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Abstract

Cache Filtering Algorithm For Least Frequently
Used Data with Accurate Memory Simulation

© Kiu Kwan Leung 2010
Master of Applied Science
Department of Electrical and Computer Engineering

Ryerson University

We propose a cache filtering algorithm to improve processor performance using a
small buffer inside the processor and an algorithm to filter least frequently used
accesses from L1 and L2 caches. The algorithm uses simple DRAM fast-page
accessing mode to identify accesses that are not previously accessed or not frequently

used and keep them out of the cache system and store them in small buffer.

We have also added a realistic page interleaved DDR3 memory simulation model to
the SimpleScalar simulator. This model supports any processor and memory clock
speeds, different sets of memory latencies, various configurations of memory banks

and channels.

Results show that the filtering algorithm could improve - performance of some

applications compared to the same system that does not use the filtering algorithm.

il



Acknowledgement

I would like to express my deep gratitude to my supervisor, Dr. Nagi Mekhiel for
offering me such a chance to work with him as his master student. It is always his
brilliant ideas and directions that saved me out of my hurdles throughout the research
process and it is always his patience and tolerance that made this research work such

an enjoyable learning experience.

I must also thank my parents for their constant support throughout my life. I am
thankful for their encouragement and their teachings, which had shaped me up to what
I am over the years and allowed me to have such a strong sense that I have a nice
place called home. I truly believe that without them, I will not be able to receive

such a wonderful learning experience at Ryerson University.

Thirdly, I appreciate the assistance offered by my former supervisor, Dr. Cungang
Yang, throughout my graduate studies. His has always been one of my best guides
to direct me through the program and taught me how to be a good graduate assistance.
I must also thank Professor Ken Clowes for his great advices. As one of the most
skilled programmers across the department, he nicely explained the meanings of the
advanced syntax used by the author of the SimpleScalar simulator, which enabled me

to understand simulator and become a SimpleScalar developer quickly.
I am grateful for the financial assistance that I received through my supervisor and the

Electrical and Computer Engineering department at Ryerson University. It is the

only reason why I can stay focus and enjoy this research process.

iv



Finally, I sincerely appreciate the Electrical and Computer Engineering department’s
lab support team for their kind assistance. Without their technical knowledge about

the UNIX operating system, I will never finish the research at ease.



Dedication

To my supervisor: Professor Nagi Mekhiel
To my family: father and mother

To my former supervisor: Professor Cungang Yang

vi



Table of Contents

1 Introduction........ erecesnne cerevernenaeneas et srans ervesreeneeans BTN |
1.1 List of Contributions and Objectives of the Research.................. RROR— 3

1.2 Motivation........... vreeneeneenes eetteereeessts st ertsreaena e s aeabessanbessnne e rrereesnrsresenenseses 4
1.2.1 Cache pollution caused by rarely used data blocks e .8

1.3 The organization of this thesist............ ....... crreeeneaenas ........... coneeena 11

2 Methodology .......... cedresnrenansnsan rvesesseatasse i asesassnansssaserenssssnsanrsses 12

3 The Page Interleaved DDR3 Memory Module for the SimpleScalar Simulator.. 19

3.1 The software modeling of the memory model............. crevesrenensseresensasevenees 19
3.1.1 The data components of the memory model ............ cevesrrenerennas S 20
3.1.2 The functional components of the memory model...........c.cccceeeinenec 26

3.2 The operation of the memory model ................ reeerrearananees resesnrsniessasenes 28
3.2.1 Overlapped memory access scheduling ....... ceeeeeneseens cervenens .28
3.2.2 Memory addressing.......ccoocceuerreesrsncenceeresacrsrensssssseessmmassacssasarssneresses 30
3.2.3 The memory_access_latency function .......ccccevveecuuenncn. rerresaaens R .

3.3 Simulation and discussion.........cccceeeeee sereveesrereesssnesessneeas vesstesenane cereerereens .. 44

4 The Cache Filtering Algorithm for Least Frequently Used Data................ crveennes 32

4.1 The background.......ceeceiiiivencecrsenetiisicnseiseresnmaseesssssassansessesssssrresassnen e 52

4.2 The baseline system’s memory hierarchy characteristics ............ SRR X )

4.3 The cache filtering algorithm and its components ........c.ceceeeeeeenrecennes vererees 33
4.3.1 The instruction register (IR) and data register file (DRS) ................ .55
4.3.2 The instruction and data L1 cache (I and D L1 caches).......cccceeruunnn. 55
4.3.3 The L2 cache................ ressseeseriresssseatessaesaseasaaans R SR—-1
4.3.4 The filter buffer......ocooeieiiiiniieciccrnrcereeeneecsessrenes ceersneernane 56

vii



4.3.5 The algorithm........ S, crseesesaesnesessnensanssesas creenrrsesanesnes creeenes 62
5 Simulation and analysis of the cache filtering algorithm ................c....... cerenennes 68
5.1 The desktop/notebook computer environment and simulation settings....... 68
5.2 Simulation results and discussion (desktop/notebook environment) .......... 70
6 Overview and Comparison of Related Works.......cc.veevcecccnncrenmncsceisccrcvsencasesesaness 90
6.1 Cache Filtering Techniques to Reduce the Negative Impact of
Useless Speculative Memory References on Processor Performance(Spec)..... 90
6.1.1 Performance improvement comparison (CF-LFU vs. Spec).............. 91
6.2 Line Distillation: Increasing Cache Capacity by Filtering Unused .
Words in Cache Lines (Line distillation).......c..ceeeceerenenes reesressenesssavesennne cevernenes 4
6.2.1 Performance improvement comparison between CF-LFU and
Line distillation................ eereesasersen st a st s e senemae e s A s st e s e R e sntenbes creerrnees 96
6.3 Reducing Cache Polution via Dynamic Data Prefetch Filtering
(Prefetch fIler) v crereccieeccriie e s eessiesntssaserassssssnessnssserassssassnsssessassnsrer IO

6.3.1 Performance improvement comparison between CF-LFU and

PrefetCh FIHEr. oo cccsrrreerreerecesss s snsrererssensssnsenes rereeeresenseseannrrnnne 99
7 Conclusi d fi work
onclusion and fUture WOrK......eveeeeeeveesversvrssosssressses coreneeenee 103
Bibli h
1BHOZIAPRY wovvvrviiiiiricsiiis i ass e ss esanon e wessntersossnnsasessernessencansensess 103
APPENAIX ceontiririeerarinacncesseerrssaesssssenessosssssnissassanssnasssassessassrasans sesnssesssrssessansases § 10

A.1 Sample verification of cache filtered desktop system with 2MB L2
€aChe TUNNING BZIP «ccuivverrrerrcieinneseiserancesarsssssarsserssnsssaessessasasessasesnsssasssassasssases 1 10

A2 Memory simulation result Verification .........coeecevecereceeeeennsscrveesnsreessesvecnes 127



List of Tables

1.1 Total amount of memory access requests generated within execution range........ 5
1.2 Total amount of single accessed addresses within execution range............cceue.. 5
1.3 Total amount of repeated addresses within execution range .........ccceemevvenireceen 5
1.4 Total amount of repeated accesses within execution range e 5
3.1 Simulation settings for channel gn_d DANK tS..eceeeinreererrcriecccnnsneresesnersnnnssessesns 45
5.1 Simulation settings for the deéktop/notebook ENVIFONMENT «.ovvvrrveeereerecrneneenns 69

6.1 Simulation settings for comparison between CF-LFU, no-spec-L2 fill and

SPEC-L2 fIlLLRU ..ot creenscrereenenssnsessesssnassnessssasensnsssasssnnssas 92
6.2 Simulation settings for comparison between CF-LFU and Line distillation...... 96
6.3 Simulation settings for comparison between CF-LFU and Prefetch filter ......... 99



List of Figures

1.1 The performance ratio comparing to 1980s baseline computer systems —

the growing performance gap between processor and MemOTY.........o..cvevveveverese 2
1.2 Initial content 0f CACRE .....cveemrrciiriicirciet et 8
1.3 Cache miss forces cache to replace BIOCK 0 ....oooerreeeeeneeomrncenecierccernceerreeacenees 9

1.4 Cache content after replacing X with Z, program requests for X again causing

another cache miss t0 replace bIOCK 1 ......ocomriiieciieciiiinrr e sane e eeseaaes 9

1.5 Cache content after replacing Y with X, program requests for Y again causing

another cache miss to replace block 0 .......c.ccivvvivininnniiiiininiicenecccens 10
1.6 Final cache content after replacing Z with Y c..coeoivioiiniincccenccsenceeenene 11
2.1 SimpleScalar cache access function wWork flow ........ccoovveciirvnvnniccsicionnccannens 14
2.2 SimpleScalar cache and memory access function sample calling sequence ...... 16
3.1 Graphical representation of the mem_t data structure........ccovvveccnecccrrerceesanrnes 21
3.2 The overlappable and unoverlappable phases of a random memory access....... 29

3.3 The overlappable and unoverlappable phases of a fast page memory access..... 29

3.4 Overlapped memory access scheduling example.......cc.oovrecneccrernerenerneennennne 30
3.5 32bit dual channel 8 bank memory address format cersersseesseeseensesanaants 30
3.6 32 bit dual channel 16 bank memory address format.........ccvevereeceeeneenceerenenns 31
3.7 32 bit single channel 8 bank memory address format cereneseatsarientresneras 31
3.8 32 bit single channel 16 bank memory address format........ccccoervrenrercerrencenen 31
3.9 Consecutive read timing (current access is fast page read)......cccevvevreererrncannes 40

3.10 Write following a fast page read timing (current access is fast page write)..... 41
3.11 Random access to the same bank as the previous write timing ........ccceeeeeeneeee 42

3.12 memory_access_latency function Work floW........ccocecevuecerevrceerecennenseeensacreenens 44



3.13 Memory row hit rates of the gcc simulation.......... etreseeesraseratrsseesinessaneanenennes 46
3.14 Row hit improvement when total amount of memory banks is doubled.......... 47
3.15 gee simulated performance ..........ocvccimercmneiincesintneansiresrssesssssessesseessenens 48
3.16 gcc performance improvement achieved by increasing the amount of memory
CRANDEIS ...cneiereictrerc et cesseere cosnsabese e sssesaesesssssssennsassnsasseens 49

3.17 gce performance improvement achieved by doubling the total amount of memory

DANKS c.eirecieeceiniecriestnteseestrsnesssesesnsssss et s ae b ssasnasssaensssaesssebesesneassas s enee 49
4.1 Block diagram of the cache ﬁltefiﬁg scheme........... trerresessanssneenreressaenasases e 54
4.2 Filtered read/write Work flow .....ccccoviiiiiiineeieiiieninnie et scsesaesene s 58
4.3 Cache fetching from the filter buffer work flow.......cccevciecminiinniinncincncnnens 59
4.4 Filtered writeback followed by cache fetching work flow .....c.oeeeeeeicenececnnncn. 60
4.5 Filtered writeback without cache fetching work flow.......ccccoveeviiicrevccnciinane 61

4.6 Possible outcomes for L1 fetch miss with L1 clean/empty replacement block.. 62
4.7 Possible outcomes for L1 fetch miss with L1 dirty replacement block ............. 63
4.8 One level cache filtering and lowest level cache filtering decision tree for two
level cache hierarchies......oeeienciiiiei et ss st sases 64
4.9 One level cache filtering and lowest level cache filtering psuedo code for two
level cache hierarchies.......cccveeerviineecnes reeteeret st aae et et e et et e be et e atestas 65
4.10 L1 cache filtering decision tree for two level cache hierarchies..........cce....... 66

4.11 L1 cache filtering psuedo code decision tree for two level cache hierarchies.. 67

5.1 Performance gain of the cache filtered SysStems......ccoueeveeeeeecnreiencnenrreeenenes 70
5.2 Performance of the systems with 256KB L2 €ache ......ccceeuevvereernenercenserceenenenes 71
5.3 Performance of the systems with 512KB L2 cache ............. ceaeereasessnsessnessseevae 71
5.4 Performance of the systems with IMB L2 cache........cccccceevvrcennnreccecnenne veveereonn 72
5.5 Performance of the systems with 2MB L2 cache.................. cearaenene reeeevnvensnnne 72
5.6 Total amount of cache filtering throughout benchmark execution .............. onns 14

xi



5.7 Extra memory accesses of the cache filtered systems.........cc....... creresneesaneaness 75

5.8 The memory row hit rate of the cache filtered systems......cccccoeeeceenenneen. crvererens 16
5.9 Data L1 cache hitrate...........cc...... ceneeeesansonssssnans ceesnerenteneansssons cereresesarasssressanas 77
5.10 L2 cache hitrate............ rresresss e sana e st s se s s e st ennneanen eeerarebreannne revssssseeses 19

5.11 Xlisp simulation with varied I and D L1 cache size, extracted from [23]........ 81
5.12 gzip simulations with varied L2 cache size on original SimpleScalar

SIMUAtor ....cceeeieriencrnanes ceresesensnsesnnasasenenne ceveresrrensettesestessesssensenarsssssasssese O
5.13 Total amount of gzip memory accesses......... reerreereerereaaens —— ceeereerrenenenans 83

5.14 gzip ratio of overlapped memory access versus total memory accesses.......... 84

5.15 mcf performance in IPC................. e eeeseeee resneisesenessnebesassabesresaaens .. 84
5.16 mcf total memory accesses ...cueevereennee cerneesneaesareasnressusan cerrresaeeeaessnaras cerreneees 85
5.17 mcf extra memory access Tate......ceevrruerrecereessuessnsssmssnsescsssnenns certesserssaseaeesans 86
5.18 mcf memory row hitrate ................. cerreesnestresaeees reeresnrerntaasessatans cennee 87

6.1 Performance improvement comparison between CF-LFU, no-spec-L2fill

and spec-L2fillLRU.........ooeereeeeremneene et TSRO
6.2 Performance improvement comparison between CF-LFU and Line

distillation ........... erteensesaestsssassanenas cerensesressnserane . retreeaes cerneeesuenrereenen e 97
6.3 Performance improvement comparison between CF-LFU and prefetch filter

for gec ccvenennnnne eretessetete e eecae et ssaea s naesarneraaeas covrnrsenersnsssesssansssnesssessavessanssses 100
6.4 Performance improvement comparison between CF-LFU and prefetch filter

for gzi
Or gZip.......... creesreesasaransnnne eeeuruenerneaeasrnens verereeasanenens sesererseessscsrssnes 100

A.1 A gzip sim-outorder simulation output file.......... crreeeesensasesesaeneerranos verereanas 116

xii



Chapter 1

Introduction

Over the years computer engineers and architects have been researching and
developing new techniques to enhance computer performance. These technologies
include increasing operating frequency of processor and memory, pipelining and
developing superscalar architecture to exploit instruction-level parallelism(ILP),
introducing multi-level cache system to hide the overgrowing memory latency,
developing simultaneous multithreading (SMT) and multicore processors to harness

the power of thread-level parallelism(TLP), etc.[1, 12 and 14]

However, studies have revealed the fact that tociay’s computer performance is not only
governed by the amount of work performed per clock cycle of the processor, but also
the amount of data bandwidth the memory subsystem can offer, which is inversely
proportional to the latency of the memory system. According to [1 and 3], processor
performance has been improving at a rate of 52% annually starting from the year 1986.
However, the evolution of memory performance has only been maintaining at a steady
pace of 7% per year since 1980. The industry noticed the issue of the growing
performance difference between processors and memory and tried to solve this

problem through various techniques.
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Figure 1.1: The performance ratio comparing to 1980s baseline computer systems —

the growing performance gap between processor and memory [1]

But as the performance gap between processor and memory keeps growing, modern
processors will make more frequent stalls to wait for instructions and data to be
transmitted from memory. Moreover, traditional solutions to solve the memory
bandwidth/latency problem will also reach its physical limits so engineers must spare
no efforts to reinvent more efficient way of utilizing the cache and memory systems,

which is the main focus of this work.



1.1 List of Contributions and Objectives of the Research

The main objective of this thesis is to enhance the performance of Professor Mekhiel’s
patented work — Cache Filtering Method and Apparatus. The overall research

contributions are summarized as follows:

® Studied modern computer programs’ memory address usage pattern and
established a relationship between cache pollution caused by single memory
accesses and the concept of cache filtering.

® [llustrated the problem of cache pollution.

® Created a page interleaved DDR3 memory module for the SimpleScalar
Simulator version 3.0d, which will be used to implement and test our cache
filtering algorithm. Our memory module supports multi memory channels,
multi memory banks, user configurable access latencies and allows easy
extensions to other memory types (RDRAM, SDRAM, XDRRAM, etc.).

® Improved Professor Mekhiel’s cache filtering algorithm by:
- Reinventing a new set of cache miss handling procedures to replace the

original cache filtering scheme’s procedures.

- Introducing a filter buffer to capt:ixre filtered data and prevent eviction of

useful cache blocks.



1.2 Motivation

We began our research by studying the memory address traces of some SPEC CPU
2000 component benchmarks. The traces were obtained from Brigham Young
University Trace Distribution Center [15]. They are recorded from the first
instruction to the 50 millionth instruction of the benchmarks. Through studying the
address traces, we can learn history of addresses requests generated by the

benchmarks from their initialization stage to middle of the execution.

We wrote a java program, which takes a memory address trace as an input file and

counts the followings:

® The total amount of memory access requests generated within the instruction
range;

® The total amount of unique memory addresses being requested for only once
(single accessed addresses);

® The total amount of unique memory addresses being requested for more thén
once (repeated addresses);

® The total amount of times the program made accesses request to repeated

addresses (repeated access).



The counting results and the average of the results are shown in the following tables:

Table 1.1: Total amount of memory access requests generated within execution range

Apsi equake gee mcf mgrid

10388240 | 10327879 | 10356038 | 10377283 | 10363629

Parser perlmk swim twolf vortex average
9222144 10326311 | 9164118 10024960 | 10270839 | 10082144

Table 1.2: Total amount of single accessed addresses within execution range

Apsi equake gee mcf mgrid

62231 52093 112909 58889 400161

Parser perlmk swim twolf vortex average
86838 78304 316984 141746 344597 165475

Table 1.3: Total amount of repeated addresses within execution range

Apsi equake gee mcf mgrid

112459 89547 175754 83503 475660

Parser perlmk swim twolf vortex average
146835 113867 351524 211584 438342 219908
Table 1.4: Total amount of repeated accesses within execution range

Apsi equake gce mcf mgrid

10326009 [ 10275786 | 10243129 | 10318394 | 9963468

Parser perlmk swim twolf vortex ' average
9135306 10248007 | 8847134 9883214 9926242 9916669




With the counting results available, we can calculate:
® the percentage of the average single accessed addresses;
® the percentage of the average repeated addresses;
® the percentage of the average single access;

® the percentage of the average repeated accesses.

Average total amount of unique memory addresses being requested within the
execution range (total unique addresses):
Total unique addresses = average single accessed addresses + average repeated

addresses

ft

165475 + 219908 = 385383

Percentage of average single accessed addresses (average single accessed addresses

%):

Average single accessed addresses % = (average single accessed address / total

unique addresses) x 100%

(165475 / 385383) x 100% = 42.9%

Percentage of average repeated addresses (average repeated addresses %):
Average repeated addresses% = 100% - average single accessed addresses %

100% - 42.9% = 57.1%

Average total amount of accesses to single accessed addresses (Average single
accesses):

Average single access = average single accessed addresses = 165475



Percentage of average single access (average single access %):
Average single access % = (average single access / average total memory access) x

100%

i

(165475 /7 10082144) x 100% = 1.6%

Percentage of average repeated access (average repeated access %):

Average repeated access % 100% - average single access %

100% - 1.6% = 98.4%

i

The calculations are indicating the 57.1% of repeated addresses are occupying 98.4%
of the total memory accesses as they are being used for twice or more. The
remaining 42.9% of memory addresses, contributing to only 1.6% of the total accesses,

are being used for only once and they will be discarded by the benchmarks.

