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Abstract 

Cache Filtering Algorithm For Least Frequently 

Used Data with Accurate Memory Simulation 

© Kiu K wan Leung 2010 

Master of Applied Science 

Department of Electrical and Computer Engineering 

Ryerson University 

We propose a cache filtering algorithm to improve processor performance using a 

small buffer inside the processor and an algorithm to filter least frequently used 

accesses from Ll and L2 caches. The algorithm uses simple DRAM fast-page 

accessing mode to identity accesses that are not previously accessed or not frequently 

used and keep them out of the cache system and store them in small buffer. 

We have also added a realistic page interleaved DDR3 memory simulation model to 

the SimpleScalar simulator. This model supports any processor and memory clock 

speeds, different sets of memory latencies, various configurations of memory banks 

and channels. 

Results show that the filtering algorithm could improve· performance of some 

applications compared to the same system that does not use the filtering algorithm. 
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Chapter 1 

Introduction 

Over the years computer engmeers and architects have been researching and 

developing new techniques to enhance computer performance. These technologies 

include increasing operating frequency of processor and memory, pipelining and 

developing superscalar architecture to exploit instruction-level parallelism(ILP), 

introducing multi-level cache system to hide the overgrowing memory latency, 

developing simultaneous multithreading (SMT) and multicore processors to harness 

the power of thread-level parallelism(TLP), etc.[l, 12 and 14] 

However, studies have revealed the fact that today's computer performance is not only 

governed by the amount of work performed per clock cycle of the processor, but also 

the amount of data bandwidth the memory subsystem can offer, which is inversely 

proportional to the latency of the memory system. According to [1 and 3], processor 

performance has been improving at a rate of 52% annually starting from the year 1986. 

However, the evolution of memory performance has only been maintaining at a steady 

pace of 7% per year since 1980. The industry noticed the issue of the growing 

performance difference between processors and memory and tried to solve this 

problem through various techniques. 

1 



Figure 1.1: The performance ratio comparing to 1980s baseline computer systems -

the growing performance gap between processor and memory [1] 

But as the performance gap between processor and memory keeps growing, modern 

processors will make more frequent stalls to wait for instructions and data to be 

transmitted from memory. Moreover, traditional solutions to solve the memory 

bandwidth/latency problem will also reach its physical limits so engineers must spare 

no efforts to reinvent more efficient way of utilizing the cache and memory systems, 

which is the main focus of this work. 
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1.1 List of Contributions and Objectives of the Research 

The main objective of this thesis is to enhance the perfonnance of Professor Mekhiel's 

patented work - Cache Filtering Method and Apparatus. The overall research 

contributions are summarized as follows: 

• Studied modem computer programs' memory address usage pattern and 

established a relationship betwe.en cache pollution caused by single memory 

accesses and the concept of cache filtering. 

• Illustrated the problem of cache pollution. 

• Created a page interleaved DDR3 memory module for the Simple Scalar 

Simulator version 3.0d, which will be used to implement and test our cache 

filtering algorithm. Our memory module supports multi memory channels, 

multi memory banks, user configurable access latencies and allows easy 

extensions to other memory types (RDRAM, SDRAM, XDRRAM, etc.). 

• Improved Professor Mekhiel's cache filtering algorithm by: 

Reinventing a new set of cache miss handling procedures to replace the 

original cache filtering scheme's procedures. 

Introducing a filter buffer to capture filtered data and prevent eviction of 

useful cache blocks. 
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1.2 Motivation 

We began our research by studying the memory address traces of some SPEC CPU 

2000 component benchmarks. The traces were obtained from Brigham Young 

University Trace Distribution Center [15]. They are recorded from the first 

instruction to the SO millionth instruction of the benchmarks. Through studying the 

address traces, we can learn history of addresses requests generated by the 

benchmarks from their initialization stage to middle of the execution. 

We wrote a java program, which takes a memory address trace as an input file and 

counts the followings: 

• The total amount of memory access requests generated within the instruction 

range; 

• The total amount of unique memory addresses being requested for only once 

(single accessed addresses); 

• The total amount of unique memory addresses being requested for more than 

once (repeated addresses); 

• The total amount of times the . program made accesses request to repeated 

addresses (repeated access). 
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The counting results and the average of the results are shown in the following tables: 

Table 1.1: Total amount of memory access requests generated within execution range 

Apsi equake gee mcf mgrid 

10388240 10327879 10356038 10377283 10363629 

Parser perlmk swim twolf vortex average 

9222144 10326311 9164118 10024960 10270839 10082144 

" 

Table 1.2: Total amount of single accessed addresses within execution range 

Apsi equake gcc mcf mgrid 

62231 52093 112909 58889 ~0161 
Parser perlmk swim twolf I vortex average 

86838 78304 316984 141746 344597 165475 

Table 1.3: Total amount of repeated addresses within execution range 

Apsi equake gee mef mgrid 

112459 89547 175754 83503 475660 

Parser perlmk swim twolf vortex average 

146835 113867 351524 211584 438342 219908 

Table 1.4: Total amount of repeated accesses within execution range 

Apsi equake gcc mef mgrid 

10326009 10275786 10243129 10318394 9963468 

Parser perlmk swim twolf vortex average 

9135306 10248007 8847134 9883214 9926242 9916669 
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With the counting results available, we can calculate: 

• the percentage of the average single accessed addresses; 

• the percentage of the average repeated addresses; 

• the percentage of the average single access; 

• the percentage of the average repeated accesses. 

Average total amount of unique memory addresses being requested within the 

execution range (total unique addresses): 

Total unique addresses = average single accessed addresses + average repeated 

addresses 

::::: 165475 + 219908::::: 385383 

Percentage of average single accessed addresses (average single accessed addresses 

%): 

Average single accessed addresses % (average single accessed address 1 total 

unique addresses) x 100% 

(1654751385383) x 100%:::; 42.9% 

Percentage of average repeated addresses (average repeated addresses %): 

Average repeated addresses% 100% - average single accessed addresses % 

100% - 42.9% = 57.1% 

Average total amount of accesses to single accessed addresses (Average single 

accesses): 

Average single access == average single accessed addresses = 165475 

6 



Percentage of average single access (average single access %): 

Average single access % = (average single access / average total memory access) x 

100% 

(165475/10082144) x 100% = 1.6% 

Percentage of average repeated access (average repeated access %): 

Average repeated access % 100% - average single access % 

100% -1.6% = 98.4% 

The calculations are indicating the 57.1 % of repeated addresses are occupying 98.4% 

of the total memory accesses as they are being used for twice or more. The 

remaining 42.9% of memory addresses, contributing to only 1.6% of the total accesses, 
. . 

are being used for only once and they will be discarded by the benchmarks. 

We believe that allowing the 1.6% of single accesses to enter the cache system will 

ultimately lead to degraded system performance because: 

• they will cause cache pollution by replacing the frequently used data originally 

resides in the cache (to be discussed later); 

• they will waste the valuable memory bandwidth to transmit them back and forth 

from the main memory to the cache and vice versa as they will be accessed only 

once and will soon be replaced by other cache blocks; 

• they will also increase the memory row/page miss rale as those accesses will 

break the normal memory accessing pattern, causing the memory to open another 

rarely used page and to close the frequently used one. 

7 
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1.2.1 Cache pollution caused by rarely used data blocks 

As cache is designed to provide high speed access to the processor, it will service any 

kind of access by loading the requested data and keeping the data in its cache blocks, 

in hope that the program will reuse the data in the future. The only problem with 

this approach is that it will cause a situation known as cache pollution, which is very 

expensive in terms of memory bandwidth and processor time as it destroys the cache's 

data locality (the word locality implies that when data is needed, it is already located 

at the cache). To explain the situation, we have included the following example: 

A computer has a small 2 way associative cache with 2 cache blocks and only 1 indeX, 

which implements the least recently used (LRU) cache replacement scheme, is 

executing a program. The program being executed makes frequent use of data 

located at addresses X and Y so the cache is fully occupied by those data. 

Cache 

Block 0 (LRU) Block 1 (MRU) 

~===c=o=n=~=n=t===x======I~ ~1====c=o=n=re=n=t===Y======~ 
Figure 1.2: Initial content of cache 
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Processor requests Z 

Cache 

Block 0 (lRU) 

Cache miss with no empty 

block, replace X with Z 

Block 1 (MRU) 

~====c=on=t=en=t===x======~I~ ~1=====c=o=nt=e=m====Y======~ 
Figure 1.3: Cache miss forces cache to replace Block 0 

Suddenly, the program makes request for a data from address Z, which will only be 

used once (or rarely used) throughout the program execution. Suppose the program 

had just accessed address Y. then the cache would have no space for the request of Z. 

It must replace cache block 0, which stores data at address X. by writing the content 

back to main memory and load data at address Z into the cache block. 

Processor requests X, replace Y with X 

I 
Cache 

Block 0 (MRU) Block 1 (lRU) 

~===c=o=n=re=n=t===z======I~ ~1=====c=on=t=e=nt===Y======~ 
Figure 1.4: Cache content after replacing X with Z, program requests for X again 

causing another cache miss to replace block 1 

9 



7 " .1 -

After the program finishes using data at address Z, it resumes the regular pattern by 

first request for X then Y. This causes another two additional cache misses because 

the least recently used policy will first replace block 1 with data from address Y by 

data from X, then replace block 0 with data from address Z with replaced by Y. 

Processor requests Y, replace Z with Y 

I 
Cache 

Block 0 (LRU) Block 1 (MRU) 

Content = Z Content = X 

Figure 1.5: Cache content after replacing Y with X, program requests for Y again 

causing another cache miss to replace block 0 

Note that each cache block replacement, depending on whether they have previously 

been modified or not, would require one to two memory accesses (writeback and 

loading) to service. Assuming all data accesses happened in this example were 

writes, address Z had caused three cache misses and six memory accesses to service 

such a request. Therefore, one can conclude that the access to address Z had 

polluted the cache's original content, consumed large amount of memory bandwidth, 

caused the processor to wait and yielded degraded performance. 

10 



Cache 

Block 0 (MRU) Block 1 (LRU) 

Content = Y Content = X 

Figure 1.6: Final cache content after replacing Z with Y 

1.3 The organization of this thesis 

With the motivation of this research properly defined, we will organize the following 

chapters to: 

• introduce the SimpleScalar simulator tool set (Chapter 2); 

• describe the design of the page interleaved DDR3 memory performance 

simulation module (Chapter 3); 

• propose the cache filtering algorithm for least frequently used data (Chapter 4); 

• simulation and discussion of the cache filtering algorithm for least frequently 

used data (Chapter 5); 

• give an overview of the current technology related to cache filtering and compare 

the performance gain of each technology (Chapter 6); 

• Discuss the future work and conclusion (Chapter 7). 

11 
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Chapter 2 

Methodology 

In this chapter, we will introduce the Simple Scalar Simulator tool set The 

SimpleScalar Simulator tool set [12, 13 and 14] is a col1ection of many simulators 

written with the C language. Out of the many available simulators, we have chosen 

to evaluate our work on a simulator named sim-outorder. 

Sim-outorder is a detailed simulator that can model a 32bit out-of-order execution 

superscalar processor. Out-of-order execution is a technique to boost processor 

performance by allowing the processor to, based on the availability of the processor's 

functional units, change the instruction execution order of a program. The approach 

is valid as long as the correctness of the data being processed is maintained and data 

are being written back to memory in the correct order. 

Sim-outorder is also a performance simulator. That is, sim-outorder simulates by 

executing a compatible program binary/executable file like an ordinary computer, 

with an emulated processor, memory and hard disk (2GB of virtual memory). 

Throughout the simulation process, sim-outorder will collect performance statistics, 

such as cache hit rate and cycle per instruction (CPI), and display the information 

collected at the end of the simulation. 

The SimpleScalar tool set also contains a number of simpler yet useful simulators, 

such as sim-fast, a simple processor functional simulator that does not have any error 

checking; sim-safe, a sim-fast equivalent with error checking capabilities; sim-cache, 

a simple cache simulator and sim-bpred, a branch predictor simulator. 

12 



Due to the nature of this work, we must briefly discuss how sim-outorder handles 

cache/memory access latencies. Sim-outorder was designed as a superscalar 

processor which has both instruction and data level 1 (Ll) cache, optional separated 

or unified instruction and data level 2 cache and a main memory module. 

Access to each of the above mentioned components is modeled by calling the 

corresponding access latency calculation function in the simulator. For cache 

accesses, the level 1 cache latency calculation function (Ll latency function) will 

perform all cache access activities and return an integer value that can accurately 

represent the cache access latency in processor clock cycles. 

If the data being requested is found in the cache, the Lllatency function will compare 

the cache hit latency with the time when the cache block is accessible (when the block 

is completely loaded from the next level) and return the bigger of the two values. In 

case of cache miss where accesses to the next level of the hierarchy (writeback and 

data loading) are required, the Ll latency function will update the cache blocks and 

call the next level's latency calculation function. Such a calling sequence will end 

when one of the following scenarios is reached -- the requested data is found in any 

subsequent level or the data is not found in all cache levels and access to memory is 

needed. Once the cache miss situation is being properly serviced by calling the 

appropriate access functions, the L 1 latency function· will sum up all the latencies 

returned by the subsequent level latency calculation functions and return the sum as 

the latency of such cache access. 

13 
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Cache access function 
I 

+ 
Cache hit Cache miss 

• • Add cache block 
Return Max(cache hit 

latency, cache block 

accessible wait time) 

searching latency to 

the overall latency 

+ 
Clean replace block 

• Update cache blocks • Fetch data by 

calling next level's 

access function • Add the latency value returned by the 

next level's access function to the overall 

latency and return the overall latency 

I 
+ Dirty replace block • Writeback the dirty replace 

block by calling next level's 

access function 
, . 

Add the latency value returned 

by the next level's access 

function to the overall latency 

• Fetch data by calling next 

level's access function • 

1 

Add the latency value returned by the next 

level's access function to the overall 

latency and return the overall latency 

Figure 2.1: Simple Scalar cache access function work flow 

Upon receiving the cache access latency, sim-outorder will generate a pipeline event. 

Pipeline event is a data structure which contains a register field and a time field. The 

register field in the pipeline event represents the destination of the data being loaded 

from or the source of the data being written to the cache. The time field is used to 

represent the clock cycle when the data loading or data writing is finished. It 

contains the value ofT + latency of the cache access, where T is the clock cycle when 

the processor requests for the cache access. The pipeline event will be added to 

sim-outorder's event queue, which will be checked by sim-order in every simulated 

processor clock cycle. When the recorded clock cycle of the time field is reached, 

14 
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the pipeline event will be deleted by sim-outorder. The instructions that are utilizing 

the register specified by the pipeline event will then be considered as ready to be 

executed by the processor. 

Figure 2.2 shows the function calling sequence of one particular cache access. In 

this example, sim-outorder accessed certain data from data Ll cache by calling the LI 

cache access function (function A). The access generated a cache miss in Ll and a 

writeback is required. Function A then called the L2 cache access function (function 

B) to write back the replacing block. The writeback block was found in the L2 cache, 

therefore function B could simply update the L2 cache's content and return a latency 

to function A as part of the total access latency. 

15 



----- - ~----.,.,.--. 

"Tj 

~. 

6 
N 
tv 
Cf.) .... 
8 

"!:; -0 
Cf.) 
(") 

~ 
(") 

g 
::r L1 cache access 0 

g function (A) 
Q. 

8 
0 
8 12 cache access .... 0 

function (8) 0'1 ..:! 
r» 
(") 
(") 
0 Memory access c;.., 
c;.., 

function {Cl §> 
Sl. o· 
::I 
c;.., 
r» 
8 

"!:; -0 
(") 

~ 
Er 

OQ 
c;.., 
0 

,.Q 

= 0 
:::I 
(") 
0 

L1 Cache miss h 

Cache h~, retum 12 miss, clean 
latency block, load data 

Return 
latency 

12 data loaded 
return latency 

L1 data loaded, 
turn latency 

time 

J 



-
After the writeback, function A must load data from the L2 cache, which caused a 

second call to function B. Unfortunately, that data load had also caused a cache miss 

in the L2 cache. This time, the L2 cache has a clean block and no write back is 

needed. Therefore, function B must make a memory access by calling the memory 

access function (function C). At the end of function C's execution, the latency of 

loading the data from memory was calculated. This value would then be returned to 

function B and function A as part of the total accessing latency. Eventually, function 

A would sum up the writeback and data loading latencies and return the value to 

sim-outorder. 

It is important to note that there exist several limitations in sim-outorder's memory 

hierarchy design. Firstly, when a writeback occurs, regardless it happens in the Ll 

or L2 cache, sim-outorder has an infinitely large write buffer with no access latency to 

temporarily store the cache block being written back. Hence, all cache and memory 

write actions will have an unrealistic latency of zero clock cycles. 

Memory access latency = latency of first data column + (total amount of column to be 

accessed - 1) x latency of remaining column 

In addition, sim-outorder's memory access latency calculation is relatively simple -

the total memory access latency is equal to the latency of the first data column 

(including Tcmd, Trp, Trcd, Tcas, Tcwd and first column transmission) plus the 

latency of transmitting the remaining data columns multiplied by total amount of 

columns minus one (for the first column). From this fonnula, one can easily notice 

that sim-outorder's memory model is only valid when an outdated close page policy is 

used. Also, sim-outorder assumes memory accesses are always being scheduled to 
: . ,. 
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be far apart, therefore no memory access will post any burden to the data bus and 

causes future accesses to wait for the current access to fmish. 

Lastly, as all component access functions must return an exact latency to sim-outorder, 

it is impossible to implement a memory module which supports access reordering. 

This is because memory access reordering requires all accesses to be added and sorted 

within a queue first. Therefore the memory module cannot calculate the access 

latency until the access order is confirmed. 

To conclude, we have discussed some internal details of the SimpleScalar Simulator 

tool set. We hope that this information will allow one to easily understand the 

operation of the SimpleScalar Similator and the design of our cache filter and memory 

module. In the next chapter, we will discuss our page interleaved DDR3 memory 

module for the SimpleScalar Simulator. 
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Chapter 3 

The Page Interleaved DDR3 Memory Module for the 

SimpleScalar Simulator 

In this chapter, we will fIrst discuss the software design of the page interleaved DDR3 

memory performance simulation model (will be referred as memory model) for the 

Simple Scalar simulator. Second, we will describe the operation of the model. At 

the end of the chapter, we will also simulate the system. 

The remainder of this chapter will be organized as follows: 

• The software modeling of the memory model (Section 3.1); 

• The operation of the memory model (Section 3.2); 

• Simulation and discussion (Section 3.3). 

3.1 The software modeling of the memory model 

To properly design the memory model, we did a study of the memory address format 

and the virtual memory address space (hard disk) of sim-outorder. As mentioned in 

chapter 2, sim-outorder models a 32bit computer. The virtual address space, or the 

hard disk, of this computer is 2GB in size (address starts from hexadecimal 

OxOOOOOOOO to Ox7f:l:lHlf, according to the memory.c from the simulator's source 

fIles). This address range is perfectly addressable with 32bits because the 

hexadecimal range of 32bits starts from OxOOOOOOOO to Oxffifffff. Therefore, 

sim-outorder represents memory addresses with a md_addr_t enumerated data type 

(user defIned data type), which is C language's unsigned int (unsigned integer) type. 

And if one also studies the machine definition of sim-outorder (machine.h), he/she 
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will notice that the virtual memory page size is defined as 4096 bytes (4KB). 

