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Abstract

Video content has a pronounced and varied cognitive impact. This thesis develops several statisti-

cal models of video and demonstrates that these models can be used as a means of quantifying how

video impacts cognition. This work takes two approaches. For children, systems are developed to

classify content based on expert recommendation. The second approach can be applied to adults

and works by developing methods to determine extreme ranges of emotions that impact cognition.

This thesis first develops decision fusion methods for cognitive classification of children’s video

content. It then introduces the novel concept of positive developmental classification of videos

for children into videos that are deemed to have a negative or positive impact on cognition from a

literature review; a novel system was developed to classify and segment the content accordingly.

This study also introduces automatic age-based classification. The work focuses specifically on

several high-level audio features as they relate to the cognitive capacity of children. As the impact

on cognition of adults is dependent on the intensity of emotions, there is a focus on affective rank-

ing. The main contributions include developing a method to rank and cluster sequences based on

their affective content without the granularity problem. Furthermore, this thesis compares the ac-

curacy of several regression methods on the LIRIS database and develops a method to incorporate

prior knowledge into the cluster assignments. Then several state-based methods to predict valence

and arousal are developed. The first method is the dynamic prediction-hidden Markov model for

arousal-time curve estimation in sports videos. This method determines the arousal-time curve by

selecting a state sequence that maximizes the joint probability density function between the arousal

states and the arousal-time curve. The second method is a novel kernel-based mixture of experts

model for linear regression. The latter method outperforms other mixtures of experts models in

predicting valence and arousal. As the use of animation as a means of obtaining childrenâs atten-

tion, this thesis introduces a method to automatically categorize different animation genres in a

video database made for children by statistically modelling the temporal texture attributes of the

video.
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Chapter 1

Introduction

The problem of concern within this thesis is modelling and classifying the interaction between an

individual’s cognition and the audio and visual component of video content. Video is a means of

conveying information using a combination of audio and visual inputs. With the rapid technolog-

ical advances in digital TV, multimedia, and Internet, we have seen an amazing increase in video

content. Individuals spend on average almost six hours watching television every day for enter-

tainment purposes [3]. This duration increases for children [4]. In addition to entertainment, video

content is also used as a learning resource in schools [5, 6], and employers are increasingly using

online video content as a training resource [7, 8].

It has been shown video content impacts cognition [9, 10], and video with strong emotional

content has an increased cognitive impact [10, 11, 12, 13, 14, 15, 16, 17]. Even more pronounced

is the impact of video content on children. Video content can have a long-term negative impact

upon grades, memory, and behavior [15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. An auto-

matic method for classifying video content based on its effects on cognition would be extremely

important and confer far-reaching benefits in many areas. We will refer to the audio and video

properties that have some correlation with cognition as the cognitive contents of the video.

The problem will be decomposed into three sub-problems. The first will be classifying and

predicting the impact of video content on cognition using expert labels, for example automatically

classifying content using expert labels as set out in Chapters 3 and 6. As certain ranges of emotion

impact cognition we will focus on ranking video time series based on emotional content as set out
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in Chapter 4 and focus on affective modelling and determining states that may impact cognition as

in Chapter 5. Finally, we will focus on easy-to-classify events or objects that the literature suggests

may have an impact on cognition. This approach will be referred to as simple semantics.

The connection between chapters is shown in Fig. 1.1. The inner nodes represent the three

components of the problem, and the outer nodes represent each chapter’s connection. Emulating

expert recommendation as in Chapters 3 and 6 is indicated in blue. Classifying simple semantics

as in Chapters 3, 5, and 6 is indicated by the green nodes. Affective analysis, in particular ranking

sequences to determine if they contain any extreme ranges of emotions that impact cognition, is

indicated in red. Another related problem is determining states that are known to impact cognition.

These states that could better model valence and arousal are indicated by the red nodes.

Cognitive
Content

Simple

Semantics

CH 3

CH 5

CH 6

Expert
Label

CH 3CH 6

Affective

Affective
Ranking

CH 4

Affective
Mod-
elling

CH 4

CH 5

Figure 1.1: Breakdown of cognitive content and connection between chapters (CH).
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1.0.1 What is Cognition?

Although this thesis is an engineering thesis, it is helpful to give a brief overview of what cognition

is and how the term is used. Cognition is defined as the processes involved in the following [29]:

• Knowing

• Remembering

• Understanding

• Communicating

• Learning

A cognitive model describes a single cognitive phenomenon or process and describes the way

humans process information. Cognitive models can be simple or complex, but what makes a good

model is the ability to predict [29]. An example of a simple cognitive model from [30] is shown in

Fig. 1.2. This model characterizes a response to an input. The yellow node represents cognition,

the red node represents feelings and the green node represents action.

A good cognitive model must be emblematic of a particular cognitive process. The first at-

tempts to create cognitive models in this thesis tried to construct a Bayesian cognitive model [31].

These methods did have some success [32], such as numerical advantages [33]. These models did

not improve results in the latest data-sets [34] but did show better performance than models in the

same class. In addition, as we are not concerned with the taxonomy of cognition, this thesis will

try to derive models that better predict expert recommendations or cognitive responses to video

content.

1.1 Background Work on Video-content Analysis

There are several problems associated with video-content analysis including shot boundary detec-

tion, key frame extraction, scene segmentation, extraction of features including static key frame
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Cognition

Behaviour

Feeling

Figure 1.2: An example of a simple cognitive model used in cognitive therapy.

features, object features and motion features, video data-mining, video annotation, similarity mea-

sure, relevance feedback, video browsing, video retrieval, affective analysis and video classifica-

tion [2, 35, 36]. To our knowledge, there has been no effort to classify video based on its cognitive

content. The work here treats the problem in the context of video classification, but our approaches

and methods can easily be extended to recommendation systems, expert systems, and video index-

ing. The next few sub-sections will give an overview of video classification and other multimedia

fields that have been found to be useful in determining the cognitive content of a video sequence.

1.1.1 Video Classification

Considering the vast amount of video created every day, it is infeasible for individuals to watch

and classify all these videos. The challenge is even more difficult when dealing with the cognitive

content of video, as an expert is usually required to classify it. To overcome this problem, automatic

video classification was created. Video classification assigns the videos into predefined categories.

TRECVid and MediaEval [37, 36] are two widely used video databases, and neither has ex-

plored the idea of classifying video based on its cognitive content. Much of the work in this thesis

uses their methodologies. Although there are many similarities between video indexing [38] and
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video classification we will focus on the video classification problem.

There are several different modalities used in video classification, which include social data,

meta-data [39], text-based approaches, audio-based approaches, visual-based approaches, and var-

ious combinations of the aforementioned approaches [37, 36]. We will focus only on audio and

visual approaches based on our original premise. The support vector machine has become the

most popular method as feature sizes increase. Recently, deep networks have been incorporated

into video classification, but this approach presents several issues. The latest work [40, 41] uses

convolutional neural networks with feature pooling [42] or recurrent neural networks using Long

Short Term Memory (LSTM) [43] to encode the frames. These methods were not applied as they

require data sets as large as one million videos [40, 41].

Editing Effect Classification

Editing effect classification is not usually a main part of video content, but it is an important step.

Several works use it as a first step in video classification [44, 35]. Although this work uses many

motion features we will focus on scene changes. In this work most of the classification will be

scene change detection or shot boundary detection, using classic histogram subtraction [45]. In

the science literature, content with lots of scene changes is sometimes referred to as fast-paced.

Content with lots of scene changes affects cognition [14]. This is especially true for children

watching fast pace educational content [21], but the type of content also plays a role. For example

educational programs with lots of scene changes have been shown to be beneficial [22, 23, 24]. As

a result, we also review semantic content methods, such as video genre classification.

Semantic Classification

Video genre classification is an important part of determining the cognitive content. This problem

has been well studied [35, 46, 36, 1, 47], and the particular genre is important in determining the

impact like educational content [22, 23, 24], but genre is not the only factor. For example, different

animation is used as a means of obtaining children’s attention [28], yet the work in [18] found that

some animation can be good for children while other animated content can be bad.

Other problems in video classification include finding the broadcaster in news video [46] and
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finding sports video and events in sports video [48, 49, 50]. In [51] different sports videos were

categorized using the fact that different sports genres have motion in different directions; the angle

of motion field was compared to a prototypical set of motion vectors. In [52], a combination of

HMM and support vector machines were used as a classifier; their feature space included a com-

bination of color histogram moments and color coherence vectors [53]. Motion information was

incorporated using frame differencing. Edge direction and edge intensity histogram information

were also used. In [54], a similar approach was taken as in [52]. The main difference was the use of

continuous observation densities HMM (CODHMM) [55]. Another computationally inexpensive

feature is the Gray Level Co-occurrence Matrix (GLCM).

The first use of GLCM in video genre classification was [1]. In [1] a combination of colour,

audio, cognitive and structural features was used with textural features. In [56], the block intensity

comparison code (BICC) was developed. The BICC characterizes a frame based on each block.

The feature vector was then reduced by principle component analysis and a CODHMM was used

as the classifier. The BICC had better performance than any individual feature in [54] and proved

that the gray level distribution of each block could be effective in discriminating between genres.

The elements of BICC provide a measure of how similar a block is to every other block in one

frame of a video sequence.

There are other aspects of video classification that have a relation to cognitive content; for

example, violence and horror have been found to be bad for children [22, 57, 58] and automatic

violence and horror scene detection has been performed by [59, 60, 61], but this thesis is different

in that there is much content that affects cognition that is not violent and does not contain horror. As

a result, the semantic problem only partially fulfills the requirements and a more direct relationship

between the visual and audio content of a video sequence and the cognitive content must be found.

It should be noted that the term cognitive has been used before in video-content analysis [62],

but the approach used in this work lies more in the context of semantic classification. Low-level

features, as physical signal stimulations to our brains, may directly contribute to the physiological

cognitive brain response. We therefore focus this thesis work on lower level features. It will be

another interesting research topic to compare the different contributions to cognitive brain response
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between low-level and high-level features. One helpful approach is that taken by affective video-

content representation. In this work, we will use the term cognitive to describe methods directly

related to cognition.

1.1.2 Affective Video Content Representation

Affective video content representation is the intensity and type of feeling or emotion elicited by

a video. One of the first works on affective video-content representation was performed by [2].

Since then there has been a large body of work on this topic [63, 64, 65, 66, 34].

These publications demonstrate different methods and features used in affective video content

representation that affect feelings and emotion. Furthermore, it has been shown that affective

analysis can be used to detect violent and scary content [17, 60, 67, 68]. There is a large body

of work showing the relationship between physiology, cognition and low-level features. Affective

analysis is related to cognition [2] and several publications in the scientific literature show that the

affective content of media play a role in processes more strongly associated with cognition, such

as memory and attention [11, 10, 12, 13, 14, 15, 16].

The timeline in Fig. 1.3 helps illustrate the parallels between affective video content represen-

tation in the multimedia community compared to work in other areas collected within a literature

review. The yellow circles are proportional to the number of publications found relating to the rela-

tionship between affective analysis and cognition and their dates. The red circles are proportional

to connected publications in affective video content representation. It is evident that, in the last ten

years the two fields have paralleled each other, but, to our knowledge, there has been no effort to

combine the two areas.

Valence and Arousal Plane

The most direct representation of an emotion is to use discrete labels or emotional prototypes.

Examples include fear, anxiety and joy. This method has many problems: labels are not universal,

labels can be misinterpreted and emotions are continuous phenomena rather than discrete [64].

Finally, fixed classes can be changed only by combining or splitting certain classes to reduce or
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Figure 1.3: Yellow circles are proportional to the number of publications found relating to the
relationship between affective analysis and cognition. Red circles are proportional to important

publications that contain databases in affective video content representation

increase the emotional granularity [69, 70, 65, 66, 34].

Another method is to use the 2-D emotion space to describe the emotional content of a video

sequence [2]. This space contains the valence dimension and the arousal dimension. Valence

describes the type of emotions: negative to positive. Arousal describes the intensity: inactive to

active. Any point on this space can be used to describe different emotions. It has been shown

that low-level video features can be mapped onto this space using regression [66]. Much of the

literature in the scientific community quantifies emotional content with respect to cognition with

valence and arousal [11, 10, 12, 13, 14, 15, 16]. An example of the 2-D emotion space with

some discrete labels is shown in Fig. 1.4. The curves represent emotion generated by two possible

video sequences; the red sequence elicits negative feelings, such as fear, anger and calm. The

second sequence generates positive feelings, such as happiness and relaxation. The curves are not

necessarily closed but drawn like that for aesthetic purposes.

Cognition and the Valence and Arousal Plane

Usually, certain regions of the valence and arousal plane impact cognition [11, 10, 12, 13, 14,

15, 16, 13]. Regions with intense emotion can interfere with cognitive processing. It has also

been demonstrated that moderate levels of emotion have been shown to improve performance in

many aspects of processing including attention and memory. For example, regions that are high

or low in arousal may have an adverse impact on attention, memory, and vigilance, while medium

8
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Figure 1.4: 2-D emotion space: Diagonal axis represents valence, horizontal axis represents
arousal, in addition there are several discrete labels corresponding to different emotional

prototypes and two curves represent generation by two possible video sequences [2].
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regions may be positive. This is demonstrated in Fig. 1.5, where red represent regions that have

a negative impact on cognition while green regions have a positive impact on cognition. As there

exist annotations of arousal and valence for regression, these methods can be used to predict points

on the plane [15, 16]. Then a relative ranking system can be used to determine the impact on

cognition.

0 1 2 3
HighV alence

Happy

HighArousal

Angry

LowV alence

Gloomy Relaxed

LowArousal

negative impact

positive impact

negative impact

Excited

Amused

Happy

Astonished

P leased

Calm

Tired

Sleepy

Gloomy

Afraid Alarmed

Figure 1.5: Valence and arousal plane: different colors represent regions of the VA space that
have a positive impact (green) or a negative impact (red).

Affective Annotation

Another advantage of affective analysis is the wide range of available datasets. Although many of

the labels are manually annotated, the correspondence between physiological response and manual

labelling has been shown in [66]. There has been a wide body of work in affective data-sets. The

HUMAINE [71] was designed to illustrate the concept of affective computing. RILMSTIM [72]

was perhaps the first affective database that could be used with respect to this thesis, but the labels
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affective video content analysis [2]

Human[71]

Filmstrip[72]

DEAP [66],HIC
[73]

LIRIS-ACCEDE
[34]

Figure 1.6: Timeline of some important data-sets related to one of the first publications on
affective video content analysis.

are global, making it difficult to work with. The DEAP data-set [66] and HIC data-sets [73] are also

available, but many of the links to [66] are missing and [73] only uses short segments of the clips.

As a result, this work uses [34] as the videos and labels are easily obtained and a large number

of subjects were used. Fig. 1.6 shows the timeline starting from one of the first works in affective

video-content analysis [2] and demonstrates its rapid progression over the last five years.Valance

and arousal are just intermediate steps in determining the cognitive content. Similar results can

be obtained directly by analyzing video content features without computing the mapping to the

valance arousal plane.

1.1.3 Not the Full Story

Although these methods quantify the emotional content of a video, they do not cover all the prob-

lems associated with cognitive content of a video sequence. The work in [12] shows that emotional

content of media plays a role in attention, but so does interest, as well as several other factors. This

concept is illustrated in Fig. 1.7. The large ellipse represents all the factors that could represent

cognitive content. One important factor in cognition is attention represented by the blue ellipse.

The work in [12] shows that emotional content affects attention, symbolized by the intersection

with the affective content ellipse. The same work also suggests that the viewer’s interest in the

video also plays a role, indicated by the intersection of the interest ellipse. It is a much more

11



Cognitive Content

Affective Content

Attention

Interest

[12]

Figure 1.7: Large ellipse represents factors that could represent cognitive content: Affective
content represented by the orange ellipse, interest ellipse in yellow and attention represented by

the blue ellipse. The intersection with the interest ellipse represents that both factors impact
attention.

difficult problem to quantify the user’s interest in a video using video and audio features, yet the

relationship between affective video and audio features seems to be established. Therefore, in

addition to combining classification and semantics, other methodologies must be employed.

1.1.4 Other Features

Many of the features used in video-content analysis are included in other areas in multimedia,

most notably image and audio-content analysis. In this section, we include other features and

their relationships. Music affects cognition [74]; as a result, we use features from music retrieval

[75]. Many of these features are similar to those used in affective analysis [36, 1, 47, 2, 76]

and similar features can be used to recognize the emotional state in the human voice [77], such

12



as aggression. Dialogue-heavy content is usually good and voiced speech can be detected using

spectral features [78]. The structure of language is important thus we use concepts from Natural

Language Processing (NLP) [79].

The Mind Map in Fig. 1.8 gives a high-level summary of factors that have an impact on cogni-

tion and the relationship to features used in the multimedia community using the references from

previous sections. The orange nodes represent areas of study in the multimedia analysis commu-

nity.

The green nodes indicate factors that have been shown to have a positive impact, and factors

that usually have a negative impact, especially on children, are shown in red. Yellow nodes rep-

resent factors that, to our knowledge, have not been studied. The edges that connect the nodes

represent some relationship between the areas of interest. For example, affective analysis used

audio, color, and intra-frame techniques.

1.1.5 Cognitive Content of a Video Sequence

It is not difficult to see that the cognitive content of a video sequence can have many applications.

In this work, we develop several models to determine the cognitive content of a video sequence.

The models are developed using predefined expert assigned classes; methods and features are

determined using recommendations from expert observations and selected if they minimize gener-

alization error.

Since the impact on video content is so important to children we focus on automatically clas-

sifying children’s video based on pre-defined cognitive categories. The database was collected by

reading the scientific literature and with the pre-defined cognitive categories assigned by experts in

the same literature. Feature selection and engineering was also determined using the same literature

and verified with model validation techniques [15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

As there is no database for children’s pre-defined cognitive categories, the database was collected

by reading the scientific literature. The pre-defined cognitive categories assigned to each series

was determined by what the experts recommended in the literature. Most of the series in the novel

database had at least two citations, the latest study was performed in 2011 [18].
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Figure 1.8: Mind map: Red nodes represent factors that have a negative impact, yellow nodes
have a unknown impact and green has a positive impact. Orange nodes represent areas that have

been studied in the multimedia community and edges represent relationships or common features.
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Another task that is an ideal application of the cognitive content is determining the appropri-

ate age of content for young children. The task is possible for content made for young children

because the language in content for children of three years of age is so much different compared

to the language in content for children of five or even four years of age. In addition, sounds that

may interfere with the bandwidth associated with voice are minimal in this content. The method

determines the average number of words and syllables and determines a measure of how complex

the language is. This information is then used in combination with other information to determine

the appropriate age of the target audience.

It has been shown that certain ranges of valence and arousal have a negative impact on adults

and children’s cognition [10, 11, 12, 13, 14, 15, 16]. As a result, we develop a method to rank entire

video sequences on different components of the valence arousal plane. The method is unsupervised

and does not face the granularity problem. For example, even if values are mapped onto the valence

arousal plane the continuum has to be quantized again in order to produce possible rankings [69].

Furthermore, this method tests how different methods perform in mapping features on the valence

arousal plane.

In addition, several novel regression methods were developed to predict the arousal or valence-

time curve. The first method is the dynamic prediction HMM for arousal time curve estimation

in sports videos. The method determines the arousal time curve by selecting a state sequence that

maximizes the joint probability density function between the arousal states and the arousal time

curve. The second is a novel kernel-based mixture of experts model for linear regression. The

method outperforms other mixtures of experts models for predicting valence and arousal from the

LIRIS database.

Finally, because different types of animation are used to gain children’s attention [24, 25, 26]

and imaginary characters mixed with live action improve attention [80], we develop a method to

classify different types of animated content that perform better than more complex general methods

for video genre classification.

Compared to other problems, the cognitive content problem can be viewed as a mid-level prob-

lem, though much can be accomplished using low-level features and affective analysis, such as
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Figure 1.9: Venn Diagram showing that cognitive content is a combination of high level features,
affective analysis and semantic classification.

classifying. If content has a negative or positive impact on children, the problem is still more

complex. For example, using classification methods, such as determining the number of words

or syllables, can be extremely useful in the age recommendation task. These simpler semantic

tasks are high-level compared to low-level features or affective analysis directly in the classifica-

tion task, but still not as complex as other semantic tasks. The diagram in Fig. 1.9 demonstrates

the relationship between semantics, high level features, affective and content based features.

1.1.6 Connection Between Valence, Arousal and Children’s Videos

It is helpful to look at the connections between chapters as they relate to the respective results and

the work of Dr. Annie Lang. Dr. Lang’s work pre-dated and influenced much of the present work

done on affective computing and is used to explain why some content has a negative or positive

impact on cognition [17, 14, 10, 14, 11, 12, 81, 14]. Consider Fig. 1.10, the red nodes represent

each chapter and the directed edges represent the influences between them. The connection be-

16



tween Chapters 3 and 6 involves determining factors that impact children’s cognition hence the

connection between nodes. Also in Chapter 3 it was found that features that correspond to high

arousal and certain ranges of valence have a negative impact on cognition. As a result Chapters

4 and 5 focus on ranking arousal and/or valence locally and globally as indicated by the edges

between nodes. This relationship was predicted in the literature represented by the outer nodes in

Fig. 1.10. The green nodes represent publications by Dr. Annie Lang [17]. This work was directly

cited by [20] in purple, whose work showed that the number of scene changes is correlated with

cognitive impact on children. This paper along with several that cited it was key for much of the

work in Chapter 3 denoted by the directed edges in Fig. 1.10. In addition, Dr. Lang’s work was

directly cited in [2], as represented by the link from the green nodes to the blue nodes. This was

used in Chapters 3, 4 and 5. In addition, these features have been found to be extremely accurate

in predicting whether content had a negative or positive impact on cognition.

1.1.7 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 introduces the problem in terms of

empirical risk minimization and introduces the preliminaries; Chapter 3 discusses positive develop-

mental video classification for children and introduces an automatic age recommendation system

for children; Chapter 4 elaborates on the ranking of video sequences using the valence arousal

plane; Chapter 5 develops a dynamic prediction hidden Markov models for arousal time curve

estimation in sports videos and a Kernel-based mixture of experts for valence arousal estimation.

Finally, Chapter 6 discusses animation genre discrimination, as summarized in Fig. 1.11.

Fig. 1.12 shows the connections between each chapter. All chapters are based on observations

in the scientific literature, as symbolized by the parent node. The children of the node marked

Expert Assigned represent chapters that use some pre-defined expert labels. The children of the

node marked as Affective represent chapters that use affective analysis. Similarly, the children of

the node marked Classification are chapters that use some kind of classification based on an expert

recommendation that impacts cognition. The recommendation may be used to create a high-level

features, such as counting the number of words, or for a more general task, such as determining
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Figure 1.10: Connection between chapters and literature.
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Figure 1.11: Thesis Outline: Light blue represents introduction of concept and review; dark
sections represent novel models.
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Figure 1.12: Connection between chapters.

1.1.8 Main Contributions

The main contribution of this thesis is the introduction of the concept of cognitive content of a

video sequence. Other contributions are set out in this section. In Chapter 3, we introduce the

novel concept of positive developmental video classification for children. In addition to the novel
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research topic, we collect a set of videos that have been deemed as having a negative or positive

impact on child cognition. From a literature review, a novel model validation technique was de-

veloped. Several new features and several experiments on how sampling rate affects classification

were conducted and novel methods were used to segment clips using categorical clustering. Then

we introduce automatic age-based classification. In addition to a novel research topic, we introduce

several novel high-level audio features related to the cognitive capacity of children. These novel

features gauge the cognitive ability of the intended audience by quantifying the structure of the

language. These novel features include syllable rate, word rate, language complexity, and noise

jumps. The feature extraction methods are also novel in that we count the number of syllables

and words using relatively computationally inexpensive signal-processing techniques, foregoing

complex speech recognition. Given the relationship between emotions and cognition, Chapter 4

develops a method to rank sequences using their affective content without the granularity problem.

In addition, Chapter 4 compares the accuracy of several regression methods on the LIRIS database

and performs regularization and variable selection via the Elastic Net and Lasso methods. Chapter

5 develops a dynamic prediction- hidden Markov model for arousal-time curve estimation in sports

videos and a kernel-based mixture of experts for linear regression. The dynamic prediction-hidden

Markov model determines the arousal-time curve by selecting a state sequence that maximizes the

joint probability density function between the states and the arousal-time curve. We derive the

parameters using the expected maximization algorithm. Experiments were performed on several

types of sports videos including golf, bowling, darts, and tennis. Test measures included squared

residual error and criteria derived from psychology. The experimental results show that the novel

method performed better in estimating the arousal-time curve than state-of-the-art linear regression

methods for most of the tested sports videos. A kernel-based mixture of experts was also devel-

oped using the dual formulation to constrain the maximum likelihood estimation. This method

outperforms other mixtures of expert models and has comparable performance to other methods

for regression. Finally, due to the use of animation as a means of obtaining children’s attention,

we introduce a method to automatically categorize different animation genres in a video database

made for children. There has been research in animation genre categorization [82], but the method
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developed here does not use colour allowing it to classify older black and white content. This

method is based on statistically modelling the temporal texture attributes of the video sequence.
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Chapter 2

Preliminaries

As this is an engineering dissertation we will formulate the problem in terms of empirical risk

minimization [83]. Consider the following situation, which is a general setting of many supervised

learning problems. Given some data set D, one would like to determine some hypothesis h that

minimizes the loss between some expert annotation Γ and some hypothesis h(x|D), where x is

some feature. The observation Γ is actually a noisy version of some function f(x) for example

Γ = f(x) + ζ . More formally, we assume that there is a P (x,Γ) that is the joint probability

distribution. This allows us to model uncertainty in predictions of Γ. We also assume that we

are given a non-negative real-valued L(h(x|D),Γ) which measures how different the prediction

h(x|D) of a hypothesis is from the true outcome Γ. The risk is given by:

R(h) = E[L(h(x|D),Γ)] =

∫
L(h(x|D),Γ)P (x,Γ)dxdΓ. (2.1)

One would like to minimize equation 2.1, but the joint probability function is difficult to determine.

Using the law of large numbers, we can approximate the true risk and determine the best hypothesis

using the following:

h∗ = argmin
h∈H′

{ 1

N

N∑
n=0

L(h(xn|D),Γn))}. (2.2)

WhereN is the number of samples andH is the hypothesis space. In some cases sequences will be

classified so the notation L(h(Xn),Γn) will be used, where X is a matrix representing a sequence.