We believe that allowing the 1.6% of single accesses to enter the cache system will

ultimately lead to degraded system performance because:

® they will cause cache pollution by{ replacing the frequently used déta originally
resides in the cache (to be discussed later),;

® they will waste the valuable memory bandwidth to transmit them back and forth
from the main memory to the cache and vice versa as they will be accessed only
once and will soon be replaced by other cache blocks;

® they will also increase the memory row/page miss rate as those accesses will
break the normal memory accessing pattern, causing the memory to open another

rarely used page and to close the frequently used one.



1.2.1 Cache pollution caused by rarely used data blocks

As cache is designed to provide high speed access to the processor, it will service any
kind of access by loading the requested data and keeping the data in its cache blocks,
in hope that the program will reuse the data in the future. The only problem with
this approach is that it will cause a situation known as cache pollution, which is very
expensive in terms of memory bandwidth and processor time as it destroys the cache’s
data locality (the word locality implies that when data is needed, it is already locatéd

at the cache). To explain the situation, we have included the following example:

A computer has a small 2 way associative cache with 2 cache blocks and only 1 index,
which implements the least recently used (LRU) cache replacement scheme, is
executing a program. The program being executed makes frequent use of data

located at addresses X énd Y so the cache is fully occupied by those data.

Cache
Block 0 (LRU) Block 1 (MRU)
Content= X Content=Y

Figure 1.2: Initial content of cache



Cache miss with no empty
block, replace X with Z

Processor requests Z
Cache v
Block 0 (LRU) Block 1 (MRU)
Content = X Content=Y

Figure 1.3: Cache miss forces cache to replace Block 0

Suddenly, the program makes request for a data from address Z, which will only be
used once (or rarely used) throughout the program execution. Suppose the program
had just accessed address Y, then the cache would have no space for the request of Z.
It must replace cache block 0, which stores data at address X, by writing the content

back to main memory and load data at address Z into the cache block.

Processor requests X, replace Y with X

Cache
Block 0 (MRU) Block 1 (LRU)
Content=2 Content=Y

Figure 1.4: Cache content after replacing X with Z, program requests for X again

causing another cache miss to replace block 1



After the program finishes using data at address Z, it resumes the regular pattern by
first request for X then Y. This causes another two additional cache misses because
the least recently used policy will first replace block 1 with data from address Y by

data from X, then replace block 0 with data from address Z with replaced by Y.

Processor requests Y, replace Zwith Y

Cache
Block 0 (LRU) Block 1 (MRU)
Content=2Z Content = X

Figure 1.5: Cache content after replacing Y with X, program requests for Y again

causing another cache miss to replace block 0

Note that each cache block replacement, depending on whether they have previously
been modified or not, would require one to two memory accesses (writeback and
loading) to service. Assuming all data accesses happened in this example were
writes, address Z had caused three cache misses and six memory accesses to service
such a request. Therefore, one can conclude that the access to address Z had
polluted the cache’s original content, consumed largev amount of memory bandwidth,

caused the processor to wait and yielded degraded performance.

10



Cache

Block 0 (MRU) Block 1 (LRU)

Content=Y Content= X

Figure 1.6: Final cache content after replacing Z with Y

1.3 The organization of this thesis

With the motivation of this research properly defined, we will organize the following

chapters to:

® introduce the SimpleScalar simulator tool set (Chapter 2),

® describe the design of the page interleaved DDR3 memory performance
simulation module (Chapter 3);

® propose the cache filtering algorithm for least frequently used data (Chapter 4);

® simulation and discussion of the cache filtering algorithm for least frequently
used data (Chapter 5);

® ¢ive an overview of the current technology related to cache filtering and compare
the performance gain of each technology (Chapter 6);

® Discuss the future work and conclusion (Chapter 7).

11



Chapter 2
Methodology

In this chapter, we will introduce the SimpleScalar Simulator tool set. The
SimpleScalar Simulator tool set [12, 13 and 14] is a collection of many simulators
written with the C language. Out of the many available simulators, we have chosen

to evaluate our work on a simulator named sim-outorder.

Sim-outorder is a detailed simulator that can model a 32bit out-of-order execution
superscalar processor. Qut-of-order execution is a technique to boost processor
performance by allowing the processor to, based on the availability of the processor’s
functional units, change the instruction execution order of a program. The approach
is valid as long as the correctness of the data being processed is maintained and data

are being written back to memory in the correct order.

Sim-outorder is also a performance simulator. That is, sim-outorder simulates by
executing a compatible program binary/executable file like an ordinary computer,
with an emulated processor, memory and hard disk (2GB of virtual memory).
Throughout the simulation process, sim-outorder will collect performance statistics,
such as cache hit rate and cycle per instruction (CPI), and display the information

collected at the end of the simulation.

The SimpleScalar tool set also contains a number of simpler yet useful simulators,
such as sim-fast, a simple processor functional simulator that does not have any error
checking; sim-safe, a sim-fast equivalent with error checking capabilities; sim-cache,

a simple cache simulator and sim-bpred, a branch predictor simulator.

12



Due to the nature of this work, we must briefly discuss how sim-outorder handles
cache/memory access latencies. Sim-outorder was designed as a superscalar
processor which has both instruction and data level 1 (L1) cache, optional separated

or unified instruction and data level 2 cache and a main memory module.

Access to each of the above mentioned components is modeled by calling the
corresponding access latency calculation function in the simulator. For cache
accesses, tﬁe level 1 cache latency calculation function @1 latency function) will
perform all cache access activities and return an integer value that can accurately

represent the cache access latency in processor clock cycles.

If the data being requested is found in the cache, the L1 latency function will compare
the cache hit latency with the time when the cache block is accessible (when the block
is complétely loaded from the next level) and return the bigger of the two values. In
case of cache miss where accesses to the next level of the hierarchy (writeback and
data loading) are required, the L1 latency function will update the cache blocks and
call the next level’s latency calculation function. Such a calling sequence will end
when one of the following scenarios is reached — the requested data is found in any
subsequent level or the data is not found in all cache levels and access to memory is
needed. Once the cache miss situation is being properly serviced by calling the
appropriate access functions, the L1 latency function will sum up all the latencies
returned by the subsequent level latency calculation functions and return the sum as

the latency of such cache access.

13



from or the source of the data being written to the cache.

Cache access function

v v
Cache hit Cache miss
v v
Add cache block
Return Max(cache hit

searching latency to
latency, cache block
the overall latency

accessible wait time)

v , v

Clean replace block Dirty replace block
¥ :

Update cache blocks Wiriteback the dirty replace
v block by calling next level's

Fetch data by access function
calling next level's ’
access function Add the latency value returned

v by the next level’s access

Add the latency value retumed by the function to the overall latency
next level's access function to the overail

latency and return the overall latency Fetch data by calling next
level's access function

v
Add the latency value retumed by the next
level's access function to the overall
latency and return the overall latency

Figure 2.1: SimpleScalar cache access function work flow

Upon receiving the cache access latency, sim-outorder will generate a pipeline event.
Pipeline event is a data structure which contains a register field and a time field. The

register ficld in the pipeline event represents the destination of the data being loaded

represent the clock cycle when the data loading or data writing is finished.

the processor requests for the cache access.

processor clock cycle.

contains the value of T + latency of the cache access, where T is the clock cycle when

sim-outorder’s event queue, which will be checked by sim-order in every simulated

14

The time field is used to

The pipeline event will be added to

When the recorded clock cycle of the time field is reached,



the pipeline event will be deleted by sim-outorder.  The instructions that are utilizing
the register specified by the pipeline event will then be considered as ready to be

executed by the processor.

Figure 2.2 shows the function calling sequence of one particular cache access. In
this example, sim-outorder accessed certain data from data L1 cache by calling the L1
cache access function (function A). The access generated a cache miss in L1 and a
writeback is required. Function A 15hen called the L2 cache access function (function
B) to writeback the replacing block. The writeback block was found in the L2 cache,
therefore function B could simply update the L2 cache’s content and return a latency

to function A as part of the total access latency.
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After the writeback, function A must load data from the L2 cache, which caused a
second call to function B. Unfortunately, that data load had also caused a cache miss
in the L2 cache. This time, the L2 cache has a clean block and no writeback is
needed. Therefore, function B must make a memory access by calling the memory
access function (function C). At the end of function C’s execution, the latency of
loading the data from memory was calculated. This value would then be returned to
function B and function A as part of the total accessing latency. Eventually, function
A would sum up the writeback and data loading latencies and return the value to

sim-outorder.

It is important to note that there exist several limitations in sim-outorder’s memory
hierarchy design. Firstly, when a writeback occurs, regardless it happens in the L1
or L2 cache, sim-outorder has an infinitely large write buffer with no access latency to
temporarily store the cache block being written back. Hence, all cache and memory

write actions will have an unrealistic latency of zero clock cycles.

Memory access latency = latency of first data column + (total amount of column to be

accessed - 1) x latency of remaining column

In addition, sim-outorder’s memory access latency calculation is relatively simple —
the total memory access latency is equal to the latency of the first data column
(including Temd, Trp, Tred, Teas, Tewd and first column transmission) plus the
latency of transmitting the remaining data columns multiplied by total amount of
columns minus one (for the first column). From this formula, one can easily notice
that sim-outorder’s memory model is only valid when an outdated close page policy is

used. Also, sim-outorder assumes memory accesses are always being scheduled to
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be far apart, therefore no memory access will post any burden to the data bus and

causes future accesses to wait for the current access to finish.

Lastly, as all component access functions must return an exact latency to sim-outorder,
it is impossible to implement a memory module which supports access reordering.
This is because memory access reordering requires all accesses to be added and sorted
within a queue first. Therefore the memory module cannot calculate the access

latency until the access order is confirmed.

To conclude, we have discussed some internal details of the SimpleScalar Simulator
tool set. We hope that this information will allow 6ne to easily understand the
operation of the SimpleScalar Similator and the design of our cache filter and memory
module. In the next chapter, we will discuss our page interleaved DDR3 memory

module for the SimpleScalar Simulator.
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Chapter 3
The Page Interleaved DDR3 Memory Module for the

SimpleScalar Simulator

In this chapter, we will first discuss the software design of the page interleaved DDR3
memory performance sim‘ulation model (will be referred as memory model) for the
SimpleScalar simulator. Second, we will describe the operation of the model. At

the end of the chapter, we will also simulate the system.

The remainder of this chapter will be organized as follows:
®  The software modeling of the memory model (Section 3.1);
®  The operation of the memory model (Section 3.2);

® Simulation and discussion (Section 3.3).

3.1 The software modeling of the memory model

To properly design the memory model, we did a study of the memory address format
and the virtual memory address space (hard disk) of sim-outorder. As mentioned in
chapter 2, sim-outorder models a 32bit com;;uter. The virtual address space, or the
hard disk, of this computer is 2GB in size (address starts from hexadecﬁnal
0x00000000 to Ox7fIfIfff, according to the memory.c from the simulator’s source
files). This address range is perfectly addressable with 32bits because the
hexadecimal range of 32bits starts from 0x00000000 to Ox{Tffffff. Therefore,
sim-outorder represents memory addresses with a md_addr_t enumerated data type
(user defined data type), which is C language’s unsigned int (unsigned integer) type.

And if one also studies the machine definition of sim-outorder (machine.h), he/she
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will notice that the virtual memory page size is defined as 4096 bytes (4KB).

We made t;vo impo&nt decisions before we began the programming. First, we
decided to directly map the 2GB of virtual memory §pace into 2GB of physical
memory space with 4KB per memory row/page. This decision will greatly simplify
the design of our memory model. Second, we decided to remove the infinite write
buffer out of sim-outorder because of its unrealistic size and its zero access latency.
In this context, sim-outorder must now wait for all cache/memory writebacks to

complete and include the writeback latency in the latency calculations.

Our memory model has two components — the data and functional component. The
data component, to be discussed in section 3.1.1, is the data structures that represent
the memory hardware in the simulator. The functional component, covered in

section 3.1.2, is used to describe the operation of the memory model.

3.1.1 The data components of the memory model
The data component of the memory model is written in the memory.h source file of
SimpleScalar. It defines the new data structures which are necessary for the memory
model to operate properly. It includes:

®  modification to the mem_t data structure;

® anew channel_t data structure;

® anew bank_t data structure.
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Figure 3.1: Graphical representation of the mem_t data structure

Modification to the mem_t data structure

A number of new data members were added to the mem_t data structure. The most
noticeable addition is a channel_t pointer called channel. Channel is a pointer to a
dynamically allocated array of channel_t data structures. This array of channel t is
used to represent one or multiple memory channels (the model can support up to two

channels at this point).

Two floating point values known as mem_to_cpu_clk and cpu_to_mem_clk were also
introduced to allow fast conversion between processor clock and memory clock.
Given the clock speed of the processor and memory bus from the user input, the
memory model will store the result of processor clock divided by the memory bus
clock to mem_to_cpu_clk. The cpu_to_mem_clk, on the other hand, will hold the
result of memory bus clock divided by the processor clock. To convert a value from

memory clock to processor clock, the simulator can simply multiply the value with
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the mem_to_cpu_clk variable. A processor clock can also be converted easily by

multiplying the value with the cpu_to_mem_clk variable.

Following the floating point values are several 64bit integer values (C language’s long

long type):

® access_count: a statistical value to store the total amount of memory access;

® unoverlaped_fp read clk and unoverlaped fp write_clk: statistical values to
store the total amount of unoverlapped fast page read/write delay in processor
clock (overlapped delay will be discussed in section 3.2);

® unoverlaped_filtered read clk and unoverlaped_filtered write clk: unused
statistical values for debugging;

® unoverlaped_random_read clk and unoverlaped_random_write_clk: statistical

values to store the total amount of unoverlapped random read/write delay in

processor clock.

Finally, there is a list of 32bit integer values (C language’s int type) added to the

mem_t data structure to store:

®

the data bus width in bytes (bus_width);

the total amount of memory channels (channels);

bank —the total amount of banks per channel (bank);

the column access strobe latency in memory clock cycles (Tcas);

the row to column delay latency in memory clock cycles (Trcd);

the row precharge latency in memory clock cycles (Trp);

the burst length of the memory model (Tburst, a fixed value of 8 for DDR3);

the write recover time in memory clock cycles (Twr);
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® the rank to rank switching time and the data bus write to read switching time in
memory clock cycles (Trtrs);

® the command duration time in memory clock cycles (Temd);

®  the column write delay in memory clock cycles (Tewd);

® the column to column delay in memory clock cycles (Teed);

® the size of a bank(bank_size);

® the memory mapping, only page interleaving is supported in the current
implementation and other men&ory mapping can be added in the future
(map_type);

® the memory type, only DDR3 is supported in the current implementation but

SDRAM can also be supported with minor changes to the code (mem_type).

The channel_t data structure

A new channel t data structure was introduced to represent a memory channel. The
most important data member of the data structure is a bank_t (to be discussed later)
pointer. Same as the channel_t pointer found in the mem_t data structure, the bank_t
pointer points to a dynamically allocated bank_t array to represent the collection of

banks within a memory channel.

Following the bank_t pointer is a SimpleScalar enumerated mem_cmd data type
variable known as previous_command. According to the memory.h source file, the
mem_cmd enumerated data type is a flag to represent read or write memory
commands/activities. The previous_command variable was added to represent the
previous bus activity, which is important for memory access latency calculations (to

be discussed in section 3.2).
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Two 32bit integer values, prev_burst and prev_accessed_bank, were added to handle

different memory access situations (to be discussed in section 3.2) during the latency

calculation. The prev_burst value keeps the amount of processor time taken to make

the previous data transmission. The prev_accessed_bankl holds the previous

accessed bank number/array index. Also, it is important to note that the C language

uses pointer arithmetic to access the array elements, therefore the indexes starts from

0 to size of the array — 1.

Finally, there is also a list of 64bit integer values from the channel_t data:

bus_timer: the value recorded by this variable represents the processor cycle
when the data bus of this memory channel will become idle.

cmd_timestamp: this value records the processor cycle when the last memory
access command was issued by the memory controller.

burst_timestamp: a value used to represent the processor cycle when the last data
transmission began. \
access_count: a statistical value to record the total amount of memory access to
the memory channel.

actual_transfer: a statistical value to keep the total amount of data columns being
transferred by the memory channel.

row_hit: a statistical value to count the total amount of row hit happened in the
memory channel.

fp_reads and fp_writes: two statistical values to record the total amount of fast
page read / write access to the memory channel.

random_reads and random_writes: two statistical values to record the total

amount of random read/write access to the memory channel.
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® channel_unoverlaped_fp_read_clk and channel_unoverlaped_fp_write_clk: two
statistical values to hold the total amount of unoverlapped fast page read / write
delay in processor cycles.

® channel overlaped_fp read clk and channel_overlaped_fp write_clk: two
statistical values to record the total amount of overlapped fast page read / write
delay in processor cycles (overlapped delay will be discussed in section 3.2).

® channel_unoverlaped_random_read_clk and channel_unoverlaped_random_
write_clk: two statistical values to keep the total amount of unoverlapped random
read / write latency in processor cycles.

® channel overlaped_random_read_clk and channel_overlaped_random_write_clk:
two statistical values to keep the record of the total amount of overlapped
random read / write latency in processor cycles.

* filtered_reads, filtered_write, channel_overlaped_filtered_read clk, channel_
overlaped_filtered_write_clk,  channel_unoverlaped_filtered_read clk  and

channel_unoverlaped_filtered_write_clk: unused statistical values for debugging

purposes. .

The bank_t data structure

The bank_t data structure was defined to represent a memory bank of the memory
model. There are only two values stored in the data structure — the latched_page and
the ras_timestamp. The latched page variable is an unsigned integer value to
represent the previously opened row of the memory bank. The ras_timestamp is the
record of the processor cycle when the last row precharge happened to the memory

bank.
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3.1.2 The functional components of the memory model

The functional component of the memory model was implemented in the memory.c
source file. It has a number of functions and we categorized them into three classes:
setter functions to initialize the values of the data components; memory access latency
function to define how the memory model should operate and helper functions to aid
latency calculations. In this sub-section, we will list and briefly describe the

functions.

Setter functions

There are six setter functions to allocate and initialize the memory model’s data

structures, they are:

® set_mem_size: a function that dynamically allocates the channel t and bank t
data structure arrays and calculates the size of each memory bank based on the
user specified amount of memory channel/s and bank/s per channel.

® set_bus_width: a function that takes the user inputted memory data bus width (in
bytes) and initializes the mem_t data structure’s bus_width variable.

® set_clk: this function takes the user inputted value for processor clock and
memory data bus clock and compute the mem_t data structure’s
mem_to_cpu_clk and cpu_to_mem_clk variables.

® sct_map: a function that takes the user inputted value for memory mapping and
initializes the mem_t data structure’s map_type variable. We intended to allow
bank interleaving and cache line interleaving mode to be added in the future as
extensions to the work, but in the current implementation, only page interleaving
is supported.

