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Optimization of Engineering Systems using Genetic Algorithm enhanced
Computational Technigues

Masters of Applied Science
Nicholas Ali
Department of Mechanical, and Industrial Engineering
Ryerson University

The ficld of optimization has been and continues to be an area of significant importance in
the industry. From financial, industrial, social and any other sector conceivable, people are
interested in improving the scheme of existing methodologies and products and/or
creating new ideas. Due to the growing need for humans to improve their lives and add
efficiency to a system, optimization has been and still is an area of active research. Typically
optimization methods seek to improve rather than create new ideas. However, the ability of
optimization methods to mold new ideas should not be ruled out, since optimized solutions
usually lead to new designs, which are in most cases unique. Combinatorial optimization is
the term used to define the method of finding the best sequence or combination of variables
or elements in a large complex system in order to attain a particular objective.

This thesis promises to provide a panoramic view of optimization in general before zooming
into a specific artificial intelligence technique in optimization. Detailed information on
optimization techniques commonly vsed in mechanical engineering is first provided to
ensure a clear understanding of the thesis. Moreover, the thesis highlights the differences
and similarities, advantages and disadvantages of these techniques. After a brief study of the
techniques entailed in optimization, an artificial intelligence algorithm, namely genetic

algorithm, was selected, developed, improved and later applied to a wide variety of
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mechanical engineering problems. Ample examples from various fields of engineering are
provided to illustrate the versatility of genetic algorithms.

The major focus of this thesis is therefore the application of genetic algorithms to solve a
broad range of engineering problems. The viability of the genetic algorithm (GA) as an
optimization tool for mechanical engineering applications is assessed and discussed.
Comparison between GA generated results and results found in the literature are presented
when possible to underscore the power of GA to solve problems. Moreover, the
disadvantages and advantages of the genetic algorithms are discussed based on the results
obtained. The mechanical engineering applications studied include conceptual aircraft
design, design of truss structures under various constraints and loading conditions, and
armour design using established penetration analytical models.

Results show that the genetic algorithm developed is capable of handling a wide range of
problems, is an efficient cost effective tool, and often provides superior results when

compared to other optimization methods found in the literature.



Acknowledgements

The author would like to extend sincere thanks to his supervisor and co-supervisor for their
guidance and support throughout this research. I would also like to extend my gratitude fo
my peers who instilled good habits and constantly encouraged me to push on with my
research ventures. Many thanks to my friends who provided a balance to my life and
fostered the passion that they claim is the ingredient to my success.

Lastly, 1 wish to extend my dearest thanks to my family for their understanding and

patience. To them I am indebted.



To Margaret
without her ambition, love and sacrifice
this
and much else

would not be possible.

To Lisa and Catherine
for their unwavering support and Love.

do Passion
out of whose comfort
neither this thesis
nor 1
would have been created.

vii



® EE
ﬁeegafatgﬂﬁ PTSOICOELOLSOTTOOTEOTSOISHOSSHSS 2] sese BB@DQWGQ@QBQEE

&8s

s P
Berrﬁwer S age@OQ@9999@@@00@9@0@9@099@8@9009@@@9@9@39000039B@@@@3&@@@@@@§90@@@@3@@@9@@@@@&@@@&&3

L]
Abstract PHOVPOPSRELOISTOCOOPSONIPHLSOIFEDIIPOODOICCOTOIILDIOOS DﬁOOQOQDQOQQQO@BOG&GQOGQGOQ@@OO@BOi &

AcKNowledZements...ccccameecssscossossssasssssasssssssssesssssesssssssssessessassssssssss Vi
DedICALION  .ccceecersssconsasscesssssossnacsssesscsssosessssssonsssssasasssssssassassssssasesssss Vil
Table of CONtEnts ..cccccccceccssosconcsssossossssssssssesce . cocoscooscons VI
List of Figures. sessecsses . xiv
LISt Of TADIES cceeeereccscecoorsesecssssnoscossasoscsscsonsassonsasscscesnsosasassossesssosacse XVI
NOMENCIATUTE coceorvoeceescccosssoscssscsssossssssnsassssssossasessssassssessssssasssssosse XVl

Chapter 1 - INtroduction ......ccceccesecsessissnscssnssassossesassssssisassssnssossassnss 1

1.1 Categories of OptimizZation..........cocovvvreeiieiiiinniiee e 1
1.1.1 History and Objective 3

1.2 Thesis Organization...........c.ccevevvvveeiiireerereeniereeninreeeaeresneenneens 5

Chapter 2 - Panoramic View of most Techniques Entailed in
Engineering Optimization ......ccceoesecssososses .

2.1 An OR Research Perspective......cooeeevvvveieieeeeiieeeeiens e 7
2.2 An Al Research Perspective ........ooooeiviiviiiee e 8
2.3 Some OR and Al methods employed in mechanical engineering

APPHCALIONS ...t e 9
2.3.1 The Common Process for all Optimization Technigues 9
2.3.2 Optimization defined and general model presented 9

2.4 Operations Research Optimization Techniques .................... 11

2.4.1 Unconstrained Optimization Methods in Operations Researcha. e coesessescosces 11
2411 Direct Search Methods. ... 11
2412 Gradient—Based Methods ... e 12

2.4.2 Constrained Optimization Methods in Operations Research 12

viii



2421 Simplex Method and Goal Programmung ... 12

24272 Iteger PrOGTAMIIEIG ... oottt ittt e e oot e e e e e r e e e n e sam s snasnen 13
2423 Other Constrained Optimization Methods ... 1
2.5 Artificial Intelligent Optimization Techniques........c..cc..oce..e. 14

2.5.1  Why accept near optimal or sub-optimal solutions 14
2511 Optimality vs. Practicallty ... 15
2.5.2 Tabu Search 16
2.5.3 Simulated Annealing 18
2.54 Genetic Algorithms 21
2.5.5  Artificial Neural Network 24

2551 Supervised Training

2552 Graded Trainming.............oooioiiiieiee ettt

2553 Physics of the ANN
25531 Why neural NetWorks? ... ittt erssnseasas e es e s crnan e
25532 Advantage and Disadvantage of ANN

2.6 Reason for the Necessity of Heuristic/Soft Computing

TeChNIGUES ..o 26
2.6.1 Definition of Soft Computing Techniques 26
2.6.2 Multidisciplinary Design Optimization Defined 27

2.6.3 Soft computing technique as Industries path to optimization in the near
FULUTE oot e 28

2.6.4 Current and ongoing research software developed in which artificial

intelligent techniques are utilized 28
2.7 Why Genetic Algorithms.........cccooivoieiiieiee e 29

Chapter 3 - Genetic algorithms the Soft Computing Technique of

®
Cholceoceooeoeosocaoocoaoooonoooto'o&eooemneeoaosooawnwoeeaaoaooowouoaoc La X4 2413 3 1

3.1 What is a Genetic Algorithm (GA)? ......ooooiiiiiiiiiicee 31
32 Difference and Advantages of GA from Conventional
Optimization Techniques. ... 32
3.2.1 Disadvantages of GA 32
3.3 GenetiC OPerators........ccveeiiiieiiiiirieaereeesiirreieeeibeeesieeeainee e 32
34 Basic Elements of a Genetic Algorithm..................... 35
34.1 Selection, 35
342 Crossover 35
3.4.3 Mutation 36
3.5 The Coding of the algorithm. ..o 36
3.5.1 Inputs required by program 36
35.1.1 PODUAtION SIZE. . .0ioiiitii il et 7

ix



3512 NUMBET OF ParamELer.... ..o et e es et et es ettt ns 37
3513 Probability of crossover and mutation ... 38
3514 COMBITAINES ...ttt e et e e et e 38
3515 The degree of BCCUTACY TEQUITSH.......oo i er e 38
3.5.1.6 Length of ChrOMOSOMIE ...t ettt 38
3517 The number of GENErationS. ... ...t e 3%
3.5.2 (Generating the population and decoding 39
3.53 Genetic Operators 48
3331 Selection OPEFATOTS. ..ottt 46

35311 ROUIEUE WHEET SEIBEIION ......o.ovoeeeeeeec ettt era s rms st bs st s ns e s eabessarsa s ns st ns s s eesesasnenns 40

35312 Tournament BEIBEHOM ......cocovreioreeet e esseas s et eme s sessaeseseases et seee e sesemsmnscrannssessassse seassessnesaness B4

35313 Mormal GeoMEEIC SEIECIION ..ot er et s eetea et a e seare st esns e s aaesaeiaear s ensetesensednesesesnnsansansenassaseess 41
31532 CrOSSOVET (IPEIALOTS. ...t i et ee et et e et et ees e eeaa s e eeteas e e st e e eerraaeeanie s 42

3.33.2.1 0D POIIE CIOSBOVET ..o it ee et e e e e e st ot ercan et sensar et s ser e cas s e s e e oe e as e esesenrn s s e mncssanrie 42

35322 Two point Crossover ...

353323 Multi-pomt Crossover ..

35324 Uniform Crossover .......
3532 Mutation Operators..

35321 One-bit mutation ...

353.22 Two-bit mutation......

3.54 Stopping Criterion

3.6 Handling Constraints...........ccooeveeeoirireeiinieerinee oo sirie e 45
3.6.1 Traditional Approach 46
3.6.2 Adaptive Penalty 47

3.7 Techniques to Improve the Basic Genetic Algorithm

Performance .........cooooviiiiee 47
3.7.1 Ehtism 48
3.7.2  Fitness scaling or ranking 48
3.7.3  Inverse scheme 49
3.74  Dynamically changing probability of crossover and mutation..ceessesesesssssse 50
3.7.5  Dynamically Changing Population Size 51
3.7.6  Better Visualization of Results 52

3.8 Optimizing Computing Time.........ccccoveeiiineniiinieceee 52
3.8.1 Calculating fitness values only once 53
3.8.2 Stand-alone Genetic Algorithm 53

3.9 GUIorthe GA ..ottt 53

3.10 Functionality of GA as an Optimization Tool.......................... 54

Chapter 4 - Basic Applications to Validate GA code.....cccececunseeee S5

4.1 Complex Mathematical functions...................c.cocoeeeniee 35
4.1.1 Results to the two functions outlined above 57

4.2 Optimizing the Volume of a Rectangular Cantilever Beam ..... 61



4.2.1  Problem Implementation into GA 61
42.2  Handling Constraints 62
423  Resulis to the above GA problem implementation 62

4.3 Minimizing the Weight of a Scuba Diving Tank (Cylindrical

Pressure Vessel) ..o 63

431 Problem Implementation into GA 64
432  Results to the above GA problem implementation 64
44 Discussions and Conclusion .........coooeiveiniiicieiiincein 65

Chapter 5 - Conceptual Aircraft Design — A Genetic Search and
Optimization ApPProach....cc..coeessscssscssssosssssssssssssssessss 60

5.1 SUMIMIATY ...eveiiviiieeiice e ee et e s sree e s e e e eeneeeeaeeeeneees 66
52 INtroduction ... 67
5.3 Problem Statement ...........eioiiiiiiiiieiee e 68
5.3.1 Design Goals 68
5.3.2  Mission Profile 71
5.3.3  Fitness evaluation 71
53.4  Design Constraints 72

5.4 Results and Comparison of GA Optimized Designs with Boeing

0 N OSSP 73
5.4.1 Evolution of the aircraft design 77
5.5 Discussion and Conclusions ........c..ccovveeveeieeeiiiaeniinenice e 81

Chapter 6 - Applicability and Viability of a GA based Finite
Element Analysis Architecture for Structural Design
OptimIZAation...cccosccccscssssescssssssseossssssssssssssssasssssssssssssses O3

6.1 INrOdUCHION .....ceiieiiiee ittt e snee e 84
6.2 Proposed FEA and Optimization Technique............cccoeeveeeee. 86
6.2.1  Propose Structural Technique 86
6.2.2 Proposed Optimization Technique 87
6.3 Optimization Model ............coooo i, 88



6.4 Techniques Interfaced .........cooovviiiciciiinici e, 91

6.5 Mustrative EXamples ..o, 92
6.5.1  3-bar Truss 93
6.5.2  10-bar Cantilever Truss 95
6.5.3  18-bar Cantilever Truss 97
6.54  25-bar Space Truss 101
6.54.1 80 b e e e e e 101
65472 B8 2 e e 101
6543 B B e e e e 101
6.5.5 72-bar Transmission Tower 107
6.5.6 47-bar Planar Tower 110

6.6 Discussion of Results and Conclusions.........ccoceevvvveeeiininnnnn, 114

Chapter 7 - Optimization of Two-component Armour
Systems against Ballistic Impact using Genetic
AIGOTItRINS c.ceccrveosscosncssoscsscosasssssossossssassossassssase 117

7.1 INtroQUCTION ... ittt eee 118
7.2 Areas of Research of Composite Armour ...........cccoeeveeeneenn. 120
7.2.1  Analytical Modeling 120
7.2.2  Numerical Simulation 121
7.2.3  Experimental Studies 121
7.3 Theoretical Modelng .............ccocovveiiiiiiecicc s 121
7.3.1  Analytical Models 122
7311 Florence Model ... 123
73.1.2 Hetherington Model ... ... e 123
7.3.13 Ben-Doretal. Model ... 125
7.4 Theoretical results for Florence and Hetherington model ...... 127
7.4.1 Results after analytical model implementation into GA 131
7.4.2 Discussion of results obtained by the GA 133
7.5 Areal Density Consideration............ccceeeeeiviiiiereciineseeenn, 134
7.5.1 Results after Areal density consideration 135
7.5.2 Results after Areal density consideration is implemented into GA.esecessss 136
7521 SensHIVIEY STHAY ..ottt 136
75211 Effect 0f 8Aded COMSITAIIE ....o.oeeottiiceiie ettt aeb s bt etes st s b s st st s skt b naeessras e 137
75212 Effect of changing Projestile P ..ottt e 138
7.52.1.3 Effect of inereasing the mass of the projectile ... 138
7.5.3  Discussion on the concept of Areal Density 139
7.6 Energy absorption Considerations ..........cccoeevevvveeiieeeiennineenns 140

xii



7.6.1 Results after energy absorption consideration 141
7.6.2 Results after energy absorption consideration is implemented into GA .ecvsses

7.6.3 Discussion on the concept of energy absorption 146

7.7 Looking into Energy absorbed as a proper constraint for GA

problem definition............cooooiiiiii i, 147
7.7.1  Effect of increased impact velocity on armour design 150
7711 SenSIIVIEY STV ..ot er et e et e e oottt e nn et ee e snees e s 151
7.7.2 Discussion after investigation into the effects of increase impact velocity on
armour design 151
7.8 Ben Dor et al. model results ........ooooveveiiviiiii i 152
7.9 Ben Dor et al. model resulis after implementation into GA ... 154
7.9.1  Sensitivity STUAY .....oooooii s 156
7.9.2  Discussion on Ben-Doretal. model..................o 157
7.10 General Discussion and Conclusions............cccooceeviiiennn. 157
7.11 ADPPENAIX A oo 159

Chapter 8 - General Discussion, Conclusions and suggestions for
fut“re Work009'0'.000..0..’.‘...00..’0.'0wﬂ..eﬁ'.’.‘.UQQIOOCOGIQDGSOOOOCOOO 161

References 8Eﬁﬂe@&@ﬁ@ﬁﬂBWG@&QO@@Q@@ﬁ0@0@GQﬁ@@@30@QB@G@@@0&9@@@@9&@@@0&90@@9164

Xiit



Figure 2.3.1:
Figure 2.5.1:
Figure 2.5.2:
Figure 2.5.3:
Figure 2.5.4:
Figure 2.5.5:
Figure 2.5.6:
Figure 3.3.1:
Figure 3.4.1:
Figure 3.5.1:
Figure 3.5.2:
Figure 3.6.1:
Figure 4.1.1:
Figure 4.1.2:

Figure 4.1.3:
Figure 4.1.4:

Figure 4.2.1:

Figure 4.2.2:

Figure 4.3.1:

Figure 5.3.1:
Figure 5.4.1:

Figure 5.4.2:
Figure 5.4.3:
Figure 5.4.4:
Figure 5.4.5:
Figure 5.4.6:

Figure 6.4.1:
Figure 6.5.1:
Figure 6.5.2:
Figure 6.5.3:
Figure 6.5.4:
Figure 6.5.5:

Design Optimization ProCess......cooooiiiiiiiciiieeiee e, 10

Flowchart of a standard Tabu search algorithm. ... 17
Boltzmann Distribution Probability ..o 20
Flowchart of a standard Simulated Annealing algorithm..................... 21
A simple genetic algorithm.............ooooiiiii e 22
Comparison of the robustness of GA with more traditional methods ........ 23
Simple model of a BEUTOT........ccooiiiie e 25
Simple flow chart of a Genetic Algorithm............ 33
Detailed fIOW. ..o 34
One point crossover applied to binary string at random point.................... 42
One bit mutation of a binary bit SIriNg............co oo eiieiiniccis 44
Solution space: feasible area and infeasible area...................... 46
Convergence history of the GA for the above mathematical function....... 57
Tracing procedure that indicates the GA search history over the surface of
the above TUNCHION. ... 58
Convergence history of the GA for the above mathematical function........ 59
Tracing procedure that indicates the GA search history over the surface of
the above TUNCHION. ... e e 60
Sketch of the Cantilever Beam for Problem Define..........occo 61
Convergence history of GA for optimizing the volume of a cantilever beam...... 63
Convergence history of the GA for optimizing the weight of a cylindrical
1111 GO SO U S SU SO P PUUO USRS RR PP 65
Transport aircraft mission profile ... 71
Convergence history for genetic algorithm conceptual aircraft designs for
TUIL L 00 St 75
Best design at generation S ..o 77
Best design at generation 20 ... 77
Best design at generation 60 ... 78
Best design at generation 120 ... 78
Top view and side view comparison of optimized aircraft found by the GA
With eXISHNG AESIZN. ..ooioi i 80
Design methodology and technique interface.................... 92
3-bar truss, mitial EEOMEIIY ..o 94
3-bar truss, Optimized EOmMEITY ......ooiiiiii e 94
10-bar truss, initial GEOMELTY .....ooiiiiie e 95
18-bar truss, initial GEOMEITY ..o v oo 98
18- bar truss, optimized structure when subject to stress constraint ....... 98

Xiv



Figure 6.5.6:
Figure 6.5.7:

Figure 6.5.8:
Figure 6.5.9:

Figure 6.5.10:

Figure 6.5.11:
Figure 6.5.12:
Figure 6.5.13:

Figure 7.3.1:
Figure 7.4.1:

Figure 7.4.2:
Figure 7.4.3:
Figure 7.4.4:

Figure 7.4.5:
Figure 7.5.1:

Figure 7.5.2:
Figure 7.6.1:

Figure 7.6.2:
Figure 7.6.3:

Figure 7.6.4:
Figure 7.6.5:
Figure 7.8.1:
Figure 7.8.2:

Figure 7.8.3:
Figure 7.8.4:

18-bar truss, convergence history when subjected to stress, fabrication

and buckling constraint.................ccoo 100
18 bar truss, optimized structure when subjected to stress, fabrication and
buckling constrainmt ... 100
25-bar space truss, initial ZEOMELTY ....oooviiievic e 102
25-bar space truss, optimized structure subject to area, geometry, stress
and buckling constraimts ... 105
25-bar space truss, optimized geometry subject to area, geometry, stress,
buckling and natural frequency constraints ... 107
72-bar transmission tower, initial geometry....... 108
477-bar planar tower, initial ZEOMELTY ... 111
47-bar planar tower, optimized gEOMENY.........ccociiiiiiiiicnii e 112
Florence’s model... ... 122
Theoretical plot of h1/h2 vs. ballistic limit Vp: projectile threat: 7.62mm
armour PIerCing (AP) ..o 128
Theoretical plot of h1/h2 vs. ballistic limit Vp: projectile threat: 0.5 in
DAIL .o e 128
Theoretical plot of h1/h2 vs. ballistic limit Vp projectile threat: 20mm
fragment simulating projectile ... 129
Combined influence of the total thickness and the thickness ratio on the
ballistic limit: 3D plot of h1/h2, hl1 +hZ and Vp........cc 129
Convergence history 0f GA. ... 132
Theoretical dependence of ballistic limit on h1/h2 for contours of constant
Ar€al dENSILY. ....ooiii et 135
Dependence of ballistic limit (Vp) on h1/h2 for constant areal density —
comparison of theoretical and experimental results ... 139
Comparison of theoretical predictions with measured values of energy
AbSOTDEA. . ..o 142
Energy absorption dependence of areal density ... 143
Theoretical dependence of energy absorption capacity on GFRP thickness
and areal denSity. .........cooooiiii e 143
Dependence of energy absorption capacity on GFRP thickness and areal-
ENISTEY. ..o e 144
Dependence of energy absorption capacity on ceramic/GFRP ratio —
theoretical PrediClions. ..........ovoeveivrieieree e 144
Comparison of theoretical predictions with experimental data adapted from
studies by Hetherington [19]........... 152
Areal density of armour vs. thickness of ceramic plate.......................... 153
Areal density of optimal armour vs. ballistic limit velocity .................... 153
Optimal thickness of ceramic plate vs. ballistic limit velocity. ............... 154



Table 2.1.

Table 5.3.1.
Table 5.4.1.
Table 5.4.2.
Table 6.5.1.
Table 6.5.2.
Table 6.5.3.

Table 6.5.4.

Table 6.5.5.
Table 6.5.6.

Table 6.5.7.

Table 6.5.8.
Table 6.5.9.

Table 6.5.10.

Table 6.5.11.

Table 6.5.12.

Table 6.5.13.

Table 6.5.14.

Table 6.5.15.

Table 6.5.16.

Table 6.5.17.

Table 6.5.18.

Table 7.4.1.
Table 7.5.1.

OR problems and corresponding solution method ... 8

Critical Aircraft Design Variables...........cocoooiiiiiiiiece 70
GA Optimized Conceptual Aircraft Designs.......cocoooiiviiinini 74
Other Affiliated GA Optimized Design Variables ... 75
Loading condition for the 3 bar truss problem shown in Figure 6.5.1. ......... 93
Comparison of results with optimization techniques native to ANSYS........ 94
Loading and design condition for 10-bar truss problem shown in Figure 6.5.3.

...................................................................................................................... 96
Comparison of design variables and objective function values for 10-bar truss
SROW @DOVE ..o e e 97

Loading condition for the 18 bar truss problem shown in Figure 6.54. ....... 98
Comparison of design variables for 18-bar truss subject to stress constraint....

....................................................................................................................... 99
Comparison of design variables for the 18-bar planar truss subject to stress,
fabrication and buckling constraint..............cocoiiieiiii 99
Member grouping for the 25-bar space truss shown in Figure 6.5.8........... 102
Case 1 and Case 3 loading condition for the 25-bar space truss problem
shown in Figure 6.5.8. ... 103
Comparison of design variables for the 25-bar space truss subject to area,
stress and deflection CONSIAINS .........ooovevieciiriiree e 103
Case 2 lpading condition for the 25-bar space truss problem shown in Figure
0.5 8. ettt ettt n e 104
Comparison of design variables for the 25 bar space truss subject to area,
geometry, stress and buckling constraints ... 104
Design Variables for the 25-bar space truss subjected to area, geometry,
stress, and buckling and natural frequency constraints.............ccccooeveninen. 106
Loading Conditions for the 72-bar Transmission Tower shown in Figure
B.5. 11 et n e n et ane e 109
Comparison of the design variables and objective function value for 72-bar
TTANSMISSION EOWET ..ottt eeceie et te ettt e e ene e sb s 109
Loading conditions for the 47-bar planar truss tower shown in Figure 6.5.12.

................................................................................................................. 111
Comparison of area design variables for the 47-bar planar tower subject to
area, geometry, stress and buckling constraints.............c.ocoviiiiiiin e 113
Comparison of geometry design variables for the 47-bar planar tower subject
to area, geometry, stress and buckling constraints..............cooooiiviicnns 114
Physical properties employed for armour...........c.ocoooiieiiiiiiii 127
GA generated 18SUIS. ..o 136



Table 7.5.2.
Table 7.6.1.
Table 7.6.2.
Table 7.7.1.
Table 7.7.2.
Table 7.7.3.

Table 7.7.4.
Table 7.7.5.
Table 7.9.1.
Table 7.9.2.
Table 7.9.3.

Table 7.10.1.

Results after constraint 3 was 28880 ..o 138

Target plate dIMENSIONS ........ioviii it e e e e 141
Impact and residual velocIies. ..o 142
Remove constraint 5 with evervthingelse thesame................. 149
Remove constraint 4 and constraint 5, with everything else the same. ... 149
Remove constraint 4 and keep constraint 5, with everything else the same.
..................................................................................................................... 149
GA generated TeSUHS. ..o 150
GA generated results after constraint on residual energy 1s 1mp§ememed 151
GA generated 1esultS. ... 155
GA generated resulfS........ocooioiii e, 156
GA generated results after h1/h2 > 1 is added as a constramt..................... 156

Summary of Best GA generated designs........coooeveviivieienniceceee e 158

xvii



This list defines the symbols used throughout this thesis. Symbols not defined here are

defined as they appear in the text.

pc probability of crossover
pm probability of crossover
gen# generation/iteration number

pop_size population size
h1/h2  ratio of front plate to back plate thickness for armour
tot thk total thickness of the armour

hl thickness of front plate
h2 thickness of back plate
mat] material index for front plate

mat2 material index for back plate

W, gross weight (Ibs.)

C, wing root chord (ft)

C, wing tip chord (ft)

b wing span (ft)

S gross wing area ( fi°)

S, horizontal tail area ( fi*)

Lo length of the fuselage (ft)

S, gross tail area ( fi°)

Vv, horizontal tail volume coefficient
v, vertical tail volume coefficient

F stick force (Ib.)
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C change of pitching moment coefficient with angle of attack

7l

C

1m0

coefficient of moment at zero angle of attack

(Xcg 4 ) forward centre of gravity limit

{ Kes & )gn  aft centre of gravity limit

n,  ultimate load factor

a a,+2n

a radius of the projectile’s armour-piercing (AP) core
d, density of the ceramic tile

d, density of the backing plate

hy thickness of the ceramic tile

h, thickness of the backing plate

m mass of the projectile

Vv, the predicted value of the ballistic limit

|8 Assumed impact velocity

v, Residual velocity

T total thickness of armour
h1/h2 thickness ratio of front plate to back plate of armour
&, breaking strain of the backing plate

o,  the ultimate tensile strength of the backing plate
o) density of the ceramic tile

o density of the backing plate

Acronyms

OR  Operations research
Al Artificial intelligent
GAs  Genetic algorithms



SA
TS
ANN
EOQ
FEA

Simulated annealing

Tabu search

Artificial Neural Networks
Economic order quantity

Finite Element Analysis

APDL ANSYS parametric design language
GFRP (Glass Fibre Reinforced Plastic

FSp
AP
UTS
1D
2D
3D

Fragment simulating projectile
Armour piercing

Ultimate tensile strength

one dimensional

two dimensional

three dimensional



Introduction

1.1 Categories of Optimization

Optimization can generally be branched into two broad groups, namely, operation research
methods and artificial intelligent or heuristic methods. Since this thesis is highly application
based, this chapter presents an overview of optimization. Against this background, we set a
stage for machine learning strategy of genetic algorithms as a technique for solving
engineering problems. Terminology on the topic is kept simple so as to facilitate easy
reading and understanding of the material. In later chapters, when the optimizer is applied to
an engineering problem, a separate introduction is given to introduce previous but similar

applications to the problem.

One major branch of optimization is operations research (OR). OR is concerned with the
quantitative specifications of problems and the use of mathematical techniques to solve
these problems. The latter can be achieved with the aid of a computer. On the other hand,
the other branch of optimization, that is, artificial intelligence (AI), is concerned with
making computers capable of emulating intelligent behavior [1]. Since the ability to solve
problems is one of the hallmarks of human intelligence, a major Al focus is on computer-
based techniques for solving problems [2]. Moreover, OR has found usefulness in decision-

making, while Al pursuit is in automatic decision-making,



It must be noted that both OR and Al have approached the issue of problem solving from
decidedly different angles. Whereas OR has emphasized the quantitative, Al has tended to
stress the qualitative aspects of problems. Moreover, OR approaches have tended to be
calculational and algorithmic, while Al solution methods tend to rely on logic and inference.
Both OR and Al involve the use of descriptive knowledge (i.e. data and information).
Beyond this however, OR focuses on the management of procedural knowledge whereas Al

tends to focus on the management of reasoning knowledge.

Although it is not the focus of this thesis, in general there exists a common ground between
OR and Al Historically, the OR and Al research communities worked in relative isolation
from one another. On the one hand, this separation is difficult to understand, since both
disciplines share many similarities deeply concerned with questions of human problem
solving and decision-making. In addition, both are highly computer dependent, and finally
both share a common conceptual framework. However, despite the similarities these two
disciplines are highly distinct from each other as explained above. Despite their differences,
OR and Al are united in one major effort to solve real world problems. One important aspect
in which this union can be useful -and has been fruitful- is in the decision support system

(DSS) arena.

Nonetheless, the complexity amidst real world problems has exposed the limitations of both
disciplines and has forced researchers to look more deeply into improving the mechanics of
the search and optimization algorithm of both methods, or create hybrid systems that
integrate OR and Al tools. Perhaps, the most significant call for integrative approaches came
from Simon [3], who stressed the common problem solving foundations of both fields.
Simon also stressed that the pitfall in either methods can be found in the strength of the other
methods. Thus integration was argued then as the only way to solve the problems
encountered with either OR or Al approaches. Consequently, some development in OR/AI
interface has emerged. Both OR and Al require methods that effectively cope with
uncertainty and imprecision. For details on handling these concepts in both approaches,

please consult references 4 and 5.



