

Design and Implementation of a framework for Multi-
Cloud Service Broker

By

Md Ahsan Ullah

B.Sc. in Computer Networks with Honours
University of East London in London, United Kingdom, 2008

A thesis

Presented to Ryerson University

In partial fulfilment of the

Requirements of the degree of

Master of Applied Science

In the program of

Computer Networks

Toronto, Ontario, Canada, 2015

© Md Ahsan Ullah 2015

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 2 of 86

Author's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or

individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis or dissertation by

photocopying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

Md Ahsan Ullah

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 3 of 86

Acknowledgments

There are a number of people without whom this thesis might not have been completed

and to whom I would like to give my sincere thanks.

First, I would like to express my deepest gratitude to my supervisor Prof. Muhammad

Jaseemuddin who gave me the opportunity to pursue my MASC and for his constructive

guidance throughout this work, which showed me how research can be.

I am particularly grateful to my research colleague Hager Ghouma for her patience and

for her support towards my research work, which helped to improve the quality of this

work. She has provided me with constructive feedback during this period and given me

the support needed to pursue my research.

Furthermore, I would like to thank the Yates Graduates School and Programme Director

Dr. Ngok Bobby Ma for funding my very productive research at the Ryerson University,

which gave me the opportunity to collaborate with the nice people from the computer

networks group members especially Dr. Lisa Li and Dr. Abdul Hafeez.

Finally, I would like to thank my parents and my wife for their continuous

encouragement.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 4 of 86

Abstract

Cloud service broker (CSB) as an emerging technology intermediates heterogeneous

multiple cloud services for both the providers and consumers. Recently, Cloud

computing & mobile cloud computing applications (MCA) have gained an enormous

popularity, which has led to an increasing need for the development of platform

independent Middleware/CSB to support all types of cloud service consumer

applications including x86*x64 based standard OS & ARM based mobile applications,

web browsers, etc. Developing Platform Independent Hybrid CSB, however, is not an

easy task. Developers have to deal with difficulties inherent from the different cloud

controllers, cloud service providers environments, clients’ application types, network

connection types (wired, wireless), GPS (Global Positioning Systems) information of

cloud resources and clients’ etc.

In this thesis, the proposed design of a middleware/CSB that abstracts the real-time

resources of various clouds (private, public, home, Local) and stores the resources in its

own Database. It will also store clients requests then analyzes the request to find the

nearest available servers which is running the appropriate applications. Then the CSB

will forward the destination servers information to the clients. Thesis goal is to achieve

context awareness, location awareness, platform independence, portability, efficiency,

and usability. Portability is achieved by following the J2ME platform specifications. The

middleware has been implemented and tested on a real time Openstack cloud using by

our newly designed Android Clients and platform independent Mozilla Firefox browser.

The performance measurements of the middleware show that it achieves its efficiency

requirements. Furthermore, the middleware’s database can be used for resource

algorithm, pattern analysis, and for future requirements.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 5 of 86

Table of Contents

ABSTRACT --- 4

1. INTRODUCTION -- 9

1.1. PROBLEM STATEMENT --- 10

1.1.1. Automatic Service-selection issues (decision-making) --- 11

1.1.2. Interoperability Issues (Vendor Lock-in) --- 11

1.1.3. Heterogeneity Issues (Inter-Cloud) --- 11

1.1.4. Cloud awareness issues (Context & Location)--- 12

1.2. RESEARCH QUESTIONS --- 12

1.3 THESIS ORGANIZATION --- 13

2. BACKGROUND -- 15

2.1. CLOUD SERVICE BROKER (CSB) --- 16

2.1.1. What is CSB? -- 16

2.1.2. Roles of CSB: Service Management --- 17
2.1.2.1. Cloud Service Intermediation/Integration --- 17
2.1.2.2. Cloud Service Aggregation --- 17
2.1.2.3. Cloud Service Arbitrage -- 18

2.1.3. The need of Cloud Service Broker -- 18

2.1.4. Related work (CSB) --- 19
2.1.4.1. Jamcracker CSB Platform -- 19
2.1.4.2. Forrester’s CSB Business Model -- 20

2.2 CLOUD PROVIDER --- 21

2.2.1. Service Deployment --- 21
2.2.1.1. Private Cloud: --- 22
2.2.1.2. Public Cloud --- 22
2.2.1.3. Community Cloud-- 23
2.2.1.4. Hybrid Cloud -- 23

2.2.2. Service Orchestration -- 23
2.2.2.1. Infrastructure as a Service (IaaS) --- 23
2.2.2.2. Platform as a Service (PaaS) --- 24
2.2.2.3. Software as a Service (SaaS) -- 24

2.2.3. Cloud Service Management --- 25

3. DESIGN ASSUMPTIONS OF CLOUD SERVICE BROKER --- 27

3.1. CLOUD SERVICE BROKER WORKFLOW DESIGN --- 29

3.1.1. CSB – Client Controller -- 31
Spring Framework: --- 32
Why Spring Framework? --- 32

3.1.2. CSB – Cloud Connector --- 33
Openstack4j-- 35
Why Openstack4j? --- 37

3.1.3. CSB Message Diagram --- 37

3.1.4. CSB Algorithm (Context & Location Aware)--- 39

3.2. CLOUD PROVIDER PLATFORM --- 41

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 6 of 86

3.2.1. Openstack -- 41

Why Openstack? --- 43

3.3. CSB – CLIENT PLATFORM --- 43

3.3.1. Android Client -- 43

4.1. PLATFORM INDEPENDENT CLOUD-SERVICE-BROKER -- 46

4.1.1. CSB Java-PROJECT -- 46
Default package --- 47
Client -- 48
Controller --- 48
Resources -- 48
Service -- 49

4.1.2. CSB Database --- 51

4.2. CSB CLIENT IMPLEMENTATION -- 53

4.2.1. Central module --- 53

4.3.2. Connection-Handler Module --- 54

4.3.3. App-WebView-Client Module--- 55

5.1. CSB OPERATIONS -- 57

5.2. ANALYSIS OF CSB’S HANDLING CLIENT REQUEST --- 58

5.2.1. x86-64 based Standard Browsers requests Results: --- 58

5.2.1. Mobile Device’s Browsers Request Results: -- 60

5.2.2. Androids Clients-APK Requests Results: -- 60

5.2.3. Evaluation of CSB Client handling results -- 61

5.3. CSB PERFORMANCE ANALYSIS -- 62

5.4. CSB -CLOUD INTEGRATION PERFORMANCE ANALYSIS --- 63

6. CONCLUSION -- 68

6.1. SUMMARY -- 68

6.2. FUTURE WORKS -- 70

APPENDIX – A -- 71

1.1. OPENSTACK MULTI-NODE CLOUD CONFIGURATION --- 71

1.2.1. Openstack Installation -- 72

1.2.3. OpenStack Configuration -- 75
1.2.3.1. Openstack Instance’s web-server Configuration --- 78

APPENDIX - B --- 80

LIST OF TABLE -- 80

LIST OF ACRONYMS -- 80

APPENDIX – C -- 82

BIBLIOGRAPHY --- 82

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 7 of 86

List of Figure

Figure 1.1: High Level System Architecture __ 9

Figure 2.1: NIST Cloud Computing Reference Architecture [19] _________________________ 15

Figure 2.2: Relationship between Consumer, Broker & Provider ________________________ 16

Figure 2.3: Possible CSB Platforms and its Services ___________________________________ 18

Figure 2.4: Jamcracker CSB Platform [25] __ 20

Figure 2.5: Future CSB Business Model of Forrester [26] ______________________________ 21

Figure 2.6: Cloud Deployment type ___ 22

Figure 3.1: Conceptual Design of Cloud Services Broker _______________________________ 28

Figure 3.2: Design of Hybrid CSB Workflow ___ 29

Figure 3.3: CSB - Client Controller and related components ____________________________ 31

Figure 3.4: Spring Framework Architecture [37] _____________________________________ 32

Figure 3.5: CSB-Cloud Connector and related component _____________________________ 34

Figure 3.6: CSB- Cloud Connectors Cloud-APIs' ______________________________________ 36

Figure 3.7: CSB -Message Diagram __ 38

Figure 3.8: Openstack Multi-Node Architecture Design _______________________________ 42

Figure 3.9: Architectural Design of CSB Client Android Application ______________________ 44

Figure 4.1: Default Package of CSB Java Project ______________________________________47
Figure 4.2: CSB Client Information Storing Queries____________________________________48
Figure 4.3: CSB server-count to connect to multiple clouds ____________________________ 49

Figure 4.4: CSB Automation Services __ 49

Figure 4.5: CSB Cloud VMs' location acquiring process ________________________________ 50

Figure 4.6: CSB Algorithm to identify nearest cloud VMs' ______________________________ 50

Figure 4.7: CSB clients stored information (including IPs', location, etc) ___________________ 51

Figure 4.8: CSB servers stored information (including IPs', location, etc) __________________ 52

Figure 4.9: CSB clients' location acquiring process from the host devices _________________ 54

Figure 4.10: CSB clients' request parameter building process ___________________________54

Figure 4.11: CSB clients' JSON REST & HTTP handling process __________________________ 55

Figure 5.1: Mobile Browser requests results from CSB ________________________________ 60

Figure 5.2: Android application's request results from CSB _____________________________ 61

Figure 5.3: CSB Client's Request Results Comparison__________________________________61

Figure 5.4: CSB Enterprise Integration Tools Performances ____________________________ 63

Figure 5.5: CSB Cloud Integration Tools Performances ________________________________ 64

Figure 5.6: CSB Automated Cloud Resource Provisioning_______________________________66

file:///E:/Ahsan%20Personal/Cloud%20eclipse%20all/Masc%20Project/MASC%20Thesis-Md%20Ahsan%20-MJ.docx%23_Toc429224639
file:///E:/Ahsan%20Personal/Cloud%20eclipse%20all/Masc%20Project/MASC%20Thesis-Md%20Ahsan%20-MJ.docx%23_Toc429224641
file:///E:/Ahsan%20Personal/Cloud%20eclipse%20all/Masc%20Project/MASC%20Thesis-Md%20Ahsan%20-MJ.docx%23_Toc429224642
file:///E:/Ahsan%20Personal/Cloud%20eclipse%20all/Masc%20Project/MASC%20Thesis-Md%20Ahsan%20-MJ.docx%23_Toc429224643
file:///E:/Ahsan%20Personal/Cloud%20eclipse%20all/Masc%20Project/MASC%20Thesis-Md%20Ahsan%20-MJ.docx%23_Toc429224644
file:///E:/Ahsan%20Personal/Cloud%20eclipse%20all/Masc%20Project/MASC%20Thesis-Md%20Ahsan%20-MJ.docx%23_Toc429224645
file:///E:/Ahsan%20Personal/Cloud%20eclipse%20all/Masc%20Project/MASC%20Thesis-Md%20Ahsan%20-MJ.docx%23_Toc429224646
file:///E:/Ahsan%20Personal/Cloud%20eclipse%20all/Masc%20Project/MASC%20Thesis-Md%20Ahsan%20-MJ.docx%23_Toc429224647

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 8 of 86

Chapter 1:

Introduction

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 9 of 86

1. Introduction

With the evolution of cloud computing, Cloud providers typically use a "pay as you go"

model, this can lead to unexpectedly high charges if cloud consumers and enterprise

administrators do not adapt to the cloud pricing model [1]. The lack of common Cloud

standards and “vendor-lock-in” issues obstruct the interoperability across Cloud

providers [2]. For this reason, cloud users have to manually choose cloud provider to

meet their functional and non-functional service requirements while keeping the

payment low. It is hard for the cloud users to collect and maintain all the needed

information from current commercial Clouds to make accurate decisions [3].

