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ABSTRACT
Xu Lin
Thesis Title: Use of Single Vehicle Collisions to Model Fatigue-Related Crashes on Rural
Two-Lane Highways

Master of Applied Science, Civil Engineering, Ryerson University, 2007

Fatigue-related crashes are believed to be more common on rural highways than on urban
roads and on two-lane roads than on other rural road types. Thus an understanding of how
design factors affect fatigue-related crashes on rural two-lane roads is vital. The problem
is that fatigue is rarely reported as a cause of crashes, since it is rarely suspected by the
police as a possible cause and since potential liability may motivate the drivers not to
reveal the real causes of the crash. Thus, getting a handle on these crashes through
modeling is a formidable challenge. Fortunately, there is research to suggest that
single-vehicle run-off-road crashes, particularly those during periods of low circadian
rhythm, can be used as a reasonéble surrogate in modeling fatigue-related crashes. The
paper is based on research to examine how fatigue-related crashes rural on two-lane roads,
as represented by single vehicle crashes, are affected by various engineering design
factors. This study’s goal is to explore the effects of fatigue on driving on rural two-lane
roads in North America, and to consider how we can work towards mitigating the effects
of fatigue on traffic safety. For this investigation, generalized linear and logistic
regression modelling were used on US Highway Safety Information System (HSIS) data

v




for Ohio. Models were developed separately and combined for periods of high and low
circadian rthythm and for single-vehicle run-off-road and other crashes. The results show,
for example, that after controlling for traffic volumes, increases in speed limit, average
curvature and average gradient and decreases in surface width and average shoulder
width were found to be associated with increased fatigue related crashes. Important

differences were found in the effects of factors for periods of low and high circadian

rhythm.
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AAADT —variable representing the average value of AADT in five years per segment
AADT —Average Annual Daily Traffic

AASHTO —American Association of State Highway and Traffic Officials

ADT —Average Daily Traffic

AIC -Akaike’s information criterion

AGE_GROUP-variable representing the Driver Age Group for each traffic crash
AVG_OUTSH —variable representing the average outside shoulder width per segment
CURV_HI —variable representing the average curvature for each segment

DOF —Degrees of Freedom

DRV_SEX-variable representing the Driver Sex for each traffic crash

FR —Fatigue-Related

GLM —Generalized Linear Model

GRAD_HI —variable representing the average gradient for each segment

LIGHT —variable representing the Light Condition for each traffic crash
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RD_CHAR-variable representing the Road Characteristic for each traffic crash
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SAS —Statistical Analysis Software
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SPD_LIMIT-variable representing the Speed Limit for each traffic crash
SPFR — Sleepy-Period Fatigue-Related

SP-FR — Sleepy-Period Fatigue-Related

SPNFR - Sleepy-Period Non-Fatigue-Related

SURF_WID —variable representing the roadway surface width per segment
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1 INTRODUCTION

This thesis is concerned with the problem of fatigued driving, and how transportation
safety engineers can use an understanding of the road and traffic factors that contribute to
fatigue related crashes to mitigate the effects of fatigue on our roads. If we can improve
our understanding of fatigued driving, we may be able to develop countermeasures that

can lead to significant improvements in road safety.

1.1 Background: Driver Fatigue

Fatigue, which refers to a phenomenon of both physiology and psychology, is a general
term commonly used to describe the experience of being "sleepy", "tired" or "exhausted"
(RTA, 2001). Driver fatigue can severely impair judgment and reaction, and can affect

any person operating a motor-vehicle, leading to potentially dangerous situations.

A number of symptoms can suggest driver fatigue. Typical symptoms consist of yawning,
poor concentration, tired or sore eyes, restlessness, drowsiness, slow reactions, boredom,
feeling irritable, making fewer and larger steering corrections, missing road signs, having
difficulty in staying in the lane, and micro-sleeps. Driver fatigue is not only a function of
time spent on driving, but also corresponds to many other factors such as hours since last

slept (hours of wakefulness) and time of day or night.

Fatigue-related crashes at certain times of the day may coincide with dips in the body's
circadian rhythms (http://roadsafetydirectory.com). Circadian rhythms are physiological
cycles that follow a daily pattern, and program us to sleep at night and to be awake during
the day. During nighttime hours, and to a lesser extent during afternoon "siesta" hours,
most types of human performance, including the ability to drive, may be significantly

impaired,

According to research by the Mayo Foundation for Medical Education and Research
(1995), the human body has more than 100 circadian rthythms. During each 24-hour cycle,

these rhythms influence numerous aspects of the human body's function, including body




temperature, hormone levels, heart rate, blood pressure, and even pain threshold, as
shown in Figure 1.1. It is natural that humans sleep when tired and awake when rested,

but the underlying pattern of fatigue and alertness follow a circadian rhythm.

H

Figure 1.1 Body Circadian Rhythms (Mayo Foundation for Medical Education and
Research, 1995)

Circadian rhythms are very powerful: circadian rhythms cannot be reversed even for
those working nightshifts for many years (NATA, 2006). If natural sleep cycles are
disrupted (e.g., staying awake during the night, not getting enough sleep, or poor quality
of sleep), we easily become fatigued.

The problem of fatigue, and the problem of driving while fatigued, is obvious not only
because fatigue makes us feel tired, but also because fatigue affects the body in many
ways (RTA, 2001), including slower reaction time, loss in concentration, and fatal
‘micro-sleeps.” Fatigue makes it more difficult to recognize how tired we are, and

therefore more difficult to recognize when fatigue is setting in while driving.

1.2 Problem Statement

Fatigue is a more common cause of traffic crashes than alcohol or prescription drugs

(Flemons, 1999). The estimation of the proportion of crashes attributable to driver fatigue




varies from 5 percent to 50 percent. The difficulty in measuring fatigue contributes to this
variation, but most experts estimate that 20 to 30 percent of fatal road crashes could result
from driver fatigue (HORSCOCTA, 2000). The identification of fatigue-related traffic
crashes is based on police reports, but it is acknowledged that these reports underestimate
the incidence of fatigue as police officers do not judge fatigue to be a contributory factor
unless there is strong evidence that the driver was asleep at the time of the crash

(Haworth, 1998a).

Driving requires giving continuous attention to the driving environment, conducting
complex dynamic tasks, and searching for and detecting potential hazards. Fatigue is both
a physiological and a psychological state which can undermine a driver’s performance
should fatigue set in while a driver is operating a motor vehicle. Perception of hazards
may be affected by driver reaction (Haworth, 2006), which is impaired by driver fatigue.
With repeated exposure to stressful driving environment over the course of a journey,
fatigue symptoms may develop (Lal and Craig, 2001). While driver fatigue has been
conceptualized as a consequence of circadian disruption and sleep deprivation which can
lead to reduced alertness and impaired performance, driver stress has not been linked
with circadian disruption or sleep deprivation (Taylor and Dorn, 2006). Fatigue-related
crashes are complex and driver fatigue has been widely identified as a major cause of

serious crashes through reduced driving performance efficiency (Akerstedt, 2000).

The risk of being involved in road crashes is increased by fatigue or falling asleep at the
wheel (Tzamalouka et al., 2005). Although fatigue is a well-known risk factor for traffic
crashes, many drivers drive while fatigued (RTA, 2001). An understanding of how road
design factors might affect fatigue-related crashes is becoming a key issue to traffic

engineers in the prevention and mitigation of such traffic crashes.

1.3 Significance of this Study

In recent years, there has been much interest in the role of driver impairment in the
causation of road crashes. Recognition of the role of alcohol in driver impairment and

efforts taken to reduce the incidence of alcohol impairment have played an important part




in reducing the number of road injuries and fatalities in the past decades (Haworth,
1998a). An understanding of the relationship between driver fatigue and crashes has the

potential to lead to further improvements in road safety.

As rural roadways tend to have high crash rates, adequate crash models for these
roadways are especially desirable (Vogt and Bared, 1998). Fatigue-related crashes are
more common on rural highways than on urban roads (Haworth, 1998b). One of the
reasons for this is that average trip lengths are likely to be longer on rural roads, and
inattention and drowsiness are brought on by the constant speeds and monotony. In
Canada, rural roads account for approximately 40 percent of all motor vehicle travel, but
60 percent of all fatal crashes (NHTSA, 2003a). Approximately 90 percent of all rural
fatal crashes occur on rural two-lane roads (NHTSA, 2003b).

Rural two-lane roads in North America generally lack physical measures such as wide
medians or barriers to separate opposing traffic flows (Persaud et al., 2004). Fatigue
related (FR) crashes on rural two-lane roads tend to be severe, possibly because of the
higher speed involved, a lack of escape options sﬁch as wide paved shoulders on many
roads, and driver inability to take appropriate and timely avoiding action, such as safe

braking, due to the driver’s fatigued state.

Research in Canada on the problem of fatigued driving is limited, but there is
considerable research in other countries where the problem of sleepiness or falling asleep
at the wheel has long been recognized and studied in detail (Maycock, 1997; Mccartt et
al., 1996). There is, however, very little research on how engineering design factors
contribute to FR traffic crashes on rural two-lane roads in North America. An
understanding of the role played by highway design factors in FR crashes will help

jurisdictions to improve road safety.

Given that rural two-lane roads in North America tend to have high crash rates, and that
there is a need to understand the relationship between FR traffic crashes and highway

design factors, it seems appropriate to study the factors that affect the incidence of FR




traffic crashes on rural two-lane roads. This study considers a variety of engineering,

environmental, and driver factors, but concentrates on engineering factors.

The findings of the study can be applied to the design of engineering countermeasures
that can mitigate FR traffic crashes. Such a study can develop FR crash models that will
give highway engineers a clear understanding of the relationship between engineering

factors and FR crashes on rural two-lane roads.

1.4 Study Objectives

This study’s goal is to explore the effects of fatigue on driving on rural two-lane roads in
North America, and to consider how we can work towards mitigating the effects of
fatigue on traffic safety. The study’s objectives are:

1. Identify road design, traffic, environmental, and demographic factors that contribute
to fatigue-related (FR) and non fatigue-related (NFR) crashes on rural two-lane roads.

2. Identify road design and traffic factors that contribute to Sleepy Period FR (SPFR),
and Sleepy Period NFR (SPNFR) crashes. The sleepy periods are identified from
research into circadian rhythms.

3. Develop safety performance functions (SPFs) to predict FR crashes on rural two-lane
roads, and apply the SPFs to the task of mitigating the effects of fatigue on traffic
safety at sites where the potential for improving fatigue crashes related to fatigue is
greatest. This objective involves:

e using the SPFs to conduct a network screening exercise designed to
identify sites where the rate of FR crashes suggests a high potential for FR
safety improvement;

e identifying and ranking the sites by their potential for FR safety
improvement; and

e identifying the effects of road design and traffic factors on sites found to

have a high potential for FR safety improvement.

Two modelling approaches are used. The first approach is generalized linear modelling

(GLM). GLM techniques were used to relate the fatigue crash rate to important road and




traffic variables. The second approach is logistic regression modeling. Logistic regression

models were used to analyze FR crash occurrence, and to identify important road, traffic,

environmental, and driver variables.

1.5 Study Scope and Limitations

Unlike alcohol, fatigue is difficult to measure. There is no objective test for determining
the level of fatigue or sleepiness of drivers involved in crashes (Connor et al., 2000), and

there are no definitive criteria for establishing the level of fatigue that leads to crashes.

Crash outcomes may complicate the identification of fatigue-related crashes. In fatal
crashes, there may be no surviving witnesses to give an account of the crash, or the
surviving driver may be influenced and inhibited by possible legal consequences of the
crash. The crash itself is likely to alter the driver’s level of arousal, and may eliminate
any evidence of impairment due to fatigue. The contribution of fatigue as a cause for road
crashes cannot be estimated because crashes rarely leave any sign to indicate that the

driver had been impaired by fatigue at the wheel.

Crash data collection methods also complicate the identification of FR crashes. Canada
has no official crash-reporting document on which the driver, soon after the crash, could

report his or her point of view about the cause of their crash.

~ The absence of an official document means that fatigue is rarely reported as a cause of
road crashes. As there is no official data on the prevalence of fatigued driving, no
“material” for scientific analysis is available. It is, therefore, necessary to consider

alternative approaches to the collection of data for this s’aidy.

The Horne and Reyner (1995) study has already been mentioned. Horne and Reyner
(1995) found that a crash in which a single vehicle drove off the road was frequently
related to fatigue and sleeping at the wheel. A recent FHWA study (2007) found that FR
crashes tend to be single-vehicle crashes in which a car or truck leaves the roadway and

then turns over or hits a fixed object. The findings of these two studies suggest that it is -
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reasonable to use single-vehicle run-off-road crashes as a substitute for FR crashes in the

proposed research.

This study focuses only on single vehicle run-off-road traffic crashes on rural two-lane
highways. Other types of traffic crash which may result from driver fatigue are not

included. The effect of this omission is unknown.

1.6 Outline of the Thesis

This thesis consists of six chapters:

CHAPTER 1 presents the background, problem statement, significance of the study,

study objectives, and study scope and limitations.

CHAPTER 2 presents the literature review relevant to this study. Various factors
influencing traffic crashes are reviewed. The Chapter also provides a review of the
Generalized Linear Models (GLM) Regression and the Logistic Regression approaches
used in this study to model FR traffic crashes.

CHAPTER 3 presents the data collection, data editing, and data characteristics used for
the GLM analysis

CHAPTER 4 presents the GLM methodology, analysis, and results for FR, NFR, SPFR,
and SPNFR traffic crashes.

CHAPTER 5 presents the logistic regression methodology, analysis, and results.

CHAPTER 6 presents a discussion and conclusions, with recommendations for further

study.




2 LITERATURE REVIEW

2.1 Introduction

In order to better understand the issues related to this research into FR crashes, a
literature review was conducted. Numerous resources were consulted including the
Transportation Research Record, Accident Analysis and Prevention, and sources

identified in the Transportation Research Information System.

The main purpose of the literature review was to gain insight on how FR crashes relate to
various roadway design factors, and how to best analyze this type of crash. Motor vehicle
crashes are thought to be caused by a combination of factors such as driver characteristics
(attention, mood, eyesight, reaction times, driving skills, etc.), roadway characteristics
(sight distance, pavement surface, roadway alignment, signing and striping, traffic control,
roadside environment, etc.), environmental factors (weather conditions, visibility, wind,

etc.), and traffic characteristic (traffic volume, traffic combination, etc.).

The literature review concentrated on the factors that influence FR crashes, as these were
the major focus of the study. Special emphasis was also given to statistical methods in

traffic crash analysis.

This Chapter presents the following sections:

* Roadway features and traffic crashes (Section Error! Reference source not found.);

* Roadway features and rural two-lane traffic crashes (Section Error! Reference
source not found.);

* Time of day (Section Error! Reference source not found.);

*  Single vehicle run-off-road crashes (Section Error! Reference source not found.);

* Age and sex effects related to FR traffic crashes (Section Error! Reference source
not found.);;

*  Criteria for Identification of FR Crashes in the United Kingdom and United States
(Section 2.7);

*  GLM models (Section Error! Reference source not found.);
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*  Traffic crashes and GLMs (Section Error! Reference source not found.);
* Logistic regression analysis (Section Error! Reference source not found.);
* Traffic crashes and logistic regression models (Section 2.11); and

*  Summary of literature review findings (Section 2.12).

2.2 Roadway Features and Traffic Crashes

Roadway conditions are an important factor in determining the cause of a traffic crash.
For example, a roadway’s condition (quality of pavements, presence of shoulders, and
intersections, traffic control devices, etc) can be a factor in a crash (Garber and Hoel,
2001). Inadequate traffic control and complex intersections with excessive signage can
lead to confusion, and may also be factors in a crash. It is vital that the roadway design
allows enough perception-reaction time. Sight distances must be adequate for the design
speed, and road alignments should be appropriate to a driver’s decision sight distance and
provide enough time. Superelevation on highways, especially on-ramps, should be
designed carefully with correct radii and appropriate transition zones for vehicles to
negotiate curves safely. Another factor is frictional force between the pavement and tires.

Frictional force is important in maintaining vehicle stability.

Numerous studies have investigated the relationships between traffic crashes and the
geometric design of roadways. These studies have indicated that improvements to

highway geometric design can significantly reduce the number of vehicular crashes.

For example, Miaou et al. (1992) established empirical relationships between truck
crashes and key highway geometric design components by using a Poisson regression

approach. The researchers found that annual average daily traffic (AADT) per lane,

horizontal curvature, and vertical grade were significantly correlated with truck crash

rates.

Shankar et al. (1995) estimated overall crash models to evaluate the effects of roadway
geometric variables and environmental factors on crash frequencies. The study concluded

that separate regression models for specific types of crashes have the potential to provide




greater explanatory power than can single overall crash frequency models. Because of the
suspected heterogeneity in underlying causal mechanisms associated with different crash
types, the authors found that it is reasonable to expect that the probabilities of crash
occurrence by crash type are associated with roadway, traffic, and environmental factors

in different ways.

Curves have been shown to contribute to crashes, whether they be horizontal curves or
vertical curves. Various elements of curves may affect the likelihood of a crash. Zegeer et
al. (1991) conducted a study called Cost Effective Geometric Improvements for Safety
Upgrading of Horizontal Curves. The study was conducted in Washington State, and
identified the crash types that are more strongly associated with curves than with adjacent
straight-aways. The researchers found that curves were associated with a higher
percentage of fatal crashes, head-on crashes, opposite sideswipe crashes, fixed-object and
rollover crashes, nighttime crashes, and crashes involving drinking drivers. Vertical
curves have also been associated with higher crash rates, but to a less extent than
horizontal curves. An important design element regarding vertical curve safety is the need

to provide drivers with adequate stopping sight distance.

A study by Choueiri et al. (1994) showed a negative relationship between radius of curve
and accident rate, meaning that the smaller the radius, the more accidents occurred. When
there is space available, large radii should be used on horizontal curves. Once radii
became greater than 400 m to 500 m, the marginal increase in safety per increase in

radius is, however, very low.

Joshua and Garber (1990) studied the relationship between highway geometric factors
and truck crashes in Virginia using both linear and Poisson regression models. The paper
presented mathematical relationships, obtained through multiple linear and Poisson
regression analyses, and related the number of truck involved crashes per year on a
section of highway to the highway’s traffic and geometric variables. The models showed
that the slope change rate (absolute curve of slope changes in the vertical direction

divided by the highway segment), the average daily traffic, and the difference in speed
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between trucks and non-trucks influence the number of truck-involved crashes on a given

stretch of highway.

Hadi et al. (1995) used a negative binomial regression analysis to estimate the effects of
cross-sectional design elements. They found that increasing lane width, shoulder width,

centre shoulder width, and median width were significant in reducing crashes.

Caliendoa et al. (2007) presented a study of crash-prediction models for multilane roads.
Crash-prediction models for a four-lane median-divided Italian motorway were
developed using crash data observed during a 5-year monitoring period (1999 to 2003).
The Poisson, negative binomial, and negative multinomial regression models, were
applied separately to tangents and curves, and were used to model the frequency of crash
occurrence. Model parameters were estimated by the Maximum Likelihood Method, and
the Generalized Likelihood Ratio Test was applied to detect the significant variables that
were to be included in the model equation. Goodness of fit was measured by means of
both the explained fraction of total variation and the explained fraction of systematic
variation. The candidate set of explanatory variables was: length (L), curvature (1/R),
annual average daily traffic, sight distance (SD), side friction coefficient (SFC),
longitudinal slope (LS), and the presence of a junction (J). Separate prediction models for
total crashes and for fatal and injury crashes were developed. For curves, the signiﬁcanf
variables were L, 1/R, and AADT. For tangents, the significant variables were L, AADT,

and junctions.

Ivan and O’Mara (1997) used crash data from the Connecticut Department of
Transportation and Poisson regression for the prediction of traffic crashes. The model
showed that a highway’s posted speed limit and AADT were critical crash prediction
variables. The authors preferred the Poisson regression model to the linear regression

model.

2.3 Roadway Features and Rural Two-Lane Traffic Crashes

Although urban areas experience the highest rates of motor vehicle crashes (Insurance
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Research Council, 2001), fatal crashes are more likely to occur in rural areas.
Approximately 90 percent of all rural fatal crashes occur on two-lane highways (NHTSA,
2003b). Agent et al. (2001) reported that fatal crash rates for rural two-lane highways in
Kentucky were approximately twice the overall fatal crash rate for all state maintained

roads.

Many factors contribute to the higher fatal crash rates in rural areas including higher
traffic speeds, which can increase crash severity (Joksch, 1993), lower rates of seat belt
use (NHTSA, 1995), and longer response times for emergency medical assistance

(NHTSA, 2002). Roadway design is another important factor.

Qin et al. (2003) studied the selection of exposure measures for crash rate prediction for
two-lane highway segments. The paper investigated crash and physical characteristics
data for highway segments in Michigan using data from the Highway Safety Information
Systein (HSIS). They found that the relationship between crashes and daily volume
(AADT) was non-linear, varied by crash type, and was significantly different from the

relationship between crashes and segment length for all crash types.

Persaud et al. (2000) presented one of the earliest studies for separate analyses of curves
and tangents on rural two-lane roads. The dependent variable was crash frequency, and
the independent variables included traffic flow and road geometry. Regression rhodels
were calibrated using GLM. A dummy variable for “flat” or “undulating” terrain was also
used. For curves, crash frequency was found to increase with AADT, section length, and
curvature (1/R). For tangents, the number of crashes per year increased with AADT and
section length. The results also showed a higher crash frequency on undulating terrain

than that on flat terrain.

2.4 Time of Day

Human beings have a neurobiological cycle based on a circadian thythm (EPDFS, 1997).
Research by Hartley et al. (2000) has shown that there are two periods during the 24 hour

circadian cycle where the level of sleepiness is high. The first period is during the night
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and early morning, and the second period is in the afternoon.

During these periods of sleepiness, functions such as alertness, performance, and
subjective mood are degraded (Rosekind, 1999). Crash risk reaches its highest level in the
early hours of the morning, with a secondary peak in the early afternoon. The secondary

peak corresponds to the “post-lunch dip” (Folkard, 1997; Hartley et al., 2000).

Pack et al. (1995) conducted research into the effects of circadian rhythms on traffic
crashes. They used North Carolina traffic crash data, and found that FR crashes
corresponded to circadian variation in sleepiness, with a major crash peak during the

night and a secondary crashes peak in the mid afternoon.

The loss of alertness and degraded performance of 80 male truck drivers from the United
States and Canada were examined by Wylie et al. (1996). The study used continuous
video to monitor a driver’s face for eyelid droop and other fatigue induced facial
expressions. The results showed that drowsiness peaked between late evening and dawn.
The study also found that “time of day” was the most consistent factor influencing driver

fatigue.

