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ABSTRACT 

Implementation of Integrated Design Space Exploration of Scheduling, Allocation and 

Binding in High Level Synthesis using Multi Structure Genetic Algorithm 

Michael Gebremariam, Master of Engineering, 2010 

Optimization Problems Research and Application Laboratory (OPR-AL) 

Electrical and Computer Engineering Department, Ryerson University 

Project Directed By: Dr. Reza Sedaghat, 

Department of Electrical and Computer Engineering, Ryerson University 

The objective of this project is to develop a software tool which assists in comparison of a work known as 

"M-GenESys: Multi Structure Genetic Algorithm based Design Space Exploration System for Integrated 

Scheduling, Allocation and Binding in High Level Synthesis" with another well established GA approach 

known as "A Genetic Algorithm for the Design Space Exploration of Data paths During High-Level 

Synthesis". 

Two sets of Software are developed based on both approaches using Microsoft visual 2005,C# language. 

The C# language is an object-oriented language that is aimed at enabling programmers to quickly develop 

a wide range of applications on the Microsoft .NET platform. The goal of C# and the .NET platform is to 

shorten development time by freeing the developer from worrying about several low level plumbing 

issues such as memory management, type safety issues, building low level libraries, array bounds 

checking, etc. thus allowing developers to actually spend their time and energy working on the 

application and business logic. 
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Chapter 1 

Introduction 

Advances in VLSI technology have made high-level synthesis process more complicated. Recent 

advances in high-level synthesis have to find the most effective approach to deal with the 

complexity of today's increasing System-on-Chip (SoC) design demand. High-level synthesis 

starts from an abstract behavioral description and automatically generates a structural description 

of a digital circuit that realizes the desired behavior. High-level synthesis process involves three 

interdependent and NP-complete optimization problems: 

(i) Operation scheduling 

(ii) Resource allocation 

(iii)Synthesis 

Evolutionary algorithms have been effectively employed to high level synthesis in existence of 

conflicting design objectives for finding good tradeoffs in the design space exploration. 

Because of the diversity of the parameters, and also due to the variety in architecture for 

implementation; the design and development of systems with diverse performance optimization 

objective requires broad analysis and assessment of the design space. The system designer has to 

follow a divide-and-conquer approach to tackle the large and complex design space problems. 

The problems have to be scaled down into a set of manageable and realistic design sets in order 

to meet the system performance objectives and functionality. Design space architecture can have 

numerous design and implementation alternatives based on the parameters of optimization. For 

this reason, selection of the optimal architecture from the design space which satisfies all the 

performance objectives is vital, especially in recent generation of System-on-Chip (SoC) designs 
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[7J. As it is always possible to implement different functions of a system on different hardware 

components, the architecture design space has become more complex to analyze [6]. In the case 

of high level synthesis, performing design space exploration to choose the best candidate 

architecture by concurrently satisfying many operating constraints and optimization parameters 

is considered the most important stage in the whole design flow. Since the design space is huge 

and complex, there needs to be an efficient way to explore the best candidate architecture for the 

system design based on the application to be executed. The method for exploration of the best 

candidate micro architecture should not only be less in terms of complexity factor and time but 

also explore the variant in an efficient way meeting all the specifications provided. The process 

of high level synthesis design is very complicated and descriptive and is usually performed by 

system architects. Depending on the application, the process of defining the problem, performing 

design space exploration and the other steps required for its successful accomplishment are very 

time consuming. Modem high level synthesis design flow should be multi-parametric optimized 

in terms of area occupied, execution time and power consumption. Furthermore, recent 

advancements in areas of communications and multimedia have led to the growth of a wide array 

of applications requiring huge data processing at minimal power expense. Such data hungry 

applications demand satisfactory performance with power efficient hardware solutions. 

Hardware solutions should satisfy multiple contradictory performance parameters such as power 

consumption and time of execution. Since the selection process for the best design architecture is 

complex, an efficient approach to explore the design space for selecting the best design option is 

needed. 
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Chapter 2 

Theory 

VLSI digital circuit design has becomes more and more complex. In the early 2000's, VLSI 

technology was in the range of ten millions logics per chip. But now VLSI technology has 

reached densities of billion transistor logics per chip and this trend will be increasing at Moor's 

law rate for the next decades. For such complexity, it has become a difficult task to write RTL 

description for the system and would be even more challenging for system verification. 

The design space exploration embraces a multitude of different optimization scenarios on 

varying abstraction levels. Typical parameters of this exploration are timing, power, and area. 

Additionally, how to limit this parameter and how to find or approximate Pareto Points in the 

Design Space quickly falls in the realm of design space exploration. 

High-Level-Synthesis tools are developed to solve all these optimization problems. High-Level­

Synthesis is a translation process from behavioral description into RTL description in an 

automatic way. HLS is a complex problem. It is either partitioned into several sub-tasks and 

executes the tasks one by one, or partitioned into a sequence of transformation steps each of 

which make a small change to the intermediate result of the earlier step. The former one is the 

general approach to implement HLS. The later one is called transformational approach. The 

general approach is easier to implement than the transformation approach. Most HLS tools use 

the general approach to synthesize. 
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2..1 butu./loH' gruph 

The first step in High-Level-Synthesis is to translate the behavioral description into an 

intermediate representation as shown in Figure 3.1 and Figure 3.2. A Data Flow Graph (DFG) is 

commonly used as intermediate representation to capture the behavior such as data dependence, 

control structure etc. Figure 3.2 shows an example of DFG. At this step, data-based 

transformations and control-based transformations are used to optimize the intermediate 

representation. Data-based transformations include tree-height reduction, constant and variable 

propagation, common sub-expression elimination, dead-code elimination, operator-strength 

reduction, code motion etc. And control-based transformations include model expansion, 

conditional expansion, loop expansion, block-level transformations etc [24]. 

