
Implementation of Integrated Design Space

Exploration of Scheduling, Allocation and Binding in

High Level Synthesis using Multi Structure Genetic

Algorithm

By

Michael Gebremariam

Bachelor of Science in

Electrical and Electronics Engineering

Addis Ababa University

Addis Ababa, Ethiopia, 2000

A proj ect report

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010

©Michael Gebremariam 2010

Author's Declaration

I hereby declare that I am the sole author of this project report.

I authorize Ryerson University to lend this project report to other institutions or individuals for

the purpose of scholarly research.

* Signature

Michael Gebremariam

I further authorize Ryerson University to reproduce this project report by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

* Signature

Michael Gebremariam

iii

ABSTRACT

Implementation of Integrated Design Space Exploration of Scheduling, Allocation and

Binding in High Level Synthesis using Multi Structure Genetic Algorithm

Michael Gebremariam, Master of Engineering, 2010

Optimization Problems Research and Application Laboratory (OPR-AL)

Electrical and Computer Engineering Department, Ryerson University

Project Directed By: Dr. Reza Sedaghat,

Department of Electrical and Computer Engineering, Ryerson University

The objective of this project is to develop a software tool which assists in comparison of a work known as

"M-GenESys: Multi Structure Genetic Algorithm based Design Space Exploration System for Integrated

Scheduling, Allocation and Binding in High Level Synthesis" with another well established GA approach

known as "A Genetic Algorithm for the Design Space Exploration of Data paths During High-Level

Synthesis".

Two sets of Software are developed based on both approaches using Microsoft visual 2005,C# language.

The C# language is an object-oriented language that is aimed at enabling programmers to quickly develop

a wide range of applications on the Microsoft .NET platform. The goal of C# and the .NET platform is to

shorten development time by freeing the developer from worrying about several low level plumbing

issues such as memory management, type safety issues, building low level libraries, array bounds

checking, etc. thus allowing developers to actually spend their time and energy working on the

application and business logic.

iv

Acknowledgement

I would like to thank Dr. Reza Sedaghat and Anirban Sengupta for their guidance and support.

I am also grateful to my wife, my daughter and my parents for the sacrifice and constant source

of love and motivation they gave me throughout my life and studies, particularly in times of

hardships and difficulty.

I am also very thankful to my brothers and sisters, who provided me with encouraging words to

accomplish my goals.

v

Table of Contents

Abstract -- i v

Acknowledgement --- v

Table of Contents -- vi

~ist ofFi~res --viii

N omenclature ---xi

Cha p te r 1 In trod u ction --1

Chapter 2 Theory ---3

2.1 Data flow graph ---5

2.2 Resource allocation---6

2.3 Scheduling---6

2.4 Register allocation--7

2.5 Binding---8

2.6 State machine extracting and net- list generation---------------------------------------8

Chapter 3 Genetic algorithms---9

3 .1 Initial population --9

3.2 Encoding of the Chromosome---10

3.3 Crossover Scheme--12

vi

3.4 Mutation Operation---15

3.5 Global Cost Function and Fitness Evaluation Methodology-----------------------15

3.6 T enninating---17

Chapter 4 Software Implementation---19

4.1 Module library --20

4.2 Input File --------------.--21

4.3 Use configurable parameters---23

4.4 Main application software--25

4.5 Reading module library and data flow graph--26

4.6 Generation of the first population---26

4.7 Cross over and mutations --28

4.8 Schedule and binding ---31

4.9 Cost cal cu lati on --32

4.10 T ennination criteria --------------------------------------.----------------------------34

Chapter 5 Results ---35

Chapter 6 Conclusions ---47

References --48

vii

List of Figures

Figure 1 General approach vs. transformational approach

Figure 2 General steps in the behavioral synthesis process

Figure 3.1 Behavioral Specification

Figure 3.2 Dataflow graph

Figure 4 M-GenESys Chromosome encoding scheme

Figure 5 GA Chromosome encoding scheme

Figure 6 Major component of the implementation software

Figure 7 Module library format

Figure 8 Data Flow Graph representation of The Elliptic Wave Filter

Figure 9 Elliptic wave filter (EWF)

Figure 10 User interface for M-GENESYS

Figure 11 User interface for GA

Figure 12 General flow of the main software

Figure 13 First parent generation

Figure 14 Second parent generation

Figure 15 (P3 ... Pn) parent generation

Figure 16 First Pn Parent generation for GA implementation

viii

Figure 17 M-GENESYS crossover for nodal string and resource allocation

Figure 18 One- point topological crossover for GA implementation

Figure 19 Precedence preserving shift mutation for GA implementation

Figure 20 Scheduling scheme for the M-GENESYS

Figure 21 Scheduling algorithm for GA implementation

Figure 22 Latency and TC computation

Figure 23 Left edge algorithm

Figure 24 Number of Mux and Demux computation algorithm

Figure 25 Cost calculation for M-GENESYS

Figure 26 Output result for Elliptic Wave Filter (EWF) benchmark using M-GENESYS implementation

Figure 27 Output result for Elliptic Wave Filter (EWF) benchmark using GA implementation

Figure 28 Fast Fourier Transformation (FFT)

Figure 29 Output result for Fast Fourier Transformation (FFT) benchmark using M-GENESYS

implementation

Figure 30 Output result for Fast Fourier Transformation (FFT) benchmark using GA implementation

Figure 31 Discrete Wavelet Transformation (DWT)

Figure 32 Output result for Discrete Wavelet Transformation (DWT) benchmark using M-GENESYS

implementation

ix

Figure 33 Output result for Discrete Wavelet Transfonnation (DWT) benchmark using GA

implementation

Figure 34 Finite Impulse Response filter (FIR)

Figure 35 Output result for Finite Impulse Response filter (FIR) benchmark using M-GENESYS

implementation

Figure 36 Output result for Finite Impulse Response filter (FIR) benchmark using GA implementation

x

Nomenclature

!-----------------------------------TT~tai-A~~~--~{th~-~~-~o~~~~-~---1

1 A ! 1
f---------------~---------------TTh-~-~~~~~r~e~-a~ai-iab-i~--for -~ysi~-rn--d~-~igni~g--1

t--------------~s~~-------------l---~~-~~~~--~~-~-~~~ibl~---1

f------------------------------i---~
I I : I ALAP I As late as possible I
r---------------~----------------lF~n-~ii~~af~~o~~~~-~---1