In an attempt to develop an algorithm to identify crashes attributable to driver fatigue,
Chipman and Jin (2007) analyzed single-vehicle crashes using Ontario data (1999 to
2004). Crashes occurring at times of low circadian rhythm (2 am. to 5 a.m. and 2 a.m. to
4 p.m.) were compared with crashes occurring at times when light conditions were
similar, but circadian rhythm was higher (9 p.m. to 11 p.m. and 10 a.m.- noon). Logistic
regression was used to predict which single-vehicle crashes would occur at times of low
circadian rhythm (when fatigue is more likely). The initial results indicated many
circumstance associated with crash occurrence at these times of low circadian rhythm

including the age and sex of the driver and reported driver condition as well as weather.

2.5 Single Vehicle Run-off-Road Traffic Crashes

Studies of the effects of design factors on crash frequency have provided many insights
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(Hildebrand et al., 2007; Leggett, 1988), but studies of the factors that influence single
vehicle run-off-roadway crashes have been less successful. Although US national
statistics indicate that about one-third of fatal traffic crashes are associated with vehicles
running off the road (Vogt and Bared, 1998), little attention has been given to the
relationships between single-vehicle run-off-road crash frequency and road features. The
statistics for run-off-roadway crashes indicate a continued need for research to develop

cost-effective ways to reduce single-vehicle run-off-roadway crash frequency.

Hildebrand et al. (2007) set out to develop a better understanding of the relationship
between the frequency/severity of single-vehicle run-off-road collisions and certain
geometric/operational characteristics of the corresponding highway sections. The study
found a strong relationship between collision rates and the width of the clear zone
provided (CZP).

In a Tasmanian study, Leggett (1988) found that the contribution of fatigue increased with
crash severity, mainly because of the often fatal nature of single-vehicle run-off-road

crashes.

2.6 Age and Sex Effect Related to FR Traffic Crashes

Knipling and Wang (1994) examined United States crash statistics between the years of
1989 and 1993, and found that the age and sex of drivers were strongly related to
involvement in FR crashes. In 1990, 77 per cent of fatigued drivers were male and 62 per
cent of fatigued drivers were under 30 years of age. When comparing vehicle kilometres
travelled, male drivers were nearly twice more likely to be involved in fatigue-related
crashes than female drivers. Drivers under 30 years of age were four times more likely to

be involved in fatigue crashes than drivers over 30 years of age.

2.7 Criteria of Identification of FR Crashes in the United Kingdom and United
States

In the United Kingdom, Horne and Reyner (1995).identified FR crashes by using the

following criteria:
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Vehicle ran off the road and/or collided with another vehicle or object;

Absence of skid marks or brak-ing;

Driver only saw the point of run-off or the object hit just prior to the crash;

Witnesses reported lane drifting prior to the crash; and ‘
Other possible causes of the crash, e.g., mechanical defect, speeding, excess alcohol,

bad weather, etc., were excluded.

Similarly, in the United States, the Expert Panel on Driver Fatigue and Sleepiness (1997)

selected the following criteria to characterize a FR crash:

Occurred late at night, early morning, or mid-afternoon;
Resulted in higher than expected severity;

Involved a single-vehicle leaving the roadway;
Occurred on a high speed road;

Driver did not attempt to avoid the crash; and

Driver was the sole occupant in the vehicle.

2.8 GLM Model

Regression methods have become an integral component of any data analysis concerned

with the relationship between a response variable and one or more explanatory variables.

A generalized linear model (McCullagh and Nelder, 1989) is described in terms of the

following sequence of assumptions:

There is a response variable, y, of interest and stimulus variables x;, x;, efc., whose
values influence the distribution of the response variable.
The stimulus variables influence the distribution of y through a single linear function

only. This linear function is called the linear predictor, and is usually written as:

n=px+Byx, + Byxy +eennins +B,x, 2.1

Hence x; has no influence on the distribution of y if and only if ;=0

The distribution of y has the following form:
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6971 =eXp[§{yi(ﬂ)—7/1(u)+r(y, (p)}} 2.2)

Where ¢ is a scale parameter (possibly known) and is constant for all observations, ‘4’
represents a prior weight, which is assumed to be known, but which may possibly vary
within the observations, and u is the mean of y. It is assumed that the distribution of y is
determined by its mean and possibly a scale parameter as well.

* The mean, g, is a smooth invertible function of the linear predictor

pH=m( 1) n=m"(u)=uu) (2.3)
And this inverse function z(x )is called the link function.

These assumptions are loose enough to encompass a wide class of useful models in
statistical practice, but tight enough to allow the development of a unified methodology

of estimation and inference, at least approximately.

GLMs represent a unifying framework which includes classical regression models with
normally distributed dependent variables, categorical regression models like logistic
regression or Poisson regression, and various other nonstandard regression type models.
A main feature of GLMs is the presence of a linear predictor which is built from
explanatory variables. This linear predictor is linked to the mean response by the

so-called link function, which may have various forms.

Many linear regression ideas carry over to the wider class of GLM models: likelihood
based on inference techniques, especially estimation of parameters; goodness of fit tests;
tests for the significance of covariates; and diagnostic tools. Extensions to quasi
likelihood models are described where only first and second moments of the response
variable are specified. Tools for inference for the multi-categorical case are derived and

applied.
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GLMs are generally most useful when used in an exploratory way. They are a powerful
tool for experimenting when ﬁtth{g various models to a great variety of types of data.
SAS can be is used for the statistical analysis. SAS is a primary and powerful software
design tool for analyzing data when the main variable and response variable of interest
are one-dimensional univariates (SAS, 1998a). SAS can be used to fit regression, logistic

regression, and the analysis of variance or covariance models.

The SAS GENMOD Procedure for GLM is largely based on the assumption that there is
'a random sample of independent observations among which the variations are to be
modeled. The observations, however, may not be statistically independent. In this case, it
is still possible to use SAS for the analysis. The observations cannot be assumed to be
statistically independent when the likelihood of the observations can be expressed as a
product of two functions, the first observation being a function of the data alone, and the
second observation having the form of likelihood of the independent observations. A very
important situation that involves non-independent observations occurs when the data
consist of frequencies in a multi-way contingency table. For such data, in the form of
count, log-linear models are often the most appropriate. SAS can be used for this analysis,

and makes the fitting of such models relatively straightforward.

The SAS specification requires the following:
* the term included in the linear predictor GLM,;
* the link function connecting the linear predictor to the theoretical value (log function);

and

e the distribution of the random component---negative binomial distribution.

Poisson and Negative Binomial Models

Miaou and Lump (1993) suggested using Poisson regression as an initial step in the
modelling effort, with the negative binomial model then being applied where appropriate.
For the Poisson regression model, the probability of section i having y; crashes per year

(where y; is a non-negative integer) has the following form (Washington et al., 2002):
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-u(X) y
P(Y=y|X1aX29X3)=€_“M y=0.,1,2,...
Mass Function: r: 2.4)

Link Function: g(x) =log(u) (2.5)

Systematic Component:

g(u)=log(u)=a+ X, + B, X, + B, X, +...... + p.X,
= p=exp(a+ B, X, +0,X,+B,X,+...... +4,X,) (2.6)

Vi .
The mean parameter: £ { x_l:l = 4 =exp(Bx;), Variance=pu (2.7)
i
where y~ a random variable representing number of crashes or crash rate,
x~= parameter which is related to the occurrence of crash (vector of explanatory variable)
B = the coefficient of the corresponding factor (vector of estimable parameter).

n = the number of observations

The Pearson residuals are obtained by computing:

A A

e = Y —p; _Y,—p, _ observed-fitted 4= Zeiz
@) \/; Jitted

Under the hypothesis that the model is adequate, y ? is approximately chi-square with

(2.8)

n-p degrees of freedom, where p = the number of model parameters.

Negative binomial regression has the following form (Cameroon and Trivedi, 1998):

Mass Function:

k y
P(¥ =y | X, X, X, k)= Q¥R [k Z y=012...
TROTO) \k+ ) \k+u

(2.9)
EX)=pu (2.10)
Var(y,) = u+(-) 2.11)
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Link Function: 8(#) =log(s) 2.12)
Systematic Component:

g(u)=log(u)=a+ B X, + B, X, + f,X,

= u=expla+p,X, +0,X,+B,X,)=cexp(x'p) (2.13)

(x'= x, x, x,])

k is the overdispersion parameter.

Goodness of fit for this model is based on Pearson Residuals, and is obtained with:

A A

= 2= 2 2.14
JV() \/; G Am2e 19

+u,lk

Under the hypothesis that the model is adequate, z? is approximately chi-square with

m-n degrees of freedom.

The appropriateness of the negative binomial model compared with the Poisson model is
determined by the statistical significance of the estimated coefficient k. If k is not
significantly different from zero, the negative binomial model simply reduces to Poisson.
If kis signiﬁcahtly different from zero, the negative binomial is the correct choice and

Poisson becomes inappropriate (Poch and Mannering, 1996).

Apart from the parameter k, the between using a Poisson or negative binomial
distribution is also based on the dispersion parameter, oy by Poisson error structure

(Sawalha, 2003).

2
o, = Learsony” | 2.15)

n—p

Pearsony’ z [ 18 )]

= Var(y,) 2.16)

where 7 is the number of observations, p is the number of model parameters, and y; is the
observed number of crashes on section i, E(Y;) is the predicted crash frequency for

section i, Var(y;) is the variance of crash frequency for section i. If oy turns out to be
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significantly greater than 1.0, then the data has greater dispersion than is explained by
Poisson distribution, and a negative binomial regression model is fitted to the data
(Sawalha, 2003).

2.9 Traffic Crashes and GLM Analysis

Three approaches to relating traffic crashes to geometric and traffic related explanatory
variables have been attempted by researches: multiple linear regression (MLR), Poisson
regression, and negative binomial regression. Crash data are typically random, discrete,
nonnegative, and sporadic. These characteristics mean that MLR models have a number
of limitations when applied to crash data (Joshua and Garber, 1990; Zegeer et al., 1990;
Miaou and Lump, 1993).

The Poisson model has been applied to crash analyses (Joshua and Garber, 1990; Miaou
and Lump, 1993). In the Poisson model, the K constraint of the Poisson model specifies
that the mean must be equal to the variance. If this constraint is not valid, the statistical
model is incorrect and leads to the incorrect estimation of the likelihood of crash
occurrences. A number of studies have reported crash data that were significantly
overdispersed which indicated that the variance was greater than the mean (Miaou, 1994;
Shankar et al., 1995; Vogt and Bared, 1998). |

Over the years, numerous models have been developed to relate traffic crashes to various
measures of traffic flow, site characteristics, and geometry. While early models used
classical least squares regression modeling, and were based on the assumption of a
normal error structure, it is now accepted that the use of GLM, with a negative binomial
error structure, is more appropriate (Mountain et al., 1998). The negative binomial model
overcomes the problem of overdispersion, and handles the discrete and nonnegative
events typical of crash data by rélaxing the constraint that the mean must be equal to the
variance (Kulmala, 1995). The use of the negative binomial approach has become a

popular tool for the analysis of road crash data.
The popularity of GLMs is primarily due to their statistical advantages. One of the first
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accident-prediction models for multilane roads using GLMs was developed by Persaud
and Dzbik (1993). Persaud and Dzbik examined the relationships between crash data and
traffic flow. Traffic flow was expressed both as average daily traffic (ADT) and as hourly
volume (VH). The results showed that the crash rate increases with increasing traffic flow,
whether measured as ADT or as VH. The accident risk on four-lane freeways was found
to be lower than the accident risk on freeways with more than four lanes, reflecting the
fact that, for the same traffic volume, freeways with more than four lanes had conditions
of freer-flow and greater freedom for drivers to maneuver than did the four-lane
freeways. The findings suggested that VH was a more appropriate measure of traffic flow
than ADT for explaining crashes since VH takes into account the degree of congested or
free-flow traffic conditions at the time of crashes, but as accurate measures of VH are

difficult to obtain, ADT is often used in crash-prediction models.

Radin et al. (1996) used a GLM to analyze conspicuity-related motorcycle crashes in
Seremban and Shah Alam, Malaysia. The purpose of the study was to understand the
possible effects of introducing regulations and a supporting campaign for the use of
running headlights. The GLM was developed to describe the relationship between the
frequency of conspicuity-related motorcycle crashes and a range of explanatory variables.
The model developed revealed that the running headlight intervention reduced the
conspicuity-related motorcycle accidents by about 29%. It is concluded that the
intervention has been successful in improving conspicuity-related motorcycle accidents in

Malaysia.

Abdel-Aty et al. (2000) used negative binomial regression to predict crash frequency as a
function of AADT, degree of horizontal curvature, section length, lane, shoulder and
median widths, and urban/rural designation. The results showed that crash frequency
increases with AADT, degree of horizontal curvature, and section length, and that crash

frequency decreases with lane, shoulder, and median width.

Shankar et al. (1995) used negative binomial regressions to model the effects of roadway

geometrics and environmental factors on rural crash frequency on sections of highway in
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Washington State. Shankar et al. modeled overall crash frequency and the frequency of
specific types of crash. They confirmed statistically that separate regression models for
each specific type of crash had greater explanatory power than did the model for all crash
types. .

Poch and Mannering (1996) used negative binomial regression to predict crash frequency
on sections of prinbipal arterials in Washington State. The results showed that the
negative binomial regression is a powerful predictive tool and one that should be more

widely applied in crash frequency studies.

Miaou (1994) studied the relationship between highway geometric variables and crashes
using negative binomial regression. He evaluated the performance of the Poisson
regression, zero-inflated Poisson regression, and negative binomial regression. Maximum
likelihood was used to estimate the coefficients of the models. Miaou suggested that the
Poisson regression model should be used initially to establish the relationship between
highway geometric variables and crashes, and that if overdispersion is found to be
moderate or high, the negative binomial and zero inflated Poisson regression models can

be explored.

Khattak and Council (2002) used the negative binomial model to investigate crash
frequencies by analyzing the effect of work zone duration on crashes. Khattak and
Council created a unique dataset for California freeway work zones. The dataset included
crash data (crash frequency and injury severity), road inventory data (ADT and
urban/rural character), and work zone related data (duration, length, and location). The
researchers used the negative binomial model for their statistical analyses of crash rates
and crash frequencies in the pre-work zone and during-work zone periods. The results
showed that crash frequencies increased with increasing work zone duration, length, and
average daily traffic. The important finding was that after controlling for various factors,
longer work zone duration significantly increased both injury and non-injury crash

frequencies.
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2.10 Logistic Regression

Logistic regression analysis has special relevance to traffic crash modelling. This is
because a traffic crash is discrete or qualitative in nature, i.e. a crash either occurs or does
not occur. A crash is either an event or a non-event. A traffic crash therefore usually takes

the form of a dichotomous (binary) indicator or dummy variable.

Binomial (or binary) logistic regression is used when the dependent variable is
dichotomous and when the independent variables are of any type (Hosmer and Lemeshow,
2000). The regression coefficients show an increase or decrease in the predicted
probability of having a characteristic or of experiencing an event due to a one-unit change
in the independent variables. If the independent variables are categorical, or a mix of

continuous and categorical, logistic regression is preferred.

Logistic regression is an extension of simple bivariate regression where, given a linear
relationship between two variables, we can calculate the value of the dependent variable
given the value of the independent variable. In logistic regression, there can be one or
more independent variables and a single binary dependent variable. The variables are
used to establish the probability that the dependent variable belongs to either the event (1)

or to the non-event (0) group for a particular crash.

Figure 2.1 shows an idealized logistic regression (Maschner, 1996) using two
independent variables (x and y) and two mutually exclusive entities: site (1) and non-site
(0). The presence of sites is related to high values for both independent variables x and y.
The probability of finding a non-site increases with the values for independent variables x
and y. With these two pieces of information, the logistic regression equation can calculate
the probability of getting either a site (1) or a non-site (0) given the values of the two
independent variables (x and y). The s-shaped curve typically found with logistic
regression shows how the probability of finding a site increases as the values for x and y

increase. The range of probabilities falls between 0 and 1.
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Figure 2.1 Idealized Logistic Regression (Maschner, 1996)

Assumptions of Logistic Regression

Logistic regression does not assume a linear relationship between the dependent variables

and the independent variables. Because the logit link function on the left-hand side of the

logistic regression equation is non-linear, logistic regression can handle nonlinear effects

even when exponential and polynomial terms are not explicitly added as additional

independents. Logistic regression makes the following four assumptions:

*  The dependent variable need not be normally distributed.

* The dependent variable need not be homoscedastic for each level of the independents,
that is, there is no homogeneity of variance assumption.

*  The error terms need not be normally distributed.

e The independents need not be unbounded.

The Logistic Regression Model

In logistic regression, the dependent variable is usually dichotomous, that is, the
dependent variable can take the value 1 with a probability of success 6, or the value 0

with a probability of failure 1-8 (Balakrishnan, 1991). This type of variable is called a
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Boolean (or binary) variable. The following sections draw extensively from

http://userwww.sfsu.edu/~efc/classes/biol 710/logistic/logisticreg.htm

The advantage of using the logistic regression model rather than linear or any other type
of model is that the independent or predictor variables in logistic regressidn can take any
form, that is, logistic regression makes no assumption about the distribution of the
independent variables. The variables do not have to be normally distributed, linearly
related, or of equal variance within each group. The relationship between the predictor
and response variables is not a linear function in logistic regression. The logistic
regression function is used instead, and is the logit transformation of &

e(a+ZﬂXi)

0= @t @17)

where a = the constant of the equation and, 8= the coefficient of the predictor variables.

An alternative form of the logistic regression equation is:

10git[9(x)]=log[l_j‘i£)?-}=a+z,BX,. | (2.18)

The goal of logistic regression is to correctly predict the category of outcome for
individual cases using the most parsimonious model. To accomplish this goal, the model
created includes all the predictor variables that are useful in predicting the response
variable. Several different options are available during model creation. Variables can be
included or removed from the regression model by the testing the significance. This is
known as stepwise regression.
Stepwise regression is used in the exploratory phase of research, but it is not
recommended for theory testing (Menard, 1995). Theory testing is the testing of a-priori
theories or hypotheses about the relationships between variables. Backward stepwise

regression appears to be the ‘preferred method of exploratory analyses. In backward
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stepwise regression, the analysis begins with a full or saturated model, and variables are
eliminated from the model in an iterative process. The fit of the model is tested after the
elimination of each variable to ensure that the model still adequately fits the data. When

no more variables can be eliminated from the model, the analysis has been completed.

Model Testing

The process by which coefficients are tested for significance for inclusion or elimination
from the model involves several different techniques (Green, 2003). The techniques used

in this thesis are discussed below.

Likelihood-Ratio Test

The probability of the observed results given the parameter estimates is known as the
likelihood. Since the likelihood is a small number (less than 1), it is customary to use -2
times the log of the likelihood (-2LL). -2LL is a measure of how well the estimated model
fits the likelihood. A good model is one that results in a high likelihood of the observed
results. This translates to a small number for -2LL. (If a model fits perfectly, the
likelihood is 1, and -2 times the log likelihood is 0.)

The likelihood-ratio test uses the ratio of the maximized value of the likelihood function
for the full model (L;) over the maximized value of the likelihood function for the simpler
model (Ly). The likelihood-ratio test statistic is a log transformation:

-2 1og(IL’—°) = -2[log(L,) - log(L,)]=-2(L, - L,) (2.19)

1

This log transformation of the likelihood functions yields a chi-squared statistic. This is
the recommended test statistic to use when building a model through backward stepwise

elimination.
Hypothesis Testing

Hypothesis testing in logistic regression involves reasoning by contradiction. The first

assumption, or the null hypothesis, is that the predictor coefficient is zero in the
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population. Hypothesis testing is used to decide whether there is sufficient evidence in
the sample data to reject the null hypothesis and, therefore, to accept the alternative

hypothesis that the predictor variable coefficient differs from zero.

A large test statistic means that the coefficient probability differs from zero. The criterion
for this test is the probability (p-value) associated with the test statistic. Typically, if the
observed statistic occurs in 5% or fewer of random samples from a population in which
the coefficient is zero, the null hypothesis is rejected. The cutoff probability for
hypothesis testing is usually 0.05 and is known as alpha.

Confidence Intervals

Confidence intervals can be used for hypothesis testing as well as for regression
coefficients. The interpretation of the 95% confidence interval is that if a 95% confidence
interval were computed for an infinite number of random samples from a population,
95% of the intervals would contain the population value on average. In addition, when
the 95% confidence interval includes 0, the coefficient is not significant at the 5% alpha
level. A 95% confidence interval can be computed for the odds ratio by raising e to the
power of the upper and lower confidence bounds for the regression coefficients. If the
95% confidence interval includes the number 1, the odds ratio is non-significant at the
5% level of significance, meaning that the change from one category to another does not

reliably increase the odds of membership in the target group.

Interpretation of Logistic Regression Coefficients

The interpretation of the effect of the independent variables on the response variable has
intuitive appeal. The logistic regression coefficients show the change in the predicted
logged odds of experiencing an event or having a characteristic for a one-unit change in
the independent variables (Wong, 2003). Odds in logistic regression express the
likelihood of an occurrence relative to the likelihood of a nonoccurrence. To illustrate this,
assume that each independent variable has a probability of experiencing an event, defined
as P;. Given this probability, the logit transformation involves two steps. First, take the
ratio of P;and 1-P;, or odds of experiencing the event. Second, take the natural logarithm
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of the odds. The logged odds or logit is:

Pi
L = m[i—_—Pl} (2.33)

For example, if P; equals 0.2, its odds equal 0.25 or 0.2/0.8, and its logit equals —1.386,

the natural log of the odds. Manipulating the above formula for odds will give further |
insight into one of the inherent problems faced with nonlinear functions in linear
regression and how logistic regression performs in dealing with these functions. The |

manipulated logged odds or logit is:

P,
—t—= 0, 2.20
—p =0 (2.20)
and implies that:
0, ‘
P = i (2.21)
1+ 0,

The formula shows that the probability can never be equal or exceed one. Conversely, the
probability can never fall below zero. The first property of logit is that it has no upper or
lower boundary. Logits vary from negative infinity to positive infinity. The second
property is that the logit transformation is symmetric around the midpoint probability of
0.5. The third property is that the same change in the probabilities translates into different
changes in the logits. As P; comes closer to 0 and 1, the same change in the probability
translates into a greater change in the logged odds. This means that the general principle
is that small differences in probabilities result in increasingly larger differences in the

logit when the probabilities are near the bounds of 0 and 1.