Note: Some of the functions will have detailed explanation in section 3.2 as they are closely related to

the operation of the memory model.
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® sct_type: this function sets the mem_type variable of the mem_t data structure
with the user inputted value. This function was added to allow future memory
model extensions such as SDRAM and DDR4 to be added with minor code
modification.

® set_latency: this function sets the following latencies with the user inputted

values: Tcas, Trcd, Trp, Tras, Tburst, Twr, Trtrs, Temd, Tewd and Teed [2].

Memory access latency calculation function
The memory access latency function (memory_access_latency) was implemented to
calculate the latency of a memory access, based on the current state of the mem_t data

structure. (refer to section 3.2.3 for more detail).

Helper functions

We have also déﬁned some helper functions to aid latency calculations:

® max: max is a function to compare two integer values and return the bigger value
of the two. |

® is_latched: given a starting address, its corresponding channel and bank, this
function returns a non-zero value if the address generates a row hit (the row of
the starting address is the same as the row being latched by the given channel’s
bank), zero otherwise.

® get mem_page: given a starting address, this function consults the page table and
returns the physical memory pagé!row number which the address is located at
(refer to section 3.2.2 for more detail).

® get mem_actual_bank: based on the page/row number received from
get_mem_page, this function returns the physical bank number which contains

the page (refer to section 3.2.2 for more detail).
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® gct mem_channel and get_mem_bank: these two functions will take the physical
bank number returned by get mem_actual_bank and calculate the channel array
index and bank array index of the mem_t data structure respectively (refer to

section 3.2.2 for more detail).

3.2 The operation of the memory model

In this section, we will discuss various aspects related to the operation of the memory
model. These aspects include the overlapped memory access scheduling, memory

addressing and most importantly, the memory access latency calculation.

3.2.1 Overlapped memory access scheduling

Back in section 3.1.1, several statistical variables from the mem_t and channel t data
structures to record the overlapped and unoverlapped access latencies were introduced.
These latencies are related to a specific memory access scheduling technique known
as the overlapped memory access scheduling [2]. In high speed memory systems
with multiple banks, memory accesses can be pipelined into different phases. The
phases are: react to an. access request (Tcmd), row precharge (Trp), data ready (Trcd),
column select (Tcas or Tcwd), data transmission and data recovery (Twr, for write

only).

If the newly'requested memory access is not reading fromfwriting to the same
memory bank as the previous access, the memory controller can schedule the new
access to start processing, up to the column selecting phase, before the previous
access is completed (an §xarnple is shown in Figure 3.4). This type of scheduling is

overlapped memory access scheduling as part of the memory accesses are being
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overlapped. This is possible because row precharging and column selecting actions
will not affect the previous access as they are utilizing different memory banks. But
it is important to note that the command reactioﬁ and the actual data transmission can
not be overlapped within a memory channel because each memory channel has only
one data and command bus for data and command transmission.

Cannot be overlapped

React to an Row Data | Column Data Data recovery
access request |precharge |Ready | select (Tcas/ |transmission |(for write only,
(Temd) (Trp) (Tred) | Tewd) Twr)
\ A —

Y \:\’/_,E/v_v—J

Can be overlapped

Cannot be overlapped

Figure 3.2: The overlappable and unoverlappable phases of a random memory access

Cannot be overlapped

—

Reactto an Column Data Data recovery
access request | select (Tcas / | transmission | (for write only,
(Temd) Tewd) Twr)

\ }H__J

Cannot bé overlapped

Can be overlapped

Figure 3.3: The overlappable and unoverlappable phases of a fast page memory access
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Not overlapped

Access 1 React Row Data | Column Data ‘/l
to bank O precharge |{Ready| select transmission _
L/' Row Data | Column Data
React
precharge |Ready | select transmission
Not overlapped Access 2
to bank 1

Figure 3.4: Overlapped memory access scheduling example

3.2.2 Memory addressing

According to the DDR3 standards, a memory channel has at least 8 banks. With our

memory model supporting 2GB of single and dual channel memory with up to 16

banks per channel, the memory address has the following formats:

Dual channel, 8 banks per channel:

Don't care Rowi/page select

1 A
(/f \
A31TA30A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 A1BA17 A1B A15 A14 A13
A11 AT0A9ABATAGASA4 A3 AZATAD
L,j\ >

h'd

Column and byte select

Channel select Bank select

Figure 3.5: 32bit dual channel 8 bank memory address format
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Dual channel, 16 banks per channel:

Don't care Row/page select
A
- Y
A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 A18 A17 AT6 A15A14 A13
12 A11 A10 A9 AB A7 A6 A5 A4 A3 A2 ATAD -—Y‘_‘
¢ >
Bank select
Channel select Column and byte select

Figure 3.6: 32 bit dual channel 16 bank memory address format

Single channel, 8 banks:
Don’t care Row/page select
HW A
e N
A31A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12
@11 A10A9 A8 A7 AGAS A4 A3 A2 A1 AO/}

Column a\n'gi/byte select Bank select

Figure 3.7: 32 bit single channel 8 bank memory address format

Single channel, 16 banks:

Don't care Row/page select

n A —
- N
A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A18 A1B A1T A16 A15 A14 A13 A12

A11A10 A9 A8 A7 AB A5 A4 A3 A2 A1 AD k—y—-/
- J
Y

Bank select

Column and byte select

Figure 3.8: 32 bit single channel 16 bank memory address format
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In our simulator, the decoding in the software can be achieved by either the logical
approach (bit masking) or the mathematical approach (integer division and modulo).
The benefit of the logical approach is the ease of implementation, but it is more
restrictive as it requires the programmer to hard-code the bit masks. Keeping the
future expendability of the simulator in our mind, we decided to take the
mathematical approach and implemented the get mem_page, get mem_actual_bank,

get_mem_channel and get_mem_bank functions.

Upon receiving a memory address, the memory model decodes the addresé by first
calling the get mem_page function. This function has the following function
signature:;

unsigned int get_mem_page(struct mem_t *mem, md_addr_t addr);
The mem variable is a mem_t pointer, which points to sim-outorder’s mem_t data
structure. The second parameter, addr, is the target memory address to be translated

into page/row number.

The get_mem_page function takes the requested address and search for the physical
page number from the page table. The page number is formed by dividing the
memory address with the page size (4096 Bytes). If the page is not found from the
page table, the get_mem_page function will divide the value and return the result as
the physical page number. Note that the physical page number is unique across the
memory space, the memory model can simply take the physical page number as the

row identifier with the mathematical approach.
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With the physical page number available, the memory model calculates the physical
bank number where the address located at with the get mem_actual _bank function.
This function has the following function signature:

int get_mem_actual_bank(struct mem_t* mem, md_addr_t addr);
The addr val_ue is the memory address that needs to be converted to a physical bank

number.

The get_mem_actual_bank function takes the remainder of the division between the
physical page number and the multiplication result of total amount of channel and
amount of banks per channel.
Physical bank number = physical page number MOD (total amount of channels *
total amount of banks per channel)

Since page interleaving distributes memory rows/pages in a zigzag manner across the
banks gnd channels, he memory model must further process the physical bank number
with the get mem_channel and get mem_bank functions to obtain the channel

number and the bank number of the channel.

The get_mem_channel function has the following function signature:

int get_mem_channel(struct mem_t* mem, int bank);

The get mem_channel function calculates the channel number by taking the
remainder of the physical bank number divided by the total amount of channels.

Channel number = physical bank number MOD total amount of channels

Note; The bank variable is the physical bank number returned by the get_ mem_actual_bank function.
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Similarly, the get_mem_bank function has the following function signature:

int get_mem_bank(struct mem_t* mem, int bank);
The get_mem_bank function calculates the bank number of the channel by dividing
the physical bank number with the total amount of channels.

Bank number of a channel = physical bank number / total amount of channels

We have included the following address conversion example with 4 memory channel
and bank configurations to prove that our mathematical memory address decoding

method is correct for all memory configurations:

Suppose the memory address to be accessed is 366882:
The binary form of 366882 is:
00000000000001011001100100100010
Following the bit naming convention from Figure 3.7, for single channel 8 banks:
The column and bank select bits are A11 to A0, which are “100100100010”;
The bank select bits are A14 to A12, which are “001”;
The row select bits are A30 to A15, which are “0000000000001011”.

Therefore, we expect this address belongs to bank 1.

Using our mathematical approach:

Physical page number =  address / page size (4KB)

i

366882 /4096 = 89

Note: the mathematical approach uses the C language’s integer division and modulo operations.
Therefore both the division resuit and the remainder will be integers. '
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Physical bank number

Channel number

Bank number

physical page number MOD (total amount of channel *
total amount of banks per channel)
89MOD(1*8)=89MOD8=1

physical bank number MOD total amount of channels
1MOD1=0

physical bank number / total amount of channels

1/1=1

By applying the mathematical approach to the single channel 8 bank scenario, the

result is bank 1. Therefore we can conclude that the result of mathematical approach

matched the logical approach’s result.

Single channel 16 banks:

The column and bank select bits are A11 to A0, which are “100100100010”;

The bank select bits are A15 to A12, which are “10017;

The row select bits are A30 to A16, which are “000000000000101”.

Therefore, we expect this address belongs to bank 9.

Using our mathematical approach:

Physical page number

Physical bank number

Channel number

I

address / page size (4KB)

366882 /4096 = 89

physical page number MOD (total amount of channel *
total amount of banks per channel)

89MOD 16=9

physical bank number MOD total amount of §hamels -

IMOD1=0
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il

Bank number physical bank number / total amount of channels
= 9/1=9
By applying the mathematical approach to the single channel 16 bank scenario, the

result is bank 9. The result of our mathematical approach is matching the logical

approach’s outcome again.

Dual channel 8 banks:

The column and bank select bits are A1l to A0, which are “100100100010™;
The channel select bit is A 12, which is “1%;

The bank select bits are A15 to A13, which are “100;

The row select bits are A30 to A16, which are “000000000000101”.

Therefore, we expect this address belongs to channel 1°s bank 4.

Using our mathematical approach:
Physical page number = ~ address / page size (4KB)

= 366882 /4096 =89

i

Physical bank number physical page number MOD (total amount of channel *
total amount of banks per channel)
= 89MOD (2*8)=89MOD 16=9
Channel number =  physical bank number MOD total amount of channels
= 9MOD2=1
Bank number = physical bank number / total amount of channels
= 9/2=4
By applying the mathematical approach to the dual channel 8 bank scenario, the result

is channel 1’s bank 4. Therefore mathematical approach is also valid with the dual

channel 8 bank configuration.
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Dual channel 16 banks:

The column and bank select bits are A1l to A0, which are “1001001000107;
The channel select bit is A 12, which is “1%;

The bank select bits are A16 to A13, which are “11007;

The row select bits are A30 to A17, which are “00000000000010”.

Therefore, we expect this address belongs to channel 1’s bank 12.

Using our mathematical approach:

Physical page number =  address / page size (4KB)

I

366882 /4096 = 89
Physical bank number =  physical page number MOD (total amount of channel *
total amount of banks per channel)

= 89MOD (2 *16)=89IMOD 32=25

Channel number = physical bank number MOD total amount of channels
= 25MOD2=1

Bank number = physical bank number / total amount of channels
= 25/2=12

Finally, by applying the mathematical approach to the dual channel 16 bank scenario,
the result is channel 1°s bank 12, which is matching‘our expected results.  Through
the proving process similar to mathematic induction, we conclude that our
mathematical memory address decoding method is correct for all memory

i

configurations.

Note: For the remainder of this document, we will refer to each of the memory latencies mentioned in

section 3.1.1 by their short form (e.g. command duration time = Temd)
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3.2.3 The memory_access_latency function

The memory_access_latency function models the memory operations, calculates the
latency of each access and returns the value to sim-outorder. The function signature
of memory_access_latency is shown below:

unsigned int memoryﬂaccesswiatency(struct mem_t* mem, int chunks, md_addr t
addr, enum mem_cmd cmd, tick_t now);

The mem parameter is a mem_t pointer which points to the mem_t data structure of
sim-outorder. The second parameter, chunks, is the total amount of bytes the
processor/cache is requesting for the memory access (in sim-outorder, it is the L2
cache block size since the L2 cache is the only cache that requests for memory access).
The addr parameter is the first address which the processor/cache is requesting. The
last parameter, now, is the processor cycle when the processor/cache requested for the

memory access.

The algorithm behind the memory_zaccess_latency function

Before the description of the algorithm begins, one must note that the latency value
returned by memory_access_latency is not simply the sum of the timing parameters
(Temd, Trp, Tred, Tcas, Tcwd and data transmission), but a latency relative to the
‘now’ parameter. That is, the value returned by the function can be significantly
larger than the sum of those timings. This is caused by the fact that when the
processor/cache requests for a memory access, the memory model can either be idle
or busy servicing the pervious access/s. 1f the memory is s'ervi'c’ing another access, it

must wait for the previous access to complete before servicing the current access.
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The most important goal of the memory_access_latency function (latency function) is
to calculate the earliest possible starting processor cycle (start time) for the memory
access requested by the processor/cache. When the latency function is called, it will
first call the get_mem_actual bank, get mem_bank, get mem_channel and is_latched

functions to determine whether the access is a random type or fast page type.

Once the access type is determined, the latency function will check whether the access
is the first memory access of the simulation (bus_timer = 0). If so, the start time can
simply be set as “now” and the access type will be limited to random access (the first
access of a simulation has to be random access. Also, when the mem_t data
structure is initialized, the latched row/page of all memory banks is set as row 0, so

we must override the result of the is_latch function).

If the access is not the first access of the simulation, the latency function compares the
value of the “now” parameter with the channel’s previous command start time
(cmd_timestamp + Temd) and takes the larger value as the temporary start time. This
is because an access cannot start earlier than the previous access. Note that the
temporary start time \x;ill be increased (shifted further away from “now™) as the

function handles other situations.
If the access type was previously determined as fast page mode, the latency function

will store the sum of the corresponding timing parameters (Temd + Tcas for read OR

Tewd for write) to an integer variable “latency” and detect the following situations:
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Consecutive reads

If the previous access is a read operation and the current access is also a read, the
function will first compare the value of the previous data transmission time
(prev_burst from channel_t data structure) and the column to column delay (Tced) and
store the larger value of the two values to a temporary variable known as “temp”.
The latency function will then ensure the minimum distance between the current
read’s start time and the prévious read’s start time is “temp” by incrementing the
temporary start time of the current access. This action allows sufficient time for the

memory to complete the data transmission and column selection.

MAX(prev_burst, Teed) Temd Previous access is
fast page read
Command & address bus Read 0 Read 1
‘ ¢——— prev_burst
Data bus Data of Read 0 | Data of Read 1 |
e
Time
Tcas
>=MAX(prev_burst, Tocj)\ Temd  Pprevious access is
Command & random read
dd b Read 0 Read 1
adaress bus ‘ prev_burst —_—,
Data bus Data of Read 0 |Data of Read 1 ]
Trp Tred —_—
Teas Time

Figure 3.9: Consecutive read timing (current access is fast page read)



Fast page write following a fast page read

If the previous access is a fast page read and the current access is a write, the latency
function must ensure the timing distance between the previous read and the current
write is Tecas + Trtrs + Tewd + prev_burst. Note that the Trtrs is added as a timing

bubble to eliminate the conflict with the internal data movement of the read access.

Teas+Trtrs+Tcwd+prev_burst Temd Tewd
/_'—'L_'"\
Command & :@ Write 1
address bus prev_burst
Data bus L__Y__J Data of Read 0 |sync | Data of Wiite 1 '
—
Tcas Trirs Time

Figure 3.10: Write following a fast page read timing (current access is fast page write)

If the latency function determined the access type is random access, the function will
store the sum of the corresponding timing parameters (Temd + Trp + Tred + Teas for
read OR Tcwd for write) to the “latency” variable and record the latched row/page to
the bank’s latched_page variable. Also, if the latency function determines the
current memory access is the first access of the simulation, it will skip the following

start time calculation and jump to the actual data transmission latency calculations.

Because random accesses require a row precharge, the latency function must check
the last ras_timestamp of the bank. If the timing difference between temporary start
time and the last ras_timestamp (temporary start time — ras_timestamp) is less than the
value of the Tras of the mem_t data structure, the latency function will increment the

temporary start time with the value: Tras — (temporary start time — ras_timestamp).
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Random access to the same bank as the previous write

After handling the Tras timing requirement, the latency function checks whether the
previous access was accessing the same memory bank and the access was a write.  If
so, the memory must allow a minimum timing distance of Twr to allow the row latch

to write the updated values back to the memory cells.

Tewd+prev_burst +Twr Temd
- A ~N
Command & ¢
Write 0 ' RW 1
address bus ‘
prev_burst
Data bu
ala bus Data of Write 0 Data of RW 1 |
o —
Tewd Twr Trp Tred Teas/ Time

Towd
Figure 3.11: Random access to the same bank as the previous write timing
When the latency function finishes calculating the temporary start time of the current
access, it will begin the actual data transmission latency calculations and record the
followings:
®  The bank number of the current access to the prev_bank variable of the channel_t
data structure;
® The temporary start time of the current access to the cmd_timestamp variable of
the channel t data structure and to the ras_timestamp of memory bank (if row
precharge needed);
® - The current access command (Read or Write) to the previous_command variable
of the channel_t data structure;
® The time when data transmission begins (cmd_timestamp + “latency™) to the

burst_timestamp variable of the channel_t data structure;
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Actual data transmission latency calculation

The actual data transmission latency calculation starts by dividing the “chunks”
parameter with the mem_t data structure’s bus_width variable to obtain the total
amount of data columns to be transmitted. Once the total amount of data columns is
determined, the latency function will divide the amount by two and store the result to
a temporary variable known as access_transfer (DDR3 memory can transmit twice per

memory clock and transmit one data column per transmission).

At this point, the latency function is still in terms of memory clock cycles. Therefore
the latency function will convert the result to processor clock cycles by multiplying
the values (“latency” and access_transfer) with mem_t’s mem_to_cpu_clk variable.
With every value converted. to processor clock cycle, the latency function will store
the value of access_transfer to the channel’s prev_burst variable for future latency
calculations. The latency function will also store the value of start time + “latency”
+ access_transfer to the bus_timer variable of the channel because the data bus will be

busy until the newest memory access (the current access) finishes.
Finally, the last action of the latency function is to calculate the memory access

latency that is relative to the “now” parameter. This is completed by returning the

value of bus_timer — “now”.
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Decode address to channel, bank and row number

v
Determine whether it is fast page mode or random access

Fast page mode: Random access:
Consecutive reads l
handling

Random access to the same bank as

'L the previous write
Fast page write following a fast

page read handling-

Actual data transmission latency calculation

}

Latency retum

Figure 3.12: memory_access_latency function work flow

3.3 Simulation and discussion

In this section, we will perform a memory channel and bank test to verify our memory
module’s behavior under different memory channel and bank settings. In this test,
we will use the gcc benchmark from the SPEC CPU 2000 benchmark suite for the
simulations and monitor the system performance and memory row hit rate under the
following memory configurations:

® 1 channel 4 banks;

@ | channel 8 banks;

® 2 channels 2 banks (4 banks in total);

® 2 channels 4 banks (8 banks in total);

® 2 channels 8 banks (16 banks in total).

44



Note that we will set all of the simulation settings, except the cache and memory
related settings, with the default settings of sim-outorder. Also, our cache settings
will be consistent among each sub-section to allow precise comparison between data
points. Finally, as mentioned in section 3.1, our custom version of sim-outorder does

not include the write buffer and memory access reordering capabilities.