1.1.1

Due to the vast nature of optimization, this thesis primarily focuses on one technique on the
branch of optimization that umbrellas Al approach. Nonetheless, general descriptive
information on both OR and Al technigues are presented to underscore the scope of
optimization and further facilitate ease of reading and understanding of the thesis. Thus a
panoramic view of optimization is initially presented, and then the study zooms in on one
particular AT method that is the backbone of this thesis. The Al method investigated is
genetic algorithms (GAs). Genetic algorithms are a type of search algorithm for finding
optimal solutions to computationally difficult problems, and are based on analogies to
biological reproductive processes [6]. The basic ideas of genetic algorithms were developed
by Holland [7] while investigating how to build intelligent machines that have the capability
of learning. After the publication of Holland’s work in 1975 the term ‘genetic algorithm”
gained popularity mainly because of its success in applications such as job-shop scheduling,
pipeline systems and vehicle routing, just to name a few. Today, it can be argued that
genetic algorithms are some of the most robust evolutionary algorithms in use. Furthermore,
genetic algorithms have found extensive application in the field of research and
development. The objective of this thesis is the investigation of genetic algorithms

application to mechanical engineering problems.

The application of genetic algorithms to an engineering problem studied in this thesis is
preceded by its own introduction. The goal of this thesis is to highlight some successful and
important applications of genetic algorithms in the engineering arena. Some of these
applications that is pertinent to this thesis is underscored here and is repeated in later
chapters for completeness. Quagliarella and Cioppa [8]; Perez et al. [9]; Aunderson and
Gebert [10]; Marx et al. [11]; Ewing and Downs [12]; Tse and Chan [13]; Butler et al. [14];
and Gage et al.[15], were all successful in applying GA to study different design aspects of
the aircraft wing. Tong et al. [16]; Mosetti and Poloni [17]; and Hajela [18] were also
instrumental in applying the GA to study complex design problems in the aerospace
industry. Furthermore, Crossley and Laananen [19] were successful in applying the GA to
study the conceptual design of helicopters. In addition, Sobieski et al.[20]; Gallman and

(5]



Mason [21}; Malone and Mason [22]; Crispin [23]; and Bos {24] were all able to utilize the
GA to study aircraft design.

Goldberg [25], — a pioneer in the work of GA- and Samtani appeared to be the first that
employed the GA for structural optimization. A 10 bar truss problem — which is today a
benchmark problem in structural optimization - was utilized to study the GA’s role in
structural optimization. Jenkins [26] utilized a simple GA created by Goldberg [27] to study
a truss-beam roof structure. Hajela and Shih [28] looked into the applicability of GA as a
function optimizer for structural optimization. Rajeev and Krishnamoorty [29] proposed a
simple discrete GA for optimizing truss structures. Rajan [30] extended the magnitude of
the problem by combining size, shape and topology optimization of trusses using a modified
GA. Deb and Gulati [31] also proposed a GA for size, shape and topology optimization
using a real-coded GA. Camp et al. [32], looked into a simple genetic algorithm for discrete
optimization of 2D structures using a finite element analysis program developed by

Zienchawicz.

To the author’s knowledge, Florence [33] appeared to be the first to present a simple
analytical model to analyze the impact onto a ceramic/composite armour. Florence model —
based on the ideas of Wilkins [34-37]- was used to estimate the ballistic limit. Studies
conducted by Prior [38], Gage [39] and Rajagopalan [40] have found satisfactory agreement
between experimental results and the theoretical predictions by Florence models.
Hetherington [41] later revised Florence model to account for the energy absorbing
capabilities of the armour. Woodward [42] later proposed a 1D model for the perforation of
a ceramic armour using a lumped mass approach, which takes into account the erosion of
both projectile and target. Many of the ideas in Woodward’s model were adapted from
previous work of Wilkins, Florence and Hetherington. Den Reijer’s model [43] is the most
recent analytical model found in the literature today. The model is a little more sophisticated
than Woodward’s model in that it takes into account projectile mushrooming effects. A
different approach to armour design was investigated by Ben Dor et al. [44], whose

objective function was geared towards armour weight minimization.



Hence, this thesis focuses on the use of a non-traditional optimization method {genetic
algorithms) to solve some engineering problems. Most of the applications studied in this
thesis entailed the use of imperial units mainly because many publications studied utilized
such units which, facilitated comparison and validation of the results. The viability of this
method to the particular mechanical engineering application is discussed. Comparison
between GA generated results and results found in the literature are presented when possible
to underscore the power of GAs to solve mechanical engineering problems. Moreover, the
disadvantages and advantages of the genetic algorithms are discussed based on the results

obtained.

This study illustrates that for small search spaces, classical exhaustive OR methods usually
suffice; however, for large search spaces - which are an inherent property of large complex
problems - artificial intelligence techniques must be employed. The randomness of the GA,
coupled with its capabilities of learning, offers a somewhat new and promising approach to
traditional design techniques. Results indicate that genetic algorithms are capable of solving
a wide variety of mechanical engineering problems. From the results we can also glean that
GA generated results are reasonable and practical for the engineering applications studied.
More importantly, GA can be used as a search and optimization tool that can save
significant costs and time in the industry. The thesis concludes with some discussion on the
applicability of GAs to solve mechanical engineering problems and some thoughts on

unresolved issues.

1.2 Thesis Organization

Chapter 2 briefly highlights some of the methods common to problem solving in mechanical
engineering. Both operations research methods and artificial intelligent methods of
optimization are presented in order to paint a global picture of optimization.

Chapter 3 focuses on an Al method of optimization, namely, genetic algorithms. Genetic
algorithms from Chapter 3 onwards, become the main theme of this thesis. In chapter 3,
detailed development of genetic algorithms are presented, along with methods and schemes
to improve the basic genetic algorithm technique. Also the method of implementing

problems into the genetic algorithm is also underscored.



Chapter 4 marks the begihning of the genetic algorithm application to problem solving. The
applications in this chapter are kept simple so as to test the correctness of functionality of
the genetic algorithm. Moreover, chapter 4 serves as a springboard for application and

integration of real world problems to the genetic algorithm created.

The contents of chapter 5 are centered on the conceptual design of aircrafts using genetic
algorithms. Genetic algorithms are utilized to reduce the lengthy time and effort spent
creating and integrating aerodynamics codes, sizing routines and performance modules,
entailed in a typical aircraft conceptual design process.

Chapter 6 is a study of the use of genetic algorithm to study structures. In this chapter, the
genetic algorithm is integrated into a finite element software so as to exchange information
for design. This integration paved the way for optimization of any structure created within
the finite element software. Moreover, the integration saved significant amount of time by

utilizing already existing finite element tools.

In Chapter 7, genetic algorithm is employed to study, analyze and optimize armours against
ballistic impact. The analysis is strictly the fusion of ballistic analytical models into the
genetic algorithms for optimization. Initially, the ballistic analytical model is used by itself
in order to ensure correctness in programming and concepts. Having achieved the latter,
integration of the model into the genetic algorithm is conducted. Various case studies are

conducted to test the validity of the problem formulation and definition within the optimizer.

Chapter 8 provides general conclusions about the use of genetic algorithm for optimizing
and designing in mechanical engineering. In addition, some suggestions for future work are

presented to extend this current research venture.



Panoramic View of most
Techniques Entailed in Engineering

Optimization

Most optimization techniques in engineering can be classified as either an operation research
(OR) approach or an artificial intelligent (Al) approach. The prime objective of this chapter
is to illustrate the importance of OR approaches and Al approaches in engineering
optimization. The chapter will later allude to some of the techniques covered in the two
different approaches and then compare these techniques under performance and robustness
criteria. The chapter also highlights the area in which there is a common ground for OR and
Al approaches. More importantly we learn why an Al method was chosen as an optimizer

for all the applications studied in later chapters.

2.1

From an OR perspective there is specific problem and there is a specific procedure for

Perspective

solving those problems (see Table 2.1 adapted from Ref. 1). A procedure is a step-by-step
specification of how to accomplish some task. It is the wording or problem statement that

helps us to decide which OR method to use. Hence a given procedure requires a certain type



of problem statement as a precondition to execution. This to some extent has made OR

procedures unattractive for solving complex problems.

Table 2.1. OR problems and corresponding solution method

Examples of OR problems Corresponding
Procedure
Minimize some quantity subject | Mathematical
to certain constraints being programming
satisfied algorithms

Determine the quantity of an EOQ formulas
item (having certain demand,
holding cost, and order cost)
What is the earliest or latest Network analysis
starting time for some activity? | algorithms

What is the expected return for a | Expected value

particular investment? calculations

Determine a forecasting function | Regression

based on historic data algorithms

Forecast a quantity Forecasting
functions

How many servers should be in | Queuing theory

place? methods

What are the impacts of altering | Simulation

a system in particular ways algorithms

2.2 An Al Research Perspective

From an Al viewpoint, “computer systems can be imbued with behaviors that would be
regarded as intelligent if witnessed in a human”[1]. Al research is centered on making
progress in emulating some intelligent human behavior. Some practical progress aimed at
emulating human behavior has been made (see Ref 45). In addition, Al focuses on
discovering new ideas, techniques and languvages for developing computer systems that
exhibit increasing degree of intelligence. Some prominent achievements in Al research
include language understanding, pattern recognition, automatic programming, knowledge

representation schemes, reasoning systems, learning and robotics.



ome |
nechanical engineer:

In recent years the field of optimization has become an area of active research -especially in
engineering — so as to improve, and to a lesser extent create new ideas in the field of human
endeavors. Several other reasons for this interest includes the need to handle a wider class of
problems, to include realistic definitions of design variables, to find techniques to improve
the efficiency of the numerical procedure [30]. Optimization methods found in the literature
vary widely and thus in order to draw a clear comparison between OR and Al approaches,
some of these methods are briefly covered for completeness. Consequently, this chapter
addresses the techniques involved in the OR and Al approaches, while chapter 3 focuses on
a specific technique employed in this study.

2.3.1 The Common Process for all Optimization Techniques

All optimization methods share a common process for finding an optimum solution: search
and improvement {46]. This improvement is towards a certain objective. Hence, all methods
have an objective and an objective function that defines how the objective is measured. The
objective function formulates the objective in terms of the parameters and variables involved
in the optimization problem. The search mechanism, the objective, and the objective
function may vary from method to method to suit the optimization problem.

Some of the search methods ranging from exhaustive search to more efficient (and more

complicated) searches are highlighted in a latter section of this chapter.

2.3.2 Optimization defined and general model presented

Any problem in which design parameters have to be determined, (assuming such parameters
exist), given certain constraints, can be treated as an optimization problem [6]. The first step
in optimization is to identify a set of parameters called the design parameters, a cost or
objective function to be minimized or maximized and the problem consiraints. In the case of
minimization a lower cost is indicative of a better solution. The entire goal of any
optimization routine is to continually find a method of improving the value of the objective

function. Restrictions on the objective function are called the constraints. Constraints show



the value that the design variables cannot have and they often help guide the search towards
feasible region in the search space. Without constraints, most real world problems become
meaningless. Constraints can be represented by inequalities while others, by equalities. A

typical design optimization flow chart adapted from Ref. 6 is shown in Figure 2.3.1.

Defing design
parameters, cost
fungction and
constrainis

Egtimate inilial design

P

4

Analyse design

Use an optimisation
method to change the Check constraints
design

ah

Convergence
satisfied 7

Final design .

Figure 2.3.1: Design Optimization Process
A general mathematical form for typical optimization model {as adapted from Ref. 2) is as

follow:

Find the vector x={x,,x,,....x, ) with n components, where x, represents the value of the

parameter.

f(x)=fxp,%,.%,)
subjected to p equality constraints:

h(xy=h(x,x,,.x,)=0 1<j<p and
m inequality constraints

gi(’x>=gi(‘x}”x2="‘x;z}£8 0<i<m
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A feasible solution is one that satisfies all constraints. For some optimization algorithms
finding a feasible solution does not mean finding the global optimum. Thus researchers have
spent much time and effort looking at ways to prove that a global optimum has been found.
These methods are usually mathematical based and lean more towards operations research
(OR) procedures as opposed to artificial intelligence (AI) methods. Artificial intelligence

methods have no proof of optimality since these methods are stochastic.

2.4 Operations Research Optimization
Techniques

Operations research (OR) is concerned with the quantitative specifications of problems and
the use of the mathematical techniques to solve these problems. The minimization or

maximization of a function f(x) without any constraints on x is called unconstrained

optimization. Introduction of constraints into an optimization problem is called constrained
optimization. If an optimization problem has a linear cost or objective function it is called
linear programming problem (LPP). An integer-programming problem (IPP) is a linear
programming problem in which the design variables are restricted to be nonnegative integers
only. Otherwise the problem is called non-integer programming problem. A problem that
entails a quadratic objective function subjected to linear constraints is called a quadratic
programming problem (QPP) [47].

2.4.1 Unconstrained Optimization Methods in Operations
Research

The optimization of certain objective functions without any constraints is called an
unconstrained optimization method. Some of these methods are presented below:
2.4.1.1 Direct Search Methods

Optimization methods that do not use derivative information are called direct search
methods. Direct search methods require only the computation of the objective function
value. Since finding the derivative can be difficult and in some cases impossible, this

presents one immediate disadvantage of this method. There are three main groups of direct
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search methods, namely: tabular, sequential and linear methods. For complete details on

these methods please consult Ref. 48.

2.4.1.2 Gradient—Based Methods

Gradient-based methods utilize the first order or higher order derivative of the objective
function to determine a search direction. There are three main strategies that umbrella
gradient-based methods: the method of steepest descent, the Newton Ralphson method and
the Conjugate-Newton technique. For complete details on these three methods consult Adby
and Dempster [49].

Both direct secarch methods and gradient-based procedures can be broken down into two
phases: (1) the search direction and, (2) the step size determination. As mentioned before
gradient information enables these optimization methods to check when an optimum is
obtained and find the search direction. The step size can be determined by employing either
of three algorithms: internal search, golden section search or polynomial interpolation. The
central idea behind these methods is to successively reduce the interval of uncertainty to a

small acceptable value. For details about these methods consult Ref. [49].

2.4.2 Constrained Optimization Methods in Operations
Research

The use of constraints in an optimization problem is called constrained optimization. These
methods are more popular than unconstrained optimization methods, mainly because most

practical problems involve some restraints on the problem.

2.4.2.1 Simplex Method and Goal Programming

Like unconstrained optimization there are many techniques available for solving constrained
optimization problems. The most well known method is the simplex method used to solve
linear programming problems. This method requires that the objective function and its
constraints be linear functions of the decision variables. It is an extension of the standard
Gauss Jordan elimination process for solving a set of linear equations. In some situations,

there may be multiple objectives and no feasible solution satistying all objectives. In such a

iz



case goal programming techniques must be used. For complete details and implementation

of the simplex method and goal programming please consult {50,51].

2.4.2.2 Integer Programming

Integer programming is similar to linear programming, with the one additional restriction
that the variables must be integer values [50]. Variations of integer programming include
mixed integer programming and binary integer programming, which incorporate greater
flexibility for problem solving. However, most integer programming problems are solved by
using bound techniques. Branch and bound methods find the optimal solution to an integer-

programming problem by efficiently enumerating the points in a feasible region.

2.4.2.3 Other Constrained Optimization Methods

In most constrained optimization methods Taylor series expansion is used to linearize non-
linear problems. This linearized sub-problem can usually be transformed into a quadratic
programming problem, which can then be solved by an extension of the simplex method.
Two well-known methods for solving constrained problems are constrained steepest descent

and quasi-Newton method [52].

Exhaustive enumeration and random search methods are among the simplest and most
robust non-gradient methods that can be used in searching for an optimal design. These
methods can be applied to a wide range of problems and are not limited by discontinuity in

the search space, as is the case for mathematical programming techniques.

Zero order methods in mathematical programming such as Nelder mead simplex method,
complex method of box, the Hookes-Jeeves pattern search, Rosenbrock’s method and
Powell’s conjugate direction method are also not limited by discontinuity in the search space

and can be applied to a wide range of problems.

Recently, computational paradigms that are philosophically based on ideas such as natural
evolution and the laws of thermodynamics use random sampling to guide the search process.
These paradigrs are of significant importance and thus some of these methods are presented

next.

i3



Researchers faced with combinatorial optimization problems have preferred to employ Al
techniques. Combinatorial optimization involves determining how best to arrange (group,
sequence, or assign) the controllable elements in large complex systems to achieve a
specified objective or goal [2]. For example, the popular knapsack problem is one in which a
hiker considers which of z objects to pack into a knapsack. Each object has a certain weight
and value. The objective is to select a subset of objects that have the greatest combined
value and whose total weight does not exceed the capacity of the knapsack. Both OR and Al
methods has attempted this problem as a way of testing the robustness of the algorithms.
Combinatorial optimization has been utilized to optimize problems as diverse as vehicle

routing, airfoil shape optimization, manufacturing plant layout and even portfolio selection.

An algorithm is a sequence of operations that can be carried out in a finite amount of time
[2]. An algorithm prescribes a process that may be repetitive in some sense (pethaps
iterative or recursive) but that will eventually terminate against some test for optimality.
Some examples of algorithms include cooking recipes, instructions for setting up a stereo

system and a computer program that does not contain infinite loops.

With this in mind this section underscores some of the fundamental concepts of artificial
intelligent algorithms. However, before this is done the reasons for engineers and scientist
acceptance of near-optimal or sub-optimal solutions is presented. In addition, an overview

of the types of problems these algorithms is best suited for and the reasons why even these

problems cannot be solved accurately by these algorithms is also addressed.

2.5.1 Why accept near optimal or sub-optimal solutions

There are some strong and justifiable reasons for accepting computational results that are
imperfect or sub-optimal. Firstly, models created by researchers are not perfect
representations of a system being analyzed. Hence, even if we could obtain exact solutions
to the problem, it would not reflect exact solutions to be applied to the real system. Hence

costly computational effort to achieve perfect solutions may not be warranted.
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Secondly, when solving problems the exact representation of real numbers require the use of
many binary digits. However, the finite number of bits typically used for storing numerical
values in computer memory implies that real numeric data cannot always be represented
exactly in computers [S3]. The backdrop of this is round-off errors and after repeated
iterative calculations in an algorithm involving many inexact values the result is

accumulated round-off errors.

Finally, although the algorithm underlying a solution process might be proven to yield
optimal results, ill-conditioned problem data and numerical instability can practically

preclude obtaining solutions of any reasonable quality [2].

The innate difficulty of some problems might suggest that accepting sub-optimal solutions is
the only practical approach. In concluding, in the real world of imperfect models, precarious
data, unavoidable numerical inaccuracies and time constramnts, insisting upon so-called

optimal solutions may be entirely inappropriate.

2.5.1.1 Optimality vs. Practicality

For many practical problems in engineering, the only way to be sure of finding an optimal
solution is to search completely through the whole set of possible solutions. If there exist a
very large but finite number of possible solutions, the idea of complete search is tempting
and often quite easy to implement into a computer program. The problem however is that
the time required to carry out such an exhaustive search is, although finite, far greater than
most institutions can afford. The pretext then is to try and find short-cuts that will allow us
to organize the search process so that it is no longer a complete search over all possible
solutions, but rather it becomes an affordable search that is likely to find optimal or near
optimal solutions [54]. These methods are called heuristic methods or artificial intelligent
techniques. Heuristic methods are often applied to computationally intractable NP-hard
problems, simply because otherwise the best {most efficient) methods we know of for
solving these problems exactly (or optimally) can take an exponential amount of
computational time [54]. Four optimization techniques that are considered intelligent and
that are constantly being researched, utilized and share a wide range of applications are

described below. These methods are Tabu search (TS), simulated annealing (SA), genetic
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algorithms (GA) and neural networks (NN). This chapter provides only a concise definition
of these methods since it is not the main focus of this thesis. In later chapters, genetic
algorithms, its detail development and implementation, and finally its applications to

mechanical engineering problems are undertaken as the primary objective.

2.5.2 Tabu Search

The tabu search (TS) algorithm was developed independently by Glover [55] and Hansen
[56] for solving combinatorial optimization problems. Some researchers see tabu search as
advancement over rule-based expert systems. It is an iterative process that functions by the
use of flexible memory. Tabu search was partly motivated by the observation that human
behavior appears to operate with a random element that leads to inconsistent behavior given
similar circumstances. As Glover pointed out, the resulting tendency to deviate from a
charted course might be regretted as a source of errors but can prove to be a source of gain.
The tabu search operates in this way, with the exception that new courses are not chosen

randomly.

Tabu search is capable of escaping from local minima and to search in areas beyond a local
minimum. Figure 2.5.1 shows the flow of control for a typical tabu search algorithm adapted
from Ref. 6. Hence, it has the ability to find the global minimum of a multimodal search
space. A tabu list is employed to store the characteristics of accepted moves so that these
characteristics can be used to classify certain moves as tabu (i.e. to be avoided) in later
iterations [6].

A tabu list is a set of constraints that impose restrictions on the search. So for example, a
search that yields a solution that is already present in the tabu list is avoided. Note that if a
move in the tabu list yields a better solution than the one encountered before, it is accepted.
This is based on the best solution criterion. This means that the tabu list is not completely
binding. Instead, moves in the list are allowed if the aspiration criteria allow it. Aspiration
criteria can be based on best solutions. However, other aspiration criteria based on
objectives, search direction, influence etc. can be found in some previous work [55, 57].

A simple tabu search algorithm consists of three main strategies: forbidding strategy, freeing
strategy and short term strategy [55, 56].
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Figure 2.5.1: Flowchart of a standard Tabu search algorithm

The forbidding strategy controls what enters the tabu list. The freeing strategy controls what
exits the tabu list and when. Finally the short-term strategy manages the interplay between
the forbidding and freeing strategies to select the trial solutions. Apart from these three
strategies, a learning strategy, which collects information during a tabu search run is usually
employed and this information is later used to direct the search in subsequent runs specified
by the user. The number of generations specified by the user is usually used as the stopping
criteria to terminate a tabu search procedure. Tabu search is relatively new to the
engineering optimization field. Hence it is difficult to find a single efficient and acceptable
implementation of the algorithm. Nonetheless, TS, like GA and SA attempts to overcome
the problem of relative optima. For greater depth into this heuristic search method consult

references 2 and 6.
Clearly the key to this algorithm is tabu list management. To recap, tabu list management

concerns updating the tabu list, i.e. deciding on how many and which moves have to be set

tabu within any iteration of the search.
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In concluding the main aim of a tabu search is to avoid entrapment in cycles by forbidding
or penalizing moves that take the solution in the next iteration to points in the solution space

previously visited.

2.5.3 Simulated Annealing

Before simulated annealing, the discipline of operations research (OR) attempted to
understand the formal properties of algorithms and the inherent complexity of problems
[58]. However, in the 1970s and 1980 tremendous advancements was made in the arena of
optimization. At that time two classes of problems was defined. One class called the P class
involved problems that can be solved by an algorithm within an amount of computational
time proportional to some polynomial function of the problem size.

The other class (called class NP) contains problems that may require computational time
proportional to exponential (or larger) function of problem size. For detailed description of
these problem classes’ consult references 59-61.

Within the class of NP there is another special class of problems called NP complete or NP
hard problems. These problems are known to be the most difficult problems in NP. It is here
that simulated annealing capabilities have been utilized and given much attention by
researchers and engineers to solve many practical problems that fall under the umbrella of

NP hard.

Local heuristic techniques for optimization usually fall into the trap of converging to a local
optimum. This phenomenon is a natural consequence of computational process that moves
monotonically in an improving direction, from an arbitrary starting point [2]. Simulated
annealing is a local improvement probabilistic mechanism, in which non-improving moves
are occasionally allowed and therefore offers a chance for the algorithm to escape from local
optima. Simulated annealing is based on the concepts of thermodynamics, which mvolves
the behavior of a liquid substance as it is slowly cooled into a solid to produce a stronger
more stable substance.

Moreover, simulated annealing algorithm was derived from statistical mechanics and is

motivated by the analogy to the behavior of the physical annealing process. In 1983
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Kirpatrick et al. [62] restated this simulated annealing procedure developed by Metropolis et
al. [63] in order to make it applicable to optimization.

Annealing is the process of heating up a solid and then cooling it down slowly until it
crystallizes. At high temperatures the atoms in a solid have high energies and thus move
about freely. As the temperature is lowered the atomic energies decrease. A crystal with
regular structure is obtained at the state where the system has minimum energy. At a given
temperature, the probability distribution of the system is determined by Boltzman
probability and is adapted from Ref. 6 as follow:

P(r;)=exp{~E(r,)/ KT} (D
where each configuration 7, belongs to the set of all possible atomic configurations.
P(r,) = probability of a configuration 7,

E(r,) = energy (in joules) of the system in configuration 7,
K = Boltzmann constant (in joules per degree Kelvin)

T = temperature in degrees Kelvin

A plot of this curve is shown Figure 2.5.2 that was adapted from Ref 6. Note as the
temperature approaches a very low value, the probability of the occurrence of a new
configuration approaches zero since the system is in a nearly stable state. Hence, at low
temperatures the exponent becomes very large and negative, and thus P(r,) approaches zero.
On the other hand, at higher temperatures there is more atomic movement within the
substance, hence more different configurations occur, and therefore the probability of

occurrence of any given r, becomes greater as temperature increases.
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Figure 2.5.2: Boltzmann Distribution Probability

In the context mentioned above a “configuration” means assignment of some value to the
decision variables. The temperature is indicated by a simpler parameter called 8. A
sequence of classes of configurations is then generated. Within each class a parameter
0 determines the magnitude of the objective function value fluctuation that occurs within
that class. Each class is asymptotically distributed as a Boltzmann distribution. The process
of determining the distribution for any given value of @is called equilibration. The
optimization process is comprised of a series of equilibration; each equilibration is
associated with a temperature parameter ¢, and the equilibration is done at successively

lower temperatures [6].

Each equilibration begins with the system in some initial configuration and then iteratively

carries out the following process until a stable state is reached:

Generate a new configuration arbitrarily
Calculate AF = new objective function value — current objective function value
If AF < 0, then accept new configuration unconditionally

If AF > 0, then accept new configuration only with probability exp (-AF /6 )
Equilibrations are carried out until it is observed that practically no configurations are being

generated {(and accepted) that have a better (lower) objective function value than the current

configuration (i.e. until the “acceptance ratio” is essentially zero). At this stage the
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optimization process is complete and best configuration observed so far is taken as the
result.

The entire process adapted from Ref. 6 is show in Figure 2.5.3 below.
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Figure 2.5.3: Flowchart of a standard Simulated Annealing algorithm

The critical issue in any simulated annealing algorithm is the annealing schedule which
consists of (1) the initial temperature (2) a cooling function (3) the number of iteration to be
performed at each temperature and (4) a stopping criterion to terminate the algorithm. A
system that is cooled too fast may freeze at an undesirable high energy level. The freezing of
a system at an undesirable energy state corresponds to the problem of an undesirable local

optimization.

2.5.4 Genetic Algorithms

Genetic algorithms (GAs) are search and optimization tools that have the capabilities of
handling a population of designs using many mixed design variable types under numerous
design constraints. A simple GA paradigm - adapted from Ref. 64 - is shown in Figure 2.5 4.
Moreover, the GA is able to explore a complex search space and find combinations of

design variables that by far exceed that analyzed by the traditional design methods. The GA



is often selected as an optimization tool since it differs and possesses the following

advantages — as cited from Goldberg [27]- over the traditional optimization techniques:

(1) The search strategy is blind

(2) The search parameter is stochastic (meaning it is defined by a random distribution of
probabilities.

(3) The search is conducted from a population of solution as opposed to one point.

(4) Manipulation of the coding instead of the parameters.

Define: parameters
cost function
cOost

v

i Create populstion E

ST

’ i'
'—d-{ Test Convergence]
v

Stop
Figure 2.5.4: A simple genetic algorithm

It can be argued that the genetic algorithm is one of the most robust evolutionary algorithms

in use today. Furthermore, GAs have found extensive application in the field of research and

development, especially in areas where optimization is the key objective. For small spaces,

classical exhaustive methods usually suffice; however, for larger spaces special artificial

intelligence techniques must be employed.

Genetic algorithms are among such techniques; they are stochastic algorithms whose search
methods model some natural phenomena: genetic inheritance and Darwinian strife for
survival [65]. The range of application and robustness of the GA compared to other methods
is presented in Figure 2.5.5 and was adapted from Ref 66. As Figure 2.5.5 indicates, even
though highly problem specific questions can outperform the GA, their range of application
is very small. Although highly problem specific methods can outperform a genetic algorithm,
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their domain of applicability is small {6]. GAs are quite robust, and through random

operators can be made efficient.

Efficiency

teilor-made adapted GA

7/

Spectrum of applicable problems

Figure 2.5.5: Comparison of the robustness of GA with more traditional methods

Despite its efficiency some have argued that there are some pitfalls and challenges in
assuming that the GA is a true optimization tool. Moreover, since no gradient information is
used in the GA search approach there is no proof of convergence. Hence the GA lacks a
reliable means of asserting optimality. Genetic algorithms usually get close to an optimum
point but can occupy long computing time to locate it exactly. Consequently, researchers
realizing this problem have created hybrid GAs that employs the traditional optimization
approach (mostly OR methods) at the end of the GA search to quickly find the optimum.
Nonetheless, often it is more effective to run the GA for several cases to near optimality
rather than run a single case to exact optimality [64]. Even though the GA may be less
effective as a true optimization method it can be quite efficient as a technique to narrow the
vast design space to the most interesting areas, which is a major goal at the start of most
research projects [32].