According to Forrester Research, “developers are bypassing IT and putting applications

onto public clouds at a rate five times greater than IT thinks” [4]. Enterprises need to

hook up [users, systems, databases, applications, and web services] with more than a

dozen different cloud services providers. To meet the business demand, enterprises are

looking to hook into a Cloud Service Brokers that would serve as mediators and also

would provide customization, integration, security, and aggregation services [4].

Figure 1.1: High Level System Architecture

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 10 of 86

The need of a universal service broker has become essential to facilitate cloud users’

ability to find the most suitable cloud services by taking their functional and non-

functional SLA requirements into account. What enterprise need is a multi-cloud service

broker framework to act as a mediator between consumers and multiple cloud

providers to automate the service selection and deployment. The framework requires

components for decision-making, monitoring, SLA management and interoperability

layer to interact with heterogeneous Clouds [4].

1.1. Problem Statement

The Cloud customers are facing a difficult problem of finding the appropriate Cloud that

fit business needs. As a result, uniform interfaces & intermediary services are needed to

prevent monopolies of single Cloud providers. The potential use cases of the Inter-cloud

vision are defined by the Global Inter-Cloud Technology Forum (GICTF) that the

possibility of market transactions via brokers [5]. The independent broker entity needs

to act as a mediator between the Cloud consumer and multiple Cloud providers to

support consumers in selecting the provider that better meets consumer’s

requirements. By using uniform interface, broker service needs to easily deploy and

manage user service regardless of the selected provider. Former research director at

Gartner, Frank Kenney [6], explained the need for Cloud brokers as:

“The future of Cloud computing will be permeated with the notion of brokers negotiating

relationships between providers of Cloud services and the service customers”

Currently, researchers trying to resolve many technical challenges in regards to the

design and use of heterogeneous cloud brokers. In this thesis we identified the major

problems that need to be addressed [6].

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 11 of 86

1.1.1. Automatic Service-selection issues (decision-making)

Presently cloud consumers are bound to manually make decisions about which Cloud to

choose to keep the payment low. For example of the Amazon web services (AWS),

mobile cloud users of an enterprises are redirected to the amazons specific cloud

servers (e.g. AWS data centre in Asia, Europe, America, etc) which are far away from the

users mobile users, which result delay in services, mobile users end up paying more for

mobile data, enterprise needs to pay more to Amazon for longer cloud service uses and

lastly Amazon pays more for power consumption. Where as if the cloud broker holds

real-time multi-cloud-providers resource repositories, then broker would be able to

instantly analyse cloud consumer’s request upon receipt and process requests based on

both users and providers geographical location, required service type, application server

type, etc [7].

1.1.2. Interoperability Issues (Vendor Lock-in)

All the existing commercial brokerage solutions [8], support specific Cloud platforms and

offer limited broker functionality. Most of the proposed architectures are still visionary

[9], and have only prototypical or partial implementations [10]. From the Gartner

research (Frank Kennedy) we realize that cloud service broker technology is the key to

enabling the interoperability across Clouds provider and to permit their orchestration

through centralized broker entities [6].

1.1.3. Heterogeneity Issues (Inter-Cloud)

The most important feature of the inter-Cloud vision is that consumers can benefit

services from multiple providers to run complex applications [11]. Unfortunately, the

heterogeneity of the Cloud services differs in their QoS, cost and functionality which

makes the manual composition of services a big challenge for users. Researchers [5],

focusing on semantic description of a single cloud services which are not suitable

enough for describing composite services provisioned by different Cloud providers [12].

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 12 of 86

Heterogeneous service broker can use the semantic description to automatically build

provider & service repositories for the purpose of discovery and selection [13].

1.1.4. Cloud awareness issues (Context & Location)

The multi-Cloud research is still in its early stage [13, 14] and most of these works

concentrate on running workflows on multiple Clouds without providing solutions to

manage the Inter-cloud context & location aware data transfer at runtime, which can

affect costs and performance [11]. Location awareness is important to support data-

intensive workflow applications SLA constraints such as Cloud-to-Cloud latency, client-

to-Cloud throughput, etc.

1.2. Research Questions

In regards to design and implement the multi-Cloud service broker, the following

research questions have arisen:

o How to design the framework of a generic architecture of a multi-Cloud service

broker [16]?

The centralized multi-Cloud broker framework requires interacting on behalf of the

cloud consumers with multiple, interoperable Clouds provider to perform different

management and monitoring tasks [12].

o How to implement generic multi-Cloud broker architectures by uniform abstract

layer (API) between the broker and the providers [5]?

The broker should be able to communicate cloud providers via its API to retrieve real-

time update of various cloud provider resources. The purpose of these periodic updates

is to add new service values like matchmaking and data management and automatic

decision, service provisioning and execution status.

o How to achieve a composite multi-Cloud service semantically [13]?

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 13 of 86

To achieve this requirement, the broker should perform an efficient decision

making process based on the user request parameter by its Cloud monitoring

databases [17]. The collected Cloud providers’ monitoring data and service

descriptions need to be stored in an abstract manner within data repositories.

Semantic techniques should be easily adaptable and extendable describe

providers service offerings, QoS metrics, prices as well as the complex SLA

requirements of composite services [18].

1.3 Thesis Organization

We present in Chapter 3 the design of a Cloud Service Broker (CSB) framework to

address the above need and provide the above requirements for multi-cloud

environment, which are further discussed in the context of current research in CSB in

Chapter 2. We further discuss the implementation of our CSB using Openstackj cloud

API in Chapter 4. We demonstrate the proof of concept working of the CSB through our

own Android application that we develop using Spring-framework. We chose the more

difficult path of developing and implementing the CSB in a test-bed instead of simulating

it within CloudSim because it allows our design to integrate the core CSB module with

Open Stack cloud for multi-cloud solution, and with other components such as MySQL

database and interworking with Android client. It also provides us vehicle to experiment

with real life scenarios that can later be developed into a complete multi-cloud solution.

The CSB includes components for enterprise integration tools, queue handler, query

analyzer, decision maker, cloud integration tools to monitor and discover clouds and live

repositories of cloud resources. We validate the functionalities of our CSB and evaluate

its performance in Chapter 5. Finally, we present our conclusion and future work in

Chapter 6.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 14 of 86

Chapter 2:

Background

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 15 of 86

2. Background

As time passes, the computing technology advances immensely. The National Institute

of Standards and Technology (NIST) [19] defines cloud computing as “Cloud computing

is a pay-per-use model for enabling ubiquitous, convenient, On-demand network access

to a shared pool of configurable computing resources (e.g. networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.”

Figure 2.1: NIST Cloud Computing Reference Architecture [19]

NIST cloud reference diagram above categorizes the major cloud computing actors, their

relationships, functions & activities. We modified the diagram to illustrates a high-level

architecture to understand all the requirements, uses, characteristics of cloud

computing. The actors involved in cloud ecosystem are cloud consumer, cloud provider,

cloud auditor, cloud broker and cloud carrier [19]. Among them, cloud broker manages

the delivery of cloud services and also maintains relationship between cloud providers &

cloud consumers.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 16 of 86

2.1. Cloud Service Broker (CSB)

2.1.1. What is CSB?

Gartner Group defines a CSB is “an IT role and business model in which a company or

other entity adds value to one or more (public or private) cloud services on behalf of

one or more consumers of that service [6]”.

Brokers might be middleware, platforms or suites of technologies that enhance the base

services available through the cloud. It can manage access to inter-cloud services,

provide greater security and even create completely new services [22].

Figure 2.2: Relationship between Consumer, Broker & Provider

Major CSB characteristics are as follows:

o It enables Cloud Service Providers (CSPs) to register available their Infrastructure

as a Service (IaaS) into the CSB’s service register catalogue [6]

o Then it enables Cloud Service Consumers (CSCs) to find the needed

infrastructure services from the CSB’s catalogue, if a CSCs cannot search the

service satisfying their utilization intent, then CSC can request to find candidate

CSPs suitable to their needs by specifying service agreement to want to use

o It deals with CSC’s service agreement that requires ability of CSPs by negotiating

and it also offers and manages the most suitable IaaS product [6].

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 17 of 86

2.1.2. Roles of CSB: Service Management

By using CSB, enterprises can add value to cloud services on behalf the users of that

service via three primary roles including integration, aggregation and customization

brokerage [23].

2.1.2.1. Cloud Service Intermediation/Integration

It directly enhances a given service by adding value to enhance some specific capability.

It could also supervise pricing and billing, access management, etc. This type of

brokerages will exist in three places [24].

o It may reside in the cloud at the provider's location and may allow let the

provider to deliver a level of governance beyond the original service.

o It may reside at the enterprises location and may allow local management or

administration of service levels.

o It may reside in the commercial CSB vendors’ location as a service independent

of the original service provider or the consumer location [24].

2.1.2.2. Cloud Service Aggregation

It combines multiple services into one or more new services. It will ensure that data is

modelled across all component services and integrated as well as ensuring the

movement and security of data between the service consumer and multiple providers.

These aggregation brokers will exist primarily in the cloud as service providers in their

own right, forming a layer of service provisions that approximates the application layer

in traditional computing [23]. In aggregation-style brokerages, the services brokered are

generally fixed and won't change frequently.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 18 of 86

2.1.2.3. Cloud Service Arbitrage

It provides flexibility and opportunistic choices for the service aggregator and foster

competition between Clouds e.g. providing a credit-scoring service that checks multiple

scoring agencies and selects the best score [23].

2.1.3. The need of Cloud Service Broker

CSBs are one of the most needed and attainable opportunities for cloud service

providers. What sits between service consumer & cloud provider has become a critical

success factor as cloud services multiply and expand faster than the ability of cloud

consumers to manage or govern them in use. CSBs will increase the ability of consumers

to use cloud services in a trustworthy manner. Cloud providers must begin to partner

with cloud brokerages to ensure that they can deliver the services they promote [23].

The diagram below shows how CSB operators can provide many services between

multiple Cloud Service Providers (CSPs) and Cloud Service Consumers (CSCs) [20, 21].

The role of brokers to add value to services and to deliver new services built and

delivered on top of old services.

Figure 2.3: Possible CSB Platforms and its Services

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 19 of 86

CSBs not only offer intermediation, monitoring, transformation/portability, governance,

provisioning and integration services but also negotiate relationships between various

cloud providers and consumers. Cloud brokerage is needed for the following business

demands [20, 21, 23, 24].

o It ensures efficient business operations through standardized lower business

operation costs, an agile workforce and improving business productivity.

o It establishes an efficient IT operation that improves standardization and

interoperability with easier system and network management

o It improves enterprises ability to address critical issues like security and enables

transformation.

o It supports businesses to achieve maximum return on investment in technology

whilst reducing the complexity of existing environments.

o Evolution of a capability aligned with the core principles of enterprise

architecture.

2.1.4. Related work (CSB)

2.1.4.1. Jamcracker CSB Platform

Jamcracker CSB platform includes aggregation, cataloguing, provisioning, access control,

security, auditing, monitoring, reporting, metering, billing, administration, and user

support. It is based on the Java Enterprise Edition (Java EE) and it includes support for

standard Web-services protocols such as SOAP/XML, SAML, WSDL, and DSML. This

standards-based platform foundation ensures that cloud providers & enterprises have

the freedom to integrate with any other services regardless of technology [25].