Simulation settings

Table 3.1: Simulation settings for channel and bank test

Instruction L1 cache size . 32KB

Data L1 cache size 39KB

L1 cache latency 1 processor clock

12 cache size S IMB -

L2 cache latency 10 processor clocks
Cache block size 64B

L1 cache set associativity 4

L2 cache set assocaitivity 3

Custom DDR3 memory models | gp9 (DDR3 1600)

memory bus speed (MHz) ‘
Amount of memory banks 4.8
Amount of memory channels 1,2

Tcas, Tred, Trp, Tras (memory clocks) | 7,7, 7,21

Trtrs, Tewd, Temd, Twr, Teed (memory | 1,7, 1,5, 4

clocks)

Our DDR3 memory model’s processor | 3909
clock (MHz)

Note: To verify the statistical values generated by our custom sim-outorder, we have also included a

sample simulation output file verification in appendix A.2 on page 127.

45



Row hit rates and row hit improvement

Row hit rates

Memory row hit rate (%, bigger s better)
44.00%
43.00% t
42.00%
41.00% |
2« 40.00% |
= 39.00% 1
é 38.00% |
37.00%
36.00% I
3500% +
34.00% R Ed e . 5t
1 channel, 4 2 chaneels, 2 1 channel 8 2 chanrek, 4 2 chamneks 8
banks {4 banks i | banks (4 barks in | banks (8 banks in|banks (8 banks in| banks (16 banks
total) total) total) total) intotal)
M row hi rate 37.77% 37.77% 41.56% 41.56% 43.45%
Memory configuration

Figure 3.13: Memory row hit rates of the gcc simulation

Note: Please note that there has never been any DDR3 memory being manufactured with only 2 and 4
memory banks. Therefore, the simulations with 2 and 4 memory banks are never intended to reflect
real world memory performance; instead, they are only used to illustrate the behavior of the memory
row hit rate when the total amount of memory banks is being doubled. Finally, when considering the
row hit rates of the multi channels setups, we must take the average row hit rate across the channels as

the overall memory row hit rate.
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Memory row hit rate improvement achieved by doubling the total amount of memory

banks

Row hit improvement achicved by doubling the total amount of memory banks (%, bigger is better)

f -
M row hit improvement

12.00%

10.00% 1

8.00% |

6.00%

4.00% -

200% -

0.00%
4 to 8 banks 810 16 banks

M row hit improvement 10.03% 4.55%

Figure 3.14: Row hit improvement when total amount of memory banks is doubled

From the row hit rate plot, one can notice thg followings:

® The row hit rate improvement is not sensitive to the total amount of memory
channels; *

® The row hit improvement of doubling the total amount of memory banks (from 1
channel 4 banks OR 2 channels 2 banks to 1 channel 8 banks OR 2 channels 4
banks respectively) is consistent.

® The row hit rate improvement tends to drop as the total amount of memory banks

increase.

The ﬁ.rst and the second facts a;e the most important findings to prove our memory
module is able to generate consistant results amo;mg different memory configurations
- regardless the total amount of memory channels, if the total amount of memory
banks is fixed, the memory row hit rate and memory row hit improvement should be

consistent because the application’s degree of locality is constant.
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To explain the third finding, one can consider the multi bank main memory as an
index of a set associative cache where the total amount of memory banks is the set
associativity and each row latch is a cache block. If one keeps increasing the
associativity or the memory bank count, it will eventually reach the limit of the set
associative or multi bank design where additional set / bank will not benefit the
overall hit rate. Therefore the row hit rate impfoi*ement will not double as the total
amount of memory banks doubles. Instead, the roQ hit rate improvement should be
a function of total amount of memory banks and tﬁe application’s degree of locality.
Hence it should converge to a value as the total amodnt of available row latches

reaches the limit of the program’s memory row request limit.

Simulated performance and performance comparison under different

memory configurations

Simulated performance
Performance (simulated processor cyckes, smaller is better) W performance
4730000000
4720000000
4710000000 +
4700000000
4690000000 +
4680000000
4670000000 +
1 channel, 4 banks (4 2 channels, 2 banks (4 1 channel, 8 banks (8 2 channels, 4 banks (8 | 2 channels, 8 banks (16
banks in total) banks io total) banks in total} backs in total) banks in total)
@ peeformance 4721639446 4700287935 4711818513 4690468710 4685665536
Memory configuration

Figure 3.15: gcc simulated performance
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Performance improvement achieved by increasing the amount of memory channels

4.50%

Performance increase from 1 channel to 2 channels (%, bigger is better)

M Performance increase from 1 channel
to 2 channels

045% }
0.40%
0.35%
0.30%
0.25%
0.20%
0.15% |
0.10%
0.05% \-

0.00%

4 banks in total

8 banksin total

¥
/M Performance increase from 1 channel to 2
| channels

0.45%

0.45%

Figure 3.16: gce performance improvement achieved by increasing the amount of

memory channels

Performance improvement achieved by doubling the total amount of memory banks

0.25%
0.20%
0.15%
010%
0.05%

0.00%

(%, bigger is better)

Performance improvement achieved by doubling the memory banks

B Performance improvement achieved
by doubling the memory banks

1 channel, 4 to 8 banks

2 channels, 4 to § banks | 2 channels 8 to 16 banks

M Performance improvement achieved
by doubling the memory banks

0.21%

0.21%

0.10%

Figure 3.17: gcc performance improvement achieved by doubling the total amount of

memory banks
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From the performance plots, we have made the following observations:

® The performance gain of adding an additional memory channel is much bigger
than doubling the arr;ount of total memory banks;

® Regardiess of the total amount of channels, the performance gain of doubling the
totél amount of memory banks from 4 ;to 8 is consistent;

®  The benefits of doubling the total a;fxount of memory banks are diminishing if

one compéres the improvement from 4 to 8 banks and from 8 to 16 banks.

The first finding can be considered as the benefit of an extra memory data bus. With
an additional memory data bus, the average amount of access to each data bus is
reduced. Therefore, the average amount of memory access wait time caused by
incomplete previous memory accesses can be reduced, yielding better performance

than simply doubling the total amount of memory banks per memory channel.

The second and third observations are, once again, proofs of the relationship between
the total amount of memory banks and the limit of the multi memory bank design.
As the row hit rate of the configurations with a total 4 memory banks should be
consistent, one should expect to see the same amount of performance improvement
achieved by doubling thé tétél amount of memory banks, regardless the amount of
memory channels present in the system. A" Aiso, due to the fact that there exists a row
hit Aimpr;ovemcnt limit in the multi memory bank design, it is reasonable to have
decaying performance benefit of as we continue doubling the total amount of memory

banks.
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To conclude, we have designed and tested our DDR3 memory model for the

SimpleScalar simulator which is capable of producing consistent simulat.ion results

under different simulation configurations. Our DDR3 memory model has the

following feature set:

®  Support up to 2 memory channels and 16 memory banks;

@ Support any reasonable input of processor clock speed, memory bus speed and
memory latencies;

® Generate consistent results amount different memory configurations.
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Chapter 4
The Cache Filtering Algorithm for Least Frequently
Used Data

In this chapter, we will propose the cache filtering algorithm for least frequently used
data (cache filter algorithm). This algorithm allows the cache to identify and filter

out rarely used and non-previously used memory addresses.

The remainder of this chapter will be organized as follows:

®  The background;

@  The baseline system’s memory hierarchy characteristics;
® The cache filtering algorithm and the components;

®  Simulation and discussion.

4.1 The background

Our cache filtering algorithm builds on the basics of two patented works. The first
work, Cache Filtering Method and Apparatus [21], provided us important insights
about how does the memory row hit signal can be used to identified previously used
memory rows/pages and addresses. And the second work, Methods and Apparatus
for Accelerating Retrieval of Data from a Memory System with Cache by Reducing
Latency [22], had given us a hint about the possibility of using a small buffer to hold
non-previously used and rarely used data. After serious considerations and
modifications to the two works, we were able to combine them together and harness

their strengths.
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Our cache filtering algorithm makes use of a small buffer to store the filtered cache
blocks and determine whether a cache block is frequently or previously used by
checking:

® the content of the buffer AND

® the memory row/page hit signal generated by the memory controller

4.2 The baseline system’s memory hierarchy characteristics

We decided to take the simulated system from section 3.3 as our baseline system to
implement the cache filtering algorithm. Therefore we will assume our baseline
system to have the follow memory hierarchy characteristics:

® 2 level cache hierarchy (separated instruction L1 cache and data L1 cache);

® No write buffer;

® No memory access reordering,.

4.3 The cache filtering algorithm and its components

To ensure the data being fetched to the cache hierarchy are frequently/previously used,
we will only allow data to be fetched to the cache hierarchy from the following
sources:

® the L2 cache (only applicable to the L1 cache);

®  the filter buffer;

®  an opened memory row/page.
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The remaining access types that are not allowed to enter the cache hierarchy stored in

the filter buffer. These accesses include:

® fetches that causes a miss in all L1 cache, L2 cache, filter buffer and memory
rows/pages;

@ writebacks from data L1 cache to 1.2 cache that causes a L2 cache miss;

® all L2 writebacks.

Processor Data
Instruction | ' o » register file
register \
4 Word bus
A
A 4
Instruction L1 cache Data L1 cache
» Filter buffer >
»
— ] ,k
Filter data bus
3 b4
Unified L2 cache
row hit .
row miss
Front side bus Row hit? Front side bus
Y

Memory Controller

Figure 4.1: Block diagram of the cache filtering scheme
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Figure 4.1 shows the block diagram of the cache filtering scheme. This diagram
shows the major components of the cache filtering algorithm: instruction register, data

register file, instruction L1 cache, data L1 cache, L2 cache and the filter buffer.

4.3.1 The instruction register (IR) and data register file (DRs)

Same as the IR and DRs of conventional memory hierarchies, our cache filtering
scheme supplies data and instructions to the processor with the IR and DRs. The
only difference is the IR and DRs can fetch/write data from/to the filter buffer when

cache filtering is used.

4.3.2 The instruction and data L1 caches (I and D L1 caches)
The design of the I and D L.1 caches remains largely unchanged from the design of the
conventional memory hierarchy’s. The only differences are the source of data

fetching and destination of writebacks.

Fetch: The default data fetching source of the I and D L1 caches is the L2 cache.
However, when the required data is not found in the L2 cache, the I and D L1 caches

will fetch from the filter buffer,

Writeback (Data L1 cache only): The data L1 cache will only perform writebacks to
the L2 cache if and only if the L2 cache has the writeback block. If the writeback
block is not found in the L2 cache, the L1 cache will write its writeback block to the
filter buffer to avoid eviction of useful cache blocks stored by the L2 cache (filtered

writeback).

Note: Eviction of useful cache block happens when fetching block is replaced by the writeback block.
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4.3.3 The L2 cache

The L2 cache uses the same design as the conventional L2 cache except its fetching

and writeback method.

Fetch: The L2 cache first tries to fetch from the filter buffer. If the fetch block is

not found in the filter buffer, the L2 cache will fetch from the main memory.

Writeback: In order to avoid unexpected élosing of frequently accessed memorjf
rows/pages, the L2 cache will always writeback to the filter buffer (filtered

writeback).

4.3.4 The filter buffer
The filter buffer is a new component introduced by the cache filtering scheme. Itisa
small and high speed SRAM device which is similar to conventional victim caches
but implements the write through policy. As an important component of the cache
filtering algorithm, the filter buffer’s pufpése is to assist the cache filtering algorithm
through the following ways:

® Provide an alternative path to supply data to the L1 and L2 caches;

® Provide a temporary storage space for filtered data;

Note: The simple write through policy was chosen due to its simplicity and its capability of maintaining
most up-to-date values in both the filter buffer and the main memory. However, the write through
policy can generaie extra Memory aCCesses.
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The filter data bus

The filter data bus is a bi-directional connection between the filter buffer and the
caches (the instruction L1 cache, data L.1 cache and the unified L2 cache). This bus
is added to handle cache block transmissions between the caches and the filter buffer

when cache fetching and filtered writebacks happen (to be discussed later).

The word bus

The second bus connection between' the filter buffer and the cache hierarchy is the
word bus. The word bus allows the processor’s instruction register and data register
file to share the filter buffer. When filtered access (to be discussed later) happens,
the word bus is used to transfer the processor requested instruction/data word between

the filter buffer and the instruction/data registers.

The front side bus

In our custom version of the Simplescalar simulator, the front side bus is being
modeled as the data bus which allows the L2 cache, the filter buffer to share the main
memory. It is important to note that this single bus is being routed to/shared by
multiple components of the cache filtering scheme through the use of multiplexers

and deultiplexers.

Filter buffer accesses
According to the cache filtering algorithm, there are several situations where the filter
buffer will be accessed. These situations include filtered read/write when row miss,

cache fetch from the filter buffer when L1 and L2 cache miss, filtered writebacks.
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Filtered access to/from main memory:
When the processor requests for data that is not found in all cache levels, the filter
buffer and all opened memory rows/pages, the cache filtering algorithm will perform

a filtered read/write where the actions described by Figure 4.2 will happen:

Processor read/write request
Address decode

Cache, filter buffer and memory row miss

Select the least recently used (LRU) filter buffer entry and wait until it is ready-to-use

Transfer the processor requested data (as a L2 cache block) from main memory to
the buffer entry, set the entry as most recently used (MRU)

Transmit the processor requested word through the word bus (Read) OR receive the
processor written word through the word bus (Write)

(For write only) Write the processor written word to the LRU buffer entry
and write the content of the buffer entry to main memory (satisfy DDR3’s
requirement of 8 data columns per transmission)

Figure 4.2: Filtered read/write work flow

Note: When handling filtered write, the buffer must first load the L2 cache block from main memory
before writing the block back.  This is because the processor has only one 32bits word to be written to
the main memory, but the DDR3 standard requires at least 8 data columns (sixteen 32bits words) per

transmission. Therefore, filtered write requires 2 memory accesses to happen.
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Cache fetch from the filter buffer:

When the following conditions are satisfied, a cache fetch from the filter buffer with
the steps described by Figure 4.3 will happen:

® processor requested data is not found in the cache hierarchy AND

® processor requested data is found in the filter buffer AND

® the L1 cache does not need to writeback OR L1 cache’s writeback block is found

in the L2 cache.

Processor access request

!

Address decode

!

L1 Cache miss, no writeback to the filter buffer is required

|

Data found in a filter buffer entry

Wait until the filter buffer entry is ready-to-be-read, L1 cache completes the
writeback (if needed) and filter data bus is idle

Transmit the cache block from the buffer to the cache
hierarchy via the fitter data bus and set the entry as MRU

Figure 4.3: Cache fetching from the filter buffer work flow

Filtered writeback followed by cache fetch:

Filtered writeback followed by cache fetch (Figure 4.4) happens when the following
conditions are met:

® The fetched block is found in the filter buffer (for cache fetching) AND

® The L1 writeback block is not found in the L2 cache AND/OR

® The L2 requires a writeback to service the cache fetching.
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Processor access request

Address decode

.1 Cache miss, L1 writeback block is not found
in L2 cache and/or L2 writeback required

Processor requested data is found in filter buffer

)

Filtered writeback block/s found in filter buffer?
|

Yes l No
The content of the entry has been Mark the buffer entry with the
written to mT“ memory? processor requested data as MRU
Yes & l No l
Wait for the entry to finish Wait for the filter data  geject the LRUbuffer entry
writing and filter data bus bus to be idle and write l )
to become idle the fitered writeback \yait until the fifter data bus
_ bIOdf fo that énw to becomes idle and write
Wiite the the filtered (write merging) the filtered writeback block
writeback block to that entry
to the entry

Transmit the processor requested data to the cache hierarchy via fil‘ter.data bus
Write the filtered writeback block/s to main memory

Figure 4.4: Filtered writeback followed by cache fetching work flow



Filtered writeback without cache fetching:

Filtered writeback without cache fetching (Figure 4.5) happens when the following

conditions are met:

® The fetching blocl; is found in the L2 cache OR an opened memory row/page
(the fetching block is not found in the L2 cache);

® The L1 writeback block is not found in the L2 cache AND/OR

@ The L2 requires a writeback to service the cache fetching.

Processor access request

Address decode

Cache miss, L1 writeback block is not found in
L2 cache and/or L2 writeback required

Processor requested data is found in the L2 cache or an opened memory row/page

Filtered writeback block/s found in filter buffer?

Yes l No
The content of the entry has been Select the LRU buffer entry
written to the main memory?
Yes l No Wait until the filter data bus
Wait for the entry to finish Wait for the filter data to become idle and write
writing and filter data bus bus to be idle and write  the filtered writeback block
to become idle the filtered writeback to the entry
block to that entry
Write the filtered writeback (write merging)

block to that entry ]

Writeback the content of the entry/s that hoI}s the filtered writeback block/s to main
memory after the cache fetch (from the L2 cache or any opened memory row/page) and
set the entry as MRU

Figure 4.5: Filtered writeback without cache fetching work flow
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4.3.5 The algorithm

The cache filtering algorithm for least frequenﬁy used data was designed such that it
is active when cache miss happens and to filter the cache hierarchy based on: the
status of the cache hierarchy, the content of the filter buffer and the opened memory
row/page. In this subsection, we will first revisit all possible cache miss situations

and discuss how the cache filtering algorithm handles each of them.

