative method should be considered.
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Support vector regression (SVR), which was introduced by Vapnik [29], is a

relatively new type of learning machine based on the structural risk minimization

(SRM) rule [28]. Although SVM was originally developed for the classification tasks,

by introduction of a loss function that includes a distance measure [29], this method

can also be applied for regression problems. In this case, the method called sup-

port vector regression (SVR). In this method, SVR constructs a linear model with

the help of nonlinear kernels, a high capacity for generalization, which maps the

input into a higher dimensional feature space [29]. Therefore, SVM is a kernel based

approach, which allows the use of linear, polynomial and RBF kernels and oth-

ers that satisfy Mercer’s condition [30]. SVR is especially useful for classification

and prediction with small sample sizes [31]. Due to the limited amount of training

samples, it suggests a best trade off between complexity of model and learning abil-

ity to obtain best generalization, that often performs better than ANN methods [28].

In the following, a version of the SVM system, namely Least Square Support

Vector Machine (LS-SVM ) will be introduced. The main advantage of the LS-SVM

is that its training only requires the solution of a set of linear equations instead of

the long and computationally difficult quadratic programming problem involved in

the standard SVM [31].

3.1 LS-SVM for Estimation of Nonlinear Functions

Considering N sets of training data
{
xi, yi

}N
i=1

with n-dimensional input data

vector xi ∈ Rn, representing manufacturing parameters, including but not limited

to layer thickness t and build angle θ, and also scalar measured output data yi ∈ R,

representing the corresponding surface roughness, it is desired to formulate a non-

linear function y = f(x) to relate inputs to the outputs. By selecting squared error

ξi as the loss function, an optimization problem in primal weight space [30] can be
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formulated which is given by Equations (3.1) and (3.2).

minJ(ω, ξ) = min
1

2
ωTω +

1

2
γk

N∑
i=1

ξ2i (3.1)

such that

yi = ωTφ(xi) + b+ ξi, i = 1, ..., N (3.2)

In Equation (3.1), the cost function J consists of an SSE (Sum of Squares Error)

fitting error and a regularization term, which is also a standard procedure for the

training of MLP’s and is related to ridge regression [30]. The relative importance of

these terms is determined by the positive real constant γk, which is used to control

the trade off between the training error and the model complexity [28]. In the case

of noisy data over fitting can be avoided by taking a smaller γk value [30]. However,

smaller values for γk will increase error of the regression model.

In Equation (3.2), φ(.) : Rn → Rnh is a function which maps the input space

into a so-called higher dimensional (possibly infinite dimensional) feature space. By

mapping the original input data onto a high-dimensional space, the nonlinear sep-

arable problem becomes linearly separable in space [31]. In addition, ω ∈ Rnh in

Equation (3.2), is the weight vector in the primal weight space, ξi ∈ R are random

error variables and b is bias term. The objective is now to find the optimal param-

eters ω, b, that minimize the prediction error of the regression model in Equation

(3.2). The optimal model will be chosen by minimizing the cost function (3.1), where

the errors ξi are minimized [31].

In general, it is impossible to calculate the weight vector ω from Equation (3.2)

as ω may have infinite dimension. Therefore, the model can be calculated in the dual
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space instead of the primal space using the Lagrangian [30] as given by Equation

(3.3).

L(ω, b, ξ; a) = J(ω, ξ)−
N∑
i=1

ai
(
ωTφ(xi) + b+ ξi − yi

)
, (3.3)

in which ai ∈ R are Lagrange multipliers and are called support values. The condi-

tions for optimality are given by Karush-Kuhn-Tucke (KKT) conditions [30], which,

give



δL
δω = 0 =⇒ ω =

∑N
i=1 aiφ(xi),

δL
δb = 0 =⇒

∑N
i=1 ai = 0,

δL
δξi

= 0 =⇒ ai = γkξi, i=1,...,N;

δL
δai

= 0 =⇒ ωTφ(xi) + b+ ξi − yi = 0, i=1,...,N;

(3.4)

After elimination of ω and ξ the following solution is obtained,

[
0 ~1 T

~1 Ω + γ−1
k I

][
b

a

]
=

[
0

y

]
(3.5)

in which,

yT =
[
y1, y2, ..., yN

]
(3.6)

~1 T =
[
1, 1, ..., 1

]
1×N

(3.7)

aT =
[
a1, a2, ..., aN

]
(3.8)

and from the Mercer condition [32],
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Ωij = K(xi, xj) = φT (xi)φ(xj), i, j = 1, ..., N (3.9)

in which K(xi, xj) is the kernel function and ΩN×N is the kernel matrix.