We made two important decisions before we began the programming. First, we 

decided to directly map the 2GB of virtual memory space into 2GB of physical 

memory space with 4KB per memory row/page. This decision will greatly simplify 

the design of our memory model. Second, we decided to remove the infinite write 

buffer out of sini-outorder because of its unrealistic size and its zero access latency. 

In this context, sim-outorder must now wait for all cache/memory writebacks to 

complete and include the writeback latency in the latency calculations. 

Our memory model has two components - the data and functional component. The 

data component, to be discussed in section 3.1.1, is the data structures that represent 

the memory hardware in the simulator. The functional component, covered in 

section 3.1.2. is used to describe the operation of the memory model. 

3.1.1 The data components of the memory model 

The data component of the memory model is written in the memory.h source file of 

SimpleScalar. It defmes the new data structures which are necessary for the memory 

model to operate properly. It includes: 

• modification to the mem_t data structure; 

• a new channel_t data structure; 

• a new bank_t data structure. 
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mem_t 
r-------------------~ 

channeLl 

latched.,Jlage 

Figure 3.1: Graphical representation of the mem_t data structure 

Modification to the mem_t data structure 

A number of new data members were added to the mem_t data structure. The most 

noticeable addition is a channel_t pointer called channel. Channel is a pointer to a 

dynamically allocated array of channel_t data structures. This array of channel_t is 

used to represent one or multiple memory channels (the model can support up to two 

channels at this point). 

introduced to allow fast conversion between processor clock and memory clock. 

Given the clock speed of the processor and memory bus from the user input, the r 
I : memory model will store the result of processor clock divided by the memory bus 

result of memory bus clock divided by the processor clock. To convert a value from 

memory clock to processor clock, the simulator can simply multiply the value with 
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the mem_to_cpu_clk variable. A processor clock can also be converted easily by 

mUltiplying the value with the cpu_to_mem_clk variable. 

Following the floating point values are several 64bit integer values (C language's long 

long type): 

• access_count: a statistical value to store the total amount of memory access; 

• unoverlaped_fpJead_clk and unoverlaped_fp_write_clk: statistical values to 

store the total amount of unoverlapped fast page read/write delay in processor 

clock (overlapped delay will be discussed in section 3.2); 

• unoverlaped_filteredJead_clk and unoverlaped_filtered_write_clk: unused 

statistical values for debugging; 

• unoverlaped Jandom Jead _ clk and unoverlaped Jandom _write _ clk: statistical 

values to store the total amount of unoverlapped random read/write delay in 

processor clock. 

Finally, there is a list of 32bit integer values (C language's int type) added to the 

mem_t data structure to store: 

• the data bus width in bytes (bus_width); 

• the total amount of memory channels (channels); 

• bank -the total amount of banks per channel (bank); 

• the column access strobe latency in memory clock cycles (Tcas); 

• the row to column delay latency in memoIY clock cycles (Trcd); 

• the row precharge latency in memory clock cycles (Trp); 

• the burst length of the memory model (Tburst, a fixed value of 8 for DDR3); 

• the write recover time in memory clock cycles (Twr); 
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• the rank to rank switching time and the data bus write to read switching time in 

memory clock cycles (Trtrs); 

• the command duration time in memory clock cycles (Tcmd); 

• the column write delay in memory clock cycles (Tcwd); 

• the column to column delay in memory clock cycles (Tccd); 

• the size ofa bank(bank_size); 

• the memory mapping, only page interleaving is supported in the current 

implementation and other memory mapping can be added in the future 

• the memory type, only DDR3 is supported in the current implementation but 

SDRAM can also be supported with minor changes to the code (mem_type). 

The channel_t data structure 

A new channel_t data structure was introduced to represent a memory channel. The 

most important data member of the data structure is a bank_t (to be discussed later) 

pointer. Same as the channel_t pointer found in the mem_t data structure, the bank_t 

pointer points to a dynamically allocated bank_t array to represent the collection of 

banks within a memory channel. 

Following the bank_t pointer is a SimpleScalar enumerated mem_cmd data type 

variable known as previous_command. According to the memory.h source file, the 

mem_ cmd enumerated data type is a flag to represent read or write memory 

commands/activities. The previous_command variable was added to represent the 

previous bus activity, which is important for memory access latency calculations (to 

be discussed in section 3.2). 

23 

, ' 

j 



11 

Two 32bit integer values, prev_burst and prev_accessed_bank, were added to handle 

different memory access situations (to be discussed in section 3.2) during the latency 

calculation. The prev _burst value keeps the amount of processor time taken to make 

the previous data transmission. The prev_accessed_bank holds the previous 

accessed bank number/array index. Also, it is important to note that the C language 

uses pointer arithmetic to access the array elements, therefore the indexes starts from 

o to size of the array-1. 

Finally, there is also a list of 64bit integer values from the channel_t data: 

• busjimer: the value recorded by this variable represents the processor cycle 

when the data bus ofthis memory channel will become idle. 

• cmd _timestamp: this value records the processor cycle when the Jast memory 

access command was issued by the memory controller. 

• burst_timestamp: a value used to represent the processor cycle when the laSt data 

transmission began. ~ 

• access30unt: a statistical value to record the total amount of memory access to 

the memory channel. 

• actual_transfer: a statistical value to keep the total amount of data columns being 

transferred by the memory channel. 

• roW_hit: a statistical value to count the total amount of row hit happened in the 

memory channel. 

• fp _reads and fp _writes: two statistical values to record the total amount of fast 

page read I write access to the memory channel. 

• random_reads and random_writes: two statistical values to record the total 

amount of random read/write access to the memory channeL 
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• channel_unoverlaped_fp_read_clk and channel_unoverlaped_fp_write_clk: two 

statistical values to hold the total amount of unoverlapped fast page read I write 

delay in processor cycles. 

• channel_overlaped_fp_read_clk and channel_overlaped_fp_write_clk: two 

statistical values to record the total amount of overlapped fast page read I write 

delay in processor cycles (overlapped delay will be discussed in section 3.2). 

• channel_unoverlapedJandomJead_clk and channeCunoverlapedJandom_ 

write_clk: two statistical values to keep the total amount of un overlapped random 

read I write latency in processor cycles. 

• channet overlaped Jandom Jead_ clk and channel_ overlaped Jandom _write _ clk: 

two statistical values to keep the record of the total amount of overlapped 

random read I write latency in processor cycles. 

• filtered_reads, filtered_write, channel_ overlaped _filtered Jead _ clk, channet 

channet unoverlaped _filtered_write _ clk: unused statistical values for debugging 

purposes. 

The bank_t data structure 

The bank_t data structure was defmed to represent a memory bank of the memory 

model. There are only two values stored in the data structure - the latched -page and 

the ras_timestamp. The latched-page variable is an unsigned integer value to 

represent the previously opened row of the memory bank. The ras_timestamp is the 

record of the processor cycle when the last row precharge happened to the memory 

bank. 
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3.1.2 The functional components of the memory model 

The functional component of the memory model was implemented in the memory.c 

source file. It has a number of functions and we categorized them into three classes: 

setter functions to initialize the values of the data components; memory access latency 

function to define how the memory model should operate and helper functions to aid 

latency calculations. In this sub-section, we . will list and briefly describe the 

functions. 

Setter functions 

There are six setter functions to allocate and initialize the memory model's data 

structures, they are: 

• set_mem_size: a function that dynamically allocates the channel_t and bank_t 

data structure arrays and calculates the size of each memory bank based on the 

user specified amount of memory channells and bankls per channel. 

• set_bus_width: a function that takes the user inputted memory data bus width (in 

bytes) and initializes the mem _ t data structure 's bus_width variable. 

• set_clk: this function takes the user inputted value for processor clock and 

memory data bus clock and compute the mem_t data structure's 

mem_to_cpu_clk and cpu_to_mem_clk variables. 

• set_map: a function that takes the user inputted value for memory mapping and 

initializes the mem_t data structure's map_type variable. We intended to allow 

bank interleaving and cache line interleaving mode to be added in the future as 

extensions to the work, but in the current implementation, only page interleaving 

is supported. 

Note: Some of the functions will have detailed explanation in section 3.2 as they are closely related to 

the operation of the memory model. 
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• set_type: this function sets the mem_type variable of the mem_t data structure 

with the user inputted value. This function was added to allow future memory 

model extensions such as SDRAM and DDR4 to be added with minor code 

modification. 

• setJatency: this function sets the following latencies with the user inputted 

values: Tcas, Trcd, Trp, Tras, Tburst, Twr, Trtrs, Tcmd, Tcwd and Tccd [2]. 

Memory access latency calculation function 

The memory access latency function (memory_access_latency) was implemented to 

calculate the latency of a memory access, based on the current state of the mem _ t data 

structure. (refer to section 3.2.3 for more detail). 

Helper functions 

We have also defmed some helper functions to aid latency calculations: 

• max: max is a function to compare two integer values and return the bigger value 

of the two. 

• is_latched: given a starting address, its corresponding channel and bank, this 

function returns a non-zero value if the address generates a row hit (the row of 

the starting address is the same as the row being latched by the given channel's 

bank), zero otherwise. 

• get_mem-page: given a starting address, this function consults the page table and 

returns the physical memory page/row number which the address is located at i , 
I : 

(refer to section 3.2.2 for more detail). 

• get_mem_actual_bank: based on the page/row number received from 

get_mem-page, this function returns the physical bank number which contains 

the page (refer to section 3.2.2 for more detail). 
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• geCmem_channel and get_mem_bank: these two functions will take the physical 

bank number returned by get_mem_actuatbank and calculate the channel array 

index and bank array index of the mem_t data structure respectively (refer to 

section 3.2.2 for more detail). 

3.2 The operation of the memory model 

In this section, we will discuss various aspects related to the operation of the memory 

model. These aspects include the overlapped memory access scheduling, memory 

addressing and most importantly, the memory access latency calculation. 

3.2.1 Overlapped memory access scheduling 

Back in section 3.1.1, several statistical variables from the mem_t and channel_t data 

structures to record the overlapped and unoverlapped access latencies were introduced. 

These latencies are related to a specific memory access scheduling technique known 

as the overlapped memory access scheduling [2]. In high speed memory systems 

with multiple banks, memory accesses can be pipelined into different phases. The 

phases are: react to an access request (Tcmd), row precharge (Trp), data ready (Trcd), 

column select (Tcas or Tcwd), data transmission and data recovery (Twr, for write 

only). 

If the newly requested memory access is not reading from/writing to the same 

memory bank as the previous access, the memory controller can schedule the new 

access to start processing. up to the column selecting phase, before the previous 

access is completed (an example is shown in Figure 3.4). This type of scheduling is 

overlapped memory access scheduling as part of the memory accesses are being 
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overlapped. This is possible because row precharging and column selecting actions 

will not affect the previous access as they are utilizing different memory banks. But 

it is important to note that the command reaction and the actual data transmission can 

not be overlapped within a memory channel because each memory channel has only 

one data and command bus for data and command transmission. 

Cannot be overlapped 

~ 
React to an Row Data . Column Data Data recovery 

access request precharge Ready select (Teas I transmission (for write only. 

(Tcmd) (Trp) (Tred) Tcwd) Twr} 

\ "- ./ '-----y---J 
y~ ... 

Cannot be overlapped 
Can be overlapped 

Figure 3.2: The overIappable and unoverIappable phases of a random memory access 

Cannot be overlapped 

~ 
React to an Column Data Data recovery 

access request select (Teas I transmission (for write only. 

(Tcmd) Tcwd) Twr) 

Cannot be overlapped 
Can be overlapped 

Figure 3.3: The overlappable and unoverlappable phases of a fast page memory access 
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Access 1 

to bank 0 
React 

Row 

precharge 

Data Column 

Ready select 
Row L---. React 

Data 

Notovenapped 

Iprecharge I Ready 

Access 2 

to bank 1 

Not overlapped 

Data /' 
transmission 

Column Data 

select transmission 

Figure 3.4: Overlapped memory access scheduling example 

3.2.2 Memory addressing 

According to the DDR3 standards. a memory channel has at least 8 banks. With our 

memory model supporting 2GB of single and dual channel memory with up to 16 

banks per channe~ the memory address has the following formats: 

Dual channel, 8 banks per channel:' 

Don't care Row/page select 

6 ~---
A31~A29A28A27A26A25A24A23A22A21A20A19A18A17~15A14A13 

'----y--J IA1rt11 A10A9A8A7 A6A5A4A3A2A1 A~ 

I y 
Channel select Column and byte select Bank select 

Figure 3.5: 32bit dual channel 8 bank memory address format 
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Dual channel, 16 banks per channel: 

Don't care Row/page select 

~ ---------------~---------------11"- ~ 
A31A30A29A28A21A26A25A24A23A22A21A20A19A18A11~16A15~14A1) 

t11~1A10A9A8A7A6AsA4A3A2A1A~ 

1 V . Bank select 
Channel select Column and byte select 

Figure 3.6: 32 bit dual channel 16 bank memory address format 

Single channel, 8 banks: 

Don't care Row/page select 

~ ,--_-------.-A---------_~ 
A31A30A29A2SA27A26A25A24A23A22A21A20A19A1SA17A16A15A14A13A12 

~1l A10A9ASA7 A6ASA4A3A2A1 A':J ~ 
Column ~ byte select Bank select 

Figure 3.7: 32 bit single channel 8 bank memory address format 

Single channel, 16 banks: 

Don't care Row/page select' 

JL __ --------------~--------------__ rlr "'\ 
A31A30A29A28A21A26A25A24A23A22A21A20A19A18A11A16A1SA14A13A12 

Bank select 

All A10A9A8Al A6ASA4A3A2A1 AO \) 
~ / Y 

V 
Column and byte select 

Figure 3.8: 32 bit single channel 16 bank memory address format 
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In our simulator, the decoding in the software can be achieved by either the logical 

approach (bit masking) or the mathematical approach (integer division and modulo). 

The benefit of the logical approach is the ease of implementation, but it is more 

restrictive as it requires the programmer to hard-code the bit masks. Keeping the 

future expendability of the simulator in our mind, we decided to take the 

mathematical approach and implemented the get_mem"'page, get_mem_actuaCbank, 

get _ mem _channel and get _ mem _bank functions. 

Upon receiving a memory address, the memory model decodes the address by first 

calling the geCmem"'page function. This function has the following function 

signature: 

unsigned int get_memJ'age(struct mem_t *mem,md_addr_t addr); 

The mem variable is a mem_t pointer, which points to sim-outorder's mem_t data 

structure. The second parameter, addr, is the target memory address to be translated 

into page/row number. 

The get_memJ'age function takes the requested address and search for the physical 

page number from the page table. The page number is formed by dividing the 

memory address with the page size (4096 Bytes). If the page is not found from the 

page table, the get _ mem "'page function will divide the value and return the result as 

the physical page number. Note that the physical page number is unique across the 

memory space, the memory model can simply take the physical page number as the 

row identifier with the mathematical approach. 
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With the physical page number available, the memory model calculates the physical 

bank number where the address located at with the get_mem_actual_bank function. 

This function has the foJlowing function signature: 

The addr value is the memory address that needs to be converted to a physical bank 

number. 

The get_mem_actuaCbank function takes the remainder of the division between the 

physical page number and the multiplication result of total amount of channel and 

amount of banks per channeL 1, 

Physical bank number = physical page number MOD (total amount of channels * 

total amount of banks per channel) 

Since page interleaving distributes memory rows/pages in a zigzag manner across the 

banks and channels, he memory model must further process the physical bank number 

with the get_mem_channel and get_mem_bank functions to obtain the channel 

number and the bank number of the channel. 

The geCmem_channel function has the following function signature: 

int get_mem_channel(struct mem_t* mem, int bank); 

The get_mem_channel function calculates the channel number by taking the 

remainder ofthe physical bank number divided by the total amount of channels. 

Channel number = physical bank number MOD total amount of channels 

Note: The bank variable is the physical bank number returned by the get_mem_actual_bank function. 
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Similarly, the get_mem_bank function has the following function signature: 

int geCmem_bank(struct mem_t* mem, int bank); 

The get_mem_bank function calculates the bank number of the channel by dividing 

the physical bank number with the total amount of channels. 

Bank number of a channel physical bank number / total amount of channels 

We have included the following address conversion example with 4 memory channel 

and bank configurations to prove that our mathematical memory address decoding 

method is correct for all memory configurations: 

Suppose the memory address to be accessed is 366882: 

The binary form of366882 is: 

00000000000001011001100100100010 

Following the bit naming convention from Figure 3.7, for single channelS banks: 

The column and bank select bits are All toAO, which are "100100100010"; 

The bank select bits are A14 to A12, which are ''001''; 

The row select bits are A30 to A1S, which are "0000000000001011". 

Therefore, we expect this address belongs to bank 1. 

Using our mathematical approach: 

Physical page number = address / page size (4KB) 

:= 366882/4096 = 89 

Note: the mathematical approach uses the C language's integer division and modulo operations. 

Therefore both the division result and the remainder will be integers. 
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Physical bank number = physical page number MOD (total amount of channel * 

total amount of banks per channel) 

= 89 MOD (1 * 8) = 89 MOD 8 = 1 

Channel number = physical bank number MOD total amount of channels 

1 MOD 1 =0 

Bank number = physical bank number I total amount of channels 

= 1/1=1 

By applying the mathematical approach to the single channel 8 bank scenario, the 

result is bank I. Therefore we can conclude that the result of mathematical approach 

matched the logical approach's result 

Single channel 16 banks: 

The column and bank select bits are A 11 to AO, which are "1001001000 I 0"; 

The bank select bits are AI5 toAl2. which are "1001"; 

The row select bits are A30 to A 16, which are "000000000000101". 

Therefore, we expect this address belongs to bank 9. 

Using our mathematical approach: 

Physical page number = address I page size (4KB) 

= 366882 I 4096 = 89 

Physical bank number = physical page number MOD (total amount of channel * 

total amount of banks per channe 1) 

= 89 MOD 16=9 

Channel number = physical bank number MOD total amount of channels 

= 9 MOD 1 =0 
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Bank number = physical bank number 1 total amount of channels 

== 911 9 

By applying the mathematical approach to the single channel 16 bank scenario, the 

result is bank 9. The result of our mathematical approach is matching the logical 

approach's outcome again. 

Dual channelS banks: 

The column and bank select bits are All to AO, which are "100100100010"; 

The channel select bit is A 12, which is "1"; 

The bank select bits are A15 to AB, which are "100"; 

The row select bits are A30 to A 16. which are "000000000000101". 

Therefore, we expect this address belongs to channell's bank 4. 

Using our mathematical approach: 

Physical page number = address 1 page size (4KB) 

= 366882/4096 = 89 

Physical bank number = physical page number MOD (total amount of channel * 

total amount of banks per channel) 

= 89 MOD (2*8) = 89 MOD 16 = 9 

Channel number = physical bank number MOD total amount of channels 

= 9MOD2= 1 

Bank number = physical bank number 1 total amount of channels 

= 9/2=4 

By applying the mathematical approach to the dual channel 8 bank scenario, the result 

is channell's bank 4. Therefore mathematical approach is also valid with the dual 

channel 8 bank configuration. 

36 



m • 'P' me It 

Dual channel 16 banks: 

The column and bank select bits are A 11 to AO, which are" 1 00 1 00 I 000 1 0"; 

The channel select bit is A 12, which is "I"; 

The bank select bits are A16 to AI3, which are "1100"; 

The row select bits are A30 to A 17, which are "00000000000010", 

Therefore, we expect this address belongs to channell's bank 12. 