: I :
r---------------L-------------TLate~~yofe~;~~ti~-n---1

! ! !
r---------------T~--------------rcy~i~-ii-me-~T~~~-~ti~n_--1

I 1 :
r-------------N---------------TN-~mb-~r~{data-~f~rn~~iS--tob~-p~~~~~~ed---1

r-------------T~-----------TTi;n~p~ri~~r~-fth~ao~F---1

I I 1

[~~~==~-~~--~~~~~~~~rp~~:~~~~~~~e~~~~~:~~~:~~~~~:~~:~~~~~:~~~~~~~~~:~~:~~~:~::~~~~~~~~~~~~~]
I FU I Functional units I
r-----p;:~~~-~~~~-t----Tp~;e~-~~n;t;aint--1

r---T::nstr::;-----p~:~~Z~-tio-~-T-ime~o~~tr~int --1

r--------------p------TT~tafpo;-~~--~~n-~~Pti;~---1

[------------i~:_----------rf~ar-e~-~~~tio; ti~~--1

r----------n-Fc------------r Dat~-Fl~;-G-r~ph---1

[~~=~~~~~-~~~~[~~~~:~~:~~~-:~~~~~~~~~~=~~]

xi

Chapter 1

Introduction

Advances in VLSI technology have made high-level synthesis process more complicated. Recent

advances in high-level synthesis have to find the most effective approach to deal with the

complexity of today's increasing System-on-Chip (SoC) design demand. High-level synthesis

starts from an abstract behavioral description and automatically generates a structural description

of a digital circuit that realizes the desired behavior. High-level synthesis process involves three

interdependent and NP-complete optimization problems:

(i) Operation scheduling

(ii) Resource allocation

(iii)Synthesis

Evolutionary algorithms have been effectively employed to high level synthesis in existence of

conflicting design objectives for finding good tradeoffs in the design space exploration.

Because of the diversity of the parameters, and also due to the variety in architecture for

implementation; the design and development of systems with diverse performance optimization

objective requires broad analysis and assessment of the design space. The system designer has to

follow a divide-and-conquer approach to tackle the large and complex design space problems.

The problems have to be scaled down into a set of manageable and realistic design sets in order

to meet the system performance objectives and functionality. Design space architecture can have

numerous design and implementation alternatives based on the parameters of optimization. For

this reason, selection of the optimal architecture from the design space which satisfies all the

performance objectives is vital, especially in recent generation of System-on-Chip (SoC) designs

1

[7J. As it is always possible to implement different functions of a system on different hardware

components, the architecture design space has become more complex to analyze [6]. In the case

of high level synthesis, performing design space exploration to choose the best candidate

architecture by concurrently satisfying many operating constraints and optimization parameters

is considered the most important stage in the whole design flow. Since the design space is huge

and complex, there needs to be an efficient way to explore the best candidate architecture for the

system design based on the application to be executed. The method for exploration of the best

candidate micro architecture should not only be less in terms of complexity factor and time but

also explore the variant in an efficient way meeting all the specifications provided. The process

of high level synthesis design is very complicated and descriptive and is usually performed by

system architects. Depending on the application, the process of defining the problem, performing

design space exploration and the other steps required for its successful accomplishment are very

time consuming. Modem high level synthesis design flow should be multi-parametric optimized

in terms of area occupied, execution time and power consumption. Furthermore, recent

advancements in areas of communications and multimedia have led to the growth of a wide array

of applications requiring huge data processing at minimal power expense. Such data hungry

applications demand satisfactory performance with power efficient hardware solutions.

Hardware solutions should satisfy multiple contradictory performance parameters such as power

consumption and time of execution. Since the selection process for the best design architecture is

complex, an efficient approach to explore the design space for selecting the best design option is

needed.

2

Chapter 2

Theory

VLSI digital circuit design has becomes more and more complex. In the early 2000's, VLSI

technology was in the range of ten millions logics per chip. But now VLSI technology has

reached densities of billion transistor logics per chip and this trend will be increasing at Moor's

law rate for the next decades. For such complexity, it has become a difficult task to write RTL

description for the system and would be even more challenging for system verification.

The design space exploration embraces a multitude of different optimization scenarios on

varying abstraction levels. Typical parameters of this exploration are timing, power, and area.

Additionally, how to limit this parameter and how to find or approximate Pareto Points in the

Design Space quickly falls in the realm of design space exploration.

High-Level-Synthesis tools are developed to solve all these optimization problems. High-Level

Synthesis is a translation process from behavioral description into RTL description in an

automatic way. HLS is a complex problem. It is either partitioned into several sub-tasks and

executes the tasks one by one, or partitioned into a sequence of transformation steps each of

which make a small change to the intermediate result of the earlier step. The former one is the

general approach to implement HLS. The later one is called transformational approach. The

general approach is easier to implement than the transformation approach. Most HLS tools use

the general approach to synthesize.

3

Allocation

Scheduling

Binding

Figure 1- General approach vs. transfonnational approach

Behavioral
Description

DFG
Generation

Resource
Allocation

Scheduling ~
Register

Allocation
!-+

Binding

Netlist
(Scheduled)

Figure 2- General steps in the Behavioral Synthesis process
4

Data Path

-. and state -+ Netlisting
machine (Final)

extraction

2..1 butu./loH' gruph

The first step in High-Level-Synthesis is to translate the behavioral description into an

intermediate representation as shown in Figure 3.1 and Figure 3.2. A Data Flow Graph (DFG) is

commonly used as intermediate representation to capture the behavior such as data dependence,

control structure etc. Figure 3.2 shows an example of DFG. At this step, data-based

transformations and control-based transformations are used to optimize the intermediate

representation. Data-based transformations include tree-height reduction, constant and variable

propagation, common sub-expression elimination, dead-code elimination, operator-strength

reduction, code motion etc. And control-based transformations include model expansion,

conditional expansion, loop expansion, block-level transformations etc [24].

(A X (8 X C) - D X (E x F)) + (D X (E X F) - G X (H + I))

Figure 3.1 - Behavioral Specification

5

A

Figure 3.2 - dataflow graph

2.2 Resource allocation

y

It is to decide how many and which kind of resources can be used in the design. These are the

resource constraints. For example, in Figure 3.2, 3 multiplier, 1 adder and 2 subractor could be

allocated. If the resource allocation is not sufficient, the operation can't be scheduled. Also if

there are less resources and the cycle time constraint is small the scheduling will fail. This

implies that allocation and scheduling are correlated. There may be some reiteration among them

as well.

2.3 Scheduling

It is the most important step of high level synthesis. The quality of scheduling influences the

final result. It largely determines the trade-off between area and latency. Scheduling is used to

6

determine start time of each operation according to data dependence, resource constraints and

timing constraints. There are three main categories of scheduling problem: scheduling without

constraints, scheduling under resource constraints and scheduling under time constraint. Various

kinds of algorithms can be used to tackle these problems. The algorithms can also be divided into

two categories: the exact ones and the heuristic ones. Integer linear program (ILP) [25]

formulation is an exact solution for both resource and timing constraints scheduling problems -

which only be suitable for small design problems. Its complexity increases exponentially as the

scale of the design increases. There are many heuristic algorithms to solve these problems in the

acceptable accuracy. ASAP (as soon as possible) and ALAP (as late as possible) [25] algorithms

are examples of the simplest constructive algorithms that can be used to solve scheduling

problems. List scheduling [25] and Forced-directed [25] scheduling resolve the scheduling

problems under resource constraints. Genetic algorithm is also one of the heuristic algorithms

used the design space optimization problem. [2] and [1] use Genetic algorithm with multi

chromosome.