For parametric models D = θ, one can also define the problem in terms of utility function, whose

value we would like to maximize. For each problem we will define the risk or utility function.
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The main problem with this formulation is it does not account for the fact that features can be the

output of a hypothesis. In the cognitive content problem consider the age classification system for

young children, the language is indicative of the appropriate age of the content. The complexity

of the language is one factor that can be used to quantify the language and the complexity of the

language is related to the ratio of words to syllables.

As a result, we train a classifier to determine the appropriate age by using the ratio of words

to syllables as a feature. To automatically segment and count the number of words and syllables

we use a classifier. Counting the number of syllables was based on detecting voiced speech which

also can be posed as an empirical risk minimization problem. Each step is an independent problem

requiring its own training and classification. Each level assumes a dependency on the previous step

and the order is determined by domain knowledge of psychology and multimedia content analysis.

As a result of this multi-level paradigm, we use recursion to simplify the notation and pose the

problem in terms of empirical risk minimization and minimize it in a greedy fashion.

Problem Formulation

Let S0 = {(Γ0,1,x0,1), ..., (Γ0,Nf0 ,x0,Nf0)} be the features with an associated target each with its

own training set. For the feature and target (Γ0,j,x0,j), the training set of samples is:

D0,j = {(x0,j,0,Γ0,j,0), ..., (Γ0,j,Nf0j ,x0,j,Nf0j)}. (2.3)

The features and targets will be used to train a set of classifiers {h0,1, ..., h0,Nf0}. In the initial-

ization we will perform an empirical risk minimization for each hypothesis. The initialization step

is defined as:

h0,j = argmin
h∈H0,j

{ 1

Nf0j

Nf0j∑
n=1

L0,j(h(x0,j,n),Γ0,j,n)}. (2.4)

In the l− th step we define the set of features as Sl = {(Γl,1,xl,1), ..., (Γl,Nflj ,xl,Nflj)}. Where

xl,1 = hl−1,1(xl−1,1), ...,xl,Nfl = hl−1,Nfl−1(xl−1,Nfl) and the rest of the values are new features.
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The induction step is defined as:

hl,j = argmin
h∈Hl,j

{ 1

Nflj

Nflj∑
n=1

Ll,j(h(xl,j,n),Γl,j,n)}. (2.5)

In the final step L, we will drop the superscript and sub-scripts feature vector and target, and the

minimization is given by: (x)1 = hL−1,1(xL−1,1), ..., (x)L−1 = hL−1,1(xL−1,1).

hL = argmin
h∈H

{ 1

N

N∑
n=1

L(h(xn,Γ
n)}. (2.6)

Example

Consider a simplified version of Chapter 4. It is known that certain features are correlated with

valence and arousal denoted by: S0 = {(Γ0,0,x0,0), (Γ0,1,x0,1)} where (Γ0,0,x0,0) are the valence

targets and valence features and (Γ0,1,x0,1) are the arousal targets and arousal features. The loss

function is given by:

h0,j = argmin
w0,j∈<d0,j

{ 1

Nf0j

Nf0j∑
n=1

(Γ0,j,n −wT
0,jφ(xn))2} (2.7)

The new values are outputs on the valence arousal plane x = [x1,0||x1,1]T and are correlated

with the valence and arousal rankings. Each sample is a member of a sequence and can be ranked

using clustering. The clustering step can be viewed as a parameter estimation problem [83] more

precisely maximum likelihood estimation. The cluster parameters can be determined by minimiz-

ing:

h2 = argmin
θ
{−1

N

N∑
n=1

ln(P (xn|θ)}. (2.8)

2.1 Model Selection

Cross validation [84] is a means of approximating generalization error and determining optimal

models and/or model parameters that cannot be optimized directly. The first and most important

distinction is between training and validation data. Training data is the data used to train the model
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and is also referred to as in-sample data. The validation data is used to estimate prediction error for

model selection. Finally, in many cases, free parameters are involved that are selected empirically;

as a result, a test set is used for assessment of the generalization error of the final chosen model.

2.1.1 Cross Validation

Determining model performance using the training data would just validate the method’s ability to

fit the training data, but the method may fail to predict anything useful on unseen data. Consider a

data set:

D = {(x1,Γ1), .., (xN ,ΓN)} = {(xn,Γn)}Nn=1. (2.9)

Where xn is a feature vector and Γn is a continuous value or a discrete label. The simplest form

of cross validation is to randomly partition the data into two mutually exclusive sets; a training set

DT and the validation set DV , with corresponding indexes IND(DV ) and IND(DT ). A block

diagram is shown in Fig. 2.1. The loss or error of the validation set is given by:

LV (h) =
1

NV

∑
n∈DV

L(h(xn|DT ),Γn). (2.10)

WhereNV indicates the number of samples in the validation set, expected error of the validation

is given byE(LV (h)) = Lout(h). Assuming that the samples are independent, the variance is given

by:

var(LV (h)) =
1

N2
V

∑
n∈DV

var(L(h(xn|DT ),Γn)) =
σ2
V

NV

. (2.11)

If NV is large we can use the normal distribution; the confidence of the estimate is bounded by the

size of the validation set:

LV (h) = Lout(h)± σVO
(

1√
NV

)
. (2.12)

Therefore, as NV gets larger, one can develop a better estimate of the range of LV (h), but

because the number of training examples is given by NT = N −NV , there is less training data for

the algorithm. Depending on the number of samples and the complexity of the model, if NV gets

large the bias of the model may increase. As a result, K-fold cross-validation was developed to test
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D = {(x1,Γ1), .., (xN ,ΓN)}

{(xn,Γn)}n∈IND(DT ) {(xn,Γn)}n∈IND(DV )

Training set
DT of size
of N − NV

Validation set
DV of size NV

Figure 2.1: Partitioning data into training and validation data.

the model with different training and validation sets iteratively. The data is partitioned in such a

way that no samples are used for both training and validation in one iteration.

2.1.2 K-fold Cross-Validation

K-fold cross-validation is a re-sampling procedure. This method works by dividing the data set

into Kf subsets, then using some sub-sets for training and some sets for validation. The final loss

is determined by averaging the results. The method works if there is a small amount of data and

you would like to use every sample for training and testing or if there is a large amount of data and

it is not feasible to use all the samples. Usually the data set is partitioned into Kf subsets and the

procedure is repeated Kf times. As a result, one generates a validation set DV,k for every iteration

Kf times NV . The data set can be decomposed as follows:

D = {
Kf⋃
j=1

DV,j : DV,i ∪ DV,l = ∅}. (2.13)

The expected loss of the validation data is given in 2.14, where the dependence of the hypothesis

on the training data is made explicit:

LV (h) =
1

Kf

Kf∑
j=1

1

NV,j

∑
n∈DV,j

L(h(xn|DT,j),Γn). (2.14)

In addition, the loss of each fold is given by:
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iterations
of 4-fold

Cross
Valida-

tion

Figure 2.2: 4-fold cross-validation with three folds used for training; the red samples represent
training data and the blue samples represent validation data.

LV,j(h) =
1

NV,j

∑
n∈DV,j

L(h(xn|DT,j),Γn). (2.15)

An example of four-fold cross-validation is shown in Fig. 2.2. Twenty samples are divided

into four groups of five. The red samples represent training data and the blue samples are used for

validation data. Three of the folds are used for training and the other fold is used for testing. The

procedure is repeated four times until each set is used for validation once.

There is an interesting trade-off between how the folds are used and the variance of the estima-

tion. The uncorrelated argument used in Eq. 2.11, is harder to justify when all the folds are used

for testing. This is because the samples DT,j are used in training multiple times. The variance can

be expressed as:

var(LV (h)) =
1

K2
f

Kf∑
i=1

Kf∑
j=1

cov(LV,l(h),LV,j(h)) =
1

K2
f

(

Kf∑
i=1

σ2
i + (

Kf∑
j 6=i

cov(LV,i(h),LV,j(h)))).

(2.16)

We see that the variance of the estimation depends on the correlation of the loss of the folds. As

a result, a larger Kf will have a smaller variance if the samples are uncorrelated, but if the samples

are correlated, a large Kf may not decrease the variance of the results. Therefore, selecting a Kf

is done heuristically. Kf = N or leave-one-out cross-validation is popular as well as Kf = 3,

Kf = 6 and Kf = 10. If it is not feasible to use all the training data, some of the folds may be left

out.
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6
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of
repeated
random
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sampling

Figure 2.3: 6 iterations of repeated random sub-sampling; red represents training data and blue
represents validation data.

2.1.3 Repeated Random Sub-Sampling Validation: Bootstrap

This method randomly splits the data-set into training and validation data; then the results are

averaged. The main advantage of this method is that it is not limited by the number of the folds.

The disadvantage is that some samples may not be used or some samples may be used multiple

times. The main difference between this method and k-fold cross-validation is that condition 2.13

does not apply andDV,j is randomly selected fromD for every iteration. As a result, the number of

iterations is not limited because different permutations from D can be generated. An example of

six iterations is shown in Fig. 2.3, where blue represents validation data and red represents training

data.

2.1.4 Test Data

In many cases, models have free parameters that are not directly determined by the training al-

gorithm; for example, what kernel works better in a support vector machine, how many states in

a HMM or how many mixtures in a mixture model. These values are usually selected using the

validation data, but this is considered an optimistic estimate. As a result, once the optimum value

for the model has been determined using the validation data, the final performance of the algo-

rithm is determined using a separate set of samples called the test data given by DTest. This can be

incorporated into all the above algorithms. A block diagram is shown in Fig. 2.4.

An example of four-fold cross-validation is shown in Fig. 2.5, where two of the folds are used
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D = {(x1,Γ1), .., (xN ,ΓN)}

{(xn,Γn)}n∈IND(DT ){(xn,Γn)}n∈IND(DV ) {(xn,Γn)}n∈IND(DTest)

Figure 2.4: Partitioning data into training, validation and testing data.

4
iterations
of 4-fold

Cross
Valida-

tion

Figure 2.5: 4-fold cross-validation with three folds used for training. The red samples represent
training data, the blue samples represent validation data and the green samples represent test data.

for training in red, one fold is used for validation in blue and the final fold is used for testing in

green. The procedure can be modified for different variations of cross-validation.

2.2 Optimization and Estimation

2.2.1 Primal and Dual

This section is devoted to duality because it is not as intuitive as other optimization techniques and

is widely used in Chapter 5. Duality is a method of constrained optimization that can be used to

find the minimum lower bound of a function. The method transforms the initial problem into a

problem that has an optimum solution [85]. Depending on the form of the problem, this optimum

solution is the same or close to that of the original problem. We consider an optimization problem
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in the standard form:

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

gi(x) = 0, i = 1, . . . , p.

Minimizing the solution with respect to x directly is known as the primal problem. We will

let p∗ denote the primal solution as the minimum value of x in the regions that can satisfy the

constrains. This is known as the feasible region: Do =
⋂m
i {dom(fi)}

⋂{⋂p
i dom(gi)}. Using a

Lagrange multiplier we can convert the constrained problem into an unconstrained problem:

Λ(x, a,ν) =

(
f0(x) +

m∑
i=1

aifi(x) +

p∑
i=1

νihi(x)

)
. (2.17)

where νi > 0.

The Karush Kuhn Tucker (KKT) conditions state that the constrained problem can be solved

via the unconstrained problem.

We define the Lagrange dual function (or just dual function) as the minimum value of the

Lagrangian function:

g(a,ν) = inf
x∈Do

Λ(x, a,ν) = inf
x∈Do

(
f0(x) +

m∑
i=1

aifi(x) +

p∑
i=1

νihi(x)

)
(2.18)

The function Λ(x, a,ν) is affine and concave with respect to a and ν. One important property

of the dual is that it is a lower bound of f0(x). It is trivial to show that:

g(a,ν) = inf
x∈Do

Λ(x, a,ν) ≤ Λ(x, a,ν) ≤ f0(x). (2.19)

Fig. 2.6 shows a toy example with f0(x) in blue and its dual function in red. Note that the dual

function meets the f0(x) around the center of the graph. This will bring us to the next important

concept of duality.
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Figure 2.6: A toy example of f(x) and in blue and g(a) in red.

2.2.2 Lagrange Dual Problem

The next step is to find the maximum value of the dual, getting the smallest lower bound of the

original problem:

d∗ = maximize
a,ν

g(a,ν)

subject to λi > 0, i = 1, . . . ,m.

.
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The values obtained are referred to as the dual optimal a,ν. Weak duality occurs when d∗ < p∗

and strong duality occurs when d∗ = p∗ and usually occurs when f0(x) and fi(x) are convex.

2.2.3 Estimation
Maximum Likelihood Estimation

Maximum likelihood estimation [86] is a frequentest method used to estimate the parameters of

a parametric distribution. The advantages include good convergence properties as the number of

training samples increases. Maximum likelihood estimation can often be simpler than alternate

methods, such as Bayesian techniques, but the method is sensitive to outliers. More formally,

suppose we have X = {x1,x2, ..,xN} independent samples drawn where x ∼ P (x|θ). Where θ

is some set of parameters and P (x|θ) is the parametric distribution, because each sample is drawn

independently the likelihood with respect to θ can be written in the form:

P (X|θ) =
N∏
n=1

P (xn|θ) (2.20)

In many cases it is more convenient to work with the log-likelihood function denoted as:

l̃(θ) =
N∑
n=1

ln(P (xn|θ)) (2.21)

We can then write our solution formally as the argument that θ maximizes the log likelihood

2.21, where the θ̂ denotes an estimate.

θ̂ = argmax
θ
{l̃(θ)} (2.22)

Expected Maximization Algorithm

Expected maximization (EM) [87] algorithm is an iterative approach to solve for models with latent

variables using maximum likelihood estimation. There are several ways the EM algorithm can be

used to find hidden variables used to model complex distributions. We will explore only the case

for mixture models, including Gaussian mixture models and HMM. We define a latent variable z,

for example, in a mixture model:

P (x|θ) =
Kem∑
k=1

p(x|θk, z = k)p(z = k). (2.23)
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Where θ = {θ1, .., θKem} is the set of parameters. It is not difficult to show that the likelihood

function for N samples can be written in vector form:

P (X|θ) =
∑
z

p(X|θ, z)p(z). (2.24)

Where z = [z1, .., zN ] is a vector for every random sample, this means for every xn there is

a variable zn that can take on Kem and the summation is over KN
em elements. We would like to

determine the set of parameters θ without any access to z. Therefore, the EM algorithm is used.

Each iteration of the EM algorithm is composed of two steps: an estimation (E) step and a

maximization (M) step. The E-step calculates the expectation over a set of latent variables z. The

M-step then maximizes these variables. Consider an iterative step of the EM algorithm to optimize

l̃(θ); at some step the l − th value is denoted by l̃(θl) = ln(P (X|θl)). The E-step allows one

to calculate a set of functions bounded above by l̃(θ) for every value of θl. With some clever

manipulation, it can be shown that:

l̃(θ)− l̃(θl) ≥
∑
z

P (z|X, θ)ln
(

p(X|z, θ)P (z|θ))
(P (z|X, θl)P (X|θm)

)
(2.25)

Letting the right of equation 2.25 equal to ∆(θ|θl), where ∆(θ = θl|θl) = 0, one is now able

to create a function bounded above by l̃(θ):

l̃(θ) ≥ l̃(θl) + ∆(θ|θl) = l̃(θ|θl). (2.26)

It can be shown that we can find the value θ that maximized l̃(θ|θl):

θl+1 = argmax
θ
{
∑
z

p(z|X, θl)ln(p(X, z|θ)p(z|θ))}. (2.27)

It is not difficult to see that 2.27 is an expected value with respect to the posterior probability

z.

Instead of optimizing l̃(θ) the algorithm calculates and optimizes l̃(θ|θl). The process as

demonstrated in Fig. 2.7, θ1 is randomly initialized, then the E-step determines l̃(θ|θ1) in black.

Then the value that optimizes l̃(θ|θ1) is used to calculate l̃(θ|θ2) and then l̃(θ|θ2) is maximized to

calculate θ3 until some stopping criteria is met.
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θ
l̃(θ)l̃(θ|θ1)

l̃(θ|θ2)

θ2 = argmax
θ
{l̃(θ|θ1))}

θ3 = argmax
θ
{l̃(θ|θ2))}

Figure 2.7: Two iterations of the EM, the first iteration is in yellow, and the second iteration is in
green.

The function l̃(θ|θl) is difficult to calculate but in some cases can be simplified; if the mixture

is in the form of 2.23 the optimization problem is simplified to:

l̃(θ|θl) =
Kem∑
k=1

N∑
n=1

p(z = k|xn, θl)ln(p(xn, z = k|θ))} (2.28)

Assuming there is a closed-form solution for the maximum for L iterations the complexity is

O(NKemL).

An important approximation of mixture models is the k-means clustering, where p(x|z =

k, θ) = N (x|, µk, εI). It can be shown that as ε −→ 0 we can determine cluster membership by

using the EM algorithm to minimize the following:

C(z, U) =
Km∑
k=1

N∑
n=1

zn,k(xn − µk)
2. (2.29)

Where U = [µ1, ..,µKm ] is the cluster centroid and zn,k is a binary variable. Another form of the

EM algorithm is the Baum Welch algorithm used for HMM [55]. The idea is essentially the same
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but there is a dependence assumption between hidden variables. Using the nomenclature from

[55] we replace the hidden variables z with a set of T variables Q = {q1, .., qT} representing the

hidden state variables. The variable X is replaced with O : {o1, ..,oT} observations. The state

transitional probability coefficients aij = P (qt = sj|qt−1 = si) with an associated transitional

probability matrix A and initial state distribution: πj = P (q1 = sj), where π = [π1, .., πM ] and

the observation distribution P (ot|qt = sj, θ̂j) = bj(ot) with parameters θ̂j determines how likely

a ot is at a particular time step t. We can estimate the probability of a sequence using the hidden

states to formulate a more complex distribution. The likelihood is given by 2.30

P (O,Q|θ) =
T∏
t=1

KHMM∏
(i,j)

(bj(ot))
I[qt=sj ](aij)

I[qt=sj∧qt−1=si](πi)
I[q1=si]. (2.30)

The parameters θ can now be estimated iteratively by maximizing:

l̃(θ, θl−1) =
∑
Q

P (Q|O, θl−1) log(P (O,Q|θ)). (2.31)

Other related clustering methods used in this work, but not theoretically explored, include [88]

and [89]. A closed form solution is not necessary for the EM algorithm but is extremely desirable

as iterative methods are extremely difficult to incorporate into the algorithm [89]. Early work in

this thesis used HMM but free parameter selection was difficult for large data sets. Also research

on TRECVid and MediaEval used support vector machines.

2.3 Regression, Classification and Kernels

Classification and regression are two supervised machine learning problems that are both used in

this thesis. Both classification and regression have many of the same issues such as over-fitting

and bias. As these issues are better illustrated with regression, we will spend a little more time

exploring them.
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2.3.1 Regression

In this section, we will focus on linear regression with Gaussian distributed noise. We will also

review quadratic regularization, which also assumes a Gaussian distribution. The reason is there

exists a closed-form solution. The properties of these methods have been well studied; they are an

artifice for introducing kernels and have comparable performance to other methods.

Linear Basis Function Models (LBFM) are analogous to linear regression, but, instead of the

dependent function h being a linear combination of the explanatory variables x, the dependent

variable is a linear combination of fixed nonlinear functions φ(x). The function φ(x) is a function

of the explanatory variables. The value of the parameters w is to be determined, where (w)0 = w0

is referred to as the bias parameter, not to be confused with statistical ”bias”. The relationship can

be written in the form:

h(x) = wTφ(x) = w0 +
L−1∑
l=1

wlφl(x). (2.32)

Where φ(x) ∈ <L is a vector-valued function with the first element equal to one, symbolically:

(φ(x))0 = 1. The vector w ∈ <L is the set of parameters. The function h(x) is explicitly a

function of x, the variable w is simply a parameter.

Parameter Estimation

In order to model the parameters we assume that a target Γ can be modelled by a deterministic

function h(x) and the difference between the observations and the deterministic function is due to

additive random noise ξ, symbolically:

Γ = wTφ(x) + ξ (2.33)

If we assume that the noise ξ is Gaussian distributed, the PDF can be written in the form:

P (Γ|φ(x),w, σ2) = N (Γ|wTφ(x), σ2) (2.34)

If we denote the set of observations with the vector Γ = [Γ1,Γ2, ...,ΓN−1,ΓN ]T where Γ ∈
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< and the set of observations ΦT = [φ(x1),φ(x2), ...,φ(xN−1),φ(xN)] , the likelihood can be

written in the form:

P (Γ|Φ,w, σ2) =
N∏
n=1

N (Γn|φ(xn),w, σ2) = N (Γ|Φw, σ2I) (2.35)

Taking the log we obtain the log likelihood:

ln(P (Γ|Φ,w, σ2)) =
N∑
n=1

ln(N (Γn|φ(xn),w, σ2))). (2.36)

Maximizing equation 2.36 by taking the gradient, one can obtain a closed form solution for the

parameters:

ŵ =
N∑
n=1

(
N∑
n=1

φ(xm)φ(xm)T )−1φ(xn)Γn (2.37)

It is sometimes convenient to write out equation 2.37 using the design matrix:

ŵ = (ΦTΦ)−1ΦTΓ (2.38)

The error of the model is given by the difference of the residual between the deterministic

function and the training set:

σ̂2 =
1

N

N∑
n=1

(Γn −wTφ(xn))2. (2.39)

Assuming the noise is Gaussian and φ(·) is the correct function, the value should converge

to the variance of noise, but there are many challenges associated with selecting the proper φ(·).

In the next section we will review the methods using a simple polynomial function; it should be

noted that many of the methods here can be used in selecting other parametric and non-parametric

methods and also apply to the classification problems in this thesis.

Selecting a Model

A major problem associated with linear basis functions and many other free parameters is selecting

a good φ(x). This section can be viewed as an allegory for the problems encountered in every
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Figure 2.8: Under-fitting example linear function used to model a tenth order polynomial with
training samples in red.

chapter from determining the number of states in a model to the best kernel. Model selection can

be done empirically by using cross-validation, but as x gets large or φ(·) is complex this becomes

infeasible. For example, consider using a simple linear function to fit a fifth order polynomial

function as shown in Fig. 2.8. It is evident that the line is too constrained to fit all the training

points. It seems that building a more complex model will solve the problem, but this will introduce

the more interesting problem of over-fitting.

The main problem with complex models is over-fitting. Consider Fig. 2.12, a simple function in

green with red samples used for training. The blue function is a tenth order polynomial estimated

using 2.38. It is evident that the new function does not accurately represent the target function.

This type of error is known as over-fitting, when the model is too complex and models the training

data but does not accurately reflect the actual underlying process.
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Figure 2.9: Over-fitting example tenth order polynomial used to model a simple function with
training samples in red.
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Figure 2.10: Top: Polynomial functions of different orders. Bottom: Training error and validation
error of different order models.

The relationship between model complexity and model error is shown in Fig. 2.10. The top

plot shows different order polynomials fitting samples generated by a third order polynomial while

the bottom plot represents residual squared training error and testing error with respect to different

order polynomials. It is evident that the training error of the training data decreases relative to

the order of polynomials. In contrast, the error of the testing data is minimal when the estimated

polynomial has the same order of training data. Even if the model is correct the over-fitting problem

can still occur.

Random noise and lack of training samples also contribute to over-fitting. As well as affecting

the residual error, random noise causes over-fitting. The problem is caused by the model fitting

the noise. Lack of training samples can also affect the results. The more complex the model, the

more training is required to train it. The results of too much noise and lack of data is shown in
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Figure 2.11: Effect of random noise and fewer training samples on estimated data.

Fig. 2.11, with samples represented by the small circles and the associated estimated function with

the same color. The actual target function is in yellow. The samples are generated by a sixth order

polynomial with all the estimated functions having the same order. The target examples in blue

are samples with some noise, the function estimated using these points does well at tracking the

target function. The green points represent points that have relatively more noise; the function does

poorly at tracking the actual function. Finally, the function in red has many fewer training samples.

It is evident that the estimated function tracks the training points, but it is not representative of the

actual function. To overcome these problems, we will use regularization and kernels.

Ridge Regression

Ridge regression [90] is a regularized version of linear regression and was introduced in the early

70’s. It can be used to ensure numerical stability and the parameters are less prone to over-fitting.
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Taking a Bayesian approach, more precisely the MAP estimate, one can introduce a prior distri-

bution over the coefficients w. There are many kinds of distributions, but, for simplicity, we will

consider only a zero-mean Gaussian distribution of the form:

P (w|0, αrI) = N (w|0, αpI) = (
αp
2π

)
L
2 e
−αp
2

wTw. (2.40)

Using Baye’s theorem, the posterior distribution for w is proportional to the product of the

prior distribution and the likelihood function:

P (w|Φ, βI) ∝ P (Γ|Φ,w, βI)P (w|0, αpI), (2.41)

where αp is the precision of the distribution. The zero mean simply implies that we make prior

assumptions that the parameters are close to zero. Using Baye’s theorem, the posterior distribution

for w is proportional to the product of the prior distribution and the likelihood function. We can

maximize equation 2.41 directly but it involves completing the square and several manipulations.

Taking the negative logarithm of 2.41 the cost function becomes:

L(w) =
N∑
n=1

(Γn −wTφ(xn))) + αpw
Tw (2.42)

This form is simpler to deal with and has an intuitive meaning. Fig. 2.12 demonstrates how the

regularization term forces the parameters closer to zero. In blue is the original cost function and in

red is the regularization term that has a minimum at zero. The addition of the regularization term

to the cost function makes the minimum closer to zero, but the error for the training data is larger.

The solution of equation 2.42 is given by:

wMAP = (ΦTΦ + αpI)−1ΦTΓ. (2.43)

To see how regularization helps with numerical stability, let us remember that a matrix with

positive eigenvectors is invertible. The matrix ΦTΦ is positive definite; therefore, its eigenvalues

λi are positive with corresponding eigenvectors ui. It is not difficult to show that any eigenvalues

of ΦTΦ + αpI is λi + αp, because αp is positive, the matrix ΦTΦ + αpI is also invertible. In

addition, if λi is numerically close to zero, 0 adding αp makes the eigenvectors larger. Selecting
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Figure 2.12: Cost function, quadratic regularization and addition of both.
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the appropriate value for αp is determined using cross validation. Ridge regression adds error to

the model but decreases variance, two topics that will be discussed in a later section.

Variable Selection

Regularization of w using the L1 norm has sparse solutions: many of the estimated coefficients of

w are zero. When the goal is to reduce the number of features, we can use [91]. If variables are

correlated we can use Elastic Net [92] that is a combination of both the L1 and L2 regularization.