Fitting a Binary Logistic Regression Model

Binary logistic regression models model the relationship between a binary response
variable and one or more explanatory variables. The logistic regression model uses the

explanatory variables to predict the probability that the response variable takes on a given
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value. In the case of binary logistic regression models, the response variable takes one of
the two binary values (0 or 1). For a binary response variable y, the logistic regression

model has the following form (Dissanayake, 2003):

Logit (P;) = log( —?’?) =a+ Z BX,; (2.22)

where P;= Prob(y;=y/X;) is the response probability to be modeled, and y; is the first
ordered level of y, ais the Intercept parameter, /3 is the Vector of slope parameters, and X;

is the vector of explanatory variables.

This logistic regression equation models the logit transformation of the i" individual’s

event probability, P;, as a linear function of the explanatory variables in the vector, i.

2.11 Traffic Crashes and the Logistic Regression Models

Using logistic regression modelling to model crash occurrence as a discrete outcome
involves estimating the probability (conditional probability in nature) that a vehicular
crash has a certain type by determining the likelihood of outcomes given that a crash (i.e.,
FR crash in this thesis) has occurred. Despite the many limitations of statistical models,

the models are helpful for identifying factors associated with motor vehicle crashes.

Kim and Yamashita (2000) developed a logistic regression model to explain the
likelihood of alcohol impairment among motorcycle riders who had a crash that was
reported by police. A likelihood ratio was used to assess the model fit by testing the null
hypothesis that the covariates had no effect on the response variable. The likelihood ratio
was calculated by subtracting the log-likelihood values of the full model from the
loglikelihood values of a model with only the intercept term. The results indicated that
impairment was more likely to be associated with middle-aged riders, and unlicensed
riders who did not wear a helmet. The results also showed that impaired related crashes

are more likely to occur at night, on weekends, and in rural areas.

Krull et al. (2000) developed logistic regression models to investigate the driver, roadway,
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and crash characteristics that influence the likelihood of fatal or incapacitating injuries
given that a single-vehicle run-off-road crash has occurred. Two models were developed:
one for all single-vehicle run-off-road crashes; and one for single-vehicle run-off-road
crashes in which the vehicle rolled over. The study found that the use of safety belts lead

to a reduced likelihood of fatal or incapacitating injury.

Multivariate logistic regression models were developed by Donelson et al. (1999) to
explore the effect of various factors on the likelihood of a fatality in single-vehicle
rollover crashes involving light duty trucks. The study objectives were to quantify the
effect of fatality risk factors, adjust fatality-based rates for that influence, and assess how
the adjusted rates measured differences for various groupings of vehicles. The models
were calibrated using crashes of all severities. Counts and rates were then adjusted for the
effect of the higher risk of the conditions that resulted in a fatality. This was done by
multiplying the observed number of fatalities by the ratio of the sum of probabilities of a
fatality occurring at a base condition (i.e., each variable was set to its safest level) to the

sum of probabilities of a fatality.

McGinni (1999) used logistic regression to identify factors that differentiate run-off-road
crashes from non-run-off-road crashes. McGinni created 56 separate models to analyze
the data by combinations of seven age groups, both gender groups, and four highway
classification groups. The author found that the effect of the variables on drivers was
associated with differences in driver age and gender. Variables that showed ’an increased
likelihood of a run-off-road crash included a non-intersection location, presence of a
horizontal curve, rural highway, alcohol involvement, slippery pavement condition, no

street lighting, and a high speed limit.

A study by Lin (1993) developed a time-dependent logistic regression model of the crash
risk of truck drivers. The model included multiday (i.e., hours on and off-duty) and
continuous driving time as factors. A cluster analysis was used to define 10 time-based
driving patterns. The results showed that driving time had the most influence on crash

risk. Drivers with less than 9 hours of “off-time” had a higher risk than drivers with a
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longer rest period. Drivers with at least 10 years of driving experience had a smaller crash
risk. Drivers with infrequent driaving patterns and a tendency towards night driving

showed a higher crash risk.

2.12 Summary of Literature Review Findings

The literature review suggests that appropriate tools for modelling FR crashes would be
GLM modelling using the negative binomial distribution, and logistic regression

modelling.

Many studies have investigated the relationship between possible explanatory factors and
traffic crashes. The findings are not necessarily consistent. Past studies discuss the safety
effects of numerous variables, many of which could be investigated in this thesis’s study
of FR crashes. AADT, section length, speed limit, shoulder width, pavement width,
roadway curvature, age, sex, and time of day were found to have a relationship with

traffic crashes.
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3 DATA PREPARATION FOR GLM ANALYSIS

3.1 Introduction

The following sections describe the characteristics of the data used in this study, and the
methodology used to capture crash and geometric data from the Highway Safety
Information System (HSIS) for the development of the study’s GLM crash model for FR
crashes. The HSIS is a multi-state database that contains crash, roadway inventory, and
traffic volume data for a select group of States. The HSIS is operated by the University of
North Carolina Highway Safety Research Center (HSRC), LENDIS Corporation, and the
Federal Highway Administration (FHWA).

The data for the FR crash model development were extracted from the Ohio Traffic
Crashes Database obtained from the HSIS Database. The Ohio data in the HSIS are
derived from databases of police-reported crashes in Ohio State. Ohio safety data were
used because Ohio’s safety information is more comprehensive and complete than that of

many other states.

Further information about the data is provided in Section 3.2.

3.2 Data Preparation for GLM Analysis

Data Description

In order to develop the GLM model, detailed information on crash data, traffic flow and
road design was required. Single-vehicle run-off-road crashes on rural two-lane roadway
segments were selected from the Ohio data for the five years from 2000 to 2004. The site
of the crashes was related to the specific road link by the road ID number, and crash,

“roadway, curve and grade data were collected for the segments where a crash occurred.

The Ohio data system provided to HSIS includes the following four basic files:
* Accident Data File (accident, vehicle and occupant);
* Roadway Inventory File; .

e State Supplemental Inventory; and |
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e  “Points” File.

Accident data file stores the basic crash information on a case-by-case basis. The data for

each crash are found in three separate subfiles: crash, vehicles, and occupants.

Roadway inventory file contains the general roadway characteristics. The information
includes all functional classes of roads within the state system: freeways, arterials, and
collectors, both rural and urban. The file contains information on approximately 1,500
miles of Interstates, 4,000 miles of U.S. Routes, and 14,000 miles of State Routes. The
file contains general cross section information related to travel way widths, number of
lanes, median width, and other variables. Traffic information in the form of ADT is

included for each section in the file.
State supplemental inventory data file contains curve, grade, and other geometric data.

The fourth file is the points file which contains information on intersections, railroad

grade-crossings, and underpasses.

Each accident file record is referenced to a point on the roadway. Roadlog file is an
additional file which contains information on a homogeneous section of the roadway (i.e.
a stretch of road which is consistent in terms of certain characteristics). Each new section
is defined by a new beginning reference point. Each record in the roadlog file contains
the current characteristics of the road system including surface type and width, shoulder
and median information, lane information, etc. Information on curves and grades is
captured in separate files for curves and grades. The Curve File has data on all horizontal

curves, and the Grade File has information on grades greater than 3 percent.

Segmentation of Roadway Sections

To analyze the FR crash rate, it was important to define a roadway section. Three main
approaches were considered: absolute homogeneous sections, fixed-length

non-homogeneous sections and limited homogeneous sections.
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Absolute homogeneous sections are defined by changes to any geometric or roadway
variable (e.g. a new section would be identified when the shoulder width changed from
1.8m to 2.0m). Section-defining information for the absolute homogeneous method
includes changes to district number, state route number, roadway type, numbers of lanes,
roadway width, shoulder width, presence of curb or retaining wall, divided or undivided
highway, speed limit, AADT, truck percentage, peak hour factors, and vertical and

horizontal curve characteristics (Miaou et al., 1991).

The disadvantage of the absolute homogeneous sections is that roadways with numerous
horizontal curves and grades tend to produce sections that are less than 0.1 km in length.
These short road sections can result in undesirable impacts on the estimation of their
regression models (Zegeer et al., 1991). The use of fixed-length non-homogeneous
sections, however, ignores the effect of the change of geometric or roadway variables and

leads to non-homogeneity in geometric design variables (Miaou et al., 1993).

On consideration of the advantages and disadvantages of the two approaches, this study
decided to use unequal-length limited homogeneous sections. The sections were
homogeneous for only ten variables: Route Number, AADT, Speed Limit, Access Control,
Functional Class, Median Width, Median Type, Number of Lanes, Surface Width, and
Roadway Type. As the length of the sections varied, the crash frequencies and associated

geometric data refer to roadway sections of unequal length.

To overcome non-homogeneity in the geometric design variables, crash frequencies, and
roadway geometrics for both roadway directions were collected. Alignment indices of
average horizontal curvature and average vertical gradient were also collected. To
overcome inequity between two outside shoulder widths, the variable ‘average outside

shoulder width’ was applied.

Data Editing
In order to develop the dataset for GLM analysis, tlie data from the Ohio HSIS data files
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were sorted and merged by their SAS variables (CASENO, VEHNO, CNTYRTE, and
MILEPOST). Descriptions of SAS variables are provided in Appendix B.

As noted above, the crash data in the accident data file are subdivided into three subfiles
(accident, vehicle, and occupant). The accident and vehicle subfiles were linked together
using the crash report number (i.e., CASENO). When linking the occupant subfile, the
additional linking variable related to vehicle number (i.e., VEHNO) was matched so that
the occupants were associated with the vehicle in which they were traveling. To link
vehicles with accidents, both subfiles were first sorted by CASENO. The separate
subfiles were linked by specifying a SQL JOIN operation of the SAS Procedure with the
constraining condition that the case number and vehicle number from each table are equal.
SQL processing does not require the data to be presorted, and the output will not be in

any particular sort order unless ORDER BY is specified.

The accident subfile was linked to the roadlog file using the CNTYRTE and MILEPOST
variables in the crash record, and the CNTY RTE, BEGMP and ENDMP variables in the
roadlog file. Similarly, the accident subfiles were linked to curve, grade, and angle points
using similar variables found in each respective file. To link the accident file and the
points file, CNTYRTE and MILEPOST variables from the accident file were matched
with CNTY_RTE and MILEPOST variables of the points file. To extract data on the
intersecting state-system route in the points file, the roadlog file was linked to the
XMILEPST and XCNTYRTE variables.

To prepare the accident subfile for linking with the roadlog file using a SAS data step
process, both the accident and the roadway file were sorted into location order by
CNTYRTE and MILEPOST on the accident file and by CNTY_RTE and BEGMP on the

roadlog file. Similar sorts were done with other files to be merged.
In order to develop the dataset suitable for GLM analysis, homogeneous road segments

were created from the roadlog file using changes in given variables. The road segments

were then identified by using a SAS RETAIN Statement to compare the current record to
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the previous record. If the two records were different, a flag was set to indicate the start
of a new segment. Next, the road segments were sorted in descending order to save the
data contained in the first record of a homogeneous segment, especially the beginning
milepost number. Finally, the homogeneous segments were assembled and the ending
milepost of the last record was assigned to the first record. The average AADT for the
five years from 2000 to 2004 was calculated for each road section and transformed to log
form for the GLM analysis. Average horizontal curvature and average vertical gradient

were also calculated.

Single-vehicle run-off-road traffic crashes were selected from the accident data files for
2000 to 2004. The rate of the selected crashes within each road section was calculated as
a response variable in GLM. Eventually, the roadway segment file was merged with the
new variables LOGAADT (log form of AADT), average horizontal curvature, average
vertical gradient, and crash frequency. The new SAS dataset was suitable for the GLM

analysis.

Figure 3.1 shows the procedure used for developing the dataset. The SAS codes for the
dataset development for the GLM analysis are listed in Appendix C.

Roadlog File v Road Segment
Curve File ™ Average Horizontal Curvature k: Fatigue Crash
/ Dataset
Grade File ™ Average Vertical Gradient /
Accident File ™ Fatigue Crash Frequency

Figure 3.1 Fatigue Crash Dataset Developing Procedure

3.3 Variables for GLM Analysis

The following sections discuss the variables used in the GLM analysis. The response
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variable is the FR crash rate. The explanatory variables are: traffic volume, posted speed
limit, horizontal and vertical alignment indices, pavement surface width, and average

width of outside shoulders.

Response Variable

The review of crash models reported in Chapter 2 showed that crash rate and crash
frequency are commonly used as dependent (or response) variables. In this study, the
crash rate is defined as the number of crashes per mile per year. The use of the crash rate
as the response variable means that the section length is not treated as an independent
variable. If section length has to be considered as an independent variable, crash

frequency (and not crash rate) should then be considered a response variable.

Traffic Volume

Several studies (Caliendoa et al., 2007; Martin, 2002; Miaou et al., 1992) have attempted

to quantify the relationship between traffic volume and the traffic crash rates, and the
relationship between traffic volume and the severity of crashes. The effects of traffic
volume vary and may be influenced by speed, density, and flow. Research indicates that
traffic volume is positively correlated with incidences of traffic crashes: as the number of
vehicles on a highway increases, the potential for conflicts within a traffic stream also

increases.

Posted Speed Limit
The posted speed limit is the speed set by state, city, or county to inform motorists of the

highest safe speed under favorable road, traffic, and weather conditions. Experience and
research are used to develop procedures for setting speed limits. These procedures differ
from country to country. The posted speed limit is usually based on the results of an
engineering and traffic investigation. The speed limit is usually set at the 85th percentile

of operating speeds.

The posted speed limit is a function of several roadway parameters, sight distance, and

roadway condition. In a crash prediction model, the speed limit is, therefore, a numerical
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variable rather than a categorical variable.

Table 3.1 shows the number of road segments in each posted speed limit group. The
posted speed limit ranges from 20 mph to 65 mph. Most of the road segments (61.5%)
have a posted speed limit of 55mph. The second largest group (20.9%) has a posted speed
limit of 55mph.

The last column of Table 3.1 shows the mileage of the road segments for each speed limit.

The 55 mph road segments have a total mileage of 10,732 miles (86.87% of the total
mileage).

Table 3.1 Posted Speed Limits on Road Segments selected for Study

Number of % of Observations Total Mileage b
Speed Limit (MPH) | Observations (Road | Percentage (Road . . & . y
Speed Limit (Miles)

Segments) Segments)

20 8 0.1 1.2

25 520 42 94.1

30 8 0.1 1.31

35 2,586 20.9 760.3

40 289 2.3 138.6

45 981 7.9 732.1

50 347 2.8 188.3

55 7,607 61.5 | 10,731.7

60 2 <0.1 0.4

65 6 0.1 94

Total 12,354 100 12,657.3

Horizontal and Vertical Alignment Indices

_Alignment indices are quantitative measures of the general characteristics of a roadway
segment’s alignment (Fitzpatrick et al., 2000.). The measures incorporated into the
alignment indices include average radius per roadway section, average vertical curve, and

curvature change rate per kilometer.
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Curvature on roads is not expressed in terms of radius, as it is on model layouts. The
curvature on roads is the angle between two lines drawn from the centre of the circle of
which the curve is a part to two points on the circumference 100 feet apart. Curvature can
be expressed in terms of the number of degrees traversed by 100 feet of road. The radius
(distance from centre point to edge) of a curve is obtained with the following conversion

equation: radius in feet equals 5,729 divided by the degrees of curvature.

Polus et al. (1998) suggested several alignment indices to quantify the general character
of the alignment of a roadway. Indices based on horizontal alignment characteristics
- included the average curvature in degrees per kilometer, the average radius of curvature,
the ratio of the maximum to the minimum radius, and two horizontal alignment indices
using the radii of curves. They also suggested one index based on vertical alignment: the

average gradient along a section of roadway.

Average curvature was selected for this study because it expresses what motorists
typically encounter on curved sections of the road. Large average curvature indicates

sharp curves.

Average gradient was also selected for this study. Average gradient represents the
absolute change in vertical direction along a roadway. As the average gradient increases,
there is either a large change in elevation between the vertical points of intersection, or

the vertical alignment is hilly.

Pavement Surface Width

Pavement surface width measures the total paved road width of all of a road segment’s
through lanes in both directions. The measurement is in feet. Pavement surface width
does not include left or right turn lanes, parking lanes, or acceleration or deceleration

lanes.

This study used total pavement surface width because individual lane width is not

available in the HSIS database. It is, however, noted that wide lanes imply that vehicles
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moving in adjacent lanes can be widely separated. The advantage of wide lanes is that
they may provide a buffer which may absorb small random deviations of vehicles from
their intended path. The disadvantage of wide lanes is that drivers may adapt to the wide
lanes and tend to drive faster than in narrow lanes. The effects on safety require empirical
statistical evidence. Pavement surface width was included in the modelling to shed light

on the lane width issue.

Table 3.2 shows the number of road segments in each pavement surface width group (14
feet to 44 feet). Pavement surface width ranges from 14 feet to 44 feet. The most
common pavement surface width is 24 feet (33% of the road segments), followed by 20
feet (30%). The third most common pavement surface width is 18 feet (11%). The last
column of Table 3.2 shows the mileage of the road segments for each pavement surface
width. 4,297 miles have a pavement surface width of 20 feet, 3,744 of 24, and 2,287 of
18.
Table 3.2 Pavement Surface Width Frequencies on Road Segments selected for Study

Number of % of MilTe :tgael by
Pavement Surface Observations | Observations Pavement
Width (Feet) (Road (Road
Segments) Segments) Sul:face
Width
14 1 0.01 0.35
15 1 0.01 0.40
16 55 0.44 53.48
17 19 0.15 21.81
18 1326 10.69 2,286.73
19 562 4.53 839.70
20 3,665 29.54 4,297.4
21 238 1.92 222.59
22 1,128 9.09 1035.3
23 64 0.52 65.90
24 4,111 33.14 3,744.27
25 33 0.27 15.05
26 69 0.56 20.68
27 51 0.41 9.19
28 118 0.95 25.23
29 13 0.10 1.91
30 199 1.60 45.42
31 30 0.24 5.60
32 144 1.16 28.39
33 16 0.13 3.00
34 69 0.56 18.45
35 26 0.21 4.95
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Number of % of Total

Pavement Surface | Observations | Observations 1\1/’[:::1%1‘:51‘:{
Width (Feet) (Road (Road
Segments) Segments) Sm:face
Width
36 233 1.88 49.49
37 15 0.12 4.90
38 51 0.41 9.40
39 18 0.15 3.48
40 79 0.64 15.23
41 18 0.15 2.45
42 26 0.21 4.96
43 5 0.04 0.99
44 23 0.19 3.94
Total 12,383 100.00 12,657.3

Average Width of Outside Shoulders

The average width of outside shoulders variable provides outside shoulder information.

Shoulder width is the portion of the roadway between the outer edge of the through
pavement and the end of the shoulder, or the portion of the roadway between the outer
edge of the through pavement and the intersection of the slope lines of the outer edge of

the roadway with the ditch.

Outside shoulders provide for stopped vehicles, emergency use, and lateral support of the
roadbed. The average width of the outside shoulders was used in this analysis because of

the consideration of possible unequal widths of both outside shoulders.

Table 3.3 shows the number of road segments in each the average width of outside
shoulders ranges from O feet to 15 feet. The three most common average outside
shoulders widths are 4 feet (20% of the road segments), followed by 3 feet (17%), and 2
feet (16%). The next three most common average outside shoulders widths are 0 feet
(11% of the road segments), 8 feet (9%), and 6 feet (9%).

The last column of Table 3.3 shows the mileage of the road segments for each average
width of outside shoulders. 2,613 miles have an average outside shoulders width of 4 feet,

2,601 of 2, and 2,566 of 3.
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Table 3.3 Average Outside Shoulder Width Frequencies on Road Segments selected for

Study
Total
. Number of % of Mileage b
Average Out.s1de Observations | Observations Avelﬁlgey
Shoulder Width .
(Feet) (Road (Road Outside
Segments) Segments) Shoulder
Width
0 1,310 10.56 558.70
0.5 8 0.06 15.16
1 490 3.95 546.51
1.5 44 0.35 42.23
2 1,951 15.73 2,601.43
2.5 59 0.48 72.60
3 2,041 16.45 2,565.74
3.5 22 0.18 50.89
4 2,414 19.46 2,613.07
4.5 30 0.24 13.94
5 651 5.25 763.34
5.5 29 0.23 41.08
6 1,116 9.00 1,118.70
6.5 4 0.03 0.67
7 92 0.74 78.01
7.5 11 0.09 7.72
8 1,131 9.12 941.25
8.5 5 0.04 2.31
9 73 0.59 56.57
9.5 15 0.12 6.68
10 869 7.00 718.24
11 5 0.04 3.46
11.5 4 0.03 0.20
12 18 0.15 17.36
13 3 0.02 0.53
14 1 0.01 0.08
15 10 0.08 4.17
Total 12,406 100.00 12,657.3
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4 GLM ANALYSIS

Chapter 4 describes the GLM analysis:

e Section 4.1 outlines SAS analysis for generalized linear models;

e Section 4.2 describes the generalized linear regression model;

e Section 4.3 discusses the goodness of fit testing (Deviance, Scaled Deviance and
Pearson Chi-Square);

e Section 4.4 discusses the appropriateness of variables used in the model, and the
selection of the study’s six explanatory variables;

e Section 4.5 introduces the modelling procedure used in the generalized linear
modelling, and the four GLM models estimated in this study;

e Section 4.6 presents the FR and NFR results obtained from the generalized linear
modelling.

e Section 4.7 presents the sleepy-period FR traffic crashes and sleepy-period NFR
results obtained from the generalized linear modelling.

e Section 4.8 summarizes the generalized linear modelling results.

e Section 4.9 applies the FR GLM model to network screening. Safety performance
functions (SPFs) and empirical Bayes (EB) principles are introduced and illustrated,

and then applied to the Ohio data.

4.1 SAS Analysis for GLM

Figure 4.1 presents a flow chart showing the application of GLM regression analysis

using SAS software.
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Submitting SAS Program

Figure 4.1 Flow Chart of the Application of GLM Analysis by using SAS

Analysis using SAS assumes that there is a random sample of independent observations,
and that the modelling will address the variation in the observations. For accident count
data and modelling, the generalized linear model with negative binomial error
distribution is often most appropriate, and SAS makes the fitting of such models
relatively straightforward. The log function is the link function that enables the
calibration of a linear predictor. A negative binomial distribution is used with a constant
- over dispersion parameter that is calibrated using a quasi-likelihood approach. SAS

Codes for GLM analysis are listed in Appendix D.