(A X (8 X C) - D X (E x F)) + (D X (E X F) - G X (H + I) ) 

Figure 3.1 - Behavioral Specification 
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A 

Figure 3.2 - dataflow graph 

2.2 Resource allocation 

y 

It is to decide how many and which kind of resources can be used in the design. These are the 

resource constraints. For example, in Figure 3.2, 3 multiplier, 1 adder and 2 subractor could be 

allocated. If the resource allocation is not sufficient, the operation can't be scheduled. Also if 

there are less resources and the cycle time constraint is small the scheduling will fail. This 

implies that allocation and scheduling are correlated. There may be some reiteration among them 

as well. 

2.3 Scheduling 

It is the most important step of high level synthesis. The quality of scheduling influences the 

final result. It largely determines the trade-off between area and latency. Scheduling is used to 
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determine start time of each operation according to data dependence, resource constraints and 

timing constraints. There are three main categories of scheduling problem: scheduling without 

constraints, scheduling under resource constraints and scheduling under time constraint. Various 

kinds of algorithms can be used to tackle these problems. The algorithms can also be divided into 

two categories: the exact ones and the heuristic ones. Integer linear program (ILP) [25] 

formulation is an exact solution for both resource and timing constraints scheduling problems -

which only be suitable for small design problems. Its complexity increases exponentially as the 

scale of the design increases. There are many heuristic algorithms to solve these problems in the 

acceptable accuracy. ASAP (as soon as possible) and ALAP (as late as possible) [25] algorithms 

are examples of the simplest constructive algorithms that can be used to solve scheduling 

problems. List scheduling [25] and Forced-directed [25] scheduling resolve the scheduling 

problems under resource constraints. Genetic algorithm is also one of the heuristic algorithms 

used the design space optimization problem. [2] and [1] use Genetic algorithm with multi 

chromosome. 

2.4 Register allocatio1l 

After scheduling, if a data transfer crosses the cycle boundary it means that it has to be stored in 

memory or a register. There is a possibility of sharing the register, if the lifetime of the data has 

not overlapped. The lifetime of the data refers to the interval from its first appearance to the last 

use. There are algorithms based on the graph theory to serve the register sharing such as left­

edge algorithm [2], coloring conflict graph etc. Register sharing can significantly save area cost. 

In left-edge algorithm, all data transfers between control steps (which represent intermediate 

variables in the input algorithmic description) are stored in registers. At the end, all output data 

7 



are also saved in registers. The number of registers required in a data path implementation is 

determined by the maximum number of concurrent data transfers between any two control steps, 

which in tum relies on the operation schedule [2]. Hence, the number of registers needed in a 

data path can be determined only after operation scheduling is completed. The birth time of a 

data transfer is the control step in a schedule when it is created by a producer. Likewise, the end 

time of a data transfer is the control step when it is used by the last consumer. 

2.5 Binding 

Binding is the process of grouping each scheduled operation with a concrete component. 

Allocation insures that there are enough resources for scheduling. But at this stage, it hasn't been 

decided which resource to be used for which operation. Binding resolves this issue and 

influences the number of multiplexers and quantity of interconnect that needs to take place. For 

example, in Figure 3.2 after scheduling if we have 1 multipler,1 adder and 1 subtractor, during 

binding node (1, 2,4,5), (7,8) and (3,9) will bind together. 

2.6 State machine extracting and net- list generation 

The final step is extraction of data path and state machine and also generation of the control unit. 

Finite State Machine is an effective method to generate a control unit. In HLS, generation of 

FSM as a control unit is done automatically. But if we use RTL design methodology, designers 

have to complete the process manually. This is tedious and error-prone job at the same time. 

The last step is net-list generation. The net-list generated by this step is used to transfer the 

design data to another tool, such as the RTL synthesizer. 
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Chapter 3 

Genetic algorithms 

Genetic algorithms are stochastic combinatorial optimization techniques based on evolutionary 

improvements. It operates on a population of knowledge structures, chromosomes that represent 

candidate solutions. On every generation, a number of chromosomes with the worst fitness 

values are removed from the population and replaced by new chromosomes obtained through 

applying genetic operators. The execution of the algorithm is iterated until either the best 

chromosome, representing an optimal solution, is found or a predetermined terminating 

condition such as maximum number of generations or maximum number of fitness evaluations 

has been satisfied. In the later case, the chromosome with the best fitness in all generations is 

considered as a final solution. 

An implementation of a genetic algorithm begins with a population of (typically random) 

chromosomes. One then evaluates these structures and allocates reproductive opportunities in 

such a way that those chromosomes, which represent a better solution to the target problem, are 

given more chances to '''reproduce'' than those chromosomes with poorer solutions. The 

"goodness" of a solution is typically defined with respect to the current population. 

3.1 Initial population 

In Genetics algorithm initial population are usually generated randomly. However in some 

circumstances the initial population can be acquired from:-

• A previously saved population 
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• A set of solutions provided by a human expert 

• A set of solutions provided by another heuristic algorithm 

The initial population in both [2] and [1] are generated randomly. 

3.2 Encoding o/the Chromosome 

Usually there are only two main components of most genetic algorithms that are problem 

dependent: problem encoding and evaluation function. 