Using our mathematical approach: 

Physical page number = address I page size (4KB) 

= 366882 I 4096 89 

Physical bank number = physical page number MOD (total amount of channel * 

total amount of banks per channel) 

= 89 MOD (2 * 16) = 89 MOD 32 = 25 

Channel number = physical bank number MOD total amount of channels 

= 25 MOD2= 1 

Bank number = physical bank number 1 total amount of channels 

= 25/2 = 12 

Finally, by applying the mathematical approach to the dual channel 16 bank scenario, 

the result is channell's bank 12, which is matching our expecte.d results. Through 

the proving process similar to mathematic induction, we conclude that our 

mathematical memory address decoding method is correct for all memory 

configurations. 

Note: For the remainder of this document, we will refer to each of the memory latencies mentioned in 

section 3.1.1 by their short form (e.g. command duration time Tcmd) 
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3.2.3 The memory_access_latency function 

The memory_accessJatency function models the memory operations, calculates the 

latency of each access and returns the value to sim-outorder. The function signature 

of memory_ access_latency is shown below: 

unsigned int memory_accessJatency(struct mem_t· mem, int chunks, md_addr_t 

addr, enum mem_cmd cmd, tick_t now); 

The mem parameter is a mem_t pointer which points to the mem_t data structure of 

sim-outorder. The second parameter, chunks. is the total amount of bytes the 

processor/cache is requesting for the memory access (in sim-outorder, it is the L2 

cache block size since the L2 cache is the only cache that requests for memory access). 

The addr parameter is the frrst address which the processor/cache is requesting. The 

last parameter, now, is the processor cycle when the processor/cache requested for the 

memory access. 

The algorithm behind the memory _access_latency function 

Before the description of the algorithm begins, one must note that the latency value 

returned by memory_access_latency is not simply the sum of the timing parameters 

(Tcmd, Trp, Trcd, Teas, Tcwd and data transmission), but a latency relative to the 

'now' parameter. That is, the value returned by the function can be significantly 

larger than the sum of those timings. This is caused by the fact that when the 

processor/cache requests for a memory access, the memory model can either be idle 

or busy servicing the pervious access/so If the memory is servicing another access, it 

must wait for the previous access to complete before servicing the current access. 
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The most important goal of the memory_access_latency function (latency function) is 

to calculate the earliest possible starting processor cycle (start time) for the memory 

access requested by the processor/cache. When the latency function is calle~ it will 

first call the get_mem_actual_bank, get_mem_bank, get_mem_channel and is_latched 

functions to determine whether the access is a random type or fast page type. 

Once the access type is determine~ the latency function will check whether the access 

is the flJ'St memory access of the simulation (bus_timer = 0). If so, the start time can 

simply be set as "now" and the access type will be limited to random access (the first 

access of a simulation has to be random access. Also, when the mem ... t data 

structure is initialize~ the latched row/page of all memory banks is set as row 0, so 

we must override the result of the is_latch function). 

If the access is not the flJ'St access of the simulation, the latency function compares the 

value of the "now" parameter with the channel's previous command start time 

(cmd_timestamp + Tcmd) and takes the larger value as the temporary start time. This 

is because an access cannot start earlier than the previous access. Note that the 

temporary start time will be increased (shifted further away from "now") as the 

function handles other situations. 

If the access type was previously determined as fast page mode, the latency function 

will store the sum of the corresponding timing parameters (Tcmd + Tcas for read OR 

Tcwd for write) to an integer variable "latency" and detect the following situations: 
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Consecutive reads 

If the previous access is a read operation and the current access is also a read, the 

function will first compare the value of the previous data transmission time 

(prev _burst from channel_t data structure) and the column to coJumn delay (Tccd) and 

store the Jarger value of the two values to a temporary variable known as "temp". 

The latency function will then ensure the minimum distance between the current 

read's start time and the previous read's start time is ''temp'' by incrementing the 

temporary start time of the current access. This action allows sufficient time for the 

memory to complete the data transmission and column selection. 

Tcmd Previous access is 

fast page read 

MAX(prev_burst, ~) 

Command & address bus r Read OJ @ 
I--_-:-~ ... _--_ prev_burst 
....-_ ..... A ....... _--.. 

Data bus 

Teas 

Data bus 

Trp Tred 
Teas 

Data of Read 1 

.. 
lime 

Previous access is 

random read 

Data of Read 1 

lime 

Figure 3.9: Consecutive read timing (current access is fast page read) 
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Fast page write following a fast page read 

If the previous access is a fast page read and the current access is a write, the latency 

function must ensure the timing distance between the previous read and the current 

write is Tcas + Trtrs + Tcwd + prev _burst. Note that the Trtrs is added as a timing 

bubble to eliminate the conflict with the internal data movement ofthe read access. 

Teas+Trtrs+Tcwd+prev_burst Tcmd Tcwd 

A'---_~ 
Command & f I ~ ... ,' 
address bus Read 0 ~ preY_burst 

Data bus Data of Write 1 

Teas Trtrs TIme 

Figure 3.10: Write following a fast page read timing (current access is fast page write) 

If the latency function determined the access type is random access, the function will 

store the sum of the corresponding timing parameters (Tcmd + Trp + Trcd + Tcas for 

read OR Tcwd for write) to the "latency" variable and record the latched row/page to 

the bank's latched~ge variable. Also, if the latency function determines the 

current memory access is the first access of the simulation, it will skip the following 

start time calculation and jump to the actual data transmission latency calculations. 

Because random accesses require a row precharge, the latency function must check 

the last ras_timestamp of the bank. If the timing difference between temporary start 

time and the last ras_timestamp (temporary start time - ras_timestamp) is less than the 

value of the Tras of the mem _ t data structure, the latency function will increment the 

temporary start time with the value: Tras - (temporary start time - ras_timestamp). 
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Random access to the same bank as the previous write 

After handling the Tras timing requirement, the latency function checks whether the 

previous access was accessing the same memory bank and the access was a write. If 

so, the memory must allow a minimum timing distance of Twr to allow the row latch 

to write the updated values back to the memory cells. 

Tcwd+prev_burst + Twr > Tcmd 

Command& [ 
address bus Write 0 I 

A~ ___ ~ 

[RiW1l 

Data bus 

preY_burst 
,.-_-'A .... ____ 

_ (Data of Write 0 ) . . . I Data of RIW 11 
Y Y--r-"-rY • 

Tcwd Twr Trp Trcd Teas! 
TIme 

Tcwd 

Figure 3.11: Random access to the same bank as the previous write timing 

When the latency function finishes calculating the temporary start time of the current 

access, it will begin the actual data transmission latency calculations and record the 

followings: 

• The bank number of the current access to the prev_bank variable of the channel_t 

data structure; 

• The temporary start time of the current access to the cmd_timestamp variable of 

the channel_t data structure and to the ras_timestamp of memory bank (if row 

precharge needed); 

• > The current access command (Read or Write) to the previous_command variable 

of the channel_t data structure; 

• The time when data transmission begins (cmd_timestamp + "latency") to the 

bursctimestamp variable of the channel_t data structure; 
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Actual data transmission latency calculation 

The actual data transmission latency calculation starts by dividing the "chunks" 

parameter with the mem_t data structure's bus_width variable to obtain the total 

amount of data columns to be transmitted. Once the total amount of data columns is 

determined, the latency function will divide the amount by two and store the result to 

a temporary variable known as access_transfer (DOR3 memory can transmit twice per 

memory clock and transmit one data column per transmission). 

At this point, the latency function is still in terms of memory clock cycles. Therefore 

the latency function will convert the result to processor clock cycles by multiplying 
: 
: ' 
i 

With every value converted to processor clock cycle, the latency function will store 

the value of access_transfer to the channel's pre v_burst variable for future latency 

calculations. The latency function will also store the value of start time + "latency" 

+ access_transfer to the bus_timer variable of the channel because the data bus will be 

busy until the newest memory access (the current access) finishes. 

Finally, the last action of the latency function is to calculate the memory access 

latency that is relative to the "now" parameter. This is completed by returning the 

value of bus_timer - "now". 
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Decode address to chanr' bank and row ,.,mber 

Determine whether it is fast page mode or random access 

~ 
Fast page mode: 

t 
Consecutive reads 

handling 

Fast page write following a fast 

page read handling. 

I 

I 

r 

~ 
Random access: 

1 
Random access to the same bank as 

the previous write 

Actual data transmission latency calculation 

t 
Latency return 

Figure 3.12: memory_access_latency function work flow 

3.3 Simulation and discussion 

In this section, we will perform a memory channel and bank test to verifY our memory 

module's behavior under different memory channel and bank settings. In this test. 

we will use the gcc benchmark from the SPEC CPU 2000 benchmark suite for the 

simulations and monitor the system performance and memory row hit rate under the 

following memory configurations: 

• 1 channel 4 banks; 

• 1 channelS banks; 

• 2 channels 2 banks (4 banks in total); 

• 2 channels 4 banks (8 banks in total); 

• 2 channels 8 banks (16 banks in total). 
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Note that we will set all of the simulation settings, except the cache and memory 

related settings, with the default settings of sim-outorder. Also, our cache settings 

will be consistent among each sub-section to anow precise comparison between data 

points. Finally, as mentioned in section 3.1, our custom version of sim-outorder does 

not include the write buffer and memory access reordering capabilities. 

Simulation settings 

Table 3.1: Simulation settings for channel and bank test 

Instruction L 1 cache size 32KB 

Data Ll cache size 32KB 

Ll cache latency 1 processor clock 

L2 cache size 1MB· 

L2 cache latency 10 processor clocks 

Cache block size 64B 

Ll cache set associativity 4 

L2 cache set assocaitivity 8 

Custom DDR3 memory model's 800 (DDR3 1600) 
memory bus speed (MHz) 

i Amount of memory banks 4,8 

Amount of memory channels 1,2 

Tcas, Trcd, Trp, Tras (memory clocks) 7, 7, 7, 21 

Trtrs, Tcwd, Tcmd, Twr, Tccd (memory 1, 7, 1,5,4 

clocks) 

Our DDR3 memory model's processor 3200 
clock (MHz) 

Note: To verify the statistical values generated by our custom sim-outorder, we have also included a 

sample simulation output file verification in appendix A2 on page 127. 
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Row hit rates and row hit improvement 

Row hit rates 

Memny row hit rate (%, bigger is better) I- row hit ralc 1 

44.00% 

43.00% 

42.00% 

41.00% 
'0' 
"<F- 40.00% '-' 

~ 
39.00% :2 

~ 
38.00% 0 

~ 

37.00% 

36.00% 

35.00% 

34.00% 
I charne~ 4 2 charnel>, 2 I channet 8 2 channel'>. 4 2 charnels 8 

banks (4 banks it barKs (4 banks it. banks (8 banks Ii banks (8 banks it banks (16 banks 
total) total) total) total) Ii total) 

• row hi rate 37 37 41.56% 41.56% 43.45% 

Merrol)' configuratiJn 

Figure 3.13: Memory row hit rates of the gee simulation 

Note: Please note that there has never been any DDR3 memory being manufactured with only 2 and 4 

memory banks. Therefore, the simulations with 2 and 4 memory banks are never intended to reflect 

real world memory performance; instead, they are only used to illustrate the behavior of the memory 

row hit rate when the total amount of memory banks is being doubled. FinaJly, when considering the 

row hit rates of the multi channels setups. we must take the average row hit rate across the channels as 

the overall memory row hit rate. 
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Memory row hit rate improvement achieved by doubling the total amount of memory 

banks 

Row hit improvement achieved by doubling the total amount of memory banks (%, bigger is better) 
. ,r: .-f-ow-h-it-im-p-ro-vc-m-cn-'d 

12.00% 

10.00% 

8.00% 

6.00% 

4.00% 

2.00% 

0.00% ; , . 

Figure 3.] 4: Row hit improvement when total amount of memory banks is doubled 

From the row hit rate plot, one can notice the followings: 

• The row hit rate improvement is not sensitive to the total amount of memory 

channels; 

• The row hit improvement of doubling the total amount of memory banks (from 1 

channel 4 banks OR 2 channels 2 banks to 1 channel 8 banks OR 2 channels 4 

banks respectively) is consistent. 

• The row hit rate improvement tends to drop as the total amount of memory banks 

increase. 

The first and the second facts are the most important findings to prove our memory 

module is able to generate consistant results amoung different memory configurations 

- regardless the total amount of memory channels, if the total amount of memory 

banks is fixed, the memory row hit rate and memory row hit improvement should be 

consistent because the application's degree of locality is constant. 
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To explain the third finding, one can consider the multi bank main memory as an 

index of a set associative cache where the total amount of memory banks is the set 

associativity and each row latch is a cache block. If one keeps increasing the 

associativity or the memory bank count, it will eventually reach the limit of the set 

associative or multi bank design where additional set I bank will not benefit the 

overall hit rate. Therefore the row hit rate improvement will not double as the total 

amount of memory banks doubles. Instead, the row hit rate improvement should be 

a function of total amount of memory banks and the application's degree of locality. 

Hence it should converge to a value as the total amount of available row latches 

reaches the limit of the program's memory row request limit. 

Simulated performance and performance comparison under different 

memory configurations 

Simulated performance 

Performance (simulated processor cycles, smaller is better) I. performance 1 
4~ r-------------------------------------------------------~ 

4710000000 

4710000000 

4700000000 

4670000000 

I channel,4 ..... ks(4 2 channels, 2 bonks (4 
bonks in lolal) bonks io lotal) 

I channel, S bonb (8 
bonk. in tOlal) 

MetOOry configuration 

2 chunels. <4 bonks (& 2 chlnnels, 8 bonks (16 ! 

boob in total) bonts in total) 

Figure 3.15: gee simulated performance 
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Performance improvement achieved by increasing the amount of memory channels 

Performance increase from 1 channel to 2 channels (%, bigger is better) 
• Performance increase from 1 channel 

to 2 channels 
0.50'''' r------------==================;1 
0.45". 

0.40% 

0.35% 

0.30~" 

0.25% 

0.20% 

0.15% 

0.10% 

0.05% 

0.00". \-----

increase from I cbannel to 2 0.45% 

Figure 3.16: gce performance improvement achieved by increasing the amount of 

memory channels 

Performance improvement achieved by doubling the total amount of memory banks 

Performance improvement achieved by doubling the memory banks 
(%, bigger is better) 

0,25% 

0.20% 

0.15% 

0.10% 

0.05% 

0.00% 

! • Performance improvement achieved 
banks 

• Performance improvement achieved 
by doubling the memory banks 

1 channel, 4 to 8 banks 2 channels, 4 to 8 banks 2 channels 8 to 16 banks 

0.21% 0.21% 0.10% 

Figure 3.17: gcc performance improvement achieved by doubling the total amount of 

memory banks 
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From the performance plots, we have made the following observations: 

• The performance gain of adding an additional memory channel is much bigger 

than doubling the amount of total memory banks; 

• R~gardless of the total amount of channels, the performance gain of doubling the 

total amount of memory banks from 4 to 8 is consistent; 

• The benefits of doubling the total amount of memory banks are diminishing if 

one compares the improvement from 4 to 8 banks and from 8 to 16 banks. 

The first finding can be considered as the benefit of an extra memory data bus. With 

an additional memory data bus, the average amount of access to each data bus is 

reduced. Therefore, the average amount of memory access wait time caused by 

incomplete previous memory accesses can be reduced, yielding better performance 

than simply doubling the total amount of memory banks per memory channel. 

The second and third observations are, once again, proofs of the relationship between 

the total amount of memory banks and the limit of the multi memory bank design. 

As the row hit rate of the configurations with a total 4 memory banks should be 

consistent, one should expect to see the same amount of performance improvement 

achieved by doubling the total amount of memory banks, regardless the amount of 

memory channels present in the system. . Also, due to the fact that there exists a row 

hit improvement Iimitin the multi memory bank design, it is reasonable to have 

decaying performance benefit of as we continue doubling the total amount of memory 

banks. 
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To conclude, we have designed and tested our DDR3 memory model for the 

SimpleScalar simulator which is capable of producing consistent simulation results 

under different simulation configurations. Our DDR3 memory model has the 

following feature set: 

• Support up to 2 memory channels and 16 memory banks; 

• Support any reasonable input of processor clock speed, memory bus speed and 

memory latencies; 

• Generate consistent results amount different memory configurations. 

, 
, I 
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Chapter 4 

The Cache Filtering Algorithm for Least Frequently 

Used Data 

In this chapter, we will propose the cache filtering algorithm for least frequently used 

data (cache filter algorithm). This algorithm allows the cache to identify and filter 

out rarely used and non-previously used memory addresses. 

The remainder of this chapter will be organized as follows: 

• The background; 

• The baseline system's memory hierarchy characteristics; 

• The cache filtering algorithm and the components; 

• Simulation and discussion. 

4.1 The background 

Our cache filtering algorithm builds on the basics of two patented works. The first 

work, Cache Filtering Method and Apparatus [21], provided us important insights 

about how does the memory row hit signal can be used to identified previously used 

memory rows/pages and addresses. And the second work, Methods and Apparatus 

for Accelerating Retrieval of Data from a Memory System with Cache by Reducing 

Latency [22], had given us a hint about the possibility of using a small buffer to hold 

non-previously used and rarely used data. After serious considerations and 

modifications to the two works, we were able to combine them together and harness 

their strengths. 
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Our cache filtering algorithm makes use of a small buffer to store the filtered cache 

blocks and determine whether a cache block is frequently or previously used by 

checking: 

• the content of the buffer AND 

• the memory row/page hit signal generated by the memory controller 

4.2 The baseline system's memory hierarchy characteristics 

We decided to take the simulated system from section 3.3 as our baseline system to 

implement the cache filtering algorithm. Therefore we ,will assume our baseline 

system to have the follow memory hierarchy characteristics: 

• 2 level cache hierarchy (separated instruction LI cache and data LI cache); 

• No write buffer; 

• No memory access reordering. 

4.3 The cache filtering algorithm and its components 

To ensure the data being fetched to the cache hierarchy are frequently/previously used, 

we will only allow data to be fetched to 0e cache hierarchy from the following 

sources: 

• the L2 cache (only applicable to the L1 cache); 

• the filter buffer; 

• an opened memory row/page. 
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The remaining access types that are not allowed to enter the cache hierarchy stored in 

the filter buffer,· These accesses include: 

• fetches that causes a miss in all Ll cache, L2 cache, filter buffer and memory 

rows/pages; 

• writebacks from data L1 cache to L2 cache that causes a L2 cache miss; 

• all L2 writebacks, 

Processor Data 

Instruction register file 

register 

" Word bus 
~ 

Instruction L 1 cache Data L 1 cache 

r-- Filter buffer 

I 
Filter data bus 

Unified L2 cache 

row hit 
row miss 

Front side bus I Row hit? I 'Front side bus 

---"t .. 
Memory Controller 

Figure 4.1: Block diagram of the cache filtering scheme 
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Figure 4.1 shows the block diagram of the cache fi1tering scheme. This diagram 

shows the major components ofthe cache filtering algorithm: instruction register, data 

register file, instruction Ll cache, data Ll cache, L2 cache and the fi1ter buffer. 

I' 
4.3.1 The instruction register (IR) and data register file (DRs) I 

i 

Same as the IR and DRs of conventional memory hierarchies, our cache filtering 

scheme supplies data and instructions to the processor with the IR and DRs. The 

only difference is the IR and DRs can fetch/write data from/to the fi1ter buffer when 

cache filtering is used. 