As in ridge regression, there is a αp parameter referred to as the lambda parameter that is selected

empirically to determine minimum error on the validation set. If (w)l is zero, at the minimum

error, that feature is not necessary for prediction.

Bias-Variance Trade-off

In this section, we introduce Bias-Variance Tradeoff [93], a fundamental concept in model selec-

tion. The method applies to real value functions using the squared loss. We study the method

because the concept of bias and variance applies to many learning algorithms and analytically ex-

plains many of the above observations. Although it is a general method, we examine it with respect

to linear regression for illustrative purposes. Let f(x) be some function we would like to determine

for some hypothesis h(x) to approximate f(x).

Given some data set D, the squared loss is given by:

LD(h) = Ex((h(x|D)− f(x))2). (2.44)

The quantity is over only one data set; therefore, one would like to know how the error behaves over

all possible data sets. Thus, we take the expected value over all possible data sets and decompose

the squared error into bias and variance.

L(h) = ED(LD(h)) = ED{Ex((h(x|D)− f(x))2)} (2.45)

The average hypothesis is an approximation of the expected hypothesis as is given by:

ED((h(x|D))} = h̄(x) ≈ 1

Kf

K∑
k=1

h(xn|Dk) (2.46)
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f(x) +

Figure 2.13: An example of a complex model with high variance and low bias where green dots
represent possible hypotheses and the red dot represents the target function.

It can be shown with several steps that:

L(h) = Ex((h̄(x)− f(x))2) + ED{Ex((h(x|D)− h̄(x))2)} = bias(h) + var(h)

Complex models usually have low bias and high variance; this is because there are more pa-

rameters creating a larger hypothesis space. The bias is related to the amount of error in the model;

the variance represents how much the model changes with different data-sets. As a result, complex

models can learn more complex functions f(x) but have a high variance as a direct response of

this flexibility. Simpler models are much more constrained but in turn have much less variance.

This is demonstrated comparing Fig. 2.13, which represents a complex model and Fig. 2.14, which

represents a simple model. In both figures the green circles represent possible realizations of some

hypothesis h(x|Dk) for different data sets Dk. The actual target function f(x) represents in red

some hypothetical hypothesis space H. Many of the green circles of the more complex model in

Fig. 2.13 come extremely close to f(x) implying low bias, but because there are more parameters

there is a more complex hypothesis space. Furthermore many of the values are farther away. The

simpler model has a high bias because the model is too simple to fit the function f(x), but because

the model is more constrained it has less variance.

If Bias-Variance Trade-off is performed on Γ where Γ = f(x) + ξ we get the following expres-

sion:

LD(h) = Ex((h(x|D)− Γ)2) (2.47)

Decomposing as above, we get:
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f(x) +
Figure 2.14: An example of a simple model with low variance and high bias in some hypothesis
space where the red represents the actual function and the green represents possible hypothesis.

L(h) = Ex((h̄(x)− f(x))2) + ED{Ex((h(x|D)− h̄(x))2)}+ σ2 = bias(h) + var(h) + noise

This final expression explains many of the observations mentioned above. The bias term h̄(x)

represents the best estimate of data and represents the inherent error of the model; this is some-

times referred to as deterministic noise. Once a threshold has been reached no new data can fix

the problem. The variance characterizes the over-fitting problem. This term is dependent on the

data, therefore, high variance can be decreased with more data. The noise term cannot be reduced.

To control variance we will use regularization and in Chapter 3 we will use some ensemble meth-

ods. As we use many kernel methods much of our bias and variance will be controlled by free

parameters in the kernel.

Kernel Ridge Regression

Kernel methods became popular with the inception of support vector machines, and we will use

this section extensively in Chapter 4. Kernel ridge regression [94] has a close form optimum

making it ideal for state based methods in Chapter 4. As demonstrated in the previous section, we

can use a basis function φ(x) to transform a feature space into a non-linear space and still use a

linear algorithm. The main problem is φ(x), which may be difficult or impossible to calculate.

Kernels allow one to express functions without calculating φ(x) directly. First we will define the

error term that is the analog to the noise term ξ = [ξ1, ., ξN ]T that can be defined as:

ξ = (Γ− Φw) (2.48)

One can derive the cost function as a minimization problem in vector form as:

minimize
ξ,w

ξTξ + αpw
Tw

subject to (Γ− Φw) = ξ
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Letting a be the vector of Lagrange multiplier or dual variables, we can use Lagrange multipliers

to convert the constrained problem to an unconstrained problem:

Λ(ξ,w, a) = ξTξ + αpw
Tw + aT (Γ− Φw − ξ). (2.49)

Using the KKT conditions to find the minimum value of 2.49 given by:

w =
1

2αp
ΦTa. (2.50)

This equation states that the parameter vector w is a linear combination of the columns ΦT ; more

specifically it is a linear combination of the training samples φ(xn). Substituting back into the

original optimization problem the dual function becomes:

g(a, ξ) =
1

4αp
aTΦΦTa + ξTξ + aTΓ− aTξ (2.51)

Solving with respect to a, we get ξ = 1
2
a, the importance of the value proportional to noise or

residual. Substituting this value of a into equation 2.52 and defining the gram matrix as K = ΦΦT ,

we get:

g(a) = − 1

4αp
aTKa− 1

4
aTa + aTΓ (2.52)

Minimizing by differentiating with respect to a:

a = 2αp(K + αpI)−1Γ (2.53)

Inserting 2.50 and 2.58 into 2.32:

h(x) =wTφ(x) =
1

2αp
(ΦTa)Tφ(x) =

1

2αp
(ΦT (2αp(K + αpI)−1Γ))Tφ(x)

= (K + αpI)−1Γ)TΦφ(x) = (K + αpI)−1Γ)Tk(x).

Because y(x)T = y(x), one can write the final form of the new expression as:

h(x) = k(x)T ((K + αpI)−1Γ) (2.54)
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The main advantage of kernels is φ(x) does not have to be calculated directly, avoiding the ex-

plicit introduction of the feature vector, allowing one to use feature spaces of high, even infinite,

dimensionality. The next section demonstrates why in a more general setting.

2.3.2 Kernels
Representer Theorem

As several different kernel methods are used in this thesis, we will demonstrate why they work so

well by describing Representor’s Theorem [95], a general assertion that states that the hypothesis in

the form h(x) = wTφ(x), can be constructed with training samples in such a way that minimizes:

minw

{
1

N

N∑
n=1

L(wTφ(xn),Γn) + αrw
Tw

}
. (2.55)

To better understand the problem, consider the decomposition of w = ws + w⊥. Where

ws ∈ S , such that S ∈ span {φ(x1),φ(x2), ...,φ(xN−1),φ(xN)} , i.e be the component of w

that is spanned by the training examples and w⊥ be perpendicular to ws. This is demonstrated in

Fig. 2.15 where w ∈ <3 and ws ∈ <2 spanned by the training examples in red.

Examining equation 2.58 it is simple to show that if we use the spanning criteria the loss

function does not change:

L(wTφ(xn),Γn) = L(wT
s φ(xn),Γn) (2.56)

This is because wT
⊥φ(xn) = 0, because ‖w‖2 ≥ ‖ws‖2, then the equation can be solved in the

form of kernels:

ĥ(x) =
N∑
n=1

anκ(xn,x) (2.57)

Where a is the solution to the following minimization problem:

minw

 1

N

N∑
n=1

L(
N∑
m=1

anκ(xn,xm),Γn) + αr

N∑
(n,m)=1

ananκ(xn,xm)

 . (2.58)
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Figure 2.15: w ∈ <3 and ws ∈ <2 spanned by the training examples in red.
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φ(x) = [x2
L, .., x

2
1,
√

2xLxL−1, ..,
√

2xLx1,
√

2xL−1xL−2, ..,
√

2xL−1x1, ..,
√

2x2x1,
√

2cxL, ..,
√

2cx1, c]
T

(2.60)

There is a large amount of work on kernel methods; this work will select kernels by minimizing

generalization error or in the case of clustering some predefined criteria.

Kernels also allow one to work in spaces of much higher dimensions, the polynomial basis

functions grow exponentially, yet the kernel for a polynomial basis function of order d is given by:

κ(x, z) = φ(x)Tφ(z) = (xTz + c)d (2.59)

The feature vector for d = 2 is given in equation 2.60, which is extremely large. It is not difficult

to verify that working with the kernel involves O(L) computation, but to calculate φ(x) explicitly

rewires O(Ld).

Another kernel that will be used is the Radial basis function kernel (RBF kernel). The RBF

kernel is excellent for dealing with data with nonlinear properties, but is sensitive to outliers. The

RBF kernel is given by:

κ(x,x′) = exp

(
−||x− x′||2

2σ2
RBF

)
(2.61)

and can be viewed as a dot product between two non-countable vectors:

exp

(
−1

2
||x− x′||2

)
=
∞∑
j=0

(x>x′)j

j!
exp

(
−1

2
||x||2

)
exp

(
−1

2
||x′||2

)
. (2.62)

In order to determine if φ(·) is a valid kernel K must be positive semi-definite for a finite

sequence [96].

Sparse Kernel Machines

The Vapnik Chervonenkis Dimension (VC-Dimension) is an important concept with respect to

classification and illustrates important concepts in machine learning. It can be shown that the

difference between the test error and training error is given by:

P

(
Test Error ≤ Training Error +

√
VC(log(2N/VC) + 1)− log(η/4)

N

)
= 1− η (2.63)
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Where N is the number of samples and VC is the VC dimension, which is usually proportional to

the number of parameters, but not always.

It is evident that as VC gets larger the training error diverges from the testing error and the

exact opposite happens as N gets larger. In practice this is not a tight bound, but shows that the

learning process is possible and illustrates why training and testing data must be kept separate. It

turns out that the loss function for support vector machines has a small VC dimension relative to

other methods [83]. There are several other motivations for the Support Vector Machine (SVM),

the first with respect to kernel methods is that they only require a subset for training. Unlike

the perception learning algorithm, the decision boundary is not dependent on the order in which

the data is presented or the initialization of the parameters. Also kernels allow one to deal with

non-finite dimensional vector spaces. In the next section we will give a brief overview of missing

factors such as a non-separable case, the multi-class problem, soft margin and the relationship to

computational learning theory.

2.3.3 Sparse Kernel Machines

Consider the two-class classification problem using linear models shown in equation 2.64. Where

φ(x) is the fixed feature space, transform, with parameters w and bias parameter b, the input

training dataX = {x1, ..,xN} and target values Γ1, ..,ΓN such that Γn ∈ {−1, 1}. Some unknown

data point will be classified according to h(x).

h(x) = wTφ(x) + b (2.64)

We will assume for now that the data set is linearly separable such that there exists a w and b

where if Γn = +1 then h(xn) > 0 and when Γn = −1 then h(xn) < 0 for all training data points

(for non-linear separable cases, we will use soft margin SVM). It is not difficult to show, given the

linearly separable assumption, that Γnh(xn) > 0 for all values of n. The decision boundary is a

hyperplane. Thus, the perpendicular distance is the only distance of consequence. Therefore, at

some point φ(xn) the perpendicular distance from the hyperplane is given by:

Γny(xn)

‖w‖ =
Γn(wTφ(xn) + b)

‖w‖ (2.65)
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Figure 2.16: An example of using a basis function to map data that is not linearly separable in x
to linearly separable dimension. The separating hyper plane is indicated in gray.

The term ‖w‖ is used to convert the parameter vector into a unit vector. Using the kernel allows one

to map the points into a higher dimensional space, where the data is more likely linearly separable.

An example of some data points that are not separable in space x ∈ X but separable in the space

φ(x) ∈ Φ is shown in Fig. 2.16.

2.3.4 Margin

An important concept in determining the decision boundaries in SVM is the margin ς . The margin

is the smallest distance between the decision boundary and all the data points. The expression for

the data point that gives the margin is provided in equation 2.66 with an example of the closest

data point shown in Fig. 2.17. The training goal of SVM is to solve the parameters w and b that
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maximize the margin. Thus the maximum margin solution is found by solving:

ς = min
n
{wTφ(xn) + b}. (2.66)
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Support Vectors

Figure 2.17: Data points with the smallest distance between the decision boundary and any of the
samples generated in Matlab.

The training goal of SVM is to solve the parameters w and b that maximize the margin. Thus

the maximum margin solution is found by solving:

max
w,b
{ 1

‖w‖min
n
{wTφ(xn) + b}} (2.67)

Although the margin is determined by the training data, more precisely the support vectors, it
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can be shown that the margin can be maximized by minimizing the following:

max (wTw) (2.68)

subject to the the following constraints:

Γn(wTφ(xn) + b) ≥ 1. (2.69)

This is known as the canonical representation of the decision hyperplane. In the case of data points

for which the equality holds, the constraints are said to be active, whereas for the remainder they are

said to be inactive. By definition, there will always be at least one active constraint, because there

will always be a closest point, and once the margin has been maximized there will be at least two

active constraints. Instead of minimizing ‖w‖−1, we maximize the reciprocal with the constraints

of 2.70. Using the method of Lagrange multipliers or KKT to incorporate the constraints, the cost

function becomes:

L(w, b, a) =
1

2
‖w‖2 +

N∑
n=1

an{wTφ(xn) + b− 1} (2.70)

Where a = [a1, ..., aN ]T is the vector of Lagrange multipliers. In order for the gradient of

the cost function to be a constrained local minimum, it must point in the opposite direction of

the feasible region, therefore an ≥ 0. Taking the gradient of L(w, b, a) and solving for w and b

and then writing the expression in terms of a we arrive at the dual representation of the maximum

margin problem in which we maximize:

L̃(a) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamΓnΓmκ(xn,xm) (2.71)

Where:

N∑
n=1

anΓn = 0 (2.72)

Maximizing equation 2.71; using coordinate ascent is difficult due to the constraints imposed in

equation 2.72, therefore, John Platt’s sequential minimal optimization algorithm is used [97] .
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2.3.5 Kernel K-means and Spectral Clustering

It turns out that k-means can also be expressed with kernels, but, instead of using an iterative

algorithm a solution is approximated by relaxing some of the constraints [98]. We follow the

tutorial in [99] as it is more compact. To clean up some of the notation but keep it consistent with

the previous sections, we define Φ̂ = ΦT . The k-means cost function can be expressed in matrix

form:

C = tr((Φ̂− M̄)T (Φ̂− M̄))), (2.73)

where M̄ = Φ̂ZΠZT where Π is a diagonal matrix with diagonal elements equal to the number of

clusters such that the k−th diagonal element such that:(Π)k,k = (Nk)
−1. The matrix Z ∈ FNxKc2 is

an assignment matrix, with elements (Z)n,k = zn,k. Each column of M̄ corresponds to a centroid,

so if the n sample belongs to the k− th centroid the n− th column µk. With several manipulations

it can be shown that 2.73 can be minimized by maximizing:

p∗ = maximize
Π,Z

Π
1
2ZTKZΠ

1
2

subject to Z is binary clustering matrix.

.

This problem like the SVM problem is difficult to solve, so the constraints are relaxed by

introducing the matrix H = ZΠ
1
2 . It is evident that for a given row of H all the columns are zero

except for the column that pertains to having membership. This is demonstrated in Fig. 2.18 where

the second sample belongs to the second cluster, i.e., z22 = 1. We see that in the second row of

H all the elements are zeros. It can be shown that HTH = I; as a result, the problem can now be

relaxed. The new problem is given by:

p̂∗ = maximize
H

HTKH

subject to HTH = I.

.
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Decomposing K = UΛUT it can be shown that setting H equal to the Kc Eigenvector with

the largest values maximizes the expression i.e [h1, ..,hKc] = [u1, ..,uKc] similar to principle

component analysis. One can now perform clustering on H to get cluster membership.

z11 z12 . . . z1Kc

z21 z22 . . . z2Kc

...
... . . . ...

zN1 zN2 . . . zNKc




Z : N rows Kc columns

N1 0; . . . 0

0 N2 . . . 0

...
... . . . ...

0 0 . . . NKc





Π : Kc rows Kc columns

−1
2

h11 h12 . . . h1Kc

0 (N2)1/2 . . . 0

...
... . . . ...

hN1 hN2 . . . hNKc





0
× 0

1
× (N

2
)
1/

2

0×
0

+

+ . . .+

H = Z × Π
1
2 : n rows q columns

Figure 2.18: Illustration of the relaxation procedure for spectral clustering, the second row of the
assignment matrix has all zero elements expect of the 2nd column corresponding to the samples

cluster membership. A similar relationship but the nonzero element is proportional to the number
of elements in a cluster.
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Figure 2.19: Decision-level fusion: An example of Decision-level fusion.

2.4 Multimodal Fusion

In this section, we study two aspects of how to create features and decisions. A central aspect of

multimedia processing is the coherent integration of media from different sources and modalities.

In addition to the curse of dimensionality, processing of multimedia data requires integration of

different modalities. To overcome this problem multimodal fusion methods have been developed.

They can be categorized into three types: feature level or early fusion, decision level or late fusion

and hybrid multimodal fusion. This thesis will focus on decision-level fusion.

2.4.1 Decision-Level Fusion

Decision-level fusion combines multiple decisions to arrive at a final decision. The strategy has

many advantages and decisions are less susceptible to different representations of data. Decision-

level fusion allows one to use the most suitable methods for analyzing data; for example, SVM

vs hidden Markov models. The drawbacks are loss of decision-level correlation among modalities

and the learning process for each level becomes tedious. An example of decision-level fusion is

shown in Fig. 2.19; the red nodes represent features, the blue nodes represent outputs of different

functions and the function h combines them.
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Chapter 3

Decision Fusion Methods for Cognitive
Classification of Children’s Video Content

This chapter develops several methods to classify children’s videos based on their cognitive con-

tent. The first section introduces positive developmental video classification for children, a method

which automatically classifies videos according to an expertly assigned predefined positive or neg-

ative cognitive impact category. The second section develops an automatic age recommendation

system for children’s video content, such that it recommends the appropriate age for a video using

many features including rate of speech. The contributions of this chapter include novel research on

cognitive classification of children’s video content and a set of features that improve results over

state-of-the-art methods when applied to the cognitive classification task.

3.1 Positive Developmental Video Classification For Children

In the realm of child psychology, the impact of media on children is different relative to its impact

on adults. In addition to being affected by semantic content, children are also affected by visual

and audio sensory bombardment, thereby producing a series of orienting responses that interfere

with cognition. Conversely, age and experience allow adults to pay greater attention to informative

features, such as dialogue and narrative content [25].

In this section, we define the concept of Positive Developmental Video Classification (PDVC)

for children to determine whether a video can be classified according to an expertly assigned pre-

defined positive or negative cognitive impact category. We then use a clustering algorithm to
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determine the membership of each frame.

Content with negative effects include: violence, numerous scene changes (referred to as fast-

paced in the literature) [18], and sensory bombardment. The effects of negative content include:

attention problems, poor social behavior, poor verbal skills, and academic problems [100, 22, 18,

101]. Content that is good for children includes: individuals interacting, socializing, learning,

and problem solving [22, 102, 103]. Despite the importance of PDVC, there has been, to our

knowledge, no research undertaken in this area with respect to the multimedia and computer vision

literature.

Video genre classification appears to be the most obvious solution as education content, such

as documentaries, is good for children [103]. But there is lots of content that is good for children

that is not classified as educational [100, 22, 18, 101]. In addition there is no one genre that is bad

for children, also some content that is bad for children is labeled as educational.

In this work, we develop features based on the observations of the cited psychological literature.

Social interaction is an important factor in video developmental effect. This section develops novel

cognitive features to determine the amount of social interaction by using novel algorithms based

on face detection. These features are more robust than counting the number of faces as used in

[1, 47].

Fast-paced programming is bad for children [18]. Research by [18] finds that content with lots

of shot boundaries has a negative impact on children’s inhibitory control. The use of location of

shots is not a conducive global classification feature. As a result, we have developed the shot effect

feature.

Audio plays an important role in determining how content is perceived, and audio features have

been used in video-content analysis [36, 1, 47, 2, 66]. We extend the work by introducing features

used in music information retrieval to capture characteristics of both negative and positive content.

We also include affective features due to their link to cognition [2].

Model validation techniques such as K-Fold Cross Validation are commonly used in evaluating

the performance of video genre classification (VGC) algorithms [1, 47]. These methods randomly

partition the data into training and validation sets. Partitioning the data randomly may lead to the
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same series in the training and validation sets. This may cause correct classification due to over-

fitting because the method may detect similarities between series. To address this concern, we

introduce a model validation technique that segments the data with respect to series.

To our knowledge, the contributions of this section include the first work in PDVC for chil-

dren, the development of novel features, novel decision fusion methods, and the first application

of many audio content analysis features to video content analysis. In addition, we introduce a

novel database of videos that have been classified as good or bad based on the literature; both

TRECVID nor MediaEval has such a database. The method is tested with a model validation

technique that prevents classification due to similarities between series. The classification uses

majority voting and linear kernel SVM. For smaller feature subsets, the RBF kernel has been used,

as free parameter selection was feasible and sensitivity to outliers could be determined. It was

found to outperform state-of-the-art video genre classification systems and methods, such as those

regarding arousal time curve developed by [2].

3.1.1 Problem Formulation: PDVC

To determine if a video has a positive or negative impact on development, we pose the problem

as a two-class problem. We classify each component of the feature vector for every frame of the

video as having a positive or negative impact on development. The decision of each classifier is

considered a vote. The class of an entire sequence is the class with the most votes. More formally,

let j be the label of each class set ωj , such that ω0 is the set of negative videos and ω1 is the set of

positive videos. Let xi,t represent the i− th feature and the t− th frame. Let hi(xi,t) represent the

decision of the i − th classifier where if hi(xi,t) = j then xi,t ∈ ωj . Based on the majority voting

[104, 1, 47] we formulate the decision rule for an entire sequence such that:

j = argmax
j
{

T∑
t=1

∑
i∈Sf

I[hi(xi,t) = j]} (3.1)

Sf is the set of features. When comparing methods Sf will be a subset of features. The I[·] is the

indicator function, which is one, when the condition in the argument is true. Otherwise, it equals

zero. We also experiment with the ways in which different sampling rates change the accuracy.
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Frame t− 1 Frame t Frame t+ 1

FE FE FE

xt−1 xt xt+1

h(xt−1) h(xt) h(xt+1)

zt−1 zt zt+1

Figure 3.1: Block diagram of the cluster process. Each frame of video goes through feature
extraction units (FE). Then the results of the decision units are concatenated into one vector

h(xt+1) and finally the values are passed into the categorical clustering algorithm.

3.1.2 Categorical Clustering: Clustering

To determine the membership of the t − th frame, we use a categorical clustering algorithm. Let

h(xt) be a vector containing the decision units of the t− th frame.

h(xt) = [h1(x1,t), .., h|Sf |(x|Sf |,t)]
T , (3.2)

where |.| indicates the carnality of the set.

Let Ck be a categorical cluster centroid, the k − th cluster centroid with KCL clusters. Let zt

denote the cluster membership of frame t and be obtained using the method in [88], symbolically:

zt = argmin
k

(d(Ck,h(xt))) , (3.3)

where d(·) is the Hamming distance [88]. When KCL = 2, the cluster membership of each

frame corresponds to a positive or negative impact category. The process is summarized in Fig. 3.1.

The results of the decision units are concatenated into a vector and clustering is used.
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Low-level feature extraction

Decision Units

Categorical Clustering

Majority Vote: Classifi-
cation of Entire sequence

Local Segmentation

Figure 3.2: The final block diagram combining sequence classification and clustering
segmentation.

3.1.3 Block Diagram

The final block diagram is shown in Fig. 3.2. The top block represents the feature extraction

block. These features are then used by the decision units. To classify the entire sequence, majority

voting of all the decision units is used as depicted by the green block on the left side. Then the

outputs of the decision units are placed in a categorical clustering algorithm. The different cluster

membership correspond to events that have a positive or negative impact on cognition.

3.1.4 Feature Space:PDVC
Novel Cognitive Features

The novel features developed here use decision-level fusion. The algorithm uses the number of pix-

els classified as belonging to a face to measure the amount of storytelling, conversation, instruction,

and group discussions that are all apparent in content that is good for children [22, 102, 103].

The Face Area Ratio

To capture close-ups, we have developed the face area ratio feature. This is the total number of

pixels that a face contain, over the total number of pixels that comprise a video frame. Let St be

the set of pixels that comprise a t − th frame and let Fn,t be the set of pixels that comprise the

n− th face such that Fi,t ⊆ St. The face area ratio is given by:

FAR =
1

|St|

Nf∑
n

|Fn,t|. (3.4)
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The term | · | indicates the cardinality of a set and Nf are the number of faces. The actual face is

recognized using the well-known Viola-Jones Face Detection algorithm (VJFD) [105].

Multiple Face Central Moment

To capture the position of the faces in the frame, we define the multiple face central moment as:

x̄t =
1

N

N∑
n=1

x̌n,t +
x̌w,n,t

2
(3.5)

ȳt =
1

N

N∑
n=1

y̌n,t +
y̌h,n,t

2
, (3.6)

where x̄t and ȳt are central moments of the faces, (x̌n,t, y̌n,t) are the bottom left points of the

bounding boxes containing the n−th detected face at frame t and (x̌w,n,t, y̌h,n,t) are the dimensions

of the box. The term calculates the mean centre location of all the faces. A face centered in the

screen is usually indicative of some kind of verbal interaction with the viewer. Motion features are

also included as they have an impact on cognition.

Shot Effect

Content deemed as bad for children incorporates lots of shots. However, shot boundaries are not

good for classification using majority voting, because, even with content that includes a relatively

large amount of shot boundaries, very few of the overall frames make up shot boundaries. To solve

this problem, we introduce the novel structural feature of shot effect. The method models the effect

of a shot that seems to decrease with time [18], as an individual with a decaying function. Multiple

shots are modeled with a convolution operation with a train of Dirac delta function located at each

shot boundary. If the shots are too close together, the function does not have time to decay and the

video has a large shot effect. The shot effect of the t− th frame is given by:

Ft =
Ms∑
τ=0

e−λ̌(t−Ts(τ))u(t− Ts(τ)) (3.7)

Were u(t − Ts(τ)) is the well-known step function, Ts(τ) is the frame index of the τ − th shot,

Ms is the number of shots and λ is the parameter of the exponential function and is determined

empirically to maximize classification accuracy.
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Spectral Features

Audio plays a crucial role in human perception and determining how content is processed. Audio

content that is bad for children has sharp tones to capture a child’s attention. This type of audio is

associated with a peaky spectrum. To measure tonality of the signal, Spectral Flux [106] is used.