Consider a parameter optimization problem where we must optimize a set of variables either to 

maximize or to minimize cost or some measure of error. The goal is to set the various parameters 

so as to optimize an output. In more traditional terms, we wish to minimize (or maximize) some 

function Fl(Xl,X2 ... Xm) 

Most users of genetic algorithm typically are concerned with problems that are nonlinear. This 

also often implies that it is not possible to treat each parameter as an independent variable which 

can be solved in isolation from the other variables. There are interactions such that the combined 

effects of the parameters must be considered in order to maximize or minimize the output of the 

black box. 

Possible individual's encoding can be represented as Bit strings, Real numbers, Permutations 

of element, Lists of rules (Rl R2 R3 ... R22 R23) etc. 

When choosing an encoding method the data structure has to be as close as possible to the 

natural representation. If possible, make sure that all genotypes correspond to feasible solutions 

and also genetic operators preserve feasibility. 
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[1] Uses 'nodal string' - contains the load-factor values of each node which will detennine the 

priority of the nodes during scheduling. The 'resource allocation string' contains list of integers 

which indicates the maximum number of resources allowed during scheduling. Figure 4 shows 

encoding of the DFG based on [1] assuming execution time for all operation is lee. 

Sub 12 12 

Add 
14 11 

Mul 14 4 3 3 3 

A. Nodal string representation example 

1ff A S F 

B. Resource allocation string example 

Figure 4 - M-GenESys Chromosome encoding scheme 

a. Node priority field 

14[Ml 12[A) 12[S) 

b. Resource allocation field 

Figure 5 - GA Chromosome encoding scheme 
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.l..J Crossover Scheme 

Genetic algorithms have the recombination operation which probably comes closest to the 

natural modeL When performing single-point crossover, both parental chromosomes are split at a 

randomly determined crossover point. Subsequently, a new child genotype is created by 

appending the second part of the second parent to the first part of the first parent. In two-point 

crossover, both parental genotypes are split at two points and a new offspring is created by using 

part number one and three from the first, and the middle part from the second parent 

chromosome. The n-point crossover operation is also called multi-point crossover. For fixed­

length strings, the crossover points for both parents are always identicaL Many crossover 

techniques exist for organisms which use different data structures to store themselves. 

One-point crossover: - A single random crossover point on both parents' organism strings is 

selected. All data beyond that point in either organism string are swapped between the two parent 

organisms. The resulting organisms are the children: 

Parent1: XXX!XXXXXxx 

Parent2: YVVIVVYYYYY 

Offspring1: XXX I YYYYYYY 

Offspring2: YYYIXXXXxxx 
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Two-poinl crossover. - Two-point crossover calls for two random points to be selected on the 

parent organism strings. Everything between the two points is swapped between the parent 

organisms, rendering two child organisms: 

Parent1: XXX!XXXXXXX!XXXXX 

Parent2: yyy! yyyyyyy! yvyyy 

Offspring1: XXXIYYYYYYY!XXXXX 

Offspring2: YYY! XXXXXXX! yyyvy 

CuI on" .J}7/ice: - Another crossover variant, the "cut and splice" approach, results in a change in 

length of the children strings. The reason for this difference is that each parent string has a 

separate choice of crossover point. 

Parent1: XXX!XXXXXXXXXXXX 

Pa rent2: YYYYYYYYYY! yyyyy 

Offspring!: XXX I YYYYYYYYYYYY 

Offspring2: YVYYYYYYYYIXXXXXXXXXXXX 

13 



{/j/I/Orm Cro-iYOJ'er und Hu!/ [lnl/OI'/I/ CrossOJ'er. In both these schemes, the two parents are 

combined to produce two new offspring. In the uniform crossover scheme, individual bits in the 

string are compared between two parents. The bits are swapped with a fixed probability, 

typically 0.5. 

In the half uniform crossover scheme, exactly half of the non-matching bits are swapped. Thus 

first the Hamming distance (the number of differing bits) is calculated. This number is divided 

by two and from the result, analyzes how many of the bits do not match between the two parents. 

If any, they will be swapped. 

Crossover for Ordered Chromosomes: Depending on how the chromosome represents the 

solution, a direct swap may not be possible. One such case is when the chromosome is in an 

ordered list, such as an ordered list of the cities to be travelled by the traveling salesman 

problem. A crossover point is selected on the parents. Since the chromosome is an ordered list, a 

direct swap would introduce duplicates and remove necessary candidates from the list. Instead, 

the chromosome up to the crossover point is retained for each parent. The information after the 

crossover point is ordered as it is ordered in the other parent. For example, if our two parents are 

ABCDEFGHI and IGAHFDBEC and our crossover point is after the fourth character, then the 

resulting children would be ABCDIGHFE and IGAHBCDEF. 

[2] and [1] use One-point crossover in all the strings. 

14 



3. 4 Mutotion Operotion 

Mutation is an important method for preserving the diversity of the solution candidates by 

introducing small and random changes into them. In fixed-length string chromosomes, this can 

be achieved by randomly modifying the value of a gene. 

A common method of implementing the mutation operator involves generating a random 

variable for each bit in a sequence. This random variable tells whether or not a particular bit will 

be modified. This mutation procedure, based on the biological point mutation, is called single 

point mutation. Other types are inversion and floating point mutation. When the gene encoding is 

restrictive as in permutation problems, mutations types will be swaps, inversions and scrambles. 

The purpose of mutation in GAs is preserving and introducing diversity. Mutation should allow 

the algorithm to avoid local minima by preventing the population of chromosomes from 

becoming too similar to each other, thus slowing or even stopping evolution. This reasoning also 

explains the fact that most GA systems avoid only taking the fittest of the, population in 

generating the next but rather a random (or semi-random) selection with a weighting toward 

those that are fitter. 

