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ABSTRACT

In this work we propose a parametric model using the techniques of time-changed subordination

that captures the implied volatility smile. We demonstrate that the Fourier-Cosine method can

be used in a semi-static way to hedge for quadratic, VaR and AVaR risk. We also observe

that investors looking to hedge VaR can simply hold the amount in a portfolio of mostly cash,

whereas an investor hedging AVaR will need to hold more risky assets. We also extend ES risk

to a robust framework. A conditional calibration method to calibrate the bivariate model is

proposed.

For a robust long-term investor who maximizes their recursive utility and learns about the

stock returns, as the willingness to substitute over time increases, the equity demand decreases

and consumption-wealth ratio increases. As the preference for robustness increases the demand

for risk decreases. For a positive correlation, we observe that learning about returns encourages

the investor to short the bond at all levels of ψ and vice versa.
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Chapter 1

Introduction

In the year 1900, Bachelier published his thesis ”The Theory of Speculation”, see [3]. In this

work, Bachelier introduced the use of Brownian motion with zero drift to model the dynamics

of stock movement. Unfortunately, Bachelier’s work was mostly ignored for many decades until,

in 1973, when Black and Scholes published their paper ”The Pricing of Options and Corporate

Liabilities”, see [5], where they derived the famous, Black-Scholes equation; which cleverly rec-

ognized that the fair value of the option, follows the heat equation. In parallel to Black and

Scholes, Samuelson and Merton, were working on the same problem, in the same year, Mer-

ton published ”The Theory of Rational Options Pricing”, see [34], in which he used stochastic

calculus arguments to derive the Black-Scholes equation using Brownian motion. Since then

many market models have been developed to price derivatives of not just common stock, but

commodities and currency as well. The hedging problem is actually an older problem, the

mean-variance or quadratic hedging problem is a specific case of the utility maximization prob-

lem, which was first proposed in 1738. The mean-variance hedging problem was popularized by

Merton’s paper ”An Intertemporal Capital Asset Pricing Model”, see [33]. This was extended

to the general case by Schweizer, see [45] and then to incomplete markets with Föllmer, see [24].

Almost a decade later, Leukert and Föllmer introduced the notion of hedging risk of quantiles

and presented techniques to solve them, see [23].

Asian options were first introduced in the commodities market in Tokyo, 1987, by Standish

and Spaughton, two traders at Bankers Trust, now owned by Deutsche. In this work, we look

more specifically at Arithmetic average fixed strike Asian options. We follow the work of Zhang

and Oosterlee, see [47], who introduced a Fourier-Cosine series expansion method to price arith-

metic average asian options. Ruijter and Oosterlee, see [42], extend the Fourier-Cosine method

of Fang and Oosterlee, see [22], to the two dimensional case relying on the independence of the

1



CHAPTER 1

underlying assets. Pellegrino et al, see [38], further extend the method to three dimenstions,

again under the assumption that the underlying assets are independent. Li and Chen, see [28],

propose a pricing and hedging method using the Edgeworth series expansion, for diffusion type

models. Deelstra et al , see [17] propose a general functional for the Asian basket spread payoff,

Albrecher and Predota, see [1], present a pricing method based on the characteristics of the

NIG Lévy processes and Boughamora et al, see [7], price and hedge Asian options under the

relative entropy measure.

In this work we explore the application of time changed Lévy process to price and hedge Asian

options derived from oil commodities. We present a time changed model with a subordinator

made from a linear combination of two independent subordinating processes. This introduces

an inherent dependence structure in the model. The model assumes that there is a linear struc-

ture in time between underlying assets, this tells us that a portfolio will be more volatile if the

assets are more correlated. Intuitively this means that the underlying assets have a common

process driving them, i.e. macroeconomic cycle. The parametric nature of the model also let’s

us use heavy-tailed distributions to capture heavy tailedness in the data. In our work we use the

Asian Fourier-Cosine method of Zhang and Oosterlee, see [47], to price arithmetic Asian options

using the proposed time changed model. We derive the univariate and bivariate characteristic

function of the time changed model as well as its moments which is summarised in Tables 3.1-

3.4. The Fourier-Cosine method was compared with an efficient Monte Carlo algorithm and

from the numerical simulations it was found that the Fourier-Cosine method is computationally

faster than the efficient Monte Carlo by about an order of magnitude, i.e. 2 seconds vs. 20

seconds. For a detailed error analysis of the Fourier Cosine method we refer the reader to the

work of Fang and Oosterlee, see [22], and Zhang and Oosterlee, see [47]. We also note that the

Fourier-Cosine method, exhibit some instability around the strike price of $0.

We also considered the application of the Fourier-Cosine method in different hedging strategies.

Alonso et al, see [2], also looks at the application of the Fourier-Cosine method to the hedging

problem, but they only show a numerical simulation of delta and gamma hedging and makes

an incomplete note on quantile hedging. In our work we assume that the investor hedges in

a semi static way, in otherwords the investors only rebalances their portfolio outside the time

interval [t, T ]. We look at quadratic hedging problem as solved by Kolkiewicz et al, see [27] and

quantile hedging as seen in the work of Föllmer and Leukert, see [23]. We found that quadratic,

VaR (value at risk) and AVaR (average value at risk) risk cannot be completely hedged in an

2



CHAPTER 1

incomplete market, this is a result that is well known. We also observed that investors looking

to hedge VaR can simply hold the amount in a portfolio of mostly cash, whereas an investor

hedging AVaR will need to hold more risky assets to generate larger returns. We also extend

AVaR to a robust framework which is intended to reduce modelling error.

Through calibration against market data, we observe that our model successfully produces an

implied volatility smile. We propose a conditional calibration method for the bivariate model

and we approach the inverse problem using the Pattern Search algorithm as shown in Torczon’s

work, see [46]. The key advantage of this algorithm is that it is a direct search method, which

implies that the function does not necessarily need to be differentiable. Torczon, see [46], pro-

vides analytic background to justify global convergence for convex cost functions. We find that

the Pattern Search method works particularly well in solving calibration problems for our model.

The theory of Utility Maximization has a long history in macro and financial economics. It’s

central premise is the fact that asset prices are determined by investor’s risk preferences and

by the distributions of asset’s risky future payments. Until 1713 it was believed that indi-

viduals value risky assets based solely on higher expected payoffs, this was contradicted by

Nicholas Bernoulli by posing the St.Petersberg Paradox and in 1738 Daniel Bernoulli explained

the paradox and proposed the concept of expected utility, the concavity of the expected utility

was explained as risk aversion of the investor. Pratt(1964) and Arrow(1971) independently

introduced a measure of absolute risk aversion which was extended to relative risk aversion,

which is independent of wealth, see [39]. In this work, we use a recursive relative risk aversion

preference of the Epstein-Zin type, see [19]

The reader is directed to Pennachi, see [39], for a general overview on the theory of Utility

Maximization and Campbell and Viceira, see [11], for a general overview on portfolio choice

for long-term investors. Campbell and Viceira, see [10], use regression to maximize Epstein-Zin

type preferences to solve the optimal asset allocation and consumption problem for a long lived

investor. Campbell et al, see [9] extend the framework to a continuous time VAR model. Camp-

bell, Chan and Viceira, see [8], extend the framework to a multivariate setting. Maenhout, see

[32], introduces the robustness problem and solves it for the CRRA (Constant Relative Risk

Aversion) and Power Utility case. Liu, see [31], extends Maenhout’s work to the EZ preferences

case. Ju and Miao, see [26], presents a general utility function incorporating ambiguity and

learning, in a regime switching asset pricing model with dividends. Escobar et al, see [20],
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CHAPTER 1

present a framework which looks at the long-term investors problem with CRRA preferences

where the investor learns about stock returns with two parameters, an observed parameter and

an unobserved parameter, which is estimated by optimal non-linear filtering.

In this work we follow the work of Escobar et al, see [20] and Liu, see [31]. We use the fil-

tration techniques of Shiryaev and Liptser, see [30] to estimate the unobserved parameter with

optimal non-linear filtering from observed parameters. Using the robust representation of An-

derson (2012) as shown Escobar et al, see [20] we derive an explicit expression for the optimal

portfolio and consumption as an institutional investor in an infinite horizon setting with relative

preference utility of the Epstein-Zin type. For a robust investor, the introduction of ambiguity

aversion effectively increases the risk aversions. When time preferences and risk preferences are

separated it is interesting to explore how ambiguity aversion affects the robust investor who

learns about stock returns and is wiling to substitute consumption. In general, we find that

if the investors willingness to substitute over time increases, the equity demand decreases and

consumption-wealth ratio increases. As the preference for robustness increases the demand for

risk decreases. We observe that learning about returns encourages the investor to short the

riskless asset at all levels of ψ.

This work is divided into the following chapters. The first portion of this work is contained in

Chapters 2 through 6. In Chapter 2 we introduce an extensive background into various existing

results in probability, to ensure the work is complete as possible. Chapter 3, we build the model

from it’s foundations, we derive the Lévy triplet, the characteristic function, its exponential

function and the moments. Chapter 4 looks at the application of the model to price Asian

options using Monte Carlo simulation and Asian Fourier-Cosine pricing. Chapter 5 looks at the

application of the Fourier-Cosine method to quadratic and quantile hedging and extends risk

hedging to a robust framework. Chapter 6 presents some results of model calibration, we see

that the model can generate the implied volatility smile and present a conditional parameter

calibration approach to calibrate the bivariate case using pattern search algorithms for a root

mean square error(RMSE) cost function. Chapter 7 contains the second portion of the thesis.