Conventional cache miss situations
In the conventional two levels cache hierarchy, when L1 cache miss happens, the L1
cache can select either an empty, clean or dirty block to replace. If an empty or clean

block is selected, one of the situations described by Figure 4.6 will happen:

Lt cache —¥L1 cache selects_rLz cache fetch hit
fetch miss a clean/empty =» L2 cache fetch miss
block to replace clean/empty replacement

block
dirty replacement block,

L2 writeback needed

Figure 4.6: Possible outcomes for L1 fetch miss with L1 clean/empty replacement

block

If a dirty block is selected by the L1 cache for replacement, one.of the situations

described by Figure 4.7 will happen instead:
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Lt cache —> 1.1 cache —T1¥ L2 cache writeback hit and fetch hit

fetch miss selects a dirty .2 cache writeback miss, fetch hit

—» 1 2 clean/empty replacement

block for L1 writeback
L2 cache dirty replacement block

for L1 writeback, L2 writeback
needed '
> L2 cache writeback hit, fetch miss

L2 clean/empty replacement
block for L1 fetch

L2 dirty replacement block

for L1 fetch, L2 writeback
needed

block to replace

-» 12 cache writeback miss, fetch miss
—» L2 clean/empty

replacement blocks for

both L1 fetch and writeback

-» L2 clean/empty replacement
block for L1 writeback, dirty
replacement block for L1 fetch, 1
|2 writeback needed

> L2 clean/empty replacement
block for L1 fetch, dirty
replacement block for L1

_ writeback, 1 L2 writeback needed

—» 12 dirty replacement blocks for
both L1 fetch and writeback, 2
1.2 writebacks needed

Figure 4.7: Possible outcomes for L1 fetch miss with L1 dirty replacement block

Note; Situations involving L1 and L2 writebacks can lead to eviction of useful L2 cache blocks and/or
unexpected closing of frequently used memory rows/pages. Therefore, filtered writebacks are added

as part of the cache filtering algorithm to avoid those unnecessary cache/row misses.
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Cache filtering algorithm’s cache miss handling

With all possible cache miss situations properly defined, we can now demonstrate
how the cache filtering algorithm handles each of the situations. If the cache
filtering algorithm is implemented on a 1 level cache hierarchy or the algorithm is
handling L2 cache misses of a 2 level cache hierarchy, the algorithm described by

Figure 4.8 (decision tree) and Figure 4.9 (psuedo code) will be used:

One level cache filtering OR
Lowest level cache fitering for 2 level cache hierarchy

Cache miss —-»Clean replace block Cache fetch ———m—————= Fetch requested block fom memory with fast page
1 {no writeback required, | rowOR mode OR from filter buffer
cache fetch only) buffer hit

Cache fetch row ~———— Filtered readiwrite, keep the fitered
and buffer miss read/write block in the filter buffer and
keep requested memory row open

o Dirty replace block ———r-»Both writeback and fetch ——»-Wiiteback and fetch with memory via fast
{writeback needed) generate memory row OR page mode OR fifter buffer
buffer hit

Ly Writeback row OR buffer hit, — Filtered read/write, keep the filterad
fetch row AND buffer miss read/write block in the filter buffer and
keep requested memory row open

Ly Writeback row AND buffer —Wiiteback to fiter buffer first, fetch requested block from

miss, fetch row OR bufferhit  memory via fast page mode OR from fiter buffer, write
the writeback block from filter buffer to main memory
after the fetchand keep the writeback row open

Ls Buth writeback and fetch —— Filtered read/write, keep the fitered read/write block in
generate memory row AND the filter buffer and keep requested memory row open
buffer miss

Figure 4.8: One level cache filtering and lowest level cache filtering decision tree for

two level cache hierarchies



LowerMissHandle{addr)
if clean replace block
then if (FitterBufferHit(addr) OR MemRowHit{addr))
then fetchfiltter_buffer, addr) OR fetch{memory, addr)
retumn TRUE
else filter{addr)
return FALSE
else if ({FilterBufferHit(writeback_addr) OR MemRowHit{writeback_addr)) AND
{FilterBufferHit(addr) OR MemRowHit{addn)))
then writeback({filter_buffer, writeback_addr)
fetch(filter_buffer, addr) OR fetch{memory, addr)
return TRUE
else if {(FilterBufferHit {writeback_addr) OR MemRowHit {writeback_addr)) AND
(FitterBufferHit{addr) AND IMemRowHit{add1)}}
then filter(addr)
return FALSE
else if ((FitterBufferHit(writeback_addr) AND IMemRowHit(writeback_addr)} AND
(FilterBufHit(addr} OR MemRowHit{addn)))
then writeback({filter_buffer, writeback_addr) *
fetch(fiter_buffer, addr) OR fetch{memary, addr}
return TRUE
else filter(addr}
retum FALSE

Figure 4.9: One level cache filtering and lowest level cache filtering psuedo code for

two level cache hierarchies
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If the cache filtering algorithm is implemented on a two level cache hierarchy and the
algorithm is handling L1 cache misses, the following decision tree (Figure 4.10) and

psuedo code (Figure 4.11) will be used:

2 level cache filtering

At 12 cacha;
L1 miss -+ Clean replace block {no —» Fetch hit —————————Cache fetch from L2 cache
writehack required,
cache fetch only}
Fetch miss * Follow the algornithm from the previous
page, if the access is not filtered, update
12 and L1 caches’ contents accordingly
-»Dirty replace block —*Both writeback and fetch — Writeback to L2 cache then fetch from 12 cache
{writeback needed) generate L2 cache hit
-+ Writehack L2 cache hit byt —% Follow the algarithm from the previous page.
fetch 12 cache miss algerithm decides te fiter, no writeback is needed,
otherwise, writeback to L2 cache and fetch fiom
» memary via fast page mode or from filter bufier

L»Writeback L2 cache miss ~—» Writehack 1o filter buffer, fetch from L2 cache, then
but fetch L2 cache hit wrile the writeback black from filter buffer to main
memory

~# Both writeback and fetch —— Follow the algorithm from the previous page, if the

generate |2 cache miss access is filtered, no wiiteback is needed, otherwise,
wiitehack to fiter buffer, fetch from the filter buffer OR
fram main memory via fast page mode, then write the
writeback block from filter buffer to main memory

Figure 4.10: L1 cache filtering decision tree for two level cache hierarchies



UpperMissHandle(addr)
if clean replace block
then if L2_hit(addr)
then fetch(L2, addr)
return TRUE
else if LowerMissHandle(addr)
then fetch(L2, addr)
else filter(addr)
return FALSE
else if (L2_hit(addr) AND L2_hit{writeback_addr))
then writeback(L2, writeback_addr) -
fetch{L2, addr)
else if (L2_hit(writeback_addr) AND IL2_hit(addr))
then if LowerMissHandle(addr)
then writeback(L2, writeback_addr)
fetch(L2, addr) '
else if (IL2_hit(writeback_addr) AND L2_hit(addr))
then writeback(filter_buffer, writeback_addr)
fetch(12, addr)
else if LowerMissHandle (addr)
then writeback(filter_buffer, writeback_addr)
fetch(12, addr)
else filter(addr)

Figure 4.11: L1 cache filtering psuedo code decision tree for two level cache
hierarchies
This concludes the description of oxlxr cache‘ filtering a]gﬁrithm for least frequently
used data. In the next chapter, we will provide the simulation and result analyze for

our cache filtering scheme.
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Chapter 5
Simulation and analysis of the cache filtering

algorithm

This chapter is divided into the following parts in order to analyze the performance of
our cache filtering algorithm:

® The desktop/notebook computer environment and simulation settings;

®  Simulation results and discussion (desktop/notebook environment);

5.1 The desktop/notebook computer environment and

simulation settings

To explore the potential of our cache filtering algorithm, we will use our custom
version of sim-outorder simulator, with our accurate DDR3 memory model and cache
filtering algorithm, to simulate and compare a baseline desktop/notebbok computer
system (with cache filtering algorithm disabled) with a cache filtered
desktop/notebook computer. We have also simulated the baseline and cache filtered
system with four different L2 cache sizes (256KB, 512KB, 1MB and 2MB) to analyze

our cache filtering algorithm’s sensitivity to different L2 cache size.

In our simulations, we will use the ammp, equake, gcc, gzip, mcf, parser and vortex

benchmarks from the SPEC CPU 2000 benchmark suite [19,20].

Note: Other than the processor speed, cache and memory settings, all simulator settings will be left as

default.
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The following is a table of simulation settings:

Table 5.1: Simulation settings for the desktop/notebook environment

Processor speed

3.2Ghz

L1 Instruction cache

32KB, 4 way set associative, 64B block size, access

latency = 1 processor clock (clk)

L1 data cache

32KB, 4 way set associative, 64B block size, access

latency = 1 processor clk

L2 cache Size varies (256KB, 512KB, 1MB and 2MB), 8 way set
associative, 64B block size, access latency = 10
processor clks

Memory bus 64bit (8B) wide, 800Mhz speed (DDR3 1600)

DRAM 8 banks, 4KB row buffer, page interleaving

DRAM timing (in memory

clocks)

Tcas =7, Tred = 7, Trp = 7, Tras = 21, Tburst = 8, Twr

=5 Trtrs=1,Temd=1, Tewd =7, Tccd=4

Filter buffer size (filter buffer

only present in cache filtered

64 entries x 64B (entry size, same as the L2 cache

block size) = 4KB

system)
Filter buffer search latency 1 cpu clk
Filter buffer transfer latency 2 cpu clks

Filter data bus latency

1 cpu clk (Ceiling(0.24ns / 3.2Ghz))

Word bus latency

1 cpu clk (Ceiling(0.24ns / 3.2Ghz))
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5.2 Simulation results and discussion (desktop/notebook

environment)

We will break this sub-section into the followings:

® Cache filtering performance and performance gain;
® Filter count;

® Extra memory accesses;

® Memory row hit rate;

® Ratio of filtered write versus total memory accesses;

® Cache hitrate (L1 and L2).

Cache filtering performance and performance gain

Figure 5.1 shows the cache filtered system’s performance gain (in percentage)
comparing to the baseline system. Figure 5.2 — 5.5 shows the performance (in
instruction per cycle) of the basline and cache filtered systems with different L2 cache
sizes.

Performance gain of the cache filtered systems

O filtered, 256KB

Performance gain (%, bigger is better) [ O filtered. 512KB
| %

| @ filtered, IMB

2000% [T - s | ®filtered, 2MB
15.00%

(0.00%

N Dl D:L
i [T e

-5.00%
-10.00%

ammp equake " gee i gz.ip mcf parser
O filtered, 256KB| 15.99% | 4.11% | 2.14% | -0.12% 8.57%7 9.22%
O fitered, SI2KB| 15.89% | 4.00% | L14% | -0.78% | 11.99% | 7.29%
B filtered, IMB | 15.19% | 3.59% 1 090% | -0.61% | 1162% | 492%
mfiltered, 2MB | 12.55% | 2.14%

 voriex ( average ]
0.69% | 5.80%
045% | 5.71%
035% | 5.14%
0.40% | -0.63% | -476% | 2.62% | 030% | 180% |

Benchmark

Figure 5.1: Performance gain of the cache filtered systems
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Performance of the systems with 256KB L2 cache

Performance of 256K B 1.2 cache (Instruction per cycle (IPC), bigger is better) |H original
B filtered
2
15t
g 1t
0 H (B
ammp equake gce gzip mef parser vortex
O original 04797 0.9759 1.1402 1.7143 0.3093 1.0889 1.3628
B filtered 0.5564 1.016 1.1646 1.7122 0.3358 1.1893 1372
Benchmark
Figure 5.2: Performance of the systems with 256KB L2 cache
Performance of the systems with 512KB L2 cache
Performance of 512KB L2 cache (Instruction per cycle(IPC), bigger is better) O original
B filtered
2
15
& 1y
. H
ammp equake gce . gzip mcf parser vortex
Ooriginal | 0.4895 0.9906 1.2445 1.7525 0.3637 1.1908 14516
M filtered | 0.5673 1.0302 1.2587 1.7388 0.4073 1.2776 1.4581
Benchmark

Figure 5.3: Performance of the systems with 512KB L2 cache
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Performance of the systems with IMB L2 cache

Performance of IMB L2 cache (Instruction per cycle (IPC), bigger is better) | & IMB original
W {MB filtered
2
15
& 1
IR [
0
ammp equake gee gzip mef parser vortex
O IMBoriginal | 0.5094 | 1.0135 | 1.2845 | 1.7493 | 0.5412 1.3 1.4989
M 1MB filtered | 0.5868 1.0499 1.296 1.7386 | 0.6041 1.364 1.5041
Benchmark
Figure 5.4: Performance of the systems with IMB L2 cache
Performance of the systems with 2MB L2 cache
Performance of 2MB L2 cache (Instruction per cycle (IPC), bigger is better) :oﬁgmal
filtered
2
15 f
g 1
“I[H 1l
0
ammp equake gcc g7ip mcf parser vortex
Ooriginal | 0.5691 1.0798 1.3252 1.7496 0.7525 1.3985 1.5168
M filtered | 0.6405 1.1029 1.3305 1.7385 0.7167 1.4351 1.5213

Benchmark

Figure 5.5: Performance of the systems with 2MB L2 cache
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From the performance and performance gain figures, the following observations were

made:

Our cache filtering algorithm is able to produce an average of 5.80%, 5.71%,
5.14% and 1.80% of performance advantage over the baseline systems equiped
with 256KB, 512KB, 1MB and 2MB L2 caches respectively.

The algorithm provides big performance gain for ammp, mcf (excluding 2MB L2
cache) and parser.

The performance gain tends to drop as the L2 cache size increases.

The performance of the cache filtered system with 256KB L2 cache running the
ammp benchmark is better than the baseline system with 512KB and 1MB of L2
cache.

The performance of the cache filtered system with 256KB L2 cache running the
equake and parser benchmark is better than the baseline system with 512KB L2

cache.

In the meantime, there is not enough information to explain the negative performance

gains of gzip and mcf with 2MB L2 cache and the big performance gain for ammp,

mcf and parser. We will try to explain the performance drop in the upcoming plots.

Filter access count

After the performance gain of the cache filtering algorithm, we will start analyzing the

performance by studying the behavior of the cache filter through the total cache

filtering count. The following plot shows the total amount of cache filtering

happened throughout the runtime of the benchmarks.
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' O filtered, 256K B

Filter access count | O filtered, 512KB
B filtered, IMB
B filtered, 2
= 400000000 | B filtered, 2MB
=
2300000000
G
B 200000000
Tt
(5}
—g 100000000 M
2 ot . : S, = ’ B N e S o S —
ammp 1 equake | gce | gzip mcf | parser vortex
- | sl I :

iEl filtered. 256KB | 343956201 | 185026145 | 4761215 | 16320461 |303682369 | 20342650 | 14215026
il:lﬁllered, 512KB | 332888632 | 173529277 | 2310806 l 10161125 235534224‘ 13848131 | 7040552
|| filtered, IMB | 313594248 | 151452880 | 1615619 | 10075941 1123113878; 8152967 | 3422382

W filtered, 2MB | 267379554 110010058‘ 88294;1 [ 10051787 1 73661689 | 3945416 | 1922747

Benchmark

Figure 5.6: Total amount of cache filtering throughout benchmark execution

From the filter count plot, the following observation is made:

® The amount of cache filtering decreases as the L2 cache size increases.

To explain this observation, one must consider the fact that our cache filtering
algorithm was designed as cache miss handling procedures - the filter only activates
whenever cache miss happens. As the L2 cache size increases, the overall hit rate of
the cache hierarchy will also increase, effectively reducing the total amount of cache
filtering and rendering the cache filter less effective in systems equiped with bigger
L2 cache configurations. This outcome can also be used to explain the third
observation made from the performance gain plot where the performance gain tends

to drop as the L2 cache size increases.
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Extra memory accesses

The following plot shows the extra memory accesses, comparing to the baseline

system, generated by the cache filtered system (particularly the write through filter

buffer and the filtered write accesses).

to compare results from different simulations (simulations with different L2 cache

sizes).

4000%
30.00%
20.00%

-10.00%
20.00%
30.00% |

Note that percentage is used to make it easier

Extra memory access (%, less is better)

e il II .‘
0.00% M &l

| Ofiltered, 256KB|

O filtered, S12KB

filtered, IMB
B filtered, 2MB

ammp
!

O filtered, 256KB | 4.76%

Ofiliered, 512KB | 4.78% |

Ofiltered, IMB | 3.22%
Bfiltered, 2MB | 0.27%

From the extra memory access plot, the following observations were made:
® ammp, equake and mcf (excluding 2MB L2 cachc) are having a very small extra

access (for mef with IMB L2 cache, a negative extra memory access is

recorded);

®  ozip has a big amount of extra memory accesses and the mcf with 2MB L2 cache

simulation has a relatively bigger amount of extra memory access than other mcf

simulations.

Considering the characteristics of the write through policy [1], one can conclude that

z
:

%

gcc
2.74%
6.44%
837%
15.78%

\ gzip
25.76%
32.68%
29.44%

| 29.76%

Benchmark
Figure 5.7: Extra memory accesses of the cache filtered systems

mcf
: 543%
i 1.24%

‘ '17:,92%,’

15.97%

parser
14.60%
17.65%

1969% |
| 2003% |

vortex

| L6T%

4.09%
11.69%

1939% |

average

801%
968%
781%
14.39%

the extra memory accesses were introduced by the filter buffer as memory writes.
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Memory row hit rate

Figure 5.8 shows the baseline’s and the cache filtered system’s memory row hit rate.

O
Memory row hit rate (%, bigger is better) ™ ‘}jfj‘,;f’l 2255;2?
3 original S12KB
M filered 512KB
70.00% O original IMB
M fijered IMB
60.00% O original 2MB
W filtered 2MB
50.00%
40.00%
30.00%
20.00%
10.00%
0.00% - - r
ammp equake gce gzip mef parser vortex
DOoriginal 256KB| 29.29% | 54.58% | 4932% | 1480% | 32.18% | 24.29% | 43.74%
M filtered 256KB | 38.99% | 55.18% | 52.46% | 33.20% | 38.24% | 3467% | 4557%
DOoriginal 512KB| 28.87% | 5590% | 49.93% | 2033% | 27.04% | 20.75% | 36.35%
Mfiltered SI2KB | 38.69% | 56.26% | 5299% | 40.25% | 32.82% | 3341% | 39.62%
DOloriginal IMB | 29.53% | 5807% | 41.56% | 2048% | 1540% | 18.08% | 23.74%
M filtered 1IMB 3834% | 58.10% | 46.08% | 38.87% | 18.22% | 32.23% | 30.98%
Cloriginal 2MB | 3137% | 65.25% | 28.57% | 20.60% | 9.97% 14.56% | 15.28%
W filtered 2MB 36.59% | 65.28% | 3828% | 39.09% | 10.74% | 2942% | 28.24%
Benchmark

From the memory row hit plot, we have several important findings:

Figure 5.8: The memory row hit rate of the cache filtered systems

No drop in memory row hit rate was found.

The cache filtered system’s row hit rate for ammp, gzip and parser are much

higher than the baseline system.

gee, mcf

excluding 2MB L2

cache

and

noticeable-but-not-too-big gain in memory row hit rate,
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® mcf with 2MB L2 cache has a much smaller row hit rate increase than other mef

simulations (0.77% vs. >2%)

These findings suggest that our cache filtering algorithm is able to efficiently utilize

the feature of the page interleaving scheme to yield better overall system performance.

Cache hit rate (data L1 and L2)

Data L1 cache hit rate

O original 256K B
Data L1 cache hit rate (%, bigger is better) B filtered 256K B
D original 512K B
B filtered 512KB
O original IMB
¥ filered IMB
102.00% [ original 2MB
| B filierod 2MB
100.00% "“‘ T
98.00%
96.00%
94.00%
92.00%
90.00%
88.00%
86.00%
84.00% r r - r
ammp equake gee £Zip mef parser ( vortex
Ooriginal 256KB| 94.52% 98.03% 98.58% | 97.69% 91.57% 98.96% 99.50%
B filtered 256KB | 93.72% 97.56% 98.47% 97.63% 90.02% 98.72% 99.43%
Ooriginal 512KB| 94.52% 98.03% 98.58% 97.69% 91.57% 98.96% 99.50%
M filtered S12KB | 93.77% 97.59% 98.51% 97.65% 90.34% 98.79% 99.46%
O original IMB 94.52% 98.03% 98.58% 97.69% 91.57% 98.96% 99.50%
B filtered 1MB 93.84% 97.65% 98.53% 97.65% 90.95% 98.86% 99.47%
Donginal 2MB 94.52% 98.03% 98.58% 97.69% 91.56% 98.96% 99.50%
M filtered 2MB 93.98% 97.76% 98.55% 97.66% 91.00% 98.91% 99.48%
Benchmark

Figure 5.9: Data L1 cache hit rate
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From Figure 5.9, we noticed small drop in data L1 cache rate from the benchmarks.
This is because the data L1 cache is very frequently accessed. In the baseline system,

when L1 cache miss happens, the L1 cache will fetch the processor requested data.

The cache filtered system, on the other hand, is likely that cache miss will occur more
than or equal to two times before the corresponding cache block is moved to the cache.
This is because the cache filtering algorithm will filter out all first-time cache misses
and place the cache block into the filter buffer. Therefore the average amount of
cache miss/es before the data is found in the cache is greater than or equal to 2.
However, this drop in L1 hit rate is only negligible since the cache filtering algorithm
is able to compensate such problem by eliminating cache pollution caused by rarely

used data blocks.

Note: Due to the fact that there are no difference between the baseline’s and cache filtered system’s

instruction L1 cache hit rate, we will omit the instruction L1 cache hit rate comparison.