3.5 Global Cost Function and Fitness Evaluation ~fetllOdology 

A fitness function is a particular type of objective function that prescribes the optimality of a 

solution (that is, a chromosome) in a genetic algorithm so that that particular chromosome may 

be ranked against all the other chromosomes. Optimal chromosomes, or at least chromosomes 

which are more optimal, are allowed to breed and mix their datasets by any of several 

techniques, producing a new generation that will (hopefully) be even better. 

15 



An ideal fitness function correlates closely with the algorithm's goal, and yet may be computed 

quickly. Speed of execution is very important, as a typical genetic algorithm must be iterated 

many, many times in order to produce a usable result for a non-trivial problem. This is one of the 

main drawbacks of GAs in real world applications and limits their applicability in some 

industries. It is apparent that amalgamation of approximate models may be one of the most 

promising approaches, especially in the following cases: 

• Fitness computation time of a single solution is extremely high 

• Precise model for fitness computation is missing 

• The fitness function is uncertain or noisy 

Two main classes of fitness functions exist: one where the fitness function does not change, as in 

optimizing a fixed function or testing with a fixed set of test cases; and one where the fitness 

function is mutable, as in niche differentiation or co-evolving the set oftest cases. 

Another way of looking at fitness functions is in terms of a fitness landscape, which shows the 

fitness for each possible chromosome. 

Definition of the fitness function is not straightforward in many cases and often is performed 

iteratively if the fittest solutions produced by GA are not what are desired. In some cases, it is 

very hard or impossible to come up even with a guess of what fitness function definition might 

be. Interactive genetic algorithms address this difficulty by outsourcing evaluation to external 

agents (normally humans). 
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3. tf TerlHinuting 

Termination is the criterion by which the genetic algorithm decides whether to continue 

searching or stop the search. Each of the enabled termination criterion is checked after each 

generation to see if it is time to stop. Genetic Server and Genetic Library include the following 

types of terminations: 

Generation Number - A termination method that stops the evolution when the user-specified 

maximum number of evolutions have been run. This termination method is always active. 

Evolution Time - A termination method that stops the evolution when the elapsed evolution time 

exceeds the user-specified max evolution time. By default, the evolution is not stopped until the 

evolution of the current generation has been completed, but this behavior can be changed so that 

the evolution can be stopped within a generation. 

Fitness Threshold - A termination method that stops the evolution when the best fitness in the 

current population becomes less than the user-specified fitness threshold and the objective is set 
, 

to minimize the fitness. This termination method also stops the evolution when the best fitness in 

the current population becomes greater than the user-specified fitness threshold when the 

objective is to maximize the fitness. 

Fitness Convergence - A termination method that stops the evolution when the fitness is deemed 

as converged. Two filters of different lengths are used to smooth the best fitness across the 

generations. When the smoothed best fitness from the long filter is less than a user-specified 

percentage away from the smoothed best fitness from the short filter, the fitness is deemed as 

converged and the evolution terminates. 
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Popfdolion Conwrgence- A tennination method that stops the evolution when the population is 

deemed as eonverged. The population is deemed as converged when the average fitness across 

the current population is less than a user-specified percentage away from the best fitness of the 

current population. 

Gene Convergence - A tennination method that stops the evolution when a user-specified 

percentage of the genes that make up a chromosome are deemed as converged. A gene is deemed 

as converged when the average value of that gene across all of the chromosomes in the current 

population is less than a user-specified percentage away from the maximum gene value across 

the chromosomes. 

The tenninating criterion for both [1] and [2] is user defined Number of Generation. 
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Chapter 4 

Software Implementation 

The software implementation for the M-GENESYS and GA consists of five major components 

as shown in Figure 6. These are:-

• Module library 

• Input file 

• User configurable parameters 

• Main application software 

• Output result 

Module , 

library 

Main application software 
Input file Output result 

User input 
config 

Figure 6 - Major components of the implementation software 
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4.1 Module library 

The module library is user configurable values which contains the following resource 

information: -

1. Versions of Functional Units 

2. Maximum resources available for each version of the Functional Units(FU) 

3. Clock cycle of each available FUs 

4. Power consumption per unit area at a specific frequency 

S. Total area of the FUs 

adder 
1,50MHZ,3mW,100MHZ,6mW,200MHZ,12mW,50au,lcc,1 
2,50M HZ,3mW, 100M HZ,6mW ,200M HZ,12mW,30a u,2cc,1 
3,50M HZ,3mW ,100M HZ,6mW,200M HZ,12mW, lSau,3cc,2 
subtractor 
1,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,SOau,lcc,0 
2,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,30au,2cc,0 
3,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,lSau,3cc,0 
multiplier 
1,50MHZ,3mW,100MHZ,6mW,200MHZ,12mW,120au,2cc,0 
2,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,80au,3cc,1 
3,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,SOau,4cc,1 
comparator 
1,SOMHZ,3mW,100IVlHZ,6mW,200IVlHZ,12mW,50au,lcc,0 
2,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,30au,2cc,0 
3,50MHZ,3mW,100MHZ,6mW,200MHZ,12mW,15au,3cc,0 

Figure 7 - Module library fonnat 

A sample of the module library format is shown in Figure 7. On this particular module library, 

there is only one adder of version 1 and this adder takes SOau area unit and the execution time for 

this adder is 1 cc. This unit consumes 3mw per unit area at SOMHZ. 
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4.2 Input File 

The input file contains the Data Flow Graph (DFG) which represent the behavioral description of 

the data path in ASAP (as soon as possible) fonnat. 