Content that is good for children is much more relaxing, which is associated with a flat spectrum.

As such, features that measure the flatness of the spectrum are used including: Spectral Crest,

Spectral Decrease, Spectral Slope and Spectral Flatness [106, 75]. Dialogue is good for children,

therefore the Spectral Rolloff is used to measure the amount of voiced speech [78]. Additionally,

we include Spectral Moments such as Spectral Spread, Spectral Skewness, and Spectral Kurtosis

[75]. Tonality, harmony, and melody play an important role in characterizing the audio content.

The relationship that exists between octave intervals is not always captured by audio models such

as Mel Frequency Cepstral Coefficients (MFCC). Therefore, to better describe the audio, we use

Pitch Chroma (PC) [107]. The PC is a 12-dimensional Chroma feature that encodes the short-

time energy distribution of the underlying music signals over the twelve Chroma bands. To our

knowledge this is the first time that such an audio model has been applied to video content analysis.

Due to motions link to cognition we include it in under conative features for experimental results.

Table 3.1: Classical features organized by modality with reference. If there is more than one
dimension, then (·) indicates dimensionality of feature if larger than one.

Modality Feature type
Affective Sound Energy [66], Light Key [66] ,Rhythm [2], Colour Variance [66] and Arousal [2]
Motion Motion vector energy using motion estimation [36], Average amount of pixels differencing [36], histogram difference
Color Max color for each channel (3) [36],color histogram moments (9) [36], HSV Histogram (24) [1]

Texture Wavelet texture variance (12) [1],gray level co-occurrence: Contrast, Correlation, Energy, Homogeneity [1]
Audio spectral energy [36], spectral centroid [36] ,Pitch [36],Mel Frequency Cepstral Coefficients (8)

Cognitive Face detection, number of faces[1]

Classical Features

In addition to the classical video classification features [2, 66, 36, 1, 36], we include features from

affective analysis due to their link to cognition [2]. All the additional features used are summarized
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in Table 3.1, given the link between pace and cognition motion features were tested as cognitive

features. As many of the videos were of lower resolution, we use only one block and, as some of

the content was black and white the Autocorrelogram was not used.

Table 3.2: Summary of databases: Series, Category, Videos, Genre and Reference with a total of
107 ”good” videos and 160 ”bad”.

Series Category Videos Reference Genre
Batman negative 19 [22, 57, 58] Animation

Baby Einstein(BE) negative 53 [101] Live Action
Superman (SM) negative 22 [22, 57, 58] Animation
Teletubbies (TT) negative 11 [22, 108] Live Action

Brainy Baby (BB) negative 20 [101] Live Action
Saturday Morning TV (SMTV) negative 35 [22, 109] Live Action

Mister Roger’s Neighborhood (MRNH) positive 23 [22, 102, 103] Live Action
Dora the Explorer (DE) positive 14 [22, 102] Animation

Blues Clues (BC) positive 13 [22, 102] Live Action
Sesame Street (SS) positive 24 [22, 102, 103] Live Action

Get Along Gang (GG) positive 21 [103] Animation
Caillou positive 12 [18] Animation

Originally video genre classification features were used for classification as educational content

was found to be good for children [22, 102, 103]. As the correlation between fast pace and content

was suggested more motion features were incorporated [18]. Finally as the impact of arousal was

suggested by [18] affective features were used.

3.1.5 Deterministic Variable Size K-fold Cross Validation

To ensure classification is based on developmental effect and not commonality with the same

series, we have developed a different model validation technique. This will be referred to as: De-

terministic Variable Size K-Fold Cross Validation (DVSK-Cross Validation). To train the system,

the data is partitioned into two sub-sets. The first sub-set consists of all the episodes of one series

and is used for validation data. The remaining sub-sets are used as training data and consist of the
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remaining series. More formally let xt ∈ <d be the feature vector extracted from the t− th frame

such that (xt)i,t = xi,t. Let Xl = [x1,x2, ..,xT ] be the feature matrix of the l − th episode of a

series. Let χm represent the feature matrix of m− th series, containing Le episodes. One series is

comprised of all the episode matrices Xl concatenated together such that:

χm = [X1||X2||, ..., ||XL−1||XL]. (3.8)

For a given validation set γv containing the series v, the training set is given by:

γtrain =
⋃
m 6=v

χm. (3.9)

This procedure is repeated for every series for a total of twelve times. This methodology has been

used to ensure that classification is not based on similarities within the series. Once that data is

partitioned, a linear kernel SVM is trained for each element in the feature space and majority voting

is used to classify the video. The method can be summarized as follows:

1. concatenate the Le episode matrix Xl into a series matrix χm

2. leave the v − th series out of your training set γtrain

3. use γv as your validation data

4. repeat until every series has been used in your validation set

An instantiation of DVSK-Cross Validation is shown in Fig. 3.3. The top row contains 20 circles

representing different video sequences colored according to each series or fold. The subsequent

lines show the training set in red and validation set in blue. For example, the second row shows

the validation set in blue corresponding to the first series in the top row colored yellow, and the

training set in red corresponds to the series not in the training set. The process is repeated for every

fold until each series is used once.
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Figure 3.3: An instantiation of DVSK-Cross Validation (K=5) the top row contains 20 circles
representing different video sequences colored according to each series or fold, the remaining

rows show each iteration with blue corresponding to test data and red corresponding to training
data.

3.1.6 Database Summary: PDVC

This chapter classifies the videos as having a positive or negative impact. The videos have been ob-

tained from YouTube and are of varying length even within the same series. The videos showcase

different eras, languages, resolutions and aspect ratios. A total of 107 positive impact videos and

160 negative impact videos are used. The video series, as well as expertly assigned predefined pos-

itive or negative cognitive impact category, (simply referred to as positive or negative), the number

of videos from each series, and the references are all summarized in the first four columns in Table

3.2.

3.1.7 Experimental Procedure: PDVC

Feature extraction has been performed separately; after the features have been extracted they are

stored and used for classification. Given the good results of decision fusion and the desire to

study categorical clustering feature fusion was not used. Training a decision unit for each feature

component and then taking a majority vote. In many cases, individual decision units have good

performance and when majority vote is performed on each feature for each frame, the results im-

prove as predicted [110]. It is observed that generally linear kernels perform better as expected

for such a large amount of training data. RBF kernels work well for some features but are sen-

sitive to outliers. This was determined in the initial experiments using affective features, where

performance was sensitive to the RBF scaling factor. As a result, linear kernels were used instead.

67



Feature Set: 97.38%

Affective: 91.7% Content Based

Novel and Classic

Cognitive
New: 96.25%
Old:83.51%

Spectral
New: 84.97%
Old: 78.42%

Structural
New: 25 %

Old: 0%

Texture and Color: 61%

Figure 3.4: Tree summarizing experimental results.

Table 3.3: Confusion matrix: All Features in bold compared to method used in [1], [2]

Class Predicted Bad Predicted Good
Actual Bad (155,92,29) (5,68,131)

Actual Good (2,18,54) (105,89,53)

3.1.8 Experimental Results: PDVC

Fig. 3.4 provides a high level summary of the performance accuracy of the novel features and the

features listed in Table. 3.1, organized by modality. The top nodes demonstrate the results of

using all the features, with 97.38% accuracy. It is evident that the modalities that are the children

of the node Novel and Classic had better performance than the texture and color features. The

better performance suggests a correlation between the cognitive content and the modalities, hence

novel features were developed in these modalities. By combining the novel content based features

with the classic content based features, we see an improvement as shown in Fig. 3.4.

As stated above, the algorithm using all the features has an accuracy of 97.38% compared to

[1], with an overall accuracy of 67.79%. Using the ATC developed in [2] as a feature, results in

31.00% accuracy. The confusion matrix is shown in Table 3.8, each column of the confusion

matrix represents the instances in a predicted class, while each row represents the instances in

an actual class (the method developed here is in bold) followed by the method in [1] and [2],

respectively.
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It is enlightening to examine the performance over series, as shown in Table 3.4. The accuracy

of the novel method is in column six and is compared to the method used in [1] and displayed

in column seven. Violent TV series such as Batman and Superman have 100% accuracy. Non-

violent videos such as Baby Einstein and Brainy Baby are more difficult to classify as bad, but

they still have over 90% accuracy. Saturday morning TV has the worst results of all the bad series,

stemming from the larger variety in content. In the good series category, Sesame Street has the

worst accuracy. One possible explanation is that this series has instances of fast-paced scenes used

to generate excitement that may be confused with violence. Comparing the results used in [1], it

is evident that many of the misclassification results using this method involve animated videos,

which is not surprising given that the method is designed for video genre classification that has

many color and texture features that had an accuracy of 61%.

Table 3.4: Summary of database and classification accuracy of the novel method compared to the
state of the art in VGC [1] and ATC used in [2]. The columns represents: video series, category,
accuracy of novel method, VGC and ATC , respectively where A corresponds to animation and L

corresponds to live action.

Series Category Novel Accuracy VGC Accuracy ATC Accuracy
Batman (A) negative 100% 100% 10.5%

Baby Einstein (L) negative 98.83% 96.11% 0%
Superman (A) negative 100% 100% 13.63%
Teletubbies (L) negative 100% 100% 91.67%
Brainy Baby (L) negative 95% 0% 68.18%

Saturday Morning TV (A/L) negative 91.43% 0% 0%

Mister Roger’s Neighborhood (L) positive 100% 100% 66.67%
Dora the Explorer (A) positive 100% 78.75% 100%

Blues Clues (L) positive 100% 100% 0%
Sesame Street (L) positive 95.83% 100% 70.83%

Get Along Gang (A) positive 100% 0% 0%
Caillou (A) positive 100% 0% 58.33%

The precision and recall of the three methods is shown in Table 3.5, where a true positive is a

video with a positive impact. We see that the system has vastly superior precision and much better

recall than [1] and [2].
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Table 3.5: Precision and Recall.

Bad Series Precision Recall
Novel Method 0.95 0.98

Method [1] 0.56 0.83
Method [2] 0.28 0.49

Table 3.6 demonstrates the accuracy of the novel features organized by modality using Equa-

tion 3.11; the set of features that comprise the modality are used for Sf . We see that the novel

cognitive features, spectral features, and audio model perform extremely well. This suggests that

audio plays an important role in how content impacts children. It was found there was little music

in the content that was good for children, this may be correlation not causation. The location and

size of the face also exhibits good accuracy because content that is good for children has a large

number of characters interacting, which is often accompanied by close-ups of the face. The above

features all have accuracy of over 80%, individually outperforming the method in [1] that has an

accuracy of 67.79% and [2] that has an accuracy of 31.00%. The novel structural feature of shot

effect has improved accuracy over location of shots but has an accuracy of only 25%. This sug-

gests a strong correlation between the novel features and the expertly assigned predefined impact

categories. This is not surprising because the features have been developed and selected based on

the observation of the experts who assigned the predefined impact categories.

It is evident that the new features outperform the old features of the same modality. Further

examining the first row of Table 3.6, we compare the number of faces to our novel features based

on face detection. The novel method has 12.75% better classification accuracy, and it should

be noted that in this data set there are typically no crowds of people that may be confused with

storytelling. The second row shows the novel spectral features compared to all the audio features in

Table 4.1. The new features have over 6.5% better performance. The third row compares the Pitch

Chroma to the MFCC [36]. This feature has almost 20% better classification. Finally the Shot

Effect is compared to shot location and has 25% better performance, but other similar affective

features have better performance, which will be explored in other sections.
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Table 3.6: Average accuracy of novel features compared to state-of-the-art features organized by
modality.

Modality Video Content Analysis Novel Features
Cognitive 83.51% 96.25%
Spectral 78.42% 84.97%

Structural 0% 25%

Analysis of Novel Features

The novel features appear less susceptible to the genre, examining Table 3.4 we see most of

the misclassification are with respect to animation. This is most likely that the texture and color

features detected attributes associated with animation, none of the novel features used color or

texture. Examining Table 3.4, we see that the ATC misclassified relatively fast paced shows

that are good for children like Sesame Street and Blues Clues, the novel features did not seem as

susceptible to motion that may occur in some content that is good for children as did the ATC. One

important observation is the excellent performance of affective features that will be expanded on

in the next section.

Affective Features

Affective features also have good performance, with the RBF kernels having slightly better perfor-

mance than linear kernels. The method using all the arousal features has 245 correct classifications

out of 267 with a 91.7% accuracy. Comparing arousal features to valence features, we see that va-

lence has an accuracy of 85.50% which is smaller than arousal. Valence does better in many cases

but has 0% accuracy when classifying Dora the Explorer, Blues Clues and Teletubbies. Therefore,

this is difficult to determine and more study is needed. Using the ATC developed in [2] results in

31% accuracy. This poor performance result is most likely due to the comparability criteria. The

normalization and scaling requirements imposed likely make it difficult when comparing videos,

and this is because all videos will have values within the same range.
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Table 3.7: Classification accuracy of feature vs series. Each column represents a series while
every row represents a feature, where Sound Energy (SE) and Pixel Difference (PD).

Class Batman BE SM TT BB SMTV
Motion 86.21% 100% 100% 75% 72.23% 90.91%

PD 26.31% 64.15% 36.36% 58.33% 31.81% 45.45%
Rhythm 100% 100% 100% 91.66% 100% 72.72%

SE 42.11% 0% 95.45% 91.67% 100% 96.97%

Class MRNH DE BC SS GAG Caillou
Motion 30% 69.23% 100% 100% 100% 83.33%

PD 63.33% 30.77% 35.71% 41.66% 20.00% 83.33%
Rhythm 100% 100% 21.43% 100% 20% 100%

SE 73.33% 100% 92.86% 100% 66.67% 91.67%

The results for each individual feature with respect to each series is shown in Table 3.7. The

rhythm component performs extremely well in most cases and performs perfectly on the series

Caillou, performing better than Shot Effect. These results agree with the results in [18], where it

is suggested that the low rate of scene changes may play a role in why this series has a positive

impact on cognition. A similar result is apparent for Baby Einstein. The authors of [101] suggest

that the extensive number of scene changes may have a negative impact on cognition. This result

is verified by the ability of the rhythm component to obtain perfect classification on this partic-

ular series. An interesting observation is that the motion component performs much better than

pixel-wise differences. This is different than the results produced in automatic video classification

literature which finds little difference [36]. One plausible explanation is that the motion compo-

nent is less susceptible to changes in illumination. These changes in illumination may increase the

amount of motion but have little impact on arousal. Sound energy usually performs well except

for Baby Einstein, which has zero percent classification accuracy. This is not surprising because

Baby Einstein is designed for younger children. This observation suggests that the target age of

the content may play a role in how the arousal features impact cognition. The confusion matrix is

shown in Table 3.8. Each column of the confusion matrix represents the instances in a predicted

class, while each row represents the instances in an actual class (the method developed here is in

bold). The second index represents the method used in [1], the third represents the method used in
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Table 3.8: Confusion matrix: Arousal Features in bold compared to method used in [1] ,[2]and
valence features.

Class Predicted Negative Predicted Positive
Actual Negative (150,92,29,149) (10,68,131,11)
Actual Positive (12,18,54,27) (95,89,53,80)

[2], and the fourth is uses valence features[66, 65].

Fig. 3.5 and Fig. 3.6 demonstrate how the visual arousal features are different for the predefined

positive or negative cognitive impact categories. Fig. 3.5 shows the values of pixel differencing

motion and rhythm components of two series plotted for successive frames in time. In red are the

features generated by the Batman series, a video classified as having a negative impact on cogni-

tion, and in blue are the features generated by Mister Rogers’ Neighbourhood, a series classified

as having a positive impact. It is evident that the magnitude of the arousal features in most of the

frames are much larger for Batman.

Fig. 3.6 shows the actual frames from the Batman series (top) and from the Mister Rogers’

Neighbourhood series (bottom) that generate the arousal features demonstrated in Fig. 3.5. The

frames with Batman contain sudden changes: The first scene begins with Batman and Robin in

an aggressive stance. The next scene is Superman fighting a robot, followed by a scene of an

explosion. Each of these frames contains rapid changes and flashes, thereby producing arousal

manifested in the arousal features (in red) in Fig. 3.5. Compare these to the frames from Mister

Rogers’ Neighbourhood, in which Mr. Rogers is feeding and observing fish in a fish tank. These

are calm scenes and one can see that they produce very different arousal features (in blue) in

Fig. 3.5.

Fig. 3.5 shows the lighting key of a video from each series plotted over frames. The negative

videos are in red and the positive videos are in blue, and the labels of each series are near the

maximum values. It is evident that negative videos have a much larger magnitude. Examining

the labels of the negative video, the magnitude of the lighting key does not seem to be related

to the genre. For example, Batman has one of the lowest values while Superman has one of the

highest. Examining Fig. 3.8 displays the colour variance, and it is observed that the positive video’s

magnitude on average is much larger than the negative videos. This is not dependent on genre, as
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Figure 3.5: Pixel differencing, motion component and rhythm component of two series are plotted
for successive frames. In red is the Batman series with negative cognitive impacts and in blue is

the Mr. Rogers’ Neighborhood series with a positive impact category.

for example the cartoon Caillou has one of the largest magnitudes for color variance while Dora

the Explorer has one of the lowest values for colour variance.

Finely adjusting the intervals between each frame used or the sampling rate did not have a

major impact on accuracy. For example down-sampling to 1 frame per second did not change the

accuracy if all the features where used.

3.2 Results: Clustering

Using categorical clustering on the decision units appears to create segmented periods that have

a strong relationship with the expert recommendations. The method seems to work better with

videos in the negative impact category as many videos in the positive impact category strictly

contain only positive content. Many of the videos in the negative impact category however have a
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Figure 3.6: Highly arousing scene from the Batman series (above) and a calming scene from the
Mr. Roger’s Neighborhood series (below) sampled from the frames used to generate arousal

features in Fig. 3.5.

mixture of violent, fast-paced scenes and scary scenes intermingled with scenes that are considered

positive, such as scenes showing people interacting, and some educational content.

Examining Fig. 3.9, we see six clips from a Baby Einstein episode. The top of Fig. 3.9 corre-

sponds to videos in cluster one and the bottom corresponds to videos in cluster two. Segments in

cluster one consist of clips teaching children to read by individuals reading out text on the screen.

These clusters contain the visual presentation and narration that enhance attention [25, 26], and

also contain reading that was found to be beneficial [102]. Interestingly these frames contain text

but no text detection was used.

The bottom of Fig. 3.9 contains clips from cluster two. All have fast transitions and several clips

contain individuals playing loud music or puppets accompanied by strange noises. This content
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Figure 3.7: Lighting key of videos from each series bad videos in red and blue videos in blue,
negative videos only ladled for clarity.

fits the description of stimulating content that has been found to be bad for children [22, 23, 24].

Examining Fig. 3.11, we see the similarities between different clusters from two different se-

ries. Examining the top of Fig. 3.11, we see that the clip from Batman consists of a large violent

explosion and the clip from Brainy Baby consists of a shot transition between a child’s toy and

an animated spinning shape. Both are violent and attention grabbing scenes that have a negative

impact [22, 57, 18, 58]. Although the violent and attention grabbing scenes were segmented, the

algorithm is not explicitly trained to classify or segment these factors. Examining the bottom of

Fig. 3.11 we see text similar to that in Fig. 3.9, as previously stated no text detection was included.

The method does not seem to detect the violent scene but rather the stimulating content as-

sociated with the violent scene. This is demonstrated in Fig. 3.11. Consider Fig. 3.11 A). We

see Superman lifting a large boulder, a fast-paced scene corresponding to cluster two as shown in

Fig. 3.11 D). As Superman throws the boulder, the camera tracks the boulder. As shown in Fig. 3.11

B), there is little visual or audio input and the cluster membership changes as shown in Fig. 3.11
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D). In Fig. 3.11 C), we see Superman engaged in a fight accompanied by lots of stimulation and as

a result the cluster membership changes back, as shown in Fig. 3.11 D).

3.2.1 Conclusion: PDVC

This section developed the concept of positive developmental video classification. The work devel-

oped several features and a classification system that can be used to classify the content’s impact

on the cognitive, social and academic development of children. This work tests the model with a

novel model validation procedure to ensure that classification is not based on similarities among

series. Novel cognitive and structural features have been developed. The work finds that these fea-

tures outperform the current features being used in video genre classification in the same modality.

Additionally, music information retrieval features have been incorporated, such as spectral features

and Pitch Chroma to capture audio characteristics associated with content that has a negative and

positive impact. We also include affective features due to their link to cognition [2]. We investigate
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 Cluster 1

 Cluster 2

Figure 3.9: Baby Einstein Top: Three images extracted from cluster one contain people reading
text. Baby Enstein Bottom: Three images extracted for cluster, two showing individuals playing

music and one showing a puppet accompanied by strange noises.

arousal features independently, explore the accuracy of the decision units over different modalities

and explore how sampling rate impacts accuracy. Our results show that the problem of PDVC is

different from the video genre classification task. We conclude that when the system is combined

with classical features, the novel system has almost 30% better accuracy than the state-of-the-art

system designed for the video genre classification task and 65% better performance than the ATC

developed in [2].

3.3 Automatic Age-Recommendation System for Children’s Video
Content

This section develops a new method to determine age-appropriate content for children between the

ages of three to six years old using global features. To our knowledge, there has been no previous

research done on determining age specific content for children. TRECVID does not include age

category determination for videos.

The novel features developed here use fundamental frequency, subharmonic-to-harmonic ratio

(SHR) [111], and optimized zero crossing rate (OZCR). These are then used to count the number
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Cluster 1

Batman                     Brain Baby
 Cluster 2

Batman                     Brain Baby

Figure 3.10: Top: Two images extracted from Batman and Brainy Baby that have some
correspondence to the negative impact category. Bottom: Two images extracted from Batman and

Brainy Baby that have some correspondence to the positive impact category.

of utterances of voiced speech. This information is then used as a means to determine language

complexity. The novel algorithm is accurate and does not require training data or complex proba-

bilistic inference and avoids the complexity of speech recognition. These cognitive capacity audio

features help quantify the cognitive capacity of the intended target audience. The video test set is

taken from an online commercial database for children. Finally, SVM is used as a classifier. Our

experiments show that these new features can vastly improve upon classic video features. In addi-

tion, the novel audio features perform better when compared to classical features. Furthermore, the

new feature extraction methods are computationally less expensive because we count the number

of syllables and words using computationally inexpensive signal processing techniques without

going through complex speech recognition.

3.3.1 Criteria to Classify a Video Into Different Age Categories

The age criterion has been determined a multitude of ways. For professionally produced videos age

recommendation information has been included. For non-professionally produced videos, experts

assign an age category using many factors including what kind of activity is being performed in
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Figure 3.11: Top: Three images extracted from two different clusters from Batman the Animated
Series, comprising of the 13-th Batman episode in the set consisting of Superman in a fight. Top:

A) Superman lifts rock B) Superman throws rock in air C). Bottom: D) Contains cluster
membership of each frame.

the video and who else has viewed the video. As the video database is geared for children, all the

content is appropriate for children of all ages.

3.3.2 Novel Features: Automatic Age Recommendation
Novel Audio Features

Cognitive Capacity Audio Features

As children get older, the ability to process language undergoes a rapid change, and this is espe-

cially evident from the ages of three to six. In this section, we describe an algorithm to extract

cognition-related audio features based on the number of words and syllables. Let y(n) be the ob-

served signal, let the speech portion be given by s(n), where s(n) = 0 if the sample is not speech.

Let ξ be the zero mean stationary noise term. Let the signal model be given by:

y(n) = s(n) + ξ(n). (3.10)

The signal is normalized and the energy of the audio samples of the first frame of the video

sequence are used to determine a noise floor. The audio segment is divided into intervals of thirty
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seconds. The audio segment is then passed into the pitch determination module to determine the

fundamental frequency. The signal is then partitioned into sub-signals with period N correspond-

ing to a period of 40 milliseconds. Next we show that a threshold can be used to improve detection.

Let the samples of the ith sub-signals be denoted by (3.11):

Yi = {y(iN + 1), y((iN + 2), ..., y(iN +N)}. (3.11)

Similarly, we can define Xi and ξ as sub-signals with speech and noise having the same relation-

ship as in (3.11).

The model makes three assumptions: 1) the zero mean noise should be independent of the

speech segment. Therefore, cov(Xj, ξ) = 0 where j is an arbitrary integer. 2) There is some

correlation between speech segments cov(Xi∈Z ,Xj∈Z) = Ci, where Ci is usually a positive

constant and Z is the index set of speech. 3) Because our model assumes that x(n) = 0 then

cov(Xj∈Z ,Xi) = 0. Using assumption 1, we can show that:

cov(Yi,Yi+1) = cov(Xi,Xi+1) + σ2, (3.12)

where σ2 is the noise variance and the covariance is calculated with the samples in Yi. A threshold

value can be determined using assumption 2 and 3:

σ2 < cov(Yi∈Z ,Yi+1∈Z) (3.13)

The signal energy can also be used as a noise floor. Additionally, based on models of speech, if

OZCR of either segment is higher than 3000Hz and SHR is between 0.2 and 0.4 [111], the frame

is classified as voiced, i.e., a syllable. The block diagram is shown in Fig. 3.12 where i and i + 1

represent two adjacent sub-signals.

If two syllables are more than 0.4 seconds apart, it is considered the start of a new word. Several

additional filtering steps are also incorporated. The average number of syllables (ANS) and the

average number of words (ANW ) are then used as features. These measures are then used to

calculate the novel measure of language complexity (LC). It is assumed that complex language has

more syllables per word. Therefore the LC is defined as:

LC =
Number of Words

Number of Syllables
. (3.14)
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Figure 3.12: Block diagram of syllable decision algorithm.

As the value of LC gets smaller, the words contain more syllables and the language becomes

more complex. As LC approaches one and language is considered simple, one-syllable words are

used.

Average Number of Audio Spikes

It is observed that the audio of content for younger children does not have any sudden increases

of amplitude. This is most likely because sudden spikes of audio would startle younger children.

As a result, an algorithm to count the average number of audio spikes (ANAS) is developed. The

algorithm is based on envelope detection, and initially, the short time energy (STE) is calculated.