78



L2 cache hit rate

0 original 256KB

Unified L2 cache hit rate (%, bigger is better) W filtcred 256KB

O original 512KB

 filicred S12KB

DO original IMB

;ﬁ]tcmdlMB

iginal 2MB

120.00% B i MB
100.00%
80.00%
60.00%
40.00%
20.00%

0.00% |

ammp equake gce gzip mcf parser vortex

Ooriginal 256KB| 48.44% | 41.89% | 93.05% | 97.09% 41.66% | 70.25% | 91.87%

B filtered 256KB | 5293% | 41.48% | 93.26% | 97.11% 4155% | 7064% | 92.15%

Ooriginal 5S12KB| 50.42% | 43.84% 96.61% | 97.98% 57.85% | 80.96% | 96.45%

B filtered S12KB | 55.44% | 43.44% 96.67% | 98.00% 63.03% | 81.16% 96.55%

O original IMB 5297% | 4822% | 98.01% | 97.99% 80.60% | 89.29% 08.60%

B filtered 1IMB 59.28% | 47.86% 98.05% | 98.01% 88.71% | 89.35% | 98.64%

O original 2MB 60.15% | 54.59% 99.15% | 98.00% | 91.71% | 95.16% | 99.30%

B filtered 2MB 68.77% | 54.28% | 99.16% | 98.01% 92.89% | 95.18% | 99.31%

Benchmark

Figure 5.10: L2 cache hit rate

From the L2 cache hit rate plot, we have the following findings:

ammp’s L2 cache hit rate improvements have compensated the data L1 cache’s

degraded hit rate and helped maintaining a small extra memory access rate.

And becuase accessing the L2 cache is more than 10 times faster than accessing

the main memory, the improved L2 cache hit rate is also very benifitial to the

overall performance.
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® mcfwith 512KB and 1MB L2 cache have bigger L2 cache hit rate (comparing to
mcf with 256KB and 2MB L2) improvements, which yielded a very small and a
negative extra memory access rate respectively.

® mcf with 256KB and 2MB L2 cache are having slightly degraded and very small
L2 cache hit rate improvement respectively. These are the main causes of the

relatively bigger (comparing to mcf with 512KB and 1MB) extra access rate.

The special case: gzip and mcf

According to the simulation results, we noticed two seemingly abnormal outcomes
where the system with 1 and 2MB of L2 cache are slower than the same system with
512KB L2 cache and the cache filtered system with 2MB of L2 cache being slower
than the baseline system and both the baseline. In this subsection, we will try to

investigate and explain the cause of such outcome.

gzip:

To explain the gzip’s situation, we must first point out that it is not unusual that a
bigger cache is causing a slowdown, if and only if the simulated benchmark has
reached the point of diminishing return at a certain cache size where other
performance limiting factors such as memory bus activities start slowing down the

system. To prove our point, we have included figure 5.11, extracted from [23]:
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IPC

L1 instruction-cache size

L1 data-cache size

Figure 5.11: Xlisp simulation with varied I and D L1 cache size, extracted from [23]
Figure 5.11 is a simulation plot extrac.tedl from [23], which tries to vary both the size
of instruction and data L1 cache size, in order to find the relationship between
performance and the L1 cache sizes. According to figure 5.11, when the instruction
L1 cache is set to be 64KB m size, the system reaches its peak performance when the
da;a L1 cache reaches 512KB of size. If one pay attention to the circled area in the
plot, he/she will noticed that the performance of the system with 512KB of L1 data

cache is higher than the same system with 2MB of L1 data cache.

We have also completed a set of gzip simulations with the original SimpleScalar

simulator to look at the relationship between gzip’s performance and L2 cache size:
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gzip performance on original SimpleScalar Simulator (IPC, bigger is better)
W gzp

1.855

1.85

1.845

1.84 |

1.835 |

183

1.825

1.82

256KB S12KB IMB ~ IMB
[mgzip 1.8331 1.8513 1.8514 1.8515

cache configuration

‘Figure 5.12: gzip simulations with varied L2 cache size on original SimpleScalar

simulator

Aé suggested by figure 5.12, under the original SimpleScalar simu}ator running gzip,
the effect of doubling the size of L2 cache after it reaches 512KB of size is minim'al;
This observation is supported by the following figure, which shows the total amount

of memory accesses of each cache configuration:
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g7ip total memory access (kss is better)

!l total memory access

45000000
40000000 |
35000000 |
130000000 |
25000000 |
120000000 |
, 15000000 |

10000000 |

5000000 L

0
256KB

512KB

IMB

2MB

L] total memory access 38262295

25392332

25238770

25211262

cache configuration

Figure 5.13: Total amount of gzip memory accesses

Therefore, we can conclude that gzip is reaching its peak performance when the L2

cache size reaches 512KB. And once the system reaches the point of diminishing

return, factors such as the memory row refresh time and memory bus activity will start

affecting the performance of the system, lowering the performance.

'Ihroughdut our study, we noticed that gzip generates a relatively large amount of

overlapped memory accesses (as shown m “figure 5.14), which happens when the

cache is requestmg data whlle the memory bus is busy servxcmg the previous memory

access. This wxll cause the cache and processor to wait longer than regular memory

accesses which happens when the memory data bus is idle.
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gzip ratio of ovedapped memory access vs. total memory access (%, smaller is better)
| B overlapped memory acocss%l

50.00%

40.00% |
30.00% |

20.00% |

10.00%

0.00% ‘
: 256KB <512KB IMB 2MB
B overlapped memory 28.39% 39.02% 39.21% 39.25%
access%
cache configuration

Figure 5.14: gzip ratio of overlapped memory access versus total memory accesses

Performance of mcf simulations

Figure 5.15 shows the performance of all mef simulations in IPC:

mef performance (Instruction per cycle (IPC), bigger is better) O original
M filiered
0.8
06
04
02
- mcf 256KB mcf S12KB - mef IMB mcf 2MB
O original 0.3093 0.3637 0.5412 0.7525
B filtered 0.3358 0.4073 0.6041 0.7167
Cache configuration

Figure 5.15: mcf performance in IPC

84




From the performance plot, the following observations were made:
® Both the original and cache filtered systems are having performance gain as the
L2 cache size increases. However, the cache filtered system with 2MB L2

cache is showing negative performance gain comparing to the baseline.

mcf total memory access count
Next, we will shift our focus towards the total amount of memory accesses and extra

memory accesses happened throughout the execution of mef (Figure 5.16 and 5.17).

meftotal memory access (smaller s better) 8 original
H filtered
700000000
600000000 +
500000000
400000000
300000000
200000000
100000000 -
’ mef256KB mcfS12KB mcf IMB mcf2MB
Ooriginal| ~ 623952391 473531051 215310120 79574972
M filtered 657802219 479398962 176737050 92286123
Cache configuration

Figure 5.16: mcf total memory accesses
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mcf extra memory access (%, smaller is better)
i B mcf
20.00%
15.00%
10.00%
5.00%
0.00%
-5.00%
-10.00%
-15.00%
-20.00%

filtered, 256KB filtered, S12KB . filtered, IMB filtered, 2MB
L! mef 543% 1.24% -17.92% 15.97%
Cache configuration

Figure 5.17: mcf extra memory access rate

According to figure 5.16 and 5.17, we can notice that:

® The total amount of memory accesses decreases as thé I".2 cache size increases.
This is caused by the fact that the ‘niemory usage pattern of mcf is being
classified by [23] to be having a very high degree of temporal locality.

® The cache filtered system is able to maintain a veryh'small to negative extra
memory access rate. - However, as ﬁe L2 cache reaches 2MB, the benefit of
doubling the L2 caéhe size shown by the baseline system has dgfeated the benefit

offered by our cache filtering mechanism.

mcf memory row hit rate and filtered read versus total memory access ratio
Finally, due to the fact that our cache filter activates only when memory row misses
(random accesses) happene, we will now show the memory row hit rate of the

baseline and cache filtered systems in Figure 5.18:
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0.00%

mcf 256KB mcf 512KB

O original 32.18% 27.04%
W filtered 38.24% 32.82%

mcf 2MB

9.97%
10.74%

Cache configuration

Figure 5.18: mcf memory row hit rate
As shownAin figure 5.18 for both the baseline and th;e cache filtered systems, when the
L2 cache $ize increases, theém‘emory row hit rate drops. This is caused by the join
effect of mcf’s memory access pattern and the memory access interceptirig caI;ability
of the bigger L2 cache. According tor[23], mcf’s merﬁory access pattern is;ﬁot oniy
representing a'ilexy hiéh &temporai locality, but also a relatively low spaﬁal locality

where its requested data are located far from each other in the memory.

Theref'or‘e as» the L2 cache is ‘intercepting i;ncreasing arﬁount of tem poial ‘acceﬁses, the
remaining address requests that are reaching the main memory will be located much
further apart. If the size of the L2 cache maintains at a stead).r growﬂl,”évcntually,
memory address requests will always exceed the address range of the row latches,
causing lowered row hit rate. This memory access pattern will also yield extra
filtered read/write in our cache filtering scheme as the filter buffer with only 64

entries will also be unable to satisfy such largely diversified address requests.
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With these findings, we can finalize our performance analyze with the followings:

The performance gain of ammp is a result of the improved L2 cache and memory
row hit rate, relatively small amount of extra memory accesses and the low filter
buffer access latency.

equake’s performance gain is mainly contributed by the low filter buffer access
latency, which is able to minimize the cache miss penalty.

g;éc’s slight performance improvement is mainly caused by the improved
:;x‘emory row hit rate, which is capable §f cbmpensate thé extra memory accesses.
When running gzip, the cache filtered system will generate large amount of
memory writes. However, the big gain in memory row hit rate had provided
relieve to the situation, allowing the overall performance to be degraded slightly.
mef with 256KB to 1MB L2 cache’s performance gain are mainly contributed by
the small to negative amount of extra memory accesses and significantly bcf’tcr
rﬁemory row and L2 cache hit rates. |

mcef with ZMB L2 cache’s performance drop, relative to the other mc.’f
szmulatxons, is the end result of relattvely small memory row hit 1mprovement
and the memory access pattern generated by the large L2 cache, whxch, is not
favoring the cache filtered system.

parser’s performance gain is caused by the significantly better memory row hit
rate. ’l o

vortex’s small performance improvement is the result of the better memory fow

hit rate,



To conclude, we have designed a cache filtering algorithm which is capable of:
© Distinguishing frequently used cache blocks from rarely used blocks;
®  Filtering rarely used data out of the cache hierarchy; ' ¥

@ Improving the overall performance of the computer systems.

We suggest improving the filter buffer by changing the write through policy to the
writeback policy, which will reduce ‘ghe total amount of memory accesses, memory
bandwidth usage and power consumption (more memory access implies more row
precharging and DRAM activity, which in return, will consume more power). This
modification should produce greater performance gain to the cache filtered system
and allow the cache filtering algorithm to be implemented on value notebook

computers where power consumption is a major concern.

Note: To verify our simulation results, we have included a sample verification for the cache filtered

desktop system with 2MB L2 cache gzip simulation result in the appendix on page 110
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Chapter 6

Overview and Comparison of Related Works

In this chapter, we will provide an overview of the following works and compare

them with our work (hereafter referred as CF-LFU):

® Cache Filtering Techniques to Reduce the -Negative Impact of Useless
Speculative Memory References on Processor Performance (Spec) [5];

® Line Distillation: Increasing Cache Capacity by Filtering Unused Words in
Cache Lines (Line distillation)[25];

® Reducing Cache Pollution via Dynamic Data Prefetch Filtering (prefetch filter)

[26].

Due to the fact that out of the three related works to be compared in this chapter, more
than one of them were not using instruction per cycle (IPC) and cache hit rates as the
performance measurement. We will compare our work with their efficiency by using

rate of performance improvement in percentage.

6.1 Cache Filtering Techniques to Reduce the Negative
Impact of Useless Speculative Memory References on

Processor Performance (Spec) [5]

O. Mutly, H. Kim, D.N. Armstrong and Y.N. Patt proposed a cache filtering algorithm
which uses the L1 cache as a filter to a particular type of useless data out of the L2
cache [5]. According to their concept, when the processor loads data to the cache
during speculative execution mode (when the processor executes a program branch,

which the branch predictor determined to have a high chance of being taken by the
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program), there is always a possibility that the branch predictor is making a wrong
guess, rendering the data being loaded useless and causing cache pollution to both L1

and L2 caches.

To address this issue, they designed a filtering mechanism with two filtering policies,
the no-spec-L2fill policy and the spec-L2 fillLRU policy, that only fetches data to the
L1 cache during speculative execution. If the processor determines that the branch
prediction was taken, the speculatively fetched block will be allowed to be written
back to the L2 cache when the block is being replaced, otherwise, under
no-spec-L2fill policy, the speculatively fetched block will simply be discarded if the
branch was not taken. If their sﬁec-LZﬁll LRU policy was used, then the
speculatively fetched L1 block will be written to the L2 cache index’s least recently

used set.

6.1.1 Performance improvement comparison (CF-LFU vs. Spec)

In this subsection, we will bave a comparison between our CF-LFU and the two
filtering policies, the no-spec-L2fill and spec-L2fillLRU, of [S]’s Spec filtering
technique. The following is a table of simulation settings used to compére our

CF-LFU with no-spec-L2fill and spec-L2fillLRU:
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Table 6.1: Simulation settings for comparison between CF-LFU, no-spec-L2 fill and

spec-L2 fill LRU

Fetch/Issue/Retire width | 8 instructions, 8 functional units

Instruction window size 128 entry instruction window, 128 entry 1d-st queue
Branch predictor 64K entry gshare, 64K entry PAs hybrid

L1 Instruction Cache 64KB, 4-way, 64B block size, LRU replacement
L1 Data Cache 64KB, 4-way, 64B block size, LRU replacement
L2 Unified Cache 512KB, 8-way, 64B block size, LRU replacement
Processor clock 3000Mhz

Memory clock 200Mhz

Memory bank 2 channels, 16 banks per channel

conﬁgumtion- |

Memory latency 6(CAS), 7(RCD), 7(RP), 21(RAS)

Execution range Full execution

Benchmarks gec, gzip, mcf, parser
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Figure 6.1: Performance improvement comparison between CF-LFU, no-spec-L2fill

and spec-L2fill LRU

Figure 6.1 shows that our cache filtering algorithm is able to keep a comparable

performance gain in gcc, maintain significantly better performance gain in mcf and

parser but a performance slowdown in gzip, comparing to O. Mutlu, H. Kim’s, D.N.

Armstrong’s and Y.N. Patt’s work. From the previous chapter, we are aware of the

significant performance gains of the mcf and parser benchmark caused by the

improved memory row hit rate at 512KB of L2 cache, as well as the performance drop

of the gzip, which is a result of the big amount of filtered writes.

Therefore, the

results of figure 6.1 are proven to be consistent to our results shown in the previous

chapter.
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Figure 6.1 also suggests that out of the four benchmarks being compared, [5]’s work
was only capable of producing positive performance gain in gcc and parser, and their
spec-L2 fill LRU policy is capable of generating slightly better than the no-spec-L2
fill policy. According to [5], gcc and parser suffer most from L2 cache pollution;

hence their work is capable of producing better results with those two benchmarks.

Our CF-LFU, on the other hand, was capable of producing better perofrmance gain by
following the traditional focus of cache designs — to improve temporal and spatial
locality. Support by figure 6.1, we can conclude that the benefit of filtering less
frequently used data is much bigger than filtering out useless speculatively fetched

data from the L2 cache.

6.2 Line Distillation: Increasing Cache Capacity by Filtering

Unused Words in Cache Lines (Line distillation) [25]

M.K. Qureshi, M. A. Suleman and Y. N. Patt proposed a new technique (hereafter
referred as Line distillation) which improves L2 cache’s capacity by partitioning the
L2 cache and only keep the useful words of a cache block upon eviction[25]. In
their work, they pointed out that caches are organized into blocks where each block
contains a sequence of consecutive words. This design is most suitable when
applicatjons are having high spatial locality in their memory usage pattern. However,
if the application’s spatial locality is low, most of the words in the cache block are not

used and hence the cache capacity is not utililized efficiently.
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To solve this problem, they hgve a new cache design, known as distill cache, which
partitions the cache into line organized cache (LOC) and word organized cache
(WOC). The LOC is used to store standard cache blocks and has a footprint bit array
to track the word usages of the cache block. The WOC, on the other hand, is used to
store the previously used words of an evicted cache block. When a cache miss
reaches the L2 distill cache, the LOC is first checked. If the LOC generates a hit, the
block will be transferred to the L1 cache and the footprint array is updated. If the
LOC generates a miss, the WOC is examined. If the WOC generates a hit, the WOC
will transmit the word it contains to the L1 cache, together with a valid bit vector in
order to mark which word of the L1 cache block is valid. However, if both the LOC
and WOC are genérating misses, the LOC will select a LRU block and the WOC will
randomly select a block to replace. Upon replacement, the LOC will first wait for
WOC to finish the writeback if needed, then the LOC will replace the LRU block with

the request data and at the same time, transfer the previously used words to the WOC.,

6.2.1 Performance impmvemxiet comparison between CF-LFU and
Line distillation

In this section, we will perform the same efficiency comparison between our CF-LFU
and [25]’s Line distillation. Note that [25] simulated their work with an execution
range of 250 million instructions, i.e. from instruction 1 to instruction 250M, we will
also simulate our work with the same range. Therefore, one should expect the result
of our CF-LFU to be largely different from the previous sections where the entire

program execution was simulated.
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Table 6.2: Simulation settings for comparison between CF-LFU and Line distillation

Fetch/Issue/Retire width 8 instructions, 8 functional units

Instruction window size 128 entry instruction window, 128 entry ld-st queue
Branch predictor 64K entry gshare, 64K entry PAs hybrid

L1 Instruction Cache 16KB, 2-way, 64B block size, LRU replacement
L1 Data Cache 16KB, 2-way, 64B block size, LRU replacement
L2 Unified Cache 1MB, 8-way, 64B block size, LRU replacement
Processor clock 2000Mhz

Memory clock 100Mhz

Memory bank configuration | 2 channels, 16 banks per channel

Mgmory latency 6(CAS), 7(RCD), 7(RP), 21(RAS)

Execution range 250M instructions

Benchmarks gcc, parser
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Figure 6.2: Performance improvement comparison between CF-LFU and Line

distillation

Figure 6.2 shows that our CF-LFU is capable of outperforming Line distillation with

gec and parser.  According to [25], instructions on the wrong path can cause bigger

usage of words stored in the cache block and reduce their Line distillation’s

performance. More importantly, [25] also mentioned that gcc is an instruction cache

intensive benchmark, which caused their Line distillation algorithm to show slight

performance drop. Our CF-LFU considers the entire cache block as a filtering unit

and provides a filter buffer to hold more cache blocks. This approach, backed up by

figure 6.2, is proven to yeild much better results when running the gcc and parser

benchmarks.,

97




6.3 Reducing Cache Polution via Dynamic Data Prefetch

Filtering (Prefetch filter) [26]

In their work, Recuding Cache Polution via Dynamic Data Prefetch Filtering [26], X.
Zhuang and H.S.Lee. pointed out that traditional cache prefetching mechanisms suffer
from cache pollution caﬁsed by overly aggressive prefetiches. To solve this problem,
they introduced a new way of controlling cache prefetéhes through the use of branch
predictors as prefetch pollution filters. According to [26], three types of branch
predictors were used — bimodal predictors, two level bimodal predictors and gshare
predictors. The predictors are organized as a 1D (bimodal) or 2D (2 level bimodal
and gshare) array of 2bit counters and can be addressed by the least significant bits of
either the missing cache block address (PA) or the program counter (PC), with the
assistance of a branch histry register (for 2level bimodal and ghsare). Whenever a
cache block is being evicted, the filter checks whether the cache block is lzeing
prefetched (indicated by a prefetch indicator bit) and whe,thcr the block was
previously referenced (determined by a reference indication bit). If both conditions
are true, the corrésponding counter of the predictor will be incréatmented and if the
block was a prefetched block but has never been referenced; the corresponding
counter will be decremented. Eventually, a prefetch history table is formed and the

prefetcher can filter useless prefetches according to the table.