The estimated values of b and ai, i.e. b̂ and âi, can be obtained by solving

the linear system (3.5), and the resulting LS-SVM model can be expressed [31] by

Equation (3.10),

y = f(x) =

N∑
i=1

âiK(x, xi) + b̂ (3.10)

where K(x, xi) is the kernel function with x as a vector of input variables. All ker-

nel functions must satisfy Mercer’s condition that corresponds to the inner product

of some feature space [32].

There are several choices for the kernel function. One choice is the radial basis

function (RBF), which is defined [28] by Equation (3.11).

K(x, xi) = exp(
−(x − xi).(x − xi)

T

2σ2
k

), (3.11)

in which, σk is the kernel parameter and should be optimized for the best estima-

tion performance. RBF is a more compact supported kernel and able to shorten

the computational training process and improve the generalization performance of

LS-SVM [31].

Another choice is inhomogeneous polynomial kernel as defined by Equation

(3.12).

K(x, xi) = (x.xi + 1)d, (3.12)

in which d is the kernel parameter and should be optimized for the best estimation
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performance.

Wang [28] used Least Square Support Vector Regression (LS-SVR), for predict-

ing surface roughness of an end milled surface as a function of spindle speed, feed

rate, depth of cut and vibrations. He found superiority of the method in terms of

training speed and accuracy for the prediction. Using a similar idea, in the next

chapter, the LS-SVM system will be applied for surface roughness estimation of the

parts built with FDM systems and its performance will be compared to the analyt-

ical and Hybrid models.
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Chapter 4

Application of LS-SVM for
Estimation of the Surface
Roughness

The Least Square Support Vector Machine was introduced in Chapter 3 as a

powerful tool for classification and regression problems. The main advantage of this

system is its ability for generalization with a relatively small amount of training data

and its computational efficiency. In this chapter, a LS-SVM model will be developed

for the estimation of the surface roughness as a function of build angle θ and layer

thickness t. At the end, the estimation results will be compared to the results for

different analytical models presented in the Chapter 2.

4.1 Development of LS-SVM for the Surface Roughness
Estimation

Salgado et. al. [31], showed that radial basis function (RBF), expressed by

equation (3.11), is a more compact supported kernel which is able to shorten the

computational training process and improve the generalization performance of the

LS-SVM . This kernel was chosen for training of the LS-SVM for the estimation of

the surface roughness for the FDM parts. A MATLAB program was developed in

which, x is the two dimensional input vector representing layer thickness t and build

angle θ and y is the surface roughness.
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In Sections 2.1 and 2.2.2, experimental results for surface roughness of the parts

built with different FDM machines were presented. The accuracy of the FDM ma-

chines and also the scanners used for measurement of the surface roughness are

different. In the other words, the experimental results given in the Figure 2.9 for

the turncheon parts built with layer thickness t = 0.2mm and t = 0.4mm are

independent of the results reported in the Table 2.1 for the parts built with layer

thicknesses t = 0.253mm and t = 0.254mm. Therefore, LS-SVM is trained in-

dependently for each of the independent test parts. The training data are given in

Figure 4.1.

Figure 4.1: Training data for LS-SVM chosen among the test parts built with dif-
ferent layer thicknesses.