This chapter is designed to be self contained and is supplemented by the background in Chap-

ter 2. In this chapter, we discuss the implications of robustness preferences and intertemporal

substitution to a long-term investor who learns about stock returns. Chapter 8 is the conclusion

of the thesis and summarizes key results in both portions.
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Chapter 2

Background

2.1 Preliminaries

Throughout this work we assume the standard setup. We assume that we work in a probability

space (Ω,F ,{Ft}t∈[0,T ],P) with a non-decreasing filtration {Ft}t∈[0,T ] that follows the usual

assumptions.

Definition 2.1. Filtration

Let (Ω,F ,P) be some probability space with the σ-algebra, F . Then the filtration of F gener-

ated by some right continuous process Yt(ω) is defined as {Ft}t∈[0,T ] ∶= σ{Yt(ω)} for ω ∈ Ω, is the

smallest σ-algebra generated by Yt. The σ-algebra generated by the process Yt is non-decreasing,

i.e F0 ⊆ F1 ⊆ ... ⊆ FT

We assume the probability measure, P, is the real world probability and there exists an equiv-

alent martingale measure (EMM) Q such that Q is absolutely continuous with respect to P,

denoted Q << P, and we assume that our EMM Q is the risk neutral measure. The drift

µ(t, y) = µ, variance σ(t, y) = σ, and interest rate r(t, y) = r are assumed to be constants. The

log price for each asset, j = 1,2, is assumed to follow a Lévy process {Y (j)
t }t≥0 and the price

dynamic for each asset is assumed to be given by

S
(j)
t = S(j)

0 exp(Y (j)
t )

For simplicity we assume that no dividends are paid and there are no transaction costs. The

preliminaries are presented without proofs as we assume the reader is familiar with the funda-

mentals of continuous time stochastic analysis.

Definition 2.2. Cádlág Function

A function is cádlág if it is right continuous and has left limits, i.e. for a function f ∶ [0, T ]↦ Rd,

5



CHAPTER 2 2.1. PRELIMINARIES

for each t ∈ [0, T ] the limit f(t−) = lim
s→t,s<t

f(s) exists, the limit f(t+) = lim
s→t,s>t

f(s) exists and

f(t) = f(t+).

Remark 2.3. Any continuous function is cádlág, but cádlág functions are not necessarily

continuous and can have discontinuities.

If there exists a discontinuity point at t we have that ∆f(t) = f(t) − f(t−), which is called a

jump at t. It is important to note that a cádlág function can have at most a countable number

of jumps, see [14].

Stock prices are modelled using random cádlág functions. If we look at the filtration Ft of all

possible stock prices, from t = [0, T ] we know stock price at time t is St = St+ , which is by

definition cádlág.

Definition 2.4. Stopping Time

A random variable T ∶ Ω↦ [0,∞) is a stopping time if [T ≤ t] ∈ Ft, see [40].

Definition 2.5. Martingale

An adapted process {Yt}t∈[0,T ] is called a martingale with respect to Ft

(1) E ∣Yt∣ <∞

(2) if s ≤ t, then E[Yt∣Fs] = Ys a.s.

Definition 2.6. Semi-Martingale

A process {Yt}t∈[0,T ] is called a semimartingale with respect to F , if and only if Yt = Mt +At
where Mt is a martingale and At is of finite variation. Yt is cádlág, adapted and is continuous

in probability, see [40], [18]

Example 2.7. Let St be the adapted process that describes the asset price and Φt be a simple

predictable process with stopping time T , the the wealth process is given by

Xt =X0 +
T

∫
0

ΦtdSt = Φ0S0 +
d

∑
j=1

Φj
tS

j
t (2.1)

The wealth process is an example of a semimartingale, see [40].

Definition 2.8. Quadratic Variation

LetX and Y be semimartingales, the quadratic variation process ofX is [X,X] =X2−2 ∫ X−dX

and the quadratic covariation process of X and Y is [X,Y ] =XY −∫ X−dX −∫ Y −dY , see [40].

Corollary 2.9. Polarization Identity

[X,Y ] = 1
2([X + Y,X + Y ] − [X,X] − [Y,Y ])

6



CHAPTER 2 2.2. ARBITRAGE-FREE PRICING

Proof. The corollary is a result of the definition of quadratic variation, see [40].

Definition 2.10. Quadratic Pure Jump Process

A semimartingale Y is called quadratic pure jump if [Y,Y ]c = 0, i.e. the continuous martingale

term is zero and [Y,Y ] = Y 2
0 + ∑

0<s≤t
(∆Ys)2

2.2 Arbitrage-free Pricing

Let’s consider a market with d assets whose prices are modelled as real valued cádlág vector

processes St = (S0
t , .., S

d
t ) ∈ [0, T ]×Rd. A portfolio is a real valued vector Φt = (Φ0

t , ...,Φ
d
t ), such

that the value of the portfolio is given by Xt(St,Φt) =
d

∑
j=1

Φj
tS

j
t =< Φt, St >

Definition 2.11. Predictable Processes

The predictable σ-algebra is the σ-algebra generated on (0, T ] × Ω by all cáglád processes

i.e processes that are left continuous with right limits. A measurable random variable Φt ∶

[0, T ]×Ω↦ Rd is called a predictable process, i.e. For t = 0,1, ...,M , Φj
t is Ft−1-measurable, see

[14].

In financial terms, t gives us our transaction dates as a filtration made from our σ-algebra

generated by our stopping times; which is a countable random partition on [0, T ]. The portoflio

is chosen based on the information available at t − 1, which shows that Φt is Ft−1-measurable.

This means when a brocker executes a trade at t they are working with portfolio values at t−1.

Definition 2.12. Simple Predictable Processes

A simple predictable process {Φt}t∈[0,T ] is given by

Φt = Φ01t=0 +
M

∑
n=1

Φtn1[tn,tn+1] (2.2)

Where each t0 = 0 < t1 < t2, ... < tM = T is a stopping time and each Φt is a predictable bounded

random variable, see [14].

Definition 2.13. Self-Financing Portfolio

Given the portfolio strategy Φt, we say the the portfolio is self financing if and only if the wealth

process dXt = ΦtdSt ⇐⇒ Xt =X0 +
T

∫
0

ΦtdSt where St is a cádlág random process, see [18]

Definition 2.14. Arbitrage Opportunity

An arbitrage opportunity is a self-financing portfolio with a wealth process that satisfies the

following conditions

(1) X0(Φt) = 0

7



CHAPTER 2 2.3. LÉVY PROCESSES

(2) P[XT (Φt) ≥ 0] = 1

(3) P[XT (Φt) > 0] > 0

Proof. Sondermann, shows that as long as an equivalent martingale measure exists no-arbitrage

opportunities exists, see [18], Theorem 4.7.2.

Definition 2.15. Attainable Admissible Trading Strategy

An attainable admissible trading strategy is a self-financing trading strategy that admits no

arbitrage. i.e. Let Φ ∈ U , where U is a subspace of admissible portfolios such that Φt is self

financing strategy. There exists an EMM Q such that

EQ[Xt(Φt)] =X0

see [18]

Definition 2.16. Expectation under Risk Neutral Measure

We consider the EMM Q such that, St = St−e
−rt+Yt is a Q-martingale, and Yt follows the

dynamics of Eq.(2.15) then we have that

e−r(T−t)E[Xt(St)] = EQ[Xt(St)]

is a Q-martingale when σ = 0 and µ = r − ∫ ∞−∞(ey − 1 − y)νY (dy)

2.3 Lévy Processes

Definition 2.17. Lévy Processes

Let (Ω,F ,{Ft}t∈[0,T ],P) be a probability space with filtration Ft, we define an adapted stochas-

tic process Yt ∶= {Y (t)∣t ∈ [0, T ]} as a Lévy process, if it satisfies the following properties:

(1) Y0 = 0

(2) Yt has independent increments, i.e. Yt − Ys where [s < t] ∈ [0, T ] are independent of Fs.

(3) Yt has staionary increments, i.e. Yt0 , Yt1 − Yt0 , ..., Ytn − Ytn−1 are independent

(4) Yt is continuous in probability i.e. For each ε > 0, lim
s→t

P(∣Ys − Yt∣ ≥ ε) = 0.

see, [14]

Remark 2.18. Every Lévy process has a cádlág modification which is itself a Lévy process,

see [40].
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Then, we can say that is {Y (j)
t }t≥0 is a Lévy process, for any t > 0 the distribution of {Y (j)

t }t≥0

is infinitely divisible, see [14], [40].

Definition 2.19. Infinite Divisibility

A probability distribution pY on Rd is said to be inifinitely divisble if for any integer d ≥ 2,

there exists M identically independent distributed (i.i.d) random variables Y1, ..., YM such that

Y = ∑Mi=1 Yn ∼ pY , see [14].

Theorem 2.20. Infinite Divisibility of Lévy Processes

Let Yt be a Lévy process.Then for every t, Yt has an infinitely divisible distribution. We can

also say that if pY is an infinitely divisible distribution then there exists a Yt such that Y1 ∼ pY

2.3.1 Markov Property of Lévy Processes

Definition 2.21. Markov Processes

Let X be a random variable with filtration Ft then X is called Markov, when:

E[X ∣Ft] = E[Y ∣Yt]

where Y ∈ Ft see [14].