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 20 of 86

Figure 2.4: Jamcracker CSB Platform [25]

The platform is built on a standards-based architecture that is highly extensible through

its data model and APIs. Major design principles include:

o Standards-based architecture

o Extensible data model

o Configurable workflow engine

o Published APIs for service and enterprise integration

o Federated user and security policy management

2.1.4.2. Forrester’s CSB Business Model

Forrester believes that by using existing simple cloud broker model enterprises can

access to infrastructure as a service on demand. But in future, it expects a ‘full broker’

that will automatically span all clouds and acts as a “fixer” for companies seeking to

deploy new apps or to handle busy times of year. The brokers do not just do this for

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 21 of 86

compute resources, but also will do it for consumer, e.g. automatic decision making,

workload management, dynamic sourcing, elasticity management, etc [26].

Figure 2.5: Future CSB Business Model of Forrester [26]

2.2 Cloud Provider

Cloud Provider runs the cloud software’s to integrate their data centres under one cloud

controller then deliver cloud services to Cloud Consumers through Internet. Generally,

providers are equipped with the following main characteristics [27]:

2.2.1. Service Deployment

NIST categorizes four possible Cloud deployment models are public cloud, private cloud,

community cloud and hybrid cloud. Cloud providers need to design their infrastructure

to operate in one of the above deployment models [24].

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 22 of 86

Figure 2.6: Cloud Deployment type

2.2.1.1. Private Cloud:

Providers’ services are restricted to the businesses that own and manage the

infrastructure [24].

o Leverages existing CapEx (capital expenditure)

o Intended for a single Tenant

o Can help reduce OpEx (operational expenditure)

2.2.1.2. Public Cloud

The provider’s cloud resources should be available to the general public via internet.

o Provides on-demand services over public network to the general public.

o Supports multiple tenants [24]

o Offers pay-as-you-go (utility billing) model.

o Enable enterprises to Shifts from CapEx to OpEx

o Example of public cloud: In 2006, Amazon published its Elastic Compute Services

(EC2) [28] & it’s Simple Storage System (S3) [29] to allow users to rent a server

and store data on Amazon’s hosted computing & storage infrastructures.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 23 of 86

2.2.1.3. Community Cloud

Providers’ infrastructure are shared by a group of organizations with common concerns

o Supports resource portability

o Reduce costs by allowing organizations to share CapEx & OpEx among each

others [24].

o Bring together groups of organizations with common goal/interest.

2.2.1.4. Hybrid Cloud

In this infrastructure, services are owned and managed by two or more clouds provider

(private, public or community) [24].

o Bridges on or more private, public or community clouds

o Supports resources portability

o Allows manipulation of CapEx & OpEx to minimise costs

2.2.2. Service Orchestration

It stitches cloud providers software & hardware components together to

connect and automate workflows to deliver a defined Service. Three main service layer

of Orchestration are explained below [24]:

2.2.2.1. Infrastructure as a Service (IaaS)

It is a self-service model to access, monitor and manage cloud infrastructures such as

compute (VM), storage, networking services (router, firewalls), etc. enterprises can

install any required platform on top of cloud IAAS layer to establish their own computing

environments [30].

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 24 of 86

Requirement of IAAS services:

o If enterprises need dynamic scaling, utility pricing model and variable cost

o For small businesses with no capital to invest in expensive hardware

o If organization is growing rapidly and scaling hardware would be difficult

o If business demand is very volatile and need temporary infrastructure [24]

2.2.2.2. Platform as a Service (PaaS)

It allows enterprises to develop, test and deploy their applications quickly, easily and

without the complexity of buying and maintaining the software and infrastructure

underneath it [24].

Requirement of PAAS services:

o To provide customers an entire hosting environment to develop their

applications

o To provide Multi-tenant architecture for multiple concurrent users to utilize the

same development application

o To provide built in scalability of deployed applications such as failover & load

balancing [30]

o To Integrate with web services and databases via common standards

2.2.2.3. Software as a Service (SaaS)

It eliminates the need to install and run applications on individual computers. It enables

enterprises to streamline their support & maintenance because everything can be

managed remotely e.g. applications, runtime, data, virtualization, etc [31].

Requirement of SAAS services:

o to deal with applications from a central location

o to distribute software in a “one-to-many” model

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 25 of 86

o cloud consumers not required to handle software upgrades and patches

o Its API’s allow for integration between different pieces of software [24]

2.2.3. Cloud Service Management

It includes all types of service related functions that are crucial for the operations &

management of those services required by cloud consumers such as:

o On-demand access- automatic ubiquitous access over the Internet to the

resources [32].

o Resource elasticity- capability to scale resources up and out as required.

o Resource pooling- multi-tenant access to shared resources.

o Pay-per-use- requested resources are charged only when used [33].

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 26 of 86

Chapter 3:

Design Assumptions of Cloud-

Service-Broker

In this chapter we present the design of our cloud service broker that maintains its own

database of multiple cloud providers’ resources and provides binding for location &

context aware services. The following functions of the broker are explained in this

chapter:

 Design of CSB

 CSB-Workflow

 CSB Components (Client Controller, Cloud Connector,

Database Manager, Query Analyzer, Decision Engine

 CSB Message Diagram

 CSB Algorithm

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 27 of 86

3. Design Assumptions of Cloud Service Broker

The lack of interoperability across cloud providers, their costs and SLAs hindered

consumers’ ability to deploy their services on multiple Clouds [34]. In this chapter, we

address research questions as specified in Chapter-1 then present a broker-based

framework to assist consumers selecting and deploying their services on multi-Cloud

environments with respect to their needs in terms of SLA, location and context

awareness.

Current frameworks for deploying multi-cloud services are still either in the

implementation phase or do not provide all the desired functionalities needed by users

[35]. In this section, we propose a generic multi-Cloud service broker framework

developed to facilitate cloud services deployment on multi-Cloud environments. The

three-tier architecture of the proposed framework, depicted in the following Figure 3.1,

is composed of the users, Cloud service broker and the Cloud providers.

The CSB as shown below in the middle tier serves as a mediator between Cloud users

and the providers. The CSB forms the core of our designed framework by offering new,

value-added services to consumers’ applications. Its main task is to find a suitable,

nearest target provider cloud to run user requested applications on multi-Cloud.

Furthermore, its design allows the deployment and monitoring of services on top of

heterogeneous Cloud providers. The internal components of every tier are discussed in

detail in the following subsections [36].

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 28 of 86

The ‘Cloud service broker’, ‘Cloud providers’ and ‘Users’ roles are briefly described in

the subsection 3.1, 3.2 and 3.3.

Client: Applications (x86*64 based Applications & ARM 32*64 based Applications)

Cloud Service Broker:
 Enterprise Application Integration (Client Controller)

Cloud Integration (Cloud Connector)

Public Cloud (e.g. Openstack)

Controller Node 1-n: Network Node 1-n:

()

Compute Node 1-n:

Hypervisors (KVM, HYPER-V, Vshpere, Xen, etc)

VM

Guest OS

VM

Guest OS

VM

Guest OS

Private

Cloud

Community

Cloud

Hybrid

Cloud

Client API (HTTP; JSON/REST; SOAP/ XML)

Services &

Providers live

Repositories

Automation, Orchestration, Service Catalogue/management, Single

sign-on, Integration, Provisioning, Billing, Reporting, security,

Resource Allocation, Location/Context Engine, Match-making

Openstack / EC2 API

Figure 3.1: Conceptual Design of Cloud Services Broker

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 29 of 86

3.1. Cloud Service Broker Workflow Design

We describe the CSB components through cloud workflow shown in Figure 3.2.

Figure 3.2: Design of Hybrid CSB Workflow

The main components of the broker are explained below:

o CSB-Client-Controller:

It is one of the main components that initially accepts all clients’ requests then

asks other CSB components to process the request in the order of their calls, and

then finally responds the clients with results.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 30 of 86

o CSB-Cloud-Connector:

 The other main component of the broker is ‘CSB-Cloud-Connector’ that not only

maintains the connection with multiple cloud providers and updates broker

database every 5 minutes with cloud resource information but also able to

execute resource provisioning tasks in the remote clouds as per broker needs.

o Queue handler:

It adds each client’s request in its request-pool and also asks database manager

to store the request’s parameter into the client table of the broker database

named ‘csb-db’.

o Query Analyser:

It deals with client’s request parameter such as context (application type,

priority, connection type, etc) and location (both clients and servers latitude and

longitude). It accesses ‘csb-db’ through DB-manager and compares cloud

providers resources to find all the candidate servers.

o Decision Engine:

It performs a matching process where the functional and non-functional SLA

requirements of users are compared to the monitored SLA metrics as well as the

capacity load of the Clouds. It is able to use resource allocation algorithms to

make a trade-off between the cost and SLA characteristics of the selected

Clouds. It controls negotiation and provisioning such as high-level management

(e.g. create, start, stop, suspend VM, image, volume, network) to meet peak

hours service demands.

o Database Manager:

The DB manager and the database can reside in different machine as the ‘DB

manager’ acts as a SQL client and connects to the database server through

TCP/IP connection. It manages (stores, extracts and updates) client request

parameter and Inter-cloud resources at runtime [36].

In the following subsections we discuss each CSB component in detail.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 31 of 86

3.1.1. CSB – Client Controller

The client controller is the interface to clients that accepts their requests. It then

forwards each request to Queue handler to put them in the ‘request pool’. It retrieves

requests from Queue handler in FIFO order and dispatches them to the query analyzer

for further processing. The Query analyzer asks db manager to list all cloud servers that

match with the service type of client required service type (e.g. App1-HTTP, App2-FTP,

App3-SMTP, etc). It reviews the server-list to form the list of active servers list. Then

query analyzer further analyzes the active-server-list to find the nearest cloud server.

Finally Query analyzer sends the analyzed data to the Decision Engine, then Decision

engine decides which cloud server address to select for each clients request and sends

the results to the client controller. Finally, the client controllers sends the cloud server

IP address to the client.

Client
Controller

Query

Analyzer

Database

Manager

Decision

Engine

CSB-DB

Queue

Handler

Client-1:

Client-n:

Send Request
JSON/HTTP/etc

Send Cloud Server IP
Add into

queue

Store Request
Parameter

Analyze request

Query: store,
replace, Extract

Query Results

Request data

Reply data

Analyzed data

Request Results

Figure 3.3: CSB - Client Controller and related components

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 32 of 86

We have chosen Spring Framework as Enterprise Application Integrator to handle

requests from many commonly used types of client requests by using JSON REST, SOAP

XML and HTTP API. The Spring-Framework modules are integrated with our client

controller to process different types of client applications and request parameters.

Spring Framework:

It is a popular open source Java platform to facilitate infrastructure support to develop

high performing, easily testable,

reusable Java applications. It

handles the infrastructure so

developers can focus on

application. As shown in the

figure, its features organized

into about 20 modules. These

Modules are grouped into Data

Access/Integration, Web, Aspect

Oriented Programming (AOP),

Core Container, Instrumentation,

Messaging, and Test [37].

Why Spring Framework?

It is lightweight when it comes to size and transparency. The basic version of spring

framework is around 2MB. Following is the list of few important reasons of using Spring

Framework [37]:

 Figure 3.4: Spring Framework Architecture [37]

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 33 of 86

o It enables developers to create applications from plain old Java objects (POJOs).

The benefit of using POJOs is that we do not need an EJB container (e.g.

application server) but we have the option of using servlet container (e.g.