. I , 

4.3.2 The instruction and data Ll caches (I and D Ll caches) 

The design ofthe I and D Ll caches remains largely unchanged from the design of the 

conventional memory hierarchy's. The only. differences are the source of data 

fetching and destination of writebacks. 

Fetch: The default data fetching source of the I and D Ll caches is the L2 cache. 

However, when the required data is not found in the L2 cache, the I and D L 1 caches 

will fetch from the filter buffer. 

Writeback (Data Ll cache only): The data Ll cache will only perform writebacks to 

the L2 cache if and only if the L2 cache has the writeback block. If the writeback 

block is not found in the L2 cache, the Ll cache will write its writeback block to the 

filter buffer to avoid eviction of useful cache blocks stored by the L2 cache (filtered 

writeback). 

.,: ; 

Note: Eviction of useful cache block happens when fetching block is replaced by the writeback block. 
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4.3.3 The L2 cache 

The L2 cache uses the same design as the conventional L2 cache except its fetching 

and writeback method. 

Fetch: The L2 cache fllSt tries to fetch from the filter buffer. If the fetch block is 

not found in the filter buffer, the L2 cache will fetch from the main memory. 

Writeback: In order to avoid unexpected closing of frequently accessed memory 

rows/pages, the L2 cache will always writeback to the filter buffer (filtered 

write back). 

4.3.4 The filter buffer 

The filter buffer is a new component introduced by the cache filtering scheme. It is a 

small and high speed SRAM device which is similar to conventional victim caches 

but implements the write through policy_ As an important component of the cache 

filtering algorithm, the filter buffer's purpose is to assist the cache filtering algorithm 

through the following ways: 

• Provide an alternative path to supply data to the L 1 and L2 caches; 

• Provide a temporary storage space for filtered data; 

Note: The simple write through policy was chosen due to its simplicity and its capability of maintaining 

most up-to-date values in both the filter buffer and the main memory. However, the write through 

policy can generate extra memory accesses. 
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Tbe fIlter data bus 

The filter data bus is a bi-directional connection between the filter buffer and the 

caches (the instruction LI cache, data L1 cache and the unified L2 cache). This bus 

is added to handle cache block transmissions between the caches and the filter buffer 

when cache fetching and filtered writebacks happen (to be discussed later). 

Tbeword bus 

The second bus connection between the filter buffer and the cache hierarchy is the 

word bus. The word bus allows the processor's instruction register and data register 

file to share the filter buffer. When filtered access (to be discussed later) happens, 

the word bus is used to transfer the processor requested instruction/data word between 

the filter buffer and the instruction/data registers. 

Tbe front side bus 

In our custom version of the Simplescalar simulator, the front side bus is being 

modeled as the data bus which allows the L2 cache, the filter buffer to share the main 

memory. It is important to note that this single bus is being routed to/shared by 

multiple components of the cache filtering scheme through the use of multiplexers 

and deultiplexers. 

Filter buffer accesses 

According to the cache filtering algorithm, there are several situations where the filter 

buffer will be accessed. These situations include filtered read/write when row miss, 

cache fetch from the filter buffer when L 1 and L2 cache miss, filtered writebacks. 
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Filtered access to/from main memory: 

When the processor requests for data that is not found in all cache levels, the filter 

buffer and all opened memory rows/pages, the cache filtering algorithm will perform 

a filtered read/write where the actions described by Figure 4.2 will happen: 

Processor readlwrite request 

* Address decode 

* Cache, filter buffer and memory row miss 

* Select the least recently used (LRU) filter buffer entry and wait until it is ready-to-use 

* Transfer the processor requested data (as a L2 cache block) from main memory to 

the buffer entry, set the entry as most recently used (MRU) 

* Transmit the processor requested word through the word bus (Read) OR receive the 

processor written word through the word bus (Write) 

(For write only) Write the processor tritten word to the LRU buffer entry 

and write the content of the buffer entry to main memory (satisfy DDR3's 

requirement of 8 data columns per transmission) 

Figure 4.2: Filtered read/write work flow 

Note: When handling filtered write, the buffer must first load the L2 cache block from main memory 

before writing the block back. This is because the processor has only one 32bits word to be written to 

the main memory, but the DDR3 standard requires at least 8 data columns (sixteen 32bits words) per 

transmission. Therefore, filtered write requires 2 memory accesses to happen. 
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Cache fetch from the filter buffer: ; i 

When the following conditions are satisfied, a cache fetch from the filter buffer with 
: I 
• I 

I ' 

the steps described by Figure 4.3 will happen: 

• processor requested data is not found in the cache hierarchy AND 

• processor requested data is found in the filter buffer AND 

• the LI cache does not need to write back OR L1 cache's writeback block is found 

in the L2 cache. 

Processor access request 

~ 
Address decode 

~ 
L 1 Cache miss, no writeback to the filter buffer is required 

~ 
Data found in a filter buffer entry 

~ 
Wait until the filter buffer entry is ready-to-be-read. L 1 cache completes the 

write back (if needed) and filter data bus is idle 

~ 
Transmit the cache block from the buffer to the cache 

hierarchy via the filter data bus and set the entry as MRU 

Figure 4.3: Cache fetching from the filter buffer work flow 

Filtered writeback followed by cache fetch: 

Filtered writeback followed by cache fetch (Figure 4.4) happens when the following 

conditions are met: 

• The fetched block is found in the filter buffer (for cache fetching) AND 

• The L1 write back block is not found in the L2 cache AND/OR 

• The L2 requires a writeback to service the cache fetching. 
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Processor access request 

! 
Address decode 

! 
L 1 Cache miss. L 1 writeback block is not found 

in L2 cache and/or L2 write back required 

! 
Processor requested data is found in filter buffer 

! 
Filtered writeback blockls found in filter buffer? 

I 
Yes 

1 1 No 

The content of the entry has been Mark the buffer entry with the 
written to main memory? 

Yes + I 

wait for the entry to finish 

writing and filter data bus 

to become idle 

! 
Write the the filtered 

writeback block to that entry 

I 

processor requested data as MRU 

l No 

Wait for the filter data 

bus to be idle and write 

the filtered writeback 

block to that entry 

(write merging) 

l 

~ 
Select the LRUbuffer entry 

!. 
Wait until the filter data bus 

to becomes idle and write 

the filtered writeback block 

to the entry 

1 

Transmit the processor requested data to the cache hierarchy via filter data bus ! ' . 
. Write the filtered writeback blockls to main memory 

Figure 4.4: Filtered writeback followed by cache fetching work flow 
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Filtered writeback without cache fetching: 

Filtered write back without cache fetching (Figure 4.5) happens when the following 

conditions are met: 

• The fetching block is found in the L2 cach~ OR an opened memory row/page 

(the fetching block is not found in the L2 cache); 

• The LI writeback block is not found in the L2 cache AND/OR 

• The L2 requires a write back to service the cache fetching. 

Processoraccessrequem 

~ 
Address decode 

. Cache miss, l1 writebtck block is not found in 

L2 cache and/or L2 writeback required 

t 
Processor requested data is found in the L2 cache or an opened memory row/page 

~ 
Filtered writeback block/s found in filter buffer? 

Yes 1 I 

The content of the entry has been 

written to the main memory? 

Yes ! I 

Wait for lhe entry to finish 

writing and filter data bus 

to become idle 

~ 
Write the filtered write back 

block to that entry 

~.NO 
Wait for the filter data 

bus to be idle and write 

the filtered writeback 

block to that entry 

(write merging) 

1 No 

Select the LRU buffer entry 

~ 
Wait until the filter data bus 

to become idle and write 

the filtered write back block 

lothe entry 

Writeback the content of the entry/s that hoi s the filtered writeback block/s to main 

memory after the cache fetch (from the L2 cache or any opened memory row/page) and 

set the entry as MRU 

Figure 4.5: Filtered writeback without cache fetching work flow 
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4.3.5 The algorithm 

The cache filtering algorithm for least frequently used data was designed such that it 

is active when cache miss happens and to filter the cache hierarchy based on: the 

status of the cache hierarchy, the content of the filter buffer and the opened memory 

row/page. In this subsection, we will first revisit all possible cache miss situations 

and discuss how the cache filtering algorithm handles each of them. 

Conventional cache miss situations 

In the conventional two levels cache hierarchy, when Ll cache miss happens, the L1 

cache can select either an empty, clean or dirty block to replace. If an empty or clean 

block is selected, one ofthe situations described by Figure 4.6 will happen: 

L 1 cache ---+ L 1 cache selects~ 12 cache fetch hit 

fetch miss a clean/empty '-til> 12 cache fetch miss 

block to replace t clean/empty replacem~nt 
block 
dirty replacement block, 

12 writeback needed 

Figure 4.6: Possible outcomes for L1 fetch miss with L1 clean/empty replacement 

block 

If a dirty block is selected by the LI cache for replacement, one. of the situations 

described by Figure 4.7 will happen instead: 
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L 1 cache --+

fetch miss 

L1 cache 

selects a dirty 

block to replace 

L2 cache writeback hit and fetch hit 

L2 cache write back miss, fetch hit 

t L2 clean/empty replacement 

block for L 1 writeback 

L2 cache dirty replacement block 

for L 1 writeback, L2 writeback 

needed 

L2 cache writeback hit, fetch miss 

t L2 clean/empty replacement 

block for L 1 fetch 

L2 dirty replacement block 

for L 1 fetch, L2 write back 

needed 

L2 cache writeback miss, fetch miss 

L2 clean/empty 

replacement blocks for 

both L 1 fetch and writeback 

L2 clean/empty replacement 

block for L 1 writeback, dirty 

replacement block for L 1 fetch, 1 

L2 writeback needed 

L2 clean/empty replacement 

block for L 1 fetch, dirty 

replacement block for L 1 

writeback, 1 L2 writeback needed 

L2 dirty replacement blocks for 

both L 1 fetch and writeback, 2 

L2 writebacks needed 

Figure 4.7: Possible outcomes for Ll fetch miss with L1 dirty replacement block 

Note: Situations involving L1 and L2 writebacks can lead to eviction of useful L2 cache blocks and/or 

unexpected closing of frequently used memory rows/pages. Therefore, filtered writebacks are added 

as part of the cache filtering algorithm to avoid those unnecessary cache/row misses. 
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Cache filtering algorithm's cache miss handling 

With all possible cache miss situations properly defined, we can now demonstrate 

how the cache filtering algorithm handles each of the situations. If the cache 

filtering algorithm is implemented on a I level cache hierarchy or the algorithm is 

handling L2 cache misses of a 2 level cache hierarchy. the algorithm described by 

Figure 4.8 (decision tree) and Figure 4.9 (psuedo code) will be used: 

One level cache filtering OR 

Lowest level cache Meringfor2 level cache hierarchy 

Cache miss Clean replace blOCk

1
caChe fetch ----.... Fetch requested block from memory ¥rith fast page 

(no writeback required. row OR mode OR from filter buffer 
cache fetch only) buffer hit 

Cache fetch row ----+ .. Filtered read/write. keep the liltered 

Dirty replace block 
(writeback needed) 

and buffer miss read/write block in the filter butfer and 
keep requested memory row open 

Both writeback and felch ---+Writeback and felch ¥rith memory ¥ia fast 
generate memory row OR page mode OR filler buffer 
buffer hit 

Wrileback row OR buffer hit. -+ Filtered read/write. keep the filt&red 
fetch row AND butfl!r miss read/write block in the filter buffer and 

keep requested memory row open 

Wrileback rowANO buffer _Wrileback to filter butferfirst, fetch requested block from 
miss, fetch row OR buffer hit memory ¥ia fast page mode OR from filter buffer, write 

the writeback block from filter buffer to main memory 
afterlhe fetchand keep the writeback row open 

Both writeback and fetch _Fillered readlwrite, keep the filtered readlwrite block in 
generate memory row AND the filler buffer and keep requested memory row open 
buffer miss 

Figure 4.8: One level cache filtering and lowest level cache filtering decision tree for 

two level cache hierarchies 
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LowerMissHandle(addr) 

if clean replace block 

then if (FilterBufferHit( add r) 0 R Mem RowHit(ad dr» 

then fetch(filter_buffer. addr) OR fetch(memory. addr) 

retum TRUE 

else filter( add r) 

return FALSE 

else if «(FilterBufferHit(write back_ad dr) OR MemRowHit(writeback_addr» AND 

(FilterBufferHit(addr) OR MemRo¥IHit(addr))) 

then writeback(filter _buffer, writeb ack_ add r) 

fetch(filter_buffer. addr) OR fetch(memory. addr) 

return TRUE 

else if «(FilterBufferHit(writeback_addr) OR MemRo'NHit(writeback_sddr) AND 

(!FilterBufferHit(addr) AND IMemRowHit(addr») 

then filter(addr) 

retum FALSE 

else if (OFilterBufferHit(write back_ad dr) AND IMemRowHit(writeback_add r)) AND 

(FilterBufHit(addr) OR MemRowHit(add r») 

then writeback(filter_buffer. writeback_sddr) 

fetch(filter_buffer. addr) OR fetch(memory. addr) 

retum TRUE 

else filter(addr) 

retum FALSE 

Figure 4.9: One level cache filtering and lowest level cache filtering psuedo code for 

two level cache hierarchies 
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If the cache filtering algorithm is implemented on a two level cache hierarchy and the 

algorithm is handling L 1 cache misses, the following decision tree (Figure 4.10) and 

psuedo code (Figure 4.11) will be used: 

2 level cache fi~ering 
M12 cache: 

L1 miss Clean replace block (no IFetCh hit -----+. Cache fetch from 12 cache 
writeb ack requi red, 
cache fetch only) 

Fetch miss-----+. Follow the algorithm from the previous 
page, if the access is not Mered, update 
12 and l1 caches' contents accordingly 

Dirty repl ace block 
(writeback needed) 

Both writeback and fetch --. Writeback to 12 cache then fetch from 12 cache 
generate 12 cache hit 

Writeback 12 cache hit but ---Followlhe algorithm from the previous page. If 
fetch 12 cache miss algorithm decides to fitter, no write back is needed, 

otherwise, write back to 12 cache and fetch from 
memory via fast page mode or from finer buffer 

Writeback 12 cache miss -+ Writeback to tiHer buffer, fetch from 12 cache, then 
but fetch 12 cache hit write the writeback block from fifter buffer to main 

memory 

Both writeback and fetch --. Follow the algorithm from the previous page, if the 
generate 12 cache miss access is fiHered, no writeback is needed, otherwise, 

writeback to filter buffer, fetch from the filter buffer OR 
from main memory via fast page mode, then write the 
writeback block from filter buffer to main memory 

Figure 4.10: Ll cache filtering decision tree for two level cache hierarchies 
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Upp erMissH and I e(a dd r) 

if clean replace block 

then if l.2_hit(addr) 

then fetch(L2. addr) 

return TRUE 

else if LowerMissHandle(addr) 

then fetch(l2. addr) 

else filter(s ddr) 

return FAlSE 

else if (l.2_hit(addr) AND l.2_hit(writeback_addr» 

then writeback(l.2. writeback_addr) . 

fetch(L2. addr) 

else if (L2_hit(writeback_addr) AND !L2_hit(addr)) 

then if LowerMissHandle(addr) 

then writeback(L2. write back_3d dr) 

fetch(L2. addr) 

else if (!I.2_hit(write back_ad dr) AND L2_hit(addr» 

then writeback(filter _buffer. writeback_addr) 

fetch(12. addr) 

else if LowerMissHandle(addr) 

then writeback(filter_buffer. writeback_sddr) 

fetch(l.2. addr) 

else filter(ad dr) 

Figure' 4.11: L1 cache filtering psuedo code decision tree for tWo level cache 

hierarchies 

This concludes the description of our cache filtering algorithm for least frequendy 

used data. In the next chapter, we will provide the simulation and result analyze for 

our cache filtering scheme. 
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ChapterS 

Simulation and analysis of the cache filtering 

algorithm 

This chapter is divided into the following parts in order to analyze the performance of 

our cache filtering algorithm: 

• The desktop/notebook computer environment and simulation settings; 

• Simulation results and discussion (desktop/notebook environment); 

5.1 The desktop/notebook computer environment and 

simulation settings 

To explore the potential of our cache filtering algorithm, we will use our custom 

version of sim-outorder simulator, with our accurate DDRJ memory model and cache 

filtering algorithm, to simulate and compare a baseline desktop/notebook computer 

system (with cache filtering algorithm disabled) with a cache filtered 

desktop/notebook computer. We have also simulated the baseline and cache filtered 

system with four different L2 cache sizes (256KB, 512KB, 1MB and 2MB) to analyze 

our cache filtering algorithm's sensitivity to different L2 cache size. 

In our simulations, we will use the ammp, equake, gee, gzip, mcf, parser and vortex 

benchmarks from the SPEC CPU 2000 benchmark suite [19,20]. 

Note: Other than the processor speed, cache and memory settings. all simulator settings will be left as 

default. 
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The following is a table of simulation settings: 

Table 5.1: Simulation settings for the desktop/notebook environment 

Processor speed 3.2Ghz 

L1 Instruction cache 32KB, 4 way set associative, 64B block size, access 

latency = 1 processor elock (elk) 

L1 data cache 32KB, 4 way set associative, 64B block size, access 

latency = 1 processor elk 

L2 cache Size varies (256KB, 512KB, 1MB and 2MB), 8 way set 

associative, 64B block size, access latency = 10 

processor elks 

Memory bus 64bit (8B) wide, 800Mhz speed (DDR3 1600) 

DRAM 8 banks, 4KB row buffer, page interleaving 

DRAM timing (in memory Tcas = 7, Trcd = 7, Trp = 7, Tras = 21, TbuTSt = 8, Twr 

clocks) = 5, Trtrs = 1, Tcmd = 1, Tcwd = 7, Tccd = 4 

Filter buffer size (filter buffer 64 entries x 64B (entry size, same as the L2 cache 

only present in cache filtered block size) = 4KB 

system) 

Filter buffer search latency 1 cpu elk 

Filter buffer transfer latency 2 cpu elks 

Filter data bus latency 1 cpu clk (Ceiling(0.24ns /3.2Ghz» 

Word bus latency 1 cpu elk (Ceiling(0.24ns /3.2Ghz» . i 

i 

69 



' . ' . ' • ' ' ' , • •• • • u:l~' .f' :;or.' '!:':" •• co .. .... . <.' ... r::: " l' ~ '"~.''<':-'''':-''''''' !" ."_ .................. - '" ..... . 1 7! .... ~~.,. ' .. 0.;" .... · -."l .. : • ".'U' .. , - L ...-- ' \. ~ .,.. ...... . ..\.. : ~ "~' , ' ,'_ '" " "" ' . ',,:-J ~' , 

. . ~ 

5.2 Simulation results and discussion (desktop/notebook 

environment) 

We will break this sub-section into the followings : 

• Cache filtering performance and performance gain; 

• Filter count; 

• Extra memory accesses; 

• Memory row hit rate; 

• Ratio of filtered write versus total memory accesses; 

• Cache hit rate (L 1 and L2). 

Cache filtering performance and performance gain 

Figure 5.1 shows the cache fi ltered system 's performance gain (in percentage) 

comparing to the baseline system. Figure 5.2 - 5.5 shows the performance (in 

instruction per cycle) of the basline and cache filtered systems with different L2 cache 

s izes. 

Perform ance gain of the cache fi ltered systems 

Performa nce ga in (%. bigger is bette r) 
o filte red. 256KB 
o filtered. 512KB 

filtered , lMB 

20.00% 
• fi ltered . 2M B 

'--- - - - --
15 .00% 

10.00% 

1fT .ltt.. 5.00% 
rTtl.. n-. rrn.. 