Genetic algorithms are a class of general-purpose (domain independent) search methods,
which strike a remarkable balance between exploration and exploitation of the search space
[65]. The GA has proven to outperform the more traditional gradient methods of
optimization. These methods are limited in application since they require finding the
derivative, they are constrained to small domains whose first derivative must be continuous

and they can handle only a small number of variables. As Figure 2.5.5 suggest, given
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enough information about the search space it will always be possible to construct a search
method that will outperform the GA. However, obtaining such information is for many
problems almost as difficult as solving the problem itself [66]. Thus, the robustness of GAs

makes them an ideal candidate for an optimization tool.

Since GAs are the main focus of this thesis more detailed information about the technique,

its creation and usefulness in solving a wide range of problems is provided in later chapters.

2.5.5 Artificial Neural Network

Neural Networks are modeled on the mechanism and structure of the brain [67-68].
Theoretically artificial neural networks (ANN) have a parallel-distributed information
processing structure. Two of the major features of ANN are their ability to learn from

examples and their tolerance to noise and damage to their components.

Thus the motivation of ANN research is to solve a variety of problems that are proving very
difficult to solve even with conventional computers. ANN learns how to process information
usually by being given either supervised training or graded training. Both of these methods

run through a series of trial.
2.5.5.1 Supervised Training

For supervised training, the neural network is supervised with both input data and desired
output data {correct answers as examples). After each trial, the network compares its own
output with the right answers (derived output), corrects any differences, and tries again,

iterating until the output error reaches an acceptable level.
2.55.2 Graded Training

Graded training the network is given input data but no desired output data; instead, after
each trial or series of trials it is given 2 grade or performance score that tells it how well it is
doing.

In both cases, after training, the network is ready to process genuine inputs.
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2.5.5.3 Physics of the ANN

Neurons are analogy devices. This means they take their synaptic inputs, perform a
computation on these inputs, and generate an output, which is usually a continuous valued
firing frequency [6]. Neurons talk to one another. The connection between neurons is called
synapses. A simple model of a neuron 1s shown in Figure 2.5.6.
i ]
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Figure 2.5.6. Simple model of a neuron

Neural networks models are algorithms for cognitive tasks such as learning and
optimization, which are in a loose sense based on concepts, derived from research into the

nature of the brain [68].

The transfer function usually is taken to have the form:

f{ Zk Wyl = V) (2)
where w,, is the real value weight

n, is the number of iterations

v, is the real value bias

Neural networks differ from a traditional computer program in that the steps in the program
are not executed sequentially, but in parallel within each elementary unit.

Neural Networks replaces the deterministic evolution law by a stochastic law.

2.5.5.3.1 Why neural Networks?
(1) The desire to understand the principles in which the human brain works.
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(2) The wish to build machines that are capable of performing complex tasks for which

the sequentially operating, programmable computers are not well suited.

2.5.5.3.2 Advantage and Disadvantage of ANN

(1) An important advantage of the neural network is their high degree of error resistivity.
{2) A major disadvantage of neural networks is the broad lack of understanding of how
they actually solve a given cognitive task.

2.6 Reason for the Necessity of Heuristic/Soft
Computing Techniques

Many real-world problems today entail the fusion of many disciplines. It is often very
difficult, time consuming and expensive to undertake a project by simply looking at just one
section of the project. Hence multidisciplinary optimization (MDO) that employs soft

computing or heuristic techniques has become very popular, particular in engineering,

2.6.1 Definition of Soft Computing Techniques

Soft computing represents one of the newest fields in the area of computational intelligence.
It employs state of the art computational tools to deal effectively with systems characterized
by complex structuring and ill-defined dynamics. These tools involve recently developed
computational techniques based on fuzzy set theory, connectiomist modeling and
evolutionary computation [69]. Depending on the type of application, these tools could be
used in either integrated or stand alone schemes. Chapter 3 represents a through overview of
the fundamental components of designing one of these soft computing techniques.

According to Zadeh [70], the founder of Fuzzy Set and Fuzzy Logic: "Soft Computing is an
emerging approach to computing which parallels the remarkable ability of the human mind

to reason and leam in an environment of uncertainty and imprecision.”

Soft computing techniques was also defined by Zadeh [70] as:
Soft computing differs from conventional (hard) computing in that,
unlike hard computing, it is tolerant of imprecision, uncertainty and
partial truth. In effect, the role model for soft computing is the human
mind. The guiding principle of soft computing is: Exploit the
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tolerance of imprecision, uncertainty and partial truth to achieve

tractability, robustness and low solution cost.
Hence, soft computing aims at mimicking human reasoning - particularly in a computer
environment - and thus in practice, the soft computing systems are adaptive and intelligent

in nature.

2.6.2 Multidisciplinary Design Optimization Defined

Multidisciplinary design optimization (MDO) has recently emerged as a field of research
and practice that brings together many previously disjointed disciplines and tools of
engineering. MDO can be described as a technology, environment, or methodology for the
design of complex, coupled engineering systems, such as aircraft, automobiles, and other
mechanisms, the behavior of which is determined by interacting subsystems [71]. The MDO
methodology is applicable not only to design in general, but also to parameter identification.

It attempts to make the design process less expensive and more rehiable.

MDO eases the process of design and improves system performance by ensuring that the
latest advances in each of the contributing disciplines are used to the fullest, taking
advantage of the interactions between the subsystems {71]. Although the potential of MDO
for improving the design process and reducing the manufacturing cost of complex systems is
widely recognized by the engineering community, the extent of practical application of the
methodology is not as great as it should be, due to the shortage of easily applicable MDO
tools. Thus the exchange of expertise is crucial for the implementation of this exiting and

promising methodology.

Typically, MDO problems are characterized by discrete as well as continuous design
variables. Some operations research methods (traditional methods) can only handle
continuous design variables. In addition, MDO problems often entail a large number of
design variables and constraints, a task that is fill with problems if traditional methods are
used. Thus the use of gradient-based methods is limited by the presence of discrete
variables, the propensity of these methods to converge to a relative local optimum, and the
multi-modality in the search space. It is for these reasons that Al methods have become

attractive and ever so popular for solving highly complex engineering problems. However,
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this does not negate the importance of traditional methods as would become clearer in later

chapters where various applications are investigated.

2.6.3 Soft computing technique as Industries path to
optimization in the near future

The field of optimization has gained a renewed interest and has thus witnessed a healthy
growth in recent years. This is due to the recognition that the design and development of
complex systems, which includes many disciplines, can no longer be done in subsections
with each discipline isolated from each other. An increase level of complexity within sub-
disciplines, and the need to extract the advantages of a synergistic design process, dictate the
need for a more comprehensive strategy [58]. Generic solution strategies for
multidisciplinary system have evolved more recently, and are applicable to the problem of
multidisciplinary design. Typically MDO involves many design variables, many constraints
and analysis from various contributing disciplines that are not completely independent, and

thus coupling between disciplines may exist.

The difficulties incurred when MDO problems are treated, as a single large-scale
optimization problem using traditional gradient methods cannot be removed by simply using
non-gradient methods of optimization. In fact, higher computational cost is one major
problem encountered in using soft computing techniques. However, these methods have
received tremendous attention in research project because the do not require gradient
information, they are more robust in handling both continuous and discrete design variables,

and above all they share an enhanced ability to locate the globally optimal solution.

2.6.4 Current and ongoing research software developed in
which artificial intelligent techmiques are utilized

Many of the Al methods are not easy to program but are becoming readily available via
optimization toolboxes in other programming software such as C [72] and MATLAB [73].
The difficulty encountered with using these tools is the lack of understanding of how the
software works and how to implement a problem that need to be optimized into the
software.



Apart from this route, other commercial software that are available are now including an
optimization section. For example finite element software such as ANSYS [74], Nastran
[75], PAM-OPT [76] has an optimization section that is available to users. The problem
encountered with these software is that the optimization techniques used in these software

are typically not Al based.

Commercial software base on genetic algorithms is available and some are listed below. A
good survey of these software can be found in Ref. 77. Omega and Xpert Rule Gen A Sys
are menu-based rule systems that have spreadsheet interfaces. Eveler, a product of Palisade
Corporation, solves constrained optimization problems using a GA. Other general-purpose
software targeted towards easy integration is GAGA (Genetic Algorithms for General
Application), Genesis, Genitor (Genetic Implementor), and OOGA (object oriented

genetic algorithm).

Software based on the other Al techniques is also available, and often most of these

techniques are lumped into one package in order to provide great flexibility to user.

It is believe that tremendous power is rendered when one understands, creates, and then
develop his/her own optimization codes for use. In this way the user is fully aware of the
concepts that surrounds the algorithms and above all is very capable of implementing any

problem in the optimization routine.

2.7 Why Genetic Algorithms

Apart from the major advantages of the GA over traditional methods of optimization already
mentioned, GA was chosen as the Al method of study in this thesis because of the ease of
understanding the concepts that underlies the algorithm. In addition, the software used to
program the GA, namely MATLAB, offered capabilities that are well suited for
programming a GA. In addition, assistance of peers and other researchers active in the field
of optimization could not be ignored. Thus with these factors glued together a robust general
purpose genetic algorithm was developed and applied to a series of engineering problems.

The quality of the results obtained after implementation of the various engineering
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applications would support the claim of robusiness and generality of the GA created for this

study.

Limited availability of literature material fully describing the technique, complexity of the
technique, and time constraints, were all deterrents in selecting the other Al techniques. In
addition, the means of applying the method to solve problems was also a major difficulty

faced in understanding the concepts of other Al techniques.
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senetic algorithms the Soft
Computing Technique of Choice

Ever since the work of Golderg [27], and his students, much work has been done on genetic
algorithms (GAs), most readable but somewhat incapable of shedding light in the arena of
application. This chapter serves as a guideline for understanding the components and
backbone concepts of a genetic algorithm. The creation of a genetic algorithm can be a
beneficial tool because of its applicability to a vast area of problem solving and
optimization. The language that was employed to create the GA is MATLAR [73], however
some pseudo-codes are also provided for those interested in exploring other programming

languages.

3.1 What is a Genetic Algorithm (GA)?

Genetic algorithms have proven to be very powerful search and optimization tools especially
when only little of the structure in the data is known [64]. The main power of the GA lies in
their capability fo create new combinations of variables that could lead to a better design.
The idea is that, given a certain problem representation, the GA is able through repeated
used of genetic operators such as selection, crossover and mutation to combine those parts of

a solution that are necessary to form a globally optimal solution.

Thus, the underlying principle of a genetic algorithm is based on the mechanism of

evolution [64]. A genetic algorithm searches or optimizes by means of the use of multiple
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searching points or solution candidates (population based search). A GA starts with a
population of strings and thereafter generates a successive population of strings. In genetic
algorithms each individual represents a certain solution to a given problem. The quality of
this solution is expressed by a so-called fitness value. Offspring’s with a higher fitness value

have a better chance to survive and to reproduce (quite indicative of nature).

3.2 Difference and Advantages of GA from
Conventional Optimization Techniques

(1) The search strategy is blind

(2) The search parameter is stochastic (meaning it is defined by a random distribution of
probabilities.

(3) The search is conducted from a population of solution as opposed to one point.

(4) Manipulation of the coding instead of the parameters.

3.2.1 Disadvantages of GA

(1) Convergence speed near the global optimum is usually slow.
(2} No proof of optimality
(3) Reproducibility of results is sometimes difficult

33 Genetic Operators

A simple GA adapted from Ref. 64 - and repeated here for clarity - is comprised of three
essential genetic operators (see Figure 3.3.1), all of which depend on random probabilities
and are listed as:

(1) Selection/ Repmduction} mimics Darwinian survival of fittest

(2) Crossover | mimics the heredity
(3) Mutation {of genes

These operators are passed iteratively through a loop after the fitness/cost is calculated for
each chromosome and is employed at each generation of the GA search procedure. The idea

is that, given a cerfain problem representation, the GA is able through repeated used of



genetic operators such as selection, crossover and mutation to combine those parts of a

solution that are necessary to form a globally optimal solution [64] (see Figure 3.3.1).
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Figure 3.3.1: Simple flow chart of a Genetic Algorithm

33



Initial random solution
. . set
Figure 3.4.1: Detailed flow | popULATION
Chart of Genetic algorithm
< {Binary bit form (i.e. 1 and 0)
CHROMOSOME Each binary string vepresents
i L an individual or chromosome
Decode Initial population and
=N evaluate fitness via objective
function
Fitness (F) Sumfitness (F) Selection Cumulative Population
Probability Probabilitv Statistics

N _
—

Roulette Wheel SELECTION } (Based on fitness)

Generate (pop_size) random mumbers {tk)
between [0,1] and Compare it to gk

\./!
If rk <= gk then select chromosome for
crossover {mating pool)

il

To create a next generation Offspring are formed by

Merge two Crossover <ﬁ ﬁ‘> Mutation Modify a chromosome

Chromosome % ¥
Generate (pop_size) random numbers Generate (pop_sise*chromosome length)
(rk1) between [0,1] random numbers {rk2) between[0,1]
If {rk1<pc) then select that chromosome If (rk2<pm) then select chromosome
for croccnver for mutation
( {Generate random numbers {rk4; Generate random number between [1,
31 .| between [1.chromosome leneth -1] chromosome length] as mutation point
Single potrs (alter 1 to 0 and visa versa)
Crosg§over
: §——r Offspring, uncrossed and mutated ] Recalcnlate
D eche to ob:tam chromosomes (Solution Source of novpulation
solution to problem next generation)

34



sic ]

A detailed flow chart that highlights all the operations involved, as well as the steps that
should be taken to create a successful genetic algorithm is shown above in Figure 3.4.1.
Every aspect of the flow chart is elucidated in detail below. However, it is important that
one reviews and understands the flow of events in the above flow chart before reading the
material below. This task can significantly aid is grasping the ideas and councepts of a
genetic algorithm. Thus without a proper working decoding scheme one cannot begin
working on selection; without a proper working selection scheme one cannot start working
on crossover and so on. Hence there exist tremendous interdependencies in creating a GA.
As such, care and caution must be taken when deciding if the particular technique works and
when to move to the next stage of GA development. The objective of any GA is to

coordinate selection, crossover and mutation in a single generation or iteration.

The evolutionary process of a genetic algorithm entails the fundamental process of selection
or reproduction, crossover and mutation. These genetic operators serve a vital role in

guiding the GA search process.

3.4.1 Selection

Reproduction provides a way of allowing fitter chromosomes to progress into the next
generation. A binary string represents each chromosome. This string is made up of genes,
which carries the parameters of the design or variables need to optimize. So for example,
the function f(x)=x>, x is the first and only gene in chromosome, which is encoded into a
binary string. A chromosome represents a certain fitness value. The chance of being selected
is dependent on the string fitness value. Therefore only the selected chromosomes

the next generation. Once this string has been selected, the process of crossover creates

offspring. Further indebt details on this operator are provided later in this chapter.

3.4.2 Crossover

Without crossover, the average fitness of the population will climb until it equals the fitness

of the fittest member [65]. After this point the GA can only improve via mutation. Crossover



provided a method whereby information from differing solutions can be melded to allow the
exploration of new parts of the search space [66]. In crossover we merge two chromosomes.
This operator produces two new strings, that is, offspring from two selected parents. Further

details on the mechanism of crossover are presented later in this chapter.

3.4.3 tation

Mutation is sort of an assurance against premature loss of important information. It also
serves the crucial role of forcing the population out of a static condition by adding new
genetic information to it [78]. This implies that the GA is now able to search in regions of
the search space never explored and as a result, induce that information into the population.
This is often referred to as diversifying the population. This is achieved by the occasional
random alteration of a bit value.

Hence a good genetic algorithms performance requires the choice of high crossover

probability, low mutation probability and moderate population size [27].

3.5 The Coding of the algorithm

In order to elucidate the coding of the flow chart given in Figure 3.4.1, an example is used.
The example highlights the steps and warns of possible pitfalls in the development of a
genetic algorithm. The following basic mathematical objective function, which is to be
maximized, is used:

maximize ( f(xy) )= x*+y’

0<x<10
0<y<10

3.5.1 Inputs required by program

Initially a few constants and decision variables must be specified before running any GA
program. The variables are as follows:

(a) Population size

{b) Number of parameter

(c) Probability of crossover and mutation

{d) Constraints (problem dependent and often known)
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{e) Degree of accuracy required

(f) The length of a chromosome

{g) The number of generations
Deciding upon a value to use for the variables above is given below. Note that in some areas
such as population size, research is still active in determining the effects of this value on the

convergence quality of the GA.

3.5.1.1 Population size

There is no hard and fast rule in deciding the size of the population. However, if the
population is too small then the loss of genetic diversity may compromise the search and
may lead to sub-optimal rather than optimal solution. In addition, too large a population can
really hinder the speed in finding a solution since there is a much larger area to search. A
population size of 10 was used for the problem defined above. It can be argued that a
relatively small population with a large generation number is best for speedy results. Note
however that this is not always the case especially when dealing with complex objective

functions.

Population size and the number of generations are inversely proportional to each other ie.
we can increase the number of generations and at the same time decrease the population size

needed to converge, and visa versa.

3.51.2 MNumber of Parameter

The number of parameters depends on the number of dependent parameters in the objective
function or the number of design variables directly linked to the objective function. For the
problem defined above the number of parameters is two, t.e. x and y. Both x and y need
to be encoded into one individual (i.e. a chromosome) as our initial inputs. Therefore, a
chromosome is divided into genes ( x and y ). A gene is the GA’s representation of a single
factor value for control.

Chromosome={x , v]

Objective function = f (Decoded Chromosomes)

For this problem we have 10 chromosomes, since the population size was set as 10.
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3.5.1.3 Probability of crossover and mutation

For this problem a probability of crossover of 50% (pc=0.5) and a probability of mutation of
1% (pm=0.01) were used. pc=0.5 means that we expect 50 % of the chromosomes to
undergo crossover 1.e. 0.5%10=5 chromosomes selected for crossover. In addition having
pm=0.01 implies that we expect 1% of the chromosome length to undergo mutation. In most
cases pc and pm can assume constant values that do not change over the generations.
Typically values for the probability of crossover vary between 50% and 90%, while values
for the probability of mutation values vary between 1% and 5%.

3.5.14 {onstraints

Constraints are usually given in the problem statement or have to be decided upon in the
problem definition in order to add some practicality to the problem. For the problem above,
the range of values for x and y can be seen as soft constraints since they restrain the problem

to those regions of the search space.

3.5.1.5 The degree of accuracy required

The use of common sense 1s required when determining the degree of accuracy needed as
output for the objective function values since this is one determining factor for the
chromosome length. Every degree of accuracy requires an additional 3.3 bits needed to be
encoded in each chromosome. This can mean a longer computational time. So eight decimal
point degree of accuracy requires 8§%3.3=26.4 or 27 bits in the gene, which for the above

problem posed, is too high. Perhaps four decimals place is sufficient.

3.5.1.6 Length of chromosome

Having decided on a reasonable degree of accuracy one can then determine the length of
each gene (i.e. x and y for the problem above) that constitutes the individual; these
individuals are represented by a chromosome. The following formula adapted from ref. 79 is
employed:

2" < (b, —a, 0" <27 -1 (1)



where b, and a, are the range and domain respectively for the design variables. nis

number of degree of accuracy required, and 7 is a value found trough trial and error to
satisfy the inequality. The value of myis the length of the gene in the chromosome. In our

case we have two inputs and since the domain range s the same for these inputs then

ml=m2=17. As a result our total chromosome length =m1+m?2=34.

3.5.1.7 The number of generations

Each run of a GA usually consists of either satisfying a problem specific success predicate
or completing a specific number of generations. The later is one easy way of terminating the

program and is used for all applications in this thesis.

3.5.2 Generating the population and decoding

Since the genetic algorithm studied is binary, a matrix of binary numbers must be generated
to create the population. The initial population is totally random and generated by the
computer using the random command found in many computer languages. This population
of random binary digits must then be decoded. Decoding is important because the objective
function cannot be evaluated using a binary string. The objective function value plus a
constraint violation value (penalty value) is called the fitness value. As a result, the binary
digits (encoded value(s)) must be converted to real number(s) so that the fitness function
value can be calculated. Being able to decode a chromosome into real number(s) would
then allow for decoding of the entire population into real value(s). After decoding and
obtaining the real number values in the entire population, these values are then simply
substituted into the fitness function for evaluation. This would result in a set of fitness

values equal to the population size.

For the problem defined above: Fitness (real value x, real value y) = real value x * + real

value y*. This would result in 10 fitness values, one for each individual in the population.

Knowing these fitness values the maximum fitness, total fitness, selection probability, and

cumulative probability can be evaluated as follows:



Maximum fitness = max (fitness); total fitness= sum (fitness); selection probability (i) =
fitness (i) / total fitness; and finally cumulative probability=sum(selection probability (i) +
selection probability({ i +1) ). Here i represent an individual in the population and the words
in bold represent a simple mathematical function command present in most programming

languages.

3.5.3 Genetic Operators

There are three basic genetic operators that constitute most genetic algorithms; they are,
selection, crossover and mutation. These operators are the main components of the GA that
work together to explore and exploit various areas of the search space in order to locate a

global optimum.

3.5.3.1 Selection Operators

Apart from the population size and control parameters (i.e. probability of crossover and
probability of mutation), the selection type — as will be evident — strongly influences the
quality of convergence. There are many selection schemes that have been created. Many of
them attempt to make the selection process more random and, to a larger extent, replicate a
survival phenomenon in nature. Currently there are three selection operators available for
use in the genetic algorithm, they are, roulette wheel selection, tournament selection, and

normal geometric selection.

3.5.3.1.1 Roulette Wheel Selection

Roulette wheel selection or fitness proportional selection assigns reproduction opportunities
to an individual based on their relative fitness [27]. Thus it is a stochastic process of
selection, which will choose individuals on the basis of performance with respect to other
individuals in the population. Individual strings are copied according to their fitness values
[64]. The fitness value is a measure of the goodness or profit. Strings with a higher fitness

have a better chance of contributing one or more offspring’s in the next generation.

Creating a biased roulette wheel is used to perform selection. Each time a chromosome is

required a spin of the roulette wheel yields a reproduction candidate. Once a string has been
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selected for reproduction an exact replica of the string is made. This string is then place into
a mating pool as part of a new population. This new population would then be allowed to

mate and reproduce using crossover and mutation.

3.5.3.1.2 Tournament Selection

Tournament selection is a random process that closely mimics mating competition. From the
population, a fixed number of competitors (tournament size) are randomly selected. The
individual with the highest fitness wins the tournament and is then placed in a mating pool.
Note that as the tournament size gets larger the selection intensity increases [80]. This
implies that we can adjust the probability of selection by simply changing the number of

competitors.

Tournament selection mimics mating competition in nature more closely than roulette

selection. Hence in some applications it was used on a comparison bases with roulette wheel

selection. This scheme is implemented by three simple steps outline below:

(a) A tournament size of N chromosomes is randomly selected from the population.

(b) The chromosome from (a) that has the highest fitness is the winner of the tournament
and so is selected as a parent.

(¢) This process is repeated for a number of tournaments equivalent to the population size.

3.5.3.1.3 Normal Geometric Selection

Normal geometric selection scheme was added as part of the selection techniques available
within the GA. Normal geometric selection is a ranking geometric operator based on the
normalized geometric distribution. The input to the program is the old population and the
selection probabilities. The output is the new population selected from the old population.
This method behaves better than roulette selection scheme but is still not as powerful as
tournament selection. It was also observed that this method does not allow a speedy

convergence due to domination by a few super chromosomes.
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3.5.3.2 Cressover Operators

Without crossover, the average fitness of the population will climb until it equals the fitness
of the fittest member [65]. After this point it can only improve via mutation. Crossover
provides a method whereby information for differing solutions can be melded to allow the

exploration of new parts of the search space [66].

3.5.3.2.1 One point Crossover

Using the chromosomes selected via a selection scheme crossover can then be performed.
In crossover we merge two chromosomes. This operator produces two new strings
(offspring) from two selected parents combining their information. For example consider
the two parents:

101011001 <————  parent 1l

001011100 g———— parent2
A crossover point or cut-point, which is randomly selected between the first and the second
to last bit, is first generated. Assume for illustrative purposes that the cut-point is 3; this
implies every bit to the right of 3 is swapped. Figure 3.5.1 demonstrates this procedure:

parent 1
parent 2

Offspring 1
Offspring 2

Figure 3.5.1: One point crossover applied to binary string at random point

Generally the process of crossover is performed as follows:

(a) First we generate a population size of random numbers.

(b) If the random numbers are less than the probability of crossover, then select the
chromosome as a parent for crossover.

(¢) We must then generate a random number between 1 and the second to last bit (i.c. 33 for

the problem defined above)
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3.5.3.2.2 Two point Crossover

Two-point crossover is performed in the same way as one point crossover but instead the
process is repeated twice. The idea behind two point and multi-point- and indeed many of
the variations on the crossover operator - is that parts of the chromosome representation that
contribute most to the performance of a particular individual may not necessarily be
contained in adjacent sub-strings. Two-point crossover appears to encourage a greater
exploration of the search space when compared to one-point crossover. Thus rather than
favoring the convergence to highly fit individuals early in the search, two-point crossover

spends more time exploring the search space, thus making the search more robust [65].

3.5.3.2.3 Multi-point Crossover

The idea behind multi-point crossover is to meld parts of the chromosome representation
that contribute most to the fitness of a particular individual. This information may not
necessarily be contained in adjacent substrings. Furthermore, the disruptive nature of multi-
point crossover appears to encourage a greater exploration of the search space, when

compared to one point and two point Crossover.

3.5.3.24 Uniform Crossover

Uniform crossover generalizes single and multi-point crossover schemes to make every
locus a potential cross point. A crossover mask, the same length as the individual structure,
is created at random. The parity of the bits in the mask indicates which parent will supply
the offspring with which bits [32]. Uniform crossover, like multi-point crossover, has been
claimed to reduce the bias associated with the length of the binary representation used and

the particular coding for a given parameter set [27,78].
3.5.3.2 Mutation Operators

Mutation helps to diversify the population, and is achieved by the occasional random
alteration of the value of a string. The role this serves is that it induces new information mto

the population and consequently allows the GA to search in new regions of the search space.



3.53.2.1 One-bit mutation

One bit mutation is achieved by the occasional random alteration of the value of a string bit
value as shown in Figure 3.5.2. This simply means changing a 1 to a 0, and visa versa, at the
bit position that the random number is less than the probability of mutation. To elaborate
mutation is achieved as follows:
(a) Generate population size * chromosome length random numbers between 0 and
1. For the above problem this implies, 10*34=340 random numbers.
{(a) If any of these random numbers (termed rk2) is less than pm (probability of
mutation) then we alter the bit from one to zero or visa versa. For example

consider previous example:

sample 1

If the k2<pm at bit number 5 then binary string becomes:

101001001 €— mutated sample 1

Figure 3.5.2: One bit mutation of a binary bit string

Figure 3.5.2 illustrates the fundamental principal behind one bit mutation and the many

other forms of mutation.

3.5.3.2.2 Two-bit mutation

Two bit swapping mutation was employed to introduce diversity and encourage the GA to
explore the search space. Two-bit mutation is very similar to single bit mutation; but instead,
a two-bit swapping mutation operator exchange the values of randomly selected bits in a

specific population member based on the probability of mutation.

3.5.4 Stopping Criterion

The stopping criterion is simply a way to terminate the program. Throughout this thesis the
number of generation specified is used as the stopping criteria.
Tabulating the results and if possible plotting maximum fitness and average fitness versus

generation number can help visualize the GA search history, and more importantly, help



determine whether the GA is functioning. For example, it is expected that both maximum

fitness and average fitness should increase as the run progresses when maximizing.

Constraint optimization is often referred to as non-linear programming This sort of
programming involving constraints is where ‘real world” problems take over {(since many
practical problems are nonlinear). For example we want to design a structure that can
withstand a certain prescribed load but will not exceed a certain deflection or stress. The

central problem 1n applying a GA is how to handle the deflection or stress constraint.

One common method that is discussed here is the penalizing strategy, though they are other
strategies presented in the literature such as the rejecting method and the repairing method.
The main role that the penalty strategy plays in the GA is that it unconstraint our problem by
adding or multiply a certain penalty to the objective function for any violation of the
constraint. This addition or multiplication will have the effect of adding ‘weight” to our
fitness value thereby decreasing its goodness if we are minimizing. Hence, weight plays the
role of penalties if a potential solution does not satisfy them [81]. One major advantage of
the penalty strategy compared to other methods is that it does not disregard infeasible
solutions; instead, it uses these solutions in such a way to aid the search to a better solution
[79]. Here the problem of striking a balance between exploitation and exploration arise.”...
the penalty technique is used to keep a certain amount of infeasible solutions in each
generation so as to enforce genetic search towards an optimal solution from both sides of

feasible and infeasible regions”[79]. The Figure 3.6.1 illustrates this point clearly.
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Figure 3.6.1: Solution space: feasible area and infeasible area

The solution space contains two regions i.e. feasible and infeasible.

In Figure 3.6.1- adapted from Ref. 79- point “b”, which is infeasible, is closer to the
optimum than feasible “c” and infeasible “d”. We can also believe that “b” contains more
information about optima “a” even though it is infeasible. The main issue of the penalty
strategy is how to design the penalty function p(x) which can effectively guide genetic
search toward the promising area of solution space” [79]. Thus, we wish not to reject our
infeasible solutions because some of them may provide much more useful information about

the optimum than the feasible solutions.

The outline below should be followed as an initial encounter with handling constraints using

the GA. The traditional method outline below should be followed.