Tomcat or others) [37].

o It is organized in a modular fashion so we have to worry only about

packages/classes we need and ignore the rest.

o It truly makes use of the existing technologies such as several ORM frameworks,

logging frameworks, JEE, Quartz and JDK timers, other view technologies.

o It offers a handy API to translate technology-specific exceptions (thrown by

JDBC, Hibernate, or JDO) into reliable, unchecked exceptions.

o Its dependency injection helps in gluing classes together and same time keeping

them independent.

3.1.2. CSB – Cloud Connector

The main purpose of the Cloud Connector is to be able to execute resource provisioning

tasks on behalf of cloud controller that eliminates the need of manual resource

provisioning on multiple cloud. The cloud connector is capable of to remotely

creating/launching/stopping/removing remotely any cloud server. Then cloud services

will be easily accessible and affordable for cloud service consumers.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 34 of 86

The cloud connector shown above designed to remotely connect, monitor and store

o Our Cloud connector runs daemon services every 5 minutes to build and

maintain live repositories from multiple cloud controllers. To connect to multiple

cloud controllers it maintains server count feature for each cloud’s API

authentication calls. It asks Database manager to store cloud-resources-

information after each periodic update it receives via API calls.

o The Connector is able to execute tasks in the cloud controller via API calls

whenever required by the decision engine. For example, if the decision engine

decides to use cloud servers that are paused/off then then the connector can

Cloud Connector

DB

Manager

Decision

Engine

CSB-DB

Provider: n

Provider: 1
Automation: create /

start/stop/destroy cloud
VM/network/Storage, etc

Server Count

Store Cloud
resources

Query: store,
replace, Extract

Query Results

Query cloud resources
every 5 minutes: API

Request (EC2/Openstack)

Exec Query, Reply Results

Figure 3.5: CSB-Cloud Connector and related component

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 35 of 86

immediately start the cloud server by API calls without any authentication delay

or human interactions.

o The step-by-step API calls between our connector and cloud controllers are

shown in the message diagram in Figure 3.7

We have chosen Openstack4j and AWS java to implement our cloud connector to

connect, extract cloud resources and store in database. The Openstack4j supports most

of the cloud API such as EC2 and Openstack. It even has separate API for cloud compute,

Identity, image, Network, Volume, Object store, telemetry and Orchestration, etc. The

reason of choosing Openstack4j is described below [34].

Openstack4j

It is an open source library that helps manage most popular cloud deployment (e.g.

OpenStack and AWS EC2). It allows provisioning and full control of OpenStack system.

Its library offers following API as shown in Figure 3.6 [38]:

o Identity (Keystone): This API provides the central directory of users, tenants, and

service endpoints and also responsible for authenticating and providing access to

all the other OpenStack services. It enables administrators to configure

centralized policies, users and tenants [38].

o Compute (Nova): It provides management to Servers (running virtual machines),

VM Management, Flavors and diagnostics, etc.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 36 of 86

o Image (Glance): It provides discovery, registration and delivery services for cloud

images.

o Network (Neutron): It provides network connectivity between interface devices

managed by OpenStack service such as Nova.

o Block Storage (Cinder): It mounts drives to scale storage. Object Storage

o Object Storage (Swift): It provides object storage for files and media which can

be shared globally or kept private for adhoc storage.

o Telemetry (Ceilometers): It delivers metering and statistic measurements against

OpenStack core components. It is very useful for customer billing, account and

reporting of resources [38].

o Orchestration (Heat): It can control Stacks, Templates, Resources and Events.

CSB Cloud Connector:

Openstack4j/EC2

Figure 3.6: CSB- Cloud Connectors Cloud-APIs'

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 37 of 86

Why Openstack4j?

OpenStack4j has made it easy to manage large cloud system by providing a simplistic

API and intelligent error handling. The reasons of choosing openstack4j are explained

below [38]:

o Fluent Interface: All API calls are fluent by nature as they are object oriented,

easy to use and easy to read.

o Concrete API: APIs are interface defined includes corresponding models and

builders. API Implementations are defined within an ‘internal’ package.

o Deployment Tested: APIs have been tested and are used in various cloud

environments.

o Exception Handling: Exceptions shows exact reason for failure allowing cloud

application to report appropriately [38].

3.1.3. CSB Message Diagram

In this subsection we have constructed a detailed Message diagram of the overall

process of the cloud service broker. The diagram below shows that initially cloud

connector acts as a client to cloud controller, then authenticates via either EC2 or

Openstack API calls. . After the initial authentication it sends request to each cloud

controller to build its database. It continuously monitors the changes of the resource

information based on the periodic updates it receives from provider clouds and it then

updates its database through db manager. The cloud connector is incarnated as

daemon process so that it performs its functions independent to the controllers that

process client requests simultaneously. The client controllers receive simultaneous

requests from any client application then process each request in the order they receive

via queue handler. The Query analyzer analyzes requests then sends analyzed data to

the decision engine. The Decision engine sends results to client controller then

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 38 of 86

controller replies the result immediately. It also requests the cloud connector if it is

needed to execute tasks in remote cloud controllers in provider clouds. .

Client
Client

Controller

DB

Manager

Decision
Engine Query

Analyzer

Cloud
Controller: 1-n

Queue
Handler

Send Request
JSON/HTTP/etc

Send Cloud Server IP

Query data

Store Request
Parameter

Analyze request

Add into
queue

Response data

Store Cloud
resources

Analyzed data

Request Results:
Nearest and required

Application server

Automation: create /
start/stop/destroy cloud

VM/network/Storage, etc

Request Cloud: 1-n
authentication info

Response

Send API Auth Request

Verify Auth Request
& send Token

Token + Query resources
every 5 minutes

Verify Token + Exec
query, reply results

Token + create/Destroy VM

Image/Network/launch VM

Verify Token + Exec
query, reply results

Server
Count

Cloud
Connector

Figure 3.7: CSB -Message Diagram

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 39 of 86

3.1.4. CSB Algorithm (Context & Location Aware)

In this subsection we present a simple context and location aware cloud selection

algorithm that is executed in the decision engine. More sophisticated algorithms can be

designed and implemented using our proposed CSB framework. The idea of presenting

simple algorithm to show the proof of concept of our CSB. The main focus of our thesis

to design the CSB, but to test the CSB we need to design our own context & location

aware algorithm.

// CSB Algorithm (Context & Location aware)

Input: (Request a
Req

) //Context of Clients request parameter

{

a
Req.Loc (); //location loc (latitude, Longitude)

a
Req.Prt (); //Priority Prt (0-normal, 1-high)

a
Req.ST (); //Service Type ST (App1-HTTP, App2-Ftp, App3-SMTP)

}

Output: Nearest Cloud Server = calc loc[active server{query DB(cloud-server, Client)}]

// Initialize All CSB-Server and CSB-Client request variable

// calculate ExecTime [|T| * | a
Req

|] //Queue Handlers calculation time of each request

in pool

// for each clients request list all the server matches the service type from ‘csb-db’

S
S-List

= QueryDB.GetServerList {Cloud.ST() == a
Req.ST ()}

//find all the active server from the server-list (S
S-List

)

A
S-List

= S
List

.GetActiveServerList (vm-stat == Active)

//find the nearest server from the Active-server-list (A
S-List

)

N
S

= A
S-List

.GetNearestServer {Cloud.S
Loc

(), a
Req.Loc()}

//find all the active server from the server-list (SS-List)

//AS-List = SList.GetActiveServerList (vm-stat == Active)

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 40 of 86

AS-List=Null;

S= S
S-List

;

For (int i=0; i<n; i++)

{

 If (isActive (s[i]))

 AS-List.add (s[i]);

}

Return AS-List;

//find the nearest server from the Active-server-list (AS-List)

//NS = AS-List.GetNearestServer {Cloud.SLoc(), aReq.Loc()}

NS = Null;

Distance = ;

S =AS-List.Loc;

C =aReq.Loc;

For (int i=0; i<n; i++)

{

 newDistance = Distance (S[i], C);

 If (Distance > newDistance)

 {

 Distance = newDistance;

 NS. add (S[i]);

 }

}

Return NS;

Table 3.1: CSB Algorithm (Context & Location Aware)

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 41 of 86

The above algorithm takes few inputs from client request parameter, then analyze

those inputs by comparing with cloud resources information from our CSB live database

named csb-db, and finally makes the cloud (server) selection.

o for each clients request list all the server matches the service type from ‘csb-db’

o find all the active server from the server-list (S
S-List

)

o find the nearest server from the Active-server-list (A
S-List

)

3.2. Cloud Provider Platform

3.2.1. Openstack

To test our CSB in real cloud systems we have chosen OpenStack cloud. OpenStack is the

most popular open source complete cloud computing platform that is currently

supported by more than 150 tech companies worldwide. It allows users to manage

cloud resources through web-based dashboard, command-line tools, and RESTful API

[40].

There are some basic requirements we need to meet to deploy OpenStack. Here are the

requisites, drawn from the OpenStack manual [39].

o Hardware: we are using IBM rack server x3650 with 16GB RAM. We will create 4

VM and will name them as Controller Node, Compute Note and Network node

and CSB Node. All nodes have 2 CPUs, 4GB of RAM and a 60GB root volume, with

the exception of the compute nodes that have 6GB of RAM so they can better

run virtual guests [39].

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 42 of 86

o Operating system (OS): Although OpenStack supports many operating systems,

we have chosen open-source enterprise class OS named CentOS for our

multimode cloud setup.

The figure above shows our Openstack multi-node cloud design with 1 controller node,

We created 1 network node and 1 compute node for each provider cloud. We have

created management network for all three nodes and external network for controller

and network node, and the compute node and network node with data network. In

chapter 4 we will explain the functions of each node and network [40].

Figure 3.8: Openstack Multi-Node Architecture Design

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 43 of 86

Why Openstack?

OpenStack supports a variety of virtualization technologies and hypervisors (e.g. KVM,

Xen, VMware, Hyper-V, QEMU, LXC, etc). In the following table we showed the

similarities between free Openstack and paid AWS (Amazon Web Services) cloud

services [40].

Openstack Used for AWS

Horizon Dashboard for end users & administrators to access
other backend services

AWS Management
Web Console

Nova Compute manages virtualization and takes requests from end
user through dashboard or API to form virtual
Instances

AWS Elastic Compute

Cinder virtualizes pools of block storage devices and also
make them directly attachable to any virtual
instance

EBS(Elastic Block
Store)

Glance Maintains catalogue for images and is kind of a
repository for images.

AMI (Amazon
Machine Images)

Swift Allows applications or instances to store & retrieve
all types of data that can grow without bound

AWS S3

Keystone It is responsible for managing authentication
services for all components. It also enables
administrators to configure centralized policies,
users and tenants.

AWS Identity And
Access
Management(IAM)

Table 3.2: Comparison of Openstack & Amazon Cloud Services

3.3. CSB – Client Platform

To test the capability of our designed CSB we have designed a simple android client. We

chose android as client platform because it is widely supported by tablet, cell phones,

and netbook manufacturers. To develop the android client, we have used Android

Studio which is the official IDE for Android application development [41].

3.3.1. Android Client

The goal of our design is to demonstrate that the client application is able to run from

any devices that run Android OS, and the application is lightweight that consumes fewer

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 44 of 86

resources of mobile devices. The components of android clients are shown in the figure

3.10 and are explained below [41]:

o Central Module: It is the core of the client application as it communicates with

built-in GPS module and data connection module (WiFi, 3G/4G). It also builds

the request parameter to send to CSB by using connection handler.

o Connection Handler: It has two main functions to meet the demand of the main-

activity module. First, it sends request parameter to CSB by using JSON-REST API.