The bandwidth of the window is determined heuristically, then the short time energy is divided into

K frames of size of 200 milliseconds. The total energy within a frame is then calculated, denoted

by:

∆STE(k) =

(k+1)M∑
m=k(M)

∞∑
l=0

(y(l)w(m− l))2, (3.15)

where m denotes the sample number of the short time energy, k denotes the frame index, M is

the frame size and w is the filter. By the central limit theorem, ∆STE(k) is normally distributed:
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∆STE(k) ∼ N (µs, ε
2
s), where µs is the mean and ε is the standard deviation. If ∆STE is below

the 2.3 percentile, the short time energy for that frame index is set to zero.

if ∆STE(k) < µs + 2εs then ∆STE(k) = 0 (3.16)

Finally, a peak-detection algorithm is used on the short time frame energy to count the peaks,

and this number corresponds to the number of audio spikes.

Novel Motion Features

Average Color Histogram

Average color histogram differences (ACHD) is commonly used in shot boundary detection but

is not usually used as a feature. In the present system, ACHD is used to quantify the amount of

motion because it is not as susceptible to change in illumination as camera motion.

Video-Content Analysis Features

As well as the novel features, the new system uses some of the standard video content analysis

features from the references referred to above. These features include a global RGB histogram

(GRGBH) calculated with thirty-two bins. The first four color moments are used. The average

is taken to determine the global color moments (GCM). Structural features are obtained using

automatic shot boundary detection. These features include the average number of shots (ANS) and

average shot length (ASL). Finally average pixel-wise differencing (APWD) is also used.

3.3.3 Classification

A total of 135 test videos are used from a commercial video streaming service geared for children.

During testing, the audio-visual features are extracted from the input videos. Classification is

performed using SVM. The features are extracted and the mean of the data is subtracted from

all the data points and scaled with the standard deviation. The kernel functions used include:

linear, quadratic, polynomial of order three and Gaussian radial basis function (RBF) kernels with

a default scaling factor of one. In order to account for the multiple classes, the pairwise methods

of selection are used.
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Table 3.9: Actual vs Counted for number of words algorithm.

Video Actual Counted Actual vs Counted
1 152 158 96.2%
2 145 143 101.1%
3 135 187 72.20%
4 155 187 82.90%
5 93 115 80.70%
6 110 116 94.80%

Table 3.10: Actual vs counted for number of syllables algorithm .

Video Actual Counted Percentage
1 172 191 90.0%
2 203 203 100%
3 190 225 84.4%
4 211 198 107.0%
5 154 117 132.0%
6 130 134 97.0%

3.3.4 Experimental Results: Automatic Age Recommendation
Cognitive Capacity Audio Features

This section verifies the results of the novel features. The results of the approach for determining

the number of words and syllables are displayed in Tables 3.9 and 3.10, respectively. The algo-

rithm is tested from several TV shows in the test set. The actual results are set out in the column

labelled Actual and the results from the algorithm are set out in the column labelled Counted. The

average classification accuracy for number of words is 77.0% and for number of syllables is 97.0%.

Audio-Spike Detection Results

The results of the algorithm for detecting audio spikes are discussed and shown here. Fig. 3.13

(A) shows the time series obtained from an eight second recording of a conversation interrupted by

two loud noises at the two and five second mark. Fig. 3.13 (B) shows the short-time frame energy.

It is evident that the short-time energy is slowly varying compared to the time variations of the raw

signal. This makes the peaks corresponding to the two loud noises much more apparent and easy

84



to find using a peak detection algorithm.
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Figure 3.13: (A) A time series of a conversation interrupted by two loud noises (B)the short time
frame energy of the time series above.

Table 3.11 shows the results of the audio spike detection algorithm. The second row shows

the number of audio spikes and the third row shows the counted number of audio spikes. The

algorithm’s overall accuracy is just under 85%.

Age Classification Results

The video data is classified by several testers with knowledge in child psychology for appropri-

ate age ranges between three and six years old. Experiments are performed on individual features,

individual classes of features, overall classification accuracy, and different kernels. For each exper-

iment k-fold cross-validation is performed. Cross-validation consists of randomly partitioning the

set into two equal-size sub-samples. One of the sub-samples is retained as the validation data for

testing the model, and the remaining sub-samples are used as training data. The cross-validation
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Table 3.11: Actual vs counted for number of Audio Spike Detection Algorithm.

Video Actual Counted Percentage
1 1 1 100%
2 4 3 75.0%
3 4 5 80.0%
4 4 5 80.0%
5 8 7 87.5%

Table 3.12: Comparison results accuracy of different kernels.

Kernel Linear Quadratic Polynomial RBF
Accuracy Of Old Features 79.0% 85.0% 85.0% 82.0%
Accuracy Of New Features 79.0% 87.0% 85.0% 79.0%

Combination of All Features 93.0% 92.0% 92.0% 85.0%

process is then repeated with each of the sub-samples used exactly once as the validation data.

Once the classification is performed, the results are then averaged to produce a single estimation.

Average correct classification rates over these 60 experiments are presented.

First, we compare the results of the novel features compared to the classical features and total

features as shown in Table 3.12, where the rows correspond to different kernels. It is evident with

the exception of linear kernels and RBF that the novel features outperform the classic features. The

system works better using all the features with a maximum increased accuracy of 13.0% for the

same classifier and an average improvement over all classifiers of 75.6%.

The linear kernel performs better as the dimension of the data increases, and this is because

as the dimension of the data increases, the data becomes linearly separable. Furthermore as the

dimension of the data increases, other kernels become susceptible to over-fitting.

The confusion matrix shown in Table. 3.13 is used to further explore our results. Each column

of the matrix represents the instances in a predicted class, while each row represents the instances

in an actual class. We only display the confusion matrix for the experiment using all the features

and only with the linear kernel because it performs best. The most difficult age group to classify

correctly is found to be age three, and this age group is most often confused with age four. Further

investigation reveals that many of the misclassified samples are difficult even for our experts to
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Table 3.13: Confusion matrix for linear kernel.

Age 3 4 5 6
3 6.6 3.3 0 2.1
4 3.3 38.7 0 0
5 0 0 52.2 1.8
6 0 0 0 27

Table 3.14: Accuracy of different class of features and different kernels.

Kernel Linear Quadratic Polynomial RBF
Motion 63.0% 73.0% 72.0% 76.2%
Color 75.0% 84.0% 81.0% 79.0%

Structural 40.0% 43.0% 44.0% 42.0%
Audio 74.0% 85.0% 85.0% 80.0%

accurately assess.

Classification accuracies for audio, motion, color, and structural features are shown in Table

3.14, where each row corresponds to a different group of features. We see that the novel audio

features have superior performance with an accuracy of 85.0%. The color features also perform

well with a maximum accuracy of 84.0%. This is most likely due to the color feature vector being

considerably larger than any other feature. Motion features also perform well with a maximum

accuracy of 76.0%.

Subjective Evaluation

Using subjective evaluation we see a marked difference in the videos. For example consider

Fig. 3.14, a screen shot of a video for children three years of age. The video consists of an in-

dividual reading a book about the adventures of a bird. Compare this to the video for six year olds,

with a screen shot shown in Fig. 3.14, wherein the video gives children complex instructions on

how to make ”Magic Mud”.
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Figure 3.14: Example of content for children three years of age: simply an individual reading a
book on YouTube.

88



Figure 3.15: Example of content for children six years of age: Instructions how to make ”Magic
Mud” om YouTube.
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Conclusions: Automatic Age Recommendation

In this section, we have presented an automatic method of determining the appropriate age cate-

gory for a video database built for children. The novel system exploits a combination of motion,

color, and structural features as well as several novel audio features that gauge the cognitive abil-

ities of the intended audience. This is the first time, to our knowledge, that this type of video

classification has been performed. The audio features include the average number of syllables,

words and sound jumps. New efficient signal processing algorithms are developed to extract these

new audio features related to the language structure and complexity, and these novel audio features

perform better than the standard video features. This approach is extensively tested on 93 hours of

video. Each video is labelled with a recommended age of three to six years. The method is tested

using K-fold cross-validation and SVM is used as the classifier. The experiments are performed

on different sets of features. It is observed that the system has an accuracy of 92.2% using all

features, and the novel features perform better when tested against classic features and improved

performance up to 13.0%.
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Chapter 4

Dynamic Time-Alignment K-Means Kernel
Clustering For Time Sequence Clustering

In the previous chapter, we demonstrate that features that correspond to heightened levels of arousal

are extremely accurate in predicting whether content has a negative or positive impact on cognition.

Furthermore it has been established that certain ranges of valence can be used to predict the impact

on cognition. These results have been predicted in the physiological literature [10, 11, 12, 13, 14,

15, 16]. As a result, this chapter develops a method to rank time series by using a combination of

kernel clustering [112, 113] and dynamic time alignment kernel clustering [114]. The contributions

to our knowledge include a novel method to rank time series using clustering, experiments in

ranking and clustering time series with respect to valence and arousal, and a novel transformation

that incorporates prior knowledge of the valence arousal plane into the cluster assignments.

4.1 Introduction

The main problem is how to rank valence and arousal with variable granularity. This is accom-

plished using clustering, but this still leaves the question of how to effectively rank sequences.

Therefore, this section presents a novel method of clustering sequences by embedding a non-linear

time alignment kernel function into kernel k-means. The time-alignment operation embeds the

sequential pattern in the kernel function, allowing kernel k-means to be used to classify entire

sequences. The method is evaluated with over 9800 videos and with features from the LIRIS an-

notated creative commons emotional database. A Matlab implementation of the novel algorithm is
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available at [115]. Using a greedy kernel cluster algorithm with a novel algorithm to generate toy

data for testing, our results show that the method works well in classifying sequences based on their

affective content and performs better than other unsupervised methods for clustering time series.

The linking transformation is also developed and acts as a method to incorporate prior knowledge

into the cluster assignment. This dissertation also evaluates the ability of several methods to map

low-level features onto the valence-arousal plane from the LIRIS database. Clustering on the va-

lence and arousal axis is performed independently, the results are verified with the rankings from

the LIRIS database. When both valence and arousal are used, the results are verified heuristi-

cally. The regression results also show that simple ridge regression has comparable performance

to state-of-the-art regression methods.

A time series of features is extracted from a video sequence and mapped to the valence arousal

plane. The main objective of the method is to perform a novel clustering method on a set of movies,

then cluster the entire movie sequence. Each cluster represents movies with similar emotional

content.

As stated in Chapter 1, affective tagging for video describes the emotional content of a video

and has many applications, [66, 64, 116]. The most direct representation of an emotion is to use

discrete labels or emotional prototypes. Examples include fear, anxiety, and joy. This method

has many problems: labels are not universal, labels can be misinterpreted and emotions are a

continuous phenomena rather than discrete [64]. Finally, fixed classes can only be changed by

combining or splitting certain classes to reduce or increase the emotional granularity [69, 70].

Another method is to use the 2-D emotion space to describe the emotional content of a video

sequence [2]. This space contains the valence dimension and the arousal dimension. Valence

describes the type of emotion: negative to positive. Arousal describes the intensity: inactive to

active. Any point on this space can be used to describe different emotions. It has been shown that

low-level video features can be mapped onto this space using regression [66]. An example of the

2-D emotion space with some discrete labels is shown in Fig. 4.1 and with different time curves

generated in Fig. 4.2 by a video representing the emotions elicited. The parabolic shape is due to

the relative low number or even totally absence of stimuli that would cause a sudden change in an
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Figure 4.1: 2-D emotion space; the diagonal axis represents valence, and the horizontal axis
represents arousal. In addition, there are several discrete labels corresponding to different

emotional prototypes.

emotional state, for instance, high arousal and neutral valence, or high valence accompanied by

low arousal [2].

Different individuals have different curves but most of the variation is in the lower region [66].

This is demonstrated in Fig. 4.3, as in both videos the lower region is linear for one individual and

more quadratic for the other individual. In the upper region both curves appear similar, but there is

usually some variation between curves from different individuals.

The curve also faces the granularity problem. The continuum has to be quantized again to

produce possible system responses [69]. Consider the ranking problem of classifying content

into low, medium, or high arousal and valence categories [66]. If the user decides to change the

granularity of the system, new labels must be obtained and the system must be retrained. Therefore

several methods have used clustering as a means of segmenting the data [69, 117]. The main

problem with these methods is they do not handle time series data. The issue with time series is
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Figure 4.2: 2-D emotion space: The diagonal axis representing valence, the horizontal axis
representing arousal, and three time curves generated by three video sequences.
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Figure 4.3: Two-dimensional valence arousal time series generated by two people for two
different video clips, clip one is in blue, clip two is in red. There is more variation in the lower

region, but the curves become similar in the higher region.
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that it may not be localized in one area. An example of three time series is shown in Fig. 4.2, and it

is not difficult to see that one can rank the time series into a low, medium, and high valence level,

but low and high ranking are also feasible. The feasible rankings are shown in Fig. 4.4, wherein the

first level shows the 2-D emotion space with three time series, the top shows the time series ranked

into low and high arousal valence levels, and, finally, above we see the ranking of the different

time series into low, medium, and high valence levels.

The problem with using a direct feature vector representation of time series is the curse of

dimensionality, i.e., large time series require lots of training data. In addition, in many applica-

tions such as this, time series are of different lengths. Therefore, this section develops dynamic

time-alignment k-means kernel clustering (DTAKKC). The method uses dynamic time-alignment

kernels [114] that approximate the kernel operations of a series of different lengths with a dynamic

time warping kernel, then spectral kernel k-means [112, 113] is used to cluster the data. Kernels

are ideal for clustering because they are more robust to high dimensional data. The method out-

performs dynamic time warping, k-means (DTK) [118], as well as wavelet histogram methods

(WHM) [119].

Another issue that has not been tackled with respect to time series is incorporating prior knowl-

edge into the cluster. Consider the problem of violence annotations of affective classes [120], or

scary scene detection [121]; we would like to keep content with those elements in the same clus-

ters. This is demonstrated in Fig. 4.5; the shaded region corresponds to emotions that should be

segmented in the same cluster. Series that contain samples in that region are in red and should be

assigned in the same cluster even though they may appear to have more in common with series in

the second cluster coloured in green. In this example there are only two clusters but the problem

could be extended to more clusters.

The main advantage of this kernel method includes:

• better generalization performance on experimental data

• better heuristic performance

• one can design new kernels to improve performance
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Figure 4.5: Representation of VA plane with region that contains emotions that should be
segmented in the same clusters. Series that contain samples in that region are in red and assigned

in the same cluster. The remaining clusters are in green.

• finding non-linear patterns at a reasonable computational cost (RBF kernel)

• limited to no free parameters

• transformations that use prior knowledge

The method is tested with features and ratings from LIRIS-annotated creative commons emo-

tional database (LIRIS database) for affective video-content analysis [122, 123, 124]. In addition

to developing the novel algorithm, we also test several regression methods on mapping the features

that have not been tested on the LIRIS database. These methods include the most popular methods

used in affective analysis [64, 66, 65, 34], including relevance vector machines (RVM) [125], ridge

regression (RR) [90], and neural networks. Finally, we develop the linking transform as a means

of incorporating prior knowledge into the cluster assignment.
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4.2 Problem Formulation

4.2.1 Regression Problem

Due to the different types of regression methods, we formulate the problem using empirical risk

minimization [83]. Let U = {v, a} where a indicates arousal and v indicates valence, let u ∈ U be

the variable indicating the type of features and ratings used. Let xnc,u be the feature vector from

a training set consisting of Nc videos clips, with annotation Γnc,u ∈ < be the type of rating. The

goal for each rating is to determine a hypothesis that minimizes the risk:

ĥ∗u = argmin
hu∈H

{ 1

Nc

Nc∑
nc=0

L(hu(xnc,u),Γnc,u)}, (4.1)

where ĥu is the hypothesis, L(·) is some loss function and H is the set of all hypotheses. Once

the optimum hu(·) has been discovered we can map different features into the valence and arousal

space (AS):

ŷnc = [ha(xnc,a), hv(xnc,v)]
>. (4.2)

4.2.2 Algorithm

Let Ŷi = [ŷ1i, ..., ŷNii] be the predicted points of the AS for video sequence i of length Ni and

Ŷj = [ŷ1j, ..., ŷNj ] be the predicted points of the AS for video j of length Nj . The Dynamic

Time-Alignment Kernel is given by:

K(Ŷi, Ŷj) = maxψ,θ{
1

Kψ,θ

K∑
k=0

q(k)κ(ŷψ(k)j, ŷθ(k)i)}, (4.3)

where ψ(k) and θ(k) are the time warping functions, Kψ,θ is the normalizing factor, K is the

length of the sequence, q(k) is the path weighting coefficient and κ(·) is the kernel. Once the

kernels have been calculated, kernel clustering can be used to determine the class membership

using the following equation:

max
{Cm}

M∑
m=1

wn
∑

Ŷi,Ŷj∈Cm

K(Ŷi, Ŷj). (4.4)
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The term wm is the clustering normalizing constant, and Cm is the cluster membership. We

use the notation Cm,n to represent the assigned label of each N video sequence samples. Both

the relaxed and greedy methods of kernel clustering are used [126]. It is also useful to define the

kernel matrix K of the training set, with elements (K)i,j = K(Ŷi, Ŷj).

4.2.3 Novel Linking Transformation

To incorporate prior knowledge or modify the clusters assignment without recalculating the dy-

namic time-alignment kernel, we introduce a transformation that will be referred to as a linking

transformation. These transformations are dependent on the linking matrix comprised of linking

functions. Consider l − th linking matrix, for the i − th series the linking function is given by

fl(Ŷi) ∈ <. The linking matrix is a diagonal matrix given by:

Fl = diag([fl(Ŷ1), . . . , fl(ŶN)]) (4.5)

The linking transformation can be applied to the kernel matrix as follows:

K̂L =
L∏
l=1

FlKFl (4.6)

Each element of the transformed kernel matrix is given by:

(K̂L)i,j =
L∏
l=1

fl(Ŷi)K(Ŷi, Ŷj)fl(Ŷj) (4.7)

If the series Ŷi and Ŷj exhibit some similarity not captured by the kernel, the values of the

linking functions fl(Ŷi) and fl(Ŷj) can be determined such that |(K̂l)i,j| > |(K)i,j| making these

series more likely to appear in the same cluster. The admissibility conditions of a kernel that have

been met by the Dynamic Time Alignment Kernel have been shown in [114]. In the Appendix we

show that if K satisfies Mercer’s theorem [96] then for all l if the rank(Fl) = N then K̂L also

satisfies Mercer’s theorem. In the next subsection, we will introduce the linking functions used,

we will drop the l to simplify notation.
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4.2.4 Linking Functions Used

As certain regions on the VA plane have importance, such as scary scenes, we introduce the region

segmentation linking function. The linking function multiplies the kernel with a constant C1 if any

of the samples of the sequence are in a specified region Reg. If the sequence has no values in

the specified area, the sequence is multiplied by the reciprocal. The region segmentation linking

function is given by:

f1(Ŷi) = C1I((Ŷi)k ∈ Reg) +
1

C1

I((Ŷi)k 6∈ Reg) (4.8)

Where the (·)k indicates any sample from that series. It is not difficult to show that if Ŷi ∈ Reg

and Ŷi ∈ Reg then the kernel linking transformation (K̂)i,j = C1
2K(Ŷi, Ŷj). If Ŷi 6∈ Reg and

Ŷi 6∈ Reg then (K̂)i,j = C1
−2K(Ŷi, Ŷj). Finally if one of the samples is in the Ŷi 6∈ Reg. For

the remainder of the cases, it is not difficult to show that (K̂)i,j = C1K(Ŷi, Ŷj). In this thesis the

value was selected as follows:

C1 = maxi,j((K)i,j) (4.9)

4.2.5 Block Diagram

The final block diagram is illustrated in Fig. 4.6. The right side of the figure shows the training

and pre-processing steps. Mapping to the valence arousal plane is performed using a supervised

regression algorithm denoted with the green block. The linking function can be determined using

a training algorithm but for this work the values are determined using the pre-specified criteria of

any point in the series passing through regions of the valence arousal plane that contain violence

or a scary scene. The linking functions are then converted to matrix form, denoted by the second

green block on the right side. The left side of Fig. 4.6 shows the actual algorithm, the purple

block on the top of the figure represents feature extraction. The feature vectors are mapped to

the valence arousal plane denoted by the next block. The block below shows the dynamic time

alignment kernel calculated between two time series. Finally if necessary the linking transform is

applied before clustering.
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Figure 4.6: Block diagram of process: right side pertains to training and testing, left side
represents process for sequence mapping and clustering

4.3 Procedure

4.3.1 Database

The method is tested with the LIRIS database for affective video-content analysis [122, 123, 124].

The database contains 160 films and short films. Different genres are used and segmented into

9800 video clips and one feature vector is extracted from each clip. The total time of all 160 films

is 73 hours, 41 minutes and 74 seconds. The segmentation of each clip has been done using robust

cut and fade in/out detection [127].

The best temporal resolution is still open, and as the work is constrained most experts agree

that a few seconds is ideal [128, 129, 130, 131]. Additionally, [131] has shown that global ratings

of perceived emotion for movies lasting a few minutes are not simple averages over time, but rather

are more influenced by highly arousing events. As a result each clip is between 8 and 12 seconds.

The 23 arousal features xa are available in the database and have been used to predict arousal.

The valence features xv are from both 2013 and 2015 sets. The valence and arousal values are

for yi,a and yi,v respectively. After the values for valence and arousal, the samples ŷm have been

concatenated into Ŷi for clustering. The list of features used is given in Table. 4.1.
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Table 4.1: List of features used in LIRIS-ACCEDE Database, * indicates features found in the
database with no reference.

Arousal Visual Features
Global activity (GA), Number of Scene Cuts Per Frame (NSPF), Median lightness (ML), Lighting, Colorfulness[132]

Length of scene cuts (LSC),Harmonization energy (HE) [133]

Arousal Audio Features
Standard deviation of the i-th wavelet coefficients(DWi))[34],Audio flatness envelop (AFE), Slope of power spectrum (SPS)

Valence Visual Features
Colorfulness [132],Hue count (HC) [134],Disparity of most salient points (DMSP),Depth of field(DF) ,Compositional balance (CB) [135]

Valence Audio Features
Zero-crossing rate (ZCR),Entropy complexity (EC) ,Asymmetry envelop (AE),Flatness Envelope (FE)

Other Features
Min Energy (ME), Frequency Centroid (FC), Maximum salient pixels Count (MSC)

edge distribution area or Spatial Edge Distribution Area (SEDA),Alfa [136]
Standard deviation of local maxima (SDLM)[122] ,Asymmetry,Spectral Slope(SS),

White Frames (WF), Color Strength*(CS), Color Raw Energy *(CRE)

4.3.2 Model Validation Regression

The data set has been partitioned randomly using cross-validation and experiments performed 30

times and averaged. The values of the free parameters are determined using the validation set and

the results on the test set (TS), with the training set denoted by TR. For the clustering, all the data

has been used. The squared correlation coefficient R2 has been calculated on the training data, and

the predictive leave-out squared correlation coefficientQ2 [123] is also used and both are given by:

R2
u = 1−

∑
n∈TR(Γn,u − hu(xi,u))2∑

n∈TR(Γn,u − µ̂u)
(4.10)

Q2
u = 1−

∑
n∈TS(Γn,u − hu(xn,u))2∑

n∈TS(Γn,u − µ̂u)
, (4.11)

Where TS is the test set and µ̂u is the empirical mean of the training data, excluding the testing

and validation samples. We also determine the residual squared error of the test set. It should be

stressed that the term (µ̂u) is from the training data and not the testing data, hence the denominator

may be larger than the energy of the signal. The residual squared error is also calculated and for

this section is given by:

RSEu =
∑
n∈TS

(Γn,u − hu(xn))2/
∑
n∈TS

Γ2
n,u. (4.12)
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Figure 4.7: a) Illustration of 9800 rankings from LIRAS database quantized into two rankings,
b)Illustration of 9800 rankings from LIRAS database quantized into three rankings

We also perform bias variance decomposition on the best performing models coupling the bias and

noise into one term. Although features are relatively inexpensive and the data set relatively small,

feature selection has been performed using Elastic Net and Lasso.

4.3.3 Validation Clustering

Unfortunately, global rankings for each sequence does not exist. As such, several methods for

determining clustering performance have been used: the valence and arousal rankings from the

LIRIS database are used by quantizing the rankings to a different granularity. The process is shown

in Fig. 4.7 where the 9800 rankings are quantized into two levels and three levels respectively.

For valence and arousal, the quantized rankings from the LIRIS database are used as a ground
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truth and compared to the unsupervised method. An illustration of the validation process is shown

in Fig. 4.8, and three time series are automatically ranked according to low, medium, and high

valence in green, blue, and purple respectively. The bottom axis represents the quantized rankings

in the LIRAS database. The red portions of the time series are those that are misclassified by the

unsupervised method. Let Rn be the correct ranking label, the average accuracy is given by:

1

N

N∑
n=1

I[Cm,n = Rn]. (4.13)

The accuracy per series is the number of correct classifications in each time series. The accu-

racy of series j is given by:

ACSj =
1

Nj

Nj∑
n∈Sj

I[Cm,n = Rn], (4.14)

where Sj is the index set of the j − th series of length Nj . The average accuracy per sequence

is also used and is given by:
1

Ns

Ns∑
j=1

ACSj, (4.15)

where Ns is the number of sequences.

In addition to the labeling, performance is also determined using visual assessment on how the

cluster time series are constrained within a specific region of the valence arousal plane, and this

represents the average range of emotions.

4.4 Results

4.4.1 Regression Results

The regression results for valence and arousal prediction are shown in Table. 4.10. The × is due

to singular design matrix. It is evident that the values of R2 and Q2 provide little information.

Most methods have an RSE of 4% for valence and 12% for arousal. It is evident that no method

performs substantially better than ridge regression. These statistics correspond to very strong

positive linear relationships; in the case of valence we see an almost positive linear relationship.
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Figure 4.8: An illustration of the validation process, three time series are automatically ranked
according to low, medium and high valence in green, blue and purple respectively. The bottom

axis represents the quantized rankings in the LIRAS database. The red portion of the time series
are those that are misclassified by the unsupervised method.
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This is in contrast to other work that has found arousal to have a stronger correlation with low-level

features [66]. The good performance of RR suggests Gaussian noise and a linear relationship.

Finally, we include a two-layer feed forward neural network, with all free parameters having been

selected using Matlab’s built-in functions.