3.6.1 Traditional Approach

Fitness(x) = f{x) + p(x)
Where f{x) is our objective function that we want to optimize

p(x) is our penalty function
For maximization problems: p(x) = 0 if x feasible
p(x) < 0 otherwise
For minimization problems: p(x) = 0 if feasible

p(x) > 0 otherwise
f{x) is problem dependent and so is p(x), but here are some guidelines that can prove useful:

Let p(x)=0 if fitness is feasible

i=m

otherwise let p(x)= Z rg,’ 2)
i=1

where m is the number of constraint

where r, 1s a vanable penalty coefficient for the i™ constraint;
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g, is the amount of violation of the i™ constraint.
g,= max{ 0, constraint( /) — calculated constraint value}

3.6.2 Adaptive Penalty

The advantages of this method over the traditional approach is that it is non-parameteric and,

most importantly, it is problem independent [79, 81].

For minimization:

Fitness = objective value * penalty value

Fitness = f{(x)*p(x)

Where f{(x) is the objective value and p(x) is the penalty value.
p(x)=1 if feasible
p(x)>1 otherwise

The penalty value is computed using the method outlined below:

p-ie L

where: Ab,(x) = max(0,g,(x))
(Ab;)

where:

g,= the degree of violation of the constraints, dynamically scaled according to the best

= max(g, Ab, (x){x e p(x)

max

solution found in the population set; &= small positive value that is used to avoid division

by zero when calculating p(x); m= number of constraints. Ab,(x)= degree of violation of
the constraint i for the chromosome x; (Ab,) . = maximum violation in constraint / among

the current population; a= value used to adjust the severity of the penalty function.

Traditionally, & varies between 1 and 3. The o used throughout this thesis is 2.

Basic (

senetic

Techniques to Improve the
Algorithm Performance

The field of optimization is constantly under research in order to find quicker and more
efficient ways of finding solutions. One phase you may stumble upon when involved with
GA is ‘finding a balance between exploration and exploitation’ [79]. How to achieve this

balance is the question that have driven researcher to look for alternatives to the traditional
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methods used in order to advance the capabilities of the GA. A few techniques employed to
improve the simple GA used in this thesis are as follows:
(1) Elitism
(2) Fitness scaling or ranking
(3) Inverse scheme
(4) Dynamically changing probability of crossover and mutation
(5) Dynamically changing population size
(6) Better visualization of results

(7) Optimizing computing time by:

(a) Calculating fitness only once

(b) Writing a separate subroutine for the objective function

3.7.1 Elitism

In view of the probabilistic random nature of selection, the best individual in the population
is not guaranteed to be selected and the selection process does not necessarily overlook the
worst individual in the population [79]. Elitism is a way of preventing the loss of a potential
good chromosome in the population by ensuring that its presence is maintained in the
population at every generation until a better solution is found. For many large-scale
applications, the search speed can be greatly improved by not losing the best, or elite,

member between generations [73].

3.7.2 Fitness scaling or ranking

In our proportional selection procedure (i.e. roulette wheel selection) the probability of
selection is dependent on the fitness. This scheme has some undesirable features in that there
is a tendency for a few super chromosomes to dominate the selection process; in later
generations, when the population is largely converged competition between chromosomes is
less strong and a random search behavior will emerge [65].

Scaling and ranking is proposed to prevent this problem. Domination by a few super
chromosomes usually causes the GA to reach sub-optimal rather than optimal value(s). Thus
scaling and ranking is used to prevent premature convergence by maintaining a reasonable

differential between relative fitness rating of the chromosomes.
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Scaling usually requires finding constants such as “a” and “b” which has to be determined
by the user. Because the user usually must have some knowledge about GA or must ‘play’
around with “2” and “b” this method is usually not preferred. Note also that these constants

are problem dependent and so they lack generality.

Consequently, fitness ranking which has similar effects as scaling but avoids the need for
extra scaling parameters (such as “a” and “b”) is chosen as the preferred method [79]. The
ranking method ignores the actual objective function values; instead, it uses a ranking of
chromosomes to determine survival probability [65].
The idea is simple:
() Sort the population from the best fitness to worst fitness
(2)  Assign selection probability to each chromosome according to the ranking and not its
fitness. (rank=1 means best individual, rank= population size means the worst one).
(3)  Choose a ranking method:
(a) Linear ranking
(b)  Exponential ranking
For linear ranking prob(rank)=g-(k-1)*r
where q is probability of best chromosome

k is the chromosome number
r=(g-qo)/(pop_size-1)

where qgo is the probability of worst chromosome

For Exponential ranking we have:
prob(ranky=q(1-q)"(rank-1)

where q is the probability of best chromosome.

3.7.3 Inverse sch

Since genetic algorithms optimize via maximization, the problem of changing the GA
process to minimization arises. For minimization the fitter chromosome has a lower fitness
or cost. Thus in the selection process we must be able to transform the large number into a

small number. To achieve this the inverse scheme was employed.
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The basic concept of the inverse scheme comes form a simple logical deduction of — the
result of inverting a large number is 2 small number [32]. The fitness values are scaled as
follows:

Py~ (Fan )

o= in 4
1 E—{Fmin/a) ( )

12
where F, is the scaled fitness values; £, and F, are the maximum and minimum fitness

max min

values respectively; a is a value slightly greater than one and F; is the fitness values.

3.7.4 Dynamically changing probability of crossover and
mutation

One important feature that can be added to the GA is its dynamically changing crossover
and mutation rate. The process of implementing the above features is quite simple and 1s
highly recommended for larger problems. It is known that the probability of crossover and
the probability of mutation have significant effects on the convergence quality of GA.
Typically these two probabilities are assigned constant values within the GA. In addition, it
is generally accepted that the crossover probability should be much higher than the
probability of mutation. Moreover, it is also known that initially the crossover probability
(pc) should be lower in order to facilitate a wider exploration of the search space, and higher
later on, to focus the search on an area in which the optimum lies. With respect to mutation
we would also like a low probability of mutation initially and then to very slowly increase
its probability, since a high mutation rate can lead to a random walk process. In effect what
we desire is a fine balance between exploration early on and exploitation later on in the
search process. The pc adaptation approach used is adapted from Ref. 82 and is as follows:
Peo=0.1

_ gen _no.
Reli}= /nax_ gen )

Pc(iy= Pco+ {1 - Pco)* Rcli]
where
Pco is the initial probability of crossover specified within the GA program; Rc[ilis a

scaling factor at generation number 7; and Pe(i) is the probability of crossover at
generation /. gen no is the current generation number and max_gern is the maximum

generation for the GA search and optimization process.
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The probability of mutation is also dynamically altered during the search as follow:

Pmo =06.01

_Pmo } ;‘;aXN gen .
Rm=(Fmog 19 ©)
Within the GA main loop:
P+ 1) = Pm%m

where Pmo is the initial probability of mutation; Rmis a scaling factor; and Pm(i +1)is the

probability of mutation at generation 7.

3.7.5 Dynamically Changing Population Size

The population size can dynamically change after some amount of generation runs. The aim
here is to reduce the computational effort entailed in processing a population of designs and
restrict the search to regions in which an optimum is located. It is believed that if the
population can be accordingly reduced with the number of generations, the computation
effort can be significantly reduced. The logic behind this idea comes from the concept of
exploration and exploitation of the search space. Exploration is highly demanded initially in
the GA search; however, later on when the search have converged to a near optimum there 1s
less of a need for a large population. The central disadvantage of the GA ie. slow
convergence near global optimum stems from this very point. In order to eliminate, or at
best curb this problem, a dynamically changing population size is recommended. Dynamic
changing the population size encourages the optimization process to investigate better
solutions in more restricted favorable regions of the search space [83]. Therefore, each
reduction on the population size can be viewed as a step closer to the global optimum. The

process of achieving this is quite simple and can be implemented in the following 6 steps:

(1) Start GA run with a relatively large population size
(2) After level “n” convergence quality is achieved randomly generate a number to
determine the factor (1) by which to reduce population size
where
I<r<b™ pop size

“b” is a reduction Tactor set=1/4
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Note that ‘b’ varies between 0 and 1.

(3) Generate r random numbers between 1 and population size, ensuring that no random
number is repeated more than once.

(4) Extract the chromosomes from (3) and at same time ensure that the best design found
thus far is preserved in the reduced population. This can be achieved by simply copying
the new chromosome to the reduced population.

(5) Recall GA to process the new reduced population.

(6) Repeat process until a quarter or “b” of the initial population size remains.

Note that b=1/4 is an arbitrary number and can be increased or decreased accordingly,
depending on the initial size of the population. In addition, level “n” convergence means the
stage “n” of the population reduction level presently at. Hence initially “n” is unknown since
we do not know at which generation we would obtain 25% improvement in fitness.
Moreover, level “n” convergence means that we have achieved a b% (ie. 25%)
improvement in fitness values from generation 1 to generation n. At generation ‘n’ we
would reduce the initial population size. Since GA is a stochastic process n varies from one

test to the next.

3.7.6 Better Visualization of Results

Plotting the maximum fitness, minimum fitness, average fitness and total fitness versus the
generation number 1s one way of visualizing the output of the GA. However other schemes
that show how the search is taking place can also be developed to give some idea of how the
GA 1s exploring the search space. This is illustrated in a later chapter on applications where
benchmark mathematical functions are used and an animated search process is use to

visualize how the GA search progresses.

For any application of the GA, saving on computing time required to converge to an optimal
solution is always demanded. A few simple techniques that can be employ to facilitate the

creation of 2 more robust GA are given below.
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3.8.1 Calculating fitness values only once

By manipulating function calls- apart from vectorising in a language like MATLAB -
mainly reduces the number of times the fitness is calculated. This is achieved by first writing
a separate function in which the fitness values are calculated. Then this function can be
called only once. For example, calculating fitness after mutation and then again after elitism
is not necessary. The fitness need not be computed again in elitism. Recalled in elitism we
compare the fitness before selection and after mutation and randomly replace the best
chromosome in the new population if necessary.

Apart from reducing time in elitism, time can also be reduced by sending the new fitness
values, penalties and objective values after mutation or elitism up to selection. Recall that
the new population after mutation or elitism -if there is the need- is sent up to the beginning

of the program so that selection can now use this population to select from.

Note that after these changes have been made and the program is executed, there should be a
noticeable reduction in computing time. Taking the time to optimize the code itself can be

beneficial especially for large complex problems.

3.8.2 Stand-alone Genetic Algorithm

One addition to the program that can avoid difficulties, but does not save so much on time,
is to have a separate function to calculate the fitness. In this way the GA can stand-alone.
There is no need to ever make any changes to the main GA program. Consequently, all that
is need is to create a fitness function and a penalty function. Note most penalty functions are
problem dependent and this is really a bonus because it provides control over the way the

constraints are coded. Approaches to handling constraints have been presented.

3.

for the

A graphical user interface (GUI) was also created in order to make the GA more user

friendly. However, currently this interface is linked only to application 1 which



mathematical functions are optimized. Due to the priority given to the projects this GUI was

not linked to all applications, since it was not necessary for the running of the program.

Despite its efficiency some have argued that there are some pitfalls and challenges in
assuming that the GA is a true optimization tool. Moreover, since no gradient information is
used in the GA search approach there is no proof of convergence. Hence the GA lacks a
reliable means of asserting optimality. Genetic algorithms usually get close to an optimum
point but can occupy long computing time to locate it exactly. Consequently, researchers
realizing this problem have created hybrid GAs that employs the traditional gradient
optimization approach at the end of the GA search to quickly find the optimum.
Nonetheless, often it is more effective to run the GA for several cases to near optimality
rather than run a single case to exact optimality [84]. Even though the GA may be less
effective as a true optimization method it can be quite efficient as a technique to narrow the

vast design space to the most interesting areas, which is a major goal of conceptual design.
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Validate

Basic Applications te
Code

The applications covered in this chapter are comprised of simple objective functions. The
intention of this chapter is to reinforce that the GA created in Chapter 3 is working and
functioning. More importantly, this chapter also aims to foster confidence in the power of
the GA to solve a wide range of problems and avoid entrapment in local optima. Thus in
some respect this chapter is a stepping-stone to larger and more complex mechanical
engineering applications to be addressed in later chapters. Henceforth, this thesis progresses
with increased level of difficulty as the number of applications grows. Enough information
is presented to define the problem and in most cases a formulation of the problem and its
implementation into the GA is also presented. These problems are intended to illustrate the
versatility of genetic algorithms and provide some insight into the robustness of this

algorithm.

4.1

Traditionally in order to test the robustness of any optimization tool, highly multimodai
mathematical functions are attempted. The results of these functions usually provide some
idea about the ability of the optimizer to avoid entrapment into local optimums.
Consequently, some of these mathematical functions have become benchmark functions for
testing the robustness of new optimization methods. Two of these mathematical functions

are listed below. It is recommended that these functions first be attempted before proceeding
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to solve any practical problem. In order to find the exact global optimum of these two
functions a 3D plot of the function was carried out and then the location of highest peak was
“eye balled” in order to approximate the location of the maximum or minimum value
depending on whether we are maximizing or minimizing. Note that these test functions do
not require a penalty function. In addition, it is important to remember that the GA is
inherently a maximization tool. Since a GA is inherently a maximization tool, to minimize a
function, set the function f(x) to f(x) = «(function); so for example, maximizing f{x)= x> -1
in the interval —1< x <1 is the same as minimizing the function f(x)=1-x" over the same
interval. Also since the GA expects the fitness function to always evaluate positive values, a

constant may be added, for example, f(x)=20-( x> - 1).

Using four degree of accuracy bit length for both x and y in these two example results in a
string length of 17. A population size of 20, probability of crossover of 85%, probability of
mutation of 1% and a generation number of 100 was used. An attempt to solve this problem
with or without the improvements to the basic GA technique should yield acceptable results.
An animation technique was created in order to illustrate how the GA search progresses as
the number of generation increase. The global optimum found by the GA as well as the
convergence history and 3D plot indicating by black dots points found by the GA are shown

below.

The two test functions that are used to validate the working of the GA are given below.

(1) f£i{x,v)=xsin(4x)+1.1ysin(2y) where 0<xx10
0<y<10

{2) Peaks function
fix,y) = 3*{l=-x)."2.%exp(~-{x.72) = (y+1).72)
- 10%(x/5 - x."3 = y."5).*exp(-x."2-y."2) .
- 1/3%exp{-(x+1) .72 - v."2) where —-3< x<£3
-3< y<£3
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e two functions outlined above

4.1.1 esults to

Test Function 1
£

<7
Ead

v)=xsin{4x)+1.1ysin(2y)
Function evaluated with the following schemes: Elitism, two-point crossover, one bit

mutation, and tournament selection. Results are given in Figure 4.1.1 and Figure 4.1.2.
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Figure 4.1.1: Convergence history of the GA for the above mathematical function

57



Figure 4.1.2: Tracing procedure that indicates the GA search history over the surface of the
above function

Test Function 2

fix,y) = 3*¥{1-x)."2.%exp{(~-(x."2) - {(y+1).72)
- 10*({x/5 - %."3 = y."5).%exp(~-x."2~y."2)
- 1/3%exp{-(x+1) .72 - v."2) where —-3< x<£3

-3< y<£3

Function was evaluated with the following schemes: elitism, two-point crossover, one bit

mutation, and tournament selection. Results are given in Figure 4.1.3 and Figure 4.1.4.
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Figure 4.1.4: Tracing procedure that indicates the GA search history over the surface of the
above function
It would be misleading not to mention that GAs are inherently a2 maximization tool, and do
not handle negative numbers effectively. Thus, in order to mimimize a function or
weight/cost of a structure, some sort of scaling scheme must be added to change the
maximizing problem into a minimizing problem. Procedures to handle this problem were
addressed in Chapter 3. Note that in the above plots the red area is where the global
maximum occurs, while the dark blue area is where the global minimum occurs. Also note
that the GA is quite effective in locating the global optimum of both multimodal functions
(notice the black dots that cover the red area). Since the GA was capable of finding the

solution to the above functions, it is time to proceed to something more practical.
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Consider a simpie rectangular cantilever beam with a prescribed load of P=1000N at the free
end. We wish to minimize the volume of the beam with the maxamum allowable stress of
3000 N/m”"2 and maximum allowable deflection of Imm. The length of the beam was
assumed to be a constant, that 15, L=50m. We are to constrain the base b and height h in
range of 1 to 10 m and 1 to 5 m respectively. The objective is to find the minimum volume
of the beam that will sustain the above load and satisfy the above constraints. This problem
is used to illustrate how the above problem definition - and in fact, any problem definition -

is integrated into the GA for optimization.

4.2.1 Problem Implementation into GA

In this problem we need a way to handle the constraints. The traditional approach to

handling constraints already present in Chapter 3 is employed for this problem. The

procedure for implementing this problem into the GA is highlighted below:

(1) Create the objective function: minimize {Volume) = bhL.

{2) Decide upon which variables to encode (encode design/decision variable) e.g. band h

(3) Write constraint equation e.g. stress= -My/l in terms of encoded variables listed in (2).
We get stress= 6PL/bh"2

(4) Finally the fitness function can be written as f (x) = bhL + pen

The mathematical formulation of the above problem procedures is given below along with

sketch of cantilever beam (see Figure 4.2.1)

E=70*10°Pa %

Ll

¢ B
50m

Figure 4.2.1. Sketch of the Cantilever Beam for Problem Define

Objective function: minimize (Volume) where Volume= bhL



Encoded/design variables: band h

{Constraints: Stress: o= 5@ = @Df o < 3000Pa
I bh
3 3
Deflection: & = PL = 41? S <0.001m
3ET  BHE

Fitness= Volume + Penalty

where M is the bending moment, y is the distance from centroid to top of the beam, / is

the moment of inertia, F is young’s modulus of elasticity, b is the base of the beam, h is the

height of the beam and L is the length of the beam.

4.2.2 Handling Constraints

The MATLAB program implementation to calculate the penalty value (that is ‘pen’ is step
4) above may be written as follows:

Letr_vall be the first encoded GA design variable, that is, the base of the beam

Let r_val2 be the second encoded GA design variable, that is, the height of the beam
P=1000; % applied load

1L=50; % length of the beam

=[50, 10]; % multiplier constants ~? assumed

constraint1=3000; % max allowsable stress in KPa to be < 3KPs

constraint2=0.001; %swe want max deflection to be < loum

stress=(6*P*L)./( r_vall *((r_val2)"2})};

deflection=(4*P*L"3)/( r_vall* r val2"3*E),

gl= stress- constraintl;

g2= deflection- constraint2;

hi=max(0, gl);

h2=max(0, g2);

pen=r (1) *h1.72 + 1(2)*h2"2; Ypenaity value needed for step 4

4.2.3 ntation

Results to the above GA proble iple

The GA generated solution to the above problem after 100 generations is shown in Figure

4.2.2. The minimum volume found by the GA to satisfy constraints imposed on the problem
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with given loading condition is 2000.6 ° where the base of the beam is 8.005m and height
of the beam is 4.9984m. Note that the design variables found exactly satisfy the constraints
imposed, thus demonstrating that the GA handles the constraints quite effectively. In
addition, the GA was capable of exploring the search space and arriving at a solution in less

than ten seconds.
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b=8.005 m and h=4.9884 m
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Figure 4.2.2: Convergence history of GA for optimizing the volume of a cantilever beam

4.3 Minimizing the Weight of a Scuba Diving
Tank (Cylindrical Pressure Vessel)

In this problem a tank consisting of a cylinder and two hemispheres, one connected at either
end of the tank, is considered. The thickness of the tank is allowed to vary between 0.1 to 1
inch and the radius of the tank varies from 1 to 12 inches. Length of the tank is a constant
and was assumed to be 50 inches. The tank is made of aluminium 7075-T6 (sheet metal)
density of 0.101 Ib./in”. Pressure in the tank is 500 Ib./in®. Some constraints imposed are
that the tank must have factor of safety of 2.1 with respect to ultimate stress and 1.5 with

respect to yield stress, where ultimate stress is o, = 80Ksi(T) and yield stress iso, = 70ks7 .

Other constraints imposed on the above problem definition are given in the mathematical

formulation presented below.



4.3.1

Objective function: minimize {weight) weight =3V
where the weight is approximated by: weight = (2mt)L + 4/ 3w )p

Encoded/ design variables: » and ¢

Constraints: Stress allowable: 5, = ?1 = 38.097Ksi
o, _
Stress allowable: o, = 1—; =46.67Ksi

Stress allowable =38.097 is the lower stress value therefore it governs the design.

o S0, =38097ksi

Since hoop stress, o, < o, the axial stress, then the tank will fail in the hoop region first

PP Pr
Therefore first constraint is: (1) 60y = — <0y
2t
{(i1) Second constraint is on the aspect ratio that validates the above formulas.

Aspect ratio =; > 10 where r is the radius of the tank and ¢ the thickness of the tank.
(iii)  Since axial force, £, is less than hoop force, f_, it will govern the design:
f.o=oyut= %t < 8007b

Fitness= weight + penalty

where r is the radius of the tank, ¢is the thickness of the tank wall, L is the length of the tank,

o is the density of the tank material, V is the volume of the tank, yis the specific gravity

and P is the pressure inside the tank.

4.3.2 Results to the above GA problem implementation

The solution to the above problem after 50 generations is given in Figure 4.3.1.

minimum weight found by the GA is 40.0549 Ibs. with thickness of 0.3 inch and radius of

2.9966 inches. Note this problem was designed simply as a means to test the capability of

the GA to solve problems. For practical purposes the geometry of scuba tank found may not

be useful, primarily because the constraints and the length of tank used may not be practical,
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however; the solution does prove that the GA is an effective tool for optimizing a wide

range of problems.

54 T T T T T T T
Y
- yirdit | |

Figure 4.3.1: Convergence history of the GA for optimizing the weight of a cylindrical
tank

4.4 Discussions and Conclusion

The result from the three problems solve above acted as reassurance that the GA is
functioning as expected. Moreover, the GA generated results indicated that the algorithm
was quite capable of solving a range of problems, and more importantly, exploring and
exploiting a vast search space so as to avoid falling into the trap of local optima. Hence,
armed with this knowledge it is time to fully test the potential of the GA by proceeding to
more complex mechanical engineering problems to fully ascertain robustness and versatility

of the genetic algorithms.
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Conceptual Aircraft Design — A
Genetic Search and Optimization
Approach

5.1 Summary

With recent advancements of computers and the advent of a search and optimization tool
such as the genetic algorithm (GA), the manipulation of numerous aircraft design parameters
in reasonable amount of time becomes feasible. It is from this standpoint that when one
examines the aircraft design process, that is, the lengthy time and effort spent creating and
integrating aerodynamics codes, sizing routines and performance modules, that the GA
becomes beneficial. Consequently, a GA was created and employed as a tool to explore
possible aircraft geometries that are more efficient and less costly than an existing design.
The adaptive penalty method is employed in the GA to handle all constraints imposed on the
design. In addition, the effects of adjusting varying degree of selection and crossover
intensities and types on the aircraft evolutionary process are studied. A design study is also
conducted to compare the GA optimized aircraft shape and configuration with that of the
existing aircraft. Results indicated that the GA is a powerful multi-disciplinary optimization
and search tool, that is capable of managing and reforming numerous aircraft design

parameters, to arrive at aircraft conceptual designs that are both efficient and cost effective.



A word that often comes to mind in aircraft design is compromise. In fact, it can be argued
that the entire aircraft design process entails finding the correct balance or compromise
between numerous design variables and design constraints. Moreover, the traditional design
technique usually requires the expertise of designers and engineers in order to arrive at an
efficient design. The pitfall of such an approach is that it relies entirely on the designer’s and
engineer’s knowledge and creativity. Hence the problem of human error cannot be ruled out.
Unfortunately, each design discipline 1s limited to a subset of configuration parameters,
goals, and constraints due to the highly interdisciplinary process, which involves a high
number of variable couplings [64]. Hence, due to the processes entailed in the traditional
design approach, the designer may not fully grasp how the design objectives conflicts with
another. Finally, the traditional design approach entails lengthy meeting time and large sums

of money to create and integrate the various disciplines of aircraft design.

On the other hand, the GA was developed to eliminate or at best mitigate the difficulties,
time and costs encountered in the traditional design approach. It can then be argued that the

genetic algorithm (GA) is one of the most commonly used evolutionary algorithms.

A few of the studies that are relevant to aircraft design and that have been successful in
applying genetic algorithms to optimization are listed below. Quagliarella and Cioppa [8];
Perez et al.[84]; Anderson and Gebert [10]; Marx et al. [11]; Ewing and Downs [12]; Tse
and Chan [13]; Butler et al. [14]; and Gage et al.[15], were all successful in applying GA to
study different design aspects of the aircraft wing. Tong et al. [16]; Mosetti and Poloni
[17]; and Hajela [18] were also instrumental in applying the GA to study complex design
problems in the aerospace industry. Furthermore, Crossley and Laananen [19] were
successful in applying the GA to study the conceptual design of helicopters. In addition,
Sobieski et al. [20]; Gallman and Mason [21]; Malone and Mason [22]; Crispin [23]; and
Bos [24] were all able to utilize the GA to study aircraft design.

In this chapter, special attention is directed to conceptual aircraft geometrical optimization —

a design phase that is critical to the preliminary stage of the design process. Consequently, a
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GA was created and employed as a tool to explore possible aircraft geometries that are more

efficient and less costly than an existing design.

Tremendous detailed information about genetic algorithms, its creation and implementation
to solve problems, and its choice of use for this thesis was already presented m Chapter 3.
For detailed information about genetic operators and schemes used for this study, please
consult Chapter 3. The MATLAB [73] coded binary genetic algorithm created was utilized

to explore its capabilities as an aircraft conceptual design tool.

53 Problem Statement

This chapter brings a focus on the application of the GA to the conceptual design of an
aircraft with constraints in sizing, performance, and stability and control. In addition, a study
was conducted to analyze the evolution of the aircraft as the GA search progresses. The
design variables chosen for optimization are given in Table 5.3.1. The range of these
variables is determined from historical and statistical data. The length of the bit string is
determined from the range of these variables and the degree of accuracy required. The
twenty-one design variables along with the design process and constraints utilized by the
GA to find the correct balance or combinations of design variables is presented in a later
section. Weight was employed as the main parameter of study in the aircraft fitness function
to optimize. A reduction in weight and the computing time required to arrive at efficient

conceptual aircraft designs are the main goals of this study.

5.3.1 Design Goals

The objective of this chapter is to find the right combination of design variables that will
provide the initial design layout to speed up the aircraft conceptual design process. This
objective must be achieved with minimal constraint violations and a combination of

variables that will lead to a practical and feasible conceptual aircraft designs.

The main optimization goal is to minimize the aircraft weight (W). The aircraft weight is

directly related to the total cost of the aircraft. Furthermore, it can be argued that an
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aerospace structure is a structure whose usefulness diminishes significantly with increasing
weight [85].
The model formulation is as follow:

Objective function:
Minimize f{x) =W * p(x) (H)

subjected to constraints in performance, acrodynamics, sizing, and stability and control.

The total weight, W, includes the fuel weight, aircraft empty weight, and payload. Fuel
weight is calculated based on the fuel fraction used in each segment of the mission profile.
In addition, the weight attributed to 5% fuel reserve and 1% trapped fuel is taken into
account. Aircraft empty weight is the sum of all structural components, and is calculated
using a component weight estimation method developed in {85, 86]. The payload consists of
a crew of 6 and 110 passengers, all weighing 150 Ibs. In addition, all passengers are allowed
baggage weight of 80 Ibs. p(x) is the penalty value added for any constraint violation and 1s

calculated as shown in Chapter 3.
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Table 5.3.1.  Critical Aircraft Design Variables

Design Variable Variable Description | Variable String Length
Variable | Type Domain (# of bits)
W/S {c} Wing loading 70-140 3
(bl f*)
/W {&) Thrust Weight Ratio 0.3-0.5 5
C[ {c) Maximum Airfoil Lift 1-135 3
max
A RM {c) Wing Aspect Ratio 6-12 7
A (e Wing Taper Angle 0.1-0.9 6
A {©) Wing sweep angle | 0-50 9
Y (deg)
te {©) Wing thickness 0.1-0.13 3
{c) Horizontal tail 3-5 5
AR, Aspect Ratio
A ©) Horizontal tail 0.2-0.6 4
hi Taper Ratio
A {c) Horizontal tail 5-43 7
bt Sweep angle {deg)
T @ Tail Type 0-1 2
Tope T Ta-0
Conventional-1
©) Vertical tail 0.7-1.2 1
AR, Aspect Ratio
A () Vertical tail 0.3-0.9 5
vt Taper angle
A {c) Vertical tail 35-55 4
v Sweep angle (deg)
N &) Number of Engines 2-4 7
eng
Material | (1) Material Type 0-1 1
O-conventional i-
Composite
Nseats | (& Seating arrangement 2-11 4
(1-11)
] {c) Horizontal tail arm | 40-100 8
! ¢13]
S {c) Horizoutal tail area | 200-700 10
A 7 2
1)
C () Hinge moment dueto -0.1- -1 4
ha Flevator deflection
/ (c) WVertical tail amm (ft) 40-100 3
v

Note: c-continuous, i-integer, d-discrete

An analytical and graphical comparative study has also been conducted to check the GA
design attributes with that of the existing aircraft. For this study, a fitness module, which
includes a sizing and constraint routine, has been given.

Note that the objective function is not the cost since this value alters considerably with the

economy over time. Moreover, the cost of the aircraft is also influenced by factors such as

70



material, machining, maintenance and operations, which also fluctuate with the economy
over time. Nonetheless, there are crude estimations that can be made to formulate cost as the
objective function. The crudeness of these estimations coupled with the time constraints has
discouraged the author from implementing cost as the objective function in this study.