0.00% =-
·5.00% 

-10.00% 
ammp equake gee gzip mef parser vortex average 

r--- - i----=- f-- --
o fdlered. 256KB 15.99% 4. 11 % 2.1 4% -0. 12% 8.57% 9.22% 0.69% 5.80% 
f- --f- - - - - - -
o filtered. 512KB 15.89"10 4.00% 1.14% -0.78% 11. 99% 7.29% 0.45% 5.71% - - - -
I Q filtered. 1MB 15. 19% 3.59% 0.90% -0.6 1% 11.62% 4.92% 0.35% 5. 14% -
• fdlered. 2MB 12. 55% 2.I~L O.40% -0.63% -4 .76% 2.62% 0.30% 1.80% '-_ 

Benchmark 

Figure 5.1: Performance gain of the cache filtered :systems 
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Performance of the systems with 256KB L2 cache 

Perfunnance of256KB 12 cache (I(l<;truction per cycle (IPC), bigger is better) 0 original 

• fihered 
2 ,-----------------------------------------~==~ 

Benchmark 

Figure 5.2: Performance of the systems with 256KB L2 cache 

Performance of the systems with 512KB L2 cache 

Perimnance of 5I2KB 12 cache (I(l<;truction per cycle(IPC), bigger is better) o original 

• fIltered 

2~--------------------------------==~1 
1.5 

gee gzip 

0.9906 1.2445 1.7525 0.3637 1.1908 1.4516 

• filtered 0.5673 1.0302 1.2587 1.7388 004073 1.2776 104581 
Benchmall 

Figure 5.3: Performance ofthe systems with 512KB L2 cache 
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Performance of the systems with 1MB L2 cache 

Performance of 1 MB L2 cache (Instruction per cycle (!PC), bigger is better) 0 1MB original 

-lMBfiltered 
2r----------------------------------------=======~ 

1.5 

vortex 

1.0135 l.2845 1.7493 0.5412 1.3 1.4989 

1.0499 1.296 1.7386 0.6041 1.364 1.5041 
Benchman: 

Figure 5.4: Performance of the systems with 1MB L2 cache 

Performance of the systems with 2MB L2 cache 

Performance of 2MB L2 cache (Instruction per cycle (IPC), bigger is better) 

2r---------~----------------------------------------~ 

1.5 

0.5691 1.0798 1.3252 1.3985 1.5168 

0.6405 1.l029 1.3305 0.7167 1.4351 1.5213 

Benchmark 

Figure 5.5: Performance of the systems with 2MB L2 cache 
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From the performance and performance gain figures, the following observations were 

made: 

• Our cache filtering algorithm is able to produce an average of 5.80%, 5.71 %, 

5.14% and 1.80% of performance advantage over the baseline systems equiped 

with 256KB, 512KB, 1MB and 2MB L2 caches respectively. 

• The algorithm provides big performance gain for ammp, mcf (excluding 2MB L2 

cache) and parser. 

• The performance gain tends to drop as the L2 cache size increases. 

• The performance of the cache filtered system with 256KB L2 cache running the 

ammp benchmark is better than the baseline system with 512KB and 1MB ofL2 

cache. 

• The performance of the cache filtered system with 256KB L2 cache running the 

equake and parser benchmark is better than the baseline system with 512KB L2 

cache. 

In the meantime, there is not enough information to explain the negative performance 

gains of gzip and mcf with 2MB L2 cache and the big performance gain for ammp, 

mcf and parser. We wilJ try to explain the performance drop in the upcoming plots. 

Filter access count 

After the performance gain of the cache filtering algorithm, we will start analyzing the 

performance by studying the behavior of the cache filter through the total cache 

filtering count The following plot shows the total amount of cache filtering 

happened throughout the runtime of the benchmarks. 
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OIl 400000000 
~ -c 

11 300000000 
~ 
4-< 

Filter access count 

r-r-

-

o filtered, 256K B 
o filtered, 512K B 
o filtered, 1MB 
• tiltered, 2M B 

~ 11 lI---.--'---'='-rr--.. =-----r-==-----

200000000 0 
..... 
Q) 

..0 [00000000 
8 
;:I 

Z 0 

~
ftltered. 256KB 34:5:~0 1 18::~:;45 47::~15 16:;:46 1 303:::369 2::::[50 ~::26 

Dftltered,2 UKi3 332888~~~ 2310806 ~161 ~25 _ 2~55]4224 13848131 7~0552 
ftltered, 1MB 31359~ 15 1452880 16 1~ 10075941 123 1 ~3878 8~2967_L 3422382 _ 

• ftltered. 2MB 267379554 110010058 882944 10051787 73661689 3945416 1 1922747 
-- -- - -- -'--- -- - --- --

Benchmark 

Figure 5.6: Total amount of cache filtering throughout benchmark execution 

From the fil ter count plot, the following observation is made: 

• The amount of cache fi ltering decr~;ases as the L2 cache size increases. 

To explain this observation, one must consider the fac t that our cache filtering 

algorithm was designed as cache miss handl ing procedures - the fil ter only activates 

whenever cache miss happens. As the L2 cache size increases, the overall hit rate of 

the cache hierarchy will also increase, effectively reducing the total amount of cache 

filtering and rendering the cache filter less effective in systems equiped with bigger 

L2 cache configurations. This outcome can also be used to explain the third 

observation made from the performance gain plot where the performance gain tends 

to drop as the L2 cache size increases. 
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Extra memory accesses 

The following plot shows the extra memory accesses, comparing to the baseline 

system, generated by the cache filte red syst m (particularly the write through fil ter 

buffer and the filtered write accesses). Note that percentage is used to make it easier 

to compare results from different simulations (simulations with different L2 cache 

sizes). -ro ftlt~red, 256KB o ftltered, 5 12KB 
o ftltered, 1MB 
• ftltered, 2MB 
----, 40.00% 

Extra memory a:x:ess (%, less is better) 

30.00% 
20.00% 

10.00% 

0.00% 

-1000% 

-20.00% 
i 

-30.00% 
ammp equake gee gzip mef prurer vortex average 

!,,"",'256KE 4.76% 1.12% 
-

o fi!t~, 512K.B 4.78% 0.88% 

Dfiltered,~ 3.22% 0. 18% 

~filtered,2MB _ -D.27% 0.10% 

2.74% 25 .76% 5.43% 14.60% 1.67% 8.01% -
6.44% 32.68% 1.24% 17.65% 4.09% 9.68% 

8.37% 29.44% -17.92% 19.69% 11.69% 7.81% 

15.78% 29.76% 15.97% 20.03% 19.39% 14.39% 

Benchmark 

Figure 5.7: Extra memory accesses of the cache filtered systems 

From the extra memory access plot, the following observations were made: 

• ammp, equake and mcf(excluding 2MBL2 cach(;) are having a very small extra 

a~cess (for mcf with 1 MB L2 cache, a negative extra memory access is 

recorded); 

• gzip has a big amount of extra memory accesses and the mcfwith 2MB L2 cache 

simulation has a relatively bigger amount of extra memory access than other mcf 

simulations. 

Considering the characteristics of the write through policy [1], one can conclude that 

the extra memory accesses were introduced by the filter buffer as memory writes_ 
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Memory row hit rate 

Figure 5.8 shows the baseline's and the cache filtered system's memory row hit rate. 

Memory row hit rate (%, bigger is better) 
o original 256K B 
- filtered 256KB 
o original 512KB 
-liItcrcrl512KB 

70'()0% o original 1 MB 
! -liltered 1MB 

60.00% o original 2MB 
i - liltered 2MB 

50.00% 

40.00% 

30.00% 

20.00% 

10.00% 1 0.00% 
ammp equake gce gzip mef parser vortex 

i 0 original 256KB 29.29% 54.58% 49.32% 14.80% 32.18% 24.29% 43.74% 

• filtered 256KB 38.99% 55.18% 52.46% 33.20% 38.24%1 34.67% 45.57% 

. 0 original 512KB 28.87% 55.90% 49.93% 20.33% 27.04% 20.75% 36.35% 

I. filtered 5I2KB 38.69% 56.26% 52.99% 40.25% 32.82% 33.41% 39.62% 

o original 1MB 29.53% 58.07% 41.56% 20.48% I 15.40% 18.08% 23.74% 

I. filtered 1MB 38.34% 58.10% 46.08% 38.87% 18.22% 32.23% 30.98% 

~2MB 31.37% 65.25% 28.57% 20.60% 9.97% 14.56% 15.28% 

• filtered 2MB 36.59% 65.28% 38.28% 39.09% 10.74% 29.42% 28.24% 

Benchmark 

Figure 5.8: The memory row hit rate of the cache filtered systems 

From the memory row hit plot, we have several important findings: 

• No drop in memory row hit rate was found. 

• The cache filtered system's row hit rate for ammp. gzip and parser are much 

higher than the baseline system. 

• gce, mcf excluding 2MB L2 cache and vortex are having 

noticeable-but-not-too-big gain in memory row hit rate. 
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• mcf with 2MB L2 cache has a much smaller row hit rate increase than other mcf 

simulations (0.77% vs. >2%) 

These findings suggest that our cache filtering algorithm is able to efficiently utilize 

the feature of the page interleaving scheme to yield better overall system performance. 

Cache hit rate (data Ll and L2) 

Data Ll cache hit rate 

o original 256KB 
Data Ll cache hit rate (%, bigger is better) • flItcn:d256KB 

o original512K B 
• filtt.'fCd 512KS 
o onginailM B 

• filtcred J MS 
102.00% o original 2M B 

•• ftltt.'fCd2MB 
100.00% 

98.00% 

96.00% 

94.00% 

92.00% 

90.00% 

88.00% 

86.00% 

84.00% 
ammp equake gee gzip mef parser vortex 

o original 256KB 94.52% 98.03% 98.58% 97.69% 91.57% 98.96% 99.50% 

• filtered 256KB 93.72% 97.56% 98.47% 

~ 
90.02% 98.72% 99.43% 

o original SI2KB 94.52% 98.03% 98.58% 91.57% 98.96% 99.50% 

i • filtered 5I2KB 93.77% 97.59% 98.51% 97.65% 90.34% 98.79% 99.46% 

o original 1MB 94.52% 98.03% 98.58% 97.69% 91.57% 98.96% 99.50% 

• fIltered 1 MB 93.84% 97.65% 9853%+;= 90.95% 98.86% 99.47% 
.. -

o original 2MB 94.52% 98.03% I 98.58% 91.56% 98.96% 99.50% 

~t(:~d2MB 93.98% 97.76% I 98.55% 97.66% 91.00% 98.91% 99.48% 

Benchmark 

Figure 5.9: Data Ll cache hit rate 
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From Figure 5.9, we noticed small drop in data L1 cache rate from the benchmarks. 

This is because the data LI cache is very frequently accessed. In the baseline system, 

when LI cache miss happens, the L1 cache will fetch the processor requested data. 

The cache filtered system, on the other hand, is likely that cache miss will occur more 

than or equal to two times before the corresponding cache block is moved to the cache. 

This is because the cache filtering algorithm will filter out all first-time cache misses 

and place the cache block into the filter buffer. Therefore the average amount of 

cache missles before the data is found in the cache is greater than or equal to 2. 

However, this drop in L1 hit rate is only negligible since the cache filtering algorithm 

is able to compensate such problem by eliminating cache pollution caused by rarely 

used data blocks. 

Note: Due to the fact that there are no difference between the baseline's and cache filtered system's 

instruction L 1 cache hit rate, we will omit the instruction L 1 cache hit rate comparison. 
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L2 cache hit rate 

o original 256KB 

Unified L2 cache hit rate (%, bigger is better) • filtered 256KB o original512KB 
• filtered 512KB 
o original 1MB 

• filtered 1MB 

120.00% 
o original 2MB 

• filtered 2MB 

100.00% 

80.00% 

60.00% 

40.00% 

20.00% 

0.00% 
ammp equake gcc gzip mef parser vortex 

o original 256KB 48.44% 41.89% 93.05% 97.09% 41.66% 70.25% 91.87% 

• filtered 256KB 52.93% 41.48% 93.26% 97.11% 41.55% 70.64% 92.15% 

o original 512KB 50.42% 43.84% 96.61% 97.98% 57.85% 80.96% 96.45% 

• filtered 512KB 55.44% 43.44% 96.67% 98.00% 63.03% 81.16% 96.55% 

o original 1 MB 52.97% 48.22% 98.01% 97.99% 80.60% 89.29% 98.60% 

• filtered 1 MB 59.28% 47.86% 98.05% 98.01% 88.71% 89.35% 98.64% 

o original 2MB 60.15% 54.59% 99.15% 98.00% 91.71% 95.16% 99.30% 

• filtered 2MB 68.77% 54.28% 99.16% 98.01% 92.89% 95.18% 99.31 % 

Benchmark 

Figure 5.10: L2 cache hit rate 

From the L2 cache hit rate plot, we have the following findings: 

• ammp's L2 cache hit rate improvements have compensated the data LI cache's 

degraded hit rate and helped maintaining a small extra memory access rate. 

And becuase accessing the L2 cache is more than 10 times faster than accessing 

the main memory, the improved L2 cache hit rate is also very benifitial to the 

overall performance. 

79 



A8I" 
, : trr, T 7 11 

• mcfwith 512KB and 1MB L2 cache have bigger L2 cache hit rate (comparing to 

mcf with 256KB and 2MB L2) improvements, which yielded a very small and a 

negative extra memory access rate respectively. 

• mcf with 256KB and 2MB L2 cache are having slightly degraded and very small 

L2 cache hit rate improvement respectively. These are the main causes of the 

relatively bigger (comparing to mcfwith 512KB and 1MB) extra access rate. 

The special case: gzip and mcf 

According to the simulation results, we noticed two seemingly abnormal outcomes 

where the system with 1 and 2MB of L2 cache are slower than the same system with 

512KB L2 cache and the cache filtered system with 2MB of L2 cache being slower 

than the baseline system and both the baseline. In this subsection, we will try to 

investigate and explain the cause of such outcome. 

gzip: 

To explain the gzip's situation, we must first point out that it is not unusual that a 

bigger cache is causing a slowdown, if and only if the simulated benchmark has 

reached the point of diminishing return at a certain cache size where other 

performance limiting factors such as memory bus activities start slowing down the 

system. To prove our point, we have included figure 5.11, extracted from [23]; 
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Xlisp 

~ -

L 1 data-cache size 

Figure 5.11: Xlisp simulation with varied I and D L1 cache size, extracted from [23] 

Figure 5.11 is a simulation plot extracted from [23], which tries to vary both the size 

of instruction and data Ll cache size, in order to find the relationship between 

performance and the L1 cache sizes. According to figure 5.11, when the instruction 

Ll cache is set to be 64KB in size, the system reaches its peak performance when the 
., . 

data Ll cache reaches 512KB of size. Ifone pay attention to the circled area in the 
. '. 

plot, he/she will noticed that the performance of the system with 512KB of L 1 data 

cache is higher than the same system with 2MB ofLl data cache. 

We have also completed a set of gzip simulations with the original SimpleScalar 

simulator to look at the relationship between gzip's performance and L2 cache size: 
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gzip perfunmnce on original Sin1>leScalar Simulator (IPC, bigger is better) 
I .gzip I 

1.855 

cache confJguration 

'Figure 5.12: gzip simulations with varied L2 cache size on original SimpleScalar 

simulator 

As suggested by figure 5.12, under the original SimpleScalar simulator running gzip~ 

the effect of doubling the size of L2 cache after it reaches 512KB of size is minimal. 

This observation is supported by the following figure, which shows the 'total amount 

of memory accesses of each cache configuration: 
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45000000 

40000000 

35000000 

.30000000 

25000000 

20000000 

.• 15000000 

10000000 

5000000 

o 

access 

gzip total melOOry access (less is better) 

38262295 25392332 25238770 

cache configuration 

Figure 5.13: Total amount of gzip memory accesses 

25211262 

Therefore, we can conclude that gzip is reaching its peak perfonnance when the L2 

cache size reaches 512KB. And once the system reaches the point of diminishing 

return, factors such as the memory row refresh time and memory bus activity will start 

affecting the perfonnance of the system, lowering the perfonnance. 

Throughout our study, we noticed that gzip generates a relatively large amount of 

overlapped memory accesses (as shown iIi' figure 5.14), which happens when the 
. . . 

cache is requesting data while the memory bus is busy servicing the previous memory 

access. This will cause the cache and processor to wait longer than regular memory 

accesses which happens when the memory data bus is idJe. 
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gzip ratio of overlapped DEDlOry access vs. total lreDlOry access (%, smaller is better) 

I_ overlapped memory access% 1 
50.00% 

40.00% 

30.00% 

20.00% 

10.00% 

0.00% 

• overlapped memory 
access% 

256KB 

28.39% 

, 512KB 1MB 2MB 

39.02% 39.21% 39.25% 

cache configuration 

Figure 5.14: gzip ratio of overlapped memory access versus total memory accesses 

Performance ofmefsimulations 

Figure 5.15 shows the performance of all mcf simulations in IPC: 

m:;fperfOrrnance (Instruction per cycle (IPC), bigger is better) o original 

-filtered 
0.8 ,.------------------~=~ 

0.6 

0.4 

0.2 

o f-...l.--

mcf256KB mcf512KB . mcflMB mcf2MB 

0.3093 0.3637 0.5412 0.7525 

0.3358 0.6041 0.7167 

cacbe configuration 

Figure 5.15: mcfperformance in IPC 
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From the performance plot, the following observations were made: 

• Both the original and cache filtered systems are having performance gain as the 

L2 cache size increases. However, the cache filtered system with 2MB L2 

cache is showing negative performance gain comparing to the baseline. 

mc! total memory access count . 

Next, we will shift our focus towards the total amount of memory accesses and extra 

memory accesses happened throughout the execution of mcf (Figure 5.16 and 5.17). 

nx:ftotal memory access (smaller is better) 

700000000 

6OOOOOOOO 

500000000 

400000000 

300000000 

200000000 

100000000 

0 
nx:f256KB m:f512KB m:flMB 

623952391 473531051 215310120 

• fikered 657802219 479398962 176737050 

Cacre configurafun 

Figure 5.16: mcftotal memory accesses 
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md extra memory access (%, smaller is better) 

20.00% ,----------------------------,1 

15.00% 

10.00% 

5.00% 

0.00% 

-5.00% 

-10.00% 

-15.00% 

Figure 5.17: mcf extra memory access rate 

According to figure 5.16 and 5.17, we can notice that: 

• The total amount of memory accesses decreases as the L2 cache size increases. 

This is caused by the fact that the memory usage pa~ern of mef is being 
, " 

classified by [23] to be having a very high degree of temporal locality. 

• The cache filtered system is able f9, maintain a very small to negative extra 

memory access rate.·: However, as the L2 cache reaches 2MB. the benefit of 

doubling the L2 cache size shown by the baseline system has defeated the benefit 

offered by our eache filtering mechanism. 

me! memory row hit rate and filtered read versus total memory access ratio 

Finally, due to the fact that our cache filter activates only when memory row misses 

(random accesses) happene, we will now show the memory row hit rate of the 

baseline and cache filtered systems in Figure 5.18: 

86 
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10.00% 

5.00% 

0.00% 1---'---
mcf256KB mcf512KB mcflMB mcf2MB 

15.40% 

Cache contiguratk>n 

Figure 5.18: mcfmemory row hit rate 

As shown in figure 5.18 for both the baseline and the cache filtered systems, when the 

L2 cache size increases, the memory row hit rate drops. This is caused by the join 

effect of mcf's memory access pattern and the memory access intercepting capability 
, ' 

of the bigger L2 cache. According to [23], mcf's memory access pattern is not only 

representing a very high temporal locality, but also a relatively low spatial locality 

where its requested data are located far from each other in the memory. 