+,1,1,1,+,1,1,2 
+,2,2,3 
+,3,3,4 
+,4,4,5 
*,5,5,6,*,5,5,7 
+,1,6,8,+,7,7,9 
+,1,8,10, +,9,9,11, + ,3,9,12 
* ,10,10,13, +,8,11,14, * ,12,12,15 
+ ,13,13,16, +,2,15,17 
+,16,16,18, +,8,16,19,+,9,17,20, +,2,17,21 
* ,18,18,22,+,19,19,23,+,20,20,24, * ,21,21,25 
+,16,22,26, *,23,23,27, *,24,24,28,+,25,25,29 
+,27,27,30, +,28,28,31, +,17,29,32 
+,23,30,33, +,31,31,34 

Figure 8 - Data Flow Graph representation of The Elliptic Wave Filter 

, 
Figure 8 shows the representation of the Elliptic Wave Filter benchmark DFG which is shown in 

Figure 9. Each node is represented with the following fonnat:-

Functional unit, inputl, input2, output 

The Functional Unit can be adder, multiplier, subtractor, and comparator. If either inputl or input 

2 are nodes which don't have parents, they should be represented by the letter I as shown in 

Figure 8. This infonns the software that these are inputs to the DFG from outside. This input 

fonnat was chosen for its simplicity in implementation compared to a graphical one. 

21 



/ 
I' 

/ 
I' 

/ 

I' 
/ , 

I' 
I' 

, 
/ 

-~ 'B' I ~' -... .. ---- .......... 
"..... ~OP ",:IS 

Figure 9 - Elliptic wave filter (EWF) 
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4.3 User configurable parameters 

". M-<lenESy> V-7 

File 

Figure 10- User interface for M-GENESYS 

The following parameters can be configured by the user:-

W1 05 

W2 05 

FIegar .AIuIau) 10 

lUe}natau) 

Oonu< JnaCou) 3 

No I-.on(N) 1000 

I _ WI and W2 - The weight values used in the cost calculation which either favor Texe or 

power/area_ W I is for T ex\! and W2 i:. for power/area 

2_ T exe constraint - User define Texe user constraint 

3_ Power constrain - User define power constraint 

4. Register, Mux, Demux unit areas- Unit area for Registers, Mux and Demux 

7.3 



5. Number o/iteratio1l - Is used in the Tcxc calculati on (Tm calcu lation is descri bed in[ I]) 

6. Number 0/ Gelleratioll - Is the number of generation explored before the geneti c 

algorithm tenl1inates 

-

~ Genetic Algorithm for Design Space Exploration [;][QJ~ 
Fie 

I Input Paramenters 

\.1/1 ~ 
\.1/2 @9 , 

Area Constraint [C-J 
Latency Constraint D 
Register Area(au) ~ 

D 
N umber of G ener ation 

Run 

Figure 11 - User interface for GA 
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4.4 l'\lain application software 

The mam application software flow is shown in Figure 12. In this section a detailed 

implementation of the each module will be explained. 

( Start ) 

! 
Read M odul. IIbray and 

Data flow graph Input 

! 
Generate the first population 

I 

! 
Preform e crossover with higher probablity 

! 
preform mutation with low pro bab Ilty 

1 
schedule and binding 

1 
Calculate Cost 

1 
Seleet the best offsprings 

1 
Is GeneraUon number 

equal to the user specified? 
0 

T 
Yes 

* ( Display result ) 

Figure 12 - General flow of the main software 
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4.5 Reading module library and data flow graph 

During start up, the module library file is read and parsed. The infonnation is stored in the 

memory for later use. The user also needs to select a specific Data Flow Graph (one of the 

benchmarks) on which the genetic algorithm will be prefonned. 

4.6 Generation of the first population 

In the case of the M-GENESYS, initially a total of 40 parents are created based on the 

following algorithm. PI is created as follows:-

• Encode the first parent (Pl) of the nodal string using the load factor (a) 
metric based on the ASAP schedule with maximum resources. 

Load factor computation for each node 

For each node in the DFG v[tJ.:::O to v[i}= max 
While( end of tree) 

go down the DFG tree to the next node 
Load factor (LF)= latency of the FU 
LF= LF + latency of the FU 
v[iLLF= LF 

Endwhi/e 
Endfor 

• Encode the first parent (Pl) of the resource allocation string with 
maximum resources acquied from the ASAP schedule 

Figure 13 • First parent generation 
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The second parent is created as follows:-

• Create the second parent nodal string using load factor fP) calculated as: L ASAP (max)_a (oi) 

based on minimum resources. 

• Resource al/ocatin string is created with the minimum resource 

Figure 14 - Second parent generation 

The remaining parents are created as follows:-

• Create the remaing of the parent (P3 ... Pn) of the nodal string based an the perturbation function = 
fa + P)/2 :t p; where 'lJ'is a random value between 'a' and '/1'. 

for ;=3 to ;=Pn 
for each nodal stringof the workload 

generate random number p between 'a' and '/1'. 
nodal string =(a + P)/2 :t P 

End for 

• Resource allocation chramosome for the remianing parents. Randomly select two nodes vi and vj 

from the chromosome that represent the resource al/ocaltion then generate a rondom value 

between vi and vj 

for i=3 to i=Pn 
for each resource allocation 

generate random number k between vi and vj 

resource allocation =k 
End for 

Figure 15 - (P3 ... Pn) parent generation 

27 



In the case of the GA algorithm the first Pn parents are created as follows:-

For i =0 to i :: max parent 
While (node priority field is complete) 