Readers interested in incorporating cost into aircraft design should consult Ref. 87.

S5.3.2

The mission profile is based on the type of aircraft used for study, in this case the Boeing
717. The Boeing 717 is a medium size transport aircraft [88] and a typical mission profile is
illustrated m Figure 5.3.1. For this study the number of passengers and crew is fixed at 110
and 6 respectively. In addition the average weight of crew and passenger is implemented

into the program.

Loiter
(45min. & 50001t)

Climb (ROCA2100fpm)

Take off within 62001t
Taxi Descend & Land
Engine start and warm up {within 48001t)

Payload 269501bs. & 1, =3.5g’s
Figure 5.3.1: Transport aircraft mission profile

Since a medium size transport aircraft is used in this study, FAR 25 regulations have been
adapted to govern the design process. The mission profile also yields some constraints that
must be imposed on the aircraft design, such as takeoff with a runway length of 7000t at
standard sea level, climb to a certain altitude, and land within a runway length of 5000 fi.

5.3.3 Fitness evaluation

The fitness function is geared towards weight minimization with adaptive penalty strategy

employed to handle the constraints. In effect a multidisciplinary design optimization (MDO)
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approach is taken whereby geometry, sizing, acrodynamics, performance and stability and
control are analyzed and integrated.

Briefly the sizing routing is based on the ‘rubber engine sizing methodology’. The
aerodynamic characteristics are calculated using detail component buildup method adapted
from Ref. 85. Performance characteristics for the aircraft brings a focus on satisfying federal
aviation requirements during takeoff, climb, descent and landing as adapted from references
85-91. Stability and control analysis is conducted assuming a minimum value for the static
margin. This design discipline strongly correlates the aircraft geometry and layout. In all of
the above aircraft design disciplines a total of fifteen design constraints are implemented.
The total weight of the aircraft can be subdivided in three main areas i.e. fuel weight,
payload and empty weight of the aircraft.

The fuel weight is determined from the mission objectives and the intended use of the
aircraft. Fuel fractions are then estimated using the mission profile and fuel consumption
based on performance analysis. The weight of the payload is constant and is directly related
to the number of passengers, crew and cargo. The empty weight is estimated using the

component buildup method, with estimation techniques adapted from Ref. 85, 86 and 87.

5.3.4 Design Constraints

The mission profile that has been employed is typical of a medium size commercial aircraft
i.e. warm up, taxi, takeoff, climb, cruise, loiter, descent and land. Governing transportation
rules produce certain constraints on some of the aforementioned flight segments. For
example, for this particular type of aircraft, it is required to have a minimum field takeoff
run distance where the maximum field run length is specified by governing bodies such as
Federal Aviation Rules, FAR 25 [85 and 87]. The total takeoff distance can be converted in
a penalty term as follows:
W,/

g = {0, %;—‘—j%——} @)

where g,= the degree of violation and is zero if the total aircraft field length is less than the

maximum field run length specified by FAR, or greater than zero if otherwise. {V /SEDZ

wing loading at takeoff, o =density ratio between takeoff altitude and sea level, C, =
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coefficient of lift at takeoff and TOP is the takeoff parameter used to estimate balanced field
runs depending on aircraft type, propulsion and regulations. A similar constraint
implementation 1s performed for climb, cruise, landing, sizing, acrodynamics, performance
and stability and control. All constraints have been treated equally, and the severity of the

penalty value imposed on constraints violated can be controlled by o .

Results and Comparison of GA Optimized

Designs with Boeing 717

Table 5.4.1 and Table 5.4.2 are based on a population size of forty, with two hundred
generations employed in each run. Table 5.4.1 and 5.4.2 list the best designs found from a
sample of five tests. The other four tests are neglected in this work since they do not aid in
understanding of the results. A fixed probability of crossover and probability of mutation of
80% and 1% respectively, has been implemented. In addition, elitism strategy has been used
and inverse scheme adopted to scale the fitness values.

A plot of the generation history for the best designs found from the five runs is shown in
Figure 5.4.1. From Figure 5.4.1 it can be seen that the search converges upon an opimum
area of the design space after approximately 80 generations. From this point onward the GA
attempts to “fine-tune” or focus in on this converged area to find the global optimum.
Running the GA further, it may be possible to find this optimum, but this task can be
computationally expensive. However, in most cases finding the global optimum is of little
practical use. Consequently, one major disadvantage of the GA is that convergence speed

near the global optimum is slow.



Table 5.4.1. GA Optimized Conceptual Aircraft Designs

Runl | Run2 Run3 Rund Rummd | B-717

Ci:g?;(e)ver 1 pomt |2point | Uniform [Uniform| 2 pomt
Selection Touwrn. | Town. |Town. | Roul | Roul

Type
Design ariables
WIS 9663 | 108.71 |102.67 [103.76 | 87.84 | 1i5
C max 1.5 15 | 143 | 143 | 15 | 14
AR, 6 603 | 638 666 | 614 | 87
A, 032 | 062 | 047 | 030 | 031 | 038
A, 2466 | 2417 | 2681 | 22.80 1 3082 | 269
t/e 0.1 0.1 0.11 0.1 | 013 0.11

AR, 429 | 319 | 319 | 397 | 468 | 521

0.49 031 0.45 041 | 047 0.4
6

” 12.87 | 1256 [36.02 | 721 | 32.72 | 36.87
Trpe 1 0 0 1 0 0
AR, 2 2 2 2 2 | 105
Aoy 055 | 078 | 034 | 073 | 040 | 08
A, 4033 | 35 |45.67 | 4033|3768 4l
N gouss 5 6 5 5 5 5
l, 7473 | 7322 | 70.88 | 70.74 | 73.90 | N/A
S, 20147 | 20747 {21635 [225.06 203.42 | N/A
I, 7377 | 69.51 |61.412 | 65.80 | 7431 | N/A
Wo  |103330 |103341 | 104832 |104725|105918|115000
E,‘fgﬁﬁ;ﬁ,& 11.33% [10.24% |9.28% [9.92% [9.24% |

Note: - Tourn. — Tournament Selection
Roul. - Roulette Selection
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Figure 5.4.1: Convergence history for genetic algorithm conceptual aircraft designs for run
1 05
Table 5.4.2. Other Affiliated GA Optimized Design Variables
Runl [{Run?2 [Run3 Rund4 FunSs
%;;sesover I point 2 point [Uniform Uniform | 2 point
Selection Tourn. | Tourn. [Tourn. Roul. Roul.
Type
Design Variables
C. 2024 | 1544 {1724 | 1889 | 2139
G, 646 | 96 | 807 | 573 | 662
b 80.1 | 75.82 | 8071 | 81.99 | 8605
S 1069.3 | 950.59 | 1021 [1009.3 | 12057
L 109.74 | 10568 |109.74 |109.74 | 109.74
v, 0.971 | 1220 {105 | 117 | 0814
v, 0.088 | 0.082 | 0.089 | 0.089 | 0.082
F 3897 | 6548 | 4481 | 5941 | 37.67
()%/ ) 051 | 033 | 049 0.56 | 047
/o
8%[ ) 038 | 063 | 058 0.66 | 053
/ C (11
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Chapter 2 addressed the reasons why rescarchers are usually content with sub-optimal
solutions and so these comments are not repeated here. Nonetheless, acceptance of these
designs is justified by observing that in the real world problems of imperfect models,
unavoidable numerical inaccuracies, and time constraints, insisting upon optimal solution is

entirely inappropriate [53].

Results indicate that uniform crossover coupled with tournament selection prove to be the
best genetic operators. Uniform crossover encouraged the greatest information exchange

between designs, while tournament selection closely imitated mating competition in nature.

One-point and two-point crossover schemes even though useful were not effective in
quickly exploiting and exploring the search space. This is partly because the bit string that
represents each design was large and there is not enough information exchange facilitated by

these genetic schemes for the short generation time under study.

Roulette selection scheme fused with any crossover scheme was also ineffective. This is
mainly because roulette selection has some undesirable features. With roulette selection,
there is a tendency for a few super chromosomes to dominate the selection process; in later
generations, when the population is largely converged, competition between chromosomes

is less strong and a random search behaviour emerges [79].

The aircraft conceptual geometry design variables found and plotted agree within the scope
of aircraft design. This implies that apart from finding a design that yields a reasonable
weight, it is important for the GA to arrive at a design that “looks good” or looks like an
aircraft. This can only be achieved if the constraints imposed on the design are reasonably
satisfied. As Table 5.4.1 reveals, the adaptive penalty method is effective in enforcing the
design constraints. Table 5.4.1 also suggests that all designs yield some degree of constraint
violation and therefore lack some degree of feasibility. Increasinga can mitigate the degree

of violation of the constraints.
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5.4.1 Evolution of the aircraft design

Figure 5.4.2 to Figure 5.4.5 below shows how the top view of aircraft configuration evolves
as the GA search progresses. Since the GA is a population-based search the best design
based on the fitness value was selected and plotted. The design at generation number 5, 20,
60 and 120 are presented for run 3 to illustrate the GA evolutionary design process. Note
that after generation number 120 all the runs reached a steady state condition. The aircraft
designs exhibited little change, since the GA had converged onto a near optimum design and

was proceeding slowly to the global optimum.

Figure 5.4.2:

Figure 5.4.3: DBest design at generation 20
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Figure 5.4.4: Best design at generation 60

Figure 5.4.5: Best design at generation 120

Figure 5.4.2 to Figure 5.4.5 above suggests that the GA advance from an impractical design
to a conceptual aircraft design that is reasonable. In other words, the GA capability of
learning is dependent on time. This fact transcends to our every day life in which our
learning abilities are influence by a time factor. In addition, the evolved design coupled
with reductions in constraints violation somewhat reinforces the fact that convergence

towards optimal or slight optimal solutions is taking place and perhaps can be reached.

Note that even though the genetic operators used for run number 4 are not the most efficient,
the GA is capable of finding a reasonable conceptual aircraft design in a small amount of

time. The design in run 4 is not too efficient partly due to the selection scheme employed.
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It can be argued that the design found in run number 3 is the best of the five runs since this
run offers the best combination of design variables with a low weight and small constraint
violation. Uniform crossover and tournament selection therefore were the most effective
schemes in exploring the search space and locating the most interesting areas of this
complex design space, which is the major goal of conceptual design. The reason being
uniform crossover encourages the greatest amount of mformation exchange when compared
to 1-point or 2-point crossover, while tournament selection serves a vital role of imitating

mating competition in nature more closely than roulette selection.

The best aircraft design layout at the end of run 4 (at generation 200) is also plotted and a
graphical comparison with the existing design is indicated in Figure 5.4.6. Take note of the

variations in dimensions and layout of the GA evolved aircraft with the existing design.

Aircraft GA Optimization Result
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Alrcraft GA Optimization Result
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Figure 5.4.6: Top view and side view comparison of optimized aircraft found by the GA
with existing design.

The fuselage dimensions are similar to the existing aircraft since the number of seats found
by the GA is identical. Significant changes in horizontal and vertical tail arm, reduction in

tail area, and wing location should be noted.

A reduction in wingspan leads to a reduction in aspect ratio of the aircraft; see Table 5.4.1
and Table 5.4.2. Low aspect ratios result in more pronounced induced flow effects, which
reduce the peak velocities on the wing surface [87, 90]. Hence, critical Mach numbers will
increase with decreasing aspect ratio. A low aspect ratio also results in a higher induced drag
and a reduced lift curve slope. To alleviate such a problem, one can implement end plates at
the wing tips [89, 90]. In addition, a second segment climb constraint that has been
neglected in this study can be included to increase the aspect ratio. The consequences of
high induced drag and low lift curve slope are that higher angles of attack will be required
for takeoff and landing, which can present such problems as tail scraping and poor pilot

visibility [90, 91]. Moreover, increased induced drag can also translate into increase fuel
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consumption. The difficulties encountered above are the result of reduced aspect ratio that

has not been accounted for in the design methodology.

Clearly, the GA can provide a reasonable aircraft design in a short amount of time compared
with the traditional design techniques. Moreover, the GA have the ability of simultaneously
leaming the task from all design disciplines as well as integrating the design parameters
from these disciplines to arrive at efficient aircraft designs. In addition the GA was capable
of handling numerous design variables, design formulations and design constraints. Hence in
some ways the GA can replicate the task assign to a design team and in some cases
underscore some crucial design areas that may be overlooked by a traditional design
approach. On the other hand, the convergence history of the GA is slow. As a result,
solutions obtained may be indicative of a simplified version of the true optimum. Thisisasa
result of problems arising out of questions such as how large the population should be or
what crossover or mutation rate to use? Or perhaps what can be done to better the GA
selection process? These questions are vital since they determine the convergence quality of
the GA and can play a major role in the GA decision-making.

Moreover, there is no proof of optimality with the GA generated designs since there is no
gradient information available. Hence, one general limitation to the GA is the lack of simple
and reliable convergence criteria. However, this lack of mathematical proof inherent in the
GA is, to some extent, traded off for the ability to search a large complex search space
employing numerous constraints and design variables.

As indicated in the GA convergence history, the GA seem to get close to the optimum but
takes a long time to locate this point in the search space. Thus it may be more fruitful to run
several near optimum design and later combine different aspects of these various designs to

achieve an optimal conceptual design.

Finally this study indicated that genetic algorithms are a flexible and efficient means of
generating conceptual aircraft designs that can increase the scope and decrease the time and

cost entailed in the traditional design approach. As a result, the proposed methodology can
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provide initial layouts and geometries of reasonable conceptual aircraft design maps — given
a particular mission profile — to initiate a speedy design process.

This study also suggests that the GA is capable of handling the complex problem of
simultaneously managing and integrating many design disciplines. The aircraft conceptual
designs found in this study are different from the existing design layout of the Boeing 717.
This difference in most cases provides a favourable balance between aircraft parameters that
lead to a lighter aircraft geometry and configuration than that of the existing design. From
this standpoint, serious consideration should be paid to designs found in this and other
research utilizing GAs, since such research acts as a starting point of generating a design
map to meet the required design objective in a short period of time — the main objective of

conceptual design.



Applicability and Viability of a GA
based Finite Element Analysis
Architecture for Structural Design
Optimization

In this chapter, a genetic algorithm (GA) based finite element analysis (FEA) methodology
was developed for size and shape optimization of planar and space trusses. The proposed
procedure interfaces a binary GA within a FEA software package in order to initially test the
applicability and viability of such integration. In addition, special features of the GA were
included to dynamically alter the population size, and the crossover and mutation rate in
order to facilitate faster convergence and hence reduce the computational effort required. In
other words, the GA adapted itself as the search and optimization process progressed. This
chapter also brings a focus on the applicability of integrating a GA as an optimization tool
within a FEA software. It was shown by way of many examples —solved by numerous
mathematical, as well as other heuristic approaches in the literature- that the proposed
methodology is quite efficient and capable of finding lighter and reasonable structural
designs than that reported in the literature. Moreover, it was shown that the proposed
method removes the immense effort required in coding ones own finite element codes by
utilizing already existing finite element software. Nonetheless, it was found that even with a

GA, optimization for very large problems was computationally extensive.
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Structural optimization has been and continues to be a large area of active research.
Vanderplaats [92] appeared to be among few whom was successful in applying numerical
approaches such as gradient method, sequential quadratic programming, and approximation
methods to the optimization of structures. Many of these techniques were based on Taylor

series expansion of the objective and constraint function with respect to the design variables.

Typically, Taylor series expansion is used to linearize a non-linear system in order to apply
some operations research technique. It is important to note that it is these same numerical
methods that are present in some FEA software such as ANSYS [74]. Apart from
Vanderplaats [92], Salajegheh et al. [93] and Hansen et al. [94] also followed a similar
approach using an approximation method based on first order Taylor series expansion of the
member forces. In addition, Smith and Miura [95] also used an approximate technique based
on Taylor series expansion for the sizing problem. Imai [96] used numerical methods based
on Langrange multipliers often referred to as the primal-dual method. This method is
capable of handling both equality and inequality constraints.

Application of linear programming techniques to structural optimization was also heavily
studied by Belegundu [97], Qian et al. [98], Hall et al. [99], Erbutur and Al-Hussainy [100],
just to name a few. To date, no single mathematical method has been found to be entirely

efficient and robust for the entire range of engineering optimization problems.

Apart from the above mathematical programming based approaches, optimality criterion
methods that utilize the Kuhn Tucker condition with Langrangian multiplier was also used
for structural optimization by Gellaty and Berke [101], Venkayya et al [102], Allwood and
Chung [103], Kirsch [104], Chang [105], Rozvany and Zhou [106], just to name a few. In
structural optimization it is well known that optimality criteria (OC) techniques and
mathematical programming (MP) based methods have received great interest and

application during the last several decades [83].

The complexity of implementation of structural optimization numerical methods, the need

for derivatives, and the deterministic and exhaustive nature, has made MP and OC methods
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less attractive. Consequently, research was oriented in the direction of improving the above
techniques and/or perhaps finding better approaches of dealing with the aforementioned
problems in structural optimization. Soft computing techniques such as the GA were found
to behave efficiently over a wide range of applications, even when employing numerous

design variables and constraints.

Goldberg [25], — a pioneer in the work of GA- and Samtani appeared to be the first that
employed the GA for structural optimization. A 10 bar truss problem — which is today a
benchmark problem in structural optimization - was utilized to study the GA’s role in
structural optimization. Jenkins [26] utilized a simple GA created by Goldberg [27] to study
a truss- beam roof structure. Hajela and Shih [28] looked into the applicability of GA as a
function optimizer for structural optimization. Rajeev and Krishnamoorty [29] proposed a
simple discrete GA for optimizing truss structures. Rajan [30] extended the magnitude of
the problem by combining size, shape and topology optimization of trusses using a modified
GA. Deb and Gulati {31] also proposed a GA for size, shape and topology optimization
using a real-coded GA. Camp et al. [32], looked into a simple genetic algorithm for discrete
optimization of 2D structures using a finite element analysis program developed by
Zienchawicz. Thus research was directed towards expanding the scope of GA in the
structural optimization arena. Moreover, it also appeared as if research efforts were also
aimed at ways of improving efficiency and at the same time reducing the computational
effort required for structural optimization. Neural networks were also used in structural
design optimization to tackle the problem of lengthy computational time. To name just a
few, Hajela and Berke [107] utilized back-propagation neural computing strategies for
structural amalysis. Adeli and Park [108-109] used hybrid counter propagation neural
network technique for discrete optimization of large structures to improve the learning rate
of the algorithm.

This chapter proposes an adaptive genetic algorithm based on dynémicaﬂy changing
probability of crossover, probability of mutation and population size, interfaced with an
existing FEA package to increase applicability, and robustness. Discrete as well as

continuous design variables can be handle by the proposed approach. Genuinely continuous
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data can easily be discretized whereas genuinely discrete data is sometimes umpossible to
make continuous [82].

Hence the current research effort extends prior research in an attempt to facilitate easy
applications for structural optimization using the GA as optimizer. In other words, having a
model of the structure created in a particular FEA package is all that is required to initiate
the optimization process. Moreover, no programming effort or user intervention 1s required
to conduct the structural optimization process. Weight (as opposed to cost) is specified as
the objective function, and constraints are handled by the adaptive penalty method. Many
examples found in the literature are solved by the proposed method and compared.
Discussion and conclusions are centered on ease of applicability, and viability of the
approach to optimize structural problems faced by engineers and scientist. This chapter
concludes by addressing some of the possible problems of the proposed method and presents

some insights into solving these problems in the near future.

6.2 Proposed FEA and Optimization
Technique

The state of the art in this chapter is the fusion of a soft computing technique, namely, the
genetic algorithm into an already existing finite element software package. This integration
provides the ease in structural design and optimization, flexibility to conduct multidisplinary
analysis and significant savings in terms of time and money. As will be argued in a latter
section of this chapter, the presented hybrid approach though requiring long computing time
for large problems, can provide a tradeoff for the lengthy time sent creating and integrating

finite element codes with optimization techniques.

6.2.1 Propose Structural Technique

For structural design optimization it was important that the model be created in a software
by means of a parameter list. The parameter list usually contained all the design variables
that were required for building the model. This step is essential since it enabled smooth
movement between the FEA software and the GA. For example, for size optimization of

truss structures the cross sectional areas of the members were design variables and so
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[}



appeared in the parameter list. In this the chapter cross sectional area can be either discrete
or continuous. Pre-defined discrete cross sectional areas, their properties, constraints and
design checks were taken from the American Institute of Steel Construction Allowable
Stress Design (AISC-ASD) specifications manual [110]. On the other hand, the cross
sectional properties such as moment of inertia and element length of continuous cross
sectional areas of a member was calculated or if possible extracted from the FEA software
package. Note the effects of discrete and continuous design variables are discussed in a latter
section. Configuration optimization entailed setting the nodal coordinates as the design
variables and subsequently including these variables in the parameter list. Note that this
work does not include topology optimization but this can readily be incorporated and is the

topic of future work.

Finally, if we were to design a simple cantilever beam in ANSYS, the length, height and
width of the beam would be defined as scalar parameters for later use of model building.
Note that it is not necessary to define all parameters in a list, but only the design variables
that would be encoded in the GA binary string. Once the model was built using these design
parameters, the objective function and constraints can be coded (specified) either within the
FEA package or within the GA. The latter option is recommended since implementing the
objective function and constraints within a FEA software depended on the user skills with
that particular software. On the other hand, implementation of the constraints within the GA
offered greater ease and flexibility to the user. The output of FEA process was the volume,
clement length, stresses, nodal deflection, and other problem specific constraint conditions.
This entire process was carried out in batch mode and processing of the largest structure in
this chapter using ANSYS took approximately 6 seconds. The output file from the FEA
package was then used for post-processing and extraction of the necessary data required for

calculating the weight and satisfving the required constraints.

6.2.2 Proposed Optimization Technique

Genetic algorithms are a class of soft computing technique that can be used to solve a wide
range of NP hard combinatorial problems. The underlying principles of genetic algorithm

were covered in Chapter 3. Today, many marvel at the GA concept and its pioneers who
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formulated the analogy between evolution and a tool effective for optimization. The GA
proposed technique requires little user intervention. More importantly, a method of dealing
with the problem faced by some, i.e. appropriate selection of population size, mutation rate
and crossover rate was dealt with. Further details on creating and employing the GA for
problem solving can be found in references 64, 66, 78-81, and 111 and references 65, 112~

113.

6.3 Optimization Model

The objective function of the structural optimization model was the weight. Note that even
though cost is a function of weight, cost as the objective function is more complicated since
it entailed certain aspects such as maintenance, machinability, number of connections,
material etc., that there is no exact relationship for and/or whose cost varied considerably
from one time horizon to the next. Consequently, the model was formulated using weight as
the objective function and is given as follow:

Generally we would like to find:

Find [X=x,x,..x,]so asto minimize

Fitness function = objective function value + penalty value O
or
Fitness function = F(X) + degree of violation of constraints 2)

Subject to: m structural constraint

where X =x,,x,..x, 1s a set of decision or design variables encoded in a binary string; 7 is

the number of design variables; and m is the total number of constraints. In order to ensure
only feasible designs, a penalty value was assigned to any design that violated any of the m
constraints. Moreover, a penalty value was added to the objective function value thereby
penalizing it and moving it away from the optimum by a distance proportional to the degree
of violation of the constraint.

A more detailed optimization model is as follow:
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N
Minimize W = Z p.L A 3
i=]

for continuous design variables, or,

N
Minimize W= p,L,A,(id) (4)
i=1

p—

for discrete design variables.

where 7 is the individual element . p,, L, and 4, are the material density, element length

and element area respectively. id is a random discrete identification number within the

binary design string. A {id) is the area extracted from a database of AISC sections at a

particular identification number. N is the total number of elements. The above functions

were restraint by the following conditions, some of which are adapted from Ref. 94:

(1) Side constraints that limits areas
A (id)" < A4,(id) < A4,(id)” (%)
or
A <4, <4’ (6)
where A4,”is the maximum area limit and 4" is the lower area limit. Similar definition

applies for discrete area members where an integer identification number identifies the area.

(2) Area linking
A, =4, 7

where A, and 4, are the dependent and independent areas respectively.

(3) Side constraints that limit nodal coordinates

(X,.7,.Z,)" SX.Y5.2, S(X,.Y,.Z,)° (@)

< N/ .. p N .. )
where (X ,.Y,.Z )" is the upper imitand (X ,,Y,,Z ;)" isthe lower limit on the X, y and z

nodal coordinates.

(4) Nodal coordinates linking
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(X Vo Zp)=a, +b(X,.1,,Z,) %)
where ¢, and b, are constants; X,,¥,,Z. are dependent coordinate variables; and

X,,Y,,Z are the independent coordinate variables.

it i

(5) Fabrication restriction

Availability of a cross sectional area in the database predefined by AISC.

(6) Element stresses

o <o, <o," (10)

i i i
where o, is the maximum tensile stress and o, is the maximum compressive siress in an

element / when subjected to loading condition ;.

(7) Nodal Deflection
8, <6,56," (11)
where §,7 and &, is the maximum upward and maximum downward deflection

respectively, at node % when subjected to loading condition ;.

(8) Euler Buckling

o, <0, (12)
where o, is the critical stress for element 7.
The critical stress is given as:

of ( Ki Li //)2
\ o h
where £, is Young’s modulus of elasticity; X, is boundary condition dependent; 7 is the
radius of gyration, and L, is the element length for each member iin the structure. Square
cross sections were assumed to simplify the buckling analysis. o, is the stress of member

i when subjected to loading condition ;.

\C»
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(9) Natural Frequency limit
NF, < NF (14)

where NF is the natural frequency limit and NF, is the natural frequency of the structure

when subject to loading condition ;.

Note that serviceability and fatigue constraints are more complicated and was ignored in this

study, but its inclusion is also the topic of future work.

6.4 Techniques Interfaced

Finite element analysis (FEA) is a numerical method that is used fo solve complex
engineering problems. FEA was - and can be - applied to fields beyond that of structural
analysis. In addition, FEA has become a standard method of structural analysis. Today much
software is developed and is available to facilitate an easy finite element analysis for
problems faced in many fields. The software used to interface with the binary GA created in
MATLAB [73] is ANSYS/ professional FEA program from Swanson Analysis Systems Inc.
[74]. ANSYS architecture provided fast and easy integrated pre and post processing. In
addition, ANSYS also proved to be quite suited for iterative analysis with the GA. More
importantly, ANSYS allowed for easy integration, facilitating quick batch processing, which
saved significant amount of time in the analysis of the solution. In order to reduce the
computational effort the GA based FEA required smooth integration between the GA and
the FEA software. Batch processing was facilitated by ANSYS log file (based on ASCII text
input) and written in ANSYS parametric design language (APDL); this is shown in Figure
6.4.1 as the structural analysis input template. The structural analysis input template contains
instructions in APDL code to preprocess, solve, and post process the structure under study.
These instructions are coded in MATLAB, and sent at each iteration into ANSYS to process
the population of structural design generated by the GA. Using the results analysis file -
which contains ANSYS output parameters such as stresses - the constraints and convergence
criteria are check. Dynamic data exchange (DDE) was used to transfer output data from
ANSYS to MATLAB in order to perform these checks. If the convergence criteria are

satisfied, the program stops and the best design is output to the screen.
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The architecture of the overall GA based FEA approach for structural optimization is shown
in Figure 6.4.1.

Specify limits in design vartables, initial \
pe, pin, population size and string length

:

Randomly senerste population. | Gendi=l

;

Decade populetion

!

Structurel Anatysis nput Template

Hesulls Analysis File
Check Convergenize . ANSYS FEA
Ciiers Modlylognl | ) Store s hck et
Tenglde siresses, buckling, nafural
Gen#=Cenft 4 Na frequency patamsters
L

Yes

e Stop B PrintResults

Figure 6.4.1: Design methodology and technique interface.

6.5 Ilustrative Examples

The first example presented is a 3 bar truss, and it was used to draw comparisons between
the optimization methods native to ANSYS i.e. the subproblem approximation method and
the first order method, and the proposed method using GA as an optimizer. The subproblem
approximation method is an advanced zero order method that does not require derivative
information and uses a penalty method to reject infeasible solutions. The first order method
on the other hand, required gradient information but also unconstraint the problem by adding

a penalty function value to the objective function. The gradient calculation used with the

92



first order method, typically employed steepest descent or conjugate direction method in

order to find an appropriate search direction.

Other examples were solved, presented and compared with results found in the literature.
Moreover, the power and limitation of the proposed method is also exposed via the
examples presented. The GA operators and properties used are identical for all problems. An
initial population size of 200 is used, with an initial probability of crossover of 0.6; initial
probability of mutation taken as 0.01 and “b” as one fourth. The generation number is used
as the ultimate stopping criteria and was set at 100. The structure initial geometry,
characteristic properties, loading conditions and constraint values are given with each
example.

The examples studied were variations of the 3 bar truss, the 10 bar truss, the 18 bar planar
truss, 25 bar space truss subjected to two load conditions, a 72 bar transmission power, and a
47 bar planar tower subjected to three load conditions. Comparison of the results with the

literature is drawn and discussion about the methodology is highlighted.
6.5.1 3-bar Truss

The initial geometry of the 3 bar truss is shown in Figure 6.5.1, and it was subjected to a
single loading condition. This problem was adapted from Ref. 74 where the cross sectional
area, A of each member, and base dimension, B, are the design variables. The constraint is
axial stress, which should be less than 400psi. In addition, there are two side constraints for
area and nodal coordinates. The applied loads, material constants and constraint value are
given in Table 6.5.1. A comparison of the results from the proposed technique with the
methods native to ANSYS is presented in Table 6.5.2. The initial and optimized geometry of
the 3 bar truss structure is shown in Figure 6.5.1 and Figure 6.5.2 respectively.