2.4 Register allocatio1l

After scheduling, if a data transfer crosses the cycle boundary it means that it has to be stored in

memory or a register. There is a possibility of sharing the register, if the lifetime of the data has

not overlapped. The lifetime of the data refers to the interval from its first appearance to the last

use. There are algorithms based on the graph theory to serve the register sharing such as left

edge algorithm [2], coloring conflict graph etc. Register sharing can significantly save area cost.

In left-edge algorithm, all data transfers between control steps (which represent intermediate

variables in the input algorithmic description) are stored in registers. At the end, all output data

7

are also saved in registers. The number of registers required in a data path implementation is

determined by the maximum number of concurrent data transfers between any two control steps,

which in tum relies on the operation schedule [2]. Hence, the number of registers needed in a

data path can be determined only after operation scheduling is completed. The birth time of a

data transfer is the control step in a schedule when it is created by a producer. Likewise, the end

time of a data transfer is the control step when it is used by the last consumer.

2.5 Binding

Binding is the process of grouping each scheduled operation with a concrete component.

Allocation insures that there are enough resources for scheduling. But at this stage, it hasn't been

decided which resource to be used for which operation. Binding resolves this issue and

influences the number of multiplexers and quantity of interconnect that needs to take place. For

example, in Figure 3.2 after scheduling if we have 1 multipler,1 adder and 1 subtractor, during

binding node (1, 2,4,5), (7,8) and (3,9) will bind together.

2.6 State machine extracting and net- list generation

The final step is extraction of data path and state machine and also generation of the control unit.

Finite State Machine is an effective method to generate a control unit. In HLS, generation of

FSM as a control unit is done automatically. But if we use RTL design methodology, designers

have to complete the process manually. This is tedious and error-prone job at the same time.

The last step is net-list generation. The net-list generated by this step is used to transfer the

design data to another tool, such as the RTL synthesizer.

8

Chapter 3

Genetic algorithms

Genetic algorithms are stochastic combinatorial optimization techniques based on evolutionary

improvements. It operates on a population of knowledge structures, chromosomes that represent

candidate solutions. On every generation, a number of chromosomes with the worst fitness

values are removed from the population and replaced by new chromosomes obtained through

applying genetic operators. The execution of the algorithm is iterated until either the best

chromosome, representing an optimal solution, is found or a predetermined terminating

condition such as maximum number of generations or maximum number of fitness evaluations

has been satisfied. In the later case, the chromosome with the best fitness in all generations is

considered as a final solution.

An implementation of a genetic algorithm begins with a population of (typically random)

chromosomes. One then evaluates these structures and allocates reproductive opportunities in

such a way that those chromosomes, which represent a better solution to the target problem, are

given more chances to '''reproduce'' than those chromosomes with poorer solutions. The

"goodness" of a solution is typically defined with respect to the current population.

3.1 Initial population

In Genetics algorithm initial population are usually generated randomly. However in some

circumstances the initial population can be acquired from:-

• A previously saved population

9

• A set of solutions provided by a human expert

• A set of solutions provided by another heuristic algorithm

The initial population in both [2] and [1] are generated randomly.

3.2 Encoding o/the Chromosome

Usually there are only two main components of most genetic algorithms that are problem

dependent: problem encoding and evaluation function.

Consider a parameter optimization problem where we must optimize a set of variables either to

maximize or to minimize cost or some measure of error. The goal is to set the various parameters

so as to optimize an output. In more traditional terms, we wish to minimize (or maximize) some

function Fl(Xl,X2 ... Xm)

Most users of genetic algorithm typically are concerned with problems that are nonlinear. This

also often implies that it is not possible to treat each parameter as an independent variable which

can be solved in isolation from the other variables. There are interactions such that the combined

effects of the parameters must be considered in order to maximize or minimize the output of the

black box.

Possible individual's encoding can be represented as Bit strings, Real numbers, Permutations

of element, Lists of rules (Rl R2 R3 ... R22 R23) etc.

When choosing an encoding method the data structure has to be as close as possible to the

natural representation. If possible, make sure that all genotypes correspond to feasible solutions

and also genetic operators preserve feasibility.

10

[1] Uses 'nodal string' - contains the load-factor values of each node which will detennine the

priority of the nodes during scheduling. The 'resource allocation string' contains list of integers

which indicates the maximum number of resources allowed during scheduling. Figure 4 shows

encoding of the DFG based on [1] assuming execution time for all operation is lee.

Sub 12 12

Add
14 11

Mul 14 4 3 3 3

A. Nodal string representation example

1ff A S F

B. Resource allocation string example

Figure 4 - M-GenESys Chromosome encoding scheme

a. Node priority field

14[Ml 12[A) 12[S)

b. Resource allocation field

Figure 5 - GA Chromosome encoding scheme

11

.l..J Crossover Scheme

Genetic algorithms have the recombination operation which probably comes closest to the

natural modeL When performing single-point crossover, both parental chromosomes are split at a

randomly determined crossover point. Subsequently, a new child genotype is created by

appending the second part of the second parent to the first part of the first parent. In two-point

crossover, both parental genotypes are split at two points and a new offspring is created by using

part number one and three from the first, and the middle part from the second parent

chromosome. The n-point crossover operation is also called multi-point crossover. For fixed

length strings, the crossover points for both parents are always identicaL Many crossover

techniques exist for organisms which use different data structures to store themselves.

One-point crossover: - A single random crossover point on both parents' organism strings is

selected. All data beyond that point in either organism string are swapped between the two parent

organisms. The resulting organisms are the children:

Parent1: XXX!XXXXXxx

Parent2: YVVIVVYYYYY

Offspring1: XXX I YYYYYYY

Offspring2: YYYIXXXXxxx

12

Two-poinl crossover. - Two-point crossover calls for two random points to be selected on the

parent organism strings. Everything between the two points is swapped between the parent

organisms, rendering two child organisms:

Parent1: XXX!XXXXXXX!XXXXX

Parent2: yyy! yyyyyyy! yvyyy

Offspring1: XXXIYYYYYYY!XXXXX

Offspring2: YYY! XXXXXXX! yyyvy

CuI on" .J}7/ice: - Another crossover variant, the "cut and splice" approach, results in a change in

length of the children strings. The reason for this difference is that each parent string has a

separate choice of crossover point.

Parent1: XXX!XXXXXXXXXXXX

Pa rent2: YYYYYYYYYY! yyyyy

Offspring!: XXX I YYYYYYYYYYYY

Offspring2: YVYYYYYYYYIXXXXXXXXXXXX

13

{/j/I/Orm Cro-iYOJ'er und Hu!/ [lnl/OI'/I/ CrossOJ'er. In both these schemes, the two parents are

combined to produce two new offspring. In the uniform crossover scheme, individual bits in the

string are compared between two parents. The bits are swapped with a fixed probability,

typically 0.5.