In order to obtain the best estimation results, optimal values for the parameters

σk and γk must be chosen. This can be achieved by minimizing the error between

the training and estimated value for y. For that reason, initially a random value is

chosen for these parameters and the LS-SVM system is trained. Corresponding â

and b̂ are calculated by substituting the training data set in the equations (3.5) and

(3.11). The surface roughness can then be estimated by the equation (3.10) and the
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error between estimated values and the original y are calculated. By altering σk and

γk and iterating with the same procedure, these errors are minimized. In this case,

the choice of σk = 40 and γk = 100 gives better results. The MATLAB M-File is

given in Appendix 5. In the following, the results of the LS-SVM for different test

parts are compared.

4.2 LS-SVM Estimation Results

The LS-SVM is trained with 18.92% of the measured data for the estimation of

the surface roughness for the turncheon test parts built with layer thicknesses t =

0.2mm and t = 0.4mm. The estimation performance of the trained LS-SVM for

the turncheon test part built with layer thickness of t = 0.2mm is given in Figure

4.2. As seen in this figure, the LS-SVM has relatively good estimation performance

for this test part.

Figure 4.2: Surface roughness with the LS-SVM for layer thickness t = 0.2mm.
18.92% of the data used for training.

The estimation performance of the trained LS-SVM for the turncheon test part
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built with layer thickness of t = 0.4mm is given in Figure 4.3. Similar to the

previous case, the LS-SVM has good estimation performance.

Figure 4.3: Surface roughness with the LS-SVM for t = 0.4mm. 18.92% of the
data used for training.

The LS-SVM is trained with 36.84% of the measured data for estimation of

the surface roughness for the test parts built with layer thicknesses t = 0.253mm.

The same build angles similar to the previous experiments used for training of the

LS-SVM. However, since the number of reported surface roughness for this part were

less than experimental data, the ratio of the training data size to the test data size

increases for this experiment. The estimation performance of the trained LS-SVM

is given in Figure 4.4. This figure shows better estimation performance and implies

that as the number of training data set increases, the estimation performance of the

LS-SVM improves.

For the test part built with the layer thickness t = 0.254mm, surface roughness

data were reported only for 13 build angles. Therefore, choosing the same build

angles similar to the previous experiments, 53.85% of the measured data are used

for training of the LS-SVM for estimation of the surface roughness for this test part.
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Figure 4.4: Surface roughness with the LS-SVM for t = 0.253mm. 36.84% of the
data used for training.

The estimation performance of the trained LS-SVM is given in Figure 4.5. This

figure shows very good estimation performance for the LS-SVM.

Figure 4.5: Surface roughness with the LS-SVM for t = 0.254mm. 53.85% of the
data used for training.

In Figure 4.6, the average estimation error of the LS-SVM is compared to other

analytical models for all of the measured and reported data. As seen in this picture,

58



LS-SVM has superior performance and improves surface roughness estimation of the

hybrid model by 33.91%.

Figure 4.6: Average estimation error for the LS-SVM and other analytical models.

4.3 Study on Robustness of the LS-SVM System

As shown in the previous section, the LS-SVM with RBF kernel and σk = 40

and γk = 100 had superior performance in comparison to other analytical models.

In this section, robustness of the LS-SVM will be studied for reduced number of

training data points. The reduced training data points are given in Figure 4.7.

As seen in Figure 4.7, for the turncheon parts built with layer thicknesses

t = 0.2mm and t = 0.4mm, only 8.11% of the measured data points are used for

training of the LS-SVM which shows 10.81% reduction in the number of training

data in comparison to the previous experiment. The performance of the LS-SVM

with reduced number of training data points for the turncheon test parts built with

layer thickness of t = 0.2mm and t = 0.4mm are given respectively in Figures

4.8 and 4.9. According to these figures, although LS-SVM gives a good estimation,
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Figure 4.7: Reduced training data points to study robustness of the LS-SVM.

however, its estimation accuracy is reduced for reduced number of training data size.

Figure 4.8: LS-SVM model with reduced training data for t = 0.2mm. 8.11% of
the data used for training.

For the test part built with layer thicknesses t = 0.253mm, only 15.79% of

the measured data points are used for training of the LS-SVM which shows 21.05%

reduction in the number of training data in comparison to the previous experiment.
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Figure 4.9: LS-SVM model with reduced training data for t = 0.4mm. 8.11% of
the data used for training.