Table 6.5.1. Loading condition for the 3 bar truss problem shown in Figure 6.5.1.

Node Fx(lbs) Fy(ibs.) Fz(lbs)

4 200000 -200000 0
Constants

Young’s Modulus =2.1E6 psi

Density =2.85E-4 1b/in3

Allowable stress =400psi
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Figure 6.5.1:  3-bar truss, initial geometry

Figure 6.5.2: 3-bar truss, Optimized geometry
Table 6.5.2. Comparison of results with optimization techniques native to ANSYS
Method First Subproblem GA-~
order Approximation | FEA
Member Method | Method
1 685.58 794.84 76733
2 6.29 3.08 1.00
3 1.66 237.04 2.17
Dimension (B) | 1001.2¢ 590.619 983.89
Weight (1bs) 301.23 343.96 288,38

From the results it can be gleaned that the mathematical optimization tools native to ANSYS

were not too effective in finding the optimum size and geometry of this structure. This
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ineffectiveness became more apparent as the problem got larger or the number of design
variables increased. These mathematical tools were unable to provide better results than the
GA since they were unable to handle a large search domain and since their search
procedures were deterministic in nature. This example was undertaken simply to compare
results of the optimization method native to ANSYS and the proposed method, and
consequently illustrate the need for new and more effective optimization techniques in finite

element software.

6.5.2 10-bar Cantilever Truss

The 10 bar cantilever truss problem, due to its simple configuration, have been used as a
benchmark to verify the efficiency of diverse optimization methods. The initial geometry of
the structure is shown in Figure 6.5.3, and the loading conditions, material properties and
constraints are given in Table 6.5.3. This problem was adapted from Ref. 32. The results

found are presented in Table 6.5.4 alongside the results in the literature.
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Figure 6.5.3: 10-bar truss, initial geometry
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Table 6.5.3. Loading and design condition for 10-bar truss problem shown in Figure 6.5.3.

Node Fx({Ibs) Fy(Ibs.) Fz(lbs)

2 0 -100000 0

3 0 -100000 0
Constants

Young’s Modulus =1E7 psi

Density =0.1 Ib/in3

Areas range =0.1-35 1n2

Allowable stress =25 Ksi

Allowable nodal deflection =2 inches.
in x and y direction

As mentioned before, the 10 bar truss problem is a benchmark problem for structural
optimization. This problem was solved by numerous mathematical as well as heuristic
methods. Some of these methods and their results are illustrated in Table 6.5.4. Note that
apart from this research effort, the other proposed heuristic approach also excelled when

compared with mathematical and optimality criteria techniques.

The 10 bar truss was solved by numerous mathematical as well as heuristic methods. Some
of these methods and their results are illustrated in Table 6.5.4. With respect to the other
heuristic methods presented, the adaptive nature of the GA in this study provided
comparable results. Note however that neural networks applying back-propagating strategies

[107] provided better results than the present study.
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Table 6.5.4. Comparison of design variables and objective function values for 10-bar truss

show above
Researcher | Gellatly | Veakayya | Schmit | Qian | Belegundu Camp Hajela & | Current
{101} [102] [95] [98] 7 132] Berke Study
[107]
Methed |Optimality Two MP Lp MP Genetic Neural GA-
\ Criteria | Subspace Algorithm | Networks FEA
Approach with
Zienkiewicz
Member Program

1 2221 23.416 23.76 23.545 25.70 24.07 30.774 22.48

2 15.6 14.904 14.56 14.96 0.1 13.96 0.112 14.94

3 0.24 0.53 0.53 0.297 25.11 0.56 17.40 0.42

4 0.1 0.128 0.1 0.1 19.39 0.1 11.425 0.14

5 31.35 30.416 30.67 30.902 0.10 28.92 0.108 30.75

6 0.1 0.101 0.1 0.1 0.10 0.1 0.487 0.12

7 22.06 21.084 21.07 21.275 15.40 21,95 5.593 21.10

8 8.35 8.578 8.578 7.611 20.32 7.69 22,953 7.26

9 0.14 0.101 0.1 0.1 20.74 0.1 20.886 0.13

10 20.03 21.077 20.96 21.156 1.14 22.09 0.100 20.74

Weight 5112 50846 5076.85 | 5069.4 5472.00 5076.35 469249 | 58854.98
(Ibs))

-MP- Mathematical Programming
-LP- Linear Programming

6.5.3 18-bar Cantilever Truss

The 18 bar truss problem was adapted from Ref. 94 and was also tested in Ref. 96 and 114.
The initial geometry of the structure is shown in Figure 6.5.4. The truss was subjected to a
single load condition. Two different constraint scenarios were studied. First, the constraints
were in stress, area and geometry. For this case the element areas are linked as follow:
Al=A4=A8=A12=Al6; A2=A6=A10=A14=A18; A3=AT7=A11=A15 and
AS=A9=A13=A17. In addition, the geometry of the truss was allowed to vary in both x and
y directions at nodes 3, 5, 7 and 9. Consequently, there were 4 independent area design
variables and 8 geometry design variables. The loading condition, material properties and
constraints are given in Table 6.5.5. Figure 6.5.5 shows the optimized geometry, while

Table 6.5.6 compares the results obtained.

Secondly, the 18 bar truss was resolved with exactly the same condition as above, but with
additional constraints in buckling and fabrication. The pre-defined structural members and

their properties were taken from AISC manual [110].
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The results are compared with the literature and are given in Table 6.5.7. The convergence

history for this run is shown in Figure 6.5.6. Figure 6.5.7 illustrates the optimized design.
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Figure 6.5.4: 18-bar truss, mitial geometry

Table 6.5.5. Loading condition for the 18 bar truss problem shown in Figure 6.5.4.

Node Fx(ibs) Fy(lbs.) Fz(1bs)
1 0 -20000 0
2 0 -20000 0
4 0 -20000 0
6 0 -20000 0
8 0 -20000 0
Constants

Young’s Modulus =1E7 psi
Density =0.1 Ib/in3
Buckling Coefficient =4.0
Allowable stress =20 Kpst

L 2 |

L i |

Figure 6.5.5: 18- bar truss, optimized structure when subject to stress constraint



Table 6.5.6. Comparison of design variables for 18-bar truss subject to stress constraint
Researcher Felix Hansen Cuarrent
[114] [94] Study
Method MP MP GA-FEA
Desi
Variables
Al 11.88 10.71 11.45
A2 15.67 15.19 15.2
A3 4.54 1.94 .31
AS 5.33 5.1% 4.384
x3 991.2 881.4 920.8
Y3 19.7 178.8 260.2
x5 745.9 628.9 6258.2
YS 15.1 124.9 140.6
X7 494.6 390.5 378.76
Y7 34.8 66.8 76.64
X9 249.5 313.2 282.2
Y9 23.6 45.0 45.7
Weight (Ibs) | 4524.7 3906.8 3899,1
Table 6.5.7. Comparison of design variables for the 18-bar planar truss subject to stress,
fabrication and buckling constraint
Researcher | Hansen | Imai | Felix | Current
[94] [96] [114] Study
Method MP ALM MP GA-FEA
Desig
Variables
Al 12.76 11.24 11.34 13.8
A2 17.77 15.68 19.28 15.4
Ad 5.55 7.93 16.97 4.68
AS 3.26 6.49 5.30 2.65
X3 881.4 891.1 994.6 8§48.613
Y3 178.8 143.6 162.3 191.48
X5 628.9 608.2 747.4 690.512
Y5 124.9 1054 182.9 161.783
X7 390.5 381.7 482.9 418,875
Y7 66.8 57.1 33.6 110.827
X9 313.2 i181.0 221.7 238.571
Y9 45.0 ~3.2 17.1 53.584
Weight (Ibs) 4505.0 | 4667.9 | 4524.7 | 4171.98

~ALM- Augmented Lagrange multiplier
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This problem clearly demonstrated the power of the GA as a search and optimization tool.
Note that the inclusion of buckling into the design led to a heavier structure. Moreover
buckling response of the 18 bar truss introduced a greater sense of practicality into the
design.

minfit |

W= 41719479

Figure 6.5.6: 18-bar truss, convergence history when subjected to stress, fabrication and
buckling constraint
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Figure 6.5.7. 18 bar truss, optimized structure when subjected to stress, fabrication and
buckling constraint

Note that even though the inclusion of fabrication constraint typically leads to a heavier

structure, the proposed technique was capable of finding a weight much lower than previous

work. Furthermore, the results indicated that the GA was clever in selecting AISC sections

and a geometry that yielded a low weight at the same time satisfied all imposed constraints.
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In a later section of this chapter, the inclusion of vibration into the design of this structure is

conducted.

6.5.4 25-bar Space Truss

Three different cases of the 25 bar space truss were studied. The structure is adapted from
Ref. 94. The mitial geometry of the structure is shown in Figure 6.5.8.

6.5.4.1 Case 1

The structure was analyzed using a single load condition -as given in Table 6.5.9 - subjected
to area, stress and displacements constraints. The members’ connectivity table is given in
Table 6.5.8. The material properties and constraint values are also given in Table 6.5.9.
Comparison of the results with the literature is given in Table 6.5.10.

6.5.4.2 Case 2

The structure was designed to support two independent load conditions that are given in
Table 6.5.11. The structure was subjected to area, geometry, stress and buckh'ng constraints.
Member linking is given in Table 6.5.8. The coordinate variables that were linked to
preserve symmetry are X4, Y4, Z4, X8 and Y8. The optimized geometry is given in Figure
6.5.9 while Table 6.5.12 compares the results obtained with those found in the literature.

6.5.4.3 Case 3

Natural frequency constraints 1., vibration is studied separately in order to demonstrate the
ease and flexibility available in employing a FEA software aided by the GA for
optimization. The vibration analysis utilized the Block Lanczos method of mode extraction,
which in turn used the sparse matrix solver to conduct the analysis. These methods are
native to ANSYS and allowed for quick and easy vibration analysis. The Block Lanczos
method also automatically uses lumped mass approximation. The lumped mass
approximation method in ANSYS is recommended since it was found to yield better results
and incurred lower run time when compared to the other methods available in the software.

Pre-stress effects, which considered the stress state of the structure and influenced the

stiffness matfrix was also incorporated. The procedures entailed in the vibration analysis
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were model building, load application, solution processing, mode expansion and extraction
and finally post processing. For further details on this method please consult ANSYS help

files using vibration as keyword.

Figure 6.5.8: 25-bar space truss, initial geometry

Table 6.5.8. Member grouping for the 25-bar space truss shown in Figure 6.5.8

Group Number 4 Members

12
1-42-3,1-52-6
2-5.2-4.1-32-6
3-6,4-5

3-4,5-6
3-10,6-7,4-9,5-8
3.8,4-7,6-9,5-10
3-7,4-8,5-9,6-10
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Table 6.5.9. Case 1 and Case 3 loading condition for the 25-bar space truss problem
shown in Figure 6.5.8.

Node Fx(lbs) Fy(ibs.) Fz(lbs)

1 1000 -16000 -10000

2 0 -10000 -10000

3 500 0 0

6 600 0 0

Constants

Young’s Modulus =1E7 psi
Density =0.1 Ib/in3
Allowable stress =+ 40 Kpsi

Allowable nodal deflection in x and =+ 0.35in.
¥ direction at nodes | and 2

Table 6.5.10. Comparison of design variables for the 25-bar space truss subject to area,
stress and deflection constraints

Researcher Rajeev Coelle | Adeli & Current
129} {45} Park Study
[107-108]
Method Simple | Discrete Neural GA -
Are Discrete GA MNetworks FEA
{in2] GA
Ceoordinate
x-y{in]
Al 0.160 N/A 0.6 0.1606
A2 1.860 N/A 1.4 08,1929
A6 2.300 N/A 2.8 3.4103
AlD 0.200 N/A 8.5 0.1086
Al2 0.010 N/A 0.6 1.8284
Al4 0.800 N/A 8.5 0.74813
AlB 1.800 N/A 1.5 0.1
A22 3.000 N/A 3.0 3.7166
Weight (Ibs.) 546.01 493.94 543.95 455,82
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Table 6.5.11. Case 2 Ioading condition for the 25-bar space truss problem shown in Figure

6.5.8.
Node Fx({Ibs) Fy(lbs.) Fz(lbs)
Load Condition 1
1 0 -20000 -5000
2 0 -20000 -5000
3 0 0 0
6 0 0 0
Load Condition 2
1 1000 -20000 5000
2 0 -20000 -5000
3 5000 0
6 500 0 0
Constants
Young’s Modulus =1E7 pst
Density =0.1 Ib/in3
Allowable stress =+ 40 Kpsi

Table 6.5.12. Comparison of design variables for the 25 bar space truss subject to area,
geometry, stress and buckling constraints

Researcher Vanderplaats | Hansen | Felix | Current
[115] [94] [114] Study
Method Twe-Subspace MP MP | GA-FEA
approach
4rea
[in2]
Cordinates
x-y [in]
Al 0.032 0.01 0.013 0.138
A2 0.565 0.487 0.414 g.161
Ab 0.811 0.836 0.842 0.345
AlD 0.028 0.021 0.033 0.074
Al2 3.047 0.123 $.101 0.161
Ald 6.097 04.084 6.121 0.01
AlS 0.749 0.698 0.739 0.345
A22 4.551 D.548 0.554 .162
X4 12.9 23.7 21.8 15116
Y4 482 49.3 48.3 87.524
Z4 974 97.7 100.3 100.9
X8 37.1 27.5 22.1 51.516
Y8 94,1 96.4 96.4 164.72
Weight 133.5 128.3 128.5 G175
{ibs.)
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Figure 6.5.9: 25-bar space truss, optimized structure subject to area, geometry, stress and
buckling constraints

The results of the 25 bar truss demonstrated the robustness of the technique to find feasible
optimum designs. The structural design that incorporated only area design variables led to a
much heavier structure than that which included area and geometry design variables, as well
as added constraints. In other words, the more design variables and constraints added to the
design to fully capture the problem, the more practical the output design became. On the
other hand, increasing the number of design variables and constraint also led to increase

computational effort.

When subjected to stress and deflection constraint the proposed approach was capable of
finding better designs than other GA methods and even neural networks. Perhaps, the neural
networks by [108-109] yielded poor results because a discrete optimization technique was
used. Nonetheless, the results obtained in this study were primarily due to the adaptive
nature of the GA as mentioned before. The results also indicated that the adaptive GA and
its operators provided a quick and broader search when compared to other techniques. For
the case where the truss was subjected to stress and buckling constraints, the subspace
approach used by Vanderplaats, and the approximate structural technique based on Taylor
expansions of various structural responses by Felix, as well as the approximate structural
method based on Taylor series expansion of the member forces by Hansen, all proved to be

incapable of the finding a lighter truss than the proposed method. These mathematical
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programming techniques were unable to provide any reasonable results mainly because of
the high non-convexity of the search space and the high number of design variables involved

1451,

The results with the inclusion of natural frequency constraint {case 3) are given in Table

6.5.13. The optimize geometry found by the proposed method is given in Figure 6.5.10.

Table 6.5.13. Design Variables for the 25-bar space truss subjected to area, geometry,
stress, and buckling and natural frequency constraints

Area [in2] GA Results
Coordinates x-v [in]
Al 0.074
A2 0.345
Ab 0.345
AlQ 0.074
Al2Z 0.160
Al4 6.074
Al8 8.222
A22 0.100
X4 35.473
Y4 60.861
74 131.86
X8 68,165
Y8 55,622
Weight (Ibs.) 58.23

The inclusion of vibration analysis into the study provided some interesting results. From
the results one can conclude that the inclusion of vibration led to a lighter but more practical
truss. Note also that the base of the structure is much wider at all fixed ends compared to the
previous two cases studied, implying a greater distribution of the center of gravity of the

structure.
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Figure 6.5.10: 25-bar space truss, optimized geometry subject to area, geometry, stress,
buckling and natural frequency constraints

6.5.5 72-bar Transmission Tower

A 72 bar transmission tower was design to support two independent load conditions that are
given in Table 6.5.14. The loading condition, material properties and constraints are also
given in Table 6.5.14. The structure was subjected to area, stress and deflection constraints.
The initial geometry of the design is shown in Figure 6.5.11. This structure was adapted
from Ref 83. The areas are linked as follows: Al-A4; AS5-A12; A13-Al16; A17-A18; A19-
A22; A23-A30; A31-A34; A35-A36; A37-A40; A41-A48; A49-AS52; AS5-AS8; AS9-A66,
A67-AT70 and A71-A72.

Hence in total there were 16 design variables for this problem.

107



Figure 6.5.11: 72-bar transmission tower, initial geometry
The results found are presented in Table 6.5.15 alongside the results in the literature.

Since this problem only considers size optimization, since the design variables are highly
linked, and since there are few constraints, this problem should be much simpler to solve

than the 18 bar truss and the 25 bar truss previously studied.

However, from Table 6.5.15 it can be gleaned that the results obtained are not superior to all
the methods found in the literature. This maybe partly due to the large population used to
solve such a small problem. This means that the GA spends more time exploring the search
space than exploiting an area in the search space where a near optimum or optimum may be
located. Perhaps the results found is near the global optimum and finding this point takes a

long time. This problem is one of the inherent disadvantages of genetic algorithms.
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Table 6.5.14. Loading Conditions for the 72-bar Transmission Tower shown in Figure

6.5.11
Node Fx(Ibs) Fy(lbs.) Fz(lbs)
Load Condition 1
1 5000 5000 -5000
Load Condition 2
i 0 0 -5000
2 0 0 -5000
3 0 0 -5000
4 0 0 -5000
Constants
Young’s Modulus =1E7 psi
Density =0.1 1b/in3
Allowable tensile stress =25 Kpsi

Allowable nodal deflection in x and =4 0.251n.

y direction

Table 6.5.15. Comparison of the design variables and objective function value for 72-bar

transmission tower

Researcher Gellatly | Venkayya | Schmit | Reawei | Xicheng Erbatur Current
[101} 162} [116} [117] [118] [83] Study

Method Optimality | Two MP MP Parallel | GA Based | GA-FEA

Criteria | Subspace Algorithm | Optimuns
Approach Structural
Member Design
[in"2]

Al 0.1492 0.161 0.1585 | 0.1641 0.157 0.161 0.100
A5 0.7733 0.557 0.5936 | 0.5552 0.537 0.544 0.590
Al3 0.4534 0.377 03414 | 0.4187 0.411 0.379 0.345
A17 0.3417 0.506 0.6076 | 0.5758 0.571 0.521 0.283
Al9 0.5521 0.611 0.2642 | 0.5327 0.509 0.535 0.406
A23 0.6084 0.532 0.5480 | 0.5256 0.522 0.535 0.467
A31 0.1000 0.100 0.1000 | 0.1000 0.100 0.103 0.100
A35 0.1600 0.100 0.1509 | 0.1000 0.100 0.111 0.100
A37 1.0235 1.246 1.1067 | 1.2893 1.286 1.301 1.571
A4l 0.5421 0.524 0.5793 | 0.5201 0.516 0.498 0.651
A4S 0.1000 0.100 0.1000 | 0.1000 0.160 0.110 0.100
AS53 0.1000 0.100 0.1000 | 0.1000 0.100 0.103 0.100
ASS 1.464 1.818 20784 | 19173 1.905 1.910 1.693
A39 0.5207 0.524 0.5034 | 0.5207 0.518 0.525 0.467
A67 0.1000 0.100 0.1000 | 0.1000 0.100 0.122 0.100
AT1 0.1000 0.100 0.1000 | 0.1000 0.100 0.103 0.100

Weight 395.97 381.2 388.63 | 379.66 380.84 383.12 384.645

(ibs.)
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6.5.6 47-bar Planar Tower

The 47 bar planar tower shown in Figure 6.5.12 was designed to support three different
loading conditions given in Table 6.5.16. The structure was adapted from Ref. 94. The
material constants and constraint values are also given in Table 6.5.16. The structure is
subjected to constraints in geometry, area, stress and buckling. The maximum teusile stress
is restricted to 20000psi,while the maximum compressive stress is restricted to 15000pst.
The areas are linked as followed Al=A3, A2=A4, A6=AS, A9=A8R, All=A12, A13=Al4,
A16=A15, A17=A18, A19=A20, A21=A22, A23=A24, A25=A26, A29=A30 A32=A31,
A34=A35, A37=A36, A39=A40, Ad2=A41, Ad4=A45 and A47=A46. The geometry is also
linked with X2, X4, Y4, X6, Y6, X8, Y8, X10, Y10, X12, Y12, X14, Y14, X20, Y20, X21
and Y21 as independent variables. This resulted in a total of 44 design variables subjected to
stress and buckling constraints, where the intent is to minimize the weight. The optimized
geometry is given in Figure 6.5.13 and Table 6.5.17 and Table 6.5.18 compares the results
of the design with the results found in the literature.

This problem was undertaken to test the proposed techmique wviability to solve large
problems. This problem entailed fewer linked variables, thus leading to a higher number of
design variables. Fewer members linking were used to render the problem harder to
optimize. Results indicate that the proposed approach found better designs than the approach
by Vanderplaats et al., and Felix. Vanderplaats et al. used a stress design method to solve the
sizing problem and a constrained steepest descent method to solve the configuration
problem. On the other hand, Felix used an approximate structural technique based on Taylor

series expansion of various structural responses.
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Table 6.5.16.  Loading conditions for the 47-bar planar truss tower shown in Figure
6.5.12.

Node Fx(ibs) Fy(ibs.) Fz(lbs)

Load Condition 1
17 6000 -14000 0
22 6000 -14000 0
Load Condition 2
17 6000 -14000 0
22 0 0 0
Load Condition 3
17 0 0 0
22 6000 -14000 0
Constants
Young’s Modulus =3E7 psi
Density =(0.3 Ib/in3
Allowable tensile stress =20 Ksi
Allowable Compressive stress =15 Ksi
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Figure 6.5.12: 47-bar planar tower, initial geometry
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Figure 6.5.13: 47-bar planar tower, optimized geometry
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Table 6.5.17. Comparison of area design variables for the 47-bar planar tower subject to
area, geometry, stress and buckling constraints

Researcher Vanderplaats Hamsen | Felix Current
{119] [94] [114] Study
\M@thoé MP MP MP | GA-FEA
Are;\
[inZ]
Coordinates
x-~v fin}
A3 2.80 2.42 2.73 2.86
Ad 2.56 2.35 2.47 2.43
AS 0.77 0.82 0.73 0.23
A7 10-6 0.10 0.21 0.21
A8 0.67 0.86 0.94 6.10
AlQ 1.80 1.15 1.08 0.71
Al2 1.94 1.77 1.69 0.93 |
Al4 0.65 0.67 0.69 0.10
AlS 1.06 0.86 1.06 0.10
Al8 1.695 1.24 1.41 0.71
A20 0.16 0.33 0.26 0.1
A22 0.61 1.22 0.81 1.14
A24 1.31 0.93 1.06 0.90
A26 1.32 0.86 1.05 0.26
A27 1.05 0.69 0.82 0.87
A28 0.52 0.15 0.30 0.21
A30 2.94 2.46 2.77 1.50
A31 0.73 0.90 0.66 0.30
A33 10-6 0.10 0.21 0.39
A35 3.16 2.74 2.90 2.36
A36 0.97 .92 0.27 0.10
A38 0.18 0.10 1.41 0.10
A40 3.47 294 343 1.50
A4l 1.02 1.13 $4.99 0.50
A43 10-6 0.10 0.17 0.10
Ads 3.71 3.12 3.65 2.00
Ad6 0.93 1.10 1.01 0.50




Table 6.5.18. Comparison of geometry design variables for the 47-bar planar tower subject
1o area, geometry, stress and buckling constraints

Researcher Vanderplaats Hansen Felix | GA
[119] [94] [114] | Results
X2 85.0 1071 90.0 11197
X4 724 91.2 9.0 92.83
Y4 1213 122.8 1234 13543
X6 591 742 85.4 42 .84
Y6 2414 2414 244.5 233 86
X8 49 5 65.5 76.5 65.51
Y8 356.8 3246 355.1 355.12
X10 4260 57.1 60.0 32.20
Yi0 4228 4004 4250 41142
Xiz 45.6 493 582 4874
Yi2 480.5 472.3 4780 43331
Xi4 402 474 59.6 4543
Y14 530.8 507.5 519.5 460.83
X20 255 3.9 15.0 549
Y20 596.5 586.5 607.6 5878
X21 G0.2 83.3 96.9 108.98
Y21 609.0 636.0 633.7 620.47
Weight 1879.0 18504 1904.6 | 100987
1bs.
6.6 Discussion of Results and Conclusions

The structural analysis in this study entailed finding the nodal deflections, axial stresses,
critical stresses, and natural frequencies all of which were calculated with the aid of a static

analysis in ANSYS.

The proposed genetic algorithm based finite element analysis technique was capable of
finding lighter structural designs when compared with mathematical, optimality criteria and
other heuristic approaches. This is partly attributed to the adaptive feature of the GA as well
as the disruptive random genetic operators employed. Via numerous examples two and
three-dimensional structures were studied and designed under stress, deflection, buckling,

fabrication and natural frequency constraints, as well as multiple loading conditions.

Comparison of the tables revealed that the GA performed satisfactory and subsequently

provided better results in most cases than that found in the literature. All the results
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indicated that the above analysis were effective in retrieving reasonable designs with the GA
as optimizer. Moreover, from the results obtained, all the analysis provided reasonable
response to the structures studied Hence the GA-based FEA techniques proposed is
arguably an efficient method for optimizing any structure. More importantly, the proposed
method is flexible and allowed easy integration of many different structural aspects. Hence
once a structure had been modeled, optimizing 1t with the integrated open architecture
method proposed became an easy task. Nonetheless, a shortcoming of the approach was the
large computational effort required. The largest structural model presented in this chapter
i.e. the 47 bar truss planar tower, took as much as 14 hours - on a Pentium III processor- to
optimize, where convergence was achieved within 100 generations. This was primarily due
to the large number of design variables involved for this particular structure. Optimization of
a structural system comprising numerous design variables is a challenging problem due to its
huge search space. In fact, it is not easy for any optimization algorithm to carry out an
effective exploration without locating a local optimum. The dimension of the search space
grows exponentially with the addition of design variables [83]. This concept is often referred
to as “combinatorial explosion.” Typically, research dealing with this problem has centered
on multi-objective optimization as a way of reducing the large search space incurred when

studying large problems.

Nonetheless, the results of the examples studied illustrated that the GA was quite successful
in locating the region of the search space in which the global optimum is present. Further
improvement in the results beyond this point however was slow. Thus one of the major
inherent disadvantages of the GA i.e. slow convergence speed near global optimum was not
alleviated in its entirety by the adaptive procedures employed in the GA. Perhaps,
computational time can be reduced by utilizing multiple CPUs that can simultaneously

process different segments of the population before reproduction takes place.

The use of the proposed technique to facilitate quick and easy structural optimization under
various responses represents a step forward in structural optimization. Perhaps this work can
be extended to write the GA in a language native to the FEA software. So for example,
coding the GA in APDL language would remove the need for conversating and data
exchange between the MATLAB coded GA and ANSYS, thus leading to a reduction in
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computing time. For now it appears that the advantage of the GA to process numerous
structural designs was in itself a disadvantage when attempting to integrate it with a finite
element software, since this process requires added computational effort. The proposed
technique attempted to reduce the effort required by using a dynamically changing or
adaptive population size. However, even with this in place processing time for the largest

structure was still extensive. Using a faster computer can further reduce computing time.

Moreover, the use of a local search technique to aid the GA search procedure later on in the
generation can help curb the computational effort entailed 1 this study. In other words, a
hybrid GA can be employed to assist the search process in finding the absolute global
optimum after it had converged on the area in which the absolute global optimum is located.
Future research direction is also oriented towards using GA integrated artificial neural
networks (ANN) to reduce the large computational effort required for structural

optimization.

In addition, since GAs are not mathematical based they lack proof of optimality. In some
ways this lack of proof is traded off for the ability to search a large search space. Moreover,

it is the random nature of the GA that aids it in searching this vast search space.

In concluding, the approach proved to be beneficial, practical and feasible for structural
design yielding efficient and weight effective structures, despite long computational time
incurred for large structures. Nonetheless, the issue of rapidly optimizing a structure is a
shortcoming of this study due to the inherent slow convergence speed of the GA near the
global optimum. However, this should not be seen as a limifation in light of the

advancements made at improving the processing speed of computers.
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Optimization of Two-component
Armour Systems against Ballistic
Impact using Genetic Algorithms

Shielding devices for personal protection to prevent impact damage by projectiles of various
shapes and mass, traveling over a wide range of velocities 1s a major concemn in both
military and civilian application. Currently the trend is to reduce the weight of the armour.
However, the demand for weight reduction of the armour must typically be accompanied by
reduced cost and increased performance. This is commonly achieved today by searching for
better materials or changing the armour geometry. Moreover, this scenario suggests the use
of advanced materials and perhaps multiple layered armours. Today there is much research
in the literature on 1mpact analysis of single layer and multiple layer targets. Publications
emanating from such activifies typically utilize analytical modeling, numerical simulation,
experimentation or any combination of the three methods, to investigate the interaction
between projectile and target.