By definition the Lévy processes satisfies φ(u)Ydt = (φ(u))dt, where ∆t = dt ∶= ti − ti−1 is the

time increment; this is sufficient enough to say that Yt has the Markov property. In fact this is

a stronger version of the Markov property since it holds for each t. The strong Markov property

of Lévy processes allows us to replace dt with any cádlág random time, see [14].

Definition 2.22. Transition Operator for Strong Markov Processes

The transition operator for Markov processes is defined as

Ptf(t, y) = E[f(t +∆t,∆Yt)]

The linearity of of Lévy processes gives us

Pt+s = PtPs

2.3.2 Characteristic Function and Cumulants

Definition 2.23. Characteristic Function

The characteristic function φY of a random variable Y , is the Fourier-Stieltjes transform of the

distribution function F (y), i.e:

φY (u) = E[eiuY ] = ∫
∞

−∞
eiuY dF (y), i =

√
−1

9
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Definition 2.24. Exponential Moments

Similarly we can define the exponential moments

E[exp[uY ]] = exp[tψY (−iu)] (2.3)

Definition 2.25. Independent Characteristic Functions

For independent random variables X and Y we have:

φX+Y (u) = φX(u)φY (u)

Definition 2.26. Characteristic Exponent

For a random variable Y and u ∈ R the characteristic exponent of Y is defined as

ψY (u) = 1

t
log(E[exp[iuY ]]) = 1

t
log(φY (u)) (2.4)

Remark 2.27. By Definition 2.26 it is easy to see that

φx(u) = exp[tψ(u)] (2.5)

Definition 2.28. Cumulant Function

Let Yt be a Lévy process with characteristic exponent given by 2.4 and E[∣Yt∣n] < ∞ for each

t > 0, then it’s cumulant generating function is given by, see [14]

ξn =
t

in
∂n(ψ(u))
∂un

∣
u=0

(2.6)

ξ1(Yt+dt − Yt) = dtE[Yt] (2.7)

ξ2(Yt+dt − Yt) = dtV ar[Yt] (2.8)

s(Yt+dt − Yt) =
ξ3(Yt+dt − Yt)
ξ2(Yt+dt − Yt)3/2 = s(Yt)√

dt
(2.9)

k(Yt+dt − Yt) =
ξ4(Yt+dt − Yt)
ξ2(Yt+dt − Yt)2

= k(Yt)
dt

(2.10)

The cumulants of Yt increase linearly with t, i.e. ξYt = tξY1 , which holds because Yt is infinitely

divisible, see [14].

2.4 Representation

Definition 2.29. Jump measure

For a Lévy process Yt with cádlág paths and 0 ∉ Ā where A ⊂ Ft bounded away from 0, then

the jump measure is given by:

NA
t = ∑

0<s≤1

1A(Ys− − Ys) = ∑
0<s≤1

1A(∆Ys)

10
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The jump measure is simply a counting measure, that counts the number of jumps in the path

process, see [40].

Definition 2.30. Lévy measure

Let {Yt}t∈[0,T ] be a Lévy process on Ft. Then, the Lévy measure ν of Yt on Rn is defined as:

ν(A) = E[NA
1 ] = E[ ∑

0<s≤1

1A(∆Ys)]

ν(A) is the expected number of jumps in A.

the definition tells us that the Lévy measure is the expected number of jumps that occur in our

path process. Protter, [40], presents some nice results that we will use later.

Theorem 2.31. Let A ⊂ Ft, and g a measurable function on A, then

∫
A
g(y)Nt(ds, dy) = ∑

0<s≤t
g(∆Ys)1A(∆Ys)

From the fact that NA
t has independent and stationary increments, see [40], Theorem 34.

Corollary 2.32. Given A ⊂ Ft with 0 ∉ Ā and let g be measurable on A, then

∫
A
g(y)Nt(ds, dy)

is a Lévy process, see [40].

Theorem 2.33. Let A ⊂ Ft, and ν be the Lévy measure of Y , and let g1A ∈ L2(dν). Then

E[∫
A
g(y)Nt(ds, dy)] = t∫

A
g(y)ν(dx)

and

E[(∫
A
g(y)Nt(ds, dy) − t∫

A
g(y)ν(dx))2] = t∫

A
g(y)2ν(dx)

Proof. see,[40], Theorem 38

Theorem 2.34. Lévy-Itô Decomposition

Let Yt be a Lévy process on Ft and ν its Lévy measure. Then the Lévy process can be decomposed

to:

Yt = µ(t, y)t + σ(t, y)Bt + J lt + J̃ εt (2.11)

J lt = ∫
∣y∣<1

yNt(dt, dy) (2.12)

J̃ εt = ∫R y(Nt(dt, dy) − tν(dy))

= ∫
R
yÑt(dt, dy) (2.13)

11
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where µ(t, y) is the drift coefficient, σ(t, y) is the diffusion volatility and the two integral terms

are independent Lévy jumps, see [14] [40]. The J̃ εt term captures small movements and the J lt

term captures large movements. In tempered stable Lévy processes the parameter α emphasizes

how important these movements are. When α = 0(Gamma) the process favours large movements

and when α = 1/2(Inverse Gaussian) the process favours small movements, see [14].

Theorem 2.35. Itô Formula

Let Yt be a semi-martingale process and let f(t, Yt) be a C1,2 function, then the Itô formula

df(t, Yt) =
∂f

∂t
dt + ∂f

∂y
[µdt + σdBt] +

σ2

2

∂2f

∂y2
dt

+ ∫
∣y∣<1

[f(t, Yt) − f(t, Yt−) − y
∂f

∂y
]ν(dy)dt

+ ∫
R
[f(t, Yt) − f(t, Yt−)]Ñt(dt, dy) (2.14)

Theorem 2.36. Lévy-Itô Isometry

Let Yt, a semi-martingale with stopping time T . Then the solution given by applying the Itô

formula to equation (2.11) gives us

Yt = Y0 + ∫
T

0
µdt + ∫

T

0
σdBt + ∫

T

0
∫

∣y<1∣

yNt(dt, dy)

+ ∫
T

0
∫
R
yÑt(dt, dy) (2.15)

and has the differential representation

dYt = µdt + σdBt + ∫
∣y<1∣

yNt(dt, dy)

+ ∫
R
yÑt(dt, dy) (2.16)

Assuming E[Yt] <∞ and if Yt has the stopping time T , Y0 = 0 and µ(t, y) = 0 then

E[Y 2
T ] = E[∫

T

0
σ2dt + ∫

T

0
∫
R
y2ν(dy)dt] (2.17)

see [37]

Theorem 2.37. Lévy Khintchine Representation

Given a Lévy process Y and its Lévy triplet (µ,σ2,ν). The characteristic exponent of Y satisfies

the following formulation:

ψY (u) = iuµ − u
2σ2

2
+ ∫

R
(eiuy − 1 − iuy1∣y∣<1)ν(dy) (2.18)

µ ∈ R, σ2 ∈ R+, and ν is a measure on R/{0}.

12
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Remark 2.38. The Lévy Khintchine form is quite useful in determining the expected value

of exponential Lévy processes since E[exp(Yt)] = exp(tϕY (−i))

The Lévy triplets are known for some exponential Lévy processes as seen in [44]. µ is the

drift coefficient, σ is the volatility and ν is the Lévy measure. If the Lévy measure has the

form ν(dy) = u(y)dy, then u(y) is the Lévy density, which has the same characteristics as the

probability density but does not need to integrable and is zero at the origin.

2.4.1 Exponential Lévy Processes

Definition 2.39. Stochastic Exponential

For a Lévy process St, dSt = St−dYt, the stochastic exponential of St is given by

Zt = E(Yt) = exp(Yt −
1

2
[Y,Y ]ct) (2.19)

Where [Y,Y ]ct = 0 is the path-continuous part of [Y,Y ] of Yt , for a proof see [40], Theorem 28.

Under pure jump processes when ∫ 1
−1 ∣y∣νY (dy) <∞ the stochastic exponential becomes

Zt = E(Y ) = eYt−
σ2t
2 ∏

0<s≤t
(1 +∆Ys)e−∆Ys

dZt = dYt +
σ2

2
dt + ∑

0≤s≤t
(e∆Y − 1 −∆Y ) (2.20)

Applying the Itô formula with f(t, y) = ey−σ
2t
2 ∏

0<s≤t
(1 + y)e−y we get that dZt = Zt−dYt where

dYt is given by

dYt = (µY −
σ2

2
)dt + ∫

T

0
∫

1

−1
(ey − 1 − y)νY (dy)dt + ∫

T

0
∫
R
(ey − 1)Ñt(dt, dy) (2.21)

Theorem 2.40. Ordinary and Stochastic Exponential

(1) Let Xt be a Lévy process with Lévy triplet (µX , σ2
X , νX) and Zt = E(Xt). If Xt > 0 a.s.

then there exists another Lévy process Yt such that Zt = eYt where

Yt = log(Xt) =Xt −
σ2t

2
+ ∑

0<s≤t
[log(1 +∆Xs) −∆Xs] (2.22)

With Lévy triplets (µY , σ2
Y , νY )

µY = µX − σ
2

2
+ ∫
[−1,1]

(log(1 + x) − x)ν(dx)

σY = σX

νY = ∫ 1∣log(1+x)∣≤1νX(dx)

13
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(2) Conversely

Xt = Yt +
σ2t

2
+ ∑

0<s≤t
[1 +∆Ys − e∆Ys] (2.23)

With Lévy triplets (µX , σ2
X , νX)

µX = µY +
σ2

2
+ ∫

R
[ey − 1 − y]νY (dy)

σX = σY

νX = ∫ 1∣ey−1∣≤1νY (dy)

Under the EMM Q and stopping time T , the evolution of asset prices is usually described by an

exponential Lévy model with the form St = e−r(T−t)E[St] and St = exp(Yt), where Yt is a Lévy

process given by equation (2.15). By applying the Itô formula the process St is given by

St = e−rTSt−[∫
T

0
(µY − r)dt

+ ∫
T

0
∫

1

−1
(ey − 1 − y)νY (dy)dt

+ ∫
T

0
∫
R
(ey − 1)Ñt(dt, dy)] (2.24)

To check if an exponential Lévy process is a martingale, we need to check that EQ[St] < ∞.