In the half uniform crossover scheme, exactly half of the non-matching bits are swapped. Thus

first the Hamming distance (the number of differing bits) is calculated. This number is divided

by two and from the result, analyzes how many of the bits do not match between the two parents.

If any, they will be swapped.

Crossover for Ordered Chromosomes: Depending on how the chromosome represents the

solution, a direct swap may not be possible. One such case is when the chromosome is in an

ordered list, such as an ordered list of the cities to be travelled by the traveling salesman

problem. A crossover point is selected on the parents. Since the chromosome is an ordered list, a

direct swap would introduce duplicates and remove necessary candidates from the list. Instead,

the chromosome up to the crossover point is retained for each parent. The information after the

crossover point is ordered as it is ordered in the other parent. For example, if our two parents are

ABCDEFGHI and IGAHFDBEC and our crossover point is after the fourth character, then the

resulting children would be ABCDIGHFE and IGAHBCDEF.

[2] and [1] use One-point crossover in all the strings.

14

3. 4 Mutotion Operotion

Mutation is an important method for preserving the diversity of the solution candidates by

introducing small and random changes into them. In fixed-length string chromosomes, this can

be achieved by randomly modifying the value of a gene.

A common method of implementing the mutation operator involves generating a random

variable for each bit in a sequence. This random variable tells whether or not a particular bit will

be modified. This mutation procedure, based on the biological point mutation, is called single

point mutation. Other types are inversion and floating point mutation. When the gene encoding is

restrictive as in permutation problems, mutations types will be swaps, inversions and scrambles.

The purpose of mutation in GAs is preserving and introducing diversity. Mutation should allow

the algorithm to avoid local minima by preventing the population of chromosomes from

becoming too similar to each other, thus slowing or even stopping evolution. This reasoning also

explains the fact that most GA systems avoid only taking the fittest of the, population in

generating the next but rather a random (or semi-random) selection with a weighting toward

those that are fitter.

3.5 Global Cost Function and Fitness Evaluation ~fetllOdology

A fitness function is a particular type of objective function that prescribes the optimality of a

solution (that is, a chromosome) in a genetic algorithm so that that particular chromosome may

be ranked against all the other chromosomes. Optimal chromosomes, or at least chromosomes

which are more optimal, are allowed to breed and mix their datasets by any of several

techniques, producing a new generation that will (hopefully) be even better.

15

An ideal fitness function correlates closely with the algorithm's goal, and yet may be computed

quickly. Speed of execution is very important, as a typical genetic algorithm must be iterated

many, many times in order to produce a usable result for a non-trivial problem. This is one of the

main drawbacks of GAs in real world applications and limits their applicability in some

industries. It is apparent that amalgamation of approximate models may be one of the most

promising approaches, especially in the following cases:

• Fitness computation time of a single solution is extremely high

• Precise model for fitness computation is missing

• The fitness function is uncertain or noisy

Two main classes of fitness functions exist: one where the fitness function does not change, as in

optimizing a fixed function or testing with a fixed set of test cases; and one where the fitness

function is mutable, as in niche differentiation or co-evolving the set oftest cases.

Another way of looking at fitness functions is in terms of a fitness landscape, which shows the

fitness for each possible chromosome.

Definition of the fitness function is not straightforward in many cases and often is performed

iteratively if the fittest solutions produced by GA are not what are desired. In some cases, it is

very hard or impossible to come up even with a guess of what fitness function definition might

be. Interactive genetic algorithms address this difficulty by outsourcing evaluation to external

agents (normally humans).

16

3. tf TerlHinuting

Termination is the criterion by which the genetic algorithm decides whether to continue

searching or stop the search. Each of the enabled termination criterion is checked after each

generation to see if it is time to stop. Genetic Server and Genetic Library include the following

types of terminations:

Generation Number - A termination method that stops the evolution when the user-specified

maximum number of evolutions have been run. This termination method is always active.

Evolution Time - A termination method that stops the evolution when the elapsed evolution time

exceeds the user-specified max evolution time. By default, the evolution is not stopped until the

evolution of the current generation has been completed, but this behavior can be changed so that

the evolution can be stopped within a generation.

Fitness Threshold - A termination method that stops the evolution when the best fitness in the

current population becomes less than the user-specified fitness threshold and the objective is set
,

to minimize the fitness. This termination method also stops the evolution when the best fitness in

the current population becomes greater than the user-specified fitness threshold when the

objective is to maximize the fitness.

Fitness Convergence - A termination method that stops the evolution when the fitness is deemed

as converged. Two filters of different lengths are used to smooth the best fitness across the

generations. When the smoothed best fitness from the long filter is less than a user-specified

percentage away from the smoothed best fitness from the short filter, the fitness is deemed as

converged and the evolution terminates.

17

Popfdolion Conwrgence- A tennination method that stops the evolution when the population is

deemed as eonverged. The population is deemed as converged when the average fitness across

the current population is less than a user-specified percentage away from the best fitness of the

current population.

Gene Convergence - A tennination method that stops the evolution when a user-specified

percentage of the genes that make up a chromosome are deemed as converged. A gene is deemed

as converged when the average value of that gene across all of the chromosomes in the current

population is less than a user-specified percentage away from the maximum gene value across

the chromosomes.

The tenninating criterion for both [1] and [2] is user defined Number of Generation.

18

Chapter 4

Software Implementation

The software implementation for the M-GENESYS and GA consists of five major components

as shown in Figure 6. These are:-

• Module library

• Input file

• User configurable parameters

• Main application software

• Output result

Module ,

library

Main application software
Input file Output result

User input
config

Figure 6 - Major components of the implementation software

19

4.1 Module library

The module library is user configurable values which contains the following resource

information: -

1. Versions of Functional Units

2. Maximum resources available for each version of the Functional Units(FU)

3. Clock cycle of each available FUs

4. Power consumption per unit area at a specific frequency

S. Total area of the FUs

adder
1,50MHZ,3mW,100MHZ,6mW,200MHZ,12mW,50au,lcc,1
2,50M HZ,3mW, 100M HZ,6mW ,200M HZ,12mW,30a u,2cc,1
3,50M HZ,3mW ,100M HZ,6mW,200M HZ,12mW, lSau,3cc,2
subtractor
1,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,SOau,lcc,0
2,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,30au,2cc,0
3,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,lSau,3cc,0
multiplier
1,50MHZ,3mW,100MHZ,6mW,200MHZ,12mW,120au,2cc,0
2,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,80au,3cc,1
3,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,SOau,4cc,1
comparator
1,SOMHZ,3mW,100IVlHZ,6mW,200IVlHZ,12mW,50au,lcc,0
2,SOMHZ,3mW,100MHZ,6mW,200MHZ,12mW,30au,2cc,0
3,50MHZ,3mW,100MHZ,6mW,200MHZ,12mW,15au,3cc,0

Figure 7 - Module library fonnat

A sample of the module library format is shown in Figure 7. On this particular module library,

there is only one adder of version 1 and this adder takes SOau area unit and the execution time for

this adder is 1 cc. This unit consumes 3mw per unit area at SOMHZ.