Generate random number 
if Random number topologically correct 

add to the node priority field 
end while 

End/or 

Figure 16 - First Pn Parent generation for GA implementation 

4.7 Cross over and mutations 

Crossover for M-GENESYS and the GA implementations are as follows:-

Algorithm M-GENESYS Crossover 
Radoma/y generate an integer r, where 1 <r<N, and N= number of tasks 

For i=l to r do 
Of/springl[i]=parentl[ij 
Of/spring2[i]=parent2[i] 

End/or 
For i=R to n do 

Of/springl[iJ::parent2[i] 
O//spring2[i]=parentl[i] 

End for 

Figure 17 - M-GENESYS crossover for nodal string and resource allocation 
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Algorithm One·Point Topologicol Crossover 

Radomaly generate an integer r, where 1<r<N, and N= number of tasks 
For i=1 to r do 

Offspring 1 {i]=parent1[ij 
Offspring2{i]=parent2[ij 

En d for 
Pos1= r+1 
Pos2=r+1 
For j=l to N do 

If offspringl does not contoin parent2[jJ then 
Offspring1[poslj= paent2[j] 
Pos1 = pos2 +1 

End if 
En d for 
For j=l to N do 

If of!spring2 does not contain parent [jJ then 
Offspring2[pos2J= parentl[jJ 

Pos2=pos2+ 1 
End if 

End for 

Figure 18 - One-point topological crossover for GA implementation 

The Mutation scheme proposed in [1] used for the cost calculations 

Algorithm Precedence Preserving Shift Mutation 
Randomly pick a task T to shift 
Compute p{Pmax]and p[SMINJ for task T 
Randomly pick a postion r, where p{PMAX] < r < p[SMIN} 

Shift task T to positon r 

Figure 19 - Precedence preserving shift mutation for GA implementation 
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4.8 Schedule and Binding 

Reload the value of 
the FUs from the resource allocaton 

Goto the next Get N[I] 

Yes 

Decrease FU(N[ill 

Yes 

yes 

Figure 20 - Scheduling scheme for the M-GENESYS 
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Node issheduled and assioged 
a time-slot T 

Yes 

Yes 

Golo the next time-slot 
T++ 

N[i] 

No 



Scheduling algorithm for GA algorithm is shown in Figure 21 

Algorithm:- Modified list scheduling algorithm 
Input: Dataflow Graph, Chromosome 
Control step = 1 
While not all tasks scheduled 

For i= 1 to N do 
If p{i] is unscheduled and a corresponding functional unit available then 

Assign task p[i] to the functional unit in the current contral step 
End if 

Endfor 
Control step = control step +1 

End while 
Schedule length = control step 
Return schedule length 

Figure 21 - scheduling algorithm for GA implementation 

4.9 Cost calculation 

The cost function used during implementation has been adopted from authors work in [1] and [2] 
, 

as shown below. Please refer to [1] and [2] where the authors have explained in detail about the 

cost function. 

[1] 

[2] 
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Implementation of Latency and Tc is shown in Figure 22. TEXE is only required for the M~ 

GENESYS implementation. The GA implementation only uses latency for time calculation. 

Algorithm :- T lATENCY and Tc computation 
Input: Scheduled Dataflow Graph, Resource allocation string 

For i=O to Max_Node 

Do { 

{ 

} 

N[i].tl = cycle_time fram module library 
N[i]. t2 = cycle_ time from module librory 

For i=O to Max_Node 
{ 

} 

If N[i].tl>O AND no node higher in the DFG has tl>O AND free FU available AND 
parentl[N[i]].tl::;: 0 AND parent2[N[ilJ 0 
{ 

N[i].tl-­
} 

If NfiJ tt 0 for at/east one node in DFG 

T lATENCY++ 

For i=O to Max_Node 
{ 

} 
T++ 

If N[i].t2>0 AND no node higher in the DFG has t2>0 AND free FU available AND 
parentl{N{ill. t2 ::;: 0 AND parent2[N[iJ] = 0 
{ 

N{iJ.t2-­
} 

} while all the nodes in the DFG are analysed 

Tc::;: T - T lATENCY 

Figure 22 - Latency and Tc computation 
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Both M-GENESYS and GA implementation use Left Edge Algorithm to detennine the number 

of registers. Figure 23 shows a pseudo code for the Left Edge Algorithm 

Algorithm;- Left Edge Algorithm 
Input: Scheduled Dataflow Graph 

Sort data transfers in increasing order of their birth time 
K = 1, where k is the register count 
Do{ 

Assign the first unassinged data transfer to regiser k; 
Scan the sorted list for the next unassigned data transfer whose birth time 

Is .cthe end time of the pervious value; 
Assign this data transfer to the current register; 
Scan the list until no more non- overlapping data transfers can share the same register; 
k=k+1 

} unitl all data transfers are assigned to registers; 

Figure 23 - Left Edge Algorithm 

Number of Mux and Demux calculation is depicted in Figure 24. This calculation is used by the 

M-GENESYS implementation only. 

Algorithm:- Number of mux and demux determination 
Input: Schedule DataFlow Graph 
Mux=O and Demux=O,i =0 
Do{ 

Get the number N of nodes assigned to a FUri) 

IfN> 1 
{ 
Mux = Mux + 2 

Demux = Mux + 1 
} 

i=i+1 
} Untill all the FU in the scheduled DFG are done 

Figure 24 - number ofMux and Demux computation algorithm 
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For ;=0 to j:::: max_offspring 
{ 

2 P{iJ:::: P_oJfspring 
3 Texe[ij =Texe_offspring 

} 
sort(P[iJ) in increasing order 

sort(Texe[IJ) in increasing order 
select the highest value of Pmax 
select the highest value for Texec_max 
calculate Global cost using the equations [1} and [2} 

Figure 25 - Cost calculation for M-GENESYS 

Cost calculation for the GA implementation follows the same method in determining the Lmax 

and Amax which are calculated during scheduling. 