Therefore as the L2 cache is intercepting increasing amount of tern pornl accesses, the 

remaining address requests that are reaching the main memory will be located much 

further apart. If the size of the L2 cache maintains at a steady growth, eventually, 

memory address requests will always exceed the address range of the row latches, 

causing lowered row hit rate. This memory access pattern will also yield extra 

filtered read/write in our cache filtering scheme as the filter buffer with only 64 

entries will also be unable to satisfy such largely diversified address requests. 
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With these findings, we can finalize our performance analyze with the followings: 

• The performance gain of ammp is a result of the improved L2 cache and memory 

row hit rate, relatively small amount of extra memory accesses and the low filter 

buffer access latency. 

• equake's performance gain is mainly contributed by the lo~ filter buffer access 

latency, which is able to minimize the cache miss penalty. 

• gee's slight performance improvement is mainly caused by the improved 

memory row hit rate, which is capable of compensate the extra memory accesses. 

• When running gzip, the cache filtered system will generate large amount of 

memory writes. However, the big gain in memory row hit rate had provided 

relieve to the situation, allowing the overall performance to be degraded slightJy. 

• mcfwith 256KB to 1MB L2 cache's performance gain are mainly contributed by 

the small to negative amount of extra memory accesses and significantly better 

memory row and L2 cache hit rates. 

• mcf with 2MB L2 cache's performance drop, relative to the other mef 

simulations, is the end result of relatively small memory row hit improvement 

and the memory access pattern generated by the large L2 cache, which, is not 

favoring the cache filtered system. 

• parser's performance gain is caused by the significantly better memory row hit 

rate. 

• vortex's small performance improvement is the result of the better memory row 

hit rate. 
i •. 
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To conclude, we have designed a cache filtering algorithm which is capable of: 

• Distinguishing frequently used cache blocks from rarely used blocks; 

• Filtering rarely used data out of the cache hierarchy; 

• Improving the overall perfonnance of the computer systems. 

We suggest improving the filter buffer by changing the write through policy to the 

write back policy, which will reduce the total amount of memory accesses, memory 

bandwidth usage and power consumption (more memory access implies more row 

precharging and DRAM activity, which in return; will consume more power). This 

modification should produce greater perfonnance gain to the cache filtered system 

and allow the cache filtering algorithm to be implemented on value notebook 

computers where power consumption is a major concern. 

Note: To verify our simulation results, we have included a sample verification for the cache filtered 

desktop system with 2MB L2 cache gzip simulation result in the appendix on page 110 
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Chapter 6 

Overview and Comparison of Related Works 

In this chapter, we will provide an overview of the following works and compare 

them with our work (hereafter referred as CF-LFU): 

• Cache Filtering Techniques to Reduce the· Negative Impact of. Useless 

Speculative Memory References on Processor Performance (Spec) [5]; 

• Line Distillation: Increasing Cache Capacity by Filtering Unused Words in 

Cache Lines (Line distillation)[25]; 

• Reducing Cache Pollution via Dynamic Data Prefetch Filtering (prefetch filter) 

[26]. 

Due to the fact that out of the three related works to be compared in this chapter, more 

than one of them were not using instruction per cycle (IPC) and cache hit rates as the 

performance measurement. We will compare our work with their efficiency by using 

rate of performance improvement in percentage. 

6.1 Cache Filtering Techniques to Reduce the Negative 

Impact of Useless Speculative Memory References on 

Processor Performance (Spec) [5] 

o. Mutl~ H. Kim, D.N. Armstrong and Y.N. Patt proposed a cache filtering algorithm 

which uses the Ll cache as a filter to a particular type of useless data out of the L2 

cache [5]. According to their concept, when the processor loads data to the cache 

during speculative execution mode (when the processor executes a program branch, 

which the branch predictor determined to have a high chance of being taken by the 
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program), there is always a possibility that the branch predictor is making a wrong 

guess, rendering the data being loaded useless and causing cache pollution to both L 1 

and L2 caches. 

To address this issue, they designed a filtering mechanism with two filtering policies, 

the no-spec-L2fill policy and the spec-L2 fillLRU policy, that only fetches data to the 

Ll cache during speCUlative execution. If the processor determines that the branch 

prediction was taken, the speculatively fetched block will be allowed to be written 

back to the L2 cache when the block is being replaced, otherwise, under 

no-spec-L2fill policy. the speculatively fetched block will simply be discarded if the 

branch was not taken. If their spec-L2fill LRU policy was used, then the 

speculatively fetched Ll block will be written to the L2 cache index's least recently 

used set. 

6.1.1 Performance improvement comparison (CF-LFU vs. Spec) 

In this subsection, we will have a comparison between our CF-LFU and the two 

filtering policies, the no-spec-L2fill and spec-L2fiIlLRU, of [5]'s Spec filtering 

technique. The following is a table of simulation settings used to compare our 

CF-LFU with no-spec-L2fill and spec-L2fillLRU: 
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Table 6.1: Simulation settings for comparison between CF-LFU, no-spec-L2 fill and 

spec-L2 fill LRU 

F etchllssuelRetire width 8 instructions, 8 functional units 

Instruction window size 128 entry instruction window, 128 entry ld-st queue 

Branch predictor 64K entry gshare, 64K entry PAs hybrid 

Ll Instruction Cache 64KB, 4-way, 64B block size, LRU replacement 

Ll Data Cache 64KB, 4-way, 64B block size, LRU replacement 

L2 Unified Cache 512KB, 8-way, 64B block size, LRU replacement 

Processor clock 3000Mhz 

Memory clock 200Mhz 

Memory bank 2 channels, 16 banks per channel 

configuration 

Memory latency 6(CAS), 7(RCD), 7(RP), 21(RAS) 

Execution range Full execution 

Benchmarks gee, gzip, mer, parser 
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Figure 6.1 : Performance improvement comparison between CF-LFU, no-spec-L2fill 

and spec-L2fill LRU 

Figure 6.1 shows that our cache filtering algorithm is able to keep a comparable 

performance gain in gcc, maintain significantly better performance gain in mcf and 

parser but a performance slowdown in gzip, comparing to O. Mutlu, H. Kim 's, D.N. 

Armstrong's and Y.N. Patt's work. From the previous chapter, we are aware of the 

significant performance gains of the mcf and parser benchmark caused by the 

improved memory row hit rate at 512KB ofL2 cache, as well as the performance drop 

of the gzip, which is a result of the big amount of filtered writes. Therefore, the 

results of figure 6.1 are proven to be consistent to our results shown in the previous 

chapter. 
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Figure 6.1 also suggests that out of the four benchmarks being compared, [5]'s work 

was only capable of producing positive perfonnance gain in gcc and parser, and their 

spec-L2 fiU LRU policy is capable of generating slightly better than the no-spec-L2 

fill policy. According to [5], gcc and parser suffer most from L2 cache pollution; 

hence their work is capable of producing better results with those two benchmarks. 

Our CF-LFU, on the other hand, was capable of producing better perofnnance gain by 

following the traditional focus of cache designs - to improve temporal and spatial 

locality. Support by figure 6.1, we can conclude that the benefit of filtering less 

frequently used data is much bigger than filtering out useless speculatively fetched 

data from the L2 cache. 

6 .. 2 Line Distillation: Increasing Cache Capacity by Filtering 

Unused Words in Cache Lines (Line distillation) [25] 

M.K. Qureshi, M. A. Suleman and Y. N. Pall proposed a new technique (hereafter 

referred as Line distillation) which improves L2 cache's capacity by partitioning the 

L2 cache and only keep the useful words of a cache block upon eviction[25]. In 

their work, they pointed out that caches are organized into blocks where each block 

contains a sequence of consecutive words. This design is most suitable when 

applications are having high spatial locality in their memory usage pattern. However, 

if the application's spatial locality is low. most of the words in the cache block are not 

used and hence the cache capacity is not utililized efficiently. 
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To solve this problem, they h~ve a new cache design, known as distill cache, which 

partitions the cache into line organized cache (LOC) and word organized cache 

(WOC). The LOC is used to store standard cache blocks and has a footprint bit array 

to track the word usages of the cache block. The WOC, on the other hand, is used to 

store the previously used words of an evicted cache block. When a cache miss 

reaches the L2 distill cache, the LOC is flrst checked. If the LOC generates a hit, the 

block will be transferred to the LI cache and the footprint array is updated. If the 

LOC generates a miss, the WOC is examined. lfthe WOC generates a hit, the WOC 

will transmit the word it contains to the Ll cache, together with a valid bit vector in 

order to mark which word of the L1 cache block is valid. However, if both the LOC 

and WOC are generating misses, the LOC will select a LRU block and the WOC will 

randomly select a block to replace. Upon replacement, the LOC will flfSt wait for 

WOC to flnish the writeback if needed, then the LOC will replace the LRU block with 

the request data and at the same time, transfer the previously used words to the WOC. 

6.2.1 Performance improvemnet comparison between CF-LFU and 

Line distillation 

In this section, we will perform the same effiCiency comparison between our CF·LFU 

and [25]'s Line distillation. Note that [25] simulated their work with an execution 

range of 250 million instructions, i.e. from instruction 1 to instruction 250M, we will 

also simulate our work with the same range. Therefore, one should expect the result 

of our CF·LFU to be largely different from the previous sections where the entire 

program execution was simulated. 
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Table 6.2: Simulation settings for comparison between CF·LFU and Line disti1lation 

FetchlIssuelRetire width 8 instructions, 8 functional units 

Instruction window size 128 entry instruction window, 128 entry Id-st queue 

Branch predictor 
. ' 

64K entry gshare, 64K entry PAs hybrid 

L 1 Instruction Cache 16KB, 2-way, 64B block size, LRU replacement 

L 1 Data Cache 16KB, 2-way, 64B block size, LRU replacement 

L2 Unified Cache 1MB; 8-way, 64B block size, LRU replacement 

Processor clock 2000Mhz 

Memory clock IOOMhz 

Memory bank configuration 2 channels, 16 banks per channel 

Memory latency 6(CAS), 7(RCD), 7(RP), 21(RAS) 

Execution range 250M instructions 

Benchmarks gee, parser 
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-3.0000% -1.0000% 
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Figure 6.2: Performance improvement comparison between CF-LFU and Line 

distillation 

Figure 6.2 shows that our CF-LFU is capable of outperforming Line distillation with 

gee and parser. According to [25], instructions on the wrong path can cause bigger 

usage of words stored in the cache block and reduce their Line distillation's 

performance. More importantly, [25] also mentioned that gcc is an instruction cache 

intensive benchmark, which caused their Line distillation algorithm to show slight 

performance drop. Our CF-LFU considers the entire cache block as a filtering unit 

and provides a filter buffer to hold more cache blocks. This approach, backed up by 

figure 6.2, is proven to yeild much better results when running the gcc and parser 

benchmarks. 
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6.3 Reducing Cache Polution via Dynamic Data Prefetch 

Filtering (prefetch filter) [26] 

In their work, Recuding Cache Polution via Dynamic Data Prefetch Filtering [26], X. 

Zhuang and H.S.Lee. pointed out that traditional cache prefetching mechanisms suffer 

from cache pollution caused by overly aggressive prefetches. To solve this problem, 

they introduced a new way of controlling cache prefetches through the use of branch 

predictors as prefetch pollution filters. According to [26], three types of branch 

predictors were used - bimodal predictors, two level bimodal predictors and gshare 

predictors. The predictors are organized as aID (bimodal) or 2D (2 level bimodal 

and gshare) array of 2bit counters and can be addressed by the least significant bits of 

either the missing cache block address (PA) or the program counter (PC), with the 

assistance of a branch histry register (for 21evel bimodal and ghsare). Whenever a 

cache block is being evicted, the filter checks whether the cache block is being 

prefetched (indicated by a prefetch indicator bit) and whether the block was 

previously referenced (determined by a reference indication bit). If both conditions 

are true, the corresponding counter of the predictor will be increatmented and if the 

block was a prefetched block but has never been referenced, the corresponding 

counter will be decremented. Eventually, a prefetch history table is formed and the 

prefetcher can filter useless prefetches according to the table. 
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6.3.1 Performance improvement comparison between CF-LFU and 

Prefetch filter 

In this section, we will perform the same efficiency comparison between our CF-LFU 

and [26]'s prefetch filter with both PA and PC branch prediction table addressing. 

Note that [26] simulated their work with an execution range of 300 million 

instructions, i.e. from instruction 1 to instruction 300M, we will also simulate our 

work with the same range. 

Table 6.3: Simulation settings for comparison between CF-LFU and Prefetch filter 

FetchlIssuelRetire width 8 instructions per cycle 

Instruction window size 128 entries instruction window, 64 entries load/store 

, 
,. queue 

Branch predictor 32K entry gshare, 32K entry PAs hybrid 

Ll Instruction Cache 32KB, 4 way, 32B block size, LRU replacement 

Ll Data Cache 32KB, 4 way, 32B block size, LRU replacement 

L2 Unified Cache S12KB. 4 way, 32B block size. LRU replacement 
. , 

~. " 

Processor clock 2000MhZ 

, 

200Mhz Memory'clock' 
«. 

Memory bank configuration· 2 channels, 16 banks per channel 

, 
Memory latency 1 (CAS), 1 (RCD), 1 (RP), 14 (RAS) 

Execution range 300M instructions 

Benchmarks gcc, gzip 
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Figure 6.3: Performance improvement comparison between CF-LFU and prefetch 
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Figure 6.4: Performance improvement comparison between CF-LFU and prefeteh 

filter for gzip 
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Figure 6.3 and 6.4 shows the performance improvement comparison between our 

CF-LFU and prefetch filter with both PC and PA settings. In terms of gcc, [26] 

mentioned that their pre fetch filter happened to be reducing large amount of useful 

prefetches, which in tum, rendered no performance gain in gcc. Our CF-LFU, on the 

contrary, was able to keep a small performance gain which was attributed to the 

improvement of the memory row hit rate. Under gzip. prefetch filter showed 

significant improvement due to its nature of educated prefetching technique, 

especially when 2 level bimodal predictors are used. Our CF-LFU, however, was 

known to be generating extra memory accesses as large amount of filtered writes were 

involved. Therefore, we must agree that the prefetch filter is capable of producing 

better results when running gzip. 

6.4 Summary of the comparison 

In this chapter, we compared our Cache Filtering Algorithm for Least Frequently 

Used Data (CF-LFU) with other three related works, namely Cache Filtering 

Technique to Reduce the Negative Impact of Useless Speculative Memory Reference 

on Processor Performance (Spec), Line Distillation: Increasing Cache Capacity by 

Filtering Unused words in Cache Lines (Line distillation) and Reducing Cache 

Pollution via Dynamic Data Prefetch Filtering (prefetch filer). Our CF-LFU focuses 

on filtering cache blocks that are not previously used and generate memory row 

misses. Spec tries to filter data fetches that are requested by untaken program 

branches out of the L2 cache. The Line distillation technique attemps to keep the 

previously accessed data words of evicted cache blocks in a separate partition of the 

L2 cache. Finally, Prefetch filter incorporates already well developed branch 
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prediction techniques to determine whether a prefetch should be made. Although 

each of the related works is a true pioneer in the research field of cache design, we 

strongly believe, as proven by the simulated results, our Cache Filtering Algorithm for 

Least Frequently Used Data is comparable to them in terms of efficiency. 
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Chapter 7 

Conclusion and future work 

In this chapter, we will summarize our contributions and will propose the possible 

directions of the future work. 

This thesis has successfully made two contributions - the Page Interleaved DDRJ 

Memory model for the SimpleScahir Si~ulator and Cache Filtering Algorithm for 

Least Frequently Used Data. The Page Interleaved DDR3 Memory model is a 

replacement for the SimpleScalar simulator's closed page SDRAM simulation model. 

By following the behavior of the DRAM and the DDR3 specification, our memory 

model is capable of generating consistent simulation results that resembles a real 

world computer system installed with dual channel DDR3 memory modules. 

The cache filtering algorithm for least frequently used data is a performance 

optimization to the entire computer memory hierarchy. Its principle is to identify 

whether the processor requested data is frequently or rarely used, based on the 

contents of the filter buffer and the status of the memory rows. With the resu]t of 

such analysis, the cache filtering algorithm will then make the decision to allow the 

data to be fetched to the cache hierarchy or to filter the data in order to prevent cache 

pollution. 
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As an extension to this thesis work, there are several directions that we are 

particularly interested in pursuing: 

• Implement a filter buffer that uses a write back policy to replace the write through 

scheme implemented by our current filter buffer model. With a writeback 

policy, the filter buffer should be able to eliminate majority of the memory 

accesses generated by the write through filter buffer. Hence, the filter buffer 

can conserve more bandwidth, reduce the overall power consumption of the 

cache filtering algorithm and allows the cache filtering algorithm to be more 

suitable for embedded and desktop systems with bigger amount of caches. 

• Adding cache coherence and memory, consistency protocols to the cache filter 

and filter buffer. By adding such protocols, the cache filter can be made 

compatible to modem shared memory multi processor systems. 

• Implement a victim cache, write buffer and data prefetching unit - victim caches, 

write buffers and data prefetching units are fundamental elements of modem 

memory hierarchies. Adding these components allows us to complete 

SimpJeScaJar's memory hierarchy and simplify future computer architecture and 

memory system researches involving the Simple Scalar simulator. 

104 

L 



L 

Bibliography 

[1] J. L Hennessy and D. A. Patterson. Computer architecture: A quantitative 

approach, 4th Ed. Morgan Kaufmann Publishers, In, 2007 

[2] B. Jacob, S. W. Ng and D. T. Wang. Memory systems: Cache, DRAM, Disk. 

Morgan Kaufmann Publishers, In, 2008 

[3] D. Burger, J. R. Goodman andA. Kagi. "Memory bandwidth limitations of 

future microprocessors." Proc. 2r' Int 'I Symp. Computer Architecture (ISCA 

96),ACM Press, 1996, pp. 90-101 

[4] N. Mekhiel. "Multi-level cache with most frequently used policy: a new 

concept in cache design." In International Conforence on Computer 

Applications in Industry and Engineering, Nov 1995. 

[5] O. Multu, R Kim, D. N. Armstrong and Y. N. Patt. "Cache filtering technique to 

reduce the negative impact of useless speculative memory references on 

processor performance," In 1 rJh Sympo;ium on Computer Architecture and High 

Performance Computing, Oct 2004. 

[6] B. Jacob, "A case for studying DRAM issues at the system level." IEEE Micro 

23(4): 44-56 July -Aug2003 

105 



tt 

11.. 

[7] Z. Zhang, Z. Zhu and X. Zhang. "A permutation-based page interleaving scheme 

to reduce row-buffer conflicts and exploit data locality." In Proceedings of the 

33rd Annual International Symposium on Microarchitecture (Micro-33), 

Monterey, California, December 10-12,2000, pp 32-41. 

[8] N. Mekhiel, "Methods for improving main memory performance." ISCA 

International Conference on Computer Applications in Industry and Engineering 

Honolulu, Hawaii, December 15-17, 1993. 

[9] V. Cuppu, B. Jacob, B. Davis and T. Mudge. "A performance comparison of 

contemporary DRAM architectures." Proc. 26th International Symposium on 

Computer Architecture (ISCA 1999), pp. 222-233. Atlanta GA, May 1999. 