This study addresses the optimization of two-component armours using existing analytical
models to predict the penetration mechanism of the armour. Various analytical models are
studied, coded, and then integrated into the GA optimization technique. The aim of this
study is to reduce the number of target configurations (armour designs), so as to mitigate the

experimental and numerical simulations required. Attaining the latter will result in reducing
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the cost required for experimentation and the lengthy computing time required by numerical
simulations. Comparison of the optimized results with results found in the literature is
conducted when such data is available. Both the ballistic limit and the areal density are
selected as the objective function for optimization depending on the approach taken in
formulating and developing the analytical model employed. The ballistic limit velocity is a
measure of performance of the armour; it is the velocity at which the projectile has a 50%
chance of perforating the target when striking it at normal incidence. The areal density, on
the other hand, is mass of the armour per meter squared. It is the product of material density

and thickness of the plate. The areal density is indicative of the weight of the armour.

Results prove that genetic algorithms are quite useful for armour design and optimization. In
addition, results also suggest that the fusion of existing analytical models with the genetic
algorithm produces reasonable results requiring significantly less computing time and cost
than that typically associated with experimental research. The results also indicate that the
genetic algorithms have the capability to outperform other traditional methods used for
armour design and optimization. Satisfactory qualitative and quantitative comparisons are

obtained between published and optimized results.

7.1 Introduction

The subject of defeating projectiles or strikers impacting onto a target has received
tremendous attention particularly in the military over the past three decades. Some
publications can be found on optimization of two component armours using analytical
models in which numerical or experimental studies are also conducted to draw comparisons
and foster discussion. Recently the need for optimization of the armour has arisen due to the
need to reduce the weight but at the same time decrease cost and increase performance.
Wilkins et al. [34-37] demonstrated via extensive experimental work that ceramic performed
well as an armour. They also discovered that the ceramic first blunts the projectile due to its
high hardness and spreads the impact load onto the backing by forming a conoid. Ceramic
armours backed by composite layers are becoming an area of intense research because of
their outstanding performance against small and medium caliber projectiles when weight

reduction is the main objective. The major role of the ceramic 1s to erode and rupture the
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projectile, while the composite functions to absorb the kinetic energy and prevent ceramic

cracking.

To the author’s knowledge Florence [33] appears to be the first to present a simple analytical
model to analyze the impact onto ceramic/composite armour. Florence model — based on the
ideas of Wilkins [34-37]- was used to estimate the ballistic limit. Studies conducted by Prior
[38], Gage [39] and Rajagopalan [40] have found satisfactory agreement between
experimental results and the theoretical predictions by Florence model. Hetherington [41]
later revised Florence model to account for the energy absorbing capabilities of the armour.
Woodward [42] later proposed a one-dimensional model for the perforation of a ceramic
armour using a lumped mass approach, which takes into account the erosion of both
projectile and target. Many of the ideas in Woodward’s model were adapted from previous
work of Wilkins, Florence and Hetherington. Den Reijer’s model [43] is the most recent
analytical model found in the literature. The model is a liftle more sophisticated than
Woodward’s model in that it takes into account projectile mushrooming effects. A different
approach to armour design was investigated by Ben Dor et al. [44], whose objective function

was geared towards armour weight minimization.

The analytical models used for this study were first presented to describe the approach. This
has already been treated extensively in the literature, but is repeated here for completeness.
The intention of this study is not to improve the existing analytical models but instead to use
them together with an optimization tool to produce efficient armour designs. Thus based on
separate studies by Florence, Hetherington and Ben Dor et al., this study investigates the
optimization of a two-component armour where genetic algorithms (GAs) are used as
optimizer. Hence, the intention of this study is to namrow down the number of target
configurations (armour designs), so as to mitigate the experimental cost and time required
for numerical simulations. The study compares ballistic limit and areal density found by the
GA program with results in the literature as well as theoretically generated results.

Comparison of the GA generated results with those available in the literature is presented
only when applicable. This is mainly due the fact that the limited results available cannot be
casily correlated due to differences in target and projectile materials, nose shapes, impact

geometries and projectile speeds.
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Various projectile types and geometries are studied at various impact velocities.

Typical values obtained from analytical or even numerical studies will not necessarily agree
with experimental results due to the inability of the former approaches to fully capture all
deformation mechanisms entailed in the penetration process. The three analytical models
used for this study do not take into account the following mechanisms: crack initiation and
propagation, petalling, brittle fracture, ductile hole growth, plugging and fragmentation. As
such, the simplicity of the analytical model used justifies its extensive use in the literature

and its use as a starting point to build new analytical models.

Hence one major objective of this study is to provide an idea of the type of materials
required for the front and back plate, and the thicknesses of these materials. A database of
numerous materials and their properties was used. The optimized results are presented,
which includes the ballistic limit, the target configuration, and the materials and its
properties. Some studies are also carried out to optimize the areal density of the armour

given a particular ballistic limit.

7.2 Areas of Research of Composite Armour

The design of an armour is a very complex task primarily because the mechanisms involved
in the armour penetration process are very complicated. Also, the penetration process is very
rapid requiring sophisticated equipment to assess it. Today there are three main areas of
research delving into the design of composite armour. They are analytical modeling,

numerical simulation, and experimentation.

7.2.1 Analytical Modeling

Analytical Modeling entails finding a simple model to represent the penetration mechanism.
There are five popular analytical methods found in the literature. Among these, the models
proposed by Florence [33], Hetherington [41] and Ben-Dor et al. [44] are studied. Analytical
models can provide a fast and simple way of studying the penetration mechanisms without

losing much accuracy with respect fo numerical codes.
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7.2.2

An alternative approach is to use numerical simulation. Numerical simulation involves the
use of numerical finite element and finite difference codes to study the impact process. One
such finite element code that is popular for impact analysis is LS-DYNA [120]. These codes
usually require some material properties, which are very often not known. Another major
disadvantage of numerical simulation is that they require large computing time even on

powerful computers.

7.2.3 Experimental Studies

Experimentation is a widely used method in the literature. Empirical methods are popular
because they offer reliability, but they are extremely expensive and the results do not give
enough information such as: the history of the projectile or the trends when changing the
configurations [121]. Often experimental results are supplemented by numerical simulations
based on 2D continuum mechanics codes similar to those created by Laible [122], Wilkins
[123] and Wang et al. [124].

7.3 Theoretical Modeling

There are two types of problem formulation common to the design of two-composite
armours. In the first scenario we let the objective function be the ballistic limit and assume a
certain impact velocity. Here we attempt to maximize the ballistic limit subjected to some
constraints. In the second scenario we attempt to minimize the areal density (weight of the
armour) assuming a particular ballistic limit, subjected to some constraints. In this thesis,
both cases were studied for various threats. The formulation for the first scenario is
presented below.

Note that the criteria presented provide a quick and simple tool for the armour design
engineers interested in exploring the many configurations of the armour. Thus, since
analytical models are the main focus of this thesis, detailed formulation of their use is

presented below.



7.3.1 Analytical Models

Florence [33] appeared to be among the first to develop a model for estimating the ballistic
limit. The model was based on the assumption that the ceramic front plate of the armour
only distributes the impact load over a large area onto the back plate, which later absorbs all

the energy of impact (see Figure 7.3.1 adapted from Ref. 124).
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Figure 7.3.1. Florence’s model

Hetherington [41] later presented a reworked model based on Florence ideas to obtain the
optimum thickness ratio between the front and backing plates under a given areal density,
while keeping the total thickness of the armour constant. Woodward [42] also proposed a 1D
model for the perforation of ceramic armour using a lumped mass concept, which takes into
account the erosion of both projectile and ceramic and allows for the consideration of both
thin and thick backing.

Recently, Den Reijer {43] presented a more sophisticated model allowing for ceramic and
projectile erosion, projectile mushrooming and different deformation models for the backing

plate, with reference to the constitutive behavior of comminuted ceramics.

This thesis is based solely on the work of Florence, Hetherington and Ben-Dor et al
Although not mentioned before, Woodward model and Den Reijer’ s model adapted their
ideas from Florence, Hetherington and other researchers before them. The thesis will first
present the models formulation and then the results obtained from this formulation for a

known armour material and a known projectile. If the subsequent results are feasible, that is,
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they compare well with the literature or seem practical; the GA is then employed as an

optimization tool.

7.3.1.1 Florence Model

Florence model because of its simplicity and its lack of dependency on experimental data
has received a lot of attention by researchers as a tool to guide armour design. The model
assumes that a short cylindrical rod striking normally into the ceramic plate would force it to
break progressively into a cone of fractured material, which distributes all the impact energy
to the backing plate over a larger area than the projectile diameter [125] (see Figure 7.3.1
above). The backing plate is also assumed to deform as a uniform membrane under constant
tension. Note that since the energy dissipated in ceramic fracture and projectile erosion is
ignored, the mechanism for backing plate failure is simplified. The expression obtained by

Florence for the ballistic limit of a ceramic/aluminium composite armour is as follow:

Vo= £,0,h, (1)
? 7 Y0.91m, f(a)

a=a,+2h (2)

where

and
m

Sla)= { . 3

m, +(Id, + hyd,)m’ w’

where Vp is the ballistic limit; ap is the radius of the projectile; m,is the mass of the

projectile, ¢is the breaking strain; o is the UTS, % is the thickness of the plates, and d is
the density of the plates. Subscript 1 and 2 represent the front plate and back plate up

respectively.

7.3.1.2 Hetherington Medel

Based on Florence model, Hetherington developed an equation to obtain the optimum
thickness ratio. In the following analysis an expression of the thickness ratio of the front to

back plate will be derived which gives the best protection at a constant value of fotal
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thickness. Note that the areal density is not constant and if the total thickness of the armour

is taken as 7 then:

hy=T—h =T - 4
g | =4 5 4)

Substituting Eqn. (4) into Eqn. (1) yields:

5 7 a"‘ap
0.9W, m, _ 2 )
£,0, fa)

where a is the only variable.

Differentiating the equation with respect to «, setting ¥, 1o zero and simplifying gives:

.., a-—4a,
0.91x2V ¥, m, f(za) T -
&0, fia) )
or!
f-@:—zz’m-ap (6)

fla)

From Eqgn. (6):

; fla)am, +4Td,m” + 44y n(5a—4a,)a’]
fla)y=- 2 o

d, —-d
mya+Td,ma’ + 2 x(a-a,)d’

Combining Eqn. (6) and (7) with much manipulation gives:

3(d, ~d,)m* +572{(d, - d,)a, +(2d, —d,)T|a’
~27{477d, + 4(d, - 2d,)Ta, +(d, —d,)a,’Ja’ (8)

+3m,a—-2m,21 +a,)=0

Once the projectile and armour specs are known, Eqn. (8) is used to find a. With ¢ known

the optimum thickness ratio can be found via:

~ 2 v
— ©)
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7.3.1.3 Ben-Dor et al. Model

Thus far we sought to maximize the ballistic limit, with the armour thickness and material as
design variables. Now a different aspect of armour design is investigated, where the
objective function is geared towards armour weight minimization. In order to facilitate this
task the work and ideas of Ben Dor et al. [44] are solicited. Ben Dor et al. goals were to
extend Florence and Hetherington’s model to any material so as to seek to fully minimize
the weight of the armour. To the author’s knowledge, the other two models presented above
investigated only ceramic/aluminium and ceramic/GFRP combinations. The dimensionless
formulas presented by Ben Dor et al. allow us to investigate the problem of armour design
completely and for a general case, namely arbitrary combinations of materials for the front

and back plates.

Using Florence mode! to determine the ballistic limit, Ben Dor introduced a multiplication
factor a (see Eqn. 10), which can only be determined from available experimental data in
order to increase the accuracy of the predictions. When « =1 the model becomes Florence
model:
,2_aeohA(ph + o)z m,]
’ 0.91m,’
where z = 7(R+2h)

(10)

o, and p, are the density of the front and back plate respectively, and R is the radius of the
projectile.
The objective of this section of the thesis is to use the ideas of Ben Dor et al. to find the

thickness of the plates %, and A, which provide the minimum areal density of the armour,

A , for a given ballistic limit V.

The following formulation of dimensionless variables adapted from the work by Ben Dor et

al. [44] is necessary to begin:

3
@:&9 i=12 ,

m,

e
f
= [

(D
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- 2
-V, [0.91p, pq iR R A
“\; a&o’z m,
The definition of the areal density A is repeated here for clarity:
A= ph + pihy (12)

Egn. 10 and Eqn. 12 can be rewritten respectively in dimensionless form as:
W = BhEU DA+ Pohn)Z +1] (13)
A= Fh + Bohy (14)

where Z is define as:

z =

= (+2h)
Eqn. 13 is a quadratic equation in terms of 5,4, , solving for this term and substituting it into

Eqn. 14 yields:

A 5.7 = Pz - 1+\/(/;jlhlz+1) + 4w’

(15)

Eqn. 15 is now a function of only one variable 7 ; /, can then be found using Egn. 14.

It is important to realize that the dimensionless areal density A4 is a function of one variable

and depends on only two parameters, thatis, pand w .

Let 1” = ¢,(p,, W) be the function that provides the minimum 4 , then the dimensionless

opt

minimum areal density A” and the optimal ratio of the areal density of the second plate to

the areal density of the first plate are also functions of p and w.

opt

A[@}(ﬂla“) puwl=9,p.,%w) (16)

EZ gzgpt _ pz hzopi _ Zopt _ i
ph”  oh”™ R
— &A(pbw) “I (17)

2P, W)

and
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e
=@, (P, W)~ pp (P, W) (18)

Once the dimensionless parameters are obtained the results for a given material can be

determined:

1" = Rep(p,.w),

B =0, (5, W), (19)
R’ p,

Aopt _ mP o
= ;'}ég'¢’.4 (o, %)
where the superscript opf indicates the optimal parameters, and p and W are determined

from Eqgn. 11.
As will become evident later Ben-Dor et al. formulation reduces the number of design

variables required for optimization thus reducing the time required for calculations.

7.4 Theoretical results for Florence and
Hetherington model

The armour materials used to study Florence and Heterington’s model formulation is given
in Table 7.4.1. Three different threats namely, the NATO 7.62mm armour piercing (AP)
rounds, mp=10g; 0.5 in. ball, mp=42g; and 20mm fragment simulating projectile (FSP),
mp=50g are all studied. The mass of the projectile was assumed in some cases when not

given.

Table 7.4.1.  Physical properties employed for armour

Material properties front plate backing plate
Aluminium 6061-T6 Ceramic 94% 4/,0,

Density p (kg/m’) 2712 3620

UTS o (Gpa) 0.31 0.18

Breaking strain &, 0.17 L

Figure 7.41 to Figure 7.4.4 show the ballistic limit versus the thickness ratio for the three

threats at various values of total thickness.
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Figure 7.4.1: Theoretical plot of h1/h2 vs. ballistic limit Vp: projectile threat: 7.62mm
armour piercing (AP)
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Figure 7.4.2: Theoretical plot of h1/h2 vs. ballistic limit Vp: projectile threat: 0.5 in ball
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Calculations were carried out using Eqn. 8 and Egn. 9. From the figures above we glean that
at constant total thickness the ballistic limit increases rapidly, then slowly decreases as the
thickness ratio increases. More importantly we notice that the armour performs best at
thickness ratio between 3 and 4. As the thickness ratio increases beyond this range the

armour performance reduces.

From the figures above we can also glean that as fotal thickness increases the protective
level increases. Also, careful examinations of Figure 7.4.1 to 7.4.3 would also illustrate that
the optimum thickness ratio increases slightly as total thickness increases. Due to the
difference in mass of the projectiles, the armour shows the best level of protection against
the 7.62mm AP and the least level of protection against FSP. Figure 7.4.4 shows a 3D plot
of the combined influence of ballistic limit, total thickness and thickness ratio for the NATO
7.62 mm AP round.

Since there are no experimental data available to draw any comparison, the results do
compare well with published results [125], which report an optimum thickness ratio around
3 for the specific armour materials employed. Hence the next step was to implement the

analytical model of Florence and Hetherington to test its viability in armour design.

The GA problem definition was developed using Florence and Hetherington’s models
already presented. Initially, Florence model was applicable to only ceramic faced and
aluminium backed armours. Hence a database of 31 different types of ceramics materials
and 56 different types of aluminium was employed. The database contains all necessary
material properties required by the model formulation, such as density, ultimate tensile
strength (UTS), breaking strain etc. The armour design is implemented into the GA for
optimization using the following formulation:

First we define the threat: 7.62 mm NATO AP where m, =10g

Objective function: Maximize (Vp)
Design Variables: h1/h2, total thickness, material index for front plate, material index for
back plate
Constraints: (1) h1/h2>1
(2) total thickness = h1+h2 > 10mm

h1/h2 is allowed to vary between 0.5 and 15 while total thickness of the armour varies

between 10mm and 15mm. Two separate databases are used; one for the front plate whose
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index range from 1 to 31, and the other for the backup plate whose index range from 1 to 56.
A population size of 20 was used while the probability of crossover was taken as 0.85 and
the probability of mutation was taken as 0.01. 200 generations was used as the stopping
criteria. The results found from two tests are shown below. The convergence history for run
number two is presented below when the 7.62mm threat is studied, simply to illustrate the

GA search process.

7.4.1 Results after analytical model implementation into GA

Threat: 7.62 mm NATO AP where m, =10g
Two different runs were conducted for the above threat and the results are given below:

Run #1:
The fittest individual so far 1s 1252.26 at generation number 200

The degree of violation of our constraint(s) is 0 percent
Design Variables =

3.8175 0015 26 39
elapsed time =

13.689

Run #2:
The fittest individual so far is 1242.4 at gen# 200

The degree of violation of our constraint(s) is 0.89 percent
Design Variables =
3.2143 0.015 25 39

clapsed time =
13.719
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Figure 7.4.5. Convergence history of GA.

For the materials that correspond to material index of 25, 26 and 39, please consult
Appendix A.

Threat: 12.7 mm NATO AP where m, =42g
Two different runs were conducted for the above threat and the results are given below:

Run #1:
The fittest individual so far 1s 517.221 at gen# 200
The degree of violation of our constraint(s) is 0 percent
Design Variables =
3.5159 0.015 26 39
clapsed time =
12.087

Run #2:
The fittest individual so far is 489.768 at gen# 200

The degree of violation of our constraint(s) is 0 percent

132



Design Variables =
29127 0014683 26 39

clapsed time = 12.057

Threat: 20 mm FSP where m , =50g
Two different runs were conducted for the above threat and the results are given below:

Run #1:
The fittest individual so far is 457.111 at gen# 200

The degree of violation of our constraint(s) is 0 percent
Design Variables =

2.4603 0015 25 35
elapsed time=  12.658

Run #2:
The fittest individual so far is 459.446 at gen# 200

The degree of violation of our constraint(s) is 0 percent
Design Variables =
2.7619 0.015 25 35

elapsed time = 12.438

7.4.2 Discussion of results obtained by the GA

All the results obtained by the GA seem reasonable when compared to Figure 7.4.1 to Figure

7.4.4 — the theoretical results. For instance, -although not shown here — if the range of total

thickness increases e.g. 10-20mm then the ballistic limit increases but more importantly the

areal density (weight) of the armour increases. Note also that the GA in most runs selected

the highest total thickness. We can also glean that an increase in thickness ratio leads to an

increase in ballistic limit, which agrees with the theoretical results obtained via the

aforementioned models.
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At this stage of the research the results obtained are sufficient to warrant that the genetic
algorithms can be a useful tool for armour design and optimization. Up to this point
however, no mention was made of weight or energy absorbed by armour. These are very

important concepts that must be addressed.

In armour design, the demand is to have the best protection at a minimum weight. Armour
cost could also become important. The purpose of this section is to seek the ratio of front
plate thickness to back plate thickness, which will provide a specified level of protection ata
minimum weight. Thus for a fixed areal density, A, the aim is to determine h1/h2 for a
composite armour which will give the best performance. This requires a slight adjustment to
the above two formulations as presented below after adaptation from Ref 41. Some

formulas are repeated here for clarity.

Areal density= A=hd, + h,d, (20)

From Eqn. 20 solve for 4,

1
hy =”C'l“’(A"h1d1) (21)
2
Using Eqn. 2 substitute %, into Eqgn. 21:
1 d
hy=—(A~—(a- 22
2 dz( 5 (a-a,)) (22)

Substituting /4, from Eqn 22 into Eqn. 1 give an expression in which the only variable is a:

£,0,{A-05d(a-a,)) v
V = “ P /2
p =t 0.91m.d, f(a) ) (23)

where f(«) can be obtained via Eqn. 3.

Combining Eqn. 2 and Eqn. 20 with a lengthy manipulation yields:
hy  dyla-a,)
h, 24-d(a-a,)

Recall Florence model and Hetherington’s model assumes a characteristic geometry for the

24)

fracture conoid in the ceramic front plate.



7.5.1

Results after Areal density

Using the material properties of alumina for front plate and material properties of
alumunium for back plate along with 7.62 mm AP round (see specific data below), Figure
7.5.1 was obtained via above formulation.

Data input to the program:

Mass of projectile (mp) = 10g

Diameter of projectile = 7.62mm.

Density of ceramic (94% Al203)= 3620 kg/m”3
Density of backing (Al 6061-T6) = 2712 kg/ m"3
Breaking strain of backing = 0.17

UTS of backing = 0.31e9 N/m"2
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Figure 7.5.1: Theoretical dependence of ballistic limit on h1/h2 for contours of constant
areal density.

From Figure 7.5.1 one can glean that the peak of the curve is quite flat and thus many
optimum values of thickness ratio exist for a given areal density. The five values shown on
the curve indicates the first thickness ratio at which the maximum ballistic limit was found.
It is critical to note from Figure 7.5.1, that the position of the optimum thickness ratio is
insensitive to the areal density. This means that once an optimum thickness rafio for a
particular material is known we can change the areal density without affecting the position
of the optimum thickness ratio. Hence, the “rule of thumb” implies that, for hard faced two-

component armours, the position of the peak {(optimum) is insensitive to the scale of the
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armour, it being determined principally by the density of the materials emploved [41]. Thus
in order to investigate the effect of areal density with the GA, a twist to the problem

definition previously presented is given below.

7.5.2 Results after Areal density consideration is

implemented into GA

Objective function: Maximize (Vp)
Design Variables: h1, h2, material index for front plate, material index for back plate
Constraints: (1) Areal density <45 kg/m”"2

(2)h1/h2>1

The above problem formulation employed a material database of 31 different ceramics and

56 different aluminium impacted by a 7.62 mm AP threat (m, =10g).The twist to the

formulation of Florence and Hetherington model presented above was implemented into
MATLAB codes. These codes were then integrated into the GA. A 12.7mm caliber

(m, =30g) was also tested and the results compared with the literature. The results from

four different runs are presented in Table 7.5.1 for the 7.62 mm AP.

Table 7.5.1. GA generated results
Run# hi{m) h2 {m) mat1 matZ | Vp{mis} | CPU time (s)
1 0.009208 | 0.00744 14 3 §10.877 3.285
2 0.007587 | 0.006524 30 42 1013.2 4.186
3 0.010286 | 0.005143 30 35 947 477 5.328
4 0.015143 | 0.005143 14 39 1771.57 4.213

matl=material index for front plate
mat2=material index for back plate

Using the previous problem definition, a sensitivity study was conducted to check the effects
of an added constraint, changing the projectile type and changing the mass of the projectile.

7.5.2.1 Sensitivity Study

Various scenarios on constraints changes, projectile type changes and projectile mass
changes are explored and investigated to check the effects on ballistic limit. The effects and

results of the aforementioned changes are presented below.



7.5.2.1.1 Effect of added constraint

Using the above formulation, a third constraint was added while everything else remained
the same.

Constraint (3): Total Thickness = A, + /2, <16mm

Two test were conducted to check the effect of adding the above constraint and the results

are shown below:

Run #1:
The fittest individual so far is 947.477 at gen# 400

The degree of violation of our constraint(s) is O percent
Design Variables =

0.010286 0.0051429 30 39
elapsed time = 7911

Run #2:
The fittest individual so far is 947.477 at gen# 200

The degree of violation of our constraint(s) is 0 percent
Design Variables =
0.010286 0.005142¢ 30 39
elapsed time =
10.826
Note that the addition of a constraint on total thickness had no effect on the armour design.
In fact without this constraint in place the exact design was found as illustrated in Table

7.5.1. Thus it can be argued that a constraint on thickness ratio is sufficient to capture the
geometry aspect of the armour design.



7.5.2.1.2 Effect of changing projectile type

Having investigated the effect of adding a constraint on total thickness, the next step was to
study the effect of changing the projectile. The projectile was changed to a 12.7mm caliber
in which the mass of the projectile is 30g. The results obtained using the above formulation
with the three constraints are given in Table 7.5.2.

Since the GA is searching for the best sequence of design variables to satisfy the imposed
constraints then an increase in projectile mass and radius is accompanied by a decrease in

ballistic imit.

Table 7.5.2. Results after constraint 3 was added

Rung# hi{m) h2 (m) mat1 Mat2 Vo (m/s) [CPU fime (s)
1 0.010286|0.005143 30 39 414.973 5.208
2 0.0102860.005143 30 39 414.973 15.031

Note that the diameter and mass of the projectile has significant effects on the ballistic limit
of the armour. ¥t can be said that as the mass and diameter of the projectile increases, the
constraints on arcal density and thickness ratio has to be relaxed. In addition, more advanced
materials can be added to the material databases in order to find an armour design of
substantial ballistic limit.

7.5.2.1.3 Effect of increasing the mass of the projectile

Finally a 12.7mm caliber was used but the mass of the projectile was taken as 50g. Again
the formulation above is adopted with three constraints. The following results were
obtained:

The fittest individual so far is 267.712 at gen# 200

The degree of violation of our constraint(s) is 0 percent
Design Variables =
0.010286 0.005142% 30 39
clapsed time= = 14.901
Note that the mass of the projectile has tremendous influence on the ballistic limit of the

armour. Note also that the results found by the GA, which includes the thicknesses of the

armour plate as well as the material used, are identical to results previously obtained. To
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explain these findings we need only consult Florence model. From Florence model we know
that an increase in projectile mass leads to a decrease in the ballistic limit. The thicknesses
of the plates and materials are identical because the GA finds these variables to provide a

favorable combination to satisfy the imposed constraints.

7.5.3 scussion on the concept of Areal Density

A few conclusions can be drawn from the results obtained after delving into the study of the
effects of areal density on the armour design. First and foremost, for a given areal density
better performance can be obtained with thickness ratios greater than 1. In addition, the type
of threat and mass and diameter of the threat significantly influences the performance of the
armour. For the materials employed experimental results obtained by Hetherington [41] (see
Figure 7.5.2) confirmed that the theoretical optimum ratio of 2.5 would give an armour with

a near optimum performance.
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Figure 7.5.2: Dependence of ballistic limit (Vp) on h1/h2 for constant areal density —
comparison of theoretical and experimental results

Further research is needed to assess the validity of the model to other types of material
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combinations. Finally for a given areal density, good performance can be obtained with
thickness ratios of one or more than one; ratios less than one can lead to greatly reduced
armour performance.

Thus far we have addressed the concept of areal density. As this chapter progresses one
hopes to have energy and all previous topics studied glued together to better capture the
problem of the armour design. Hence, the next stage of this section of the thesis addresses

the concept of energy absorption by the armour.

7.6 Energy absorption Considerations

Tn order to study the concept of energy absorption, a paper titled “ An investigation into the
energy absorbed during ballistic perforation of composite armour,” by Hetherington and
Rajagoaplan [126] was studied. This paper uses ceramic for the front plate and GRFP for the
backing. Here we attempt to add a flavor of energy absorbing capabilities of the armour to
design and optimization. Armour designers are interested in an armour which gives
maximum protection with minimum weight i.e. which combines maximum energy
absorbing capability with areal density. Note that throughout this study a short cylindrical
rod represented the bullet.

Adopting the ideas from Ref. 18 the residual velocity is taken as
V,=V,-V, 25)

where the ballistic limit (V) is calculated using Florence model and the impact velocity

(V) is assumed. Once the residual velocity is known the kinetic energy afier impact (i.e. the

residual kinetic energy) can be obtained.
The energy absorbed by the armour can also be found via:
Energy absorbed = % m,( V,.z - V,_E ) (26)

Note above the mass of the projectile m ,is a constant and was assumed to remain constant
(uneroded) after impact. The residual velocity is the velocity after the bullet perforates the

armour. Ideally we would like to have ¥, <V, so as to minimize the residual energy. The

3
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worl of Hetherington and Rajagoaplan [126] also attempted to validate the use of glass fiber
reinforced plastic (GFRP) for Florence model.

7.6.1

Results after energy absorption consideration
The input data below along with Eqn. 25 and Eqn. 26 were adopted for this study.

Data input to the program:

Mass of projectile (mp) = 46.8g

Diameter of projectile = 12.7 mm. (US Ball M33 0.5in caliber)

Density of ceramic = 3499 kg/m”"3

Density of backing (GFRP) = 2229 kg/ m”"3

Breaking strain of backing = 0.04

UTS of backing = 19 N/m"2

Assumed impact velocity= 880 m/s

Using the above data, Florence model, and Eqn. 25 and Eqn. 26, the ballistic limit, residual
velocity and thus energy absorbed by the armour can be obtained. The experimental results
from Ref 126 were adopted to compare with theoretical predictions. From the experimental
studies in Ref. [126], ceramic tiles and GFRP of various thicknesses were used with the aim
of generating data for 12 different target configurations. The different configurations and

their dimensions are given in Table 7.6.1.