4.2 Description of GLM

The generalized linear regression model used in this study relates the number of observed
FR crashes to traffic flow and road design. Generalized linear modelling techniques were
used to fit the model, and the distributions of crash counts were assumed to follow a
negative binomial distribution (as mentioned above). The regression analyses were
performed using the GENMOD procedure in SAS. Several studies (Khattak and Council,
2002; Radin et al., 1996; Poch and Mannering, 1996; Miaou, 1994; Persaud and Dzbik,
1993) have proved that the negative binomial distribution might be more appropriate for

traffic crash analysis because it allows for non-constant variance, or overdispersion in the
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data.

Previous studies have investigated a number of different ways in which to relate crash
frequencies to traffic flows (Caliendoa et al., 2007; Khattak and Council, 2002; Persaud
et al., 2000; Shankar et al., 1995). For road links, the general opinion is that crash
frequencies can be described by a flow variable raised to a power. The flow variable often
consists simply of the motor vehicle traffic flow along the link (AADT). In this study,

crash rate is used for GLM analysis.

The model structure is:

E(u) = AADT“e*#%) | @.1)

Where E () is the expected number of FR crashes per year per mile,
AADT is the annual average daily traffic,
The X variables describe the road variables,

a, f3; are estimated parameters.

Type 3 analysis was selected for the analysis of FR crashes. The GENMOD procedure
generates a Type 3 analysis analogous to Type III sums of squares in the GLM procedure.
A Type 3 analysis does not depend on the order in which the terms for the model are
specified. A GENMOD Type 3 analysis consists of specifying a model and computing
likelihood ratio statistics for Type III contrasts for each term in the model. The contrasts
are defined in the same way as they are in the GLM procedure. The GENMOD procedure
optionally computes Wald statistics for Type III contrasts. This is computationally less
expensive than likelihood ratio statistics, but it is thought to be less accurate because the
specified significance level of hypothesis tests based on the Wald statistic may not be as

close to the actual significance level as it is for likelihood ratio tests.
A Type 3 analysis generalizes the use of Type III estimable functions in linear models.

Briefly, a Type III estimable function for an effect is a linear function of the model

parameters that involves the parameters of the effect and any interactions with that effect.
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A test of the hypothesis that the Type III contrast for a main effect is equal to 0 is
intended to test the significance of the main effect in the presence of interactions (SAS,
1998a).

4.3 Goodness of Fit Tests

As available in SAS manual, the main goodness of fit measures for GLM analysis are

Deviance, Scaled Deviance, and Pearson Chi-Square (SAS, 1998a).

The Deviance has an approximate chi-square distribution with n-p degrees of freedom,
where 7 is the number of observations, p is the number of predictor variables (including
the intercept), and the expected value of a chi-square random variable is equal to the
degrees of freedom (DF). Then, if the model fits the data well, the ratio of the Deviance
to DF, Value/DF, should be about one. Large ratio values may indicate model
misspecification or an over-dispersed response variable; ratios less than one may also
indicate model misspecification or an under-dispersed response variable. A consequence
of such dispersion issues is that standard errors are incorrectly estimated, implying an
invalid chi-square test statistic, superscript p. Importantly, however, assuming the model
is correctly specified, the regression estimates remain unbiased in the presence of over or
under-dispersion. A "fix" is to adjust the standard error of the estimates. The standard
error correction corresponds to the approach for the scaled criterion. A naive explanation
is that when the scale option is specified (scale = dscale), the Scaled Deviance is forced
to equal one. By forcing Value/DF to one (dividing Value/DF by itself), the model
becomes "optimally" dispersed; however, what actually happens is that the standard
errors are adjusted ad hoc. The standard errors are adjusted by a specific factor, namely
the square root of Value/DF. Below are summaries of the various measurements used to
assess the model fit.

e Deviance - This is the deviance for the model. The deviance is defined as two times
the difference of the log-likelihood for the maximum achievable model (i.e., each
subject's response serves as a unique estimate of the negative binomial parameter),
and the log likelihood under the fitted model. The difference in the Deviance and

degrees of freedom of two nested models can bé used in likelihood ratio chi-square
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tests. McCullagh and Nelder (1989) caution against the use of the deviance alone to
assess model fit. o

e Scaled Deviance - The scaled deviance is equal to the deviance since the
scale=dscale option is not specified on the model statement.

*  Pearson Chi-Square - This is the Pearson chi-square statistic. The Pearson chi-square
is defined as the squared difference between the observed and predicted values
divided by the variance of the predicted value summed over all observations in the
model.

o Scaled Pearson 4’ - This is the scaled Pearson chi-square statistic. The scaled
Pearson 7’ is equal to the Pearson chi-square since the scale=pscale option is not
specified on the model statement.

* Log Likelihood - This is the log likelihood of the model. Instead of using the
Deviance, two times the difference between the log likelihood for nested models are
taken to perform a chi-square test.

e DF and Value - These are the degrees of freedom DF and the respective Value for the
Criterion measures. The DF equals n-p,b where 7 is the Number of Observation Used
and p is the number of parameters estimated.

e  Value/DF - This is the ratio of Value to DF.

e Algorithm Converged - This is a note indicating that the algorithm for parameter

estimation has converged, implying that a solution has been found.

4.4 Appropriateness of Variables in the Model

Different approaches are used to assess the significance of the variables in the model.
This section discusses the two main ways in which the validity of including each variable
in the model is judged. Section 4.4.1 discusses the p-values, and Section 4.4.2 discusses
the sign of the coefficients. Section 4.4.3 then explains the procedure used to select the

six explanatory variables used in this study.

p-Values
The p-value is the primary decision criterion for variables which are significant in the

crash model. The p-value is a statistical test associated with the null hypothesis. The null
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hypothesis used in this analysis is that a variable has zero coefficients, that is, the variable
has little effect on traffic crashes compared with the effect of other variables. In general,
the p-value is the probability that the sample could have been drawn from the
population(s) being tested (or that a more improbable sample could be drawn) given the

assumption that the null hypothesis is true.

In this analysis, a p-value tolerance of up to 0.05 seems acceptable and follows earlier
research (Radin et al., 1996). A p-value less than 0.05 signifies that the null hypothesis is
false, and the variable has an effect to crash frequency. p-values larger than 0.05 imply
that the null hypothesis cannot be rejected, which means that the variable has no effect on
the crash frequency. All p-values for this analysis are calculated using Chi-Square and the

Z-statistic.
In addition to testing individual variables, an aggregate p-value is used to test the whole
model. The selection of one model rather than another model in this analysis is also based

on this aggregate p-value.

Sign of the Coefficients

The sign of the variable coefficient can sometimes cause the coefficient to be omitted in
the model. This happens when the -direction of the effect of the variable is known in
advance, and the magnitude is the one that is tested. For example, if a variable for section
length has a negative coefficient, meaning that the longer the roadway section the lower
the crash frequency, then the variable can be dropped since this inference makes no sense.
Unexpected coefficients can sometimes result from unreliable data for that variable or

from errors that arise from other sources.

Selection of Explanatory Variables

The choice of explanatory variables should primarily be based on the theory used, the
question to be answered, and on professional knowledge rather than on ambitions
regarding multiple correlations and curve-fitting (Harnen et al., 2006; OECD, 1997). Six
explanatory variables were selected for building the-model in this study. Table 4.1 lists
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the six variables, and shows the SAS variable name and the unit of measurement.

Table 4.1 ExplanatZ)ry Variables included in GLM Analysis

Description of Variable SAS Variable Name Unit of Measurement
Average AADT in five years | AADT Vehicles per day

Speed limit Spdlimt Miles per hour

Ave'rage curvature of road Curv_hi Degrees per hundred feet
section -

ﬁ;(:irﬁzﬁzl;lsolute gradient of Grad_hi Percent

Surface width Surf wid Feet

Average width of outside Avg_outsh Feet

unpaved shoulder

The selection of variables to fit a model is a very important procedure. Variable selection
refers to removing variables which are not significant and adding variables which are
significant. There are different methods for selecting independent variables when running
a model: sequential forward selection, backward variable elimination, and stepwise

selection.

Sequential forward selection starts the model with a constant term. All the variables that
have not yet been selected are considered for selection, and their p-values, are recorded.
The variable that produces the best p-value is included in the set. Then, a new step is
started, and the remaining variables are considered. This is repeated until a pre-specified

number of variables have been included.

The sequential forward selection procedure first estimates barameters for variables forced
into the model. These variables are the intercepts and the first explanatory variables in the
model. Next, the adjusted chi-square statistics for each variable in the model are
computed, and the largest of these statistics is assessed for signiﬁcance. If the statistic is

significant at the specified p-value, the corresponding variable is added to the model.
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Once a variable is entered into the model, it is never removed from the model. The
process is repeated until none of the remaining variables meet the specified level for entry,
or until the final model is reached. The drawback of forward variable selection is that

once a variable has been selected, it cannot be excluded.

In backward variable elimination, variables are removed, one at a time, from the list of
explanatory variables. The model starts with all the explanatory variables included, and
then eliminates those which do not seem to improve on the explanation provided by the
other variables. At any step, the variable to be removed is determined by the p-values.
The removed variable is the one with the correspondingly largest p-value. Each time a
variable is removed, the Deviance and p-values are checked. The procedure stops when

the elimination of another term cannot further improve these goodness of fit measures.

Stepwise selection is modified forward and backward selection. The variables are
removed and added randomly. Variables are entered into and removed from the model in
such a way that each forward selection step can be followed by one or more backward
elimination steps. The stepwise selection process terminates when no more variables can
be added to the model, or when the variable just entered into the model is the only

variable removed in the subsequent backward elimination.

Variable selection sometimes results in the elimination of very useful variables which
should be in the model. At such a point, some variables can be transformed and used in
the model. Common transformations include taking the inverse, square, square root,
natural log, or base logarithm of the variable. Other transformations include converting
numerical variables into categorical variables by combining and grouping some values or
by confounding two variables as products or as quotients (e.g. LOG_AADT =
LOG(AADT). The variables of average curvature, average gradient, and average outside

shoulder width have been thus transformed in this analysis.

4.5 Modelling Procedure

Backward selection was used in this study’s mocielling procedures because all six
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selected variables were expected to be included in the model. At first, all six variables
were included in the model for the regression analysis. Insignificant variables which
proved insignificant were excluded one by one, starting with the least significant
variables. Insignificant variables were identified on the basis of the likelihood ratio
statistics and standard errors of the estimated parameter values. The SAS codes created

for the logistic regression modelling in this research are listed in Appendix A.

Separate models were estimated for FR crashes and NFR crashes, and also for
sleepy-period fatigue-related (SPFR) crashes and sleepy-period non fatigue-related
(SPNFR) crashes. Two sleepy periods were defined in this study: 2 a.m. to 5 a.m., and 2
p.m. to 4 p.m. These two periods are consistent with research into circadian rthythms and
the definitions of sleepy periods provided by Chipman and Jin (2007) in their study of
drowsy drivers (as mentioned in Chapter 2). The purpose of the GLM modelling SPFR
and SPNFR crashes was to examine the effect of road design and traffic factors on fatigue

crashes during sleepy periods.

As mentioned earlier, as GLM techniques were used to fit the models, the variation in FR,
NFR, SPFR, and SPNFR crashes was assumed to follow a negative binomial distribution.
Four separate models are calibrated in order to understand the effect of each variable on
FR, NFR, SPFR, and SPNFR crashes. Table 4.2 lists the four models. The models are
discussed in detail in Sections 4.6 and 4.7.

Table 4.2 The Four Calibrated GLM Models

Model Period Crash Type
1 All Day FR
2 All Day NFR
3 Sleepy Period SPFR
4 Sleepy Period SPNFR

The analysis procedure began by considering the exact form that the dependent variable
would take. Traffic crash rate was investigated and found to be the best variable to be
used as the dependent variable. Once the dependent variable was determined, a prediction

model was developed.

51

4




The calibrated model in SAS has the following structure:

Crashes/Mile/Year=(AAADT)* *

exp[Bo+Bi(SPDLIMT)+B(CURY_HI)+B5(GRAD_HI)

+B4 (SURF_WID)+ Bs(AVG_OUTSH) ]

whereq, £, are estimated parameters.

4.6 GLM Estimation Results: FR and NFR Traffic Crashes

This section presents the results of the FR and NFR traffic crash models. The independent
variables were included in the models if they were significant at the 95 percent
confidence level. All six independent variables were statistically significant. The

coefficients estimated provide a good indication of the strength of each of the

independent variable in contributing to FR and NFR crashes.

Table 4.3 shows the estimated results for the FR and NFR models. All the variables have
the expected sign (a positive sign indicates an increase in the crash rate, and a negative

sign indicates a decrease).

4.2)

Table 4.3 Negative Binomial Models for FR and NFR Traffic Crashes

FR NFR
Parameter/variable Estimate Pr > ChiSq Estimate Pr > ChiSq
Lo (Constant) -4.2481 <.0001 -5.4211 <.0001
a (AAADT) 0.4165 <.0001 0.5985 <.0001
1 (SPDLIMT) 0.0166 <.0001 0.0028 .0225
2 (CURV_HI) 0.0143 .0136 0.0125 <.0001
B3 (GRAD_HI) 0.0434 <.0001 0.0106 .0003
B4 (SURF_WID) -0.0251 <.0001 0.0422 <.0001
Bs (AVG_OUTSH) -0.0453 <.0001 0.0158 <.0001
Dispersion parameter 0.6816 0.7465
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Table 4.4 shows the goodness of fit tests. The goodness of fit results show that the models
fit the data well. A p-value is not computed for the deviance shown in Table 4.4, but a
deviance that js approximately equal to its degrees of freedom is a possible indication of a
good model fit. The value of the deviance divided by its degrees of freedom is about 1 in
FR and NFR models, which shows that the models fit the data well,

Table 4.4 Model Goodness of Fit for FR and NFR Traffic Crashes
FR NFR

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF | DF Value Value/DF
Deviance 1.20E+04 11422185 (.9251 1.20E+04 13752354 1.1138
Scaled Deviance 1.20E+04 11422.185 0.9251 1.20E+04  13752.354 1.1138

Pearson Chi-Square | 1.20E+04  15299.171 1.2391 1.20E+04  23030.8165 1.8653
Scaled Pearson 32 1.20E+04  15299.171 1.2391] 1.20E+04  23030.8165 1.8653
Log Likelihood 36861.5005 206961.8427

The overdispersion parameters in Table 4.3 were significant (indicating that the mean is
larger than the variance), and confirm the appropriateness of the Negative binomial
relative to the Poisson formulation for predicting FR and NFR crashes.

The six sections that follow discuss the effects of each explanatory variable,

Effect of Annual Average Daily Traflic

An increase in AADT on the roadway section had a positive impact on the likelihood of
crashes (i.e. was associated with an increase in the likelihood ‘of crashes). AADT was
expected to be statistically significant because numerous studies (Caliendoa et al., 2007,
Qin et al., 2003; Persaud et al., 2000) have found AADT to be a very strong crash

predicting variable.
Both the FR and the NFR models indicated that an increase in AADT had a positive

effect on crash involvement on rural two-lane highways, but the effect was higher for

NFR traffic crashes (0.5985) than for FR traffic crashes (0.4165).
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Effect of Posted Speed Limit
The posted speed limit is a significant factor. As a higher speed limit implies higher

vehicle speeds on the road, it was likely that both FR and NFR traffic crashes occurred on
roads with high speed limits.

Table 4.3 indicates that the effect of the speed limit was more positive for FR traffic
crashes (0.0166) than for NFR traffic crashes (0.0028).

Effect of Average Horizontal Curvature

Because many roadway sections have straight portions or contain more than one curve,
the average horizontal curvature was used as the Alignment Index to represent the
average horizontal curvature of each whole roadway section. In this study, average

horizontal curvature is expressed as the degree of the curve per hundred feet.
An increase in the degree of curvature was associated with an increased crash rate. There
was little difference in the contribution of average horizontal curvature to FR crashes

(0.0143) and NFR crashes (0.0125).

Effect of Average Vertical Gradient

Average vertical gradient is expressed as the average absolute value of the vertical
gradients of a given roadway section. As the vertical alignment of a roadway section may
include more than one gradient, the average vertical gradient was used as the Alignment

Index to represent the average vertical gradient of each whole roadway section.

An increase in the average gradient was associated with an increased crash rate. As
mentioned in Section 3.3.4, as the average gradient represents the absolute change in
vertical direction, a large value indicates either that there is a large change in elevation
between the vertical points of intersection, or that the vertical alignment is hilly. The
association between an increased average gradient and an increased crash rate conforms

to expectations.
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Table 4.3 shows that the effect of the average gradient on FR crashes (0.0434) was more
pronounced than the effect on NER crashes (0.0106).

Effect of Pavement Surface Width

Pavement surface width was used in this study as a substitute for lane width because the
Ohio HSIS database does not include a lane width variable. The coefficient of pavement
surface width in this study is negative (-0.0251) in the FR model with p-value=0.0001.
This means that wider surface widths have fewer FR crashes compared to narrow surface
widths. The result may suggest that wider pavement surface widths provide an errant
vehicle with more chances to return to the roadway. Roads with a wide pavement surface
width also provide a buffer between vehicle lanes, and this buffer may provide additional
room and time for a driver to avoid running off the road. The results for NFR crashes
(0.0422) were different: an increase in pavement surface width increased the NFR crash

rate.

Effect of Shoulder Width
Average outside shoulder width had a negative coefficient (-0.0453) in the FR model, but

a positive coefficient (0.0158) in the NFR model. The negative coefficient in the FR
model indicates that as the width of the shoulder increased, the crash rate decreased. This
result suggests that drivers could use the wider shoulder widths to avoid running off the

road and hitting roadside obstacles.

The positive coefficient in the NFR model appears surprising, but does not imply that
NFR crashes are less likely to occur on roads with narrow shoulders than on roads with

wider shoulders.

4.7 GLM Results: Modelling SPFR and SPNFR Traffic Crashes

This section presents the results of the sleepy-period FR (SPFR) and sleepy-period NFR
(SPNFR) crash models. The independent variables were included in the models if they
were significant at the 95 percent confidence level. The coefficients estimated provide a

good indication of the strength of each of the independent variable in contributing to

55




SPFR and SPNFR crashes.

Table 4.5 shows the estimated parameters for the SPFR and SPNFR models. The
overdispersion parameters in both models are significant (indicating that the mean is
larger than the variance), and confirm the appropriateness of the negative binomial as
opposed to the Poisson formulation for predicting SPFR and SPNFR crash rates.

Table 4.5 Negative Binomial Models for SPFR and SPNFR Traffic Crashes

SPFR SPNFR

Parameter/variable Estimate Pr > ChiSq Estimate Pr > ChiSq
Lo (Constant) -5.8259 <.0001 -4.6900 <.0001

a (AAADT) 0.4196 <.0001 0.5506 <.0001

1 (SPDLIMT) 0.0165 <.0001 0.0061 <.0001

2 (CURV_HI) NS 0.0236 <.0001

B3 (GRAD_HI) 0.0526 <.0001 0.0166 <.0001

B4 (SURF_WID) -0.0334 <.0001 0.0323 <.0001

s (AVG_OUTSH) -0.0557 <.0001 0.0030 <.0001
Dispersion parameter 0.6599 0.6994

NS--- Not Significant at 95 percent confidence level

Table 4.5 shows the following results for the effects of the explanatory variables:

e AADT has a positive effect on SPFR and SPNFR crashes. The effect of AADT is
greater for SPNFR crashes (0.5985) than SPFR crashes (0.4196);

e The posted speed limit has a small positive effect on both SPFR and SPNFR crashes.
The effect for SPFR crashes (0.0165) is greater than the effect for SPNFR crashes
(0.0028). |

e Horizontal curvature is not significant for SPFR traffic crashes, but has a small
positive effect on SPNFR crashes (0.0125). 7

e Average vertical gradient has a positive effect on SPFR and SPNFR crashes. The
effect for SPNFR crashes (0.0526) is greater than the effect for SPFR crashes
(0.0106).

e Pavement surface width has a negative effect on SPFR crashes (-0.0334), and a

positive effect on SPNFR crashes (0.0422).
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*  Average outside shoulder width also has a negative effect on SPFR crashes (-0.0557),
and a small positive effect on SPNER crashes (0.0158).

Table 4.6 shows the goodness of fit tests for the SPFR and SPNFR crashes. A p-value is
not computed for the deviance shown in Table 4.6, but a deviance that is approximately
equal to its degrees of freedom is a possible indication of a good model fit. The value of
the deviance divided by its degrees of freedom is about 1 in both models, which shows

that the models fit the data well.
Table 4.6 Model Goodness of Fit for SPFR and SPNFR Traffic Crashes

SPFR SPNFR
Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF | DF Value Value/DF
Deviance 1.20E+04 7447.229 0.6031 1.20E+04 13997.39 1.1336

Scaled Deviance 1.20E+04 7447.229 0.6031 1.20E+04 13997.39 1.1336
Pearson Chi-Square | 1.20E+04 13765.48 1.1148 1.20E+04 21613.17 1.7503
Scaled Pearson
Chi-Square

Log Likelihood 5113.5503 300153.6093

1.20E+04 13765.48 1.1148 1.20E+04 21613.17 1.7503

4.8 Summary of the GLM Results

Six variables were included in the FR, NFR and SPNFR models, and five in the SPFR
model. The six variables included in the FR, NFR and SPNFR models were AADT,
posted speed limit, average horizontal curvature, average vertical gradient, pavement
surface width, average outside shoulder width. Average horizontal curvature was not

included in the SPFR model as it was not statistically significant.

The models showed that an increase in AADT, a higher posted speed limit, an increase in
average horizontal curvature, and an increase in average vertical gradient all increase the
crash rate in all the models (with the exception of average horizontal curvature in the case
of SPFR crashes as this variable was not included in the SPFR model). An increase in
pavement surface width or average outside shoulder width increases the crash rate in the

NFR and SPNFR models, and decreases the crash rate in the FR and SPFR models.
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The detailed results (Tables 4.3 and 4.5) showed that an increase in AADT was by far the
most critical factor. As AADT increased, the crash rate for FR, NFR, SPFR, and SPNFR
all increased substantially (and especially for NFR and SPNFR crashes). In general,
average outside shoulder width, average vertical gradient, and pavement surface width

had more effect on crash rates than did the speed limit or average horizontal curvature.

AADT had more effect on the non fatigue crashes (NFR and SPNFR) than on the fatigue
crashes (FR and SPFR), but most of the other variables had more effect on the fatigue
crashes than on the non fatigue crashes. Most of the variables had more effect on crashes
that occurred during the sleepy periods (both fatigue and non fatigue crashes) than on

crashes that occurred during other periods of the day.