20

4.2 Input File

The input file contains the Data Flow Graph (DFG) which represent the behavioral description of

the data path in ASAP (as soon as possible) fonnat.

+,1,1,1,+,1,1,2
+,2,2,3
+,3,3,4
+,4,4,5
,5,5,6,,5,5,7
+,1,6,8,+,7,7,9
+,1,8,10, +,9,9,11, + ,3,9,12
* ,10,10,13, +,8,11,14, * ,12,12,15
+ ,13,13,16, +,2,15,17
+,16,16,18, +,8,16,19,+,9,17,20, +,2,17,21
* ,18,18,22,+,19,19,23,+,20,20,24, * ,21,21,25
+,16,22,26, *,23,23,27, *,24,24,28,+,25,25,29
+,27,27,30, +,28,28,31, +,17,29,32
+,23,30,33, +,31,31,34

Figure 8 - Data Flow Graph representation of The Elliptic Wave Filter

,
Figure 8 shows the representation of the Elliptic Wave Filter benchmark DFG which is shown in

Figure 9. Each node is represented with the following fonnat:-

Functional unit, inputl, input2, output

The Functional Unit can be adder, multiplier, subtractor, and comparator. If either inputl or input

2 are nodes which don't have parents, they should be represented by the letter I as shown in

Figure 8. This infonns the software that these are inputs to the DFG from outside. This input

fonnat was chosen for its simplicity in implementation compared to a graphical one.

21

/
I'

/
I'

/

I'
/ ,

I'
I'

,
/

-~ 'B' I ~' -... .. ----
"..... ~OP ",:IS

Figure 9 - Elliptic wave filter (EWF)

22

\19

~:o

4.3 User configurable parameters

". M-<lenESy> V-7

File

Figure 10- User interface for M-GENESYS

The following parameters can be configured by the user:-

W1 05

W2 05

FIegar .AIuIau) 10

lUe}natau)

Oonu< JnaCou) 3

No I-.on(N) 1000

I _ WI and W2 - The weight values used in the cost calculation which either favor Texe or

power/area_ W I is for T ex\! and W2 i:. for power/area

2_ T exe constraint - User define Texe user constraint

3_ Power constrain - User define power constraint

4. Register, Mux, Demux unit areas- Unit area for Registers, Mux and Demux

7.3

5. Number o/iteratio1l - Is used in the Tcxc calculati on (Tm calcu lation is descri bed in[I])

6. Number 0/ Gelleratioll - Is the number of generation explored before the geneti c

algorithm tenl1inates

-

~ Genetic Algorithm for Design Space Exploration [;][QJ~
Fie

I Input Paramenters

\.1/1 ~
\.1/2 @9 ,

Area Constraint [C-J
Latency Constraint D
Register Area(au) ~

D
N umber of G ener ation

Run

Figure 11 - User interface for GA

24

4.4 l'\lain application software

The mam application software flow is shown in Figure 12. In this section a detailed

implementation of the each module will be explained.

(Start)

!
Read M odul. IIbray and

Data flow graph Input

!
Generate the first population

I

!
Preform e crossover with higher probablity

!
preform mutation with low pro bab Ilty

1
schedule and binding

1
Calculate Cost

1
Seleet the best offsprings

1
Is GeneraUon number

equal to the user specified?
0

T
Yes

* (Display result)

Figure 12 - General flow of the main software

25

4.5 Reading module library and data flow graph

During start up, the module library file is read and parsed. The infonnation is stored in the

memory for later use. The user also needs to select a specific Data Flow Graph (one of the

benchmarks) on which the genetic algorithm will be prefonned.

4.6 Generation of the first population

In the case of the M-GENESYS, initially a total of 40 parents are created based on the

following algorithm. PI is created as follows:-

• Encode the first parent (Pl) of the nodal string using the load factor (a)
metric based on the ASAP schedule with maximum resources.

Load factor computation for each node

For each node in the DFG v[tJ.:::O to v[i}= max
While(end of tree)

go down the DFG tree to the next node
Load factor (LF)= latency of the FU
LF= LF + latency of the FU
v[iLLF= LF

Endwhi/e
Endfor

• Encode the first parent (Pl) of the resource allocation string with
maximum resources acquied from the ASAP schedule

Figure 13 • First parent generation

26

The second parent is created as follows:-

• Create the second parent nodal string using load factor fP) calculated as: L ASAP (max)_a (oi)

based on minimum resources.

• Resource al/ocatin string is created with the minimum resource

Figure 14 - Second parent generation

The remaining parents are created as follows:-

• Create the remaing of the parent (P3 ... Pn) of the nodal string based an the perturbation function =
fa + P)/2 :t p; where 'lJ'is a random value between 'a' and '/1'.

for ;=3 to ;=Pn
for each nodal stringof the workload

generate random number p between 'a' and '/1'.
nodal string =(a + P)/2 :t P

End for

• Resource allocation chramosome for the remianing parents. Randomly select two nodes vi and vj

from the chromosome that represent the resource al/ocaltion then generate a rondom value

between vi and vj

for i=3 to i=Pn
for each resource allocation

generate random number k between vi and vj

resource allocation =k
End for

Figure 15 - (P3 ... Pn) parent generation

27

In the case of the GA algorithm the first Pn parents are created as follows:-

For i =0 to i :: max parent
While (node priority field is complete)

Generate random number
if Random number topologically correct

add to the node priority field
end while

End/or

Figure 16 - First Pn Parent generation for GA implementation

4.7 Cross over and mutations

Crossover for M-GENESYS and the GA implementations are as follows:-

Algorithm M-GENESYS Crossover
Radoma/y generate an integer r, where 1 <r<N, and N= number of tasks

For i=l to r do
Of/springl[i]=parentl[ij
Of/spring2[i]=parent2[i]

End/or
For i=R to n do

Of/springl[iJ::parent2[i]
O//spring2[i]=parentl[i]

End for

Figure 17 - M-GENESYS crossover for nodal string and resource allocation

28

Algorithm One·Point Topologicol Crossover

Radomaly generate an integer r, where 1<r<N, and N= number of tasks
For i=1 to r do

Offspring 1 {i]=parent1[ij
Offspring2{i]=parent2[ij

En d for
Pos1= r+1
Pos2=r+1
For j=l to N do

If offspringl does not contoin parent2[jJ then
Offspring1[poslj= paent2[j]
Pos1 = pos2 +1

End if
En d for
For j=l to N do

If of!spring2 does not contain parent [jJ then
Offspring2[pos2J= parentl[jJ

Pos2=pos2+ 1
End if

End for

Figure 18 - One-point topological crossover for GA implementation

The Mutation scheme proposed in [1] used for the cost calculations

Algorithm Precedence Preserving Shift Mutation
Randomly pick a task T to shift
Compute p{Pmax]and p[SMINJ for task T
Randomly pick a postion r, where p{PMAX] < r < p[SMIN}