Table 4.2: Results of regression methods Var(RSE) indicates empirical variances of the RSE and
× indicates regularization error

Method R2 Q2 RSE Var(RSE)

Liner Regression (×,1) (0.998,0.998) (×,12.1759%) (×,1.22e-5)
Ridge Regression (1,1) (0.998,0.998) (4.1623%,12.1751%) (5.41e-6,1.51e-5)

RVM (1,1) (0.998,0.998) (4.1621%,12.1748%) (4.24e-6,1.48e-5)
Neural Network (1,1) (0.998,0.998) (4.1632%,12.1757%) (3.67e-6,2.39e-5)

The Lasso results are shown in Table. 4.10, Elastic Net performs better than the Lasso as

expected, as it includes correlations between variables, but there is no substantial improvement.

Fig. 4.9 shows the average RSE for different values of the regularization term using cross valida-

tion, a value of 10−3.6 indicated by the green curve has the lowest RSE and 10−2 in blue has the

most zero values of w. Fig. 4.10 shows the value of the different parameters wj for different values

of the regularization parameter, with the green and blue vertical lines having the same meaning as

Fig. 4.9. RR is also used for predicting ranking for valence and arousal in order for the results to

be compared to [34]. The error for both is approximately 23.00%, with the similarity between the

two measures found in [34]. The RSE found in [34] is about 32.00%, larger than the values found

here. This is probably due to a much more constrained validation process that leads to less training

data.

Table 4.3: Results of regression methods Var(RSE) indicates empirical variances of the RSE and
× indicates regularization error

Method R2 Q2 RSE Var(RSE)

Ridge Regression Lasso (1,1) (0.998,0.998) (4.21%, 12.14%) (0.4957e-5,1.51e-5)
Ridge Regression Elastic Net (1,1) (0.998,0.998) (4.161%,12.07%) (5.41e-6,1.418e-5)

The optimum value for the parameters wj for arousal and valence are given in Fig. 4.11 to

Fig. 4.14. Examining Fig. 4.11 we see that using lasso, some of the valence features have prediction

ability on arousal. Examining Fig. 4.12 we see that by using Elastic Net, many of the features are
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correlated and therefore are useful when used together. Fig. 4.13 to Fig. 4.14 show that valence

values seem to be equally influenced by arousal and valence features. Overall most of the features

when combined have some predictive power.

Bias-Variance

The bias variance decomposition for ridge regression with respect to the valence model is shown

in Fig. 4.16, with a boot strap data set used 100 times. As expected the variance decreases as

the regularization term increases. The regularization value seems to give good performance for

variance until its natural logarithm reaches two. Similarly the bias suddenly increases at four. The

bias variance decomposition for ridge regression with respect to the arousal model is shown in Fig.

4.16. The regularization value seems to give good performance until its natural logarithm reaches

three, for both bias and variance, a small regularization value of 0.1 is all that is needed to stabilize

the design matrix.

4.4.2 Clustering Results
Toy Data

In this section, we explore the toy data as it better illustrates how the method works. Fig. 4.17

shows toy data available with the Matlab implementation at [115], with colours corresponding to

class membership. Each time series is a line with some random noise and the class membership

is determined by the slope. The method will demonstrate how the different kernels can improve

classification. Examining the toy data in Fig. 4.17, it is evident that there is a positive correlation

between the time series in the same clusters and a negative correlation between time series in

opposite clusters.

Examining the results using the linear kernel in Fig. 4.18, we see that the linear kernel clusters

all the time series correctly. Comparing the results with the RBF kernel in Fig. 4.19, we see that

many of the time series in the center are incorrectly classified.

Using the non-linear toy data shown in Fig. 4.20, we see that the data class is determined by the

radial distance of the data and an offset. Examining the results using the linear kernel in Fig. 4.21
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Figure 4.11: Optimum values of coefficients using Lasso and cross validation for arousal.
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Figure 4.12: Optimum values of coefficients using Elastic Net and cross validation for arousal.
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Figure 4.13: Optimum values of coefficients using Lasso and cross validation for valence.
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Figure 4.14: Optimum values of coefficients using Elastic Net and cross validation for valence.
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Figure 4.17: Linear toy data with color corresponding to labels.
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Figure 4.18: Results of using linear kernel on linear toy data with color corresponding to cluster
labels.
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Figure 4.19: Results of using RBF kernel on linear toy data with color corresponding to cluster
labels.
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Figure 4.20: Non-Linear toy data with color corresponding to labels.

clusters everything into incorrect clusters. Comparing the results with the RBF kernel in Fig. 4.22,

we see that all the time series are correctly classified. This demonstrates how different kernels can

deal with different cluster time series geometry.

Real Data

In this section, we compare the novel clustering method to DTK and DNM. The experiments have

been performed 100 times and averaged to avoid disparity due to cluster initialization. The results

for average accuracy are included but as they are less informative we do not discuss them.

Table. 4.4 and 4.5 shows the average accuracy per sequence and accuracy for ranking valence.
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Figure 4.21: Results of using linear kernel on non-linear toy data with color corresponding to
cluster labels, plus a bias.
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Figure 4.22: Results of using RBF kernel on linear toy data with color corresponding to cluster
labels.
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The RBF kernel performs best with an average accuracy per sequence of 79% and for three and

four clusters the average accuracy per sequence is 58% and 49%. It appears that for a larger number

of clusters the type of kernel does not play a role. The RBF works better as it maps the feature

space to an infinite dimension. The scaling factor (SF) also plays a role in improving accuracy. It

is observed that values over 100 do not improve performance.

Table 4.4: Average accuracy per sequence ranking valence using valence values.

Cluster Linear Quadratic RBF (SF=10) RBF (SF=100)

2 ( 76.26%,2.01%) ( 76.14%,2.00) (75.74%,2.01) (78.54%,0.0201)
3 (60.88%,2.37) (58.88%,1.92) (58.88%,1.91) (58.40%,2.16)
4 (49%,1.95) (48.88%,1.78) (49.88%, 1.78) (48.88%, 2.28)

Table 4.5: Average accuracy for ranking valence.

Cluster Linear Quadratic RBF (SF=10) RBF (SF=100)

2 (63.88%,0.01 ) (62.00%,0.01) (63.48%,0.01) (64.88%,0.01)
3 (40%,2.37) (36.80%,4.38) (43.17%,1.07) (42.40%,2.16)
4 (30%,3.7) (30.88%,9.98) (31.12%,2.70) (31.21%,3.7)

Table. 4.6 and 4.7 show the average accuracy and average accuracy per sequence for ranking in

the arousal axis. For arousal, the type of clusters does not seem to play a role. For two clusters, the

average accuracy per sequence and accuracy is approximately 75%. For four clusters the results

are 44%. For three clusters, RBF kernels have slightly better accuracy with an average accuracy

per sequence of 56%, with other kernels having an accuracy of 54%.

Table 4.6: Average Accuracy per Sequence of unsupervised method for ranking on the arousal
using the arousal axis.

Cluster Linear Quadratic RBF (SF=10) RBF (SF=100)

2 ( 75.63%,1.79) ( 75.12%,1.70) (75.53%,1.79) (75.53,0.0201)
3 (54.88%,1.77) (54.88%,1.88) (54.54%,1.91) (56.40%,2.16)
4 (43.88%,1.00) (43.88%,1.78) (43.54%,2.36) (41.21%,3.7)

The classification results using the DTK are given in Table. 4.8. For two clusters and three

clusters the results for arousal are similar. For two clusters the average accuracy per sequence
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Table 4.7: Average accuracy of unsupervised method for ranking arousal.

Cluster Linear Quadratic RBF (SF=10) RBF (SF=100)

2 ( 53.34%,1.79) ( 53.54%,3.63) (53.54%,1.51) (53.54%,1.41)
3 (41.72%,2.97) (41.88%,0.80) (41.88%,1.71) (43.53%,1.78)
4 (32%,1.95) (32.10%,1.80) (32.22%,1.50) (31.2%,1.89)

is approximately 75% and for three clusters the average accuracy per sequence is approximately

54%. This is almost identical to DTAKKC. When comparing results for four clusters the average

accuracy and average accuracy per sequence are about 10% less. WHM performed relatively worse

on valence. All the values are 4% to 8% worse for different cluster values.

Table 4.8: Average Accuracy (AA) and Average Accuracy per Sequence (AAS) of DTK using
different clusters

Cluster AA DTK Valence AAS DTK Valence AA DTK Arousal AAS DTK Arousal

2 ( 50.13%,7.79) ( 75.12%,2.70) (50.46%,1.79) (75.53%,1.79)
3 (40.88%,0.80) (50.88%,1.91) ( 33.15%,4.56) (54.54%,1.17)
4 (25.88%,1.00) (46.88%,1.78) (25.04%,2.65) (31.21%,1.58)

The results for WHM are shown in Table. 4.9. While the method performs comparably to

DTAKKC using arousal, the method performs poorly using valence.

Table 4.9: Average Accuracy (AA) and Average Accuracy per Sequence (AAS) of WHM using
different clusters.

Cluster AA Arousal AAS Arousal AA WHM Valence AAS Valence

2 ( 50.44%,8.50) ( 75.54%,2.01) (50.07%,1.79) (50.07%,3.73)
3 (34.30%, 4.46) (54.54%,1.74) ( 33.15%,4.56) (33.27%,0.01)
4 (25.05%,2.68) (45.88%,1.58) (25.04%,2.65) (25.21%,0.01)

The accuracy of each sequence using arousal and valence is shown in Fig. 4.23 and Fig. 4.24

respectively. The order on the bottom axis is the same as that given in the LIRIS database. For this

example the linear kernels are used in each case.

Intuitively, longer sequences should have less accuracy as there is a wider range of emotions.

This is demonstrated in Fig. 4.25, where the accuracy is plotted versus the length of the sequence,
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Figure 4.23: Accuracy of each sequence using arousal and linear kernels for different clusters.
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Figure 4.24: Accuracy of each sequence using valence and linear kernels for different clusters.
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Figure 4.25: Accuracy plotted vs the length of the sequence with different colors repressing
different cluster numbers.

with different colours representing different clusters. It is evident that, as the sequence length

increases the accuracy decreases. Table. 4.10 shows different coefficients of determination for

different cluster numbers. The length of the sequence is the independent variable and the accuracy

is the dependent variable.; The values are calculated for different cluster numbers. It is evident that

as the number of clusters increases, the length is a better predictor of the accuracy. An interesting

observation is that the shortest sequences are more difficult to predict using sequence length. This

can be seen by comparing the different rows of Table. 4.10, as the shorter sequences are trimmed,

the coefficient of determination increases.

Using visual inspection, the results are much more apparent. In each figure the small circles

represent a different video clip with its membership denoted by its colour. Each cluster’s member-

ship is determined using the entire sequence, hence the overlap. Fig. 4.26 and Fig. 4.27 compare
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Table 4.10: R2 Coefficient of determination for prediction average sequence accuracy for
different lengths (cluster=2,cluster=3,cluster=4).

Lengths Arousal Valence
All Lengths ( 6.45e-05,0.0178, 0.0621) (0.0035,0.0442, 0.0540)

Lengths>100 samples ( 2.61e-05, 0.0502, 0.1006) ( 0.0010, 0.0165, 0.0092)
Lengths>150 samples ( 0.5123,0.4360,0.6207) (0.0970, 0.1537,0.2319 )

the novel clustering method to DTK using the valence value ŷm = ŷv(xm,v). Fig. 4.26 illustrates

the novel clustering methods. It is evident that the different clusters correspond to different levels

of valence: red values correspond to high-valence, green are medium-high, blue are medium low,

and purple are low. There is much less overlap compared to DTK shown in Fig. 4.27 where the

clusters marked by green and blue totally overlap. In addition, the cluster marked by red corre-

sponding to high valence appears to have a considerably large number of values on the low valence

side.

Fig. 4.29 and Fig. 4.30 compare DTAKK to WHM respectively, and it is evident that WHM

method has little correspondence to the valence values.

Fig. 4.32 demonstrates how the clusters for valence relate to conventional emotion recogni-

tion methods. Different colours represent regions that seem to be responsible for different cluster

membership. The colour correspondence is the same as in Fig. 4.31, where series that are marked

in red contain positive emotions such as happiness. Series in the green region have less positive

emotions but are still positive and seem to have a wider range, from excited to tired. Series in blue

contain series that consist of videos that are non-positive and also have a large range from alarmed

to gloomy, and purple consist of series with emotions such as miserable and afraid.

Fig. 4.33 and Fig. 4.34 show the results using the arousal values, with three clusters for both

methods: the novel method and DTK. Examining the novel method Fig. 4.33, we see that there is

a clear relationship with red corresponding to sequences with high arousal, green corresponding to

medium arousal and blue indicating features with low arousal. Examining DTK we see that there

is no medium value for arousal as the clusters marked by blue and red totally overlap. Furthermore,

red samples corresponding to red clusters totally encompass the other clusters.

Fig. 4.37 and Fig. 4.38 display the results using DTAKKC and DTK respectively. Table. 4.11
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Figure 4.26: DTAKKC Linear Kernel
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Figure 4.27: DTK

Figure 4.28: DTAKKC compared to DTK using 4 clusters performed on valence values.
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Figure 4.29: DTAKKC Linear Kernel
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Figure 4.30: WHM

Figure 4.31: WHM compared to DTK using 4 clusters performed on valence values.

129



0 1 2 3
HighV alence

Happy

HighArousal

Angry

LowV alence

Gloomy Relaxed

LowArousal

Excited

Amused

Happy

Astonished

P leased

Calm

Tired

Sleepy

Gloomy

Miserable

Afraid Alarmed

Figure 4.32: Different colours representing regions that correspond to different cluster
memberships for valence.
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gives some movie titles corresponding to the clusters in Fig. 4.37, with the indexes of the video

clips that comprise the movie from the database. It is evident that DTK has no discernable pattern.

Examining Fig. 4.37 and comparing to DTK we see the center purple cluster corresponds to neutral

content. Titles from this cluster are dialogue heavy and have little camera motion. Some titles are

given in Table. 4.11.

The blue cluster appears slightly shifted to the left, compared to Fig. 4.1. The content in this

cluster is associated with tension and distress. This corresponds with several examples given in

Table. 4.11; these titles are about kidnapping and mental illness.

Videos in the green cluster appear to have the greatest range of emotion and correspond to the

more typically entertaining movies with complex plots. Most of the activity appears in the top

quadrants corresponding to fear and distress to joy. The content appears to vary the most in the

cluster as well. For example, examining the third row in Table. 4.11 we see love stories, two action

stories and a fast-paced drama. We also place the most likely conventional emotion recognition in

the first column: fear, anger, sadness, happiness, disgust and surprise. It should be noted that many

of the stronger emotions such as fear are represented in both clusters.

The films in the cluster marked with red are contained in the top left quadrant and associated

with neglect, fear, anger and tension. Most of the contents in this section consist of horror movies

and creepy art house films. For example, examine the fourth row in Table. 4.11 The Room of Franz

Kafka, which is about the author Franz Kafka, well known for his oppressive and nightmarish

work.

Fig. 4.36 demonstrates how the clusters for arousal relate to conventional emotion recognition

methods. Different colours represent regions that seem to be responsible for different cluster mem-

bership. The colour correspondence is the same as in Fig. 4.35, whereby series that are marked in

red contain a range of emotions from exciting to scary. Series in the green region seem to have a

range of emotions, but not extremely intense. The series in the blue cluster contain tiring or boring

content.

Examining Fig. 4.40, we see several images extracted from the films in Table. 4.11. It is evident

that the films on the left side contain low valence content with violent scenes, while the films on
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Figure 4.33: DTAKKC Linear Kernel
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Figure 4.34: DTK

Figure 4.35: DTAKKC compared to DTK using 3 clusters performed on arousal values
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Figure 4.36: Different colors representing regions that correspond to different cluster
memberships.
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Figure 4.37: DTAKKC Linear Kernel
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Figure 4.38: DTK

Figure 4.39: DTAKKC compared to DTK using 4 clusters performed on arousal and valence
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Figure 4.40: Images extracted from different clusters: a) Bottom right: Purple cluster,
Grandmother’s Kitchen b) Bottom left: Blue Cluster, The Betrayal c) Top Right: Green Cluster,

The Race b) Top Left: Red Cluster, Metro Goldwyn Mayer

the right exhibit everyday positive scenes with high valence. The difference in arousal is apparent

in the left section: the top image is a high arousal scene of an individual running and the bottom

scene is a low arousal scene of an individual cooking. The difference in arousal is not so apparent

on the left images. This may be due to the asymmetrical distribution of the samples. Many of

the samples have a disproportionate radial distance from the center onto the low valence and high

arousal direction. This may be an interesting area to explore in future.

Table 4.11: Example films from different clusters with corresponding database indexes

Cluster Films and database index
Purple (Happiness) Becketts War (397-412), In the Mix (600-614)
Purple (Happiness) The Home Coming (956-970), Grandmother’s Kitchen (529-543)

Blue (Sadness, anger) The Betrayal (413-442),Gustavo the Great (545-547))
Blue (Sadness, anger) Then Doll And The Man Dog (911-9124), Chatter (1590-1615)
Green (Surprise,Fear) Beautiful Sexy Funny Evil (384-396),The Race (1055-1037)
Green (Surprise,Fear) The Robbery (1055-1071), Between Viewing (1301-1338)

Red( Fear, Agger) The Room of Franz Kafka (8895-8907), Yembe (9638-9667))
Red( Fear, Agger) Metro Goldwyn Mayer (1912-1968)

Changing the RBF parameter also leads to some interesting results. Fig. 4.41 shows three
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RBF kernel Sigma=1000

Figure 4.41: DTAKKC using RBF kernel with free parameter equal to 1000.

clusters using the DTAKKC method using both valence and arousal. The RBF kernel has a free

parameter equal to 1000, and it seems the cluster membership is determined by the arousal axis.

Fig. 4.42 shows the exact same procedure performed with the RBF kernel, with the only differ-

ence being that the free parameter is equal to 1. In this case it seems the cluster membership is

determined by the valence axis, and this kind of flexibly gives the method a marked advantage over

other methods .

4.4.3 Results: Linking Functions

This section demonstrates the ability of the segmentation linking function to segment areas in the

VA space associated with scary movies. Fig. 4.43 shows three cluster DTAKKC linear kernels,

and the sequences that have samples in the regions associated with violence are grouped together.

Fig. 4.44 shows the results of the clustering using the region segmentation linking function, with

the region indicated by a rectangle in the upper half of the VA space. It is evident that series

that have any samples in a specified region are clustered together. These series can be flagged as

containing content that is scary or clustered further. In addition, the method still maintains the
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RBF kernal Sigma=1

Figure 4.42: DTAKKC using RBF kernel with free parameter equal to 1.

valence ranking property.

4.5 Conclusion

This chapter develops a method to classify a two-dimensional valence arousal time series generated

from a movie. A time series of features are extracted from a video sequence and mapped to the

valence arousal plane. The method developed here performs a novel clustering method on a set of

movies and clusters the entire movie sequence. The method is novel in that it uses time-alignment

kernel operation with kernel k-means. The method is found to perform better than other state-of-

the-art clustering methods. Additionally, the chapter tests different regression methods’ abilities to

map the low-level features of a video sequence onto the 2D emotion space using different types of

regression.

Along with the linking function there are several other methods to adapt the kernels that can be

used. The standard kernel operations can be applied to crate new Kernels, for example adding and

multiply different Kernels. These operations can be incorporated directly into the Time warping

operations or performed after the DTWK has been calculated. Segmenting the series before the
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Figure 4.43: DTAKKC three cluster linear kernel.
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Figure 4.44: DTAKKC with link three using region segmentation linking function, region
represented with box.
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time warping operation can also be performed.

DTWK can be incorporated into kernel probabilistic clustering methods such as Kernel Trick

Embedded Gaussian Mixture models [137], thus providing a likelihood. This likelihood could be

used to calculate the posterior probability of the centroids [138] and the free kernel parameters and

linking function values could be viewed as hyper-parameters. A prior distribution over the kernel

parameters could also be determined and a posterior distribution could also be calculated. The

prior distribution could be selected based on some pre-defined criteria. The main problem with

these methods is that they are not tractable and require sampling methods or variational inference.
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Chapter 5

State-Based Methods for Prediction of
Valence and Arousal

In the previous chapters, we demonstrated that valence and arousal could be used to predict impact

on cognition and that there was a correspondence between events and cognition. In this chapter, we

develop several novel models to better predict valence and arousal that can be used to determine

contents impact on cognition.

5.1 Introduction

In this section, we focus on two state-based models for mapping features on the valence and arousal

plane. The main contribution is developing several state based models that better predict valence

and arousal. These models either have overall better performance than the most popular models

used in predicting valence and arousal in a specific genre or have overall better performance than

models in the same class.

The idea is simple: emotions are dependent on what emotional state an individual is in, and

knowing the emotional state will help better predict points on the valence and arousal plane. Most

of the methods in [64, 66, 65, 125], focus on sparsity by constraining the solution using a prior

assumption on the parameters. The main problem with these methods is that they use the same

parameters for different emotional states. This is a problem because similar features can have a

different mapping.

The first model works by associating the state with an event in a sports video. The main
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advantage of this model is that these state can be determined in an unsupervised fashion and can

also be used to detect sporting events that may influence the state. The main drawback is that the

states’ definitions are not as clear as there is not a true dependency. A true dependency assumption,

such as input output HMM (IOHMM) [139], is not robust as it requires the use of the generalized

expected maximization algorithm, and this is extremely difficult in the M-step for more than two

states. The new method is called the dynamic prediction hidden Markov models (DPHMM)and

uses HMM [55] architecture.

HMM has been used in semantic analysis for sports videos [140, 141, 48, 142]. We focus on

arousal for sports videos because it is simpler to annotate. As LIRIS does not have a sports database

we record the ATC used by self-assessment using the free software in [143]. This is achieved by

manually annotating each frame of a video in real time using software [143]. The latter method is

also tested with toy-data.

The second model uses mixtures of experts (ME), a type of neural network [89]. In this method

each state represents different valence or arousal levels and is dependent on the feature vectors.

The main advantage of ME over other methods is that it is not a black box and has some inherent

meaning. In this case, the state z represents the response to some excitation or input x that changes

the response.

One problem with ME is over-fitting. Unlike other neural networks, there is not a large body

of work on regularization, and this leads a large number of features to produce incorrect results;

a kernel representation would improve the method by giving it all the advantages associated with

kernels. This can avoid dealing with large numbers of parameters, reduce the amount of computa-

tions in a high-dimensional space, and allow the use of infinite dimensionality feature spaces. As

such, we formulate the ME model for linear regression method so that kernels can be used to avoid

the explicit introduction of the feature vector. This model outperforms the standard ME model and

has comparable performance to other state of the art regression models for prediction of valence

and arousal. The supervised version for the code developed for this thesis is given in [144]. For

the unsupervised method the gate values are obtained using [89].
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5.2 Dynamic Prediction-Hidden Markov Models

In sports videos, one expects the arousal curve to follow a consistent pattern. Events elicit an

arousal pattern similar to that of events in sports. We expect that a subject’s arousal is dependent

on what arousal state he or she is in. Therefore, we determine parameters for each state. This

makes the estimated curve exhibit more comparability because each arousal event has its own set

of coefficients. In addition, partitioning the data into states makes the curve smoother because

there is more similarity between events.

The method functions by finding the most probable scalar dependent output based on a set of

explanatory observations, using the Viterbi state sequence (VSS) and probabilistic modelling. The

parameters are estimated using a novel formulation of the expected maximization algorithm [87].

The features used are those originally developed by [2], and include motion, rhythm, and sound

energy. The method performs better in predicting the affective measure of arousal when compared

to linear regression (LR), ridge regression (RR), Gaussian process regression (GPR) and relevance

vector machine (RVM), which are used in the previous chapter with the same acronyms. Test

measures include the residual squared error and visual assessment based on the original criteria

given by [2]. The method is tested with simulated data and real data. Experimental results show

that DPHMM outperforms the state-of-the-art in all criteria for most of the sports videos.

5.2.1 Problem Formulation: DPHMM

Assume there are KHMM arousal states sj j = 1, ..KHMM . Let yt,j represent the arousal of a

subject produced by video frame t ∈ Z . The arousal at state sj can be modeled by:

yt,j = wj
Tφ(ot). (5.1)

The vector ot ∈ <d is a feature vector containing the explanatory variables at frame t. As before,

the basis functions are given by φ(ot). The parameters wj will map the observations to an arousal

value and will be referred to as the set of state coefficients. Let qt represent the hidden state

variable, at some time t the endogenous variable Γt can be given by:

Γt = yt,j + ξt,j|qt = sj. (5.2)
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The observation noise ξt,j ∼ N (0, σ2
j ) is different for every state with noise variance σ2

j . The

underlying assumption is that the feature vector mapping is dependent on what arousal state the

viewer is in. The method is different from the standard linear regression methods in that it assumes

there are different arousal states for different arousal events. Using the assumption that the noise

term is different for every state, one can formulate a probability density function for state sj given

by:

P (Γt|wj
Tφ(ot), σ

2
j ) =

1√
2πσ2

j

exp

(
−(Γt −wj

Tφ(ot))
2

2σ2
j

)
(5.3)

The block diagram of the generation of Γt and the directed graph are shown in Fig. 5.1 A) and

Fig. 5.1 B) respectively.

Γt

+ξt,j

yt,j

wjqt

φ(ot) (A)

Γt−1· · · Γt Γt+1 · · ·

φ(ot−1)· · · φ(ot) φ(ot+1)

qt−1· · · qt qt+1 · · ·
(B)

Figure 2.1: A) block diagram of the generation of B) Graphical model of the probabilisticFigure 5.1: A) block diagram of the generation of Γt B) Graphical model of the probabilistic
dependencies of the random variables, dashed lines are to indicate the state is dependent on

observation via equation 5.4), but not a true dependency

The Model: DPHMM

It is well known that events in sports videos follow a sequence. Therefore, the arousal curve

associated with these events should follow a similar sequential pattern. As a result, the model

developed here is based on the entire observation sequence denoted by O : {o1, ..,oT}, where T

is the length of the sequence. To determine the most likely time series Y : {Y1, .., YT}, the model

depends on the most likely arousal sequence Q∗ = {q∗1, .., q∗T}. Let Yt|O be defined by:

Yt|O =

KHMM∑
j=1

yt,jI[q∗t = sj]. (5.4)
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The indicator function I[q∗t = sj] = 0 unless q∗t = sj in that case I[q∗t = sj] = 1. The observation

coefficients are different for every state sj . The state path Q∗ is the most probable hidden state

sequence. To solve for Q∗ an algorithm similar to the Viterbi algorithm [55] is used. The diagram

of the process is shown in Fig. 5.2.