Under the expectation we get

EQ∣Ft] = e−rTSt−(At +Mt) (2.25)

At =
T

∫
0

[µY − r −
σ2
Y

2
+

1

∫
−1

(ey − 1 − y)νY (dy)]dt (2.26)

Mt =
T

∫
0

σY dBt + ∫
T

0
∫
R
(ey − 1)Ñt(dt, dy) (2.27)

Where Mt is the martingale term and At is a drift term. Under the EMM Q, we get a martingale

by setting At = 0, i.e. for some interest rate r ∈ R and σY = 0

µY − r + ∫
∞

−1
(ey − 1 − y)ν(dy) = 0 (2.28)

The integral term m = ∫ ∞−1 (ey − 1 − y)ν(dy) is given for different Lévy processes.

2.4.2 Girsanov Transform

Definition 2.41. Radon-Nikodym Derivative

Let Q be another probability measure on (Ω,F ,Ft) such that Q << P. Then there exists

Zt ∈ L1(Ω,F) with dQ = ZdP, i.e.

Q(A) = ∫
A
Zt(ω)P(dω)
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for each A ⊂ Ft. Solving for Z we get

Zt =
dQ
dP

Ô⇒ EQ[1A] = E[Zt∣Ft] = E[dQ
dP

∣Ft] (2.29)

Zt is a right continuous martingale such that E[Zt∣Ft] = 1 and

(1) Zt(ω) > 0 Q-a.s.

(2) Zt = dQt
dPt on Ft

see, [18]

Theorem 2.42. Girsanov Transform

Let Q << P, Z = dQ
dP continuous, and Mt be a P-martingale, then the Q-martingale M̃t is given

by

M̃t =Mt −
t

∫
0

1

Zs
d[M,Z]s

When Q d= P, for Lévy process Y such that Z = E(Y ) we get that

dQ = E(Y )dP (2.30)

and

dP = 1

E(Y )dQ (2.31)

Note that E[Z0] = 1 a.s on measure ν

Lemma 2.43. For some underlying asset price given by the a pure jump Lévy process dSt =

St−dYt, where dYt = µY dt + ∫R(log(1 + y) − y)Nt(dt, dy) + ∫R log(1 + y)Ñt(dt, dy) applying the

Girsanov transform for some stopping time T , the discounted price, given by Ŝt = e−r(T−t)St for

interest rate r > 0 and sigmaY = 0. We define

Zt = exp(∫
T

0
∫

∞

−1
(log(1 + y) − y)Ñt(dt, dy) + ∫

T

0
(µY − r)dt) = exp(rt + Yt) (2.32)

2.4.3 Feynman-Kac Formula

Let Yt be a Lévy process with the Lévy decomposition given by equation (2.11). The Feynman-

Kac Formula considers the problem

∂f(t, Yt)
∂t

+Af(t, y) = 0 (2.33)

where Af is the infinitesimal generator of f , r is a positive real constant and (t, y) ∈ [0, T ] ×R

with boundary condition f(T, y) =H(y)
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Definition 2.44. Infinitesimal Generator of Lévy Processes

Af is the infinitesimal generator of f(t, y), it is given by

Af = lim
dt→0

1

dt
(Ptf(t, y) − f(t, y))

= lim
t→0

1

t
(E[f(t + dt,∆Yt)] − f(t, y))

= µ(t)∂f(t, y)
∂y

+ σ
2(t)
2

∂2f(t, y)
∂y2

+ ∫
R
[f(t,∆Yt) − f(t, y) − y1∣y∣<1

∂f(t, y)
∂y

]ν(dy) (2.34)

Remark 2.45. The solution of the Feynman-Kac formula, if it exists is given by

f(t, y) = E[ exp [ −
T

∫
t

rds]H(YT )∣Yt = y] (2.35)

2.5 Time-Changed Lévy Process

There are many Lévy processes that are used to price options. The most well known is Brownian

motion, which has been used quite successfully in Finance, but present some drawbacks. One

of the drawbacks of Brownian motion is that it fails to capture the jumps in asset prices, it also

fails to capture the heavy-tail property and the skewness in distributions seen in Financial data

of asset returns. Another class of Lévy processes, the jump-diffusion process is a valid candidate

for pricing options, but it does not capture stochastic volatility. This is what motivated the use

of stochastic volatility models first by Clark, see [12], to model asset returns. Time-changed

processes is one way to include stochastic volatility in a model and it’s underlying distributions

are rich enough to capture the properties missing in other models. This is what motivated the

study into time changed Lévy Processes.

2.5.1 Multivariate Subordination

Multivariate subordination was introduced by Barndorff-Nelson, Persen and Sato (2015), they

proved that the linear combination of n independent subordinated processes is again a Levy

process, see [4]. Benth and Kruhner, extended their work to generalize the results of Barndorff-

Nelson, Persen and Sato. We will restate some results from Benth and Kruhner, see [4]. Similar

results can be found in a reference text by Cont and Takov, see [14].

Definition 2.46. Subordinators

Let {Rt}t∈[0,T ] be a cádlág positive increasing Lévy process, we call such processes subordinators,

see [14].
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Theorem 2.47. Ch.f. of Subordinated Lévy

Let be Yt a subordinated Lévy process, Rt the subordinator and Xt the Lévy process being sub-

ordinated; Xt is independent of Rt. Then the characteristic function of Yt is given by

φYt(u) = exp(tψRt(−iψXt(u))) = exp(tlRt(ψXt(u))) (2.36)

Proof. Let Yt =XRt be a subordinated Brownian motion then

φYt(u) = E[exp(iuYt)]

= E[E[exp(iu(µRt + σBRt))∣Rt]]

= E[exp(Rt(iuµ −
u2σ2

2
)] Let v = iuµ − u

2σ2

2

= E[exp(Rtv)]

= exp(tψRt(−iv))

= exp(tψRt(−iψXt(u)))

and the rest follows.

Theorem 2.48. For a Lévy process Yt = c0X
0
t +cjX

j
t , j = 1,2, where X0

t and Xj
t are independent

Lévy processes and c0, cj constants, then {Yt}t≥0 has the Lévy triplets given by:

µY = c0µX0 + cjµXj + ∫
Rn
y[1∣y∣≤1 − 1[c0y+cjy∣∣y∣≤1]]ρY (dy) (2.37)

ρY = ρL0
t
(c0x) + ρLjt (cjx) (2.38)

σY = c0σL0
t
+ cjσLjt (2.39)

Proof. see [14], Theorem 4.1

Theorem 2.49. Let Yt =XRt be a subordinated Lévy process and assume ∫Rn
+

∣Yt∣ρR(dRt) <∞,

Xt and Rt have Lévy triplets (µX , σX , νX) and (µR,0, ρ) then

σY = µRσX (2.40)

νY = µRνX(A) + ∫
∞

0
pXt(A)ρR(dt) (2.41)

µY = µRµX + ∫
∞

0
ρR(ds)∫∣x∣≤1

xpXs(dx) (2.42)

where A ⊂ Ft and ρ is the Lévy measure of the subordinator.

Proof. see [4], Theorem 2.4
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Chapter 3

A Time-Changed Exponential Lévy

Model

3.1 Introduction

Lévy processes are a class of processes that are widely used in asset pricing. It contains pro-

cesses such as Brownian motion, compound Poisson process, jump-diffusion process, α-stable

process and many others. There are many different methods to construct Lévy processes, one

of which is by subordination. We present a parametric model which adds dependence through

the subordinator in a multi-asset portfolio. The resulting Lévy process created from the sub-

ordination of another independent Lévy process, i.e. subordinated Brownian motion, is called

a time-changed process, first introduced by Clark, see [12]. The price of the assets are the

exponential of time-changed processes where the subordinator is given by the Inverse Gaussian

process and Variance Gamma process. The process being subordinated is a Brownian motion

independent of the subordinator process.

Our model for the log-price of an asset return is a subordinated Brownian motion where the

subordinator is constructed from the linear combination of two independent Lévy processes; the

new subordinator has all the properties of a Lévy processes due to the independence of Lévy

measures, see [14].