6.3.1 Performance improvement comparison between CF-LFU and
Prefetch filter

In this section, we will perform the same efficiency comparison between our CF-LFU
and [26]’s prefetch filter with both PA and PC branch prediction table addressing.
Note that [26] simulated their work with an execution range of 300 millioﬁ

instructions, i.e. from instruction 1 to instruction 300M, we will also simulate our

work with the same range.

Table 6.3: Simulation settings for comparison between CF-LFU and Prefetch filter

Fetch/Issue/Retire width

8 instructions per cycle

Instruction window size

128 entries instruction window, 64 entries load/store

queue

Branch predictor

32K entry gshare, 32K entry PAs hybrid

L1 Instruction Cache

32KB, 4 way, 32B block size, LRU replacement

L1 Data Cache

32KB, 4 way, 32B block size, LRU replacement

L2 Unified Cache 512KB, 4 way, 32B block size, LRU replacement
Processor clock 2000Mhz

Memory clock . - - 200Mhz )

Meméiy bank configuration 2 chanﬁels, 16 banks per cﬁaz;xiel

Memory latency 1 (CAS), 1 (RCD), 1 (RP), 14 (RAS)

Execution range 300M instructions

Benchmarks gce, gzip
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Figure 6.3: Performance improvement comparison between CF-LFU and prefetch

filter for gec
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Figure 6.3 and 6.4 shows the performance improvement comparison between our
CF-LFU and prefetch filter with both PC and PA settings. In terms of gec, [26]
mentioned that their prefetch filter happened to be reducing large amount of useful
prefetches, which in turn, rendered no performance gain in gcc. Our CF-LFU, on the
contrary, was able to keep a small performance gain which was attributed to the
improvement of the memory row hit rate. Under gzip, prefetch filter showed
significant improvement due to it_s nature of educated prefetching technique,
especially when 2 level bimodal predictors are used. Our CF-LFU, however, was
known to be generating extra memory accesses as large amount of filtered writes were
involved. Therefore, we must agree that the prefetch filter is capable of producing

better results when running gzip.

6.4 Summary of the comparison

In this chapter, we compared our Cache Filtering Algorithm for Least Frequently
Used Data (CF-LFU) with other three related works, namely Cache Filtering
Technique to Reduce the Negative Impact of Useless Speculative Memory Reference
on Processor Performance (Spec), Line Distillation: Increasing Cache Capacity by
Filtering Unused words in Cache Lines (i.inc distillation) and Reducing Cache
Pollution via Dynamic Data Prefetch Filtering (Prefetch filer). Our CF-LFU focuses
on filtering cache blocks that are not previously used and generate memory row
misses. Spec tries to filter data fetches that are requested by untaken program
branches out of the L2 cache. The Line distillation technique attemps to keep the
previously accessed data words of evicted cache blocks in a separate partition of the

L2 cache. Finally, Prefetch filter incorporates already well developed branch
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prediction techniques to determine whether a prefetch should be made. Although
each of the related works is a true pioneer in the research field of cache design, we
strongly believe, as proven by' the simulated results, our Cache F iltering Algorithm for

Least Frequently Used Data is comparable to them in terms of efficiency.
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Chapter 7

Conclusion and future work

In this chapter, we will summarize our contributions and will propose the possible

directions of the future work.

This thesis has successfully made two contributions — the Page Interleaved DDR3
Memory model for the SimpleScalar Simulator and Cache Filtering Algorithm for
Least Frequently Used Data. The Page Interleaved DDR3 Memory model is a
replacement for the SimpleScalar simulator’s clos;ed page SDRAM simulation model.
By following the behavior of the DRAM and the DDR3 specification, our ﬁlemory
model is capable of generating consistent simulation results that resembles a real

world computer system insfalled with dual channel DDR3 memory modﬁles.

The cache filtering algoﬁthm for least frequently used data is a performance
optimization to the entire computer memory hierax:chy. Its I;rinciple is to identify
whether the processorv requested data is frequently or rarely used, based on the
contents of the filter buffer and the status qf the memory rows. With the result of
such analysis, the cache filtering algorithm will then make the decision to allow the
data to be fetched to the cache hierarchy or to filter the data in order to prevent cache

pollution.
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As an extension to this thesis work, there are several directions that we are

particularly interested in pursuing:

Implement a filter buffer that uses a writeback policy to replace the write through
scheme implemented by our current filter buffer model. With a writeback
policy, the filter buffer should be able to eliminate majority of the memory
accesses generated by the write through filter buffer. Hence, the filter buffer
can conserve more bandwidth, reduce the overall power consumption of the
cache filtering algorithm and allows the cache filtering algorithm to be more
suitable for embedded and desktop systems with bigger amount of caches.
Adding cache coherence and memory consistency protocols to the cache filter
and filter buffer. By adding such protocols, the cache filter can be made
compatible to modern shared memory multi processor systems.

Implement a victim cache, write buffer and data prefetching unit — victim caches,
write buffers and data prefetching units are fundamental elements of modern
memory hierarchies.  Adding these components allows us~ to complete
SimpleScalar’s memory hierarchy and simp]ii"y future computer architecture and

memory system researches involving the SimpleScalar simulator.
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Appendix
A.1 Sample verification of cache filtered desktop

system with 2MB L2 cache running gzip

To prove the simulator’s output and our performance analyze conclusions are correct,
we have included a cache filtered gzip simulation with 2MB L2 cache simulation

output file (Figure A.1) on page 116:

From the file, we are able to extract the following information:

Total memory random reads = 10051787

Total memory random writes = 9874222

Total memory fast page reads = 5233822

Total memory fast page writes = 7554673

Total memory reads = 10051787 + 5233822 = 15285609

Total memory writes = 9874222 + 7554673 = 17428895

Total filter buffer reads = 9917372

Total filter buffer memory fetches (DL1 filtered read + IL1 filtered read) = 2497325
Total filter buffer memory writes = 17428895

IL1 misses = 111476

I L1 filtered accesses = 4959

D L1 misses = 607825571

D L1 writebacks = 164522187

D L1 filtered accesses (D L1 filtered read + D L1 filtered write) = 10046828
L2 accesses = 762407441

L2 misses = 15151194

L2 writebacks = 9874427
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First, we must prove that the numbers extracted from the simulation file are correct.
According to the cache filtering algorithm, only data L1 cache’s filtered writebacks
and the L2 cache’s writebacks are written directly to the filter buffer then to the main
memory. Hence, we must first compare the filter buffer’s memory write with the

total memory write:*

Total filter buffer memory writes = 17428895
Total memory writes

= total memory random writes + total memory fast page writes

= 9874222 + 7554673 = 17428895

Since the value of total memory write equals to the value of total filter buffer memory

writes, we can conclude that these two numbers are correct.

Secondly, we must check whether the total L2 fetches from the main memory equals
to the total amount of fast page reads. Since the L2 cache is the entry point for data
to enter the cache hierarchy, if the values are equal, then the simula;or’s operation ifs
following the cache filtering algorithm’s criteria: only data from an opened memory

page or from the filter buffer can enter the cache hierarchy.

L2 fetches from main memory= L2 misses ~ total filter buffer reads
=15151194 - 9917372 = 5233822
Total fast page memory reads = 5233822
*Note: since the filter buffer and cache are defined in the cache.c source file and the main memory is
defined in the memory.c source file, if we can prove the values are equal, it will automatically implies

that the program code written in both of the files are correct.
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As the value of the L2 fetches from main memory is matching the total amount of fast
page memory reads, it is reasonable to state that the value of L2 cache miss, filter

buffer read and total fast page memory reads aré all correct.

Next, we must prove that the total filtered fetch is equal to the total amount of random
read. Note that filtered fetch happens in both filtered read and filtered write. This
is because all filtered write must start by performing a random read as discussed
carlier. Also, the instruction L1 cache can only perform reading, hence we can

conclude that the I L1 filter count is 100% filtered read.

Total filtered fetch = DL filtered read + D L1 filtered write + I L1 filtered read
= DL filter count + IL1 filter count
= 10046828 + 4959 = 10051787

Total memory random read = 10051787
This allows us to conclude that thé total random read and the total amount of cache

filtering are correct. At this point, the data extracted by the simulation output file are

all correct.
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We must now determine the total amount of data L1 cache’s filtered
read/write/writebacks, data L1 cache’s writeback to the L2 cache, data L1 cache’s
fetch from the L2 cache, instruction L1 cache’s fetch from L2 cache and the total

amount of fast page writes that is not a part of a filtered write (pure fast page write):

Data L1 cache’s filtered read = total filter buffer memory fetch - I L1 filtered (read)

= 2497325 — 4959 = 2492366

Data L1 caches filtered write (also a part of the total fast page write and random
reads)
= total D L1 filtered (access) —data L1 cache’s filtered read

= 10046828 — 2492366 = 7554462

Instruction L1 caches fetch from L2 =1L1 miss —total IL1 filtered (read)

= 111476 — 4959 = 106517

Total L2 accesses that are requested by data L1 cache
= .2 access ~ IL1 cache’s fetch from L2

= 762407441 — 106517 = 762300924

Total data LI cache fetch from L2 = DL1 misses ~ DL1 filtered access

= 607825571 — 10046828 = 597778743

Total data L1 cache writebacks that's written to L2

= total L2 accesses that are requested by DL1 - total DL1 cache fetch from L2

= 762300924 — 597778743 = 164522181
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Total data L1 cache ks filtered writebacks
= total DL1 writebacks — total DL1 writebacks that’s written to L2

= 164522187 - 164522181 =6

Pure fast page writes = Total fast page writes — DL1 filtered write

= 7554673 - 7554462 = 211

With these values, we can once again check whether the total amount of each memory
access types (random read/write and fast page read/write) are matching the total
amount of each filter access (data L1 cache’s filtered read/write/writeback, instruction

L1 cache’s filtered read and L2 cache’s filtered writebacks).

According to the cache filtering algorithm’s definition, the total amount of memory
writes should equal to the total amount of filter buffer memory writes. At the same

time, it should also equal to the following:

The total amount of data L1 cache’s filtered write + data L1 cache’s filtered

writebacks + L2 cache s (filtered) writebacks = 7554462 + 6 + 9874427 = 17428895.
Comparing this value to the total amount of memory writes, which is 17428895, we

can conclude that the total amount of data L1 cache’s filtered writes/writebacks and

L2 cache’s filtered writebacks are correct.
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Finally, if we add the total amount of random writes and pure fast page writes, the
value should equal to the sum of the total amount of L2 writebacks and data L1

cache’s filtered writebacks:

Total amount of random writes + total amount of pure fast page writes

= 0874222 + 211 = 9874433

Total amount of L2 writebacks + total amount of data L1 cache s filtered writebacks

= 9874427 + 6 = 9874433

Since the results of the above calculations are matched, we can finally conclude that

our simulation result is totally correct.

To prove our statement about the gzip having a massive amount of filtered writes in
the desktop/notebook performance analyze, we did the same calculation to find out
the total amount of filtered write of the cache filtered system with 2MB L2 cache
running equake (equake has a close-to-zero filter buffer entry wait time) and the total
amount of equake’s filtered write is 537676. Comparing such value with gzip’s
7554462 filtered writes, one can conclude that gzip’s filtered write count is 14 times

bigger than equake’s, which can justify our statement immediately.
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sim-outorder: SimpleScalar/PISA Tool Set version 3.0 of August, 2003.
Copyright (¢) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.

All Rights Reserved. This version of SimpleScalar is licensed for academic
non-commercial use. No portion of this work may be used by any commercial
entity, or for any commercial purpose, without the prior written permission

of SimpleScalar, LLC (info@simplescalar.com).

sim: command line: ./sim-outorder -cache:ill i11:128:64:4:1 -cache:d11 d11:128:64:4:1
-cache:dl2 ul2:4096:64:8:1 -cache:il2 dI2 -cache:illlat 1 -cache:dl1lat 1 -cache:d]2lat
10-¢

ache:ill _filter TRUE -cache:dll_filter TRUE -cache:il2_filter TRUE -cache:dI2_filter
TRUE -filtbuf:size 64 -filtbuf'searchlat 1 -filtbuf:transferlat 2 -cpu:clk 3200 -mem:clk
800 -

mem:lat 7 7 7 21 -mem:width 8§ -mem:channel 1 -mem:bank 8 -mem:map 2
-mem:type 2 -tlb:itlb itlb:1:4096:128:1 -tib:dtlb dtlb:1:4096:128:1 -tIb:lat 30 -res:ialu 3
-res:imult 2 -res:m ‘ :

emport 2 -res:fpalu 4 -res:fpmult 1 -fetch:ifgsize 64 -fetch:mplat 2 -fetch:speed 1
-bpred bimod -bpred:bimod 4096 -bpred:2lev 1 1024 12 0 -bpred:comb 1024
-bpred:ras 32 -bpred:bt

b 2048 2 -decode:width 4 -issue:width 4 -issue:inorder false -issue:wrongpath true
-commit:width 4 -ruu:size 16 -Isq:size 8 -redir:sim
out_results/memmod/filter/gzip/11_12/cache/g
zip_sim_2M_channell_bank8_buf64.out -redir:prog
out_results/memmod/filter/gzip/11_12/cache/gzip_prog 2M_channell_bank8 buf64.0
ut SPEC/gzip_train/gzip.ss SPEC/gzip_train/input.comb

ined 32

sim: simulation started @ Sun Oct 25 12:21:32 2009, options follow:

sim-outorder: This simulator implements a very detailed out-of-order issue
superscalar processor with a two-level memory system and speculative
execution support. This simulator is a performance simulator, tracking the
latency of all pipeline operations.

# -config # load configuration from a file
# -dumpconfig # dump configuration to a file
#-h false # print help message

#-v false # verbose operation
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#-d false # enable debug message

#-i ~ false # start in Dlite debugger

-seed A 1 # random number generator seed (0 for timer
seed) ‘ | 4

#-q | " false # initialize and terminate immediately

4 -chkpt <null> # restore EIO trace execution from <fname>

# -redir:sim ‘ | o

out_results/memmod/ﬁlter/gzipﬂl_l2/cache/ gzip_sim_2M_channell_bank8_buf64.ou
t # redirect simulator output to file (non-interactive only) |

# -redir:prog I

out results/memmod/ﬁlter/gmplll l2/cache!gzlp _prog}M channell bankS buf64.o
ut # redirect simulated program output to file

-nice » . 0 # simulator scheduling priority

-max:inst )  0# maxlmum number of inst's to execute
-fastfwd " 0# number of insts skipped before timing starts

# -ptrace ‘ <null> # generate pipetrace, i.e., <fname|stdout|stderr> '
<range> ) '

-fetch:ifgsize o 644 instruction fetch queue size (in insts)
fetch:mplat 2 # extra branch mis-prediction latency

-fetch speed C1# speed of front-end of machine relative to
execution core - " | "
-bpred " bimod # branch predictor type

{nottaken|taken|perfect|bimod|2levicomb} ,
-bpred:bimod 4096 # bimodal prgdiétor config (<table size>)

-bpred:2lev 11024 12 0 # 2-level predictor config (<I1size> <12size> ;
<hist_size> <xor>) '
-bpred:comb 1024 # combmmg predlctor conﬁg (<meta table sxze>)
-bpred:ras - 32 # return address stack size (0 for no return stack)
-bpred:btb . 20432 #BTB config (<num_sets> <associativity>)

# »bpred:spec_update C T <pull> # speculatwe predlctors update in {ID]WB}
(default non-spec) ‘ o

-decode:width ‘ " 4 # instruction decode B/W (insts/cycle)
-issue:width 4 # instruction issue B/W (msts!cycie)
-issue:inorder fa]se # run plpclme thh in-order issue
-issue:wrongpéth , " true #i issue mstruct:ons down wrong execution paths
-commit:width o 4 # instruction commit B/W (insts/cycle)
-ruusize o 16 # register update unit (RUU) size

-Isq:size } 8# load/stgfp queue (LSQ) size
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-cache:dll di1:128:64:4:1 # 11 data cache config, i.e., {<config>|none}

-cache:dlllat 1 # 11 data cache hit latency (in cycles)

-cache:dl2 ul2:4096:64:8:1 # 12 data cache config, i.e., {<config>|none}
-cache:dI2lat 10 # 12 data cache hit latency (in cycles)

-cache:ill i11:128:64:4:1 # 11 inst cache config, i.e., {<config>|dl1|d12|none}
-cache:illlat 1 # 11 instruction cache hit latency (in cycles)
-cache:il2 dI2 # 12 instruction cache config, i.e.,
{<config>/d12jnone} » ‘

-cache:il2lat 6 # 12 instruction cache hit laténcy (in cycles)
-cache:flush _ false # flush caches on system calls ‘
-cache:icompress false # convert 64-bit inst addresses to 32-bit inst
equivalents ’
-mem:lat 777 21 # memory access latency (<Tcas> <Trcd><Trp><Tras>)
~-mem:lat2 851174 #memory access:latency (<Tburst>, <Twr>, <Trtrs>,
<Temd>, <Tcwd>, <Tced>) ‘

-mem:width " 8 # memory access bus width (in bytes)
-mem:channel 1 # memory controller channel (1 or 2)
-mem:bank 8 # amount of memory banks (1 - 16)

-mem:map 2 me_indry address-bank mapping method, (1 for
simple linear, consecutive rows are mapped to the same bank;2 for page interleaving
-mem:type 2 # memory type, 1 for SDR, 2 for DDR3

-cpu:clk 3200.0000 # processor clock.

-mem:clk 800.0000 # memory clock.

-cache:ill_filter  truc # Actlvate mstructlon L1 cache ﬁltermg (TRUE or
FALSE) |
-cache:dll_filter true # Activate data L1 cache filtering (TRUE or FALSE)
-cache:il2_filter ' true # Activaﬁc instruction L2 cache filtering (’I'RUE or
FALSE) ‘
-cache:dl2_filter “ true # Actwate data L2 cache filtering (TRUE or FALSE)
-filtbufisize ‘ 64 # Size of filter buffer

-filtbuf:searchlat 1 # filter buffer's latency for searching for an em;ity or
carliest finish entry o ' 4

-filtbuf:transferlat 2 # filter buffer's transfer latency

-tlb:itlb itlb:1:4096:128:1 # instruction TLB config, i.e., {<config>none}
-tlb:dtlb dtlb: 1:4096:128: 1# data TLB config, i.e., {<conﬁg>|none} '
-tlb:lat ' 30# mst/data TLB miss latency (in cycles)

-res:ialu 3 # total number of i integer ALU's available
-res:imult 2 # total number of integer multiplier/dividers
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available

-res:memport 2 # total number of memoiy system ports availablo
(to CPU) |

-res:fpalu 4 # total number of floating point ALU's available
-res:fpmult 1 # total number of floating point multiplier/dividers
available

# -pestat <null> # profile stat(s) against text addr's (mult uses ok)
-bugcompat false # operate in backward-compatible bugs mode (for
testing only)

Pipetrace range arguments are formatted as follows:

{{@#} <start>}: {{@|#+} <end>}

Both ends of the range are optional, if neither are specified, the entire
execution is traced. Ranges that start with a ‘@' designate an address

range to be traced, those that start with an '#' designate a cycle count

range. All other range values represent an instruction count range. The
second argument, if specified with a *+', indicates a value relative

to the first argument, e.g., 1000:+100 == 1000:1100. Program symbols may
be used in all contexts.