When it receives CSB’s reply with the destination cloud server IP address, then it

forwards the reply to the central module. Second, it sends central module’s http

request to cloud VM and wait for the reply. Third, it forwards the HTTP reply to

App-webview-client module.

o App-webview-client: It parses HTTP responses from the connection handler and

represents the information inside the client without any browser.

Android Client: (Connect Openstack)

CSB:

Cloud VM: 1-n

Cloud Application 1

- - - -

Cloud Application n

Main Activity:

Location Manager, Context

Manager, etc

App WebView Client:

Graphics, Webkit, Util,

etc.

Connection Handler:

JSON Object

Handler, HTTP

Request handler, etc

Spring Framework

JSON REST

API: HTTP

Figure 3.9: Architectural Design of CSB Client Android Application

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 45 of 86

Chapter 4:

Implementation of Cloud-Service-

Broker and Android Client

In this chapter we discuss the implementation of our java based CSB that connects to

cloud remotely, the deployment of Openstack-based provider cloud and

implementation of our Android client to request web services from our CSB.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 46 of 86

4.1. Platform Independent Cloud-Service-Broker

We chose to implement our CSB in Java to make it platform independent. We used

eclipse IDE because it contains a base workspace and an extensible plug-in system to

develop Java applications [42]. Our CSB supports mobile http client applications with

both custom interface and mobile-browser based interface. We implemented the

location and context module using enterprise integration tool (Spring Framework) and

cloud integration tool (Openstack4j).

4.1.1. CSB Java-PROJECT

First we created a java project in eclipse and modified pom.xml to add Spring MVC

framework, and many dependencies such as maven, openstack4j, mysql, JSON, etc.

Table 4.1 shows major components of our pom.xml that downloads all the libraries from

internet required by the dependencies shown below.

<groupId>org.springframework</groupId>
 <artifactId>gs-rest-service</artifactId>
 <version>0.1.0</version>

<dependencies>
 <dependency>

<groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-
web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.pacesys</groupId>
 <artifactId>openstack4j</artifactId>
 <version>2.0.1</version>
 <classifier>withdeps</classifier>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-
java</artifactId>
 <version>5.1.6</version>
 </dependency>
 <dependency>
 <groupId>com.googlecode.json-simple
 </groupId>
 <artifactId>json-simple</artifactId>
 <version>1.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>

<parent>

<groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-
parent</artifactId>
 <version>1.1.10.RELEASE</version>
 </parent>
<build>
 <plugins>
 <plugin>

<groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-
plugin</artifactId>
 </plugin>
 </plugins>
 </build>
<repositories>
 <repository>
 <id>spring-releases</id>
 <url>https://repo.spring.io/libs-
release</url>
 </repository>
 </repositories>

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 47 of 86

<pluginRepositories>
 <pluginRepository>
 <id>spring-releases</id>
 <url>https://repo.spring.io/libs-
release</url>
 </pluginRepository>
 </pluginRepositories>

 <artifactId>commons-io</artifactId>
 <version>1.3.2</version>
 </dependency>
 </dependencies>

Table 4.1: POM.XML of CSB Java Project

We organised all the java class in a conventional manner to modify and update for the

future purposes. The following figure shows how the java class files are organised.

Figure 4.1: Default Package of CSB Java Project

Default package

o Application.java: as shown in figure 4.1, it is the starting point of our CSB project

named resource allocation. It starts the spring MVC framework when we run the

CSB, which handles all the clients’ request. It also runs the ScheduledExecutor

every five minutes to extract live cloud resources.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 48 of 86

Client

o Client.java: As part of Spring MVC, it stores clients request parameter to

csb_client table in the MySql database. It also communicates with Utility.java to

get the analysed results of both clients and cloud providers GPS location. It also

determines the appropriate cloud VM that can be assigned to a client request by

quering Java2MySql.java. The selection of VM is based on its availability (that is if

its status is up) and if it fulfils other client’s request parameter (such as

application type, priority, etc).

Figure 4.2: CSB Client Information Storing Queries

Controller

o CloudController.java: It controls all kinds of clients API request (JSON-REST,

SOAP-XML, HTTP, etc) those looking for cloud services based on their request

parameter. It also instructs Client.java how to process each request parameter,

deals with concurrent request, queue management, etc.

o CloudServer.java: It extracts selected cloud VM’s IP by querying

Java2MySql.java, as requested by CloudController.java,

Resources

o Config.properties:

It is not a java file, but is used to configure properties for the project. It defines

server counts to keep track of the servers that can be connected to multiple

cloud providers by using Openstack4j API (EC2, Openstack, etc). It also provides

the DNS names of the cloud VMs if needed. In the following snapshot it shows

one cloud setup so the server count is set to 1, but we can add more cloud

anytime by changing the server count.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 49 of 86

Figure 4.3: CSB server-count to connect to multiple clouds

Service

o OpenStack.java:

It authenticates with all types of cloud provider by using OpenstackServer.java,

PropertyValues.java, config.properties and openstack4j libraries. It stores all the

cloud resources by using Java2MySql.java. It also executes cloud admin task via

Openstack4j API calls. It is capable of provisioning cloud services such as create,

destroy, launch, stop, suspend cloud VM’s, image, network, volume, flavour, etc

by using openstack4j API calls. It also provides automation services by starting

the required cloud VM’s if found stopped.

Figure 4.4: CSB Automation Services

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 50 of 86

o Java2MySql.java: It is used by several java file as it provides access to the MySql

database by registering JDBC driver, opening connection, executing query,

cleaning up environment then closing the connection. It also runs DB queries on

behalf of other components and moduels that requested the service and returns

the results The snapshot of query in figure 4.4 shows one such queries of

Client.java

Figure 4.5: CSB Cloud VMs' location acquiring process

o OpenStackServer.java: It provides cloud controllers authentication information

(IP, username, password, tenant) whenever needed by OpenStack.java.

o PropertyValues.java: It assists OpenStack.java to authenticate and to handle

resources with multiple cloud providers

o Utility.java: It helps CloudController.java and Client.java by comparing the

location information of both clients and all candidate servers to identify the

nearest cloud VM for every client.

Figure 4.6: CSB Algorithm to identify nearest cloud VMs'

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 51 of 86

4.1.2. CSB Database

We decided to use MySql version 5.6 and workbench version 6.2 as both can be

installed on any platform [43]. We created one database named csb-db that includes

following eight tables:

o Csb_client: It is used to store consumer applications request parameter such as

ip_addr, longitude, latitude, request_type, connection type, request_time,

priority, etc. This information can be used for resource allocation, pattern

analysis and is never deleted from the table. We maintain a single client record

that is never duplicated. The CSB checks the clients unique device ID, and If

user’s location and IP are changed or slew of connection requests arrive at the

CSB, then the CSB updates the client record each time it processes a request.

Figure 4.7: CSB clients stored information (including IPs', location, etc)

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 52 of 86

The following table’s data are updated every 5 minutes by CSB’s ScheduledExecutor to

find most suitable resources when needed

o Cloud_servers: to store cloud VM’s IP, name, status, host, vm state, instance

name, hypervisor host name, availability zone, VM ID, longitude, latitude, DNS

name, etc.

Figure 4.8: CSB servers stored information (including IPs', location, etc)

o Cloud tenants: to store cloud tenants ID, name, descriptions, etc.

o Cloud_flavors: to store cloud flavors ID, name, vcpu, ram, disk, rxtx factors, etc.

This data is used to create new flavors and also to launch new VM’s by CSB API

calls.

o Cloud_images: to store cloud images ID, name, status, size, minimum RAM,

minimum disk, etc. This data is used to create new image and also to launch

new VM’s by CSB API calls.

o Cloud telemetry: to store cloud metering data of CPU, memory and network

costs, etc.

o Cloud_key pair: to store cloud key pair name, public key, fingerprint as these are

first step to launch an instance for the first time.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 53 of 86

o Cloud_secgrouprule: to store cloud security group ID, name, tenant ID, rules, etc.

These rules allow administrators and tenants to specify the type of traffic that is

allowed to pass through a port.

4.2. CSB client implementation

We built our CSB client application by using ‘Android Studio’, as it provides the

necessary tools to develop and execute APK files for android devices. We have created

java based project in android studio named ‘ConnectOpenstack’ and divided clients task

under the following three modules.

4.2.1. Central module

This module is the core of our client’s application. It communicates with android OS

modules such as GPS, WiFi, IP address, etc. First, it collects devices location information,

followed by unique device ID and IPV4 address, then it builds the request parameter

with its own request parameter (e.g. request types, priority, etc). We designed our client

for HTTP request, so in the request parameter the request type is http, which is added in

the request parameter by this module without asking the user. This module contacts the

connection handler to send the request to our CSB which is implemented as a separate

VM outside our Openstack cloud.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 54 of 86

Figure 4.9: CSB clients' location acquiring process from the host devices

The following figure shows how the module builds and sends the request parameter to

our CSB application.

Figure 4.10: CSB clients' request parameter building process

4.3.2. Connection-Handler Module

This module has two main functions to meet the demand of the central module. First, it

sends the request parameter to CSB by using JSON-REST API. When it receives CSB’s

reply with the destination cloud server IP address then it forwards the reply to the

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 55 of 86

central module. Second, it sends the request from central module to cloud VM and

waits for the reply. Third, it forwards the HTTP reply to App-webview-client module.

Figure 4.11: CSB clients' JSON REST & HTTP handling process

4.3.3. App-WebView-Client Module

This module parses connection-handler HTTP responses and represents the information

inside the client without any browser.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 56 of 86

Chapter 5:

CSB Operations and Performance

Analysis

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 57 of 86

The goal of this thesis is to design and implement a platform independent CSB along

with an android client. We also tested our CSB with universal browser Firefox and the

result shows that CSB is able to handle any types of clients request simultaneously and

response promptly with no observable delay. The CSB implementation can perform its

tasks regardless of its location over the public network. It can be implemented inside

the cloud systems in enterprises location and even in home network.

In this chapter we discuss the test runs to validate the operation and performance of

CSB in the following subsections.

5.1. CSB Operations

The CSB is designed such that its modules are independent and execute concurrently

as background processes.. The CSB starts with some modules and then continues until it

is explicitly stopped. During its lifetime it periodically updates its repository with

resource information from multiple cloud providers. The CSB operations in the order of

their executions are explained below:

o The CSB’s application.java calls the spring framework that runs spring MVC

processes to handle clients’ requests.

o The application.java starts the timer ‘ScheduledExecutor’ to run periodic

updates every five minutes in a background process.

o The timer calls the Openstack.java to run all the queries.

o The Openstack.java calls the propertyvalues.java and config.properties to run

the servercount to authenticate and then send queries to multiple cloud

providers.

o To build each queries Openstack.java uses Openstack4j’s API, library and

connectors as most of the cloud responses with either EC2 or Openstack API

calls

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 58 of 86

o Cloud systems authenticate each API requests then execute and send the

results to CSB.

o CSB calls Java2MySql to store every queries results to its MySql database.

o If anytime CSB receives any clients request for cloud service. It uses

cloudcontroller.java to store request parameter by cloudsever.java and

Java2Mysql.

o Then it calls client.java to analyse the request to find the nearest cloud server

by using utility.java, then selects which server runs users required

application, then checks if the server is up or down.

o Lastly cloudserver.java decides and sends the results to clients by using

Spring MVC framework.

o CSB is also able to create, launch and stop VM (and other services e.g. image,

network, etc) in cloud from remote location over the internet by using

openstack4j API. We only implemented the VM automated starting service, if

not running any VM at all.