4.10 Termination criteria 

The tennination stage for both M-GENESYS and GA implementation is user configurable. As 

shown in Figure 10 and Figure 11 depending on the number entered in the "Number of 

Generation" text box, the program terminates the iteration of the generation and displays the 

least cost solution on the user interface display textbox. 
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Chapter 5 

Results 

In this section the results for the following benchmarks from [1] are shown:-

• Elliptic Wave Filter (EWF) shown in Figure 9 

• Discrete Wavelet Transformation (OWT) shown in Figure 28 

• Fast Fourier Transformation (FFT) shown in Figure 31 

• Finite Impulse Response Filter (FIR) shown in Figure 34 

During generation of the results, a default value of user interface was taken except for the 

generation number. 10 generation is used for M-GenESys and 100 generation is used for GA. 
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Tl=1 2 
12=3 
T3=4 
T4=5 
T5 =7 
T6 =6 9 
T7 =8 12 
T8 =10 11 15 
T9 =13 14 17 
TlO=20 21 
Tll =16 24 
Tl2 =19 28 
Tl3 =23 31 
Tl4 =18 27 
T15 =22 30 
Tl6 =26 33 

Latency= 460 
Area= 160 
cost= 69 

25 
29 

32 
34 

Number of Population:::: 12000 

Resource allocation 
+ =2 
* ::::1 

Node Priority 
1 2 3 4 5 7 6 8 9 12 10 11 15 13 17 20 21 25 14 24 29 28 16 19 31 23 18 32 27 22 34 

30 26 33 

Figure 26 - output result for Elliptic Wave Filter (EWF) benchmark using M-GENESYS 

implementation 
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Processing .... 
Scheduling solution 

(1, +, V-3,l) (2, +, V-3,2) 
(3, +, V-3,l) 
(4, +, V-3,2) 
(5, +, V-3,l) 
(7, *, V-3,l) 
(6, *, V-3,1) (9, +, V-3,2) 
(8, +, V-3,2) (12, +, V-3,l) 
(10, +, V-3,l) (11, +, V-3,2) (15, *, V-3,1) 
(13, *, V-3,l) (14, +, V-3,2) (17, +, V-3,1) 
(20, +, V-3,1) (21, +, V-3,2) 
(16, +, V-3/2) (24, +, V-3/1) (25, *, V-3,l) 
(18, +, V-3/2) (19, +, V-3,1) (28, *, V-3,l) 
(22, *, V-3,l) (23, +, V-3,l) (29, +, V-3,2) 
(26, +, V-3,2) (27, *, V-3,l) (31, +, V-3,l) 
(30, +, V-3,1) (32, +, V-3/2) 
(33, +, V-3,l) (34, +, V-3,2) 

Texe= 906 ~s 
Latency = 56 cycle 
Power= 969 mW 
cost= 37 
TotoalArea= 323au 
Number of Mux= 6 
Number of Demux= 3 
Number of Register= 9 
Number of Population= 360 

Resource allocation 

* =1 
+ =2 
f =1 

Figure 27 - output result for Elliptic Wave Filter (EWF) benchmark using GA implementation 
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Figure 28 - Fast Fourier Transfonnation (FFT) 
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Processing .... 
Scheduling solution 

(1, *, V-3,1) 
(2, *, V-3,1) (5, -, V-3,1) (6, +, V-3,l) 
(3, *, V-3,1) (7, -, V-3,1) (8, +, V-3,l) 
(4, *, V-3,l) (9, -, V-3,1) (10, +, V-3,1) 
(11, -, V-3,1) (12, +, V-3,1) (13, *, V-3,l) 
(14, *, V-3,l) (17, -, V-3,1) (18, +, V-3,1) 
(19, -, V-3,l) (20, +, V-3,ll (25, *, V-3,l) 
(28, *, V-3,l) (29,·, V-3,l) 
(16, *, V-3,l) (35,·, V-3,l) 
(15, *, V-3,l) {23, -, V-3,ll (24, +, V-3,l) 
(21, -, V-3,l) (22, +, V-3,l) (26, *, V-3,l) 
(27, *, V-3,1) (30, +, V-3,l) (31,·, V-3,l) 
(33, -, V-3,l) (34, +, V-3,l) 
(32, +, V-3,l) 
(36, +, V-3,l) 

Texe= 2400 Ils 
latency = 57 cycle 
Power= 1992 mW 
cost= 100 
Totoal Area= 332au 
Number of Mux= 6 
Number of Demux= 3 
Number of Register= 9 
Number of Population::: 1200 

Resource allocation 

* =1 
+ =1 

- =1 
f =2 

Figure 29 - Output result for Fast Fourier Transformation (FFT) benchmark using M-

GENESYS implementation 
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T1 =1 2 
T2 =3 4 5 678 
T3 =9 10 11 12 13 14 
T4 =15 16 17 18 19 20 
T5 =21 22 23 
T6 =26 28 29 
T7 =31 32 35 

Latency= 124 
Area= 1300 
cost= 75 

24 25 27 
30 33 34 
36 

Number of Population= 12000 

Resource allocation 

* =2 
- =2 
+ =2 

Node Priority 
1 5 2 4 3 11 9 6 10 16 8 7 15 12 14 24 20 23 21 13 19 17 22 18 25 30 29 27 33 28 34 