In order to determine the VSS, an emission distribution is needed. The emission distribution of

Γt at state j is given by N (Γt|µj, ε2j) where µj ,ε2j are the mean and variance respectively. As the

variable Γt is not available, the estimated parameters for that state are used to determine the state

likelihood :

P (Γt = yt,j|µj, ε2j) =
1√
2πε2j

exp

(
(yt,j − µj)2

2ε2j

)
. (5.5)

This provides the likelihood of the generated value yt,j at state j. The arousal state transitional

probability coefficients âij = P (qt = sj|qt−1 = si) with an associated transitional probability

matrix A and initial state distribution: π̂j = P (q1 = sj), where π = [π̂1, .., π̂KHMM
] are also used

to determine the likelihood of a state transition. The VSS can now be calculated by:

Q∗ = arg max
Q

{
T∏
t

1√
2πε2qt

exp

(
(yt,qt − µqt)2

2ε2qt

)
aqt−1,qtπq1}. (5.6)

Due to use of yt,j the state is a function of the input ot therefore a dashed edge is added in Fig. 5.2.

This is not a true probabilistic dependency, but an approximation. Methods do exist to generate a

true probabilistic dependence like the Input Output HMM [145], but this algorithm did not function

properly for this data.

An example of the process is demonstrated in the trellis diagram in Fig. 5.2. The three states sj

are displayed one per row, corresponding to the different values of qt. The column represents the

time index for qt. The method determines every value of the ATC for all the states, then the Viterbi

algorithm selects the realization of the ATC that maximizes the probability of the model.
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P(Γ,Q|φ(·),O, θ) =
∏T

t=1

∏KHMM

(i,j)

(
1√
2πσ2

j

exp
(
−(Γt−wjTφ(ot))2

2σ2
j

))I[qt=sj ]
(aij)

I[qt=sj∧qt−1=si] (πi)
I[q1=si] (5.8)

y1,1 y2,1 y3,1 y4,1 y5,1

y1,2 y2,2 y3,2 y4,2 y5,2

y1,3

y1,1
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y3,1

y4,3

y4,2

y5,3

y5,1

Figure 5.2: Trellis Diagram representing the relationship between the VSS in red and the time
series for five observations and three states

5.2.2 Parameter Estimation: DPHMM

The conditional distribution of our model must also depend on the probability of a particular se-

ries of states Q. Thus, to train the model, we determine the set of parameters that maximize the

likelihood of observing the mapping. From the observations Γ = [Γ1, ..,ΓT ] and the set of cor-

responding state labels Q, the parameters θ in 5.7 can now be estimated by maximizing 5.8.

θ = [A,π,w1, ..,wKHMM
, σ2

1, .., σ
2
KHMM

] (5.7)

In this case, the variables Q are not visible during training. Therefore, to estimate the pa-

rameters, the expectation maximization algorithm is used. Instead of maximizing the likelihood

directly, we find the posterior distribution of the latent variables P (Q|Γ,O,φ(·), θl−1). This poste-

rior distribution is used to evaluate the expectation of the logarithm of the complete data likelihood

function or equivalently maximizing:

l̃(θ, θl−1) =
∑
Q

P (Q|Γ,O,φ(·), θl−1) log(P (Γ,Q|φ(·),O, θ)) (5.9)

The term θl−1 is the previous estimate at index l − 1. The parameters are randomly initialized.
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Once the standard stochastic constraints are added to 5.8, the parameters can be determined with

the following equations:

π̂i = P (q1 = si|φ(·),O, θl−1). (5.10)

âij =

T∑
t=1

P (qt−1 = si, qt = sj|φ(·),O, θl−1)

T∑
t=1

P (qt−1 = si|φ(·),O, θl−1)

(5.11)

Φj =
T∑
t=1

φ(ot)φ(ot)
TP (qt = sj|φ(·),O, θl−1) (5.12)

ŵj = Φ−1
j

T∑
t=1

Γtφ(ot)P (qt = sj|φ(·),O, θl−1) (5.13)

σ̂2
j =

T∑
t=1

(Γt,j − ωj
Tφ(ot))

2P (qt = sj|φ(·),O, θl−1)

T∑
t=1

P (qt = sj|φ(·),O, θl−1)

. (5.14)

In addition, the mean and variance of Γt at each state sj is determined for the emission distributions:

µ̂j =

T∑
t=1

ΓtP (qt = sj|φ(·),O, θl−1)

T∑
t=1

P (qt = sj|φ(·),O, θl−1)

(5.15)

ε̂2
j =

T∑
t=1

(Γt − µ̂j)2P (qt = sj|φ(·),O, θl−1)

T∑
t=1

P (qt = sj|φ(·),O, θl−1)

, (5.16)

where Φj is an intermediate term for calculation. The EM algorithm only finds local maxi-

mums, therefore multiple initializations are performed and the initialization with the largest likeli-

hood is used. When calculating the probabilities, the backward and forward algorithms and scaling

factors are used [55]. A Matlab implementation for demonstration of the training process with a

regularization modification is available at [146].
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As in the previous section, we used RSE to evaluate the algorithm. For this section the RSE is

defined in 5.17. In addition to the RSE was used and the criteria given by [2].

RSE =
T∑
t=1

(Γt − Y (t))2/
T∑
t=1

Γ2
t (5.17)

Feature Space

In this section we describe the arousal features. We select these features because they have been

shown to have a correlation with arousal [66], and were developed by [2]. The term φ(ot) = ot

with components (ot)d = od,t.

Each video frame’s motion vectors vk,t are computed using the standard Mb block-based mo-

tion estimation between two adjacent frames t and t− 1. The motion activity is given by:

o1,t =
1

m
`
ax{|v`,t|}

Mb∑
mb=1

|vmb,t|. (5.18)

The rhythm component is a time-varying function proportional to the time difference between

preceding and succeeding shots. Let α(t) be the frame index of the preceding shot of frame t, and

let β(t) be the index of the succeeding shot of frame t . The rhythm of shot t is given by:

o2,t = e1−(β(t)−α(t)). (5.19)

Sound energy is a classic affective feature. The sampling rate of audio is so much larger than

video, and therefore one video frame will have multiple samples of audio. These samples are also

referred to as frames. Let st[n] be the audio sample of the t− th frame of video with Ns samples.

The sound energy is given by:

o3,t =
Ns∑
n=1

(st[n])2. (5.20)

5.3 Block Diagram: DPHMM

The final block diagram is shown in Fig. 5.3 after feature extraction represented by the purple

block a prediction for each state is made represented by the red block underneath. Then the Viterbi
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Low level feature extraction

Prediction for each state

Viterbi algorithm

Final output

Generate probabil-
ity of observation

Figure 5.3: After feature extraction a prediction for each state is made. Then the Viterbi state
sequence is calculated and the most probable states are used to generate an output.

state sequence is calculated from the probability of observations and the most probable states are

used to generate an output.

5.4 Toy data: DPHMM

To better understand the convergence properties of the algorithm, we investigate the relationship

between the RSE and the log-likelihood with simulated training data. In Fig. 5.4, we see different

realizations of Y (t) in blue for different iterations of the EM algorithm, with the target values

overlaid in red. The code for the toy data is available at [146]. It is evident for every iteration that

the data is better fitted, with the most marked improvement exhibited between the 9th and 20th

iteration. In Fig. 5.5, we see the corresponding learning curve for the data; it is evident that as the

log-likelihood increases the RSE decreases. The largest change occurs between the 10th and 20th

iteration, which corresponds to the results in Fig. 5.4.
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Figure 5.4: Example of Y overlaid of target values of training data after different iteration of EM
algorithm.
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Figure 5.5: Learning curves for different iteration of EM Algorithm Top: RSE for different
iterations of EM Algorithm. Bottom: log-likelihood of model using the estimated parameter

values from each iteration of the EM Algorithm .

5.4.1 Experimental Procedure: DPHMM

To train the system, six participants are asked to annotate the ATC of one of the sports videos for

thirty minutes. In affective systems only one participant is required [64]. The experimental setup

is shown in Fig. 5.6. The screen on the top left displays the video. The scroll bar on the right is

controlled by the mouse and annotates the arousal. The annotation software records the position

of the scroll bar at a sampling rate much larger than that of the frame rate of video. The annotation

signal is then down-sampled to that of the frame rate of the video and manually aligned due to

delays in the annotation software of the user. Some regions have been discarded as it is evident

that the user lost interest or stopped controlling the mouse correctly.
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Figure 5.6: Experimental setup: The screen on the top left is the displayed video and the scroll
bar on the right is used to record the arousal levels.

The data-set is taken from several sources: 2009 PGA Tour, 2009 World Series of Bowling,

2009 PDC World Darts Championship, 2009 Wimbledon Championship, 2006 FIFA soccer World

Cup, and NHL hockey game 2010. The signal was then aligned and down sampled. The individual

is asked to annotate a ten minute clip and then two-fold cross validation is used to determine the

average testing error, using half the signal for training and half for validation.

5.4.2 Results: DPHMM

An example of the annotation variation among two different participants is shown in Fig. 5.7. It is

evident that the arousal exhibits similar characteristics and there is a correspondence with rhythm.

The similarity is probably due to the fact that exciting events occur in certain intervals, but there

are some duration and amplitude differences.
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Figure 5.7: Annotation among different participants for the same video with Rhythm shown for
demonstration.

Table. 5.1 shows the RSE for the different methods. It is evident, with the exception of tennis,

that the new method outperforms state-of-the-art methods, such as RVM. The IOHMM was also

included using the Softmax as a gate, if the result was unstable it will be denoted by a ×. It is also

evident from Table. 5.1 that the novel method also substantially outperforms the other methods. In

the tennis videos, all methods perform badly, with all methods having errors over 475%. This is

most likely due to the fact that tennis has less audio and motion. Four states were optimal for most

sports, while in bowling two states performed best.

Fig. 5.8 A) demonstrates how the DPHMM outperforms RVM in the psychological criteria.

The actual arousal curve is in red, with the peaks in the curve representing when the bowler takes

a shot. The blue curve is estimated using DPHMM and the green curve is estimated using RVM.

Fig. 5.8 B) displays the state for each frame; in most cases the state changes correspond to the

peaks. RVM is used for comparison because it has the second best performance. It is self-evident

that DPHMM is considerably better in meeting the smoothness criteria. Comparing compatibility,
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Table 5.1: RSE for different methods and sports videos on test samples

Method LR RR GPR RVM IOHMM DPHMM
Golf 0.1653 0.1653 2.54 0.169 1.64 0.130

Bowling 3.85 3.85 4.48 0.792 × 0.743
Darts 0.961 0.958 1.36 0.209 × 0.162
Tennis 49.3 49.2 8.35 4.76 × 6.36
Hockey 0.253 0.252 4.35 0.22 0.53 0.193
Soccer 0.5812 0.5812 8.35 0.5712 × 0.5387

the DPHMM has a more parabolic-like shape. Both curves generate negative values outside the

specified range, but these values are less frequent and closer to the specified range using DPHMM

than RVM. There is a strong relationship between the rhythm shown in Fig. 5.7 and the generated

curve in Fig. 5.8. This is likely the case because the rhythm component encodes duration of events

that have a predictable arousal response.
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To compare compatibility, we see the values for the curve generated by DPHMM are much

more uniform and in most cases much closer to the actual arousal curve, with the exception of the

video frames around the 3000 mark. Examining Fig. 5.8 B), we see that no state transition occurs,

thus the wrong state coefficients were used in the mapping. The model seems to work in data that

has sudden jumps. Another issue is that the model seems to suffer from numerical issues as the

dimension of the data gets larger, even if toy data is used. One fact to take into consideration is

the random initialization of the EM algorithm, which may be aggregating the data and somehow

acting as a kind of bootstrap sampling. This has been shown to reduce error [147].
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5.5 Kernel-Based Mixture of Experts

Mixture of experts output is dependent on the state as well as the input and uses a precise prob-

abilistic definition. Unlike the DPHMM, the kernel-based mixture of experts has no dependence

assumption between states, but the dependency between observation and state is direct as shown in

Fig. 5.9. The variable z is a latent variable that models some hidden process that produces valence

or arousal given the feature x. The process models the valence or arousal Γ by assuming that the

state of the individual z and the input features x both play a role in the estimation.

Γn−1· · · Γn Γn+1 · · ·

φ(xn−1)· · · φ(xn) φ(xn+1)

zn−1· · · zn zn+1 · · ·
(B)

Figure 2.5: Graphical model of the probabilistic dependencies of the random variables for MEFigure 5.9: Graphical model of the probabilistic dependencies of the random variables for ME

Similar to the previous section, we verify our model using simulated data, then compare the

model to the classical ME for linear regression. It is observed that the novel method has increased

performance for predicting valence and arousal when compared to regular ME. Most notably, the
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RBF kernel performs well. The method is tested by using toy data, and we find that it provides

better numerical stability than the classic method for polynomial data as the amount of data de-

creases relative to the order of the polynomial. The results show that the novel method performs

better than the classical ME for linear regression in predicting arousal and valence. Kernels tested

include linear, polynomial and RBF kernels.

The main contribution of this section is formulating the ME for regression using kernels, which

has several advantages. Perhaps the most obvious is the ability to take advantage of all the re-

search related to kernels and a new framework for applying kernels. There are several advantages

particular to mixture of experts. The first is that kernels provide a way to combat the curse of

dimensionality, a problem which is exacerbated with mixture of experts because the problem is

multiplied by the number of experts. Another advantage is computational savings. Similar to the

aforementioned problem, any computational cost is multiplied by the number of experts. Finally,

there is a closed form solution for a maximum, which is extremely important in the unsupervised

case because optimization methods are much more complex for unlabeled data. In this chapter, we

will use a supervised version for simulated data and an unsupervised version for the arousal and

valence estimation. To simplify the optimization we will use the method in [89] for the gates. An

open source implementation developed for this thesis of [89] is available at [144].

5.5.1 Problem Formulation: Kernel-Based Mixture of Experts

Let yk(x) be the output of the k − th expert, given some input x. In order to make a single

prediction, the output of the ME architecture is given by:

y(x) =
Km∑
k=1

p(z = k|x,vk)yk(x), (5.21)

where z is a variable indicating the expert used, and p(z = k|x,vk) is the gating probability

density function. This provides an indication of the likelihood of expert yk(x) contributing to the

output. The gaining function segments the input space accordingly and has the parameters vk. In

the classical ME for regression, the function yk(x) like DPHMM is:

yk(x) = wT
kφ(x). (5.22)
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The function yk(x) is explicitly a function of x; the variable wk is simply a parameter. In this

section we will show that 5.22 can be expressed as a kernel function, symbolically:

yk(x) = k(x)T (ΛkK + λkIN)−1ΛkΓ. (5.23)

Where the vector Γ = [Γ1, .,ΓN ] is the set of targets. As before K ∈ <NxN the Gram matrix with

elements (K)i,j = κ(xi,xj) and k(x) is a vector with elements (k(x))j = κ(x,xj). The matrix IN

is a NxN regularization matrix and we define λk as the regularization term for the k − th expert.

Finally we define the indicator matrix Λk for the k − th expert as:

Λk ≡ dig([I[z1 = k], .., I[zN = k]])

The indicator function I[zn 6= k] = 0 unless zn = k in that case I[zm = k] = 1. For this work the

gating function will be the Softmax Function [148]:

P (z = k|x′,vk) =
exp(vTk x′)

Km∑
k′=1

exp(vTk′x
′)

. (5.24)

Where x′ indicates the inclusion of a term for the bias, symbolically x′ = [1||x]T .

5.6 Estimation: Kernel-Based Mixture of Experts

5.6.1 Cost Function: Kernel-Based Mixture of Experts

Let Γ be the target function modeled by a deterministic function yk(x). Using maximum likelihood

estimation (MLE) we can estimate the parameters. Taking the negative logarithm of the MLE, one

can obtain the following cost function:

l̂(W,V) =
Kem∑
k=1

−ln(
N∏
n=1

P (Γn, zn|φ(·),xn,wk,vk)
I(zn=k)). (5.25)
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Where W = [w1, ..,wKm ] are the parameters for the experts and V = [v1, ..,vKm ] represent the

parameters of the gating function. Decomposing equation 5.25 and rewriting the product in terms

of summation one can obtain:

l̂(W,V) =

(Km,N)∑
(k,n)

−I(zn = k)(ln(P (Γn|zn,φ(xn),wk))− ln(P (zn|xn,vk))).(5.26)

The second term depends on the gating function and can be optimized separately [149]. Using

the standard normal assumption and considering only terms that depended on wk, the first term in

equation 5.26 can be written as:

l̂(W) =
N∑
n=1

Km∑
k=1

I(zn = k)

(
(Γn −wT

kφ(xn))2

2σ2
k

+ λk
Ck
2

wT
k wk

)
. (5.27)

With quadratic regularization term wT
k wk added for numerical stability and as an artifice to intro-

duce the kernel. The regularization constant λk is usually determined empirically. Therefore to

simplify the expression in its final form we define Ck as:

Ck =
1

N∑
n=1

I(zn = k)σ2
k

(5.28)

Converting the expression in 5.27 to matrix form, one can obtain:

l(W) =
Km∑
k=1

(Γ− Φwk)
T Λk

2σ2
k

(Γ− Φwk) +
λl

2σ2
k

wT
k wk. (5.29)

Where ΦT = [φ(x1),φ(x2), ...,φ(xN−1),φ(xN)].

5.6.2 Classical Solution: Mixture of Experts

Before presenting the novel algorithm, the original formulation or the parametric solution is stated

here for clarity. By taking the gradient of equation 5.29 with respect to wk, then setting the equa-

tions equal to zero and solving for wk, the following expression can be obtained:

ŵk = (ΦTΛkΦ + λkIN)−1ΦΛkΓ. (5.30)

This is analogous to the primal solution in [94]. The matrix (ΦTΛkΦ + λkIN).
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l(A) =
Kem∑
k=1

1

2σ2
k

(Γ− ΦΦTak)
TΛk(Γ− ΦΦTak) + Ck

λk
2

N∑
n=1

I(zn = k)aTkΦΦTak. (5.33)

5.6.3 Novel Solution

In this section, we formulate the novel solution so that kernels can be used, analogous to the dual

solution in [94]. In the same manner as above, we can solve for wk. One can solve the problem

using constrained optimization. For each of the expert parameters we can formulate a constrained

optimization problem and minimize the unconstrained one using KKT. The unconstrained cost

function is:

Λ(ξ1, .., ξKem ,W,A) =

{
Kem∑
k=1

ξk
Tξk + αpw

T
k wk + ak

T (ΛkΓ−ΛkΦwk − ξk)

}
. (5.31)

As the gradients with respect to wk in 5.31 are independent of each other, we can solve for

each term in the summation independently using the same process as in 2.48- 2.58. It can be

shown that:

wk =
−1

λk
ΦTΛl(Γ− Φwk) = ΦTak. (5.32)

Substituting equation 5.32 back into equation 5.29 gives equation 5.33: Where A = [a1, .., aKem ].

In the same manner as above it can be shown that the value of ak that minimizes 5.33 is given by:

ak = (ΛkK + λkIN)−1ΛkΓ, (5.34)

which is achieved by using the fact that K = ΦΦT . We can now express yk(x) in terms of kernels,

first by inserting equation 5.32 into equation 5.22:

yk(x) = wT
kφ(x) = (ΦTak)

Tφ(x) = aTkΦφ(x) = aTk k(x) (5.35)

Now inserting equation 5.34 into equation 5.35 and using the fact that yk(x)T = yk(x) the final

form can be achieved:

yk(x) = k(x)Tak = k(x)T (ΛkK + λkIN)−1ΛkΓ (5.36)
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Prediction for each expert

Final Output

Generate Probabil-
ity for each gate

Figure 5.10: After feature extraction a prediction for each expert is made. This is combined with
the output from each gate to produce a prediction.

5.6.4 Error

In order to investigate the properties of the algorithm, the residual squared error will be used on

the test set. For convenience, we restate it here:

RSE =
N∑
n=1

(Γn − y(xn))2/
T∑
n=1

Γ2
n. (5.37)

5.7 Block Diagram: Kernel-Based Mixture of Experts

The final block diagram is shown in Fig. 5.10. After feature extraction represented by the purple

block, a prediction for each expert is made represented by the red block. This is combined with

the output from each gate shown with the green block to produce a final prediction.

5.8 Data Sets

5.8.1 Simulated Data: Polynomial Kernels

In order to validate the model and test robustness to numerical stability, we generate data in the

feature space. We use the standard method of generating random toy data for regression in algo-

rithm 1.Where xn is uniformly distributed and linearly separable with a corresponding expert label

Z[m]. We will evaluate the toy data for polynomial basis functions.
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Algorithm 1 Algorithm: Generate Toy Data
Input:
{w1, ..,wKm},{σ2

1, .., σ
2
Km
}

Z: array of labels for data X
X:{x1, ..,xn}
while n ≤ N do
n = n+ 1
k = 1
while k ≤ Kem do
l = l + 1
if Z[n] = l then
ξn ∼ N (0, σ2

k)
Γn = wT

kφ(xn) + ξn
end if

end while
end while

5.8.2 Real Data

We use the LIRIS as in Chapter 5. The same procedure is used, however in order to make compu-

tation feasible, we use less data in the training data when working with dual variables. This does

not affect performance.

5.9 Experiments Results: Kernel-Based Mixture of Experts

5.9.1 Simulated Data

The method is tested for orders up to 3 and Km = 3 using the parametric method and the novel

method; two experts are used. Cross-validation is employed, using half the generated data for

training and half for testing. The procedure is performed a total of 100 times and the average

is then taken. Table. 5.2 shows the error of the toy data, where MER represents the classic ME

for regression. Each row of the table represents the order of the polynomial function used and

each column represents the amount of data used in training. The first entry in the table shows the

average error using the kernel method, while the second entry shows the error using the standard

ME model. It is evident when there are 50 samples of data that the two models are equivalent
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with a maximum difference of error of 0.02%. As less data is used to train, both models degrade

in performance, but this degradation is much smaller in the novel method. This degradation is

more pronounced as d becomes larger, until eventually a singular matrix (SM) occurs in the design

matrix in equation 5.30.

This does not occur in the novel method. The reduced rate of error in the novel method is

because the Gram matrix dimensions decrease with the reduction in data. This makes the Gram

matrix less susceptible to numerical instability. Additionally, the Gram matrix size is constant

with respect to the order of the polynomial; the dimensions of the design matrix increases expo-

nentially with the order of the polynomial. These observations are surprising because the toy data

is generated using the basis function. The different RSE for the order two polynomials is shown in

Fig. 5.11. The error seems to dramatically increase as the number of data points used in training

decrease to 25, but this increase is much smaller with the kernel method.

Table 5.2: Average RSE for two methods where (novel method, MER) row represents order of the
polynomial and column represents the amount of data

Samples 50 25 12 7
d=3 (0.25%,0.26%) (0.29%,0.56%) (25%,30%) (20%,SM)
d=2 (0.90,0.88%) (0.60%,0.53%) (8%,13%) (20%,SM)
d=1 (0.18%,0.17%) (0.19%,0.211%) (2.7%,3.9%) (20%,SM)
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Figure 5.11: y-axis represents the average RSE for a 2nd order polynomial and the corresponding
basis function using simulated data, x-axis represents the number of samples used in training

To better visualize the process, a one-dimensional case is generated for d = 2 shown in

Fig. 5.12. The red line on the top of the figure represents the total output and the green and blue

represent the output of the two experts. The bottom of the figure shows the output of the Softmax

functions. As the softmax functions decay, so does the contribution to the output of that expert.
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Figure 5.12: Top: Total output and output of each expert, Bottom: Value of Softmax functions

5.9.2 Results on LIRIS: Kernel-Based Mixture of Experts

Table. 5.3 compares the classic mixture of experts to the novel mixture of experts. Each row

corresponds to the kernel or basis function used and the columns correspond to the prediction.

The Quadratic function can be generated using a kernel, but, as the results are comparable using

a basis function, we include them in the realm of classic mixture of experts. The novel method

uses the RBF kernel as that kernel is impossible to implement using basis functions. Examining

the results, it is evident that the novel method using the RBF kernel performs well. The massive

error in the other methods is due to the fact that the other methods functions are not bounded.

This is demonstrated in the top of Fig. 5.13, with a polynomial kernel corresponding to a training

sample of one. We see that as the input changes the kernel value changes and the values increase

drastically. This is not a problem in classification, as large values simply correspond to values that
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are far away from the decision boundary. In regression however, this is problematic, as these large

values may be influenced by outliers. As a result, some values will have extremely large positive

or negative values. This is not a problem for the RBF as they are maximal only for values close

to the specified samples as shown in the bottom of Fig. 5.13. Furthermore, there is an RBF tuning

parameter that can control over-fitting. The method performs comparable to other methods shown

in Table. 5.3. One important note is that this model is not prone to over fitting, unlike other neural

networks. Most neural network packages, (including Matlab used in this course), use complicated

validation procedures to determine network parameters such as number of layers and regulation

parameters. The novel method has the same performance but only requires a two dimensional grid

search for the free parameters and does not have the disadvantage of being a black box.

Table 5.3: Average RSE for classic mixture of experts, method using novel mixture of experts and
kernels

Method Valence Arousal
Linear 9.24% 33%

Quadratic 6.4% 38%
Novel RBF 4.20% 12.34%

Neural Network 4.1632% 12.1757%
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5.10 Conclusion

This section develops DPHMM and a kernel-based mixture of experts models for linear regression

to estimate emotional responses. The contributions for the DPHMM include a new probabilistic

method to predict the value of sequential data, a novel dynamic programming algorithm, a novel

use of the EM algorithm, and the first experiments performed in ATC in sports videos. The ad-

vantages of the models are that state training is unsupervised and the method outperforms other

regression methods in arousal analysis. The drawbacks of the models are that the data must exhibit

sequential patterns and determination of the ATC is more computationally intensive than most of

the methods it was tested against. In addition, we formulate a novel mixture of experts models

for linear regression so that kernel functions can be used. This avoids the problem encountered

when dealing with a large feature space that can lead to serious computational difficulties. Other

advantages of the model include the ability to take advantage of all the work related to kernels, a

closed-form solution for maximization, as well as maintaining all the advantages of a linear ex-

pert. The model is verified and tested with simulated data, and it is also found that the model
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has overall better performance than ME on simulated data. The method also performs better than

starred ME on the LIRIS data set, and, comparable to other methods. Kernels used included linear,

polynomial, and radial basis functions.