5.2. Analysis of CSB’s Handling Client Request

In this subsection we analyse how CSB handles its client’s requests. We discuss below

the analysis of test runs of the browser and android applications to send requests, the

CSB’s handling of the requests and the results.

5.2.1. x86-64 based Standard Browsers requests Results:

We have tested CSB by sending request from standard x86*64 based browser

applications, which shows that the CSB responses within seconds as the internet

connection is faster by using LAN/WiFi connections. Firstly we designed CSB to reply

with Cloud-VM’s IP address and the results are shown below:

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 59 of 86

In the above figures we tested CSB by sending request from the lab locally and from the

remote location via internet. In scenario’ we received the results instantly, without any

delay at all.

Secondly, we designed CSB to reply with Cloud-VM’s DNS address and the results are

shown below:

In the above figures we tested CSB by sending request from the lab locally and from the

remote location via internet. In scenario’ we received the results instantly, without any

delay at all.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 60 of 86

5.2.1. Mobile Device’s Browsers Request Results:

In this section we tested the CSB by using mobile devices browser by installing bluestack

(android emulation application) and using its web browser. To test CSB we developed

the following HTTP request parameter with demo longitude, latitude and priority.

o http://ahsan.sytes.net:8080/CloudServer?id=b58b40b3d8620c19&lon=0.0&lat=0

.0&priority=0&reqType=http&connType=wifi

Figure 5.1: Mobile Browser requests results from CSB

From the figure we can see the mobile browser shows the result sent by CSB

programme immediately. We sent the request at 3:23pm and the reply came back

within 1.1 second. Again the performance seems excellent not only because of the WiFi

connection but also for CSB’s quick request handling capacity.

5.2.2. Androids Clients-APK Requests Results:

To further analyse the CSB’s clients handling capacity, in this subsection we send cloud

service request by our Android application. The android application was run on the HTC

desire cell phone with 3G data connection.

We installed our android apk in the cell phone named ‘ConnectOpenStack’. Before

opening the apk we turned on the location services and checked the location by opening

google-map apk. Then we opened the ConnecOpenStack.apk. Initially the apk shows

blank screen for few second and after 3 seconds shows the cloud-vm’s web server page

as shown below.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 61 of 86

Figure 5.2: Android application's request results from CSB

5.2.3. Evaluation of CSB Client handling results

Although we observed CSB’s client handling performances by using local Ethernet, WiFi,

3G connection from standard x86-64 computer based browser (google Chrome, Firefox,

Internet), and Mobile ARM based Android APK and Android Browser.

Figure 5.3: CSB Client's Request Results Comparison

1 2 3 4 5 6

PC-BROWSER-LAN-Eth 0.6 0.4 0.5 0.3 0.4 0.3

PC-BROWSER-LAN-WiFi 0.9 0.8 0.7 0.8 0.7 0.9

Android-Browser-WiFi 1.5 1.4 1.3 1.2 1.1 1.2

Android-APK 2.5 2.1 2 1.9 1.7 1.9

Android-Browser-3G 2.5 2.4 2.3 2.4 2.1 2

Android-APK-3G 3.2 3.1 3 2.9 2.7 2.6

0

0.5

1

1.5

2

2.5

3

3.5

D
e

la
y:

 in
 S

e
co

n
d

s

CSB Client's Request Results Comparison

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 62 of 86

The figure above shows that PC based browser has better processing power/Connection

that is why PC browser gets the results within 1 second. On the other hand mobile

devices has less processing power, and slow connection that is why the first request

results take around 3 seconds to get results. but slowly mobile devices gets results

quickly as the CSB can reply to client quickly to known clients. This extra 1.1 seconds

compared to Wi-Fi connection is nominal as apk need to parse the HTTP results and

display in mobile device which take times, and also cell phones CPU and memory are

weaker than workstations as well. Based on the results we realised that the CSB can

handle both web browser and client’s applications with little delay.

5.3. CSB Performance analysis

In this subsection we analysed the performance of CSB’s enterprise integration tools by

reviewing the client’s request response time, and measuring the organization and

storage of client database by the CSB. The figure below shows how CSB stores and

organises clients request parameter.

o CSB clients table named csb_client shows the ip_addr column is the primary key

of the client record that stores location information, connection types, request

received time, priority, etc. The client record is used to compare the locations of

both clients and destination servers to selects the nearest server that supports

the client application type and runs the clients requested applications. There are

unused information in the client record that can be used in future works for

more sophisticated server selection algorithm that performs pattern analysis

and/or deal with high priority applications, etc. From our test we realized that

the table replaces the duplicate information of the same devices if its IP or other

information are changed by using devices unique ID.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 63 of 86

Figure 5.4: CSB Enterprise Integration Tools Performances

o In the section 5.2.2 and 5.2.3 we observed the application request time was

3.03pm and 3.23pm. It is obvious from the Figure that the CSB’s performance is

adequate as it received, processed and responded promptly both requests

without any delay.

5.4. CSB -Cloud integration Performance analysis

In this subsection we analysed the performance of CSB’s cloud integration tools by

reviewing API request results and the how CSB stores and organizes cloud resources in

its databases.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 64 of 86

The figure below shows how CSB stores and organises multi-cloud resource information.

o CSB server table named cloud_servers shows all the clouds VMs’ information in

this table including the ip_addr that is the primary key, VM’S name, host name,

VM state, hypervisors name, availability zone, ID, server location and DNS name

etc. These information are used to compare both clients and destination servers’

location, application types to selects the nearest server that runs the clients

requested applications. From our test we realized that the table information

change every five minutes if cloud VMs’ state is changed. This service is very

important for CSB to decide which VM to assign for clients requests. Although

the DB shows 6 VM but our CSB uses only 4 VM as other 2 VM’s state were not

active. So if any cloud VM’ is in error or shutoff stage, instantly CSB will find the

nearest server and will never forward the requests to non active servers.

Figure 5.5: CSB Cloud Integration Tools Performances

o Again if the shutoff and error server become active, from that moment CSB will

use these server and assign to nearest clients requests.

o Similar to above figure CSB stores cloud resources to 7 other tables for future

purpose. Without these tables CSB will not be able to create/destroy/start/stop/

suspend/pause and other additional cloud services such as VM, image, network,

volume, flavour, etc.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 65 of 86

CSB Performance Analysis: If all Cloud-VM’S are at the same Location/Data centre

If all the Cloud-VMs’ are Active

Server-Address, Name Cloud-VM’s Status CSB’s Selection Results:

Correct/Wrong

{"192.168.1.129- Toronto-Srv01"} active √ 100% Accurate

{"192.168.1.130-NewYork-Srv01"} Active

{"192.168.1.202-London-Srv01"} Active

{192.168.1.203-Paris-Srv01"} Active

{“192.168.1.226-UAE-Srv01"} active

{“ 192.168.227-Tokyo-Srv01"} active

If the Cloud-VM with Lowest IP is down

{"192.168.1.129- Toronto-Srv01"} Paused/Shutoff 100% Accurate

{"192.168.1.130-NewYork-Srv01"} Active √

{"192.168.1.202-London-Srv01"} Active

{192.168.1.203-Paris-Srv01"} Active

{“192.168.1.226-UAE-Srv01"} Error

{“ 192.168.227-Tokyo-Srv01"} shutoff

If the Cloud-VM with Lowest IP is up again
{"192.168.1.129- Toronto-Srv01"} active √ 100% Accurate
{"192.168.1.130-NewYork-Srv01"} Active
{"192.168.1.202-London-Srv01"} Active

{192.168.1.203-Paris-Srv01"} Active

{“192.168.1.226-UAE-Srv01"} Error

{“ 192.168.227-Tokyo-Srv01"} shutoff

Table 5.1: CSB Performance Analysis of Context and Location Awareness

CSB Context Awareness:

We analyzed CSB Database tables’ information against the cloud providers’ information

and found that the CSB database is 100% accurate.

o for example if any cloud-VM’s status change from active to pause/shutoff/error,

then CSB DB automatically gets updated after 5 minutes as CSB runs the daemon

‘scheduled-executor’ every 5 minutes.

o CSB does not store redundant information instead replaces the old data with the

updated data.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 66 of 86

CSB Automated Cloud Resource Provisioning:

To test the resource provisioning and automation of cloud services, we modified CSB to

monitor cloud VM’S status. If the status of the VM is shutoff then CSB will start the VM

via API request parameter. The test result is 100% success as CSB was able to start and

stop the VM remotely in our multiple cloud providers’ environment.

Figure 5.6: CSB Automated Cloud Resource Provisioning

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 67 of 86

 Chapter 6:

Conclusion

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 68 of 86

6. Conclusion

In this chapter, we conclude the thesis by summarizing its contributions and their

implications for the advancement of multi-Cloud service brokering research. We present

a summary of thesis contribution and discuss the constraints of the achieved

contributions, and the possible extensions to mitigate them. Finally, we present

potential future research directions.

6.1. Summary

The main objective of this research work is to find an answer to the following

fundamental question: How can an adequate broker framework for automating and

optimizing the deployment of Hybrid or multi-Cloud applications be achieved?

To the answer to the question lies in the design of a cloud service broker framework to

assist users in selecting and managing their single and composite services on top of

heterogeneous IaaS Clouds. To address this question, we presented the design of a

multi-Cloud service broker framework. We further implemented the CSB using

Openstackj cloud API. We demonstrated the proof of concept working of the CSB

through our own Android application that we developed using Spring framework. We

chose the more difficult path of developing and implementing the CSB in a test-bed

instead of simulating it within CloudSim because it allows our design to integrate the

core CSB module with Open Stack cloud for multi-cloud solution, and with other

components such as MySQL database and interworking with Android client. It also

provides us vehicle to experiment with real life scenarios that can later be developed

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 69 of 86

into a complete multi-cloud solution. The CSB includes components for enterprise

integration tools, queue handler, query analyzer, decision maker, cloud integration tools

to monitor and discover clouds and live repositories of cloud resources.

We deployed multi-cloud Openstack and developed android client application to

evaluate the broker framework and validate its functionality. Furthermore, to make our

test-bed set up more realistic, we used the WiFi and 3G data services with CSB and

made the Cloud VM accessible over internet. Using the emulation testbed, we

demonstrated the good scalability of the framework with single and multi-Cloud

workflow services. From our experiments with simple matching policies, we identified

the need for efficient location and context aware necessities in the broker in order to

make the trade-off between cost, performance, and quality. The evaluation of real data

analysis proved the benefit from deploying CSB on a multi-Cloud compared to a single

Cloud in reducing the user payment and improving the service quality, and identified the

need for clustering and enhanced data management and scheduling policies.