We choose to work with subordinated Brownian motion because it is rich enough that cap-

tures small and large jumps in asset prices as well as capture the heavy-tail distribution of real

asset returns, see [14]. Time-changed processes incorporate stochastic volatitlity in the model

by setting time to be stochastic, i.e. Time runs faster in periods of high volatility, see [44].
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CHAPTER 3 3.2. MODEL SETTING AND GENERAL MODEL

This effect allows us to reproduce the volatility smile, which the classical Black-Scholes model

cannot, see [14]. Next we extend the model to two dimensions to price Asian basket spread

options.

3.2 Model Setting and General Model

Consider a risk neutral market with assets whose prices are represented by the vector St =

[S1
t , S

2
t ]⊺, where j = 1,2, are risky assets whose dynamics are given by:

St =
⎡⎢⎢⎢⎢⎢⎣

S1
0e
Y 1
t

S2
0e
Y 2
t

⎤⎥⎥⎥⎥⎥⎦
(3.1)

where each Y j
t , j = 1,2 is a subordinated Brownian motion given by:

Y j
t = σjYB

j
Rt
+ µjYR

j
t , j = 1,2 (3.2)

where σjY is the volatility of the jth risky asset and µjY is the drift of the jth risky asset. The

subordinator of each asset j is a linear combination of two independent subordinators given by

Rjt = L0
t + cjL

j
t , j = 1,2 (3.3)

where L0
t is the shared subordinator for all assets j = 1,2, Ljt . L

j
t is an independent increasing

Lévy process unique to each asset, with a coefficient cj > 0; the coefficient cj must be positive

because the subordinator process is by definition always increasing. In financial terms cj acts to

”speed up” business time, mathematically the coefficient adds a fractional gain and introduces

a linear structure in time. Notice that for the special case where cj = 0 we get the standard

subordinated Lévy process.

We can also represent the model as a pure jump process, by the Lévy-Itô decomposition:

Y j
t = µjY t + J

l,j
t + J̃ ε,jt , j = 1,2 (3.4)

J l,jt = ∫
∣y∣<1

yNt(dt, dy)

J̃t
ε.j = ∫

R
y(Nt(dt, dy) − tνY j(dy))

3.2.1 Characteristc Function and Lévy Triplets of the Model

Theorem 3.1. For each asset j = 1,2, let Yt, be a subordinated Brownian motion with µ and

σ real valued constants to be calibrated. Then Yt follows equation (3.2) and it’s characteristic

function is given by:

φYt(u) = exp(tψ0
Lt(−iv) exp(tψjcjLt(−iv)) (3.5)

where v = iuµ − 1
2u

2σ2
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Proof. The Theorem follows directly from applying Theorem 2.36 So by using the towering

property

φYt(u) = E[E[eiu(µRt+σBRt)∣Rt]]

= E[eRt(−i(iuµ−
1
2
u2σ2))]

= etψRt(−iv), v = iuµ − 1

2
u2σ2

= e
t(ψ

L0
t
(−iv)+ψ

cjL
j
t
(−iv))

= etψL0
t
(−iv)

e
tψ
cjL

j
t
(−iv)

(3.6)

and the rest follows.

Theorem 3.2. For each asset j = 1,2, let Yt be the subordinated Lévy process, Xt a Brownian

motion and Rt = L0
t +cjL

j
t the subordinator with Lévy triplets (µY .σ2

Y , νY ),(µX , σ2
X ,0),(0,0, ρR)

respectively.

µY = ∫
∞

0
∫

1

−1

x

σX0

√
2πs

exp[−(x − µX0)2

2tσ2
X0

]dxρL0(ds)

+ ∫
∞

0
∫

1

−1

x

σXj

√
2πs

exp[−(x − µXj)2

2tσ2
X0

]dxρLj(cjds) (3.7)

σY = 0 (3.8)

ν(y) = ∫
∞

0

1

σX0

√
2πt

exp[−(y − µX0t)2

2tσ2
X0

]ρL0(dt)

+ ∫
∞

0

1

σXj

√
2πt

exp[−(y − µXj t)2

2tσ2
Xj

]ρLj(cjdt) (3.9)

Proof. The Lévy triplets of Yt are computed by applying Theorem 2.48 and Theorem 2.49

ρR(x) = ρL0
t
(x) + ρ

Ljt
(cjx)

µY = ∫
∞

0
ρL(ds)∫

1

−1
xpXs(dx)

= ∫
∞

0
∫

1

−1

x

σX
√

2πs
exp[−(x − µXs)2

2tσ2
X

]dxρR(ds)

= ∫
∞

0
∫

1

−1

x

σX
√

2πs
exp[−(x − µXs)2

2tσ2
X

]dx[ρL0(ds) + ρLj(cjds)]

= ∫
∞

0
∫

1

−1

x

σX0

√
2πs

exp[−(x − µX0)2

2tσ2
X0

]dxρL0(ds)

+ ∫
∞

0
∫

1

−1

x

σXj

√
2πs

exp[−(x − µXj)2

2tσ2
Xj

]dxρLj(cjds)

σY = µRσX

= 0

νY (y) = µRµX + ∫
∞

0
pX(y)ρR(dt)
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= ∫
∞

0

1

σX
√

2πt
exp[−(y − µXt)2

2tσ2
X

]ρR(dt)

= ∫
∞

0

1

σX
√

2πt
exp[−(y − µXt)2

2tσ2
X

][ρL0(dt) + ρLj(cjdt)]

= ∫
∞

0

1

σX0

√
2πt

exp[−(y − µX0t)2

2tσ2
X0

]ρL0(dt)

+ ∫
∞

0

1

σXj

√
2πt

exp[−(y − µXj t)2

2tσ2
Xj

]ρLj(cjdt)

Using the Lévy triplets we can also derive an alternate representation of the characteristic

function using the Lévy-Khintchine representation

Theorem 3.3. Let Yt be a subordinated Brownian motion, with Lévy triplets (µY , σ2
Y , νY )

represented as equation (3.4), it’s characteristic function is given by

φY (u) = etψY (u) (3.10)

where

ψY (u) = iuµY + ∫
R
[eiuy − 1 − iuy1∣y∣<1]νY (dy) (3.11)

Proof. This is the result of directly applying Theorem 2.37 with Lévy triplets (µY ,0, νY ).

3.3 Univariate Model

The univariate case is a special case where the subordinator Rt is a real-valued process and

cj = 0. The characteristic function and Lévy triplets of Yt for the NIG and VG processes are

known in closed form, see [14], Table 4.5.

3.3.1 NIG Case

Definition 3.4. IG Processes

Let Lt ∼ IGt(a, b) be a real valued process, where a = t√
κ
, b = 1√

κ
then Rt = Lt is an Inverse

Gaussian process with the Lévy density

ρR(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1√
2πκ

e−
x
2κ

x3/2
if x ≥ 0

0 otherwise

where κ is the variance of the IG process. The exponential moment is given by

E[euRt] = exp(− t√
2κ

(
√

1/2κ − u −
√

1/2κ)) (3.12)

see [14], Table 4.4
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The NIG process is an infinite variation process with stable-like behavior of small jumps, as

shown by Cont and Tankov, see [14]. As a consequence, this model gives more emphasis to local

small movement of asset prices.

Definition 3.5. NIG Processes

Let Yt be a subordinated Brownian motion with an IG subordinator, then the process Yt ∼

NIGt(µX , σX , κ), as shown by Schoutens, see [44]. In the univariate case the Lévy measure,

characteristic exponent and cumulants are known in closed form, where Xt is a Brownian motion

with drift µX and volatility σ2
X . The Lévy measure is given by

νY (x) = C

∣x∣e
AxK1(B ∣x∣)

A = µX
σ2
X

B =

√
µ2
X + σ2

X/κ
σ2
X

C =

√
µ2
X + σ2

X/κ
2πσX

√
κ

K1 is the modified Bessel function of the second kind which is given by

Kw(z) =
π

2

Iw−(z) − Iw(z)
sin(πw)

Iw−(z) = Iw(z)

Iw(z) =
∞
∑
k=0

(z/2)w+k
k!Γ(k +w + 1)

Following Schoutens, see [44], the characteristic function is given by

φY (−iv) = exp(−at(
√
−2i(−iv) + b2 − b)) (3.13)

Where a = 1√
κ
, b = 1√

κ
and v = iuµX − 1

2u
2σ2
X then it’s characteristic exponent is given by

ψY (−iv) = log(φY (u))/t = −a(
√
−2i(−iv) + b2 − b) (3.14)

and it’s first two cumulants are given by

Table 3.1: Table of Cummulants for Univariate IG Subordinated Lévy Process

Cummulants

µY = ξ1 tµX

σ2
Y = ξ2 t(σ2

X + µ2
Xκ)

s t(3σ2
XµXκ + 3µ3

Xκ
2)

k t(3σ4
Xκ + 15µ4

Xκ
3 + 18σ2

Xµ
2
Xκ

2)
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see [14], Section 4.4.3

3.3.2 Variance Gamma(VG) Processes

Like the univariate NIG case, the univariate VG case is a special case where the subordinator

Rt = Gt ∼ Γ(a, b) is a real-valued process and cj = 0. The characteristic function and Lévy

triplets of the NIG, Yt are known in closed form, see [14], Table 4.5.