Shift task T to positon r

Figure 19 - Precedence preserving shift mutation for GA implementation

29

4.8 Schedule and Binding

Reload the value of
the FUs from the resource allocaton

Goto the next Get N[I]

Yes

Decrease FU(N[ill

Yes

yes

Figure 20 - Scheduling scheme for the M-GENESYS
30

N[jJ

Node issheduled and assioged
a time-slot T

Yes

Yes

Golo the next time-slot
T++

N[i]

No

Scheduling algorithm for GA algorithm is shown in Figure 21

Algorithm:- Modified list scheduling algorithm
Input: Dataflow Graph, Chromosome
Control step = 1
While not all tasks scheduled

For i= 1 to N do
If p{i] is unscheduled and a corresponding functional unit available then

Assign task p[i] to the functional unit in the current contral step
End if

Endfor
Control step = control step +1

End while
Schedule length = control step
Return schedule length

Figure 21 - scheduling algorithm for GA implementation

4.9 Cost calculation

The cost function used during implementation has been adopted from authors work in [1] and [2]
,

as shown below. Please refer to [1] and [2] where the authors have explained in detail about the

cost function.

[1]

[2]

31

Implementation of Latency and Tc is shown in Figure 22. TEXE is only required for the M~

GENESYS implementation. The GA implementation only uses latency for time calculation.

Algorithm :- T lATENCY and Tc computation
Input: Scheduled Dataflow Graph, Resource allocation string

For i=O to Max_Node

Do {

{

}

N[i].tl = cycle_time fram module library
N[i]. t2 = cycle_ time from module librory

For i=O to Max_Node
{

}

If N[i].tl>O AND no node higher in the DFG has tl>O AND free FU available AND
parentl[N[i]].tl::;: 0 AND parent2[N[ilJ 0
{

N[i].tl-
}

If NfiJ tt 0 for at/east one node in DFG

T lATENCY++

For i=O to Max_Node
{

}
T++

If N[i].t2>0 AND no node higher in the DFG has t2>0 AND free FU available AND
parentl{N{ill. t2 ::;: 0 AND parent2[N[iJ] = 0
{

N{iJ.t2-
}

} while all the nodes in the DFG are analysed

Tc::;: T - T lATENCY

Figure 22 - Latency and Tc computation

32

Both M-GENESYS and GA implementation use Left Edge Algorithm to detennine the number

of registers. Figure 23 shows a pseudo code for the Left Edge Algorithm

Algorithm;- Left Edge Algorithm
Input: Scheduled Dataflow Graph

Sort data transfers in increasing order of their birth time
K = 1, where k is the register count
Do{

Assign the first unassinged data transfer to regiser k;
Scan the sorted list for the next unassigned data transfer whose birth time

Is .cthe end time of the pervious value;
Assign this data transfer to the current register;
Scan the list until no more non- overlapping data transfers can share the same register;
k=k+1

} unitl all data transfers are assigned to registers;

Figure 23 - Left Edge Algorithm

Number of Mux and Demux calculation is depicted in Figure 24. This calculation is used by the

M-GENESYS implementation only.

Algorithm:- Number of mux and demux determination
Input: Schedule DataFlow Graph
Mux=O and Demux=O,i =0
Do{

Get the number N of nodes assigned to a FUri)

IfN> 1
{
Mux = Mux + 2

Demux = Mux + 1
}

i=i+1
} Untill all the FU in the scheduled DFG are done

Figure 24 - number ofMux and Demux computation algorithm

33

For ;=0 to j:::: max_offspring
{

2 P{iJ:::: P_oJfspring
3 Texe[ij =Texe_offspring

}
sort(P[iJ) in increasing order

sort(Texe[IJ) in increasing order
select the highest value of Pmax
select the highest value for Texec_max
calculate Global cost using the equations [1} and [2}

Figure 25 - Cost calculation for M-GENESYS

Cost calculation for the GA implementation follows the same method in determining the Lmax

and Amax which are calculated during scheduling.

4.10 Termination criteria

The tennination stage for both M-GENESYS and GA implementation is user configurable. As

shown in Figure 10 and Figure 11 depending on the number entered in the "Number of

Generation" text box, the program terminates the iteration of the generation and displays the

least cost solution on the user interface display textbox.

34

Chapter 5

Results

In this section the results for the following benchmarks from [1] are shown:-

• Elliptic Wave Filter (EWF) shown in Figure 9

• Discrete Wavelet Transformation (OWT) shown in Figure 28

• Fast Fourier Transformation (FFT) shown in Figure 31

• Finite Impulse Response Filter (FIR) shown in Figure 34

During generation of the results, a default value of user interface was taken except for the

generation number. 10 generation is used for M-GenESys and 100 generation is used for GA.

35

Tl=1 2
12=3
T3=4
T4=5
T5 =7
T6 =6 9
T7 =8 12
T8 =10 11 15
T9 =13 14 17
TlO=20 21
Tll =16 24
Tl2 =19 28
Tl3 =23 31
Tl4 =18 27
T15 =22 30
Tl6 =26 33

Latency= 460
Area= 160
cost= 69

25
29

32
34

Number of Population:::: 12000

Resource allocation
+ =2
* ::::1

Node Priority
1 2 3 4 5 7 6 8 9 12 10 11 15 13 17 20 21 25 14 24 29 28 16 19 31 23 18 32 27 22 34

30 26 33

Figure 26 - output result for Elliptic Wave Filter (EWF) benchmark using M-GENESYS

implementation

36

Processing
Scheduling solution

(1, +, V-3,l) (2, +, V-3,2)
(3, +, V-3,l)
(4, +, V-3,2)
(5, +, V-3,l)
(7, *, V-3,l)
(6, *, V-3,1) (9, +, V-3,2)
(8, +, V-3,2) (12, +, V-3,l)
(10, +, V-3,l) (11, +, V-3,2) (15, *, V-3,1)
(13, *, V-3,l) (14, +, V-3,2) (17, +, V-3,1)
(20, +, V-3,1) (21, +, V-3,2)
(16, +, V-3/2) (24, +, V-3/1) (25, *, V-3,l)
(18, +, V-3/2) (19, +, V-3,1) (28, *, V-3,l)
(22, *, V-3,l) (23, +, V-3,l) (29, +, V-3,2)
(26, +, V-3,2) (27, *, V-3,l) (31, +, V-3,l)
(30, +, V-3,1) (32, +, V-3/2)
(33, +, V-3,l) (34, +, V-3,2)

Texe= 906 ~s
Latency = 56 cycle
Power= 969 mW
cost= 37
TotoalArea= 323au
Number of Mux= 6
Number of Demux= 3
Number of Register= 9
Number of Population= 360

Resource allocation

* =1
+ =2
f =1

Figure 27 - output result for Elliptic Wave Filter (EWF) benchmark using GA implementation