4.9 Application of the GLMs to Network Screening

The third objective of this research was to “develop safety performance functions (SPFs)
to predict FR crashes on rural two-lane roads, and apply the SPFs to the task of mitigating
the effects of fatigue on traffic safety at sites where the potential for improving fatigue
crashes related to fatigue is greatest” (Section 1.4). GLMs can be used to predict FR
crashes by estimating the relationship between safety (number of crashes) and exposure
(AADT). GLMs that estimate the relationship between safety and exposure are known as
SPFs. SPFs can be used by state and local highway agencies as highway safety

management tools, and especially as Network Screening tools (www.safetyanalyst.org).

The purpose of Network Séreening is to review the entire roadway network, or portions
of the roadway network, and to identify and prioritize those sites that have potential for
safety improvement (PSI). The identification of a site by network screening means that an
opportunity to improve safety may exist at the site, but does not necessarily indicate that

there is a correctable safety problem at the site (www.safetyanalyst.org).

SPFs can be used to screen the network for high FR crash frequency, and to identify sites

with potential for FR safety improvement. Network scréening methodology uses




empirical Bayes (EB) principles to estimate the PSI of a site (Persaud et al., 1999). In
general terms, the EB network screening approach combines observed FR crash
frequencies with FR crash frequencies predicted by the SPFs to estimate the expected FR
crash frequency for a site. The EB-adjusted expected crash frequency is used for ranking
and comparing the PSI among road segments of equal length. Road segments with higher
than expected (or excess) FR crash frequencies are considered to have potential for safety
improvement (i.e., they are PSI sites). These sites are ranked higher than sites where
expected FR crash frequencies are low. The network screening procedure then applies a

cut off to create a list of sites that will be considered for appropriate countermeasures.

EB methods are a class of methods that use empirical data to evaluate/approximate the
conditional probability distributions that arise from Bayes' theorem (George, 1985). The
methods allow one to estimate quantities (probabilities, averages, etc.) about an
individual member of a population by combining information from empirical
measurements of the individual with information from empirical measurements of the
entire population. The use of EB methods for the estimation of road safety increases the

precision of estimation, and corrects for regression to mean bias (Hauer, 2001).
The following sections provides a simple numerical example of the calculation of the PSI
for FR crashes for a site (road segment), and applies network screening to the Ohio data

using this study’s FR models.

Simple Numerical Example of PSI Estimation

This section provides of simple numerical example of a PSI estimation for a road segment.
In this example, there is one year of FR crash counts. The road segment is part of a
two-lane rural road, is 2.0 miles long, has an AADT of 5,000, a speed limit of 55 mile/hr,
an average curvature of 2, an average gradient of 3, a surface width of 24 feet, average
outside shoulder width of 8 feet, and 2 FR crashes recorded in the last year. The
estimation of the PSI of this road segment follows the three steps presented below.
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Step 1: Calculate the Mean and Variance of the Site (Road Segment)

The SPF prediction for the frequency of FR crashes on similar roads is
p q y
500004165 o(-4:2481+0.0166x55+0.0143x2+0.04343-0.0251x24-0.0453:8) _ () 55 FR crashes/mil e-year

with an overdispersion parameter =1.47 (1/k). Therefore, segments that are 2 miles long

are expected to have 1.1 (2x0.55=1.1) crashes in one year.

Step 2: Calculate the Weight for the Site

A ‘weight’ is needed for combining the 2 crashes recorded on this road with the 1.1

crashes predicted for an average road of this kind. In general, the ‘weight’ is given by:

Weight = L 4.3)
1+ (uxY)/op

where, u is crashes/(km-year), and ‘Y’ is the number of years of crash count data. Here
4=0.55 FR crashes/(mile-year), Y=1 and the estimate of ¢=1.47. Therefore, weight =
1/[1+(0.55%1)/1.47] =0.72.

Step 3: Calculate the Expected Crash Frequency of the Site

Use the equation below to estimate expected crash frequency for the specific road

segment at hand.

Estimate of the Expected Accidents for an entity =
Weight x Crashes expected on similar entities + (1-Weight) xCount of crashes
on this entity

where 0=<Weight=<1 “4.4)
The “Estimate” is 0.72x1.1+0.28%2=1.36 FR crashes in one year. Note that 1.36 is
between the average for similar sites (1.1) and the crash count for this site (2). The EB

estimator pulls the crash count towards the mean and thereby accounts for regression to

mean bias.

The “Estimate” (1.36 crashes/year) is the PSI value and can be used to rank the 2 mile
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long segments in terms of their potential for FR crashes and, therefore, their potential for

FR safety improvement.

Application of the Study’s FR Crash Prediction Models to Ohio Network Screening

It is common practice for agencies with jurisdiction over extensive road infrastructure to
identify and rectify hazardous locations. A two-stage process is usually used to identify

and rectify the hazardous locations.

The first stage is the network screening. The network screening reviews the past crash
history of the roadway network of interest, and screens and prioritizes a limited number
of high risk locations which have promise as sites for potential safety improvements and,

therefore, merit further investigation.

The second stage conducts detailed engineering studies on the selected sites. Only a
limited number of the PSI studies can usually be investigated by a highway agency in any
one year because the investigation process is expensive. The studies assess possible
countermeasures for the individual sites, and recommend the most cost-effective remedial

actions.

This section applies the FR SPF developed in this study to the network screening of the
Ohio data. The SPFs were calculated using Equation 4.2 and the coefficients in Table
4.3.The objective of this application was to perform a network screening of FR crashes,
to rank the sites by their PSI, and to identify the 50 road segments with the greatest

potential for FR safety improvement.
The PSI was estimated as the EB expected crash frequency, and then normalized by

dividing by the segment length. The EB expected crash frequency was estimated using

the following equation:
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Estimate of expected crashes per mile for an entity (EB) =
[axCrashes expected on similar entities + (1 — a) xObserved crash
[frequency on this entity]/ Segment length of the entity

Where:

Crashes expected on similar entities = The SPF prediction for the entity

a (0 =<0=<1) is calculated as a function of k, the dispersion parameter of
the regression model used as the SPF,

o = 1/(1+kx(SPF Prediction’)/SPF Prediction) 4.5)

The roadway segments were ranked by their PSI (EB expected crash frequency per mile).
The 50 sites with the greatest potential for FR safety improvement were selected. Figure
4.2 is a flow chart showing the network screening process followed to rank the Ohio FR

crashes.

PSI Method

A

PSI based on Expected FR Crashes
Frequency (EB)

A

Calculate EB for FR Crashes
EB = a x SPF + (1- a) x Observed no. of collisions

A 4

Ranking on the basis of |
EB value per mile |

l

Worst 50 Segments

Figure 4.2 Flow Chart of Network Screening of FR crashes

The results of the network screening are shown in Table 4.7. The sites with the greatest
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PSI were compared with sites which were similar (defined as having AADT of +/- 10
percent), but which had the lowest PSL The objective of this exercise was to investigate
the difference between 50 comparable sites with the highest and lowest PSI values. Table
4.8 lists the comparable 50 sites with the lowest PSI values.

Table 4.9 shows the weighted averages of with the exception of average horizontal
curvature in the case of SPFR crashes the modelling variables in Tables 4.7 and 4.8. As
might be expected, the 50 sites with the highest PSI values have higher speed limits,
greater average curvature, higher average gradients, narrower pavement surface width,
and narrower average outside shoulder width than the 50 comparable sites with the lowest
PSI values. The differences appeared most marked for average curvature, average

gradient, and average outside shoulder width.
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Table 4.9 Weighted Averages of the Modelling Variables in Tables 4.8 and 4.9

Average
Average Pavement
Average Average Average Outside
Speed Limit Surface
AADT curvature gradient Shoulder
(MPH) Width (Feet)
Width (Feet)
Sites with
Highest PSI 6,056 532 1.345 3.758 22.34 3.48
Values
Comparable
Sites with
6,196 52.7 0.208 2411 22.8 5.12
Lowest PSI
Values
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5 LOGISTIC REGRESSION ANALYSIS

5.1 Introduction

In addition to the GLM analysis discussed in Chapter 4, this study used logistic
regression models to analyze FR crash occurrence, and identify potential explanatory
variables for FR crashes. The logistic regression analysis included potential environment
and driver variables as well as the road variables included in the GLM analysis. Three
fatigue crash models were developed: FR crashes (FR), sleepy-period fatigue-related
crashes (SP-FR), and non-sleepy-period fatigue-related crashes (NSP-FR).

This Chapter describes the data collection, data editing, and data analysis used in the
logistic regression modelling, and presents the results of the logistic regression analysis.

Figure 5.1 is a flowchart showing the logistic regression model study process.

Data Preparation

A

Description of Logistic Model

A

Explanatory Variables

A 4

Modelling with SAS

Figure 5.1 Flow Chart showing the Study Process of the Logistic Regression Model

The discussion of the logistic regression analysis is presented as follows:
Section 5.2 describes the data preparation for the logistic regression analysis;
Section 5.3 describes the logistic regression model,

Section 5.4 discusses the goodness of fit testing;

Section 5.5 discusses the explanatory variables;
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Section 5.6 discusses modelling with SAS;

Section 5.7 presents the estimation results; and
Section Error! Reference source not found. outlines limitations of the logistic

regression analysis.

5.2 Data Preparation for Logistic Regression Analysis

The data used in the logistic regression analysis were extracted from the Ohio Traffic
Accident Database obtained from the HSIS Database: 36,341 crashes on rural two-lane
roads were extracted for the logistic regression analysis. Each crash was regarded as an
observation in the logistic regression analysis. The single vehicle run-off-road crashes
were assumed to be FR crashes. To develop the logistic model, detailed data on crash data,

traffic flow and road design were also extracted.

The logistic regression analysis used two mutually exclusive entities, (1) and (0), for the
FR and NFR crash respectively. A FR crash was assigned a value of 1, and a NFR crash a

value of 0.

The process of creating a dataset suitable for the logistic regression analysis is discussed
below. The SAS Codes are listed in Appendix E.

The accident and vehicle subfiles were linked together using the accident report number
(i.e., CASENO). The accident subfile was linked to the roadlog file using the CNTYRTE
and MILEPOST variables in the accident record, and the CNTY RTE, BEGMP, and
ENDMP variables in the roadlog file. Similarly, the accident subfiles were linked to

Curve, Grade, and Angle Points using similar variables found in each respective file.

To prepare the accident subfiles for linking with the roadlog file using a SAS data step
process, both of them were sorted into location order by CNTYRTE and MILEPOST in
the crash subfiles, and by CNTY RTE and BEGMP in the roadlog file. Similar sorts were
completed for other files that had to be merged.
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5.3 Description of Logistic Regression Model

The purpose of the model develo;;ment was to identify highway, environmenf, and driver
characteristics related to FR crashes. As the outcome under investigation (i.e. FR/NFR) is
of a discrete nature, logistic regression was identified as a suitable approach for
identifying important explanatory factors. This is because logistic regression modelling
uses a set of independent (explanatory) variables to predict the probability of the

occurrence of a discrete dependent variable.

As Dissanayake (2003) points out, “This logistic regression equation models the logit
transformation of the individual event probability, p;, as a linear function of the
explanatory variables in the vector, X;. A more general class of models shares the feature
that a function g=g () of the response variable is assumed to be linearly related to the
explanatory variables. The function g is known as the ‘link function’. ” Other common
link functions include the Normit function (used in probit analysis), and the
complementary log-log function. Since the logit function has advantages, such as being
relatively easy to interpret, it is used in developing event/non-event models such as for
FR/non-FR crashes. Ben-Akiva and Lerman (1993) provide additional theoretical

information on link functions.

5.4 Goodness of Fit Tests

The SAS programming language allows the user to print tables and statistics to help
analyze and evaluate the estimated logistic regression models developed using the
LOGISTIC Procedure (SAS, 1998b). The results of testing the null hypothesis provide
two criteria (AIC and SC) that are useful for comparing models. Two other criteria
(—2logL and Score) test the null hypothesis that all regression coefficients are zero.
Except for the score statistic, all of the criteria are based on the likelihood for fitting a
model with intercepts only, or fitting a model with intercepts and explanatory variables.
The details of the four criteria are as follows:

e AIC is the Akaike information criterion which is a goodness of fit measure that could

be used to compare one model to another. Lower values indicate a more desirable
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model.

* SC is the Schwarz criterion which is also a goodness of fit measure that can be used
to compare one model to another. Lower values indicate a more desirable model.

* 2logL is the —2log likelihood statistic which has a chi-square distribution under the
null hypothesis that all regression coefficients of the model are zero which provides a
p-value for the chi-square statistic. A significant p-value (for example a p-value less
than 0.05) provides evidence that at least one of the regression coefficients for an
explanatory variable is non-zero.

* Score is a score statistic which also outputs the chi-square value, degrees of freedom,

and a p-value for this statistic.

5.5 Explanatory Variables

Table 5.1 lists the seven potential explanatory variables considered in the model
development. Light Condition, Road Characteristic (alignment), Driver Age Group, and
Driver Sex were treated as categorical variables. Speed Limit, Road Width, and AADT

were treated as continuous variables.
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Table 5.1 Details of Variables selected as Potential Explanatory Variables

. for FR Crashes
Variable Characteristic Frequency Percent
LIGHT Light Condition
DAYLIGHT 19,332 53.20
DARK-NO-LIGHTS 14,468 39.81
DAWN 957 2.63
DARK-LIGHTED 886 2.44
DUSK 698 1.92
RD _CHAR Road Characteristic
STRAIGHT-LEVEL 16,655 45.83
CURVE-GRADE 7,155 19.69
STRAIGHT-GRADE 6,379 17.55
CURVE-LEVEL 6,152 16.93
AGE_GROUP Driver Age Group
16-25 14,395 41.07
26-45 13,065 37.28
46+ 7,881 21.65
DRV_SEX Driver Sex
Male 23,809 65.52
Female 12,532 3448
SPD_LIMIT Speed Limit (mph)
55 32,515 88.87
45 2,094 5.76
35 710 1.95
40 484 1.33
50 333 0.92
25 120 0.33
65 41 0.11
60 23 0.06
20 8 0.02
15 7 0.02
30 6 0.01
RD WIDTH Road Width (Feet) Range from 24 to 48
Annual Average
AADT . Range from 250 to 11,750
Daily Traffic (Veh)

The information presented in Table 5.1 provides only simple descriptions of the variables,
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making no allowance for inter-correlations among the variables and ignoring possibly

important confounding factors, but the following points may be noted:

e Light Condition: Most crashes occurred during DAYLIGHT (53%) and
DARK-NO-LIGHTS (40%).

e Road Characteristic: STRAIGHT-LEVEL accounted for 46 percent of the crashes.

* Driver Sex: 65 percent of the drivers were male.

e Age: 41 percent of the drivers were young (16 to 25), and 37 percent were 26 to 45 years
old.

e Speed Limit: The great majority of the crashes occurred on roads with a posted speed
limit of 55 mph.

* Road Width: The road width ranged from 24 to 48 feet.

* AADT: The AADT ranged from 250 to 11,750.

5.6 Modelling with SAS

SAS was applied to the logistic regression modelling using the PROC LOGISTIC module.
This module can be used to develop multivariate logistic regression models, and allows for a
variety of input parameters to be used for model building and significance testing. The SAS
programs created for the logistic regression modelling used in this study are listed in

Appendix F.

Since the models created in this study use both continuous and categorical independent
variables, it was necessary to specify in SAS which variables were categorical. This was done
using the CLASS statement. Any variable not defined as categorical was assumed to be a
continuous variable. The CLASS statement was used to define a reference category within
each categorical independent variable. The reference category is used in logistic regression
modelling as a way of redefining categorical variables as a series of dichotomous variables.
For any independent categorical value with n categories, the use of the CLASS statement in
PROC LOGISTIC will convert the independent variable to a series of n-I dichotomous

variables.

The MODEL statement in PROC LOGISTIC was used to specify the modelling parameters,
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and to conduct any additional significance tests. A stepwise modelling procedure was used
for the data used in the logistic- regression modelling. Specified significance levels were
required for a variable to be entered into the model. After the MODEL statement, the
dependent variable to be tested was listed, followed by an equal sign, and followed by the
full list of independent variables to be tested in the model, separated by spaces. The MODEL
statement supports a variety of additional options which instruct SAS to perform additional
tests of significance on the data. A combination of the options SCALE=NONE and
AGGREGATE prompt SAS to display the Pearson goodness of fit test and the Deviance
goodness of fit test. Although these two tests are appropriate for assessing logistic regression
models in SAS, they typically perform better when all of the variables are continuous rather

than categorical.

In the stepwise selection modelling procedure, the final regression model was created by
starting with a flat intercept model with no variables, and successively adding the
independent variables to the model one at a time in order of significance. By specifying
p-value cutoff levels within SAS, the point at which no more variables will be entered into
the model can be determined using a significance level. A p-value cutoff level can also be
specified, as required, for a p-value that is already in the model to remain in the model. In
other words, a variable can be removed from the model at a later step if the variable is longer
found not to be significant when placed with other variables. For the stepwise selection
model, it was necessary to use the SELECTION = STEPWISE option. For these logistic
models, a p-value of 0.05 was used as the cutoff for a variable to be input into the model, and
as the cutoff for a variable to remain in the model. The small p-value for these models was

selected to make the models as simple as possible.

5.7 Estimation Results

Three sets of results are presented: FR crashes, SP-FR crashes, and NSP-FR crashes. The
modeling examined the crashes and the effects of differences in the seven independent
variables selected for the modelling. Independent variables that were significant at the 95

percent confidence level were included in the models.
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Tables 5.2, 5.5, and 5.8 show the results for FR, SP-FR, and NSP-FR crashes respectively.
The results presented in these Tables are the odds ratios, the estimate, and the Pr > ChiSq,
The odds ratio measures the odds of the outcome increasing if the value of the independent
variable increases. The ratio provides a good indication of the strength of the effect of each of
independent variable on FR crashes. The coefficients of the independent variables estimated
by the models are directly related to the probability of having a FR crash: a positive
coefficient indicates that a variable increases the probability of having a more serious crash
outcome, and vice versa. Model fit statistics and null hypothesis tests are also provided for

the model for each crash type.

FR Crashes
Table 5.2 shows the results of the logistic regression for FR crashes. Road Width was not
significant.
Table 5.2 Logistic Regression Model Results for FR Crashes
Odds Pr>
Variables Estimate

Ratio ChiSq

INTERCEPT 2.206400 | <.0001

DAYLIGHT vs. DARK-LIGHTED 1.116 | -0.142700 | <.0001

LIGHT DAWN vs. DARK-LIGHTED 1.622 | 0.231200 | <.0001

DUSK vs. DARK-LIGHTED 1.631 | 0.236500 | <.0001

DARK-NO-LIGHTS  vs. DARK-LIGHTED 1.197 | -0.072500 | <.0001
STRAIGHT-LEVEL vs. CURVE-GRADE 4.518 | 0.820100 | <.0001
RD_CHAR STRAIGHT-GRADE vs. CURVE-GRADE 3.378 | 0.529300 | <.0001

CURVE-LEVEL vs. CURVE-GRADE 1.027 | -0.661400 | <.0001
16-25 vs. 46+ 0.433 | -0.445700 | <.0001
AGE_GROUP
- 26-45 vs. 46+ 0.715 | 0.055100 | <.0001
DRV_SEX Female vs. Male 1.094 | 0.044800 | <.0001
SPD LIMIT 5 mile/hr increase 0.863 | -0.029400 | <.0001
RD WIDTH | Not significant
AADT 1,000 veh increase 1.049 | 0.000048 | <.0001

The odds of a FR crash being related to fatigue are highest for:
* road sections with straight and level alignment (OR=4.518) compared with curved and

graded sections; and
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e road sections with straight and level alignment (OR=3.378) compared with curved and

graded sections.

Table 5.2 also shows that the odds of a FR crash being related to fatigue are higher for:

e dusk conditions (OR=1.631) compared with dark, but lighted conditions;

e dawn conditions (OR=1.622) compared with dark, but lighted conditions;

e  dark with no light conditions (OR=1.197) compared with dark, but lighted conditions;

* daylight conditions (OR=1.116) compared with dark, but lighted conditions;

* female drivers (OR=1.094) compared with male drivers;

e road sections with curved and level alignment (OR=1.027) compared with curved and
graded sections; and

o older drivers (46+) compared with younger drivers (26-45 and 16-25) (OR=0.715 and
0.433 respectively).

Table 5.2 shows that, for the continuous variables, the odds of a crash being related to fatigue

change as follows:

* as the speed limit increases, each increase of 5 miles per hour decreases the odds of a FR
crash occurring by 13.7% (OR=0.863); and

e as AADT increases, each increase of 1,000 vehicles increases the odds of a FR crash

occurring by 4.9% (OR=1.049).

These results do not suggest that we should increase speed limits and welcome increases in
AADT as a way to reduce the odds of a FR crash occurring. When speeds are higher and
when there are more vehicles on the road, the additional demands required of the driver may
increase driver concentration and overcome fatigue. On the other hand, fatigue undermines

the driver’s ability to react quickly and this is clearly a problem when speeds and the

_demands. made on maneuvering. the vehicle are high. It is not possible to-draw firm

conclusions as each driver’s fatigue levels are not known.

Table 5.3 shows the model fit statistics for the FR model. The Table shows the AIC, SC, and
-2 Log L statistics. Table 5.4 shows the null hypothesis tests for the FR model. The results of
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three tests are presented: the Likelihood Ratio, Score, and Wald tests.:
Table 5.3 Logistic Model Fit Statistics for FR Crashes

Model Fit Statistics
Criterion Intercept Only Intercept and Covariates
AIC 159864.57 144641.28
SC 159874.45 144769.69
2LogL 159862.57 144615.28

Table 5.4 Global Null Hypothesis Tests of Logistic Regression Model for FR Crashes

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 15247.2884 12 <.0001
Score 15994.9079 12 <.0001
Wald 13872.3391 12 <.0001

The significant p-values (<0.05) for —2logL (Table 5.3) and Score (Table 5.4) indicate that at

least one of the regression coefficients is non-zero.

The residual chi-square values were examined /to evaluate the effectiveness of the
explanatory variables that were not entered into the models. Their p-values less than 0.05
indicate that at least one of the excluded variables” parameter coefficients is non-zero. As all
the residual chi-square values examined were smaller than 0.05, the effects of the variables

that were entered into the models appear to be minimal.

The Score and Wald tests have p-values less than 0.05, indicating that the model fit is
adequate. The p-value of the likelihood ratio chi-square test in Table 5.4 is less than 0.001
(2 = 15247.2884, DF=12) which means that the global null hypothesis for the whole model

is rejected. Statistically, this result indicates that the model’s predictor variables affect the

occurrence of FR crashes.