Table 7.6.1. Target plate dimensions

Configuration Ceramic Tile GFRP plate
number size (mm) size (mm)

1 50.4x504x4 150x 150x 3
2 504x504%x4 150 150x 8
3 50.4x504x4 240x 240x 10
4 504x3504x6 150> 150x5
5 504x504x6 150% 150x 8
6 50.4x504x%6 240x 240 % 10
7 50.4x50.4%x9 150 150x 5
8 504x 5049 150x 150 8
o 504%x504x9 240x 240 x 10
10 50.4%x504x 18 150x150%x5
it 50.4x50.4x 18 150x 150x 8
12 50.4%50.4x 18 240x240x 10

The experimental data found after firing on the above armour configurations is given in
Table 7.6.2, as adapted from Ref. 126 for comparison purposes.
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Table 7.6.2. Impact and residual velocities

Configuration Projectile impact Projectile residual
number velocity V, (m/s) velocity V, (m/s)
1 893.2 832.6
2 882.3 826.3
3 881.4 802.4
4 880.7 800.5
5 893.9 802.5
6 878.1 760.6
7 898.2 693.9
8 880.1 658.3
9 882.9 621.5
10 895.6 4255
11 888.5 3295
12 876.2 299.3

Using the experimental data provided in Table 7.6.2 along with Eqn. 25 and Eqn. 26 and
input data given above, Figure 7.6.1 to Figure 7.6.5 were obtained:

Comparison of theoretical predictions with measured values ofenergy absorbed
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Figure 7.6.1: Comparison of theoretical predictions with measured values of energy
absorbed.

Figure 7.6.2 to Figure 7.6.5 were plotied to compare with published results, and to ensure
the correctness of the formulation by [126] so that when the GA is fused with the analytical

model the correctness and accuracy of the optimized results are not in doubt.
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Figure 7.6.2: Energy absorption dependence of areal density
Figure 7.6.2 illustrates the way in which the energy absorbing capacity of the armour
increases linearly with increased areal density approximately above 45 kg.m”2.

Theoreticaldependence cfenergy absorption capacity on GRRP thichness and arealdsnsity
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Figure 7.6.3: Theoretical dependence of energy absorption capacity on GFRP thickness
and areal density.

Figure 7.6.3 indicates that for a particular value of areal density, more energy is absorbed

per unit areal density with lower values of GFRP thickness.
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Figure 7.6.4: Dependence of energy absorption capacity on GFRP thickness and areal-
density.

Figure 7.6.4 indicates that the thinner the backing plate the greater the energy absorbed per

unit areal density.
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Figure 7.6.1 illustrates a good correlation between experimental and theorstical predictions
based on Eqn. 25 and Eqn. 26, thus validating the use of GFRP for Florence model. The
other approach for calculating residual energy as argued by Shu [127] in his discussion
about the legitimacy of Hetherington’s approach was demerit in this study. Figure 7.6.2
shows the variation of energy absorbed with areal density. From Figure 7.6.2 we learn that

as areal density increases the energy absorbed increases for areal density approximately
above 45 kg/m® . Some interesting information can also be obtained from Figure 7.6.3. The
latter indicates that for a given areal density more energy is absorbed per unit areal density
(Jm* | kg) for lower thickness of GFRP. The experimental results adopted from Ref. [126]
are shown in Table 7.6.2, which both illustrate and confirm the theoretical trends. The

variation of energy absorbed per unit areal density with thickness ratio is shown in Figure
7.6.5. The energy absorbed per unit areal density increases almost linearly for thickness
ratios greater than 0.5,

These findings indicate that GFRP can be added to the materials backing database, since its
validity to Florence model was ascertained. In addition, we can add energy absorbed as a
constraint to previous GA problem definition. However, in order to do this we need to
assume an impact velocity.

From the above results it is clear that the MATLAB codes created to handle the concept of
energy absorption works well and thus integration of these codes into the GA is the next
stage. The following new problem definition is adopted with the aid of Florence and

Hetherington’s model.

7.6.2 Results after energy absorption consideration is
implemented into GA

Objective function: Maximize (Vp)
Design Variables: h1, h2, index for material front plate, index for material back plate
Constraints: (1) Areal density <45 kg/m"2
(2)h/h2>1
(3) Total thickness = h1 + h2 < 18mm
(4) Energy absorbed > 700J (assumed)
e A material database containing 31 different ceramics and 56 different aluminiums
are employed. (Note at this point GFRP was not added to the database)
e US Ball M33 0.5 in Caliber (mp=46.8g) was tested and results compared with
published work.



e TImpact velocity assumed is 400m/s

After the above problem definition was integrated into the GA the following results were

obtained:

The fittest individual so far is 356.14 at gen# 100
The degree of violation of our constraint(s) is 0 percent
Design Variables =
0.012714 0.0051429 15 39
clapsed time = 5.348

The results found by the GA indicate that since there is zero degree of constraint violation
we can have an impact velocity that exceeds the ballistic limit but still have a reasonable
level of energy absorption by the armour. Strictly speaking if the impact velocity greatly
exceeds the ballistic limit, penetration will occur. For the above problem definition since a

value of 700 J was assumed this constraint restricts the GA to the ballistic limit found.

7.6.3 Discussion on the concept of energy absorption

Note in calculating the energy absorbed, it was assumed that the mass of the projectile (m,,)

remains unchanged during the penetration process The residual velocity is the difference
between the impact velocity and the ballistic limit velocity [126]. Moreover, Florence model
is valid for both AP and ball projectiles. It can be argued that energy absorbed may not be
the best constraint when considering the energy absorbing capability of the armour. This
argument is supported by the work of Hetherington [128] who claimed that energy absorbed
is not a good measure of performance for the armour. This is mainly because only when the
impact velocity is close to the ballistic limit will the penetration mechanism be similar to
Florence model.

Moreover, the application of GFRP to Florence model was verified. Hence, to the backing

database, 6 different types of GFRP were added.
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In addition, from the results (not shown) obtained after studying the concept of energy
absorption by the armour, it was found with the aid of the GA that minimizing the residual
velocity or residual energy has the same effect as maximizing the amount of energy

absorbed. This fact can simply be deciphered from Eqn. 26 given above.

The impact velocity should be less than ballistic limit velocity to prevent penetration. Thus
the next stage of this study was to add the residual energy as a constraint. Hence, the
residual energy was assumed to be a small value, with the intention that such energy would
have no fatal effect on the armour carrier. This assumption still has to be verified if not
analytically, experimentally or numerically, since if residual velocity were greater than zero

this would seem to imply we would have penetration.

Moreover experimental studies would need to be carried out to determine whether the trends
depicted in Figure 7.61 to Figure 7.6.5 are specific to the particular threat used or whether
they can find wider applications. With the validity of the Florence equation established to a
reasonable degree of accuracy, for this specific threat level and selected armour material, the

model can be employed to assist the armour designer.

Even though the energy absorbed by the armour has been implemented into the problem as a
constraint, further studies are needed to justify this idea. A later study in this section delves
further into the concept of energy.

7.7 Looking into Energy absorbed as a proper
constraint for GA problem definition

The only way to maximize the amount of energy absorbed is to maximize the ballistic limit.
Thus in some sense the constraint on energy absorbed seems repetitive, but ensures armour
configurations that satisfy this constraint. In addition, energy absorbed during perforation
reduces with increased impact velocity, as is evident from the equation below:

Energy absorbed= %m SV, -V pz )
Note also that the energy absorbed may not be a good constraint since the value at which to

constraint it 1s unknown. Moreover, the conventional way of assessing the ability of an
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armour to withstand a specified threat is to determine the ballistic limit velocity, however;
some research effort has also looked into the effects of maximizing the energy absorbed as a
method for optimizing the performance of the armour. In order to check this claim, a few
case studies are conducted to check the need of energy absorbed by the armour as a
constraint. Residual energy is added as a constraint and is calculated via Eqn. 27.

Residual Energy = % m,V, ,2 27
Florence and Hetherington’s models are employed. A program previously created is used for

this case study with the following problem definition:

Objective function: Maximize (Vp)
Design Variables: hl, h2, index for material front plate, index for material back plate
Constraints: (1) Areal density <45 kg/m”2
(2)h1/h2>1
(3) total thk=hl + h2 < 18mm
(4) Energy absorbed > 700]
(5) Residual energy < 50J
¢ A material database containing 31 different ceramics and 67 backing materials
comprising of different aluminium and GFRP are employed.
o A 762 AP (mp=10g) was tested and results compared with published work.
e (GFRP was added to database.
e Impact velocity used is 400m/s

After above problem definition was integrated into the GA the following results were
obtained:

The fittest individual so far is 499.99 at gen# 100
The degree of violation of our constraint(s) is 0 percent
Design Variables =

0.0078571 0.0048571 21 14
elapsed time=  70.381

Having the above results various case studies were conducted to compare the effect of
having energy absorbed as a constraint in the problem definition. Hence, using the above

problem formulation the following results were obtained after various runs:
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Case 1

Table 7.7.1. Remove constraint 5 with everything else the same.
Run# hi{m) h2 (m) mail mat2 | Vp {mis)
1 0.010286 | 0.00357 31 51 541.05
2 0.007857 | 0.00742¢9 14 52 541.25
3 0.007857 |0.004857 2 31 540.87
Case 2
Table 7.7.2. Remove constraint 4 and constraint 5, with everything else the same.
Run# hi{m) h2 (m) mat1 matZ | Vp (m/s)
1 0.01271410.004857 15 38 1296.81
2 0.012714]0.004857 15 39 1296.81
Case 3
Table 7.7.3. Remove constraint 4 and keep constraint 5, with everything else the same.
Run#  |hi(m)  h2(m) |matt mat2 Vp (mis)
1 0.0102860.002286 2 48 499.64
2 0.007857 | 0.004857 21 14 499.99

From various runs conducted with the program it was found that a constraint on residual
energy automatically satisfied a constraint on energy absorbed and momentum transfer, or
perhaps a constraint on energy absorbed is not needed at all. Moreover, for Case 3 the
results are identical to results obtained above when all constraints are present. Hence the use
of constraint 4 is not warranted.

As evident from the equations presented, the amount of energy from a bullet is at a
maximum when 1t strikes the target at the ballistic limit velocity. As the residual velocity
increases the amount of energy absorbed by the target and the amount of momentum

transferred from the bullet to the target reduces.

The 6 different types GFRP added to the material backing database had no effect on the GA

choice of material selected {consult the tables above).
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7.7.1 Effect of increase:

npact velocity

Previous studies have shown the effect of adding and removing the constraints of energy.
The results produced by the GA if the impact velocity is increased are now investigated.
The following formulation was adopted to carry out this study.

Objective function: Maximize (Vp)
Design Variables: h1, h2, index for material front plate, index for material back plate
Constraints:  {1) Areal density <45 kg/m”2
(2)hi/h2 >1
(3) total_thk=h1 + h2 < 18mm
{4) Residual energy < 50J
e A material database containing 31 different ceramics and 67 backing materials
comprising of different aluminium and GFRP are employed.
e A 7.62 AP (mp=10g) was tested and results compared with published work.
e Impact velocity assumed is 500m/s

From the experimental findings by Hetherington [128] we expect that energy absorbed
during perforation to reduce with increased impact velocity. Secondly, an increase in impact
velocity results in a dramatic reduction in the fraction of the round’s energy. Finaily, the

greatest reduction in mass and velocity occurs close to the ballistic limit and these reduce

with increased impact velocity.

The following GA generated results from the above problem definition is shown in Table
7.74.

Table 7.7.4. GA generated results

Run# h1(m) h2 (m) mat1 mat2 |Vp (m/s)|CPU time (s)
1 0.010286 | 0.007429 14 23 |598.639 69.81
2 0.010286 | 0.002286 20 32 1599.723 142.43
3 0.010286 | 0.003571 15 27 1599.632] 49.792

Note that the results like those previously presented follow a particular trend, that is, the
ballistic limit exceeds the impact velocity by approximately 100 m/s. This makes sense since
the model assumes no mass erosion and thus the only parameter affecting changes in
residual energy is the residual velocity. The residual velocity is simply the difference

between the impact and ballistic limit velocity.

For example, the residual kinetic energy = 12 m pV,,Z =% (10e-3)(V, -V, )
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=1/2%(10e-3)*(500-599.639)7 = 49.64]

Note also that the thickness of the front plate (hl) is the same for all runs. The reason for
this observation is not clear, and one can only find an explanation for such trend by perhaps

looking into the constraints imposed.

7.7.1.1 Sensitivity Study

The above observation forced one to test the effect of the constraint regarding residual
energy when the impact velocity is fixed. The residual energy constraint was reduced to 10 J
and the impact velocity was set at 500 m/s while everything else in the previous problem

definition remained the same. The results are shown in Table 7.7.5.

Table 7.7.5. GA generated results after constraint on residual energy is implemented
Run# hi(m) h2 (m) mat1 mat2 | Vp (m/s) |CPU time (s)
1 0.0078570.004857 21 31 543.821 24.926
2 0.010286 |0.003571 31 2 544 484 42.531
3 0.007857|0.004857| 21 31 543.821 49.842

From Eqn. 27, the results in Table 7.7.5 are not surprising, since in order to achieve a
residual energy of 10 J when impact velocity 1s 500 m/s, requires a reduction in ballistic
limit.

The results above surely requires the reiteration of a statement already made in Ref. 128,
that is, only when the impact velocity is near to the ballistic limit velocity will the
mechanism be similar to that described by Florence. For this reason the amount of energy
absorbed during perforation is not a very effective indicator of the potential performance of

the armour.
7.7.2 Discussion after investigation into the effects of
increase impact velocity on armour design

As we attempt to reduce the residual velocity we simultaneously increase the energy
absorbing capabilities of the armour. Studies done by Navarro et al. [129] suggested that a
safe value for the residual kinetic energy was 670 J, a typical value used in armour design.

670 I is much higher than what was considered in this work. Nonetheless, a low residual
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energy value only ensures better performance of the armour and relaxing the constraint to a

value of 670 J only enables the GA to provide better results.

del results

sen Dor et al. o

The formulation by Ben Dor et al. is initially used to generate some theoretical results before
integration into the GA. The material data previously used, along with the threat and
materials from Ref. 128 - which is repeated here for clarity - was used to generate Figure
7.81 to Figure 7.8.4.

Data input to the program:

Mass of projectile (mp) = 46.8g

Radius of projectile (ap) = 12.7 mm. (US Ball M33 0.5in caliber)
Density of ceramic = 3499 kg/m”"3

Density of backing (GFRP) = 2229 kg/ m"3

Breaking strain of backing = 0.04

UTS of backing = 19 N/m"2

Comparisonoftheoretical predictions with measured values of veiocities
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Figure 7.8.1: Comparison of theoretical predictions with experimental data adapted from
studies by Hetherington {128]
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Figure 7.8.3 is slightly off from the published resuits found in Ref. 44. The reason for the
discrepancies is not clear. Nevertheless, the trend of the data is identical, so the results are

presented and formulation used.

Optimalthickness of ceramic plate vs. ballistic imit velocity
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Figure 7.8.4: Optimal thickness of ceramic plate vs. ballistic limit velocity.

Note since the results of Figure 7.8.3 is slightly off, the results in Figore 7.8.4 were also off
because of the dependency of Aopt on hopt.

7.9 Ben Dor et al. model results after
implementation into GA

Since the trend in the data is similar to published results, the MATLAB formulation of Ben
Dor et al. program was integrated into the GA for optimization. Initially, a simple problem
definition was used in order to allow for comparison with published results found in Ref. 44.
This problem definition entailed the use of only one design variable and one constraint given
below:

Objective function: Minimize (A4 )

Design Variables: 7,
Constraints: (1) total thickness = hl + h2 < 20mm
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The front plate is set as ceramic and the backing as GFRP.
A ballistic limit velocity of 400 m/s is used initially
A 12.7 mm AP (mp=46.8¢g) was tested and results compared with published work.

Alpha was taken as 0.9 (determined from experimental data presented in Ref. 128)

The results from the above formulation are given in Table 7.9.1.

Table 7.9.1.  GA generated results
Rung |V, (MVS) B 4 | m(m) | k(m) | p (kgim®)|p (kg/m®) 4(kgim?)
1 400 | 2.4194 |0.17232|0.01536 4.54E-03] 3499 2229 63.9
2 100 [0.87097| 0.0629 [5.53E-03/1.78E-03| 3498 2229 23.3

At ¥, =400m/s, w =3 and the optimum thickness R obtained when published results

[13] are consulted is approximately 2.4, a value close to that found by the GA. Also when

V,=100 m/s, w=0.75 and the optimum thickness 1* obtained when with published

results are consulted is approximately 0.85. Hence it can be said that the formulation and its

fusion with the GA works fairly well. Since Ben Dor et al. formulation works well, two new

design variables were added to the problem definition, namely, material index for the front

and back plate respectively. Important to remember that since the formulation is

dimensionless any material combination can be tested or moreover any material can be

added to the material databases. In this study, materials are only added to the backing plate

database.

Initially the database previously created i.e. front plate database of 31 different types of

ceramics and backing plate database of 67 different materials was used along with the

following problem definition:

Objective function: Min (Areal density)

Design Variables: hl_bar, matl, mat2

Constraints:

(2)h2 bar>0
¢ A ballistic limit velocity of 400 m/s is used initially
e A 12.7 mm AP (mp=46.8g) was tested and results compared with published work.
e Alpha was taken as 1 (Florence model}

(1) total thickness = h1 + h2 < 20mm

Two tests were conducted and the results are given in Table 7.9.2.
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Table 7.9.2. GA generated results
Run# | V,(M/s) h, mat 1 mat2 | Areal density (kg/m"2)
1 400 2.5808 14 39 35.7796
2 400 2.4516 14 39 35.8036

Using the above formulation a sensitivity study was conducted in order to check the effects

of certain constraints.

7.9.1 Sensitivity Study

Using the above problem formulation we replace the constraint on front plate thickness with
a constraint on thickness ratio as done by Hetherington; that is h1/h2 > 1. Constraint on total
thickness is changed to total thickness < 18mm. The results after two run of the GA is
shown in Table 7.9.3.

Table 7.9.3.  GA generated results after h1/h2 > 1 is added as a constraint
Run# (Vp(m/s)| h1 bar | mat1 mat 2 | Areal density (kg/m”"2)
1 400 2.3226 15 29 42.8483
2 400 2.3226 15 35 41.6713

Results appear similar to results found when using the problem definition used by
Hetherington. This may be so because the material database is the same for both programs.

Finally, thirteen new materials were added to the database to study their effect on the GA
decision-making. The thirteen new materials were among various types of Kevlar, spectra,
nomex etc. Although not presented, the latter problem formulation incorporating the thirteen
new materials had no effect on the GA choice of material. However, this may simply be due
to the way in which the problem was defined. For instance, if the total thickness constraint is
changed to say total thickness less than 25 mm, in most cases one of the new materials
added was selected by the GA. It is not quite clear why the GA typically selects aluminium
over the other materials when Ben Dor et al. formulation is used. Further studies are
required to understand the effects of the model formulation on the GA choice of design

variables.
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7.9.2

As mentioned earlier the thirteen new materials added to the backing database had little
effect on the GA choice of material selection. The GA selects the new materials added to
the database only when the constraint on the total thickness is relaxed. Nonetheless,
incorporating the energy absorbed into Ben Dor et al. formulation seem like a futile task
since it would require the user to input the value of the impact velocity. Recall that the
ballistic limit had to be inputted to the program by the user for Ben Dor et al. formulation,
hence immediately the residual velocity is known and is constant if an tmpact velocity is
assumed. Consequently the energy absorbed by the armour and the residual energy is also
known and constant. Therefore, when this approach of armour design is taken, it would

seem wise to ignore the aspect of energy absorption by the armour.

This seems like the way to go, since Hetherington [41] who attempted to optimize the
ballistic limit obtained similar results to Ben Dor et al. Thus it is reasonable to claim that
regardless of the approach taken for armour design, one is apt to obtain similar results for
similar materials. However, one wonders whether the approach by Hetherington [41]
captures the armour problem more completely than Ben Dor approach. This is an entirely
different area of research and requires much more indebt study than that provided in this

thesis.

7.10 General Discussion and Conclusions

The use of genetic algorithms for armour design is without question after studying the
results obtained. Analytical models developed by Florence, Hetherington et al. and Ben Dor
et al. were studied, formulated and later integrated into the GA. Viable and practical designs
were obtained after the analytical models were fused with the genetic algorithm. The
analytical models studied and fused with the genetic algorithm were capable of finding
feasible armour designs so as to reduce the number of armour configurations required for
numerical and experimental studies. Hence in many ways the objective of this research
effort was achieved since it help to reduce the cost of experimentation and the lengthy time

required for numerical analysis.
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A summary of the best designs found by the GA for a particular threat, and for a given
model formulation is summarized in the table below. Florence model does not appear in the
Table 7.10.1 since is not studied independently but instead it is fused with other models so
as to obtain the ballistic limit.

Table 7.10.1. Summary of Best GA generated designs

Threat mp dp
Model Type (g) | (mm) hi(m)] h2(m) | him2 | Tot. thickness (m) matiimat2| Vp (mis)
Hetherington AP 0 | 782 3.8175 0.015 26 | 39 | 126226
AP 42 | 127 3.5159 0.015 26 | 39 | 517.221
FSP 50 20 2.7619 0.015 25 | 35 | 459.448
Hetherington with Areal
Density considerations AP 10 | 762 | 0.02/0.005143 14 | 38 1 177157
AP 30 | 12.7 | 0.01]0.005143 30 | 35 [ 414.973
Hetherinton with Residual
Energy considerations
(Vi=400m/s) AP 10 | 7.62 | ©.01{0.004857 21 1 14 | 499.99
Ben-Dor
\Assumed Vp=400m/s AP 46.8| 12.7 | 0.0110.002788 15 | 35 400
Vp=1000m/s AP 46.8 | 12.7 | 0.02;0.003776 31158, 1000

If Hetherington’s approach is used, knowledge of the impact velocity is required and if Ben
Dor et al. approach is used knowledge of the ballistic limit velocity is desired. Due to the
difference in approach, it is believed that the two methods cannot be combined, but

independently, each method should yield similar results given the same material.

From this study one wonders why GA was not used before to aid in design of armour. To the
author’s knowledge no publications are available that alludes to the use of GA in armour
design. However, with the integration of simple analytical models into the GA one can
quickly study numerous configurations and materials for the armour with little computing

time and at little cost.
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Material database for the Matenial database for the armour
armour front plate back plate
Material [Densily Material |Density (UTS Breaking
Index {(Kg/m"3) Index (Kgim”3) {(Pa) strain
1 3420 1 2700 |3.10E+08| 0.12
2l 3600 2 2700 |2.40E+08| 0.22
3l 3700 3 2700 |4.60E+08] 0.1
4 3720 4 2710 |3.80E+08| 0.1
5 3800 5 2710 |3.10E+08| 0.08
7 2710 |[3.52E+08| 0.05
; gggg 8 2700 |1.50E+08| 0.2
o 3970 9 2700 |2.40E+08| 0.12
10 2700 |3.30E+08| 0.08
10 3650 11| 2710 |3.79E+08] 0.05
11 3750 12| 2710 |4.13E+08| 0.05
12) 4400 13 2710 |4.00E+08| 0.08
13] 4200 14 2720 |3.60E+08| 0.18
14| 1800 15 2720 |3.95E+08| 0.12
15 2300 16 2710 |3.40E+08| 0.12
16/ 2500 17 2710 [2.90E+08| 0.24
17| 4050 18 2700 [2.20E+08| 0.15
18| 3820 19 2710 |3.10E+08| 0.12
19 4100 20 2720 14.00E+08| 0.1
20 3760 21 2700 |3.10E+08| 0.11
21 36870 22 2710 |2.50E+08| 0.2
29 3870 23 2690 2.40E+08, 0.12
53l 3930 24 2700 |1.70E+08| 0.16
556070 26 2830 |3.80E+08| 0.15
6 6100 27 2830 |3.95E+08| 0.17
576000 28 2830 |4.05E+08| 0.12
29 2800 |4.25E+08] 0.2
28| 5850 30 | 2800 |4.70E+08| 0.13
29| 2700 31 2810 |4.00E+08| 0.19
30; 2800 32 2750 |3.40E+08| 0.24
31 25830 33 | 2570 |5.25E+08| 0.05
34 2590 |5.50E+08] 0.08
35 2780 |4.70E+08| 0.2
36 2750 |3.00E+08| 0.27
37 2780 |5.15E+08| 0.06
38 2750 |4.85E+08| 0.18
39 2780 |4.70E+08| 0.2
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Material database for the armour back
plate continued

Material| Density | UTS | Breaking

Index |(Kg/m*3)| (Pa) strain
40 2770 |4.27E+08] 0.05
41 2780 |4.85E+08, 0.06
42 2770 |4.55E+08, 0.05
43 2840 4.15E+08, 0.1
44 2840 14.55E+08, 0.1
45 2840 |4.75E+08| 0.1
46 2810 4.35E+08] 0.1
47 2840 5.80E+08] 0.12
48 2780 |3.90E+08| 0.15
49 2780 |3.50E+08 0.13
50 2810 |5.70E+08, 0.11
51 2730 |4.00E+08] 0.13
52 2730 |4.50E+08| 0.13
53 2800 |5.50E+08| 0.12
54 2800 |5.20E+08] 0.12
55 2800 [5.20E+08| 0.12
56 2880 |6.59E+08] 0.04
57 2600 |3.45E+09| 0.048
58 2460 |4.89E+09 0.057
59 2490 14.59E+09, 0.054
60 2700 |3.24E+09| 0.044
61 2720 4.50E+09 0.048
62 2540 |4.14E+09| 0.048
63 1440 |3.62E+09| 0.036
64 1440 |3.00E+09| 0.024
65 1470 |3.45E+09] 0.03
66 1780 4.15E+09| 0.018
87 1790 4.07E+09] 0.018
68 970 |2.59E+09 0.035
689 970 |3.00E+09| 0.027
70 1110 |5.50E+07| 0.04
71 1170 |8.70E+07, 0.04
72 1394 |1.38E+08| 0.04
73 4820 [1.19E+09] 0.08
74 4820 |1.29E+09 0.09
75 1170 |4.50E+09| 0.016
76 1780 |4.15E+09| 0.018
77 1790 4.01E+09| 0.018
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Material database for the armour back

plate continued

78 | 1790 6000e6 0.022
79 | 1380 607e6 0.305
80 | 1390 3000e6 0.044
81 | 1270 2.95e8 0.033
82 | 1240 3.38e8 0.033
83 | 887 3.1e9 0.035




General Discussion, Conclusions and
suggestions for future work

Optimization, multidisciplinary design optimization, and soft computing techniques were
defined. Initially a global picture of optimization was presented. Some optimization
techniques common to mechanical engineering that constitute this global picture were
highlighted. A more concise view was then adopted to focus on a particular soft computing
technique, namely, genetic algorithms. Detailed information about the genetic algorithms
creation and process of implementation to solve real world problems was presented. Finally
the genetic algorithm was applied to solve various engineering problems. At first the
applications were simple, but were studied so as to ensure correct functionality of the
genetic algorithm. Having proved the effectiveness of the genetic algorithm, more complex
problems of conceptual aircraft design, structural design and analysis, and finally armour

design and analysis, were performed.

The genetic algorithm used in this study was capable of searching for and finding optimal
solutions. For instance, genetic algorithms were used to show that GAs are a flexible and
efficient means of generating conceptual aircraft designs, that can increase the scope and
decrease the time and cost entailed in the traditional design approach. In addition, the

genetic algorithm based finite element analysis technique developed was capable of finding

o
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lighter structural designs when compared with mathematical, optimality criteria and other
heuristic approaches. Genetic algorithms were even applied to armour design. Analytical
models developed by Florence, Hetherington et al. and Ben Dor et al. when studied,
formulated, and later integrated into the GA, resulted in viable and practical designs. Hence
the analytical models fused with the genetic algorithm were capable of finding feasible
armour designs. This enabled a reduction in the number of armour configurations required

for numerical and experimental studies.

Hence in many ways the objective of this research effort was achieved. The GA also aided
in providing initial layouts and geometries of reasonable conceptual aircraft design maps.
This initiated a speedy design process providing a quick and easy structural optimization
methodology capable of reducing cost and computational effort.

This study suggests that the GA is capable of handling the complex problem of
simultaneously managing and integrating many design disciplines. From this standpoint,
serious consideration should be paid to designs found in this and other research utilizing
GAs. Furthermore, such research acts as a starting point for generating designs that meet the
required design objective in a short period of time; a condition that ultimately translates into

saving time and money.

In concluding, the genetic algorithm integrative approach proved to be beneficial, as well as
practical and feasible for design and optimization. However, for some problems studied the
long computational time incurred acted as a deterrent. Hence, the issue of rapidly
optimizing a problem was a shortcoming of some applications. This is due to the inherent
slow convergence speed of the GA near the global optimum. However, this should not be
seen as a limitation in light of the advancements made in improving the processing speed of

computers.

It is hoped that the present research effort will prompt further research into the use of
artificial itelligence methods for research, but more importantly, to meet industry demands.
The following are some suggestions for future work as summarized from the application
chapters of this thesis.
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Investigation into other Al methods such as SA, TS and ANN for mechanical
engineering problems can greatly add a greater level of flexibility and sophistication
in choice of algorithms for the particular problem encountered.

All mechanical engineering applications studied in this thesis utilized a Pentium III
processor. The use of a faster and more efficient computer can significantly improve
the performance of the GA especially when large complex problems are studied.

The use of a local search mathematical based technique to aid the GA search
procedure later on in the generation can help curb the computational effort entailed
in this study. In other words, a hybrid GA can be employed to assist the search
process in finding the absolute global optimum after it had converged on the area in
which the absolute global optimum is located. Future research direction can also be
oriented towards using GA integrated artificial neural networks (ANN) to reduce the
large computational effort required for structural optimization.

Finally this work opens the door for extending this research effort to other

mechanical engineering problems.
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