37

__ G;o0~o~
--- ~ ------- ~ " ----- "",,'" --

12

'36

-- _...... ,"',' ,..---"... --- -- e/'''' .. '" .. -----_ _-: *" ~.,:-----
.... _- NOP --:--

\31

Figure 28 - Fast Fourier Transfonnation (FFT)

38

Processing
Scheduling solution

(1, *, V-3,1)
(2, *, V-3,1) (5, -, V-3,1) (6, +, V-3,l)
(3, *, V-3,1) (7, -, V-3,1) (8, +, V-3,l)
(4, *, V-3,l) (9, -, V-3,1) (10, +, V-3,1)
(11, -, V-3,1) (12, +, V-3,1) (13, *, V-3,l)
(14, *, V-3,l) (17, -, V-3,1) (18, +, V-3,1)
(19, -, V-3,l) (20, +, V-3,ll (25, *, V-3,l)
(28, *, V-3,l) (29,·, V-3,l)
(16, *, V-3,l) (35,·, V-3,l)
(15, *, V-3,l) {23, -, V-3,ll (24, +, V-3,l)
(21, -, V-3,l) (22, +, V-3,l) (26, *, V-3,l)
(27, *, V-3,1) (30, +, V-3,l) (31,·, V-3,l)
(33, -, V-3,l) (34, +, V-3,l)
(32, +, V-3,l)
(36, +, V-3,l)

Texe= 2400 Ils
latency = 57 cycle
Power= 1992 mW
cost= 100
Totoal Area= 332au
Number of Mux= 6
Number of Demux= 3
Number of Register= 9
Number of Population::: 1200

Resource allocation

* =1
+ =1

- =1
f =2

Figure 29 - Output result for Fast Fourier Transformation (FFT) benchmark using M-

GENESYS implementation

39

T1 =1 2
T2 =3 4 5 678
T3 =9 10 11 12 13 14
T4 =15 16 17 18 19 20
T5 =21 22 23
T6 =26 28 29
T7 =31 32 35

Latency= 124
Area= 1300
cost= 75

24 25 27
30 33 34
36

Number of Population= 12000

Resource allocation

* =2
- =2
+ =2

Node Priority
1 5 2 4 3 11 9 6 10 16 8 7 15 12 14 24 20 23 21 13 19 17 22 18 25 30 29 27 33 28 34

36 26 31 32 35

Figure 30 - output result for Fast Fourier Transformation (FFT) benchmark using GA

implementation

40

e'op \'~ .
",,- -.,..." --

..,." - --I ...-

Figure 31 • Discrete Wavelet Transfonnation (D WT)

41

Processing
Scheduling solution

(1, *, V-3,1)
(2, *, V-3,l) (6, +, V-3,l)
(3, *, V-3,l) (10, +, V-3,2)
(5, *, V-3,1) (7, +, V-3,1)
(4, *, V-3,1) (9, +, V-3,2)
(8, +, V-3,1) (11, *, V-3,1)
(12, +, V-3,2)
(13, *, V-3,l)
(14, +, V-3,1)
(15, *, V-3,1)
(16, +, V-3,2)
(17, +, V-3,1)

Texe= 203 [..lS

Latency = 44 cycle
Power= 1566 mW
cost= 100
TotoalArea= 261au
Number of Mux= 6
Number of Demux= 3
Number of Register= 10
Number of Population= 1200

Resource allocation
* =1
+ =2
f =2

Figure 32 - Output result for Discrete Wavelet Transfonnation (DWT) benchmark using M-

GENESYS implementation

42

Tl =1
T2 =3 6
T3=4 7
T4=2 8
T5 :5 10
T6 =9 11
T7 =12
T8=13
T9 =14
TlO =15
Tl1 =16
Tl2 =17

Latency: 44
Area: 500
cost= 77
Number of Population: 12000

Resource allocation
* =1
+ =1

Node Priority
1 3 4 7 6 2 5 8 10 9 11 12 13 14 15 16 17

Figure 33 - Output result for Discrete Wavelet Transformation (DWT) benchmark using GA

implementation

43

__ _ --6'op ,,0 -- - , --- "",.""..,- ,-' - / , " '
\' I + v2 / I \""",

/ I \"" "
\ "" " "" " ,,' " " " " " " ' , ""

" " ,

... 16

Figure 34 - Finite Impulse Response filter (FIR)

44

Processing
Scheduling solution

(1, *, V-3,l)
(2, *, V-3,1) (5, -, V-3,1) (6, +, V-3,1)
(3, *, V-3,l) (7, -, V-3,1) (8, +, V-3,1)
(4, *, V-3,l) (9, -, V-3,l) (10, +, V-3,l)
(11, -, V-3,1) (12, +, V-3,1) (13, *, V-3,1)
(14, *, V-3,l) (17, -, V-3,l) (18, +, V-3,l)
(15, *, V-3,1) (19, -, V-3,l) (20, +, V-3,l)
(21, -, V-3,l) (22, +, V-3,l) (28, *, V-3,l)
(16, *, V-3,l) (35, -, V-3,1)
(23, -, V-3,l) (24, +, V-3,1) (25, *, V-3/1)
(26, *, V-3,1) (29, -, V-3,l) (30, +, V-3,l)
(27, *, V-3,1) (31, -, V-3/1) (36, +, V-3/1)
(32, +, V-3,l) (33, -, V-3/1)
(34, +, V-3,1)

Texe= 2400 Ils
Latency = S4 cycle
Power= 1992 mW
cost= 100
TotoalArea= 332au
Number of Mux::: 6
Number of Demux= 3
Number of Register= 9
Number of Population::: 1200

Resource allocation

* =1
+ =1
- =1
f =2

Figure 35- Output result for Finite Impulse Response filter (FIR) benchmark using M-GENESYS

implementation

45

T1 =4
T2 =8 12
T3 =1 16
T4=3 9
T5 =2 11
T6=6 10
T7 =5 14
T8=7 13
T9 =15 17
TlO =18
T11 =19
T12 =20
T13 =21
T14 =22
T15 =23

Latency= 53
Area::: 560
cost= 83
Number of Population::: 12000

Resource allocation
+ =1
* =1

Node Priority
4 8 1 3 16 11 2 6 5 10 12 7 9 13 15 14 17 18 19 20 21 22 23

Figure 36 - Output result for Finite Impulse Response filter (FIR) benchmark using GA

implementation

46

Chapter 6

Conclusions

Both M-GenESys and GA implementations use genetic algorithms to solve the interdependent

problem of scheduling and allocation of high level synthesis during the design space exploration.

The M-GenESys cost function implementation takes into consideration Texe rather than only

taking Latency as the GA algorithm which makes the implementation more robust and practicaL

But this comes at the cost of higher CPU execution time.

M-GenESys also takes into consideration the number of registers, Mux and Demux (other than

FU) in the total area calculation as opposed to the GA implementation which only takes register

area. This also have an advantage of minimizing the number ofMux and Demux at slight penalty

of CPU execution time.