SP-FR Crashes
Table 5.5 shows the results of the logistic regression for SP-FR crashes. Road Width was not

significant. .
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Table 5.5 Logistic Regression Model Results for SP-FR Crashes

- Odds Pr>

Variables Estimate
Ratio ChiSq

INTERCEPT 1.951800 | <.0001
DAYLIGHT vs. DARK-LIGHTED | 3.230 0.209300
DAWN vs. DARK-LIGHTED | 4.184 0.468100

LIGHT <.0001
DUSK vs. DARK-LIGHTED | 5.285 0.701700
DARK-NO-LIGHTS vs. DARK-LIGHTED | 1.729 -0.415900
STRAIGHT-LEVEL vs. CURVE-GRADE | 4.017 0.753700

RD CHAR! | STRAIGHT-GRADE vs. CURVE-GRADE | 3.201 0.526400 | <.0001
CURVE-LEVEL vs. CURVE-GRADE | 0.994 -0.643300
16-25 vs. 46+ 0.505 -0.367100

AGE GROUP <.0001
- 26-45 vs. 46+ 0.767 0.050800

DRV_SEX Female vs. Male 1.069 0.033300 | 0.0446

SPD_LIMIT 5 mile/hr increase 0.859 -0.030200 | <.0001

RD_WIDTH | Not significant
AADT 1000 veh increase 1.059 0.000057 | <.0001

Table 5.5 shows that the odds of a SP-FR crash being related to fatigue are higher for:

e dusk conditions (OR=5.285) compared with dark, but lighted conditions;

e dawn conditions (OR=4.184) compared with dark, but lighted conditions;

e road sections with straight with a grade (OR=4.017) compared with curved and

graded sections;

e daylight conditions (OR=3.230) compared with dark, but lighted conditions;

e road sections with straight alignment and a grade (OR=3.201) compared with

curved and graded sections;

e dark with no light conditions (OR=1.729) compared with dark, but lighted

conditions;

e female drivers (OR=1.069) compared with male drivers.

e older drivers (46+) compared with younger drivers (26-45 and 16-25) (OR=0.767

and 0.505 respectively).

Table 5.5 shows that, for the continuous variables, the odds of a crash being related to fatigue
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change as follows:

as the speed limit increases, each increase of 5 mile per hour decreases the odds of a

FR crash occurring by 14.1% (OR=0.859); and

as AADT increases, each increase of 1,000 vehicles increases the odds of a FR

crash occurring by 5.9% (OR=1.059).

These findings require careful interpretation as discussed in Section 0.

Table 5.6 shows the model fit statistics for the SP-FR model. The Table shows the AIC, SC,
and -2 Log L statistics. Table 5.7 shows the null hypothesis tests for the SP-FR model. The

results of three tests are presented: the Likelihood Ratio, Score, and Wald tests.
Table 5.6 Logistic Regression Model Fit Statistics for SP-FR Crashes

Model Fit Statistics
Criterion Intercept Only Intercept and Covariates
AIC 28058.104 25081.088
SC 28066.171 25177.897
2LogL 28056.104 25057.088

Table 5.7 Global Null Hypothesis Tests of Logistic Regression Model for

SP-FR Crashes

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF
Likelihood Ratio 2999.0158 12
Score 2990.4107 12
Wald 2571.7912 12

Pr > ChiSq
<.0001
<.0001
<.0001

The significant p-values (<0.05) for —2logL (Table 5.6) and Score (Table 5.7) indicate that at

least one of the regression coefficients is non-zero. The results indicate that the model fit is

adequate. The p-value of the likelihood ratio chi-square test in Table 5.7 is less than 0.001

(%2 =2999.0158, DF=12) which méans that the global null hypothesis for the whole model is

rejected. Statistically, this result indicates that the model’s predictor variables affect the

occurrence of SP-FR crashes.
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NSP-FR Crashes

Table 5.8 shows the results of the logistic regression for NSP-FR crashes. Road Width was

not significant.

Table 5.8 Logistic Regression Model Results for NSP-FR Crashes

Odds Pr>
Variables Ratio | Estimate ChiSq
INTERCEPT 2.243100 | <.0001
DAYLIGHT vs. DARK-LIGHTED | 0.937 | -0.209600
DAWN vs. DARK-LIGHTED | 1.387 | 0.182500
LIGHT <.0001
DUSK vs. DARK-LIGHTED | 1.394 | 0.187700

DARK-NO-LIGHTS vs. DARK-LIGHTED | 1.137 | -0.016300

STRAIGHT-LEVEL vs. CURVE-GRADE | 4.619 | 0.820100

RD_CHARL | STRAIGHT-GRADE vs. CURVE-GRADE |3.396 | 0.524700 | <0001
CURVE-LEVEL  vs. CURVE-GRADE | 1.039 | -0.659300

DRV_SEX | Female vs. Male 1.078 | 0.037500 | <.0001
16-25 vs. 46+ 0.426 | -0.458500

AGE_GROUP <.0001
- 26-45 vs. 46+ 0.718 | 0.063700

SPD _LIMIT 5 mile/hr increase 0.866 | -0.029200 | <.0001

RD WIDTH | Not significant

AADT 1,000 veh increase 1.045 0.000046 | <.0001

The odds of a NSP-FR crash being related to fatigue are highest for:

* road sections with straight and level alignment (OR=4.619) compared with curved and
graded sections; and

. f?'f‘d §fe<(i:t»ihons with straight aliggment ,W,ith a grade (OR=3.396) cq{r}pgred w1th curved

and graded sections.

Table 5.8 also shows that the odds of a NSP-FR crash being related to fatigue are higher for:
e dusk conditions (OR=1.394) compared with dark, but lighted conditions;
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* dawn conditions (OR=1.387) compared with dark, but lighted conditions;

* dark with no light conditions (OR=1.137) compared with dark, but lighted conditions;

e female drivers (OR=1.078) compared with male drivers;

e road sections with curved and level alignment (OR=1.039) compared with curved and
graded sections;

e daylight conditions (OR=0.937) compared with dark, but lighted conditions;

* older drivers (46+) compared with younger drivers (26-45 and 16-25) (OR=0.718 and
0.426 respectively).

Table 5.8 shows that, for the continuous variables, the odds of a crash being related to fatigue

change as follows:

* as the speed limit increases, each increase of 5 mile per hour decreases the odds of a FR
crash occurring by 13.4% (OR=0.866); and

e as AADT increases, each increase of 1,000 vehicles increases the odds of a FR crash
occurring by 4.5% (OR=1.045).

These findings require careful interpretation as discussed in Section 0.

Table 5.9 shows the model fit statistics for the NSP-FR model. The Table shows the AIC, SC,
and -2 Log L statistics. Table 5.10 shows the null hypothesis tests for the logistic model. The
results of three tests are presented: the Likelihood Ratio, Score, and Wald tests.

Table 5.9 Logistic Regression Model Fit Statistics for NSP-FR Crashes

Model Fit Statistics
Criterion Intercept Only Intercept and Covariates
AIC 131578.05 118831
SC 131587.75 118957.09
2LogL 131576.05 118805
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Table 5.10 Global Null Hypothesis Tests of Logistic Regression Model for
NSP-FR Crashes

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio - 12771.0482 12 <.0001
Score 13501.9585 12 <.0001
Wald 11660.2157 12 <.0001

The results indicate that the NSP-FR model fit is adequate. The AIC and SC values of the
NSP-FR model indicates that the NSP-FR model has a better goodness of fit than the FR or
SPFR models.

5.8 Summary of the Logistic Regression Results

The four statistically significant categorical variables were analyzed in terms of ten
comparisons. For FR and NSP-FR crashes, the odds of a crash being related to fatigue were
highest for the road characteristics variables followed by the environment (light levels)

variables.

The logistic regression analysis used AIC, SC, and -2LogL tests of model fit, and Likelihood
Ratio, Score and Wald tests of the global null hypothesis. The model fit was found to be
adequate in all three models. The NSP-FR model had the best goodness of fit of the three
models. As the global null hypothesis for each model was rejected, the predictor variables of

each model affected the occurrence of FR, SP-FR, and NSP-FR crashes.

The results for FR and NSP-FR crashes were very similar. The top five odds were for the
same variable comparison for both types of crash. The odds were highest for road sections
with straight and level alignment (compared with curved and graded sections), and second
highest for road sections with straight alignment and a grade (compared with curved and
graded sections). The third and fourth'highest odds were for dusk conditions (compared with
dark, but lighted conditions), and for dawn conditions (compared with dark, but lighted
conditions) respectively. The fifth highest odds for both types of crash were for dark with no
light conditions (compared with dark, but lighted conditions).
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For SP-FR créshes, the odds of a crash being related to fatigue were generally higher than for
FR and NSP-FR crashes, and the order was different. The highest odds were for dusk
conditions (compared with dark, but lighted conditions), followed by dawn conditions
(compared with dark, but lighted conditions), straight and level alignment (compared with
curved and graded sections), daylight conditions (compared with dark, but lighted conditions),
and road sections with straight alignment and a grade (compared with curved and graded

sections).

The demographic variables tended to be near the bottom of the list for all three crash types.
Female drivers appeared to be more involved than male drivers in fatigued driving crashes,
and older drivers appeared to be more involved than younger drivers, but the odds were

generally less than for the road characteristics and environment variables.

The two continuous variables, speed limit and AADT, were both statistically significant. The
results were similar for all three crash types. Each increase of 5 mﬂe per hour in the speed
limit decreased the odds of a fatigued driving crash occurring by about 13% to 14%. Each
increase of 1,000 vehicles in AADT increased the odds of a fatigued driving crash occurring
by 4.5% (NSP-FR) to 5.9% (SP-FR).

These results all clearly need careful analysis and interpretation. For example, we cannot
interpret the findings to suggest that higher speed limits and more vehicles on a two-lane

rural road will help to improve the road’s safety in terms of fatigued driving crashes.

84



6 LIMITATIONS OF THE STUDY

This study used GLM models and logistic regression analysis as two approaches to analyze

rural two lane road crashes in which fatigue was suspected to play a role. Both model

building techniques aimed to find the best fitting and most parsimonious, yet logically

reasonable, model to describe the relationship between an outcome (dependent variable or

response variable) and a set of independent (predictor or explanatory) variables. The results

are encouraging, but it is important to note a number of limitations in the study and the

modeling.

The first six limitations refer to general issues. Limitations 7 to 9 refer to GLM, and

limitations 10 to 12 refer to logistic regression analysis.

General limitations

1.

The analysis could be applied only to the variables selected for the study. The study did
not account for numerous additional factors that might influence the occurrence of FR
crashes. Additional factors might include individual human characteristics, individual
circadian rhythms, weather conditions, and specific crash related issues such as sight

distance. Some such additional factors may be important.

The definition of FR crashes in this study was restricted to single-vehicle run-off-road
crashes. In reality, driver fatigue may also lead to some multi-vehicle crashes, to on-road
crashes, and to rear-end crashes, head-on crashes, side-swipe crashes, etc., but all these
crash types were ignored in the analyses. The road design and other factors related to
single-vehicle run-off-road crashes may be different from the factors related to other
crashes that result from fatigue. The effect of restricting the definition of FR crashes to
single vehicle run-off-road crashes is not known, but it appears likely that the FR crash

definition used in this paper may underestimate the incidence of FR crashes.

The models developed for this work were developed with traffic, crash, and road data for

rural two lane roads. The models are, therefore, appropriate for rural two lane roads, but
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other models would have to be developed for other types of road.

The models developed for this work were developed with traffic, crash, and road data
from Ohio State. The models are, therefore, appropriate for (rural two lane roads in)
Ohio, but other models would have to be developed for other jurisdictions. (In the case
of the GLM models, the recalibration procedure developed by Harwood et al. (2000) and
tested by Persaud et al. (2001) could be used to apply the models in other jurisdictions.)

The source of the models’ data is police reports. The accuracy of the data gathered from

police reported crashes is a well-known concern. A common bias may be under-reporting:

police may either not be called to a crash, or may not file reports on very minor crashes.
The percentage of under-reporting is lowest with fatalities, but increases for crashes in
which the injuries and damage are not severe. As the logistic regression models deal with
the outcomes of crashes and not the crash rates, the effect of this bias is not important,
but the accuracy of recording details of the crash may have a significant influence on the

models’ accuracy.

Most of the results were intuitively acceptable, but there were exceptions. For example,
the logistic models showed that an increase speed limits and AADT were associated with
reduced odds of a FR crash occurring. At this stage, we cannot explain the interplay
between fatigued drivers’ possibly increased concentration under such conditions and
fatigued drivers’ possibly increased difficulty coping with the maneuvering and other
demands of such conditions. It would be necessary to know each driver’s fatigue levels

and the details of how the fatigue affected each driver’s performance.

GLM models

7.

The variables included in the GLM models have the functional form of an exponential.
When the functional form does not match the phenomenon it aims to describe, or when
important explanatory variables are missing, even well estimated regression constants
cannot be trusted to predict the effect on the dependent variable of a change in an

explanatory variable (Hauer, 2004). Further research is needed to discover useful
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regularities in observed data, and to cast these into the form of model equations. When
suitable equations are available, they can be used in other jurisdictions by applying a
re-estimation procedure presented by Vogt and Bared (1998) and estimated by Hauer
(2001).

The analysis made no allowance for possible inter-correlations among the variables, or
for possibly important confounding factors. Internal correlation makes it difficult to
estimate the safety effects of a single explanatory variable with confidence as the effects
on the variable of other variables in the model are not known. It is, therefore, important
to interpret the FR crash safety effect of a single variable with caution. Nevertheless, the
models can be used with caution to evaluate the implications of implementing specific
countermeasures, such as providing a wider surface width or a wider shoulder width on

roadway sections.

The models have not been validated using a second datasets. The power of the models
can only be proven by showing that they can be replicated using a different and

independent dataset.

Logistic Regression Analysis

10.

11.

12.

It is important to emphasize the fact that, as the logistic regression models developed in
this research are based on crash data, they explain the effects that various factors have on

a crash given that the crash has occurred.

Exposure is a key variable in traffic research (OECD 1997; Fridstrem et al. 1995), but as
exposure was not measured in the logistic regression models, the absolute and relative

exposure on roads where the FR and NFR crashes occurred is unknown.

The use of categorical variables may lead to a loss of useful information. For example,
the categories may be inappropriate and obscure some potential findings. In this study’s
age categories, for example, the oldest age category was 46+ so there was no information

about the oldest drivers, for example those aged 65+.
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7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The research undertaken in response to the objectives focused on GLM and on logistic
regression analysis. The GLM analysis was directed at all three objectives, but did not
include environmental and demographic factors. The logistic regression analysis was directed

at the first and second objectives.

Ohio State data were used in the modeling. Single vehicle run-off-road crashes were assumed

to be FR crashes, and all other crash types were assumed to be NFR crashes.

This Chapter briefly summarizes the study’s approach and results (Sections 7.1 to 7.6).
Section 7.7 presents the study’s conclusions, and Section 7.8 presents the study’s

recommendations.

7.1 GLM: Modelling Procedure

Six explanatory variables were tested in the GLM models: AADT, posted speed limit,
average horizontal Curvature, average vertical gradient, pavement surface width, and average
outside shoulder width. Four separate models were calibrated in order to understand the

effect of the six variables on FR, NFR, SPFR, and SPNFR crashes.

7.2 GLM: Summary of Modelling Results

The choice of the negative binomial rather than the Poisson formulation for predicting FR,
NFR, SPFR, and SPNFR crash rate was considered reasonable and appropriate. The

goodness of fit results also showed that the models fit the data well.

All six road and traffic variables had a statistically significant effect on FR and NFR crashes,
and all but average horizontal curvature had a statistically significant effect on SPFR crashes.
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AADT had by far the largest effects in all four models.

AADT had more effect on the non-fatigue crashes (NFR and SPNFR) than on the fatigue
crashes (FR and SPFR), but most of the other variables had more effect on the fatigue crashes
than on the non-fatigue crashes. Most of the variables also had more effect on crashes that
occurred during the sleepy periods (both fatigue and non-fatigue crashes) than on crashes that

occurred during all day period.

7.3 GLM: Network Screening Procedure

GLM modelling was also used to develop SPFs. The SPFs were used to screen the Ohio road
network for sites where there was a high potential for safety improvement (PSI) with regard
to FR crashes. The road and traffic variables of the top 50 FR sites identified were compared

with the road and traffic variables of the 50 comparable sites that had the lowest PSI values.

7.4 GLM: Network Screening Results

The 50 sites with the highest PSI values had higher speed limits, greater average curvature,
higher average gradients, narrower pavement surface width, and narrower average outside
shoulder width than the 50 comparable sites with the lowest PSI values. Average curvature,
average gradient, and average outside shoulder width appeared to show the largest

differences.

7.5 Logistic Regression Analysis: Procedure

The logistic regression models were developed to identify potential explanatory variables for
FR crashes, and to estimate the occurrence of FR crashes. The models predict the odds of a

crash being fatigue related.

The logistic regression variables included potential environment (lighting conditions) and
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driver demographic variables (sex and age) in addition to traffic volume, posted speed limit,
and roadway alignment variables. Ohio data (36,341 crashes on rural two-lane roads) were
used in the analysis. Three models were developed: FR crashes (FR), sleepy-period

fatigue-related crashes (SP-FR), and non-sleepy-period fatigue-related crashes (NSP-FR).

7.6 Logistic Regression Analysis: Summary of Results

The model fit statistics and null hypothesis tests showed that the model fit was adequate in all
three models, and that the predictor variables of each model affected the occurrence of FR,

SP-FR, and NSP-FR crashes.

The results for FR and NSP-FR crashes were similar: the most important factors affecting the
odds of a crash being fatigue related were alignment. FR crashes that occurred during sleepy
periods (SP-FR crashes) were a little different. The odds of a SP-FR crash being related to
fatigue were generally higher than the odds for FR and NSP-FR crashes, and dusk and dawn
lighting scored higher than alignment. |

Speed limit and AADT were analyzed as continuous variables rather than as category
variables. The results showed that an increase in either the speed limit or the AADT
decreased the odds of a crash occurring. As it would be unwise to conclude that high speed
limits and high volumes of traffic are suitable countermeasures for AADT fatigue crashes on
two-lane rural roads, the speed limit and AADT results illustrate the importance of giving all

the models’ results careful consideration and interpretation.

7.7 Study Conclusions

As mentioned in Section 1.2, fatigue is believed to be involved in more traffic crashes than
alcohol or prescription drugs (Flemons, 1999). Fatigued driving and crashes related to fatigue

are clearly major issues in road safety.
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The GLM models and network sc;reening exercise, and the logistic regression analysis met
the study’s objectives. The models developed were reasonable, appropriate, and fit the data

well. Most of the variables were significant in each model.

The GLM and logistic regression models successfully identified road, traffic, environment,
and demographic factors that contribute to FR crashes on rural two-lane roads. The GLM
models were also successfully used to develop SPFs and to conduct a network screening

exercise that identified sites with a high potential for FR safety improvement.

AADT was the major variable identified in the GLM models. The models’ detailed results
were encouraging. The results confirmed other research, were largely consistent, and were
intuitively acceptable. For example, wider pavement surface widths were associated with a
decrease in FR crashes suggesting that the extra space gives fatigued drivers a possibly
crucial opportunity to correct their driving before a crash occurs. As might also be expected,

most variables had more effect on fatigue crashes than on non-fatigue crashes.

The logistic regression analysis identified alignment and then lighting conditions as
important in FR and NSP-FR crashes, and lighting conditions and then alignment as
important in SP-FR crashes. The logistic regressions models’ results for speed limit and

AADT were less intuitive and more ambivalent than the other variables’ results.

It is interesting to note that and most GLM variables had more effect on crashes that occurred
during sleepy periods of the day than on crashes that occurred during all day period. The
logistic regression findings were similar: all the logistic regression variables appeared to play
a larger role during sleepy periods of the day (SP-FR crashes). These results possibly confirm

the influence of circadian rhythms in road safety.
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7.8 Recommendations for Further Work

The recommendations for further work flow from the results of the study and also from the

limitations of the study. The limitations were discussed in Chapter 6. The limitations

were:

1. A limited number of factors were included in the study. Important variables may have
been omitted.

2. The definition of FR crashes was restricted to single vehicle run-off-road crashes. The
study may have missed many FR crashes of other types.

3. The models developed are restricted to rural two-lane roads.

4. The models developed are based on data only from Ohio State.

5. The models’ data are derived from police reports which may be inaccurate and which
may under-report the total number of crashes. Inaccurately recorded crash details may
influence on the models’ accuracy.

6. A few of the models’ results were intuitively unacceptable.

7. The exponential functional form of the variables included in the GLM models may not
be the best form possible.

8. The GLM approach does not take internal correlations between variables into account.

9. The power of the GLM models cannot be assessed until the models are tested with a
different datasets.

10. The logistic regression models are conditional crash models which examine factors
associated with crashes that have already occurred.

11. The logistic regression models do not take exposure into account, and cannot compare
the exposure associated with the different crash types analyzed.

12. The use of categorical variables in the logistic regression models may lead to a loss of

useful information.
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While it is recommended that each of the study’s limitations should be addressed as
appropriate, the following recommendations are emphasized as being particularly worthwhile
and urgent. Research should be directed towards:

1. improving the identification of FR crashes. Obstacles include the driver disregarding
fatigue when the crash itself alerts him to his situation and the complete loss of
information about the driver’s state when the crash has fatal consequences.

2. discovering useful regularities in observed crash data and using these develop the form
of model equations. New equations may not only take the exponential functional forms
that were used in this research.

3. considering surrogate methods to incorporate exposure into logistic regression analysis.

4. including more years of crash data as more years of data may strengthen the results of

FR crash studies.
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APPENDIX A. Applying SAS System for Data Analysis

SAS is a software system for data analysis. Basic SAS software provides tools for information storage and
retrieval, data modification and programming, report writing, statistical analysis, and file handling.

There are three primary windows in SAS. The Program Editor' window is used to enter, edit, and submit SAS
programs. The 'Log' window displays messages about the programs to submit. The 'Output’ window displays
output from procedures.

Only one window at a time is active. The active window is where the cursor is located. Commands are given
through the SAS menu bar will be executed in the active window. Windows can be scrolled through using the
arrow buttons, and can enlarge a window by clicking on the up arrow in the right hand corner of the window.
Windows can be changed by using the mouse to select a window, or choosing "'Windows' from the menu bar at

the top of the screen.

A SAS program consists of a series of statements. Each statement must end with a semicolon. The two main
steps in preparing a SAS program are the DATA step which creates a SAS data set, and the PROCEDURE step
which performs tasks on the data. To enter the SAS program make sure the cursor is in the 'Program Editor'

window, and then type.