Definition 3.6. Gamma Processes

Let Gt ∼ Γt(a, b) be a real valued process, where a = t
κ , b =

1
κ . Then Rt = Gt is a Gamma process

with Lévy density

ρR(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
κ
e−
x
κ

x if x ≥ 0

0 otherwise

where κ is the variace of the Gamma process. The exponential moment of the Gamma process

is given by

E[euRt] = (1 − κu)−t/κ (3.15)

The Variance Gamma process is a finite variation process with low infinite activitiy of small

jumps, see [14]. As a consequence, this model gives more emphasis to larger jumps in asset

prices.

Definition 3.7. VG Processes

Let Yt be a subordinated Brownian motion with a Gamma subordinator, then the process

Yt ∼ V G(µX , σX , κ), see [44]. In the univariate case the Lévy measure, characteristic exponent

and cumulants are known in closed form, where Xt is a Brownian motion with drift µX and

volatility σ2
X . The Lévy measure is given by

νY (x) = 1

κ ∣x∣e
Ax−B∣x∣

A = µX
σ2
X

B =

√
µ2
X + σ2

X/κ
σ2
X

Following Schoutens, see [44], the characteristic function is given by

φY (−iv) = (1 − i(−iv)
b

)−at (3.16)

where a = 1
κ , b = 1

κ and v = iuµX − 1
2u

2σ2
X then it’s characteristic exponent is given by

ψY (−iv) = log(φY (−iv))/t = −a log(1 − i(−iv)
b

) (3.17)
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and it’s first two cumulants are given by

Table 3.2: Table of Cummulants for Univariate Gamma Subordinated Lévy Process

Cummulants

µY = ξ1 tµX

σ2
Y = ξ2 t(σ2

X + µ2
Xκ)

s t(3σ2
XµXκ + 2µ3

Xκ
2)

k t(3σ4
Xκ + 6µ4

Xκ
3 + 12σ2

Xµ
2
Xκ

2)

see [14], Section 4.4.3

3.4 Bivariate Model

We extend the univariate case (cj = 0) to a bivariate case by using the scaling properties of the

Inverse Gaussian distribution and the Gamma distribution for a constant cj > 0, see [44].

3.4.1 NIG Case

Lemma 3.8. Let Rt = L0
t + cjL

j
t , j = 1,2, cj > 0 be a real valued process and L0

t ∼ IGt(a0, b0),

where a0 = t√
κ0
, b0 = 1√

κ0
and cjL

j
t ∼ IG√

cjt(
√
cjaj , bj/√cj), where aj = t√

κj
, bj = 1√

κj
.

Proof. This result follows from scaling property of the Inverse Gaussian process, see [44].

Proposition 3.9. Lévy Measure of Bivariate NIG Process

Let Yt ∼ NIG(µX , σX , κ0, κj , cj) be a subordinated Brownian motion with the subordinator Rt =

L0
t + cjL

j
t , j = 1,2, with cjL

j
t ∼ IG√

cjt(
√
cjaj , bj/√cj), λj = 1/2cκj, and γj = 1/

√
2πκj. L0

t ∼

IGt(a0, b0), λj = 1/2κ0, and γj = 1/
√

2πκ0, then the Lévy measure of Yt is given by

νY (x) = eAx[C0

∣x∣K1(B0 ∣x∣) +
Cj

∣x∣K1(Bj ∣x∣)]

A = µX
σ2
X

B0 =

√
µ2
X + σ2

X/κ0

σ2
X

C0 =

√
µ2
X + σ2

X/κ0

2πσX
√
κ0

Bj =

√
µ2
X + σ2

X/√cjκj
σ2
X
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Cj =

√
µ2
X + σ2

X/√cjκj
2πσXcj

√
κj

Proof. using equation (3.9)

νY (x) = γ0

σX
√

2π
∫

∞

0
e

(x−µXt)
2

2tσ2
X

−λtdt

t2

+ γj

σX
√

2π

1

cj
∫

∞

0
e

(x−µXt)
2

2tσ2
X

−λ√cjtdt

t2

Using the integral representation of the modified Bessel function

νY (x) = e
µXx

σ2
X [ 1

2πσX
√
κ0

(

√
µ2
X + σ2

X/κ0

∣x∣ )K1(

√
µ2
X + σ2

X/κ0

σ2
X

∣x∣ )

+ 1

2πσXc
√
κj

(

√
µ2
X + σ2

X/√cκj
∣x∣ )K1(

√
µ2
X + σ2

X/√cκj
σ2
X

∣x∣ )]

Proposition 3.10. Characteristic Function of Bivariate NIG Process

Let Yt ∼ NIG(µX , σX , κ0, κj , cj) be a subordinated Brownian motion with the subordinator Rt =

L0
t +cjL

j
t , j = 1,2, with cjL

j
t ∼ IG√

cjt(
√
cjaj , bj/√cj) and L0

t ∼ IGt(a0, b0).Following Schoutens,

see [44], the characteristic function of Yt is given by

φY (−iv) = E[exp(i(−iv)Yt] = e−a0t(
√
−2i(−iv)+b20−b0)e

−√cjajt(
√
−2i(−iv)+b2j /cj−bj/

√
cj)

where a0 = 1√
κ0
, b0 = 1√

κ0
, aj = 1√

κj
, bj = 1√

κj
, v = iuµX − 1

2u
2σ2
X and cj > 0 is a constant.

Proof. Applying Theorem 3.1 we directly get the result.

Remark 3.11. We can recover the characteristic exponent by ψYt(u) = log(φY (u))/t which

gives us

ψ(−iv) = −a0(
√
−2i(−iv) + b20 − b0)) −

√
cjaj(

√
−2i(−iv) + b2j/cj − bj/

√
cj))

Remark 3.12. The above theorem imposes that µY = 0, since and µX , σX ∈ R.

Table 3.3: Table of Cummulants for Bivariate IG Subordinated Lévy Process

Cummulants

µjY = ξ1 tµX + cjtµX

(σjY )2 = ξ2 t((κ0 + c2
jκj)µ2

X + (1 + cj)σ2
X)

s t(3(κ2
0 + c3

jκ
2
j)µ3

X + 3(κ0 + c2
jκj)µXσ2

X)

k t(15(κ3
0 + c4

jκ
3
j)µ4

X + 18(κ2
0 + c3

jκ
2
j)µ2

Xσ
2
X + 3(κ0 + c2

jκj)σ4
X)
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3.4.2 VG Case

Lemma 3.13. Let Rt = G0
t + cjG

j
t , j = 1,2, cj > 0 a constant. be a real valued process. Let

G0
t ∼ Γt(a0, b0), where a0 = t

κ0
, b0 = 1

κ0
and cjG

j
t ∼ Γt(aj , bj/cj), where aj = t

κj
, bj = 1

κj
.

Proof. This result follows from scaling property of the Gamma process, see [44].

Proposition 3.14. Lévy Measure of Bivariate VG Process

Let Yt ∼ V G(µX , σX , κ0, κj , cj) be a subordinated Brownian motion with the subordinator Rt =

G0
t + cjG

j
t , j = 1,2, with cjG

j
t ∼ Γt(aj , bj/cj), bj = 1/κj, and aj = t/κj. G0

t ∼ Γ(a0, b0). b0 = 1/κ0,

and a0 = t/κ0 then the Lévy density of Yt is given by

νY (x) = 1

κ ∣x∣e
Ax−B0∣x∣ + 1

c
3/2
j κj ∣x∣

eAx−Bj ∣x∣

A = µX
σ2
X

B0 =

√
µ2
X + σ2

X/κ0

σ2
X

Bj =

√
µ2
X + σ2

X/cjκj
σ2
X

Proof. The proof is similar to Proposition 3.9, using equation (3.9) and completing the square

and solving the integral gives us the proposition.

Proposition 3.15. Characteristic Function of Bivariate VG Process

Let Yt ∼ V G(µX , σX , κ0, κj , cj) be a subordinated Brownian motion with the subordinator Rt =

G0
t + cjG

j
t , j = 1,2, with cjG

j
t ∼ Γ(aj , bj/cj) and G0

t ∼ Γ(a0, b0), Following Schoutens, see [44],

the characteristic function of Yt is given by

φY (−iv) = E[exp(i(−iv)Yt] = (1 − i(−iv)/b0)−a0t(1 − icj(−iv)/bj)−ajt

where a0 = t
κ0
, b0 = 1

κ0
, aj = t

κj
, bj = 1

κj
, v = iuµX − 1

2u
2σ2
X and cj > 0 is a constant.

Proof. Applying Theorem 3.1 we directly get the result.

Remark 3.16. We can recover the characteristic exponent by ψYt(u) = log(φY (u))/t which

gives us

ψ(−iv) = −a0 log(1 − i(−iv)/b0) − aj log(1 − icj(−iv)/bj)

Remark 3.17. The above proposition imposes that µY = 0, since µX , σX ∈ R.
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CHAPTER 3 3.4. BIVARIATE MODEL

Table 3.4: Table of Cummulants for Bivariate Gamma Subordinated Lévy Process

Cummulants

µjY = ξ1 tµX + cjtµX

(σjY )2 = ξ2 t((κ0 + c2
jκj)µ2

X + (1 + cj)σ2
X)

s t(2(κ2
0 + c3

jκ
2
j)µ3

X + 3(κ0 + c2
jκj)µXσ2

X)

k t(6(κ3
0 + c4

jκ
3
j)µ4

X + 12(κ2
0 + c3

jκ
2
j)µ2

Xσ
2
X + 3(κ0 + c2

jκj)σ4
X)
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Chapter 4

Asian Option Pricing

4.1 Introduction

How can we determine that a contract is fairly priced? This is one of the main questions in asset

pricing and many academics have approached this problem from a mathematical and financial

point of view. Literature regarding this topic is vast and carries many different opinions on how

to value assets correctly. For interested readers we refer to these texts, [14], and [40] , which

show pricing from both a stochastic and a partial differential equations point of view. One of

the most common methods to compute prices is to use the Monte Carlo method. Monte Carlo

methods takes advantage of the Law of Large Numbers to converge to a mean and output a

expected price.