The estimation performance of the new LS-SVM with reduced number of training

data points is given in Figure 4.10. Similar to the previous experiment, although

LS-SVM gives a good estimation, however, its estimation accuracy is reduced for

reduced number of training data size.

Figure 4.10: LS-SVM model with reduced training data for t = 0.253mm. 15.79%
of the data used for training.
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For the test part built with layer thicknesses t = 0.254mm, 23.08% of the

measured data points are used for training of the LS-SVM which shows 30.77%

reduction in the number of training data in comparison to the previous experiment.

The estimation performance of the new LS-SVM with reduced number of training

data points is given in Figure 4.11. Similar to the previous experiments LS-SVM

estimation accuracy is reduced for reduced number of training data size.

Figure 4.11: LS-SVM model with reduced training data for t = 0.254mm. 23.08%
of the data used for training.

In Figure 4.12, the average estimation error of the LS-SVM with reduced number

of training points is compared to other analytical models. As seen in this picture,

LS-SVM estimation error is doubled by reducing number of training data size to the

half.

In order to further study the influence of number of training data size on ro-

bustness of the LS-SVM , independent experimental and reported test parts are

considered separately. Since the turncheon parts with layer thickness t = 0.2mm

and t = 0.4mm were built with the same FDM machine and their surface rough-

ness was measured with same scanner, they were considered dependent and studied
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Figure 4.12: Average estimation error for different analytical models and the LS-
SVM model with reduced number of training data points.

together. The LS-SVM was trained with various number of training data for each

independent case and the average estimation errors are calculated and presented in

Figures 4.13 to 4.15.

Figure 4.13 shows the results for turncheon parts built with layer thickness

t = 0.2mm and t = 0.4mm. For these parts, 74 data points were measured

for surface roughness. Therefore, the minimum number of training data points is

2.7%, which corresponds to one training point for each part. As seen in this fig-

ure, except for the case of 100% training data, the general trend for the estimation

error increases by decreasing the number of training data points. However, for the

case of 2.7% training data, in which only one data point is used for each part, the

estimation error is decreased slightly. This could be interpreted with the fact that

LS-SVM tries to estimates surface roughnesses with its nonlinear kernel around the

only training data point. In addition, as seen in this figure, the average estimation

error for the LS-SVM stays below 29.3% which shows better performance in com-

parison to the hybrid model.
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Figure 4.13: Robustness of the LS-SVM for surface roughness for the turncheon
parts. 100% training corresponds to 74 data points.

Figure 4.14 shows the results for the part built with layer thickness t = 0.253mm.

19 data points were reported for this part. Therefore, the minimum number of train-

ing data points is 5.26%, which corresponds to one training point. As seen in this

figure, the general trend for the estimation error increases by decreasing the number

of training data points. In addition, as seen in this figure, the average estimation

error for the LS-SVM stays below 23.5% which shows better performance in com-

parison to the hybrid model.

Figure 4.15 shows the results for the part built with layer thickness t = 0.254mm.

13 data points were reported for this part. Therefore, the minimum number of train-

ing data points is 7.69%, which corresponds to one training point. As seen in this

figure, the general trend for the estimation error increases by decreasing the number

of training data points. In addition, except for the case of one training data size,

the average estimation error for the LS-SVM stays below 22.1% which shows better

performance in comparison to the hybrid model.

In conclusion, LS-SVM model shows better estimation performance in compar-
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Figure 4.14: Robustness of the LS-SVM for surface roughness for layer thickness
t = 0.253mm. 100% training corresponds to 19 data points.

Figure 4.15: Robustness of the LS-SVM for surface roughness for layer thickness
t = 0.254mm. 100% training corresponds to 13 data points.

ison to the hybrid and other analytical models. However, the accuracy of the es-

timation for the LS-SVM model decreases for the smaller number of training data

points. The minimum number of training data points depends on the test data size.

However, seven training data points seems to give a fair estimation for the surface

roughness in most of the cases.
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Chapter 5

Conclusion and Future Work

By selecting the optimal build angle and optimization of the other build parame-

ters, the surface roughness can be minimized. For that reason, it is desired to study

the influence of build angle and other build parameters on the surface roughness.