1. Data Definitions and Options

The Data Definitions and Options are at the top of most SAS programs. The first step is to use SAS to locate the
data. In other words, the location of the data on the computer or storage device must be defined. To define the
location of the data in SAS, the type of data working with must be known. For reading in a SAS data set, a
LIBNAME statement is needed.

SAS Options statement is used to define an environment for the program. It changes the standard settings. Some

common options include:

® LS - defines the line size for output.

® OBS - limits the number of observations processed to allow for program testing on a small subset rather
than reading in the entire dataset.

® NOCENTER - writes all the output in the log and listing files flush left.

2. The Data Step
The first part of the SAS program is the data step. The data step names the SAS dataset, identifies the location
of the data, describes the data values to be read, and computes new variables. The DATA steps included:
A. DATA statement
It is the first statement in the SAS job, which marks the beginning of the Data Step, and gives the name
chosen for the SAS data set being created. The data set name must begin with a character or an underscore,
can include characters, underscores, or letters, and is limited to eight characters.
B. The INFILE or CARDS statement
This is used to identify the location of the data. If the data in the SAS program is included, put the data
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lines immediately after the CARDS statement, then place a semicolon after the final data line.

C. INPUT statement
The INPUT statement describes the data to the SAS system and assigns variable names. Each variable
must be defined as either character or numeric. A $ sign after the variable indicates a character variable.

D. Creating new variables

To create a new variable, the new variable name and the expression for calculating it must be specified

3. The Procedure Step
The second part of a SAS program is the procedure step. SAS procedures are computer programs that use the

dataset to perform various computations, and print results.

The general form of a SAS procedure is:

PROC NAME DATA=NAME;

... other lines specific to the procedure NAME ...

RUN;

If a SAS data set name is not specified, SAS uses the most recently created data set.

The GENMOD procedure fits generalized linear models, as defined by Nelder and Wedderburn (1972). The
class of generalized linear models is an extension of traditional linear models that allows the mean of a
population to depend on a linear predictor through a nonlinear link function and allows the response probability
distribution to be any member of an exponential family of distributions. Many widely used statistical models are
generalized linear models. These include classical linear models with normal errors, logistic and probit models
for binary data, and log-linear models for multinomial data. Many other useful statistical models can be
formulated as generalized linear models by selecting an appropriate link function and response probability
distribution.

RUN instructs SAS to run the previously listed data step or procedure. Ending the programs with a run

statement ensures that SAS will run all procedures which have been requested.

4, Submitting or Running a SAS Program

To submit a SAS program make sure that the cursor is in the "Program Editor' window and press <F8> or click
on the person running icon to submit a SAS program. Another method is through the menu bar at the top of the
screen, by selecting 'Locals', 'Submit'. The program will disappear and the 'Log' window will start showing the
SAS statements and notes with information about the programs progress. The output window will come up
automatically when the program is finished, and will have the results of the procedures. Printing or scrolling
through any of the windows is allowed. If something is wrong with the SAS program, SAS will give red error
messages in the LOG file. If the red error messages are received user should go back to the "Program Editor",
recall the program by hitting <F4> or choosing "Locals" and "Recall text" from the menu bar, and then correct
the codes and rerun the program. Before re-running a program it is often helpful to clear the LOG and OUTPUT
windows of their text from the run that generated the error messages. An easy way to do this is to select the
window and use <CNTRL>+<E> to clear it. -
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5 Saving, Retrieving, and Printing the Results

Click the following menu commands from the menu bar at top of the screen with the mouse.

® To Save:
SAS will save the active window that the cursor is in.
Click 'FILE', 'SAVE AS' if the file is new or the file is renamed. Otherwise click 'SAVE'.
Specify the drive and the name of the file. It can be saved on either a floppy disk or a hard drive.
Click 'OK".

® To Retrieve a File:
If a file that has been previously saved is wanted to work with, make sure the Program Editor' window is
active.
Click 'FILE!', ‘OPEN".
Select the drive where the file has been saved, choose the file name, and click on the 'OK' box.

If successful the file will appear in the 'Program Editor' window.

®  To Print:
Printing is allowed from any window. Make sure the window to be printed is active by selecting it with the
mouse.
Click 'FILE', 'PRINT".
From the print window, select the proper printer options with mouse.
Click 'OK'

6. Exiting the Program

Before exiting, save any files needed for future use.
B Select 'File' from the menu bar.
B Select 'Exit'
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APPENDIX B. SAS Variables of the OHIO HSIS Data used to develop the Dataset for

GLM analysis

LIST OF SAS VARIABLES FOR ALL OHIO HSIS FILES
SAS VARIABLE NAME DESCRIPTION
CASENO UNIQUE ACCIDENT CASE NUMBER
VEHNO VEHICLE NUMBER
CNTYRTE COUNTY ROUTE
MILEPOST MILEPOST
BEGMP BEGINNING MILE POST
ENDMP END MILE POST
XMILEPST CROSS ROUTE MILEPOST
XCNTYRTE CROSS COUNTY ROUTE
CNTY _RTE COUNTY ROUTE
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APPENDIX C. SAS Codes for Dataset Development for GLM Analysis

data ohOOroad;
set ohOOroad;
rtenbr =input(rte_nbr, 5.);
run;
data ohOlroad;
set ohOlroad;
rtenbr =input(rte_nbr, 5.);
run;
data oh02road;
set oh02road;
rtenbr =input(rte_nbr, 5.);
run;
data oh03road;
set oh03road;
rtenbr =input(rte_nbr, 5.);
run;
data oh0O4road;
set ohO4road;
rtenbr =input(rte_nbr, 5.);
run;
data ohOOacc;
set ohOOacc;
drop FLIP_IND;
run;
data ohOlacc;
set ohOlacc;
drop FLIP_IND;
run;
data oh02acc;
set oh02acc;
drop FLIP_IND;
run;
_ data ohO3acc;
set oh03acc;
drop FLIP_IND;
run;
data ohO4acc;
set oh04acc;
drop FLIP_IND;
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run;

/*This program first creates homogeneous segments based upon changes in given variables.
Then the program can disaggregate these sections into smaller sections, e.g. 0.1 mile
segments if desired*/

/*Document order of site set. (This can be used later to eliminate duplicates)*/

proc sort data=Oh04road; by rtenbr begmp;

data OhO4road;

set OhO4road;

n=n ;

run;

/*Identify homogeneous sections. Use retain statement to compare current record to

previous record. If they are different, set flag to indicate start of new segment*/

proc sort; by n;

data reducedsites;

set OhO4road;

length Irtenbr § 12 laccess $ 5 lfunc_cls $5 Imed_type $ 5 Imed wid $ 5 ;

retain siteno 0 Irtenbr " laadt 0 Ispdlimt O laccess " Ifunc_cls "

Imed type" Imed wid" Ino lanes O Isurfwidr O Irodwycls 0 lendmp 0;
if rtenbr ne Irtenbr or aadt ne laadt or spdlimt ne 1spdlimt or
access ne laccess or func_cls ne lfunc_cls or med_wid ne Imed_wid
or med_type ne Imed_type or
no_lanes ne Ino_lanes or
surfwidr ne Isurfwidr or rodwycls ne Irodwycls or begmp ne lendmp then do;
siteno=siteno + 1;

/*All segments to be merged will have same siteno*/

frec=1;

/*This is flag for first record*/

end;

output;

/*QOutput the record before reassigning values*/

Irtenbr = rtenbr;

lendmp = endmp;

laadt = aadlt;

Ispdlimt = spdlimt;

laccess = access;

Ifunc_cls = func cls;

Imed wid = med_wid;

Imed type = med _type;

Ino_lanes =no_lanes;

Isurf wid = surf_wid;

Irodwycls = rodwycls; -
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RUN;
*Sort in descending order of n to save data contained in first record of

homogeneous segment, especially beginning milepost number;

proc sort data=reducedsites; by descending n;
*This procedure actually puts segments together and assigns the
ending milepost of the last record to the first record in the
homogeneous segment;
data reducedsites; set reducedsites;
retain lpm 0 Isiteno 0;
/*Keep ending milepost and siteno with retain*/
if n =1 or siteno=1 then do;
Isiteno=siteno;
Ipm=endmp;
end;
if siteno ne lIsiteno then do;
- Isiteno=siteno;
Ipm=endmp;
end;
if frec=1 then do;
endmp=Ipm,;
seg_lng=endmp-begmp;
output;
/*output record only when you have reached the end*/
end;
RUN;
*Save homogeneous segments permanently;
Data OhAggSegments;
set reducedsites(drop= Irtenbr laadt Ispdlimt laccess lfunc_cls Imed_wid Imed_type Ino_lanes lsurfwidr
Irodwycls lpm Isiteno n frec);
RUN;
data OhAggSegments;
set OhAggSegments;
newleng=seg_Ing;
bpnew=begmp;
epnew=endmp;
RUN;

proc sort data=OhAggSegments; by rtenbr bpnew;
data OhAggSegments;
set OhAggSegments(keep = cnty rte spdlimt rtenbr access divided func_cls
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med_wid med_type no_lanes pavecond rd_width
surf wid rodwycls newleng rte_type OUTSHWD1 INSHWD1

OUTSHWD?2 INSHWD2
bpnew epnew siteno);
num= n_;
RUN;
/*Merge OhDisaggSegments data with AADT data for other years*/
data road0Oohtemp (rename=( rtenbr =route00 aadt=aadt00));
set oh0Oroad(keep= rtenbr begmp endmp aadt);
run;
data road01ohtemp (rename=( rtenbr =route01 aadt=aadt01));
set oh01road(keep= rtenbr begmp endmp aadt);
run;
data road02ohtemp (rename=( rtenbr =route02 aadt=aadt02));
set oh02road(keep= rtenbr begmp endmp aadt);
run;
data road03ohtemp (rename=( rtenbr =route03 aadt=aadt03));
set oh03road(keep= rtenbr begmp endmp aadt);
run;
data road04ohtemp (rename=( rtenbr =route04 aadt=aadt04));
set oh04road(keep= rtenbr begmp endmp aadt);
run;
proc sql;
create table matchedaadt00 as
select *
from ohAggSegments seg, Road00ohtemp traffic
where seg.rtenbr =traffic.route00 and
((traffic.begmp between seg.bpnew and seg.epnew) or
(traffic.endmp between seg.bpnew and seg.epnew) or
((traffic.begmp <= seg.bpnew) and (traffic. ENDMP >= seg.epnew)));
quit;
run;
proc sql;
create table matchedaadtO1 as
select *
from ohAggSegments seg, Road01ohtemp traffic
where seg.rtenbr =traffic.route01 and
((traffic.begmp between seg.bpnew and seg.epnew) or
(traffic.endmp between seg.bpnew and seg.epnew) or
((traffic.begmp <= seg.bpnew) and (traffic. ENDMP >= seg.epnew)));
quit; -
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run;
proc sql; -
create table matchedaadt02 as
select *
from ohAggSegments seg, Road02ohtemp traffic
where seg.rtenbr =traffic.route02 and
((traffic.begmp between seg.bpnew and seg.epnew) or
(traffic.endmp between seg.bpnew and seg.epnew) or
((traffic.begmp <= seg.bpnew) and (traffic. ENDMP >= seg.epnew)));
quit;
run;
proc sql;
create table matchedaadt03 as
select *
from ohAggSegments seg, Road03ohtemp traffic
where seg.rtenbr =traffic.route03 and
((traffic.begmp between seg.bpnew and seg.epnew) or
(traffic.endmp between seg.bpnew and seg.epnew) or
((traffic.begmp <= seg.bpnew) and (traffic. ENDMP >= seg.epnew)));
quit;
run;
proc sql;
create table matchedaadt04 as
select *
from ohAggSegments seg, Road04ohtemp traffic
where seg.rtenbr =traffic.route04 and
((traffic.begmp between seg.bpnew and seg.epnew) or
(traffic.endmp between seg.bpnew and seg.epnew) or
((traffic.begmp <= seg.bpnew) and (traffic. ENDMP >= seg.epnew)));
quit;
run;
data matchedaadt00;
set matchedaadt00;
if ((begmp >= bpnew) and (endmp <= epnew)) then do;
varleng00=endmp-begmp;
aadtvar00=aadt00*varleng00;
end;
if ((begmp <= bpnew) and (endmp >= bpnew) and (endmp <= epnew)) then do;
varleng00=endmp-bpnew;
aadtvar00=aadt00*varleng00;

end;
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if ((begmp >= bpnew) and (begmp <= epnew) and (endmp >= epnew)) then do;
varleng00=epnew-begmp;

aadtvar00=aadt00*varleng00;

end;

if ((begmp <= bpnew) and (endmp >= epnew)) then do;
varleng00=epnew-bpnew;

aadtvar00=aadt00*varleng00;

end;

run;

data matchedaadtO1;

set matchedaadtO1;

if (begmp >= bpnew) and (endmp <= epnew)) then do;
varleng01=endmp-begmp;

aadtvarQ1=aadt01*varleng01;

end;

if ((begmp <= bpnew) and (endmp >= bpnew) and (endmp <= epnew)) then do;
varleng01=endmp-bpnew;

aadtvarQ1=aadt01*varleng01;

end;

if ((begmp >= bpnew) and (begmp <= epnew) and (endmp >= epnew)) then do;
varleng01=epnew-begmp;

aadtvarQ1=aadt01*varleng01;

end;

if ((begmp <= bpnew) and (endmp >= epnew)) then do;
varleng01=epnew-bpnew;

aadtvarQ1=aadt01*varleng01;

end;

run;

data matchedaadt02;

set matchedaadt02;

if ((begmp >= bpnew) and (endmp <= epnew)) then do;
varleng02=endmp-begmp;

aadtvar02=aadt02*varleng02;

end;

if ((begmp <= bpnew) and (endmp >= bpnew) and (endmp <= epnew)) then do;
varleng02=endmp-bpnew;

aadtvar02=aadt02*varleng02;

end;

if ((begmp >= bpnew) and (begmp <= epnew) and (endmp >= epnew)) then do;
varleng02=epnew-begmp;

aadtvar02=aadt02*varleng02; -
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end;

if ((begmp <= bpnew) and (endmp >= epnew)) then do;
varleng02=epnew-bpnew;
aadtvar02=aadt02*varleng02;

end;

run;

data matchedaadt03;

set matchedaadt03;

if ((begmp >= bpnew) and (endmp <= epnew)) then do;
varleng03=endmp-begmp;
aadtvar03=aadt03*varleng03;

end;

if ((begmp <= bpnew) and (endmp >= bpnew) and (endmp <= epnew)) then do;
varleng03=endmp-begmp;
aadtvar03=aadt03*varleng03;

end;

if ((begmp >= bpnew) and (begmp <= epnew) and (endmp >= epnew)) then do;
varleng03=endmp-begmp;
aadtvar03=aadt03*varleng03;

end;

if ((begmp <= bpnew) and (endmp >= epnew)) then do;
varleng03=endmp-begmp;
aadtvar03=aadt03*varleng03;

end;

run;

data matchedaadt04;

set matchedaadt04;

if ((begmp >= bpnew) and (endmp <= epnew)) then do;
varleng04=endmp-begmp;
aadtvar04=aadt04*varleng04;

end;

if ((begmp <= bpnew) and (endmp >= bpnew) and (endmp <= epnew)) then do;
varleng04=endmp-begmp;
aadtvar04=aadt04*varleng04;

end;

if ((begmp >= bpnew) and (begmp <= epnew) and (endmp >= epnew)) then do;
varleng04=endmp-begmp;
aadtvar04=aadt04*varleng04;

end;

if ((begmp <= bpnew) and (endmp >= epnew)) then do;
varleng04=endmp-begmp;

115



aadtvar04=aadt04*varleng04;

end;

run;

*Calculates average AADT;

proc sort data= matchedaadt00; by num;

PROC MEANS NOPRINT; by num; VAR varleng00 aadtvar00;
OUTPUT OUT= aadtdata00 sum=varleng00 aadtvar00;
RUN;

data aadtdata00;

set aadtdata0O(drop=_type _freq );

if varleng00 > 0 then do;
newaadt00=aadtvar00/varleng00;

end;

if varleng00=0 then do;

newaadt00=0;

end;

run;

proc sort data= matchedaadtO1; by num;

PROC MEANS NOPRINT; by num; VAR varleng01 aadtvar01;
OUTPUT OUT=aadtdata01 sum=varleng01 aadtvar01;

RUN;

data aadtdata01;

set aadtdata01(drop=_type _freq );

if varleng01 > 0 then do;

newaadt0 1=aadtvar0O1/varleng01;

end;

if varleng01=0 then do;

newaadt01=0;

end;

run;

proc sort data= matchedaadt02; by num;

PROC MEANS NOPRINT; by num; VAR varleng02 aadtvar02;
OUTPUT OUT=aadtdata02 sum=varleng02 aadtvar02;

RUN;

data aadtdata02;

set aadtdata02(drop=_type _freq );
if varleng02 > 0 then do;
newaadt02=aadtvar02/varleng02;
end;

if varleng02=0 then do; )
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newaadt02=0;

end; N

run;

proc sort data= matchedaadt03; by num;

PROC MEANS NOPRINT; by num; VAR varleng03 aadtvar03;
OUTPUT OUT=aadtdata03 sum=varleng03 aadtvar03;

RUN;

data aadtdata03;

set aadtdata03(drop=_type _freq );
if varleng03 > 0 then do;
newaadt03=aadtvar(3/varleng03;
end;

if varleng03=0 then do;

newaadt03=0;

end;

run;

proc sort data= matchedaadt04; by num;

PROC MEANS NOPRINT; by num; VAR varleng04 aadtvar04;
OUTPUT OUT=aadtdata04 sum=varleng04 aadtvar04;

RUN;

data aadtdata04;

set aadtdata04(drop=_type _freq );
if varleng04 > 0 then do;
newaadtO04=aadtvar04/varleng04;
end;

if varleng04=0 then do;

newaadt04=0;

end;

run;

*Merge AADT data with disaggregate road segmemt data;

data ohAggSegments; merge ohAggSegments(in=a) aadtdata00(in=b);
by num;

if a;

run;

data ohAggSegments; merge ohAggSegments(in=a) aadtdata01(in=b);
by num;

if a;

run;

data ohAggSegments; merge ohAggSegments(in=a) aadtdata02(in=b);
by num,;

if a;
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run;
data ohAggSegments; merge ohAggSegments(in=a) aadtdata03(in=b);
by num;
ifa;
run;
data ohAggSegments; merge ohAggSegments(in=a) aadtdata04(in=b);
by num,;
if a;
run;
data ohAggSegments;
set ohAggSegments(drop= varleng00 aadtvar00 varleng01 aadtvar01 varleng02 aadtvar02 varleng03 aadtvar03
varleng(04 aadtvar04 siteno);
if newaadt00=0 then do;
newaadt00=",
end;
if newaadt01=0 then do;
newaadt01=";
end;
if newaadt02=0 then do;
newaadt02=";
end;
if newaadt03=0 then do;
newaadt03=";
end;
if newaadt04=0 then do;
newaadt04=";
end;
run;
data ohcurv(rename=(rte_nbr=route)); set ohO4curv(keep= rte_nbr begmp endmp deg_curv);
run;
proc sql;

create table matchedcurve as

select *

from ohAggSegments seg, ohcurv curve

where seg.rtenbr = curve.route and

“((curve.begmp between seg.bpnew and seg.epnew) or
(curve.endmp between seg.bpnew and seg.epnew) or
((curve.begmp LE seg.bpnew) and (curve.endmp GE seg.epnew)));

quit;
run;

data matchedcurve; -
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set matchedcurve;
if ((begmp >= bpnew) and (endmp <= epnew)) then do;
curvleng=endmp-begmp;
curvvar=deg_curv*curvleng;
end;
if ((begmp <= bpnew) and (endmp >= bpnew) and (endmp <= epnew)) then do;
curvleng=endmp-bpnew;
curvvar=deg_curv*curvleng;
end;
if ((begmp >= bpnew) and (begmp <= epnew) and (endmp >= epnew)) then do;
curvleng=epnew-begmp;
curvvar=deg_curv*curvleng;
end;
if ((begmp <= bpnew) and (endmp >= epnew)) then do;
curvleng=epnew-bpnew;
curvvar=deg_curv*curvleng;
end;
run;
data matchedcurve;set matchedcurve;
if curvleng=0 then do;
curv_id = 0;
if curvleng > 0 then do;
curv_id = curvvar/curvleng/curvleng/52.8 ;
run;
data matchedcurve;set matchedcurve;
curv_ind=0;if curv_id ge4thencurv_ind=1;
run;
*Calculates horizontal curvature variable;
proc sort data=matchedcurve; by num;
PROC MEANS NOPRINT; by num; VAR curvleng curvvar curv_ind;
OUTPUT OUT=curvdata sum=curvleng curvvar curv_ind;
RUN;
data curvdata;
set curvdata(drop=_type__freq );
if curvleng > 0 then do;
curv_hi=curvvar/curvleng/curvleng/52.8;
end;
if curvleng=0 then do;
curv_hi=0;
end;