Alternatively, the relation between stochastic differential equations (SDE) and partial differ-

ential equations (PDE) through the Feynman-Kac representation alows us to use numerical

techniques to solve pricing problems. Many different techniques have been developed to solve

these PDEs, such as the method of Carr and Madan, which uses a damped Fourier series expan-

sion to solve the PDE, [14], finite difference methods and a Fourier-Cosine expansion method

developed by Fang and Oosterlee, [22]. It is well known that finite difference methods have

issues in pricing high dimensional portfolios. The Fourier-Cosine method was extended to the

bivariate case by Ruijter and Oosterlee, see [42] and the Asian Fourier-Cosine Method was

developed by Zhang and Oosterlee, see [47]. The method was extended to three dimensions

and applied to pricing and hedging multi-asset spread contracts by Pellegrino and Piergia-

como, see [38]. We present here an implementation of the Asian Fourier-Cosine method under

one-dimensional time-changed models and compare with MC techniques. A two-dimensional

time-changed model is presented and simulated using MC techniques.
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CHAPTER 4 4.2. OVERVIEW OF ASIAN OPTIONS

4.2 Overview of Asian Options

Asian options were first introduced in Tokyo, 1987, for oil commodities. They are classified as

path dependent options as their payoff is typically calculated as the geometric or arithmetic

average of the underlying asset price at maturity [47]. These option styles are known in a

broader scope as exotic options. They are usually traded over the counter (OTC) and are often

illiquid. The path dependence of Asian options presents a challenge in pricing and hedging,

which we try to address in this work.

Definition 4.1. Asian Option

Let {Sjt } ∈ R × [0, T ] be the real valued matrix of risk neutral asset price processes, where

t = 0,1, ...,M, j = 1,2 and M is the sampling frequency. The geometric average Asian option

takes the geometric average of the price process of each asset. The geometric average is given

by

S̄Gt = (
M

∏
n=0

Sjn)
1

M+1 (4.1)

Similarily, the arithmetic average can be used and is given by

S̄At = 1

M + 1

M

∑
n=0

Sjn (4.2)

Consider an Asian option maturing at time T based on S̄t with an FT -measurable payoff H.

Then, the payoff of the European style Asian call option is given by:

H(t, St)k = [S̄tG,A −Kj]+ (4.3)

where (S,0)+ = max(S,0), see [44].

4.2.1 Asian Basket Spread Options

Definition 4.2. Asian Basket Spread Options

Let St1 be the asset price process of a basket asset j = 1 and St2 be the asset price process of a

basket of assets j = 2 then payoff of the Asian spread option is given by the following:

H(St1 , St2 , t) = [(w1S̄
1
t −w2S̄

2
t ) −K]+ (4.4)

where S̄jt , j = 1,2 is the arithmetic averages of the respective assets, see [17] and wj is the weight

of each asset such that
2

∑
j=1

wj = 1.
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CHAPTER 4 4.3. MONTE CARLO PRICING

4.3 Monte Carlo Pricing

Monte Carlo (MC) method is a statistical method that directly applies the Central Limit The-

orem by simulating n ∈ N number of trajectories, that follow a prescribed distribution in an

independent way. Random number generators (RNG) are used to sample n independent random

numbers from a known distributions and relies on the Law of Large Numbers to converge to a

mean, see [41]. In our work we assume we are working in a risk-neutral measure Q, to compute

no arbitrage prices of Asian options. We employ efficient algorithms to reduce computation

time of MC simulations by utilizing matrix operations on large generated data.

Proposition 4.3. Risk-Neutral Pricing

Let St(Yt) be the price process of the underlying asset driven by the Lévy process Yt and let

H(t, Yt) be the payoff of the Asian option under P, then the risk neutral price of the option

under the risk neutral probability Q is given by

EQ[H(t, Yt)] = e−r(T−t)E[H(t, Yt)] (4.5)

where T , is the maturity time.

Proof. see [18], Theorem 4.2.1

4.3.1 Example of MC Simulation of Geometric Brownian Motion

The Monte Carlo algorithm outlined by Cont, see [14] is presented below.

Algorithm 1: Geometric Brownian Motion

while t ≤ T do

dt = 1/250

Generate Z ∼ N(0,1)

∆Y = σ
√
dtZ + µdt

Y = ∑Ni=0 ∆Y

update i

update t

end

S = S0 exp(Y )

Algorithm 1 simulates the geometric Brownian motion. It assumes that each increment is

independent identically distributed (i.i.d) and draws random numbers from the standard normal

distribution.
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CHAPTER 4 4.4. FOURIER-COSINE (COS) METHOD

Algorithm 2: Asian Option Pricing

while i ≤ N do

H(S(i), T ) = exp(−rT )max(mean(ŜT ) −K,0)

update i

end

Where N = T /dt for stopping time T and dt is the sampling frequency i.e. daily sampling

dt = 1/250. Algorithm 2 gives us the discounted price of the Asian option by taking the average

of the trajectories generated from the geometric Brownian motion in Algorithm 1.

4.4 Fourier-Cosine (COS) Method

The Fourier-Cosine (COS) method is a transformation type numerical method developed by

Fang and Oosterlee, see [22]. The method is extended to the bivariate case by Ruijter and

Oosterlee, see [42]. The Asian Fourier-Cosine method (ASCOS) is an extension of the COS

method developed by Zhang and Oosterlee, see [47]. The method is extended to three inde-

pendent random variables and applied to pricing and hedging multi-asset spread contracts by

Pellegrino and Piergiacomo, see [38].

The COS method calculates an approximation to the value of the option by discounting the

risk neutral price. It is used to approximate the transitional probability distribution using the

transitional characteristic function on a truncated interval [a, b] ∈ R2. Under the risk neutral

probability measure Q, we denote the independent Lévy process as Yt and risk neutral price

process as St, where Yt = log(St) and Zt = log(Xt) such that H(t, z) = (z −K)+. For exam-

ple, for the geometric Asian option Xt = (
M

∏
t=0
St)

1
M+1 . We can approximation of the conditional

probability density of Zt by

f(z∣y) = 2

b − a ∫
b

a
Re[ϕZT (

kπ

b − a ∣y) exp(−ikπ a

b − a)] cos(kπz − a
b − a )dz

f(z∣y) ≈ 2

b − a
N−1

∑
k=0

′Re[ϕZT (
kπ

b − a ∣y) exp(−ikπ a

b − a)] cos(kπz − a
b − a ) (4.6)

similarly we can approximate the non conditional probability density for Yt by

f(y) = 2

b − a ∫
b

a
Re[φYT (

kπ

b − a) exp(−ikπ a

b − a)] cos(kπy − a
b − a )dy

f(y) ≈ 2

b − a
N−1

∑
k=0

′Re[φYT (
kπ

b − a ∣y) exp(−ikπ a

b − a)] cos(kπy − a
b − a ) (4.7)

where Re[⋅] is the real argument of the input, ϕ(u∣y) is the conditional characteristic function

of the independent Lévy process, ∑′ is truncated a sum where the first term is truncated by 1
2
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and k = 0,1, ...,N − 1. The shifted characteristic function ϕ(u∣y) is given by

ϕZt(u∣y) = exp(iuy)φYt(u) (4.8)

Where φYt is the characteristic function given for each process Y j
t The option price is approxi-

mated by

H(t, y) ≈ exp[−r(T − t)]
N−1

∑
k=0

′Re[ϕZT (
kπ

b − a ∣y) exp(−ikπ a

b − a)]Vk (4.9)

where Vk is given by

Vk =
2

b − a ∫
b

a
H(t,Xt) cos(kπx − a

b − a )dx (4.10)

see [22] and [42].

4.4.1 Asian Fourier-Cosine (ASCOS) Method

The Asian Fourier-Cosine method was developed by Zhang and Oosterlee is an extension of

the COS method to price Asian options, see [47]. Again, we fix the complete probability space

(Ω,F ,{Ft}t∈[0,T ],P), and Q is the risk neutral probability measure then the price process has

the dynamics given by

St = S0 exp(Yt) (4.11)

Where Yt is a Lévy process.