36 26 31 32 35 

Figure 30 - output result for Fast Fourier Transformation (FFT) benchmark using GA 

implementation 
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Figure 31 • Discrete Wavelet Transfonnation (D WT) 
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Processing .... 
Scheduling solution 

(1, *, V-3,1) 
(2, *, V-3,l) (6, +, V-3,l) 
(3, *, V-3,l) (10, +, V-3,2) 
(5, *, V-3,1) (7, +, V-3,1) 
(4, *, V-3,1) (9, +, V-3,2) 
(8, +, V-3,1) (11, *, V-3,1) 
(12, +, V-3,2) 
(13, *, V-3,l) 
(14, +, V-3,1) 
(15, *, V-3,1) 
(16, +, V-3,2) 
(17, +, V-3,1) 

Texe= 203 [..lS 

Latency = 44 cycle 
Power= 1566 mW 
cost= 100 
TotoalArea= 261au 
Number of Mux= 6 
Number of Demux= 3 
Number of Register= 10 
Number of Population= 1200 

Resource allocation 
* =1 
+ =2 
f =2 

Figure 32 - Output result for Discrete Wavelet Transfonnation (DWT) benchmark using M-

GENESYS implementation 
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Tl =1 
T2 =3 6 
T3=4 7 
T4=2 8 
T5 :5 10 
T6 =9 11 
T7 =12 
T8=13 
T9 =14 
TlO =15 
Tl1 =16 
Tl2 =17 

Latency: 44 
Area: 500 
cost= 77 
Number of Population: 12000 

Resource allocation 
* =1 
+ =1 

Node Priority 
1 3 4 7 6 2 5 8 10 9 11 12 13 14 15 16 17 

Figure 33 - Output result for Discrete Wavelet Transformation (DWT) benchmark using GA 

implementation 
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Figure 34 - Finite Impulse Response filter (FIR) 
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Processing .... 
Scheduling solution 

(1, *, V-3,l) 
(2, *, V-3,1) (5, -, V-3,1) (6, +, V-3,1) 
(3, *, V-3,l) (7, -, V-3,1) (8, +, V-3,1) 
(4, *, V-3,l) (9, -, V-3,l) (10, +, V-3,l) 
(11, -, V-3,1) (12, +, V-3,1) (13, *, V-3,1) 
(14, *, V-3,l) (17, -, V-3,l) (18, +, V-3,l) 
(15, *, V-3,1) (19, -, V-3,l) (20, +, V-3,l) 
(21, -, V-3,l) (22, +, V-3,l) (28, *, V-3,l) 
(16, *, V-3,l) (35, -, V-3,1) 
(23, -, V-3,l) (24, +, V-3,1) (25, *, V-3/1) 
(26, *, V-3,1) (29, -, V-3,l) (30, +, V-3,l) 
(27, *, V-3,1) (31, -, V-3/1) (36, +, V-3/1) 
(32, +, V-3,l) (33, -, V-3/1) 
(34, +, V-3,1) 

Texe= 2400 Ils 
Latency = S4 cycle 
Power= 1992 mW 
cost= 100 
TotoalArea= 332au 
Number of Mux::: 6 
Number of Demux= 3 
Number of Register= 9 
Number of Population::: 1200 

Resource allocation 

* =1 
+ =1 
- =1 
f =2 

Figure 35- Output result for Finite Impulse Response filter (FIR) benchmark using M-GENESYS 

implementation 

45 



T1 =4 
T2 =8 12 
T3 =1 16 
T4=3 9 
T5 =2 11 
T6=6 10 
T7 =5 14 
T8=7 13 
T9 =15 17 
TlO =18 
T11 =19 
T12 =20 
T13 =21 
T14 =22 
T15 =23 

Latency= 53 
Area::: 560 
cost= 83 
Number of Population::: 12000 

Resource allocation 
+ =1 
* =1 

Node Priority 
4 8 1 3 16 11 2 6 5 10 12 7 9 13 15 14 17 18 19 20 21 22 23 

Figure 36 - Output result for Finite Impulse Response filter (FIR) benchmark using GA 

implementation 
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Chapter 6 

Conclusions 

Both M-GenESys and GA implementations use genetic algorithms to solve the interdependent 

problem of scheduling and allocation of high level synthesis during the design space exploration. 

The M-GenESys cost function implementation takes into consideration Texe rather than only 

taking Latency as the GA algorithm which makes the implementation more robust and practicaL 

But this comes at the cost of higher CPU execution time. 

M-GenESys also takes into consideration the number of registers, Mux and Demux (other than 

FU) in the total area calculation as opposed to the GA implementation which only takes register 

area. This also have an advantage of minimizing the number ofMux and Demux at slight penalty 

of CPU execution time. 

The chromosome representation of the GA encodes the precedence relationships among the 

tasks, in the input behavioral specification with a topological order-based representation, has 

made the implementation simple and consumes less CPU time compared to the M-GenESys 

which uses a complicated scheduling technique based on the load-factor heuristics. Moreover the 

M-GenESys scheduling selects the best Functional Unit (FU) type, based on the user's defined 

module library. 

Generally, M-GenESys takes lots of practical parameters into consideration which has not been 

consider by the GA implementations. This makes the M-GenESys result more realistic compared 

to the GA implementation. Additionally, the results of the M-GenESys for most benchmarks are 

competitive and even better than GA implementations (Please refer to the M-GenESys paper). 
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