Overall, this work distinguishes itself from current research in CSB with the following

unique contributions:

o A scalable generic multi-Cloud service broker framework

o An efficient location and context aware CSB for selecting composite Cloud

services

o Effective platform independent CSB with the ability to handle different types of

client types such as RPC, socket, JSON, REST, HTTP, SOAP, XML, etc.

o Most of affordable and popular mobile devices oriented client application

developed to benefit from cloud service broker.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 70 of 86

6.2. Future works

Our CSB framework can be a very useful tool for future research in inter-cloud services

consumer. Although we have not implemented many services such as CRM, Helpdesk,

Billing, security, user management, monitoring, etc. By using telemetry API we can easily

develop billing module for inter-cloud environment. The CSB can play a vital role to save

money for consumers by routing cheaper cloud services based on priority of user

requests. It can save power consumption for provider by destroying/stopping unused

cloud VMs’ and other resources. The can also provide security by context awareness for

both consumer and provider. We provided building block for future implementation of

more elaborate client context management in the CSB. Further, the decision engine in

our CSB needs to be integrated with SLA management to ensure the promised user QoS

delivery.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 71 of 86

Appendix – A

1.1. Openstack Multi-node Cloud Configuration

In our provider cloud Test-bed, we configured 3 cloud provider and named them North

America, Europe and Asia. In each cloud providers’ environment, we initially deployed a

single compute node to test the set up, but we can simply add more compute nodes to

make it a multi-node installation if needed:

o Controller Node: It runs cloud management services (keystone, Horizon) needed

for OpenStack to function.

o Network Node: It runs networking services and also responsible for virtual

network provisioning, connecting virtual machines to external networks.

o Compute Node: It runs the virtual machine instances in OpenStack.

Cloud Provider 1:

North America

System External
Network

(eth0)

Management
Network

(eth1)

VM Data
Network

(eth2)

Controller 192.168.1.40 192.168.100.140 (not connected)

Network 192.168.1.41 192.168.100.141 Layer-2 only

Compute1 192.168.1.42 192.168.100.142 Layer-2 only

Cloud Provider 2:

Europe

System External
Network

(eth0)

Management
Network

(eth1)

VM Data
Network

(eth2)

Controller 192.168.1.17 192.168.100.3 (not connected)

Network 192.168.1.18 192.168.100.4 Layer-2 only

Compute1 192.168.1.19 192.168.100.5 Layer-2 only

Cloud Provider 3:

Asia

System External
Network

(eth0)

Management
Network

(eth1)

VM Data
Network

(eth2)

Controller 192.168.1.80 192.168.100.180 (not connected)

Network 192.168.1.81 192.168.100.181 Layer-2 only

Compute1 192.168.1.82 192.168.100.182 Layer-2 only

Table 1.1: Openstack Multi-node Network types and Interfaces details

For OpenStack Multi-Node setup we need to create three networks:

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 72 of 86

o External Network: It allows users to access the OpenStack services, interfaces

and connects to the network nodes for providing VMs with publicly routable

traffic functionality.

o Management Network: It is used for cloud administration only and it is not

accessible from public network.

o VM Traffic Network: It is used as internal network for traffic between VM’s and

also between the VM’s and network nodes that provide L3 routes out to the

public network.

1.2.1. Openstack Installation

We have decided to use the Red Hat RDO distribution on CentOS 6.5 64-bit as it is one of

the leaders in the OpenStack community and it comes with the “packstack” installer.

Packstack can install a multi-node setup in an automated way, based on an “answer

file”.

We configured each VM as follows:

o Centos Installation using the “Minimum” profile with yum update to get the

latest updates, with Enabled NTP, and SELinux set ‘permissive’ and ‘EPEL’ is

installed.

o Static networking configuration for all nodes.

o The network node has a special network configuration. We created an

openvswitch bridge called “br-ex” for external access, and added the physical

port “eth0″ to it. This is how packstack expects it to be.

ifcfg-br-ex ifcfg-eth0

DEVICE=br-ex
DEVICETYPE=ovs
TYPE=OVSBridge
ONBOOT=yes

DEVICE=eth0
DEVICETYPE=ovs
TYPE=OVSPort
OVS_BRIDGE=br-ex

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 73 of 86

BOOTPROTO=static
IPADDR=192.168.1.18
NETMASK=255.255.255.0
NOZEROCONF=yes
IPV6INIT=no

ONBOOT=yes
NOZEROCONF=yes
IPV6INIT=no

Table 1.2: OpenStack Network Nodes Interfaces Configuration

o There’s a single SSH key that is installed on every node and that allows each

node to ssh to every other node. They key can only be used from the external

and management networks. This is achieved by prefixing the public key in

“~/.ssh/authorized_keys” with from=”192.168.0.0/16″

In the controller node, we installed RDO using the “packstack” installer. The screen shot

below shows the installation command at the output of packstack

Figure 1.1: Openstack Packstack Answer file generation process

Once packstack installer is installed, we generated the following ‘answer file’ .Then we

edited the answer file so that it can install OpenStack on our multi-node and multi-

network setup.

[general]
CONFIG_KEYSTONE_INSTALL=y
CONFIG_KEYSTONE_HOST=192.168.1.17
CONFIG_SSH_KEY=/root/.ssh/id_rsa.pub
CONFIG_MYSQL_INSTALL=y
CONFIG_GLANCE_INSTALL=y
CONFIG_GLANCE_HOST=192.168.1.17
CONFIG_CINDER_INSTALL=y

(Nova)
CONFIG_NOVA_INSTALL=y
CONFIG_NOVA_(API|CERT|VNCPROXY|CONDUCTOR|SCHE
D)_HOST=192.168.1.17
CONFIG_NOVA_COMPUTE_HOSTS=192.168.1.19

OpenStack hosts
CONFIG_NAGIOS_INSTALL=y
controller service
CONFIG_CONTROLLER_HOST=192.168.1.17
compute service
CONFIG_COMPUTE_HOSTS=192.168.1.19
network service
CONFIG_NETWORK_HOSTS=192.168.1.18
address of DB server
CONFIG_MYSQL_HOST=192.168.1.17
Username for the MySQL admin user
CONFIG_MYSQL_USER=root
Password for the MySQL admin user
CONFIG_MYSQL_PW=Passw0rd

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 74 of 86

CONFIG_NOVA_NETWORK_HOST=

Networking (Neutron).
CONFIG_NEUTRON_INSTALL=y
CONFIG_NEUTRON_SERVER_HOST=192.168.1.18
CONFIG_NEUTRON_L3_HOSTS=192.168.1.18
CONFIG_NEUTRON_L3_EXT_BRIDGE=br-ex
CONFIG_NEUTRON_DHCP_HOSTS=192.168.1.18
CONFIG_NEUTRON_L2_AGENT=openvswitch
CONFIG_NEUTRON_L2_PLUGIN=openvswitch
CONFIG_NEUTRON_METADATA_HOSTS=192.168.1.18
CONFIG_NEUTRON_OVS_TENANT_NETWORK_TYPE=vlan
CONFIG_NEUTRON_OVS_VLAN_RANGES=vmdata:1:4094
CONFIG_NEUTRON_OVS_BRIDGE_IFACES=br-eth2:eth2

Dashboard (Horizon)
CONFIG_HORIZON_INSTALL=y
CONFIG_HORIZON_HOST=192.168.1.17
Storage (Swift)
CONFIG_SWIFT_INSTALL=y
Metering (Ceilometer)
CONFIG_CEILOMETER_INSTALL=y
Orchestration (Heat)
CONFIG_HEAT_INSTALL=y
Client packages. An admin "rc" file will also be installed
CONFIG_CLIENT_INSTALL=y

The password to use for Keystone to access DB
CONFIG_KEYSTONE_DB_PW=Passw0rd
The token to use for the Keystone service api
CONFIG_KEYSTONE_ADMIN_TOKEN=Passw0rd
The password to use for the Keystone admin user
CONFIG_KEYSTONE_ADMIN_PW=Passw0rd
The password to use for the Keystone demo user
CONFIG_KEYSTONE_DEMO_PW=Passw0rd
The password to use for the Glance to access DB
CONFIG_GLANCE_DB_PW=Passw0rd
Glance to authenticate with Keystone
CONFIG_GLANCE_KS_PW=Passw0rd
The password to use for the Cinder to access DB
CONFIG_CINDER_DB_PW=Passw0rd
The password to use for the Cinder to
authenticate with Keystone
CONFIG_CINDER_KS_PW=Passw0rd
file-backed volume group and is not suitable for
production usage.
Nova to authenticate with Keystone
CONFIG_NOVA_KS_PW=Passw0rd
disable RAM overcommitment
CONFIG_NOVA_SCHED_RAM_ALLOC_RATIO=1.5
The password of the nagiosadmin user on the
Nagios server
CONFIG_NAGIOS_PW=Passw0rd

Table 1.3: Openstack Multi-node Answer file configuration

The resulting answer file that we used by executing following command:

Installation usually takes about 20 minutes. After we installed OpenStack, the dashboard

was available on the http port of the public IP of the controller node. The username and

password was stored by packstack in the file “/root/keystonerc_admin”. The snapshot of the

dashboard is shown in Figure 4.9:

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 75 of 86

Figure 1.2: Openstack Dashboard for web access

On this screen we can see hypervisor’s resources and their CPU, memory, etc that’s

available.

1.2.3. OpenStack Configuration

After installation, we had to do some tweaks because In the IceHouse release there are

some missing feature in Packstack where it doesn’t configure a new mandatory setting

in network and compute node (e.g. hardware virtualization, root password injection, etc

which are not shown in this report). To run the first virtual machine, we took the

following one-off preparation steps:

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 76 of 86

o Uploaded Ubuntu and CentOS image into the Glance service. The fact that

Glance can download an image straight from URL makes the task very easy. To

create the image, go to Admin -> Images -> Create Image.

Figure 1.3: OpenStack Image Configuration

o We create a private network and public network and a router between the

private and the public network. We did this via the command-line as it didn’t

seem possible to do all of these from the admin interface:

$ source /root/keystonerc_admin
$ neutron router-create router1
$ neutron net-create private
$ neutron subnet-create private 10.0.0.0/24 --name private_subnet \
 --enable-dhcp --gateway 10.0.0.1 --dns-nameserver 8.8.8.8
$ neutron router-interface-add router1 private_subnet
$ neutron net-create public --router:external=True
$ neutron subnet-create public 192.168.1.0/24 --name public_subnet \
 --disable-dhcp --gateway 192.168.1.1 \
 --allocation_pool start=192.168.1.200,end=192.168.1.250
$ neutron router-gateway-set 002718c9-ead1-4908-bc70-e325ac996e94
b1123a0b-afd1-4a80-bd9f-50fde860d663

Table 1.4: Openstack Cloud router configuration

In the table above, the private network is created using the Google DNS server

8.8.8.8 as we had some trouble getting the OpenStack built-in DNS server to

work. The public network is created using the gateway of the external network.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 77 of 86

we have also created an allocation pool for floating IPs. In the last command, the

<router-id> and <subnet-id> are the router and subnet IDs returned by the

subnet-create and router-create commands.

Figure 1.4: Openstack neutron network for Instances

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 78 of 86

o We updated the flavour list such as ‘m1.small’ flavor to have 1vCPU, 1200MB of

memory and 10GB of ephemeral storage.

o Security Group & key pair: we created security group named SSH and added

rules for HTTP, ICMP, SSH for ingress and egress traffic. We also created a key

pair and uploaded controller public key. As Key pairs are SSH credentials which

are injected into images when they are launched

o Launching an Instance: we launched a new instance by following these steps:

Create a new instance by going to Project -> Instances -> Launch Instance. Then

Select the “m1.small” flavor, “boot from Image”, and then the Ubuntu14 image.

On the “Access and Security” tab it is recommend setting a root password. On

the “Networking” tab we connected to the ‘private & public network’. Then

finally click “Launch”.

Figure 3: Openstack Cloud Instances

Once the instance is running then we can access the console over VNC. We can access

instances console both Openstack dashboard and CLI.