[10] V. Cuppu, B. Jacob, B. Davis and T. Mudge. "High performance DRAMs in 

workstation environments." IEEE Transactions on Computers, vol. 50, no. 11, pp. 

1133-1153. November 2001. (TC Special Issue on High-Performance Memory 

Systems) 

[11] N. Mekhiel. "LHA: Latency hiding algorithm for DRAM." 2nd Annual 

Workshop on Memory Performance Issue (WMPI2002). Held in conjunction 

with the ISCA 2002, May 25, 2002, Anchorage, Alaska. 

[12] D. Burger and T. M. Austin. "The SimpleScalar Tool Set, Version 2.0." In 

Computer Architecture News, 25 (3), pp. 13-25, June, 1997. 

106 

I .... 



[13] I. Kim. "Macro-op scheduling and execution." Ph.D. diss., University of 

Wisconsin-Madison, United States, 2004. 

[14J R. Srinivasan. "Techniques for accelerating microprocessor simulation." M.Sc. 

thesis, New Mexico State University, United States, 2004. 

[15] Brigham Young University Trace Distribution Center, (http://tds.cs.byu.edultdsl) 

[16] J. Xiao. "Location-based key management, data authentication and aggregation 

in wireless sensor networks". MASe. thesis, Ryerson University, Canada, 

2006. 

[17] D. E. Culler, J. P. Singh and A. Gupta. Parallel computer architecture: A 

hardware I software approach. Morgan Kaufmann Publishers, In, 1999 

[18] M. Gries and A. Romer: "Performance Evaluation of Recent DRAM 

Architectures for Embedded Systems." TIK Report Nr. 82, Computer 

Engineering and Networks Lab (TIK), Swiss Federal Institute of Technology 

(ETH) Zurich, November, 1999 

[19] M. Postiff, D. Greene, C. Lefurgy, D. Helder and T. Mudge. The MIRV 

SimpleScalarlPlSA Compiler. University of Michigan EECS Department Tech. 

Report CSE-TR-421-00. April 2000. 

107 



[20] Standard Performance Evaluation Corporation. SPEC CPU2000 version 1.30, 

January 2005 

[21] N. Mekhie~ "Cache Filtering Method and Apparatus", Patent Application 

1301-0IUS-00-75. September 2008. 

[22] N. Mekhiel, "Methods and Apparatus for Accelerating Retrieval of Data from a 

Memory System with Cache by Reducing latency", Patent No. US7318123, Jan 

08, 2008, Patent No. US 6,892,279 B2 May 10, 2005. 

[23] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark, "Branch prediction, 

instruction-window size, and cache size: Performance tradeoffs and simulation 

techniques", IEEE Trans. Comput., vol. 48, pp. 1260 - 1281, 1999 

[24] R. C. Murphy and P. M. Kogge, "On the Memory Access Patterns of 

Supercomputer Applications: Benchmark Selection and Its Implications", IEEE 

Trans. Comput. vol. 56, pp. 937 - 945, 2007 

[25] M. K. Qureshi, M. A. Sand Y. N. Patt, "Line Distillation: Increasing Cache 

Capacity by Filtering Unused Words in Cache Lines", 13th International 

Symposium on High Performance Computer Architecture (HCPA 2007), pp.250 .:... 

259, Scottsdale, AZ, Feb 2007. 

[26] X. Zhuang and H. H. S. Lee, "Reducing cache pollution via dynamic data 

prefetch filtering", IEEE Trans. Comput., vol. 56, pp. 182007. 

108 

L 



L 

[27] S. H. Chitra and P. T. Vanathi, "Design and Analysis of Dynamically 

Configurable Bus Arbiters for SoCs", Journal of Programmable Devices, 

Circuits and Systems (ICGST-PDCS 2008), vol. 8, Issue 1, pp. 45 - 52, Dec 

2008. 

109 



I 

I 

I 
·1 
I 

Appendix 

A.I Sample verification of cache filtered desktop 

system with 2MB L2 cache running gzip 

To prove the simulator's output and our performance analyze conclusions are correct, 

we have included a cache filtered gzip simulation with 2MB L2 cache simulation 

output file (Figure A.1) on page 116: 

From the file, we are able to extract the following information: 

Total memory random reads = 10051787 

Total memory random writes = 9874222 

Total memory fast page reads::::; 5233822 

Total memory fast page writes = 7554673 

Total memory reads = 10051787 + 5233822 ::::; 15285609 

Total memory writes::::; 9874222 + 7554673 = 17428895 

Total filter buffer reads = 9917372 

Total filter buffer memory fetches (DLI filtered read + III filtered read)::::; 2497325 

Total filter buffer memory writes::::; 17428895 

I Ll misses::::; 111476 

ILl filtered accesses = 4959 

D Ll misses = 607825571 

D Ll writebacks = 164522187 

D Ll filtered accesses (D Ll filtered read + D Ll filtered write) = 10046828 

L2 accesses = 762407441 

L2 misses = 15151194 

L2 writebacks = 9874427 
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First, we must p~ove that the numbers extracted from the simulation file are correct. 

According to the cache filtering algorithm, only data LI cache's filtered writebacks 

and the L2 cache's writebacks are written directly to the filter buffer then to the mai .... 

memory. Hence, we must first compare the filter buffer's memory write with the 

total memory write:· 

To~al filter buffer memory writes = 17428895 

Total memory writes 

= total memory random writes + total memory fast page writes 

= 9874222 + 7554673 = 17428895 

Since the value of total memory write equals to the value of total filter buffer memory 

writes, we can conclude that these two numbers are correct 

Secondly, we must check whether the total L2 fetches from the main memory equals 

to the total amount of fast page reads. Since the L2 cache is the entry point for data 

to enter the cache hierarchy, if the values are equal, then the simulator's operation is . ' ~ , 

following the cache filtering algorithm's criteria: only data from an opened memory 

page or from the filter buffer can enter the cache hierarchy. 

L2 fetches from main memory= L2 misses - total filter buffer reads 

= 15151194 -9917372 = 5233822 

Total fast page memory reads = 5233822 

*Note: since the filter buffer and cache are defined in the cache.c source file and the main memory is 

defined in the memory.c source file, if we can prove the values are equal. it will automatically implies 

that the program code written in both of the files are correct. 
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As the value of the L2 fetches from main memory is matching the total amount of fast 

page memory reads, it is reasonable to state that the value of L2 cache miss. filter 

buffer read and total fast page memory reads are all correct. 

Next, we must prove that the total filtered fetch is equal to the total amount of random 

read. Note that filtered fetch happens in both filtered read and filtered write. This 

is because all filtered write must start by performing a random read as discussed 

earlier. Also. the instruction Ll cache can only perform reading. hence we can 

conclude that the I Ll filter count is 100% filtered read. 

Totalfilteredfetch = DLI filtered read + D Ll filtered write + I Ll filtered read 

= DL1 filter count + ILl filter count 

= 10046828+4959= 10051787 

Total memory random read = 10051787 

This allows us to conclude that the total random read and the total amount of cache 

filtering are correct. At this point. the data extracted by the simulation output file are 

all correct 
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We must now determine the total amount of data Ll cache's filtered 

readlwrite/writebacks, data Ll cache's writeback to the L2 cache, data Ll cache's 

fetch from the L2 cache, instruction Ll cache's fetch from L2 cache and the total 

amount of fast page writes that is not a part of a filtered write (pure fast page write): 

Data Ll cache s filtered read = total filter buffer memory fetch - I Ll filtered (read) 

= 2497325 - 4959 = 2492366 

Data Ll cache s filtered write (also a part of the total fast page. write and random 

reads) 

= total D Ll filtered (access) - data Ll cache's filtered read 

= 10046828 - 2492366 = 7554462 

Instruction. Ll cache s fetch from L2 = ILl miss - totalIL 1 filtered (read) 

= 111476-4959= 106517 

Total L2 accesses that are requested by data Ll cache 

= L2 access - IL 1 cache's fetch from L2 

= 762407441-106517 = 762300924 

Total data L1 cachefetchfrom L2 = DLl misses - DLl filtered access 

= 607825571-10046828 = 597778743 

Total data L1 cache write backs that s written to L2 

= total L2 accesses that are requested by DLl - total DLl cache fetch from L2 

= 762300924 - 597778743 = 164522181 
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Total data L1 cache l filtered writebacks 

= total DLI writebacks - total DLl writebacks that's written to L2 

= 164522187 -164522181 = 6 

Pure fast page writes = Total fast page writes - DLI filtered write 

= 7554673 -7554462 = 211 

With these values, we can once again check whether the total amount of each memory 

access types (random read/write and fast page read/write) are matching the total 

amount of each filter access (data Ll cache's filtered readlwrite/writeback, instruction 

Ll cache's filtered read and L2 cache's filtered writebacks). 

According to the cache filtering algorithm's defmition. the total amount of memory 

writes should equal to the total amount of filter buffer memory writes. At the same 

time, it should also equal to the following: 

The total amount of data L1 cache:S- filtered write + data L1 cache l filtered 

writebacks + L2 cache s (filtered) write backs = 7554462 + 6 + 9874427 = 17428895. 

Comparing this value to the total amount of memory writes, which is 17428895, we 

can conclude that the total amount of data Ll cache's filtered writeslwritebacks and 

L2 cache's filtered writebacks are correct. 
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Finally, if we add the total amount of random writes and pure fast page writes, the 

value should equal to the sum of the total amount of L2 writebacks and data LI 

cache's filtered writebacks: 

Total amount of random writes + total amount of pure fast page writes 

= 9874222 + 211 = 9874433 

Total amount of L2 write backs + total amount of data L1 cache 3' filtered write backs 

= 9874427 + 6 = 9874433 

Since the results of the above calculations are matched, we can finally conclude that 

our simulation result is totally correct. 

To prove our statement about the gzip having a massive amount of filtered writes in 

the desktop/notebook perfonnance analyze, we did the same calculation to find out 

the total amount of filtered write of the cache filtered system with 2MB L2 cache 

running equake (equake has a close~to-zero filter buffer entry wait time) and the total 

amount of equake's filtered write is 537676. Comparing such value with gzip's 

7554462 filtered writes, one can conclude that gzip's filtered write count is 14 times 

bigger than equake's, which can justify our statement immediately. 
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sim-outorder: SimpleScalarlPISA Tool Set version 3.0 of August, 2003. 

Copyright (c) 1994-2003 by Todd M. Austin,Ph.D. and Simple Scalar, LLC. 

All Rights Reserved. This version of SimpleScalar is licensed for academic 

non-commercial use. No portion of this work may be used by any commercial 

entity, or for any commercial purpose, without the prior written pennission 

ofSimpJeScalar, LLC (info@simplescaJar.com). 

sim: command line: .Isim-outorder -cache:il1 iIl:128:64:4:I-cache:dll dl1:128:64:4:1 

-cache:dI2 u12:4096:64:8:I-cache:i12 dl2 -cache:illlat 1 -cache:dlliat 1 -cache:dI21at 

1O-c 
ache:ill_filterTRUE -cache:dll_filter TRUE -cache:i12_filter TRUE -cache:d12_filter 

TRUE -filtbuf:size 64 -filtbuf:searchlat 1 -filtbuf:transferlat 2 -cpu:clk 3200 -mem:clk 

800-

mem:lat 77721 -mem:width 8 -mem:channell -mem:bank 8 -mem:map 2 

-mem:type 2 -tlb:itlb itlb:l:4096:128:1-t1b:dtlb dtlb:l:4096:128:I-tlb:lat 30 -res:ialu 3 

'-res:imult 2 -res:m 

emport 2 -res:fpalu 4 -res:fpmult 1 -fetch:ifqsize 64 -fetch:mplat 2 -fetch:speed 1 

-bpred bimod -bpred:bimod 4096 -bpred:21ev 11024 120 -bpred:comb 1024 

-bpred:ras 32 -bpred:bt 

b 2048 2 -decode:width 4 -issue:width 4 -issue:inorder false -issue:wrongpath true 

-commit:width 4 -ruu:size 16 -lsq:size 8 -redir:sim 

out]esults/memmod/filter/gzipn 1_12/cache/g 

zip_sim_2M_channell_bank8_buf64.out -redir:prog 

out]esults/memmod/filter/gziplI 1 J2/cache/gzip yrog_ 2M _ channel 1_ bank8 _ buf64.o 

ut SPEC/gzip _ train/gzip.ss SPEC/gzip _ trainlinput.comb 

ined 32 

sim: simulation started @ Sun Oct 25 12:21 :322009, options follow: 

sim-outorder: This simulator implements a very detailed out-of-order issue 

superscalar processor with a two-level memory system and speculative 

execution support. This simulator is a perfonnance simulator, tracking the 

latency of all pipeline operations. 

# -config 

# -dumpconfig 

#-h 

# -v 

# load configuration from a file 

# dump configuration to a file 

false # print help message 

false # verbose operation 
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# -d 

# -i 

-seed 

seed) 

#-q 

# -chkpt 

# -redir:sim 

false # e~able debug message 

false # start in Dlite debugger 

1 # random number generator seed (0 for timer , 

false # initialize and tenninate immediately 

<null> # restore EIO trace execution from <fname> 

outJesultslmemmodffilter/gziplll_12lcachel gzip _ sim_ 2M _ channel 1_ bank8 _ buf64.ou 

t # redirect simulator output to file (non-interactive only) 

# -redir:prog '", , 

outJesultslmemmodffilter/gziplll_12/cache/gzipJ>ro~2M_channell_bank8_buf64.0 
. '. . ' 

ut # redirect simulated program output to file 

-nice 

-max:inst 

-fastfwd 

# -ptrace 

<range> 

-fetch:ifqsize 

-fetch:mplat 

-fetch:speed 
" ' 

execution core 

0# simulator scheduling priority 

o # maxim'um number of inst's to execute 

o # number of insts skipped before ~iming starts 

<null> # generate pipetrace, i.e., <fnamelstdoutlstderr> 

64 # instruction fetch queue size (in insts) 

2 # extra branch mis-prediction latency 

'I # speed of front-end of machine relative to 

-bpred bimod # branch predictor type 

{nottakenltakenlperfectlbimodI21evlcomb} 

-bpred: bimod 4096 # bimodal predictor config «table size» 

-bpred:2Iev 1 1 024 '12 0 # 2-level predictor config «11 size> <12size> 

<hist size> <xor» 
-bpred:com~ , 1024 # combining predictor con fig «meta_table_size» 

32 # return address stack size (O for no return stack) 

2048 2 # BTB config «num _sets> <associativity» 
-bpred:ras 

.bpred:btb 
)' .. 

# -bpred:spec_update <null> # spec~~ative predictors update in {IDIWB} 

(default non-spec) 

-decode:width 

-issue:width 

-issue:inorder, 

-issue:wrongpath 

-commit:width 

-ruu:size 

-lsq:size 

, , 4 # instructio~ decode BIW (instslcycle) 

4 #,instruction issue BIW (instslcycIe) 

false # run pipeline with in-order issue 

" true # i~~ue in~truct,ions' down wrong execution paths 

4 # instruction commit BIW (insts/cycle) 

16 # regIster update unit (RUU) size 

8 # loadlsto~ que,ue (LSQ) size 
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-cache:dll 

-cache:dlilat 

-cache:dI2 

-cache:dI2Iat 

-cache:ill 

-cache:ililat 

-cache:il2 

dl1:128:64:4:1 # 11 data cache config, i.e., {<config>lnone} 

1 # 11 data cache hit latency (in cycles) 

uI2:4096:64:8:1 # 12 data cache config, i.e., {<config>lnone} 

10 # 12 data cache hit latency (in cycles) 

ill: 128:64:4:] # 11 inst cache config, i.e., {<config>ldllld]2Inone} 

1 # 11 instruction cache hit latency (in cycles) 

dl2 # 12 instruction cache config, i.e., 

{<config>ldI21none} 

-cache:il2lat 6 # 12 instruction cache hit latency (in cycles) 

-cache:flush false # flush caches on system calls 

-cache:icompress false # convert 64-bit inst addresses to 32-bit inst 

equivalents 

-mem:lat 77721 # memory access latency (<Tcas> <Trcd><Trp><Tras>) 

-mem:lat2 85 1 1 74 # memory access'latency (<Tburst>, <Twr>, <Trtrs>, 

<Tcmd>, <Tcwd>, <Tccd» 

-mem:width 

-mem:channel 

-mem:bank 

8 # memory access bus width (in bytes) 

1 # memory controller channel (lor 2) 

8 # amount of memory banks (1 - 16) 

-mem:map 2 # memory address-bank mapping method, (1 for 

simple linear, cons~cutive rows are mapped to the same bank;2 for page interleaving 

-mem:type 2 # memory type. 1 for SDR, 2 for DI?R3 

-cpu:clk 3200.0000 # processor clock. 

-mem:clk 

-cache: iI I_filter 

FALSE) 

-cache:dll_ filter 

-cache:il2 _filter 

FALSE) 

-cache:dI2 _filter 

-filtbuf:size 

-filtbuf:searchlat 

earliest finish entry 

800.0000 # memory clock. 

true # Activateinstruct~on Ll cache filtering (TRUE or 

true # Activate data Ll cache filtering (TRUE or FALSE) 

, true # Activate instruction L2 cache filtering (TRUE or ' 

true # Adti~ate ~ta L2 c~h~ filtering (~RUE or FALSE) 

64 # Size of filter buffer 

1 # filter buffer's latency for searching for an empty or 

-filtbuf:transferlat 2 # filter buffer's transfer latency 

-tlb:itlb itlb: 1 :4096: 128:1 # instruction TLB con!1g, i.e., {<config>lnone} 

-tlb:dtlb dtlb:l:4096:128:1 # data TLB config, i.e., {<config>lnone} 

-tlb:lat 30 # inst/data TLB miss latency (in cycles) 

-res:ialu 3 # total number of integer ALU's available 

-res:imult 2 # total number of integer multiplier/dividers 
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available 

-res:memport 

(to CPU) 

-res:fpaJu 

-res:fpmult 

avai1able 

# -pestat 

-bugcompat 

testing only) 

2 # totaJ number of memory system ports availnbl~ 

4 # total number of floating point ALU's available 

1 #I total number of floating point multiplier/dividers 

<null> #I profile stat{s) against text addr's (mult uses ok) 

false #I operate in backward-compatible bugs mode (for 

Pipetrace range arguments are formatted as follows: 

{{@I#}<start>}:{ {@!#!+}<end>} 

Both ends of the range are optional, if neither are specified, the entire 

execution is traced. Ranges that start with a '@' designate an address' 

range to be traced. those that start with an '#' designate a cycle count 

range. All other range values represent an instruction count range. The 

second argument, if specified with a '+', indicates a value relative 
to the first argument, e.g., ] 000:+ 100 = 1000: J ] 00. Program symbols may 

be used in all contexts. 

Examples: -ptrace Foo.tre #0:#1000 

-ptrace BAR.tre @2000; 

-ptrace BLAH.tre :1500 

-ptrace UXXE.tre : 

-ptrace fooBAR.trc @main;+278 

Branch predictor configuration examples for 2-level predictor. 

Configurations: N, ~ W, X 
N #I entries in fust level (II of shift register(s» 

W width ofsbift registeT(s) 

M # entries in 2nd bel (# of counters, or other fSM) 

X (yes-llno-O) xor history and address for 2nd level index 

Sample predictors: 
GAg : I, W, 2AW, 0 

GAp : I, W.M(M>~'W).O 

PAg : N. W. 2A'W, 0 



1 
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i 

PAp : N, W, M (M = 2"(N+W», 0 

gshare : 1, W, 2A W, 1 

Predictor 'comb' combines a bimodal and a 2-level predictor. 