run;
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data curvdata;set curvdata;
curv_idt=0; ifcurv_ind >=1thencurv_idt=1;
run;
*Merge curve data with disaggregate road segmemt data;
data ohAggSegments; merge ohAggSegments(in=a) curvdata(in=b);
by num;
ifa;
run;
data ohAggSegments;
set ohAggSegments(drop= curvvar);
if curv_hi = 0 then do;
curv_hi =";
end;
run;
data ohgrad(rename=(rte_nbr=routel begmp=begmpl endmp=endmp1));
set ohO4grad(keep= rte_nbr begmp endmp pct_grad dir_grad);
run;
proc sql;
create table matchedgrad as
select *
from ohAggSegments seg, ohgrad grad
where seg.rtenbr = grad.routel and
((grad.begmp1 between seg.bpnew and seg.epnew) or
(grad.endmp]1 between seg.bpnew and seg.epnew) or
((grad.begmp1 LE seg.bpnew) and (grad.endmpl GE seg.epnew)));
quit;
run;
data matchedgrad;
set matchedgrad;
if ((begmp1 >= bpnew) and (endmp1 <= epnew)) then do;
gradleng=endmp1-begmpl;
gradvar=pct_grad*gradleng;
end;
if ((begmp <= bpnew) and (endmp >= bpnew) and (endmp <= epnew)) then do;
gradleng=endmp1-bpnew;
gradvar=pct grad*gradleng;
end;
if ((begmp >= bpnew) and (begmp <= epnew) and (endmp >= epnew)) then do;
gradleng=epnew-begmp]l;
gradvar=pct_grad*gradleng;
end; -
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if ((begmp <= bpnew) and (endmp >= epnew)) then do;
gradleng=epnew-bpnew; -
gradvar=pct_grad*gradleng;
end;
run;
*Calculates vertical gradient variable;
proc sort data=matchedgrad; by num;
PROC MEANS NOPRINT; by num; VAR gradleng gradvar
OUTPUT OUT=graddata sum=gradleng gradvar ;
RUN;
data graddata;
set graddata(drop=_type _freq );
if gradleng > 0 then do;
grad hi=gradvar/gradleng;
end;
if gradleng=0 then do;
grad_hi=0;
end;
run;
*Merge grade data with disaggregate road segmemt data;
data ohAggSegments; merge ohAggSegments(in=a) graddata(in=b);
by num,;
if a;
run;
data ohAggSegments;
set ohAggSegments(drop= gradvar);
if grad hi = 0 then do;
grad hi=";
end;
run;
data gradtemp; set matchedgrad; keep num dir_grad; run;
data ohAggSegments; merge ohAggSegments(in=a) gradtemp(in=b);
by num;
if a;
run;
*Select fatigue accidents only;
data ohOOacc;
set ohOOacc;
if NUMVEHS='1" and onoff rd="2' or onoff rd='3' then fatiacc=1; else fatiacc=0;
run;
data ohOOacc;
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set ohOOacc;
drop street 1 ; if fatiacc=1;
run;
data ohOlacc;
set ohOlacc;
if NUMVEHS="1" and onoff rd="2' or onoff rd="3' then fatiacc=1; else fatiacc=0;
run;
data ohOlacc;
set ohOlacc;
drop street_1 ; if fatiacc=1;
run;
data oh02acc;
set oh02acc;
if NUMVEHS="1" and onoff rd="2' or onoff rd="3' then fatiacc=1; else fatiacc=0;
run;
data oh02acc;
set oh02acc;
drop street 1 ; if fatiacc=1;
run;
data ohO3acc;
set oh03acc;
if NUMVEHS="1' and onoff rd="2' or onoff rd="3' then fatiacc=1; else fatiacc=0;
run;
data oh03acc;
set oh03acc;
drop street 1 ; if fatiacc=1,
run;
data ohO4acc;
set ohO4acc;
if NUMVEHS="1' and onoff rd="2' or onoff rd="3' then fatiacc=1; else fatiacc=0;
run;
data ohO4acc;
set ohO4acc;
drop street 1 ; if fatiacc=1;
run;
*Get a few fields of the road recordset to merge with accidents;
data segments; set ohAggSegments(keep = cnty_rte rtenbr bpnew epnew num);
run;
data ohOOaccnew;
set ohOOacc;
accyr=00; -
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run;
data ohOlaccnew; -
set ohOlacc;
accyr=01;
run;
data oh02accnew;
set oh02acc;
accyr=02;
run;
data oh03accnew;
set oh03acc;
accyr=03;
run;
data ohO4accnew;
set ohO4acc;
accyr=04;
run;
*Put all accident records into one file by appending;
data accidents; set ohOOaccnew ohOlaccnew oh02accnew ohO3accnew ohO4accnew;
run;
*QOrder the accident records;
proc sort data=accidents; by rte_nbr milepost;
*Number the accident records;
data accidents; set accidents;
accno= n_;
run;
/*Merge road segments data with accident data it is helpful
if the variables used to connect the datasets have different names*/
proc sql;
create table matchedaccs as
select *
from accidents acc, segments road
where acc.cntyrte=road.cnty rte and
(acc.milepost between road.bpnew and road.epnew);
quit;
run;
*Delete duplicatess;
proc sort data=matchedaccs;
by caseno milepost;
*First delete all accidents occurring at beginning mile post;
data matchedaccs; set matchedaccs;
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if milepost=bpnew then delete;

*Delete all accidents appearing in multiple segments;
data matchedaccs; set matchedaccs;
*accidents are uniquely defined by accno;
by caseno;

if first.caseno;

run;

*Final check to make sure there are no duplicates--see log for zero
selected;

proc sort data=matchedaccs nodupkey;

by caseno;

run;

*Save dataset permanently;

data matchedaccs;

set matchedaccs;

run;

*Total number of accidents per year to merge with homogeneous segment file;
*Retrieve temporary road file;

data roads; set ohAggSegments;

*Create variables to sum,;

data assgnaccidents; set matchedaccs;

tot=1;

if accyr=00 then acc00=1;

if accyr=01 then acc01=1;

if accyr=02 then acc02=1;

if accyr=03 then acc03=1;

if accyr=04 then acc04=1;

run;

*Sum accidents across years;

proc sort data= assgnaccidents; by num;

PROC MEANS NOPRINT; by num; VAR tot acc00 accO1 acc02 acc03 acc04;
OUTPUT OUT=accfreq sum= tot acc00 acc01 acc02 acc03 acc04;
RUN;

*Merge road segment data with accident data;
data finalaggbytype; merge roads(in=a) accfreq(in=b);
by num;

if a;

run;

data ohfinalagg; set finalaggbytype ;
dirgra="flat" ;

if dir_grad="-" then dirgra="down";
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if dir_grad="+" then dirgra="up";
run;
data ohfinalagg; set ohfinalagg ;
drop surfwidr med type type freq dir_grad;
run;
data ohfinalagg; set ohfinalagg ;
avg_outsh=( OUTSHWDI1+ INSHWD2)/2;
" avg_insh=( OUTSHWD2+ INSHWD1)/2;
run;
proc sort data=ohfinalagg out=ohfinalagg nodupkey;
by num;
run;
data ohfinalagg; set ohfinalagg;
*Fill in missing values as zeros;
if tot=. then tot=0;
if acc00=. then acc00=0;
if accO1=. then acc01=0;
if acc02=. then acc02=0;
if acc03=. then acc03=0;
if acc04=. then acc04=0;
run;
data ohfinalagg; set ohfinalagg;
*Fill in missing values as zeros;
if med_wid=. then med_wid=0;
if curvleng=. then curvleng=0;
if curv_hi=. then curv_hi=0;
if curv_idt=. then curv_idt=0 ;
if gradleng=. then gradleng=0;
if grad_hi=. then grad_hi=0;
run;
data ohfinalagg; set ohfinalagg;
avg_aadt = ( newaadt00+newaadt01+newaadt02+newaadt03+newaadt04 )/ 5;
log_aadt = log(avg_aadt);
off = log((epnew-bpnew)*5);
run;
data ohfinalagg; set ohfinalagg ;
avg_outsh=( OUTSHWD1+ INSHWD2)/2;
avg_insh=( OUTSHWD2+ INSHWD1)/2;
run;
data ohfinalagg; set ohfinalagg ;
rcl=curvleng/newleng;
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rgl=gradleng/newleng;

run;

data ohfinalagg; set ohfinalagg;
*Fill in missing values as zeros;
if avg_outsh =. then avg_outsh =0;
if avg_insh =. then avg_insh =0;
if rcl =. then rcl =0;
if rgl =. then rgl =0;
run;
data fati r2ln;
set ohfinalagg;
drop rte_type;
if rodwycls="08" ;

run;
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APPENDIX D. SAS Codes for GLM Analysis

proc genmod data=Fati r2ln;
TITLE 'Fatigue Accidents",
model tot=log_aadt SPDLIMT curv_hi grad hi surf wid avg_outsh
/ dist=NEGBIN offset=off typel type3 ;
data Fati_r2In; set Fati_r2In; run;
proc genmod data=Nf r2ln;
TITLE 'Non-Fatigue Accidents';
model tot=log_aadt SPDLIMT curv_hi grad hi surf wid avg_outsh
/ dist=NEGBIN offset=off typel type3 ;
data Nf r2In; set Nf r2ln; run;
proc genmod data=SPFR_12ln;
TITLE 'SP Fatigue Accidents';
model tot=log_aadt SPDLIMT curv_hi grad hi surf wid avg_outsh
/ dist=NEGBIN offset=off typel type3 ;
data SPFR_r2ln; set SPFR_r2ln; run;
proc genmod data= SPNFR_r21n;
TITLE 'SP Non-Fatigue Accidents';
model tot=log_aadt SPDLIMT curv_hi grad hi surf wid avg_outsh
/ dist=NEGBIN offset=off typel type3 ;
data SPNFR_r2In; set SPNFR_r2In; run;
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APPENDIX E. SAS Codes for Dataset Development for Logistic Analysis

data oh0OOroad;
set ohOOroad;
rtenbr =input(rte_nbr, 5.);
run;
data ohOlroad;
set ohO1road;
rtenbr =input(rte_nbr, 5.);
run;
data oh02road;
set oh02road;
rtenbr =input(rte_nbr, 5.);
run;
data oh03road;
set ohO3road;
rtenbr =input(rte_nbr, 5.);
run;
data oh0O4road,
set oh04road,
rtenbr =input(rte_nbr, 5.);
data ohOOacc;
set oh0Oacc;
drop FLIP_IND rte_nbr;
- run;
data ohOlacc;
set ohOlacc;
drop FLIP_IND rte nbr;
run;
data oh02acc;
set oh02acc;
drop FLIP_IND rte_nbr;
run;
data oh03acc;
set oh03acc;
drop FLIP_IND rte nbr;
run;
data ohO4acc;
set ohO4acc;
drop FLIP_IND rte_nbr;

run;
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data oh0OOroad;
set ohOOroad; -
drop NHS_INTR rte nbr;
run;
data ohO1lroad;
set ohOlroad;
drop NHS INTR rte nbr;
run;
data oh02road;
set oh02road;
drop NHS_INTR rte nbr;
run;
data oh0O3road;
set oh03road;
drop NHS_INTR rte nbr;
run;
data ohO4road;
set oh04road;
drop NHS_INTR rte nbr;
run;
data ohOOcurv(rename=(begmp=begmpl endmp=endmp1 seg_Ing=curv_Ing));
set ohOOcurv;
run;
data oh0Ograd(rename=(begmp=begmp2 endmp=endmp?2 seg_Ing=grad Ing));
set ohOOgrad,
run;
data ohO1curv(rename=(begmp=begmpl endmp=endmpl seg_Ing=curv_Ing));
set ohOlcurv;
run;
data oh01grad(rename=(begmp=begmp2 endmp=endmp2 seg_Ing=grad Ing));
set ohOlgrad;
run;
data oh02curv(rename=(begmp=begmp1 endmp=endmpl seg_Ing=curv_Ing));
set oh02curv;
run;
data oh02grad(rename=(begmp=begmp2 endmp=endmp?2 seg_Ilng=grad Ing));
set oh02grad,
run;
data ohO3curv(rename=(begmp=begmpl endmp=endmp] seg_Ing=curv_Ing));
set ohO3curv;

run;
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data oh03grad(rename=(begmp=begmp2 endmp=endmp? seg_Ing=grad Ing));
set oh03grad;
run;
data ohO4curv(rename=(begmp=begmpl endmp=endmp1 seg_Ing=curv_Ing));
set ohO4curv;
run;
data oh04grad(rename=(begmp=begmp2 endmp=endmp?2 seg_Ing=grad Ing));
set ohO4grad,
run;
proc sql;
create table merge00 as
select *
from oh0OOacc left join ohOOroad
on cntyrte = cnty_rte and
(milepost between begmp and endmp) ;
quit;
run;
data merge00;
set merge00;
drop cnty _rte;
run;
proc sql;
create table merge00 as
select *
from merge00 left join ohOOcurv
on rtenbr = rte_nbr and
(milepost between begmp1 and endmpl) ;
quit;
run;
data merge00;
set merge00;
drop rte_nbr;
run;
proc sql;
create table merge00 as
select *
from merge00 left join oh0Ograd
on rtenbr = rte_nbr and
(milepost between begmp2 and endmp?2) ;
quit;

run; -
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proc sort data=merge00 out=merge00 nodupkey;
by caseno; .
run;
proc sort data=merge00 out=merge00 nodupkey;
by caseno;
run;
data ohOOoccl; set ohOOocc;
keep CASENO VEHNO SEATPOS physcond alcohol test status SOB_TST
BAC drug_test status ;
if VEHNO=1 and SEATPOS=1 ;
run;
data ohOOvehl; set ohOOveh; .
keep CASENO VEHNO num occs damsev veh speed post 2000 spd limt drv_age drv_inj drv_sex ;
if VEHNO=1 ;
run;
data oh0Ovc; merge oh0Ooccl ohOOvehl;
by CASENO;
run;
proc sql;
create table merge000 as
select *
from merge00 natural join ohOOvc
quit;
run;
proc sort data=merge000 out=merge000 nodupkey;
by caseno;
run;
proc sort data=merge000 out=merge000 nodupkey;
by caseno;
run;
proc sql;
create table mergeQ1 as
select *
from ohOlacc left join ohOlroad
on cntyrte = cnty rte and
(milepost between begmp and endmp) ;
quit;
run;
data merge01;
set merge01;
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drop cnty _rte;
run;
proc sql;
create table merge01 as
select *
from merge01 left join ohOlcurv
on rtenbr = rte_nbr and
(milepost between begmp1 and endmpl) ;
quit;
run;
data merge01;
set merge01;
drop rte_nbr;
run;
proc sql;
create table merge01 as
select *
from merge01 left join ohOlgrad
on rtenbr = rte_nbr and
(milepost between begmp?2 and endmp?2) ;
quit;
run;
proc sort data=merge01 out=merge01 nodupkey;
by caseno;
run;
proc sort data=merge01 out=merge01 nodupkey;
by caseno;
run;
data ohOloccl; set ohOlocc;
keep CASENO VEHNO SEATPOS physcond alcohol test status SOB_TST
BAC drug_test status ;
if VEHNO=1 and SEATPOS=1 ;
run;
data ohOlvehl; set ohO1veh;
keep CASENO VEHNO num occs damsev veh speed post 2000 spd_limt drv_age drv_inj drv_sex ;
if VEHNO=1 ;
run;
data ohO1vc; merge ohOloccl ohOlvehl;
by CASENO;
run;

proc sql; -
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create table merge001 as
select * N
from merge01 natural join ohOlvc
quit;
run;
proc sort data=merge001 out=merge001 nodupkey;
by caseno;
run;
proc sort data=merge001 out=merge001 nodupkey;
by caseno;
run;
proc sql;
create table merge(2 as
select *
from oh02acc left join oh02road
on cntyrte = cnty_rte and
(milepost between begmp and endmp) ;
quit;
run;
data merge02;
set merge02;
drop cnty_rte;
run;
proc sql;
create table merge02 as
select *
from merge02 left join oh02curv
on rtenbr = rte_nbr and
(milepost between begmp1 and endmpl) ;
quit;
run;
data merge02;
set merge02;
drop rte_nbr;
run;
proc sql;
create table merge02 as
select *
from merge02 left join oh02grad
on rtenbr = rte_nbr and
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(milepost between begmp?2 and endmp?2) ;
quit;
run;
proc sort data=merge02 out=merge02 nodupkey;
by caseno;
run;
proc sort data=merge02 out=merge02 nodupkey;
by caseno;
run;
data oh02occ1; set oh02occ;
keep CASENO VEHNO SEATPOS physcond alcohol test status SOB_TST
BAC drug_test_status ;
if VEHNO=1 and SEATPOS=1 ;
run;
data oh02vehl; set oh02veh;
keep CASENO VEHNO num occs damsev veh speed post 2000 spd_limt drv_age drv_inj drv_sex ;
if VEHNO=1 ;
run;
data oh02vc; merge oh02o0ccl oh02vehl;
by CASENO;
run;
proc sql;
create table merge002 as
select *
from merge02 natural join oh02vc
quit;
run;
proc sort data=merge002 out=merge002 nodupkey;
by caseno;
run;
proc sort data=merge002 out=merge002 nodupkey;
by caseno;
run;
proc sql;
create table merge03 as
select *
from oh03acc left join oh03road
on cntyrte = cnty_rte and
(milepost between begmp and endmp) ;
quit;

rn; =
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data merge03;
set merge03; -
drop cnty _rte;
run;
proc sql;
 create table merge03 as
select *
from merge03 left join oh03curv
on rtenbr = rte_nbr and
(milepost between begmpl and endmpl) ;
quit;
run;
data merge03;
set merge03;
drop rte_nbr;
run;
proc sql;
create table merge03 as
select *
from merge03 left join oh03grad
on rtenbr = rte_nbr and
(milepost between begmp2 and endmp?) ;
quit;
run;
proc sort data=merge03 out=merge03 nodupkey;
by caseno;
run;
proc sort data=merge03 out=merge03 nodupkey;
by caseno;
run;
data oh03occl; set oh03occ;
keep CASENO VEHNO SEATPOS physcond alcohol test status SOB_TST
BAC drug_test_status ;
if VEHNO=1 and SEATPOS=1 ;
run;
data oh03vehl; set oh03veh;
keep CASENO VEHNO num occs damsev veh speed post 2000 spd limt drv_age drv_inj drv_sex ;
if VEHNO=1 ;
run;
data oh03vc; merge oh03occl oh03vehl;
by CASENO;
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run;
proc sql;
create table merge003 as
select *
from merge03 natural join oh03vc;
quit;
run;
proc sort data=merge003 out=merge003 nodupkey;
by caseno;
run;
proc sort data=merge003 out=merge003 nodupkey;
by caseno;
run;
proc sql;
create table merge04 as
select *
from oh0O4acc left join ohO4road
on cntyrte = cnty _rte and
(milepost between begmp and endmp) ;
quit;
run;
data merge04;
set merge04;
drop cnty _rte;
run;
proc sql;
create table merge04 as
select *
from merge04 left join ohO4curv
on rtenbr = rte_nbr and
(milepost between begmp1 and endmpl) ;
quit;
run;
data merge04;
set merge(04;
drop rte_nbr;
run;
proc sql;
create table merge04 as
select *

from merge04 left join ohO4grad
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on rtenbr = rte_nbr and
(milepost between begmp?2 and endmp?2) ;
quit;
run;
proc sort data=merge04 out=merge04 nodupkey;
by caseno;
run;
proc sort data=merge04 out=merge04 nodupkey;
by caseno;
run;
data ohO4occl; set ohO4occ;
keep CASENO VEHNO SEATPOS physcond alcohol test status SOB_TST
BAC drug_test status
if VEHNO=1 and SEATPOS=1 ;

run;

data ohO4vehl; set ohO4veh;
keep CASENO VEHNO num occs damsev veh_speed_post 2000 spd_limt drv_age drv_inj drv_sex ;
if VEHNO=1 ;
run;
data oh04vc; merge ohO4occl oh04vehl;
by CASENO;
run;
proc sql;
create table merge004 as
select *
from merge04 natural join ohO4vc
quit;

run;

proc sort data=merge004 out=merge004 nodupkey;
by caseno;
run;
data agg01234;
set merge000 merge001 merge002 merge003 merge004 ;
run;
data agg01234;
set agg01234 ;
drop JUR_TYPE RTE NBR POP_GRP ACCYR FED FACI ANGLE fed medw
RTE SUFX RTE TYPE FED SPSY FUNC _CLS PK_LANES PAV_ ROUG MED_TYPE
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PAS_NHS ID_CNTRL OUTSHWDI1 INSHWD1 OUTSHWD2 INSHWD2 SURFWIDR
SURFWIDL FED_ACES SEQ _NBR mile cls MUN_NAM RURUID ;
run;
data agg01234;
set agg01234;
if NUMVEHS='1" and onoff rd="2' or onoff rd="3' then fatiacc=1; else fatiacc=0;
run;
data logis agg; set agg01234;
*Fill in missing values as zeros;
if med_wid=. then med_wid=0;
if curv_Ing=. then curv_Ing=0;
if deg_curv=. then deg_curv=0;
if grad_Ing=. then grad Ing=0;
if pct_grad=. then pct_grad=0;
If rodwycls=99 then rodwycls=03;
If no_lanes="A" then no_lanes=1;
If no_lanes="B" then no_lanes=1;
If LIGHT=6 then LIGHT=1;
If RDSURF=0 then RDSURF=1;
If RODWY CLS=3 then RODWYCLS="03";
Iflight=0 or light="" or light=. then light=1;
Ifrd_charl=0 orrd charl=""orrd charl=. thenrd charl=1;
If weather=0 or weather=" " or weather=. then weather=1;
If rdsurf=0 or rdsurf="" or rdsurf=. then rdsurf=1;
Ifloc_type=0 orloc_type=""or loc_type=. then loc_type=7,
If med wid=0 ormed wid="" or med wid=. then med wid=0;
If spdlimt=0 or spdlimt="" or spdlimt=. then spdlimt=0;
Ifrd width=0 orrd_width="" or rd_width=. then rd_width=0;
If aadt=0 or aadt="" or aadt=. then aadt=0;
If deg curv=0 ordeg curv=""or deg_curv=. then deg_curv=0;
If pct_grad=0 or pct_grad="" or pct_grad=. then pct_grad=0;
If drv_sex ="U" or drv_sex =" " then drv_sex ="M";
run;
data logis_agg; set logis agg ;
nolanes =input(no_lanes, 5.);
run;
data logis_agg; set logis_agg ;
vetical="flat" ;
if dir_grad="-" or dir_grad="+" then vetical="veti";
run;

data logis agg; set logis_agg ; :
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horizental="tangent" ;
if deg_curv”= 0 then horizental="hori"; .
run;
data logis agg; set logis agg;
hi_curvature=deg_curv/seg_lng/seg Ing/52.8;
run;
data logis_agg; set logis agg ;
if drv_age>=16 and drv_age<=25 then age_group='16-25';
if drv_age>=26 and drv_age<=45 then age group="26-45';
if drv_age>=46 then age group='46+';
run;
data log_r2In;
set logis agg;
drop rte_type;
if rodwycls="08" ;
run;
data sp_r2ln;
set log_r2ln;
drop div_code;
if hour=2 or hour=3 or hour=4 or hour=14 or hour=15 ;
run;
data nsp_r2ln;
set log_r2ln;
drop div_code;
if hour"=2 and hour"=3 and hour"=4 and hour"=14 and hour"=15 ;

run;
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APPENDIX F. SAS Codes for Logistic analysis

proc logistic data= log_r2ln;
class light rd_charl sex age group ;
model fatiacc = light rd_char] sex age group
spd_limt aadt rd_width
/ selection=stepwise ;
run;
proc logistic data= sp_r2ln;
class light rd_charl sex age group ;
model fatiacc = light rd_charl sex age group
spd_limt aadt rd_width
/ selection=stepwise ;
run;
proc logistic data= nsp_r2ln;
class light rd_charl sex age group ;
model fatiacc = light rd_charl sex age group
spd_limt aadt rd_width
/ selection=stepwise ;
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