167



Chapter 6

A Textural Based Hidden Markov Model
for Animation Genre Discrimination

6.1 Introduction

Different types of animation are used to gain children’s attention [24, 25, 26], and imaginary char-

acters mixed with live action improve attention [80]. As a result, we develop a method to classify

different types of animated content that performs better than more complex general methods for

video genre classification. It is found that this method, using a few specialized features, has better

performance than generic methods. This is the first such research done in animation genre catego-

rization. The animation genres include hand drawn animation (HDA), computer animation (CA),

and stop motion animation (SMA). The method also works for black and white animation unlike

[82]. The system can be used with a standard video genre discrimination system as shown in the

diagram in Fig. 6.2. After video genre classification has been performed, the system can be used

to classify the animation into subcategories.

Animation genre information does not appear available in meta-data. Consider Fig. 6.1, which

shows the percentage of occurrences of the term stop motion animation, claymation, animation,

hand drawn animation or cartoon in videos used in our data set. The titles, tags, comments and

related videos in the list were used in a query. The term cartoon occurs the most with under 20%,

the rest occur with much less frequency as shown in Fig. 6.1.

In animation, colour and edge features are similar for different animation genres and CA and
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SMA
Playlist:The Gumby Collection:
Gumby Adventures 1988: 3/76

HDA
Playlist:Bugs Bunny
by Darryl Fry 11/64

CA
Playlist:Star Wars The

Clone Wars Season 2 by
Douglas Guzman 0/18 videos

Figure 6.1: Occurrence of tags relating to different animation genres for several videos in the
dataset.

hand drawn animation have similar motion. The characteristics in different animation genres ap-

pear much more similar, therefore a method is developed based on modeling the temporal charac-

teristics of the texture. This is referred to as a temporal texture model [150]. The work models the

texture properties by using gray level co-occurrence matrix (GLCM) and HMM (GLCMHMM).

The contributions include a temporal texture model based on GLCM. There has been research

in animation genre categorization that uses colour [82], but the method developed here does not

use colour allowing it to classify older black and white content. It is found that the GLCMHMM

has over 85.71% accuracy and outperforms block intensity comparison code (BICC) [56] in this

specific classification task using both HMM and SVM.

6.2 Problem Formulation

In this section, we estimate the parameters of each genre using a training set, then classify a video

based on the parameters that have the highest likelihood as shown in equation 6.1:

θ̄ = arg max
θgenre

{P (O|θgenre)}. (6.1)
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News

Sports
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Animation Genre Discrimination

Computer Animation

Stop Motion Animation

Hand Drawn Animation

Talk Show

Figure 6.2: Tree representing a system to classify animation genre, first video genre classification
is performed, then animation genre discrimination is performed. With stop motion animation

(SMA) and hand drawn animation (HDA).

Figure 6.3: Example of one frame of hand drawn animation.

6.2.1 Animation Genres

Hand-drawn animation is created by individual frames first drawn on paper. To create the illusion

of movement, each drawing differs slightly from the one before it. The animators’ drawings are

then copied onto acetate sheets or cells, which are filled in with paints in assigned colours on the

side opposite the line drawings. The completed character cells are photographed individually onto

motion picture film against a painted background using a rostrum camera; an example of hand

drawn animation is shown in Fig. 6.3. Modern methods of hand drawn animation use computers

to assist but the general appearance is the same [151].

CA, a three dimensional (3D) image model, is constructed out of polygons and projected into

a two-dimensional image. In more recent CA methods, coarseness caused by the polygons is
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Figure 6.4: Example of one frame of CA.

Figure 6.5: Example of one frame of Stop motion animation.

smoothed using a number of methods. Like hand drawn animation, images are characterized by

geometric homogenous shapes. However, unlike hand drawn animation, these images appear 3D

due to factors such as occlusions, lighting interactions, shading, shadows, and texture mapping

[151]. An example of CA is shown in Fig. 6.4.

Stop motion animation (SMA) is created by manipulating sculptures and photographing the

successive changes one frame of film at a time, in order to create the illusion of movement [151].

An example of stop motion animation is shown in Fig. 6.5.

6.3 Feature Space

Perceptually, it is simple to distinguish between the different genres. Texture features seem ideal

because spatially, the global texture attributes appear the same within each genre. To quantify the

textural differences a GLCM is used.

The GLCM provides a second-order method for generating texture features in gray scale im-
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ages [152]. There are many other methods to analyze texture [153], but GLCM ’s have several

advantages. They are relatively computationally inexpensive, simple to implement, and the fea-

tures are particularly well-suited for this application as discussed below.

6.3.1 Gray Level Co-occurrence Matrix

Let Im(ẍ, ÿ) be the gray level intensity array image with dimensions Ẍ by Ÿ . Every element of

a GLCM represents the number of occurrences of gray levels gx and gy with spatial and displace-

ment: ∆ẍ ∈ Z and ∆ÿ ∈ Z. If the GLCM is normalized it can be interpreted as a probability

density function (PDF) representing the probability that a pixel of Im(·) has the same intensity

displaced by [∆ẍ,∆ÿ], the PDF is given by:

P (gx, gy) =
∑Ÿ−∆y

ÿ=1

∑Ẍ−∆ẍ
ẍ=1 I[Im(ẍ, ÿ)−gy, Im(ẍ+∆ẍ, ÿ+∆ÿ)−gy]/(Ẍ−∆ẍ)(Ÿ −∆ÿ)

(6.2)

Consider the following example: The hand drawn animation in Fig. 6.3, the image is com-

posed of homogeneous colours and as a result, there will only be a few dominant gray tones,

therefore P (gx, gy) will have a few entries of large magnitude. Now consider the CA image shown

in Fig. 6.4. The image has a similar appearance but factors such as shading, lighting, and shadow

will lead to a larger number of smaller entries. A symmetric P (gx, gy) can also be calculated by

combining negative and positive values for displacement. The next section will discuss selecting

parameters together with some of the statistical measurers extracted from the GLCM.

6.3.2 Parameters of Gray Level Co-occurrence Matrix

There are three fundamental parameters that must be determined in selecting a GLCM: Quantiza-

tion levels (QL) of the image and the displacement and orientation. Before a GLCM is calculated,

the image is usually re-quantized, the standard of 16 QL is used. Many factors, such as image
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resolution and noise, determine the best QL for optimum classification accuracy [154]. 16 QL, 24

QL and 32 QL are tested, and literature suggests that over 32 QL is redundant [154]. To allow

for easy comparison, displacement is set to one, and horizontal and vertical displacement are used.

For a more statistically based method of selecting the parameters of a GLCM see [155].

6.3.3 Textural Features Extracted from Gray Level Co-occurrence Matrix

This paper uses 22 features. One of the equations is given below with the expected results, while

the rest are given in Table. 6.7 with their corresponding reference.

Contrast measures the local intensity variation and is given by equation 6.3. One would expect

stop motion animation to have a large contrast because it does not have the smooth appearance of

CA and the homogenous colours of hand drawn animation.

f2 = (
∑
gx

∑
gy

|gx − gy|2(p(gx, gy))) (6.3)

The rest of the measurements are given in Table. 6.7. For every frame t a GLCM is obtained

and the GLCM features are extracted into t feature vector of 22 dimensions:

ot = [ f1,t f2,t .... fd−1,t f22,t]
T (6.4)

Table 6.1: GLCM features used with corresponding reference, the following acronyms are used
Inverse Difference (ID) Inverse Measure (IM).

Autocorrelation [156] Correlation [152] Cluster Shade (CS)[156] Cluster Prominence (CP)[156]
Dissimilarity[156] Homogeneity [152] Homogeneity[156] Maximum Probability (MP) [156]

Variance [152] Sum Average (SA)[152] Sum Variance (SV) Sum Entropy (SE) [152]
Difference Variance (DV)[152] Difference Entropy (DI)[152] IM of Correlation 1 (IMC2)[152] ID normalized (INN)[154]
ID Homogeneity (IDH) [152] IDH Normalized (IDHN) [154] IM of Correlation 2 (IMC2)[152] ID moment normalized [154]
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6.4 Textural Hidden Markov Model

An early example of classifying texture with motion includes [150], which used Autoregressive

models. In this section we formulate a novel temporal texture model using HMM. Once the tex-

tural features have been extracted, the HMM will capture temporal relationships between frames.

For example, in stop motion animation each character must be manipulated manually. There is

no camera and background motion, which means the textural features extracted remain similar

from frame to frame. In CA there is an abundance of change caused from occlusions, lighting

interactions, shading, shadows, texture mapping, camera motion and blurring.

For this section a Gaussian mixture model (GMM) with Kmix mixtures is used as the observa-

tion distribution and is given in equation 6.5.

bi(ot) =

Kmix∑
k=1

wk,iN (ot|µki,Σki) (6.5)

This distribution represents observations that are inherent in each state. The parameter {wk}
must satisfy constraints 6.6 and 6.7.

Kmix∑
k=1

wk = 1 (6.6)

0 ≤ wk ≤ 1 (6.7)

Equation 6.5 represents the maximum likelihood estimate (MLE) of the probability of observ-

ing ot and being in state i at some time t. The probability of observing a sequence O can be

obtained by using equation 6.8.

For each genre the parameters θgenre are obtained using Baum-Welch re-estimation (BWRE)

[55]. Once the parameters have been obtained for each genre, we calculate the probability of

observing that particular state sequence using:
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GLCM matrix
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Calculate likeli-
hood for each Genre

Select Genre with
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Figure 6.6: The GLCM matrix and GLCM features are determined. Then the likelihood for each
genre is calculated. The sequence’s genre is determined by selecting the HMM with the largest

likelihood.

P (O|θgenre) =
∑

(q1,q2,..,qT )

= πq1bq1(o1)aq1q2bq1(o2)...aqT−1qT bqT (oT ). (6.8)

6.5 Block Diagram: Textural Based HMM

The final block diagram is shown in Fig. 6.6. The GLCM matrix and GLCM features are deter-

mined. This process is represented with a purple and pink block respectively. Then the likelihood

for each genre is calculated and denoted with the orange block. Finally the sequence’s genre is

determined by selecting the HMM with the largest likelihood represented with the purple block at

the bottom.

6.6 Experimental Procedure

The test set consists of hand drawn animation obtained from several popular TV shows. CA is

taken from short clips of Pixar movies and stop motion animation clips have been obtained from

YouTube videos or TV shows. No two videos come from the same movie or clip. Some videos
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Table 6.2: Percentage accuracy of different methods

Offset (∆ẍ,∆ÿ) (1,0) (0,1) (1,1)
Accuracy 83.33% 78.57% SCM

Table 6.3: Percentage accuracy of different QL (∆ẍ = 1,∆ÿ=0)

QL 16 24 32
Accuracy 83.33% 73.81% SCM

come from the same franchise, for example Toy Story 1, 2 and 3 but all were kept in the same

training or testing fold. Seven of the videos are used for training and seven of the videos are used

for testing. The clips range in length from as short as 30 seconds to as long as 4 minutes. The

quality, resolution, format, and aspect ratio also vary depending on the source of the video. The

videos are all converted to Windows media player format using a Real video player converter and

all processing has been done in Matlab. A total of 7 videos have been used for training and 14 for

testing or three fold cross-validation.

6.7 Results

In this work, 42 videos have been tested, 14 from each genre. For determining the optimal number

of states and comparing the number of Gaussian mixtures, the observation distribution is set to

one. The optimum number of states is 6, as more than 7 states led to singular covariance matrices

determined empirically.

As previously stated, different parameters for the GLCM have also been tested, some leading to

singular covariance matrices (SCM) in the HMM observation distribution. The results for different

offset parameters and different QL are shown in Table 6.2 and Table 6.3.

It was found that GLCMFBHMM outperforms the BICC method for a 22 Dimension (22 D)

feature vector and for the optimum number of a 100 Dimension (100 D) feature vector as deter-

mined by [56]. The results are shown in table 6.4 also BICC using HMM and in Table 6.5 the

classifier used was SVM.
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Table 6.4: Percentage accuracy of GLCMFBHMM vs HMM and BICC

Method BICC 22 D (HMM) BICC 100 D (HMM) GLCMFBHMM
Accuracy 66.67% 73.33% 83.33%

Table 6.5: Percentage accuracy of GLCMFBSVM vs SVM and BICC using (RBF) kernel

Method BICC 22 D (SVM) BICC 100 D (SVM) GLCMFBSVM
Accuracy 62.67% 71.33 % 74.33%

The GLCMFBHMM performed best, in general the HMM models outperformed the SVM for

the same feature set, this is most likely due to the fact that SVM works better with a much larger

number of features [1].

The confusion matrix is also used to evaluate the algorithm. It is evident from table 6.6 that

even with almost five times more features, BICC with HMM did not have the classifying ability of

GLCMFBHMM.

Once the optimum number of states is determined, the optimum number of mixtures is deter-

mined to be three. The increasing error for more than three states is most likely due to over-fitting

of the training data. The confusion matrix for the optimum number of states is given in table 6.7.

The optimum accuracy is 85.71% with six states performing best. The sample standard deviation

was 3.13% making the normal approximation of the accuracy approximately between 80% to 90%

with 95% confidence.

Comparing Table 6.7 with Table 6.6, it is evident that changing the number of mixtures does

not have any substantial improvement. Therefore, the data has well concentrated decision regions.

This is also beneficial in training, in that using one mixture requires less computation and is less

sensitive to initialization.

6.8 Conclusion

This chapter develops the novel GLCMFBHMM as a method to categorize hand-drawn animation,

CA and stop motion animation. The features extracted from the GLCM are used to quantify the
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Table 6.6: Confusion matrix for different methods, with the same ordering as table 6.4

Genres Drawn Stop Motion Computer
Drawn (7,9,10) (0,4,0) (8,1,4)

Stop Motion (0,3,1) (8,11,11) (6,0,2)
Computer (0,0,0) (1,2,0) (13,12,14)
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Figure 6.7: Number of mixtures vs accuracy.

different textures; then an HMM is used to classify each animation genre. The contributions in-

clude the first use of texture features to classify animation genre that can be used to classify colour

and non-colour animation, the use of HMM in temporal texture modelling, and a temporal texture

model based on GLCM.

It is found that the GLCMFBHMM functions best with GCLM’s with 16 QL and horizontal

offsets. The GLCMFBHMM has 85.71% accuracy and outperforms BICC by 16.66% for the same

number of parameters and dimensions.

The drawbacks of the method relate to its requirement of multiple frames, and the HMM re-

quires huge volumes of training data in high dimensional space. SCM suggests some features have

low variances or have bad scaling. Since the video data exhibits time varying patterns, various ex-

periments must be conducted to investigate the performance of each of the features and redundancy
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Table 6.7: Confusion matrix for a six state, three mixture HMM.

Genres Drawn Stop Motion Computer
Drawn 11 0 3

Stop Motion 1 11 2
Computer 0 0 14

of features.

Interesting avenues of research to follow include the use of textural based features in the stan-

dard video genre classification paradigm, the use of different textural based features, using textural

based features, and more advanced classification methods [157],[158],[159].
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Chapter 7

Conclusion

This thesis introduces the concept of cognitive content of a video sequence. The work focuses

on modelling and classifying the interaction between an individual’s cognition and the audio and

visual components of video content. Chapter 1 introduces the topic and positions it in the context

of current multimedia and scientific research. Chapter 2 then formulates the problem in terms of

recursive risk minimization and gives important background information with respect to statistical

models.

Chapter 3 introduces the novel concept of positive developmental video classification for chil-

dren. In addition to the novel research topic, we collect a set of videos that have been deemed as

having a negative or positive impact on child cognition from a literature review. A novel model

validation technique is developed, and several new features and experiments are conducted.

Chapter 3 also introduces automatic age-based classification. As a novel research topic, we in-

troduce several novel high-level audio features related to the cognitive capacity of children. These

novel features gauge the cognitive ability of the intended audience by quantifying the structure of

the language. These novel features include syllable rate, word rate, language complexity and noise

jumps. The feature extraction methods are also novel in that we count the number of syllables

and words using relatively computationally inexpensive signal processing techniques that forgo

complex speech recognition.

Given the accuracy of affective features, the relationship between emotions, cognition and the

impact of arousal, we focus on affective ranking in this chapter. The main contributions of this
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chapter include the development of a method to rank sequences using their affective content with-

out the granularity problem. In addition, the linking transform is developed to incorporate prior

knowledge into the cluster assignments. Furthermore, the work compares the accuracy of several

regression methods on the LIRIS database and performs regularization and variable selection via

the Elastic Net and Lasso methods.

Chapter 5 develops several state based models to map features onto the valence and/or arousal

plane. The methods include dynamic prediction hidden Markov models for arousal time curve es-

timation in sports videos and Kernel-based mixtures of experts for linear regression. The dynamic

prediction hidden Markov model determines the arousal time curve by selecting a state sequence

that maximizes the joint probability density function between the states and the arousal time curve.

We derive the parameters using the expected maximization algorithm. Experiments are performed

on several types of sports videos including golf, bowling, darts and tennis. Test measures include

squared residual error and criteria derived from psychology. The experimental results show that

the novel method performs better in estimating the arousal time curve than state-of-the art linear

regression methods on most of the tested sports videos. The Kernel-based mixture of experts is also

developed, with the method outperforming other mixture of expert models and exhibiting compa-

rable performance to other methods for regression on the modelling using the LIRIS database.

Due to the use of animation as a means of obtaining children’s attention, chapter 6 introduces

a method to automatically categorize different animation genres in a video database made for

children. The method is based on statistically modelling the temporal texture attributes of the

video sequence and unlike other methods can be used for black and white content.

Future Work

Most models do not take into account how duration impacts cognition, as they assume each sample

of the data to be independent. Thus models that do not make the independence assumption between

data samples in the video sequence should be explored.

Examining how features can be used to better predict how well an individual will understand

and absorb content would also be useful. This could be done with speech rate, using the rela-
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tionship between valence, arousal and attention or a myriad of other ways. In future work feature

comparisons of high-level, mid-level and low-level features can also be incorporated.

As the scientific literature states that the impact of video is different on adults and children, the

video impact on adults should also be explored. This would require joint research in the scientific

and engineering communities.

Although this thesis finds that in many cases low level features could be used for determining

the cognitive impact of video content, more semantic features such as bag of words and visual bag

of words could also be used to determine if specific instances of words or objects have an impact

on cognition. Other methods such as deep networks could also be applied but these methods

require much more data [40, 41]. Deep networks could incorporate semantic information and

improve general classification results on the video sequence. In addition, deep networks could be

incorporated in the audio component of classification which has been found to be important in

the cognitive classification, improving results by encoding complex semantic information from the

audio component.

Physiological data should also be included in the training data as it is a more robust means of

determining the impact in cognition. Another interesting avenue would be to predict the impact on

cognitive content using diagnostics taken before and after exposure to content.
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Appendix: Proof Linking Transformation Satisfies Mercer’s the-
orem if gram matrix is positive semidefinite

Theorem: Let K̂L be the N × N transformed kernel matrix, if K satisfies Mercer’s theorem then

K̂L satisfies Mercer’s theorem.

Proof: If K is a valid kernel matrix then Mercer’s theorem states that K is positive semi-

definite: αTKα ≥ 0. Where α ∈ <N . Then we must show that βT K̂Lβ ≥ 0 hold such that

β ∈ <N . The proof is completed by induction.

Base Case:

αT K̂1α = αTF1KF1α = βTKβ ≥ 0

Where F1α = β and β ∈ <N . This is because F1 is full rank. Similarly αTF1 = βT .

Therefore as K is positive semi-definite then αT K̂1α ≥ 0 and K̂1 is positive semi-definite and

satisfies Mercer’s theorem.

Induction step:

αT K̂Lα = αTFLK̂L−1FLα = βT K̂L−1β ≥ 0

As above αTFL = βT and FLα = β. As K̂L−1 as positive semi-definite and β ∈ <N then

βT K̂L−1β ≥ 0. Therefore K̂L satisfies Mercer’s theorem.

183



Bibliography

[1] H.K. Ekenel and R. Stiefelhagen, “Content-based video genre classification using multiple

cues,” in Proceedings of the 3rd international workshop on Automated information extrac-

tion in media production. ACM, 2010, pp. 21–26.

[2] A. Hanjalic and L-Q. Xu, “Affective video content representation and modeling,” Multime-

dia, IEEE Transactions on, vol. 7, no. 1, pp. 143–154, 2005.

[3] Nielsen, “MS Windows NT kernel description,” 2009.

[4] V.J. Rideout, U.G. Foehr, and D.F Roberts, “Generation m : Media in the lives of 8-to

18-year-olds.,” Henry J. Kaiser Family Foundation, 2010.

[5] S.C. Burke and S.L. Snyder, “Youtube: an innovative learning resource for college health

education courses.,” International Electronic Journal of Health Education, vol. 11, pp.

39–46, 2008.

[6] J. Copley, “Audio and video podcasts of lectures for campus-based students: production and

evaluation of student use,” Innovations in education and teaching international, vol. 44, no.

4, pp. 387–399, 2007.

[7] A. Clifton and C. Mann, “Can youtube enhance student nurse learning?,” Nurse education

today, vol. 31, no. 4, pp. 311–313, 2011.

[8] J. Agazio and K.M. Buckley, “An untapped resource: Using youtube in nursing education,”

Nurse educator, vol. 34, no. 1, pp. 23–28, 2009.

184



[9] L.J. Shrum, “Assessing the social influence of television a social cognition perspective on

cultivation effects,” Communication Research, vol. 22, no. 4, pp. 402–429, 1995.

[10] A. Lang and Z. Wang, “Cognition and emotion in TV message processing: How valence,

arousing content, structural complexity, and information density affect the availability of

cognitive resources,” Media Psychology, vol. 10, no. 3, pp. 317–338, 2007.

[11] A. Lang, “The limited capacity model of mediated message processing,” Theorizing com-

munication, readings across traditions, 2007.

[12] A. Lang and B. Reeves, “Negative video as structure: Emotion, attention, capacity, and

memory,” Journal of Broadcasting & Electronic Media, vol. 40, no. 4, pp. 460–477, 1996.

[13] A. Lang and K. Kawahara, “The effects of production pacing and arousing content on

the information processing of television messages,” Journal of Broadcasting & Electronic

Media, vol. 43, no. 4, pp. 451–475, 1999.

[14] A. Lang, K. Dhillon, and Q. Dong, “The effects of emotional arousal and valence on televi-

sion viewers cognitive capacity and memory,” Journal of Broadcasting & Electronic Media,

vol. 39, no. 3, pp. 313–327, 1995.

[15] A. Maass, K.M. Klöpper, F. Michel, and A. Lohaus, “Does media use have a short-term

impact on cognitive performance? a study of television viewing and video gaming.,” Journal

Of Media Psychology: Theories, Methods, And Applications, vol. 23, no. 2, pp. 65, 2011.

[16] A. Maass and A. Lohaus, “Effects of violent and non-violent computer game content on

memory performance in adolescents,” European journal of psychology of education, vol.

26, no. 3, pp. 339–353, 2011.

[17] R. Dietz and A. Lang, “Affective agents: Effects of agent affect on arousal, attention, liking

and learning,” in Proceedings of the Third International Cognitive Technology Conference,

San Francisco, 1999.

185



[18] A. Lillard and S. Peterson, “The immediate impact of different types of television on young

children’s executive function,” Pediatrics, vol. 128, no. 4, pp. 644–649, 2011.

[19] D.A. Christakis, J.S.B. Ramirez, and J.M. Ramirez, “Overstimulation of newborn mice

leads to behavioral differences and deficits in cognitive performance,” Scientific reports,

vol. 2, 2012.

[20] D.A. Christakis, “The effects of fast-paced cartoons,” Pediatrics, vol. 128, no. 4, pp. 772–

774, 2011.

[21] D.R. Anderson, S.R. Levin, and E.P. Lorch, “The effects of TV program pacing on the

behavior of preschool children,” Educational Technology Research and Development, vol.

25, no. 2, pp. 159–166, 1977.

[22] H. Kirkorian, E. Wartella, and D. Anderson, “Media and young children’s learning,” The

Future of Children, vol. 18, no. 1, pp. 39–61, 2008.

[23] S.M. Fisch and R.T. Truglio, G is for growing: Thirty years of research on children and

Sesame Street, Routledge, 2014.

[24] C. Christakis and A. Dimitri, “The effects of infant media usage: what do we know and

what should we learn,” Acta Paediatrica, vol. 98, no. 1, pp. 8–16, 2009.

[25] S. Calvert, A. Huston, B. Watkins, and J. Wright, “Children’s processing of television: The

informative functions of formal features,” Childrens understanding of television: Research

on attention and comprehension, pp. 35–68, 1983.

[26] S.A. Goodrich, T.A. Pempek, and S.L. Calvert, “Formal production features of infant and

toddler dvds,” Archives of Pediatrics & adolescent medicine, vol. 163, no. 12, pp. 1151–

1156, 2009.

[27] L.G. Naigles and E.T. Kako, “First contact in verb acquisition: Defining a role for syntax,”

Child development, vol. 64, no. 6, pp. 1665–1687, 1993.

186



[28] M.E. Schmidt and E.A. Vandewater, “Media and attention, cognition, and school achieve-

ment,” The Future of children, vol. 18, no. 1, pp. 63–85, 2008.

[29] A.B. Tucker, Computer science handbook, CRC press, 2004.

[30] S.A. Dayhoff, Diagonally-parked in a parallel universe: Working through social anxiety,

Effectiveness-Plus Publications, 2000.

[31] M.D. Lee and E-J. Wagenmakers, Bayesian cognitive modeling: A practical course, Cam-

bridge University Press, 2014.

[32] J. Santarcangelo and X-P. Zhang, “Arousal content representation of sports videos using

dynamic prediction hidden Markov models,” in Signal and Information Processing (Glob-

alSIP), 2014 IEEE Global Conference on. IEEE, 2014, pp. 1049–1053.

[33] J. Santarcangelo and X-P. Zhang, “Kernel-based mixture of experts models for linear re-

gression,” in Circuits and Systems (ISCAS), 2015 IEEE International Symposium on. IEEE,

2015.

[34] Y. Baveye, E. Dellandrea, C. Chamaret, and L. Chen, “Liris-accede: A video database for

affective content analysis,” Affective Computing, IEEE Transactions on, vol. 6, no. 1, pp.

43–55, 2015.

[35] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank, “A survey on visual content-based video

indexing and retrieval,” Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, vol. 41, no. 6, pp. 797–819, 2011.

[36] D. Brezeale and D. Cook, “Automatic video classification: A survey of the literature,” IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 38,

no. 3, pp. 416–430, 2008.

[37] B. Ionescu, I. Mironica, K. Seyerlehner, P. Knees, J. Schlüter, M. Schedl, H. Cucu, A. Buzo,
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