The objective of this thesis was to study surface roughness of parts build by FDM

machines and to develop a model to formulate surface roughness for FDM parts as

a function of build parameters, including build angle θ and layer thickness t. For

that reason, the analytical models in the literature were reviewed and compared. In

order to evaluate and compare the accuracy of these models, several test parts were

designed and built by a FDM printer and their surface roughness measured with a

3D scanner. In addition, experimental results reported in the literature for different

FDM machines were compared. By studying the accuracy of different models for

these measured and reported data, it was concluded that the Pandey and Ahn mod-

els have better performance for some range of build angles. The average estimation

error of the models was calculated for four equally incremental ranges of build an-

gles, and a hybrid model was proposed based on the best estimation performance

among different models in each range of build angles. The proposed hybrid model

represents surface roughness as a function of build angle and layer thickness.

By comparison of the reported experimental results for different FDM machines,
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it was observed that build accuracy of different FDM machines are slightly different

and hence the surface roughness of two parts built by different FDM machines with

exactly the same build angle and layer thickness are different. In addition, it might

be desired to study the influence of other build parameters rather than only build

angle or layer thickness on surface roughness. To address these shortcomings, ap-

plication of a model based on an artificial intelligence algorithm was implemented.

However, classical neural networks requires a large training data set. Therefore,

considering the problem of surface roughness estimation as a regression problem,

a variation of the support vector machine, namely the least square support vector

machine, was proposed for surface roughness estimation of the parts built by the

FDM machine. By the choice of the relevant radial bias function as the kernel, the

LS-SVM method proved to have better estimation in comparison to the hybrid and

other analytical models.

In order to study robustness and reliability of the LS-SVM system, it was trained

with various numbers of training data points. By the choice of RBF kernel and

optimization of the parameters, the estimation error of the LS-SVM model was cal-

culated and compared to both the hybrid and other analytical models and it was

observed that LS-SVM has better estimation performance. However, its estimation

accuracy decreased for reduced number of training data points. It was observed that

the choice of minimum seven data points gives reasonably good estimation.

In conclusion, the hybrid model provides a good initial estimation of the surface

roughness for the parts built by any FDM machines. However, the LS-SVM method

would provide more accurate estimation of the surface roughness for specific FDM

machines. Therefore, separate LS-SVM system can be trained and used for each in-

dividual FDM machine. In addition, special attention should be given to the choice

of the most efficient kernel and optimization of the LS-SVM and kernel parameters.
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In summery, the contribution of this thesis were as follow:

• Analytical models for estimation of surface roughness were reviewed and

expressed in a standard format for comparison reasons.

• Different models were compared and a hybrid model was proposed based on

the best estimation performance at each range of build angles.

• Least square support vector machine was proposed for estimation of the

surface roughness for the parts built with FDM machine.

Suykens et. al. [30] proposed a weighted version of LS-SVM to improve its

robustness. As a future work, this method can be extended and applied for

estimation of surface roughness, especially for the case in which the training data

set is gathered from different FDM machines.
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Appendix A
M-File for Surface Roughness
Calculation

clear all;

clc;

%Measured data from 3D NextEngine scanner

data=[0.9298 -22.9440 35.4198

... ... ...

-1.6587 -51.6249 35.5448];

%****************************************************

%****************************************************

%Shifting data to the origin

ma=max(data);

mi=min(data);

x=data(:,1)-mi(1,1);

y=data(:,2)-mi(1,2);

z=data(:,3)-mi(1,3);

data=[x,y,z];

%****************************************************

%****************************************************

% To choose extract range along x and y axis

plot3(data(:,1),data(:,2),data(:,3),’.’)