Figure 1.5: Openstack Instances VNC access process

1.2.3.1. Openstack Instance’s web-server Configuration

We need at least one cloud instances up and running that can act as an application

server for our CSB client. Since our CSB client application is designed for web service, we

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 79 of 86

need to configure web server in one of the cloud instances. We have configured our

cloud instance ‘Ubunut’ as a web server by installing apache2 web server.

Figure 1.6: Openstack Instances configuration as a web server

After we have configured the apache web server in the cloud instance and added dns

name ahsan.sytes.net, now the cloud VM is accessible via internet from any devices

with standard and mobile browser application.

Figure 1.7: Openstack Instance acting as a public web server

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 80 of 86

Appendix - B

List of Table

Table 3.1: CSB Algorithm (Context & Location Aware) --- 40

Table 4.1: POM.XML of CSB Java Project --- 47

Table 5.1: CSB Performance Analysis of Context and Location Awareness-----------------------------65

List of Acronyms

API Application Programming Interface

ARM Advanced RISC Machines

AWS Amazon Webs Services

CSB Cloud Service Broker

CSC Cloud Service Provider

CSP Cloud Service Consumer

DC Data Centre

DCS Desktop Cloud Service

EC2 Elastic Compute Services

GA Genetic Algorithm

GUI Graphic User Interface

HPC High Performance Computing

HTTP Hyper Text Transfer Protocol

IaaS Infrastructure as a Service

ID Identifier

I/O Input/output

J2EE Java 2 Platform, Enterprise Edition

J2ME Java 2 Platform, Micro Edition

JSON JavaScript Object Notation

MCA Mobile Cloud Application

OCCI Open Cloud Computing Interface

DB Database

PaaS Platform as a Service

QoS Quality of Service

RISK Reduced Instruction Set Computer

REST Representational State Transfer

S3 Simple Storage System

SaaS Software as a Service

SLA Service Level Agreement

SME Small and Medium Enterprises

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UI User Interface

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 81 of 86

URI Uniform Resource Identifier

SAN Storage Area Network

VM Virtual Machine

WWW World Wide Web

XML Extensible Markup Language

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 82 of 86

Appendix – C

Bibliography

[1] B. Furht and A. Escalante, editors. Handbook of Cloud Computing. Springer, 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A Berkeley View of Cloud Computing.

Technical report, University of California at Berkeley, February 2009.

[3] G. Modica and O. Diand Tomarchio. A Semantic Discovery Framework to support supply-

demand Matchmaking in Cloud Service Markets. In Proceedings of the International Conference

on Cloud Computing and Services Science (CLOSER2012), Porto, Portugal, 2012.

[4] Forrester;Tools And Technology: The I&O Practice Playbook; Prepare Your Infrastructure And

Operations For 2020 With Tools And Technologies; Jean-Pierre Garbani et all; July 25, 2013

 [5] Global Inter-Cloud Technology Forum. Use Cases and Functional Requirements for Inter-

Cloud Computing. [Online], 2010.

http://www.ttc.or.jp/files/8614/1214/5480/GICTF_Whitepaper_20100809. pdf (accessed: 2014-

10-13).

[6] Inc Gartner. Gartner Says Cloud Consumers Need Brokerages to Unlock the Potential of

Cloud Services. [Online], 2009. http://www.gartner.com/newsroom/id/1064712 (accessed:

2014-09-15).

 [7] Gideon Juve, Ewa Deelman, G.Bruce Berriman, Benjamin P. Berman, and Philip Maechling.

An Evaluation of the Cost and Performance of Scientific Workflows on Amazon EC2. Journal of

Grid Computing, 10:5–21, 2012.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 83 of 86

[8] SensibleCloud. [Online], 2014. http://www.sensiblecloud.com/ (accessed: 2014-03-20).

[9] Rajkumar Buyya, Suraj Pandey, and Christian Vecchiola. Market-Oriented Cloud Computing

and The Cloudbus Toolkit, pages 319–358. John Wiley, Inc, 2013.

[10] Ana Juan Ferrer, Francisco Hernndez, Johan Tordsson, Erik Elmroth, Ahmed Ali-Eldin, Csilla

Zsigri, Ral Sirvent, Jordi Guitart, Rosa M. Badia, Karim Djemame, Wolfgang Ziegler, Theo

Dimitrakos, Srijith K. Nair, George Kousiouris, Kleopatra Konstanteli, Theodora Varvarigou,

Benoit Hudzia, Alexander Kipp, Stefan Wesner, Marcelo Corrales, Nikolaus Forg, Tabassum

Sharif, and Craig Sheridan. Optimis: A holistic approach to cloud service provisioning. Future

Generation Computer Systems, 28(1):66–77, 2012.

[11] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good. The cost of

doing science on the cloud: The montage example. In Proceedings of the 2008 ACM/IEEE

Conference on Supercomputing, SC ’08, pages 50:1–50:12, Piscataway, NJ, USA, 2008. IEEE

Press.

[12] Hamid Mohammadi Fard, Radu Prodan, Juan Jose Durillo Barrionuevo, and Thomas

Fahringer. A Multi-objective Approach for Workflow Scheduling in Heterogeneous

Environments. 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (ccgrid 2012), pages 300–309, May 2012.

[13] J. Octavio Gutierrez-Garcia and Kwang Mong Sim. Agent-based Cloud Workflow Execution.

Integrated Computer-Aided Engineering, 19:39–56, 2012.

[14] Suraj Pandey, Dileban Karunamoorthy, and Rajkumar Buyya. Workflow Engine for Clouds,

pages 321–344. John Wiley, Inc, 2011.

 [15] Nikolay Grozev and Rajkumar Buyya. Inter-Cloud architectures and application brokering:

taxonomy and survey, pages 1–22. John Wiley, Inc, 2012.

 [16] Foued Jrad, Jie Tao, and Achim Streit. Simulation-based evaluation of an intercloud service

broker. In CLOUD COMPUTING 2012, The Third International Conference on Cloud Computing,

GRIDs, and Virtualization, pages 140–145, 2012.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 84 of 86

[17] Elarbi Badidi, “A Cloud Service Broker for SLA-based SaaS Provisioning,” Proc. of Information

Society, 2013, pp. 61-66.

[18] Alba Amato, Beniamino Di Martino, Salvatore Venticinque, “Cloud Brokering as a Service,”

Proc. of P2P, Parallel, Grid, Cloud and Internet Computing, 2013, pp. 9-16.

[19] P. Mell and T. Grance. The NIST Definition of Cloud Computing. [Online], 2011.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (accessed: 2014-12-20).

[20] David S. Linthicum. Cloud Computing and SOA Convergence in your Enterprise. Addison-

Wesley Professional, 2010.

[21] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, M. Zaharia. Above the Clouds: A Berkeley View of Cloud Computing. University

of California at Berkley, USA. Technical Rep UCB/EECS-2009-28, 2009.

[22] Gridbus Project. Gridbus service broker. [Online], 2014. http://www.cloudbus.org/broker/

(accessed: 2014-12-22).

[23] Inc Gartner. Three Types of Cloud Brokerages Will Enhance Cloud Services. [online], 2009.

https://www.gartner.com/doc/973412/types-cloud-brokerages-enhance-cloud (accessed: 2014-

12-25).

[24] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger and Dawn Leaf; NIST

Cloud Computing Reference Architecture. [online] 2011.

www.nist.gov/customcf/get_pdf.cfm?pub_id=909505 (accessed: 2014-12-25).

[25]Inc Jamcracker. Enabling Cloud-Based Digital Business Models. [online], 2015.

www.jamcracker.com/sites/default/files/enabling_cloud-based_digital_business_models_0.pdf

(accessed: 2014-12-27).

[26] Stefan Ried, Ph.D. with Pascal Matzke, Jean-Pierre Garbani, Reedwan Iqbal; FOR CIO

PROFESSIONALS; Cloud Broker — A New Business Model Paradigm Deriving More Business And

Economic Models From Cloud Computing; forrester research reports, 2011

[27] CCUC-DG. Cloud Computing Use Cases White Paper Version 4.0. Technical report, Cloud

Computing Use Case Discussion Group, 2010.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 85 of 86

[28] Amazon Elastic Compute Cloud. [Online], 2014. http://aws.amazon.com/ec2/ (accessed:

2015-01-20).

[29] Amazon Simple Storage Service. [Online], 2014. http://aws.amazon.com/s3/ (accessed:

2015-01-21).

[30] Claudia Szabo, Quan Z. Sheng, Trent Kroeger, Yihong Zhang, and Jian Yu. Science in the

Cloud: Allocation and Execution of Data-Intensive Scientific Workflows. Journal of Grid

Computing, October 2013.

[31] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. Intercloud: Utilityoriented

federation of cloud computing environments for scaling of application services. In Proceedings

of the 10th International Conference on Algorithms and Architectures for Parallel Processing -

Volume Part I, ICA3PP’10, pages 13–31, Berlin, Heidelberg, 2010. Springer-Verlag.

[32] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.

Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as

the 5th utility. Future Gener. Comput. Syst., 25(6):599–616, June 2009.

 [33] Rodrigo N. Calheiros, Christian Vecchiola, Dileban Karunamoorthy, and Rajkumar Buyya.

The Aneka platform and QoS-driven resource provisioning for elastic applications on hybrid

Clouds. Future Generation Computer Systems, 28(6):861–870, June 2012.

[34] R. Knapper, C.M. Flath, B. Blau, A. Sailer, and C. Weinhardt. A multi-attribute service

portfolio design problem. In Service-Oriented Computing and Applications (SOCA), 2011 IEEE

International Conference on, pages 1 –7, dec. 2011.

[35] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya. CloudSim: A Toolkit

for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource

Provisioning Algorithms. Software: Practice and Experience, 41(1):23–50, January 2011.

 [36] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny, F. D’Andria, G. Casale, P.

Matthews, C.-S. Nechifor, D. Petcu, A. Gericke, and C. Sheridan. Modaclouds: A model-driven

approach for the design and execution of applications on multiple clouds. In Modeling in

Software Engineering (MISE), 2012 ICSE Workshop on, pages 50–56, June 2012.

Md Ahsan Ullah [Design & Implementation of Context & Location Aware Hybrid CSB] Page 86 of 86

[37] Inc Spring; Introduction to the Spring Framework. [online] 2015.

http://docs.spring.io/spring/docs/ current/ spring- framework- reference/html/overview.html

(accessed: 2015-02-15).

[38] Inc Openstack4j. What is OpenStack4j?. [online] 2015. www.openstack4j.com/learn/

(accessed: 2015-02-19).

[39]Inc Openstack. Openstack architecture design guide; [onlne], 2015.

http://docs.openstack.org/arch-design/content/arch-design-architecture-hardware.html

(accessed: 2015-02-22).

[40] Tom Fifield; Diane Fleming; Anne Gentle; Lorin Hochstein; Jonathan Proulx; Everett Toews;

Joe Topjian; OpenStack Operations Guide; O'Reilly Media, Inc; May 8, 2014; ISBN-13: 978-1-

4919-4695-4

[41] Inc Android. Android Studio Overview. [online], 2015.

http://developer.android.com/tools/studio/ index.html (accessed: 2015-02-23).

[42] Inc. Eclipse. COMPARE ECLIPSE PACKAGES. [online], 2015.

http://eclipse.org/downloads/compare. php? release=luna (accessed: 2015-02-25).

[43] Inc MySQL. MySQL Workbench 6.3- Enhanced Data Migration. [online] 2015.

https://www.mysql. com / products/workbench/ (accessed: 2015-02-27).