The cache config parameter <config> has the following format: 

<name>:<nsets>:<bsize>:<assoc>:<repl> 

<name> - name of the cache being defmed 

<nsets> - number of sets in the cache 

<bsize> - block size of the cache 

<assoc> - associativity of the cache 

<rept> - block replacement strategy, 'r-LRU, 'f-FIFO, 'r'-random 

Examples: -cache:dll dll :4096:32:1:1 

-dtlb dtlb:128:4096:32:r 

Cache levels can be unified by pointing a level of the instruction cache 

hierarchy at the data cache hiearchy using the "dll" and "dl2" cache 

configuration arguments. Most sensible combinations are supported, e.g., 

A unified 12 cache (il2 is pointed at dI2): 

-cache:iI1 ill: 128:64: 1 :1-cache:il2 dl2 
: \ 

-cache:dll dl1:256:32:1:I-cache:dI2 uI2:1024:64:2:1 

Or, a fully unified cache hierarchy (ill pointed at dB): 

-cache:iI1 dB 

-cache:dll ul1:256:32:1:I-cache:dl2 ul2:1024:64:2:1 

sim: .. starting performance simulation .. 

sim: *. simulation statistics .. 

sim_numjnsn 

sim_num_refs 

committed 

sim_num_Ioads 

77693332344 # total number of instructions committed 

26629788025 # total number of loads and stores 

19265035676 # total number of loads committed 
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sim _ num _stores 

sim_num_branches 

sim_elapsed_time 

sim inst rate 

sim _total_insn 

sim_total_refs 

sim_total_Ioads 

sim _total_stores 

sim _ totae branches 

sim_cycle 

sim IPC 

sim_CPI 

sim_exec_BW 

committed) per cycle 

sim IPB 

IFQ_count 

IFQJcount 

ifCL occupancy 

ifCLrate 

ifCLlatency 

ifCLfull 
RUU count 

RUU fcount 

ruu_occupancy 

ruuJate 

ruu _latency 

ruu full 

LSQ.count 

LSQ.fcount 

ISCL occupancy 

ISCLrate 

ISCLlatency 

ISCLfull 
sim_slip 

avg_sim_slip 

retirement 

bpred _ bimod.lookups 

bpred_ bimod.updates 

7364 752349.0000 # total number of stores committed 

11519867492 # total number of branches committed 

96247 # total simulation time in seconds 

807228.6133 # simulation speed (in instslsec) 

84601667750 # total number of instructions executed 

29095252565 # total number of loads and stores executed 

21117777015 # total number of loads executed 

7977475550.0000 # total number of stores executed 

12502422295 # total number of branches executed 

44717071765 # total simulation time in cycles 

1.7374 # instructions per cyc Ie 

0.5756 # cycles per instruction 

1.8919 # total instructions (mis*spec + 

6.7443 # instruction per branch 

1566892957508 # cumulative IFQ occupancy 

13518869642 # cumulative IFQ full count 

35.0402 # avg IFQ occupancy (insnts) 

1.8919 # avg IFQ dispatch rate (insnlcycle) 

18.5208 # avg IFQ occupant latency (cycle's) 

0.3023 # fraction oftime (cycle's) IFQ was full 

614946697909 # cumulative RUU occupancy 

28473471729 # cumulative RUU fun count 

13.7519 # avg RUU occupancy (insnts) 

1.8919 # avg RUU dispatch rate (insnlcycle) 

7.2687 # avg RUU occupant latency (cycle's) 

0.6367 # fraction oftime (cycle's) RUU was full 

225685433941 # cumulative LSQ occupancy 

8038603209 # cumulative LSQ full count 

5.0470 # avg LSQ occupancy (insn's) 

1.8919 # avg LSQ dispatch rate (insnlcycle) 

2.6676 # avg LSQ occupant latency (cycle's) 

0.1798 # fraction of time (cycle's) LSQ was full 

-2578299233055046588 # total number of slip cycles 

.33185592.0614 # the average slip between issue ~d 

15674898831 # total number ofbpred lookups 

11519867492 # total number of updates 
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bpred_bimodaddr_hits 10644257456 # total number of address-predicted hits 

bpred_bimod.dir_hits 10661282975 # total number of direction-predicted hits 

(includes addr-hits) 

bpred_bimod.misses 858584517 # total number of misses 

bpred_ bimod.jr_hits 324501052 # total number of address-predicted hits for 

JR's 

bpred _ bimod.jr _seen 341522178 # total number of JR's seen 

bpred_bimod.jr_nonJas_hits.PP 52348 # total number of address-predicted 

hits for non-RAS IR's 

bpred_bimodjr_~on_rasjeen.PP 
seen 

160704 # total number ofnon-RAS JR's 

bpred_bimod.bpred_addr_rate 0.9240 # branch address-prediction rate (Le., 

addr-hitslupdates) 

bpred_bimod.bpred_dir_rate 0.9255 # branch direction-prediction rate (i.e., 

all-hits/updates) 

bpred_bimod.bpredjr_rat~ 0.9502 # JRaddress-prediction rate (i.e., JR 

addr-hitslJRs seen) 

bpred_bimod.bpredjr_non_ras_rate.PP 

non-RAS JR hits/JRs seen) 

0.3257 # non-RAS JR addr-pred rate (ie, 

bpred _ bimod.retstack .,pushes 

ret-addr stack 

bpred _ bimod.retstack.,pops 

ret-addr stack 

bpred_bimod.used_ras.PP 

bpred _ bimod.ras _ hits.PP 

469998938 # total number of address pushed onto 

454526877 # total number of address popped off of 

341361474 # total number ofRAS predictions used 

324448704 # total number ofRAS hits 

bpred_bimod.ras_rate.PP 0.9505 # RAS prediction rate (i.e., RAS hits/used RAS) 

iILaccesses 104219153196 # total number of accesses 

ilI.hits 104219041720 # total number of hits 

ill.misses 

ill.replacements 

ill. writebacks 

il1.invalidations 

ill.miss..,rate 
.. 

ill.repl_ rate 

ill. wb _rate 

ill.inv _ rate 

iIl.filtered 

ill.filtered _read 

111476 # total number of misses 

106005 # total number of replacements 

o # total number of writebacks 

o # total number of invalidations 

0.0000 # miss rate (i.e., misses/ref) 

0.0000 # replacement rate (Le., repJs/ref) 

0.0000 # write back rate (i.e., wrbks/ref) 

0.0000 # invalidation rate (i.e., invs/ref) 

4959 # total filtered access 

o # total filtered read 
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ill.filtered write 

dll.accesses 

dll.hits 

dll.misses 

dll.replacements 

dll. writebacks 

dll. invalidations 

dll.miss_rate 

dll.replJate 

dll.wbJate 

dll.inv rate 

dlLfiltered 

dll.filtered read 

dll.filtered _write 

u12.accesses 

uI2.hits 

ul2.misses 

ul2.replacements 

u12. write backs 

u12.invaIidations 

ul2.miss _rate 

uI2.repl_rate 

uI2. wb _rate 

u12.inv rate 

u12.filtered 

uI2.filtered read -, 

u12.filtered _write 

uI2.buf.access 

u12.buf.read 

from the filter buffer 

uI2.buf. write 

to the filter buffer 

o # total filtered write 

25920318799 # total number of accesses 

25312493228 # total number of hits 

607825571 # total number of misses 

597778231 # total number of replacements 

164522187 # total number of write backs 

o # total number of invalidations 

0.0234 # miss rate (i.e., misses/ref) 

0.0231.# replacement rate (i.e., repls/ref) 

0.0063 # writeback rate (Le., wrbkslref) 

0.0000 # invalidation rate (i.e., invs/ref) 

10046828 # total filtered access 

o # total filtered read 

o # total filtered write 

762407441 # total number of accesses 

747256247 # total number of hits 

15151194 # total number of misses 

15118426 # total number of replacements 

9874427 # total number of write backs 

o # total number of invalidations 

0.0199 # miss rate (i.e., misses/ref) 

0.0198 # replacement rate (i.e., repIs/ref) 

0.0130 # writeback rate (i.e., wrbks/ref) 

0.0000 # invalidation rate (i.e., invs/ref) 

o # total filtered access 

o # total filtered read 

o # total filtered write 

29843592 # total filter buffer accesses 

9917372 # total amount oftime for any cache to read 

17428895 # total amount of time for any cache to write 

uI2.buf.mem_ write 17428895 # total amount of time the filter buffer 

performed a write to memory. 

uI2.buf.mem_fetch 2497325 # total amount of time the filter buffer fetch 

data from memory. 

uI2.buf.merge 0 # total amount of time for the filter buffer to 

perform a write merge 
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u12.buf.wait 6690054 # total amount of of time that the processor 

must wait for a buffer entry to be cleared 

uI2.buf. wait_cycle 2811554458 # total amount of cycle spent on waiting for 

an empty buffer entry 

itlb.accesses 

itlb.hits 

itlb.misses 

itlb.replacements 

itlb. writebacks 

itlb.invalidations 

itlb.miss Jate 

itlb.repLrate 

itlb. wb Jate 

itlb.inv rate 

itlb.filtered 

itlb.filtered read 

itlb.filtered _write 

dtlb.accesses 

dtlb.hits 

dtlb.misses 

dtlb.replacements 

dtlb. writebacks 

dtlb.invalidations 

dtlb.miss Jate 

dtlb.replJate 

dtlb. wb Jate 

dtlb.inv rate 

dtlb.filtered 

dtlb.filtered _read 

dtlb.filtered_ write 

sim _invalid _ addrs 

(debugvar) 

ld_text_base 

ld_text_size 

ld _ data_base 

Id_data_size 

size in bytes 

ld stack base - -

104219153196 # total number of accesses 

104219153159 # total number of bits 

37 # total number of misses 

o # total number of replacements 

. 0 # total number of writebacks 

o # total number of invalidations 

0.0000 # miss rate (i.e., misseslret) 

0.0000 # replacement rate (i.e., repIs/ret) 

0.0000 # writeback rate (i.e., wrbkslret) 

0.0000 # invalidation rate (i.e., invs/ret) 

o # total filtered access 

o # total filtered read 

o # total filtered write 

27694826537 # total number of accesses 

27694517323 # total number of hits 

309214 # total number of misses 

309086 # total number of replacements 

o # total number of writebacks 

o # total number of invalidations 

0.0000 # miss rate (i.e., misseslret) 

0.0000 # replacement rate (i.e., replslret) 

: 0.0000 # writeback rate (Le., wrbkslret) 

0.0000 # invalidation rate (i.e., invs/ret) 

o # total filtered access 

o # total filtered read 

o # total filtered write 

o # total non~speculative bogus addresses seen 

Ox00400000 # program text (code) segment base 

230448 # program text (code) size inbytes 

Ox} 0000000 # program initialized data segment base 

351008 # program init'ed '.data' and uninifed '.bss' 

Ox7fffcOOO # program stack segment base (highest 
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address in stack) 

ld_stack_size 

ld -prolL entry 

Id _environ_base 

Id _ target_bilL end ian 

big endian 

mem.page _count 

mem.page_mem 

mem.ptab_misses 

memo ptab _accesses 

mem.ptab_missJate 

16384 # program initial stack size 

Ox00400140 # program entry point (initial PC) 

Ox7ffI8000 # program environment base address address 

o # target executable endian-ness, non-zero if 

24867 # total number of pages allocated 

99468k # total size of memory pages allocated 

53882 # total first level page table misses 

597696304327 # total page table accesses 

0.0000 # first level page table miss rate 

mem.access_count 32714504 # Total amount of memory access 

mem.unoverlaped_fpJead_clk 173328584 # Total amount of uno veri aped fast 

page read delay across the channels in processor clock 

mem.unoverlaped_fp_write_clk 362619455 # Total amount ofunoverlaped fast 

page write delay across the channels in processor clock 

mem.unoverlaped_filtered_read_clk 0 # Total amount ofunoverlaped 

filtered read delay across the channels in processor clock 

mem.unoverlaped_filtered_write_clk 0 # Total amount ofunvoerlaped 

filtered write delay across the channels in processor clock 

mem.unoverlaped_randomJead_clk 843035395 # Total amount ofunoverlaped 

random read delay across the channels in processor clock 

mem.unoverlapedJandom_write_clk 973462985 # Total amount ofunoverlaped 

random write delay across the channels in processor clock 

mem.channel[O].access_count 32714504 # Total amount of memory access to 

this channel 

mem.channet[O].row _hit 12788495 # Total amount of row hits for this channel 

mem.channel[O].fp Jeads 5233822 # Total amount of fast page reads to this 

channel 

mem.channel[O].channel_unoverlaped_fp_read_clk 173328584 # Total amount of 

unoverlaped fast page read to this channel in processor clock cycles 

mem.channel[O].channetoverlaped_fpJead_clk 77894872 # Total amount of 

overlaped fast page read to this channel in processor clock cycles 

mem.channeUO].fp_writes 7554673 # Total amount of fast page writes to this 

channel 

mem.channeI[O].channel_unoverlapedJp_write_clk 362619455 # Total amount 

ofunoverlaped fast page write to this channel in processor clock cycles 

mem.channel[O].channel_overlaped_fp_write_clk 4849 # Total amount of 
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overIaped fast page write to this channel in processor clock cycles 

mem.channel[O].filteredJeads 0 # Total amount of filtered reads to this 

channel 

mem.channel[O].channel_unoverlaped_filtered_read_clk 0# Total 

amount of unoverlaped filtered read to this channel in processor clock cycles 

mem.channel[OJ.channel_overlaped_filteredJead_clk 0 # Total ~ount 
of overlaped filtered read to this channel in processor clock cycles 

mem.channel[O].filtered _writes 0 # Total amount of filtered writes to 

this channel 

mem.channel[O] .channet unoverlaped _filtered_write _ clk 0# Total 

amount of uno veri aped filtered w~ite to this channel in processor clock cycles 

mem.channel[O].channel_overlaped_filtered_write_clk 0 # Total 

amount of overlaped filtered write to this channel in processor clock cycles 

mem.channel[O].random_reads 10051787 # Total amount of filtered reads to this 

channel 

843035395 # Total 

amount of unoverlaped random read to this channel in processor clock cycles 

mem.channel[O].channetoverlapedJandom_read_c1k 202350453 # Total amount 

of overlaped random read to this channel in processor clock cycles 

mem.channel[O].random_writes 9874222 # Total amount of random writes to 

this channel 

mem.channel[ 0] .channel_ unoverlaped Jandom _write_elk 973462985 # Total 

amount of unoverIaped random write to this channel in processor clock cycles 

mem.channel[O] .channel_ overlaped Jandom _write _ clk 53456103 # Total 

amount of overlaped random write to this channel in processor clock cycles 

Figure A.I: A gzip sim-outorder simulation output file 
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A.2 Memory simulation result verification 

Referring to the sample simulation output file from appendix A.I on page 116, the 

following memory related statistics are found: 

Processor clock = 3200MHz 

Memory bus speed = 800MHz 

Tcas= 7 

Trcd= 7 

Trp=7 

Tcmd= 1 

Tcwd=7 

Total memory accesses = 32714504 

Total row hit = 12788495 . 

Total fast page read = 5233822 

Total unoverlapped fast page read latency = 173328584 

Total overlapped fast page read latency = 77894872 

Total fast page write = 7554673 

Total unoverlapped fast page write latency = 362619455' 

Total overlapped fast page write latency = 4849 

Total random read = 10051787 

Total unoverlapped random read latency = 843035395 

Total overlapped random read latency = 202350453 

Total random write = 9874222 

Total unoverlapped random write latency = 973462985 

Total overlapped random write latency = 53456103 
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First, we must prove that the total amounts of different types of memory accesses are 

correct. From the statistics, the total amount of memory accesses should equal to the 

sum of the total amount of fast page read/write and random read/write. 

Total amount of memory accesses = 32714504 

Total amount of row hits = 12788495 

Total amount offast page accesses 

= total amount of fast page read + total amount of fast page write 

= 5233822 + 7554673 = 12788495 

Total amount of random accesses 

= total amount of random read + total amount of random write 

= 10051787 + 9874222 = 19926009 

Total amount of memory accesses 

= Total amount of fast page accesses + total amount of random accesses 

= 1288495 + 19926009 = 32714504 

From the calculation results, we can see that the total amount of fast page accesses is 

matching the total amount of row hits, and the total amount of memory accesses 

calculated from the sum of all fast page and random accesses is correct. 
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Next, we must check whether the latecies recorded by the simulation file is correct 

This is achieved by first calculating the expecte~ fast page read/write latency and 

random read/write latency: 

The processor to memory clock ratio is: 

3200(processor clock)/800(memory clock) = 4 

The data transmission (data burst) is: 

(64B (cache block size) 18B (data bus width»)/2 (DDR) = 4 memory clocks 

Random access read/write latency in processor clock cycles: 

4(processor to memory clock ratio) X (1 (Tcmd) + 7(Trp) + 7(Trcd) + 7(Tcas for read) 

OR 7(Tcwd for write) + 4(data burst» = 104 processor clocks 

Fast page read/write latency in processor cloc~ cycles: 

4(processor to memory clock ratio) X (I(Tcmd) + 7(Tcas for read) OR 7(Tcwd for 

write) + 4(data burst» == 48 processor clocks. 

From the statistics, the total amount of fast page read is 5233822, the total am~unt of 

unoverlapped fast page read latency is 173328584 and the total amount of overlapped 

fast page read latency is 77894872. By calculating the total amount of fast page read 

latency and compare it with the overlapped and unoverlapped fast page read latency, . , 

we can then prove that the fast page read latency statistical values are correct: 
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Total fast page read latency: 

= fast page read latency x total amount of fast page reads 

= 48 x 5233822 = 251223456 

Sum of overlapped and unoverlapped fast page read latency: 

= 173328584 + 77894872 = 251223456 

Since the total fast page read latency is matching the sum of overlapped and 

unoverlapped fast page read latency, we can conclude that the fast page read statistical 

values are correct 

We will also perform the same check for fast page write and random read/write: 

Total fast page writes = 7554673 

Total unoverlappedfast page write latency = 362619455 

Total overlapped fast page write latency = 4849 

•• 

I 
Total fast page write latency: 

= fast page write latency x total amount of fast page writes 

= 48 x 7554673 = 362624304 

Sum of overlapped and unoverlapped fast page write latency: 

= 362619455 + 4849 = 362624304 = Total fast page write latency 

130 



-

Total random reads = 10051787 

Total unoverlapped random read latency = 843035395 

Total overlapped random read latency = 202350453 

Total random read latency: 

= random read latency x total amount of random reads 

= 104 x 10051787 == 1045385848 

Sum of unoverlapped and overlapped random read latency: 

= 843035395 + 202350453 1045385848 ::: Total random read latency 

Total random writes = 9874222 

Total unoverlapped random write latency = 973462985 

Total overlapped random write latency = 53456103 

Total random write latency: 

= random write latency x total amount of random writes 

= 104 x 9874222 = 1026919088 

Sum of unoverlapped and overlapped random write latency: 

= 973462985 + 53456103 == 1026919088 = Total random write latency 

Since all calculated fast page read/write and random read/write latencies are matching 

the sum of the overlapped and unoverlapped latencies of the corresponding memory 

access type, we can now conclude that our custom version of sim-outorder is 

generating correct statistical values. 
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