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)

temp_Xmin=input(’Xmin Range?’);

temp_Xmax=input(’Xmax Range?’);

temp_Ymin=input(’Ymin Range?’);

temp_Ymax=input(’Ymax Range?’);

%****************************************************

%****************************************************

%Extracting sub surface
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temp=find(data(:,2)>=temp_Ymin);

ymax=max(temp);

temp=find(data(:,2)<=temp_Ymax);

ymin=min(temp);

extractdatay=[data(ymin:ymax,1),data(ymin:ymax,2),...

data(ymin:ymax,3)];

upx=find(extractdatay(:,1)>temp_Xmax); %to be eliminated

downx=find(extractdatay(:,1)<temp_Xmin); %to be eliminated

s=size(extractdatay,1);

j=1;

i=1;

while(i<s+1)

% if (i~=upy(:,1) || i~=downy(:,1))

if (i==upx(1,1))

i=i+1;

if size(upx,1)<2

temp=upx(1,1);

else

temp=upx(2:size(upx,1));

upx=temp;

end

elseif (i==downx(1,1))

i=i+1;

if size(downx,1)<2

temp=downx(1,1);

else

temp=downx(2:size(downx,1));

downx=temp;

end

else

extractdata(j,:)=extractdatay(i,:);

j=j+1;

i=i+1;

end

end

%****************************************************

%****************************************************

sftool(extractdata(:,1),extractdata(:,2),...

extractdata(:,3))

%Now choose polynomial and select x=1 and y=1

%Then save output from sftool to the workspace in MATLAB

%Then run the following commands

t=size(output.residuals,1);

r=(1:t);
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plot(r,output.residuals);

ct=(1/t)*sum(output.residuals)

%Result in micron

Ra=(1/t)*sum(abs(output.residuals-ct))*1000
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Appendix B
M-File for LS-SVM Model

%Training Data Set

x_train=[0.2 0

... ...

0.4 180];

y_train=[...];

N=size(y_train,1);

bhat=0;

ahat=zeros(N,1);

%LSSVM and kernel parameters

landa=100;

sigma=40; %for RBF

M=zeros(N+1,N+1);

M(2:N+1,1)=1;

M(1,2:N+1)=1;

I=eye(N);

for(i=1:N)

for(j=1:N)

M(i+1,j+1)=kernel(x_train(i,:),x_train(j,:)...

,sigma)+(1/landa)*I(i,j);

end

end

hat=inv(M)*[0;y_train];

bhat=hat(1,1);

ahat=hat(2:N+1,1);

%*****************************************************

%*****************************************************

%Test data inputs

x_test_fullrange=[x_exp;x_ref9;x_ref5;x_ref14];

N_test_fullrange=size(x_test_fullrange,1);
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y_test_fullrange=zeros(N_test_fullrange,1);

%Calculation of SVM estimation for x_test_fullrange

%which includes all build angles for experimental,

%ref9, 5 and 14 inputs

for(j=1:N_test_fullrange)

for(i=1:N)

y_test_fullrange(j,1)=y_test_fullrange(j,1)+...

ahat(i,1)*kernel(x_test_fullrange(j,:),...

x_train(i,:),sigma);

end

y_test_fullrange(j,1)=y_test_fullrange(j,1)+bhat;

end
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[23] Dolenc A. and I. Mäkelä, ”Slicing procedures for layered manufacturing
techniques,” Computer-Aided Design, 1994, pp. 119-126

[24] Padhye N. and S. Kalia, ”Rapid prototyping using evolutionary approaches:
Part 1,” GECCO’09, 2009, Canada, pp. 2725-2728

[25] Sabourin E., S. A. Houser and J. H. Bøhn, ”Accurate exterior, fast interior
layered manufacturing,” Rapid Prototyping Journal, 1997, pp. 44-52

[26] Rattanawong, W., H. S. Masood and P. Lovenitti, ”A volumetric approach to
part-build orientations in rapid prototyping,” Journal of Materials Procesing
Technology, 2001, pp. 348-353

75



[27] Masood H. S., W. Rattanawong and P. Iovenitti, ”Part build orientations
based on volumetric error in fused deposition modelling,” International
Journal of Advances Manufacturing Technology, 2000, pp. 162-168

[28] Wang, X., ”Intelligent modeling and predicting surface roughness in end
milling,” International Conference on Natural Computation, IEEE Computer
Society, 2009
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