Examples:  -ptrace FOO.trc #0:#1000
-ptrace BAR.trc @2000:
-ptrace BLAH.trc :1500
-ptrace UXXE.tre :
~-ptrace FOOBAR trc @ main:+278

Branch predictor configuration examples for 2-level predictor:

Configurations: N, M, W, X

N # entries in first level (# of shift register(s))

W width of shift register(s)

M  #entries in 2nd level (# of counters, or other FSM)

X  (yes-1/no-0) xor history and address for 2nd level index
Sample predictors:

GAg :1L,W,2°W,0

GAp LW, M(M>2'W),0

PAz  :N,W,2'W,0
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PAp N, W,M (M =2AN+W)), 0
gshare :1, W, 2"W, 1
Predictor ‘comb' combines a bimodal and a 2-level predictor.

The cache config parameter <config> has the féllowing format:
<name>:<nsets>:<bsize>:<assoc>:<repl>

<name> - name of the cache being defined

<nsets> - number of sets in the cache

<bsize> - block size of the cache

<assoc> - associativity of the cache

<repl> - block replacement strategy, 'I'-LRU, 'f-FIFO, 'r-random

Examples:  -cache:dll d11:4096:32:1:1
-dtlb dtib:128:4096:32:r

Cache levels can be unified by pointing a level of the instruction cache
hierarchy at the data cache hiearchy using the "d11" and "d12" cache
configuration arguments. Most sensible combinations are supported, e.g.,

A unified 12 cache (il2 is pointed at d12):
~cache:ill il1:128:64:1:1 -cache:il2 dI2 L
-cache:dll d11:256:32:1:1 -cache:d12 ul2:1024:64:2:1
Or, a fully unified cache hierarchy (ill pointed at dl1):

~cache:ill dil
~cache:dil ul1:256:32:1:1 -cache:d12 ul2:1024:64:2:1

sim: ** starting performance simulation **

sim: ** simulation statistics **

sim_num_insn 77693332344 # total number of instructions committed
sim_num_refs 26629788025 # total number of loads and stores
committed ' '
sim_num_loads 19265035676 # total number of loads committed
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sim_num_stores
sim_num_branches
sim_elapsed_time
sim_inst_rate
sim_total_insn
sim_total _refs
sim_total_loads
sim_total_stores
sim_total_branches
sim_cycle

sim_IPC

sim_CPI
sim_exec_ BW

committed) per cycle

sim_IPB
IFQ_count
IFQ_fcount
ifq_occupancy
ifq_rate
ifq_latency
ifq_full
RUU_count
RUU_fcount
ruu_occupancy
ruu_rate
ruu_latency
ruu_full
LSQ_count
LSQ fcount
Isq_occupancy
Isq_rate
Isq_latency
Isq_full
sim_slip
avg_sim_slip
retirement

bpred_bimod.lookups
bpred_bimod.updates

7364752349.0000 # total number of stores committed
11519867492 # total number of branches committed
96247 # total simulation time in seconds
807228.6133 # simulation speed (in insts/sec)
84601667750 # total number of instructions executed

29095252565 # total number of loads and stores executed )

21117777015 # total number of loads executed

7977475550.0000 # total number of stores executed

12502422295 # total number of branches executed
44717071765 # total simulation time in cycles
1.7374 # instructions per cycle :
0.5756 # cycles per instruction
1.8919 # total instructions (mis-spec +

6.7443 # instruction per branch
1566892957508 # cumulative IFQ occupancy
13518869642 # cumulative IFQ full count
35.0402 # avg IFQ occupancy (insn's)
1.8919 # avg IFQ dispatch rate (insn/cycle)
18.5208 # avg IFQ occupant latency (cycle's) ‘
0.3023 # fraction of time (cycle's) IFQ was full
614946697909 # cumulative RUU occupancy
28473471729 # cumulative RUU full count
13.7519 # avg RUU occupancy (insn's)

1.8919 # avg RUU dispatch rate (insn/cycle)
7.2687 # avg RUU occupant latency (cycle's)
0.6367 # fraction of time (cycle's) RUU was full

225685433941 # cumulative LSQ occupancy
8038603209 # cumulative LSQ full count

5.0470 # avg‘LSQ occupancy (insn's)

1.8919 # avg LSQ dispatch rate (insn/cycle)
2.6676 # avg LSQ occupant latency (cycle’s)
0.1798 # fraction of time (cycle's) LSQ was full

-2578299233055046588 # total number of slip cycles
-33185592.0614 # the average slip between issue é.pd

156"74 898831 # total number of bpred lookups
11519867492 # total number of updates
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bpred_bimod.addr_hits 10644257456 # total number of address-predicted hits
bpred_bimod.dir_hits 10661282975 # total number of direction-predicted hits
(includes addr-hits) ‘

bpred_bimod.misses ) 858584517 # total number of misses
bpred_bimod,jr_hits 324501052 # total number of address-predicted hits for
JR's o

bpred_bimod.jr_seen 341522178 # total number of JR's seen
bpred_,bimodjr_non__ras_hits".PP 52348 # total number of address-predicted
hits for non-RAS JR's

bpred_bimod.jr_ﬁon_ras__sieen.PP 160704 # total number of non-RAS JR’s
seen

bpred_bimod.bpred_addr rate 0.9240 # branch address-prediction rate (i.e.,
addr-hits/updates) ‘
bpred_bimod.bpred_dir_rate 0.9255 # branch direction-prediction rate (i.e.,
all-hits/updates) '

bpred_bimod.bpred_jr_rate 0.9502 # JR address-prediction rate (i.e., JR
addr-hits/JRs seen)

bpred_bimod.bpred_jr_non_ras_rate.PP 0.3257 # non-RAS JR addr-pred rate (ie,
non-RAS JR hits/JRs seen) | '

bpred_bimod.retstack_pushes 469998938 # total number of address pushed onto
ret-addr stack

bpred_bimod.retstack_pops 454526877 # total number of address pdpped off of
ret-addr stack ) .

bpred_bimod.used_ras.PP 341361474 # total number of RAS predictions used
bpred_bimod.ras_hits.PP 324448704 # total number of RAS hits
bpred_bimod.ras_rate.PP 0.9505 # RAS prediction rate (i.e., RAS hits/used RAS)

ill.accesses 104219153196 # total number of accesses
ill.hits . l 04219041720 # total number of hits

ill.misses ’ 111476 # total gumbér of misses
ill.replacements 106005 # total number of replacements
ill.writebacks 0 # total number of writebacks
ill.invalidations 0 # total number of invalidations
ill.miss_rate - w 0.0000 # miss rate (i.e., misses/ref)
illrepl_rate o 0.0000 # replacement rate (i.c., repls/ref)
ill.wb_rate . ; 0.0000 # writeback rate (i.e., wrbks/ref)
ill.inv_rate 0.0000 # invalidation rate (i.e., invs/ref)
ill.filtered | 4959 # total filtered access

il filtered_read " 0#total filtered read
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ill filtered_write
dil.accesses
dl1.hits
dll.misses
dil.replacements
dll.writebacks
dll.invalidations
dll.miss_rate
dll.repl_rate
dll.wb_rate
dil.inv_rate

dil filtered

dll filtered_read
dil filtered_write
ul2.accesses
ul2.hits
ul2.misses
ul2.replacements
ul2.writebacks
ul2.invalidations
ul2.miss_rate
ul2.repl_rate
ul2.wb_rate
ul2.inv_rate

ul2 filtered
ul2.filtered_read
ul2 filtered_write
ul2.buf access

0 # total filtered write
25920318799 # total number of accesses
25312493228 # total number of hits
607825571 # total number of misses
597778231 # total number of replacements
164522187 # total number of writebacks
0 # total number of invalidations
0.0234 # miss rate (i.e., misses/ref)
0.0231 # replacement rate (i.e., repls/ref)
0.0063 # writeback rate (i.e., wrbks/ref)
1 0.0000 # invalidation rate (i.e., invs/ref)
) 10046828 # total filtered access
0 # total filtered read
0 # total filtered write
762407441 # total number of accesses
747256247 # total number of hits
15151194 # total number of misses
15118426 # total number of replacements
9874427 # total number of writebacks
0 # total number of invalidations
0.0199 # miss rate (i.e., misses/ref)
0.0198 # replacement rate (i.c., repls/ref)
0.0130 # writeback rate (i.e., wrbks/ref)
0.0000 # invalidation rate (i.e., invs/ref)
0 # total filtered access
0 # total filtered read
0 # total filtered write
29843592 # total filter buffer accesses

ul2.buf.read 9917372 # total amount of time for any cache to read
from the filter buffer -

ul2.buf.write 17428895 # total amount of time for any cache to write
to the filter buffer ‘ ‘ B

ul2.buf. mem_write 17428895 # total amount of time the filter buffer
performed a write to memory.
ul2.buf mem_fetch ’

data from memory.

2497325 # total amount of time the filter buffer fetch

ul2.buf.merge 0 # total amount of time for the filter buffer to

perform a write merge
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ul2.buf.wait 6690054 # total amount of of time that the processor
must wait for a buffer entry to be cleared

ul2.buf wait_cycle 2811554458 # total amount of cycle spent on waiting for

an empty buffer entry

itlb.accesses 104219153196 # total number of accesses
itlb.hits 104219153159 # total number of hits
itlb.misses 37 # total number of misses
itlb.replacements 0 # total number of replacements
itlb.writebacks "0 # total number of writebacks

itlb.invalidations
itlb.miss_rate
itlb.repl_rate
itlb.wb_rate
itlb.inv_rate
itlb.filtered
itlb.filtered_read
itlb.filtered_write
dtlb.accesses
dtlb.hits
dtlb.misses
dtlb.replacements
dtlb.writebacks
dtlb.invalidations
dtlb.miss_rate
dtlb.repl_rate
dtlb.wb_rate
dtlb.inv_rate
dtlb.filtered
dtlb.filtered_read
dtlb.filtered_write
sim_invalid_addrs
(debug var)
1d_text base
1d_text_size
Id_data_base
Id_data_size

size in bytes
Id_stack_base

0 # total number of invalidations
0.0000 # miss rate (i.c., misses/ref)
0.0000 # replacement rate (i.e., repls/ref)
0.0000 # writeback rate (i.e., wrbks/ref)
0.0000 # invalidation rate (i.e., invs/ref)
0 # total filtered access
0 # total filtered read
0 # total filtered write
27694826537 # total number of accesses
27694517323 # total number of hits
309214 # total number of misses
309086 # total number of replacements
0 # total number of writebacks
0 # total number of invalidations
0.0000 # miss rate (i.e., misses/ref)
0.0000 # réplacement rate (i.e., repls/ref)
" 0.0000 # writeback rate (i.e., wrbks/ref)
0.0000 # invalidation rate (i.c., invs/ref)
V 0 # total filtered access
0 # total filtered read
0 # total filtered write
0 # total non-speculative bogus addresses seen

0x00400000 # program text (code) segment base’
230448 # program text (code) size in bytes

0x10000000 # program initialized data segment base
351008 # program init'ed *.data’ and uninit'ed *.bss'

0x7{ffc000 # program stack segment base (highest
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address in stack)

1d_stack_size 16384 # program initial stack size

Id_prog_entry 0x00400140 # program entry point (initial PC)
1d_environ_base 0x7ff18000 # program environment base address address
1d_target_big_endian 0 # target executable endian-ness, non-zero if
big endian

mem.page_count 24867 # total number of pages allocated
mem.page_mem 99468k # total size of memory pages allocated
mem.ptab_misses 53882 # total first level page table misses
mem.ptab_accesses 597696304327 # total page table accesses
mem.ptab_miss_rate 0.0000 # first level page table miss rate
mem.access_count 32714504 # Total amount of memory access

mem.unoverlaped_fp_read_clk 173328584 # Total amount of unoverlaped fast
page read delay across the channels in processor clock )
mem.unoverlaped_fp_write_clk ' 362619455 # Total amount of unoverlaped fast
page write delay across the channels in processor clock
mem.unoverlaped_filtered_read_clk 0 # Total amount of unoverlaped
filtered read delay across the channels in processor clock

mem.unoverlaped _filtered_write_clk 0 # Total amount of unvoerlaped
filtered write delay across the channels in processor clock
mem.unoverlaped_random_read_clk 843035395 # Total amount of unoverlaped
random read delay across the channels in processor clock
mem.unoverlaped_random_write_clk 973462985 # Total amount of unoverlaped
random write deléy across the channels in processor clock

mem.channel[0].access_count 32714504 # Total amount of memory access to
this channel '
mem.channel[0].row_hit 12788495 # Total amount of row hits for this channel
mem.channel[0].fp_reads 5233822 # Total amount of fast page reads to this
channel

mem.channel[0].channel_unoverlaped_fp_read clk 173328584 # Total amount of
unoverlaped fast page read to this channel in processor clock cycles
mem.channel[0].channel_overlaped_fp_read clk 77894872 # Total amount of
overlaped fast page read to this channel in processor clock cycles
mem.channel[0].fp_writes 7554673 # Total amount of fast page writes to this
channel

mem.channel[0].channel_unoverlaped_fp_write_clk 362619455 # Total amount
of unoverlaped fast page write to this channel in processor clock cycles
mem.channel[0].channel_overlaped_fp_write_clk 4849 # Total amount of
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overlaped fast page write to this channel in processor clock cycles

mem.channel[0].filtered_reads 0 # Total amount of filtered reads to this
channel

mem.channel[0].channel_unoverlaped_filtered_read_clk 0 # Total
amount of unoverlaped filtered read to this channel in processor clock cycles
mem.channel[0].channel_overlaped_filtered_read_clk 0 # Total amount
of overlaped filtered read to this channel in processor clock cycles
mem.channel[0].filtered_writes 0 # Total amount of filtered writes to
this channel ‘
mem.channel[0].channel_unoverlaped_filtered_write_clk 0 # Total
amount of unoverlaped filtered write to this channel in processor clock cycles
mem.channel[0] .channel__overlapéd__ﬁltered_write*clk 0 # Total
amount of overlaped filtered write to this channel in processor clock cycles
mem.channel{0].random_reads 10051787 # Total amount of filtered reads to this
channel

mem.channel[0].channel_unoverlaped_random_read_clk = 843035395 # Total
amount of unoverlaped random read to this channel in processor clock cycles
mem.channel[0].channel_overlaped_random_read_clk 202350453 # Total amount
of overlaped random read to this channel in processor clock cycles
mem.channel[0].random_writes 9874222 # Total amount of random writes to
this channel o ,
mem.channel[0].channel_unoverlaped_random_write_clk 973462985 # Total
amount of unoverlaped random write to this channel in processor clock cycles
mem.channel[0].channel_overlaped_random_write_clk 53456103 # Total
amount of overlaped random write to this channel in processor clock éycles

Figure A.1: A gzip sim-outorder simulation output file
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A.2 Memory simulation result verification

Referring to the sample simulation output file from appendix A.1 on page 116, the

following memory related statistics are found:

Processor clock = 3200MHz

Memory bus speed = 800MHz

Teas=7

Tred=17

Trp=17 : :
Temd =1

Tewd =17

Total memory accesses = 32714504

Total row hit = 12788495 -

Total fast page read = 5233822

Total unoverlapped fast page read latency = 173328584
Total overlapped fast page read latency = 77894872
Total fast page write = 7554673

Total unoverlapped fast page write latency = 362619455
Total overlapped fast page write latency = 4849

Total random read = 10051787

Total unoverlapped random read latency = 843035395 -
Total overlapped random read latency = 202350453
Total random write = 9874222

Total unoverlapped random write latency = 973462985

Total overlapped random write latency = 53456103
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First, we must prove that the total amounts of different types of memory accesses are
correct. From the statistics, the total amount of memory accesses should equal to the

sum of the total amount of fast page read/write and random read/write.

Total amount of memory accesses = 32714504

Total amount of row hits = 12788495

Total amount of fast page accesses
= total amount of fast page read + total amount of fast page write

= 5233822 + 7554673 = 12788495

Total amount of random accesses
= total amount of random read + total amount of random write

= 10051787 + 9874222 = 19926009

Total amount of memory accesses
= Total amount of fast page accesses + total amount of random accesses

= 1288495 + 19926009 = 32714504
From the calculation results, we can see that the total amount of fast page accesses is

matching the total amount of row hits, and the total amount of memory accesses

calculated from the sum of all fast page and random accesses is correct.
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Next, we must check whether the latecies recorded by the simulation file is correct.
This is achieved by first calculating the expected fast page read/write latency and

random read/write latency:

The processor to memory clock ratio is:

3200(processor clock)/800(memory clock) = 4

The data transmission (data burst) is:

(64B (cache block size) / 8B (data bus width))/2 (DDR) = 4 memory clocks

Random access read/write latency in processor clock cycles:
4(processor to memory clock ratio) X (1(Temd) + 7(Trp) + 7(Trcd) + 7(Tcas for read)

OR 7(Tewd for write) + 4(data burst)) = 104 processor clocks

Fast page read/write latency in processor clock cycles:
4(processor to memory clock ratio) X (1(Temd) + 7(Tcas for read) OR 7(Tewd for

write) + 4(data burst)) = 48 processor clocks.

From the statistics, the total amount of fast page read is 5233822, the total @punt of
unoverlapped fast page read latency is 173328584 and the total amount of overlapped
fast page read latency is 77894872. By calculating the total amount of fast page read
latency and compare it with the overlapped and unoverlapped fast page read latency,

we can then prove that the fast page read latency statistical values are correct:

129



Total fast page read latency:
= fast page read latency x total amount of fast page reads

=48 x 5233822 = 251223456

Sum of overlapped and unoverlapped fast page read latency:

= 173328584 + 77894872 = 251223456

Since the total fast page read latency is matching the sum of overlapped and
unoverlapped fast page read latency, we can conclude that the fast page read statistical

values are correct.

We will also perform the same check for fast page write and random read/write:
Total fast page writes = 7554673

Total unoverlapped fast page write latency = 362619455 |

Total overlapped fast page write latency = 4849

Total fast page write latency:

= fast page write latency x total amount of fast page writes

= 48 x 7554673 = 362624304

Sum of overlapped and unoverlapped fast page write latency:

= 362619455 + 4849.= 362624304 = Total fast page write latenéy
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Total random reads = 10051787
Total unoverlapped random read latency = 843035395

Total overlapped random read latency = 202350453

Total random read latency:
= random read latency x total amount of random reads

=104 x 10051787 = 10453858438

Sum of unoverlapped and overlapped random read latency:

= 843035395 + 202350453 = 1045385848 = Total random read latency

Total random writes = 9874222
Total unoverlapped random write latency = 973462985

Total overlapped random write latency = 53456103

Total random write latency:
= random write latency X total amount of random writes

= 104 x 9874222 = 1026919088

Sum of unoverlapped and overlapped random write latency:

= 973462985 + 53456103 = 1026919088 = Total random write latency

Since all calculated fast page read/write and random read/write latencies are matching
the sum of the overlapped and unoverlapped latencies of the corresponding memory

access type, we can now conclude that our custom version of sim-outorder is

generating correct statistical values.
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