The chromosome representation of the GA encodes the precedence relationships among the

tasks, in the input behavioral specification with a topological order-based representation, has

made the implementation simple and consumes less CPU time compared to the M-GenESys

which uses a complicated scheduling technique based on the load-factor heuristics. Moreover the

M-GenESys scheduling selects the best Functional Unit (FU) type, based on the user's defined

module library.

Generally, M-GenESys takes lots of practical parameters into consideration which has not been

consider by the GA implementations. This makes the M-GenESys result more realistic compared

to the GA implementation. Additionally, the results of the M-GenESys for most benchmarks are

competitive and even better than GA implementations (Please refer to the M-GenESys paper).
47

References

[1] Anirban Sengupta and Reza Sedaghat "M-GenESys: Multi Structure Genetie Algorithm

based Design Space Exploration System for Integrated Scheduling, Allocation and Binding in

High Level Synthesis", IEEE Transactions on Evolutionary Computation, Submitted, 2010.

[2J Vyas Krishnan and Srinivas Katkoori, "A Genetic Algorithm for the Design Space

Exploration of Datapaths During High-Level Synthesis, IEEE Transactions on Evolutionary

Computation, vol. 10, no. 3, June 2006.

[3] Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, "A High Level Synthesis design flow with

a novel approach for Efficient Design Space Exploration in case of multi parametric

optimization objective", International Journal of Microelectronics Reliability, Science Direct,

Elsevier, Volume 50, Issue 3, 2010, Pages 424-437.

[4J Anirban Sengupta, Reza Sedaghat, "Multi Objective Design Space Exploration and

Architectural Synthesis of an Applieation Specific Processor with Multi Parametric

Objective", Journal of Computer and Electrical Engineering, Elsevier, Submitted, 2010.

[5] Pilato, D. Loiacono, F. Ferrandi, P.L. Lanzi and D. Sciuto (June 2008), "High-level Synthesis

with Multi-objective Genetic Algorithm: a Comparative Encoding Analysis", Proc. IEEE CEC

2008 Congress on Evolutionary Computation, Hong Kong (China).

[6] S. Ghaemi, M. T. Vakili, and A. Aghagolzadeh, "Using a Genetics Algorithm Optimizer Tool

to Solve University Timetable Scheduling Problem," 9th International Symposium on Signal

Processing and its Applications (ISSPA2007), Sharjah, United Arab Emirates, 12-15 February,

2007.

48

[7] A. Banaiyan, H. Esmaeilzadeh, and S. Safari, "Co-Evolution Scheduling and Mapping for

High-Level Synthesis, " IEEE ICEIS 2006, Islamabad, Pakistan, pp. 269-273, Apr. 2006.

[8] C. Bolchini , W. Fornaciari , F. Salice , D. Sciuto, "Concurrent error detection at architectural

level", Proceedings of the lIth international symposium on System synthesis, p.72-75,

December 02-04, 1998, Hsinchu, Taiwan, China

[9] Author(s): Grewal, G; O'Cleirigh, M; Wineberg, M," An evolutionary approach to

behavioral-level synthesis" , 2003 CONGRESS ON EVOLUTIONARY COMPUTATION,

VOLS 1-4, PROCEEDINGS Pages: 264-272, 2003.

[10] MandaI, C, Chakrabarti, P.P., "Genetic Algorithms for High-Level Synthesis in VLSI

Design", Materials and Manufacturing Processes, 18(3), pp 355 - 383,2003

[11] Elgamel, MA; Bayoumi, MA, "On low power high level synthesis using genetic

algorithms", ICES 2002: 9TH IEEE INTERNATIONAL CONFERENCE ON

ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-Ill, CONFERENCE

PROCEEDINGS Pages: 725-728,2002

[12] Elie Torbey , John Knight, Performing Scheduling and Storage Optimization

Simultaneously Using Genetic Algorithms, Proceedings of the 1998 Midwest Symposium on

Systems and Circuits, p.284, August 09-12, 1998

[13] Whitely, D.: A Genetic Algorithm Tutorial, Computer Science department, Colorado State

University, 2003.

[14] Dianati, M., Song, 1., and Treiber, M. An introduction to genetic algorithms and evolution

strategies. Technical report, University of Waterloo, Ontario, N2L 3Gl, Canada, July 2002.

49

[15] M. Holzer, 13. KnelT, M. Rupp "Design Spacc Exploration with Evolutionary l\tulti

ObjcctiYe Optimisation", IEEE Second lntemational S)11lposium on Industrial Embedded

Systems, Lisbon, P011ugal , S. 126 - 133, 2007

[16] E. Torbey and J. Knight, "High-level s)l1thesis of digital circuits using genetic algorithms,"

in Proc. Int. Cont~ EYo1. Comput., ~1ay 1998, pp.224-229.

[17] E. Torbey and J. Knight, "Perfonning scheduling and storage optimization simultaneously

using genetic algorithms," in Proc. IEEE ~1idwest Symp. Circuits Systems, 1998, pp. 284-287.

[18] Giuseppe Ascia, Vincenzo Catania, Alessandro G. Di ~UOyo, ~1aurizio Paksi, Davide Patti,

"Effcient design space exploration for application specific systems-on-a-chip~ Journal of

Systems Architecture 53 (2007) pages: 733-750.

[19] \Villiams, A. c., Brown, A. D. and Zwolinski, ~1, "Simultaneous Optimisation of DYl1amic

Power, Area and Delay in Behavioural S)l1thesis", lEE Proceedings Computers and Digital

Techniques, 2000, Volume: 147, Issue: 6, On page(s): 383-390.

[20]De Michc1i,G.{l994) SYl1thesis and Optimization of Digital Systems, ~1cGraw-Hil1 Inc., 580

p.

[21] McFarland, Parker, A.C, Cam?osano, R. "Tutorial on high-level synthesis'" Proceedings of

the 25th ACM/IEEE Design Automation Conference, 1988, Atlantic City, Xew Jersey, United

States, Pages: 330 - 336.

[22]Giuseppe Ascia, Vincenzo Catania, Alessandro G. Di Xuovo \laurizio Pa.lesi, Davide Patti,

"Effcient design space exploration for application specific systems-on-a-chip'" Journal of

Systems Architecture 53, Science Direct, Elsevier, 2007, Pages: 733-750

[23] Pierre G. Paulin and John P. Knight, Scheduling and Binding Algorithms for High-Level

SY11thesis, 26th conference on Design Automation, 1988, Pages: 1-6

50

[24] Maurizio Paksi, Tony Givargis, ",\iulti-Objective Dcsign Space Explof:::.tion L-sing GC:lc:ic

Algorithms'" Proceedings of the tenth international S)1T.posium on Hs.rdw.c:.rcsofu~-z.:-c

codesign"" Estes Park, Colorado, 2002, Pages: 67 - 72.

[25] "'S)nthesis and optimization of digital circuits'" Giova..-:ni De '\1icheli, 1993

51