Arithmetic Average Asian Option

We let the log price of the asset be Yt = log(St), t = 0, ...,M and we the log return be defined as

Rt = log(St+1St
), then if we let Z1 = RM we get that for t = 2, ...,M we have that

Zt = log(SM−t+1

SM−t
+ SM−t+2

SM−t
+⋯ + SM

SM−t
)

= RM+1−t + log(1 + exp(Zt−1)) = RM+1−t +Wt−1 (4.12)

from this Zhang and Oosterlee derived the characteristic function of Xt and approximates

the characteristic function using the Clenshaw-Curtis Quadrature, see [47]. The characteristic

function of Zt is given by

φWt−1 = ∫
∞

−∞
(ey + 1)iufZt−1(y)dy (4.13)

and is approximated by

φWt−1(u, dt) ≈
2

b − aRe[φZt−1(
lπ

b − a ∣dt)e
−ilπa
b−a ]∫

b

a
(ey + 1)iu cos(lπ y − a

b − a )dy (4.14)
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the Clenshaw-Curtis quadrature, see [13], is used to approximate

Q(k, l) = ∫
b

a
(ey + 1)

ikπ
b−a cos(lπ y − a

b − a )dy (4.15)

This gives us the recursive approximation of φWt−1 as

φWt−1(u, dt) ≈
2

b − aRe[φZt−1(
lπ

b − a ∣dt) exp(−ilπa
b − a )]Q(k, l) (4.16)

where l, k = [1,2, ...,256]. Substituting in Eq.(4.12) we get that

1

M + 1

M

∑
t=0

St =
(1 + eZM )S0

M + 1
(4.17)

and the payoff of the arithmetic average is given by

V call
k = ((1 + e

z)S0

M + 1
−K)+ (4.18)

V put
k = (K − (1 + ez)S0

M + 1
)+ (4.19)

then,

Vkcall =
2

b − a[
S0

M + 1
(ηcall + χcall) −Kηcall] (4.20)

Vkput =
2

b − a[Kηput −
S0

M + 1
(ηput + χput)] (4.21)

χcall(y∗, b) = ∫
b

y∗
exp(z) cos(kπz − a

b − a )dz (4.22)

ηcall(y∗, b) = ∫
b

y∗
cos(kπz − a

b − a )dz (4.23)

χput(a, y∗) = ∫
y∗

a
exp(z) cos(kπz − a

b − a )dz (4.24)

ηput(a, y∗) = ∫
y∗

a
cos(kπz − a

b − a )dz (4.25)

where y∗ = log(K(M+1)
S0

− 1) is the execution point bounded by [a, b], i.e. a ≤ y∗ ≤ b. The

integration range [a, b] is given by

[a, b] = [min(log(M) + ξ1 −L
√
Mξ2),max(log(M) + ξ1 +L

√
Mξ2)] (4.26)

the detailed derivation can be seen in [47].

4.5 Simulations

To use the Monte Carlo method to simulate Inverse Gaussian (IG) subordinated processes,

we first needed to generate IG random numbers. IG random numbers were generated us-

ing Michael, Schucany and Hass’ algorithm as shown in [35] and is outlined in Algorithm 3.
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Similarily, Gamma random numbers were generated using Jonks algorithm as shown in [44]

and is outlined in Algorithm 4. Using the generated numbers we simulate the subordina-

tor process via Algorithm 5, then the underlying price is simulated from Algorithm 1, where

dt = dR = R(t + dt) −R(t).

Algorithm 3: IG Random Number Generator

a, b are inputs representing the scale and shape parameter

Generate V ∼ N(0,1)2

W = aV

C = a
2b

X = a +C(W −
√
W (4b +W ))

Generate Y ∼ U(0,1)

Z = a
a+1

if Y >= Z then

X = a2

X

else
X =X

end

Algorithm 4: Gamma Random Number Generator

Generate Y ∼ U(0,1)

Z = a
a+1 , a is the input representing the scale parameter

while X + Y > 1 do

U ∼ U(0,1)

V ∼ U(0,1)

X = U 1
a

Y = V 1
1−a

X =X
end

W ∼ U(0,1)

Z = −log(W )

X = ZX
X+Y

Algorithm 5: Subordinator Process Simulation
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while t ≤ T do

Generate X ∼ IG(a, b) or X ∼ Γ(a)

Generate Y ∼ IG(a, b) or Y ∼ Γ(a)

L0 = L0 +X

Lj = Lj + Y

R = L0 + cjLj
update t

end

4.5.1 Univariate Simulations Results

Through numerical simulation we first study the univariate model. The purpose of this section

is to study the validity of subordinated Lévy processes in capturing jumps in asset prices and

study the stability of the numerical methods. We also present some observations about the

ASCOS method compared and Monte Carlo method. The parameters were initially chosen

heuristically based on the parameters presented in literature. We also present some calibrated

parameters in Chapter 6.
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Figure 4.1: The log return processes generated by (a) IG subordinated BM (b) Gamma sub-

ordinated BM and (c) GBM, using parameters S0 = 57, K = 52, a = 1/250κ, b = 1/κ, µ = 0,

σ = 0.02,κ = 0.02. (d) is the historic log return of observed WTI Crude prices from 2014.

To illustrate the characteristics of the time changed model we look at Figure 4.1, which shows a

process generated by (a) the IG subordinated Brownian Motion, (b) the Gamma subordinated

Brownian Motion and (c) the Geometric Brownian Motion (GBM). It is clear from Figure 4.1

that Fig.4.1(a) and Fig.4.1(b) show much more volatility than Fig.4.1(c) for the same average

result. The IG subordinated process captures small jump movements and does not generate large

jumps. Whereas the Gamma subordinated process, lacks the fine details of the IG subordinated

process but produces severe jumps. Fig.4.1(d) shows a one year historic log return of observed

WTI crude oil prices from 2014. It is clear that the observed historic data the NIG process

emulates Oil returns the closest.
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Figure 4.2: The QQ-plot from (a) IG subordinated process quantile, (b) Gamma subordinated

process quantile, and (c) GBM quantile matched to the quantile of historic log return of observed

WTI Crude prices from 2014 from sampled numbers.

Fig.4.2(a) shows us that random numbers sampled from the IG subordinated process is the

best fit to the historic data as it lies mostly on the normal line generated by the quantiles from
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random numbers sampled from the IG subordinated process and the historical data. Fig.4.2(b)

clearly shows that the Gamma subordinated process is not a good fit to the historical data, as

there are extreme values that lie off the normal line. Fig.4.2(c) is a closer fit than Fig.4.2(b)

but it still does not fit the data as well as Fig.4.2(a), as the lower tail of the distribution lies off

the normal line.
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(c) Geometric Brownian Motion
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Figure 4.3: The distribution curves of (a) IG subordinated process, (b) Gamma subordinated

process, (c) GBM and (d) the historic log return of observed WTI Crude prices from 2014 from

sampled numbers.

Next, we plot the numbers sampled from the path to see their underlying distribution as shown

in Figure 4.3. Comparing Fig.4.3(a) to Fig.4.3(c) we can clearly see that Fig.4.3(a) generates

numbers in outside the tails of Fig.4.3(c) and is mesokurtic as you’d expect from a heavy

tailed distribution. Comparing Fig.4.3(b) to Fig.4.3(c) we also observe that Fig.4.3(b) generates

numbers outside the tails of Fig.4.3(c) but displays leptokurtic behavior. This is to be expected

from Figure 4.1, as Fig.4.1(b) exhibits large jumps at a modest rate. Fig.4.3(d) shows us the

distribution from the historic observation. Visually, it supports the argument that the NIG

process is the distribution that closely emulates the historic characteristics.
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(a) IG Subordinated Process
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(c) Gamma Subordinated Process
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Figure 4.4: Monte Carlo pricing using parameters S0 = 57, a = 1/250κ, b = 1/κ, µ = 0, σ =

0.02,κ = 0.02.

In Figure 4.4 we plot the sensitivity of the MC simulated option price with respect to the strike

price. Fig.4.4(b) and Fig.4.4(d) are magnifications of Fig.4.4(a) and Fig.4.4(c), respectively. We

observe that as the maturity date decreases, the at-the-money strike price shifts towards the

initial price. This is attributed to the exponential nature of the discount factor. MC simulations

of smooth out the payoff of options because of averaging.
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(a) IG Subordinated Process
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(c) Gamma Subordinated Process
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Figure 4.5: ASCOS pricing using parameters S0 = 57, a = 1/250κ, b = 1/κ, µ = 0, σ = 0.02,κ =

0.02.

The sensitivity of the ASCOS option price with respect to the strike price is shown in Figure

4.5. Fig.4.5(b) and Fig.4.5(d) are magnifications of Fig.4.5(a) and Fig.4.5(c), respectively. As

the maturity time increases the payoff curve does not show the monotonic behavior shown in

the MC simulation. The periodic behaviour of the method is due to the sinusoidal characteristic

of the Fourier-Cosine expansion. The method also exhibits instability at a strike price of 0, this

happens because the y∗ shown in Equations (4.19)-(4.25) is an imaginary value and does not

exist within the range of integration.
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(b) Confidence Interval on Monte Carlo Prices under Gamma Subordination
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Figure 4.6: Monte Carlo pricing with confidence interval at α = 0.95 shows the convergence of

the option prices by the law of large numbers.

Table 4.1: Summary of Monte Carlo pricing of Asian options by IG subordinated processes,

K = $52, S0 = $57, dt = 1/250, T = 1/12

Option Price Confidence Interval Number of Computation

($) (α = 0.95) Simulations (10n) Time (s)

4.6823 ±0.3450 n = 0 0.026497

4.8907 ±0.2906 n = 1 0.053204

4.9943 ±0.0891 n = 2 0.048611

5.0025 ±0.0304 n = 3 0.151043

4.9969 ±0.0138 n = 4 0.738055

5.0024 ±0.0054 n = 5 8.5354010

5.0013 ±0.0018 n = 6 221.478561
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Table 4.2: Summary of Monte Carlo pricing of Asian options by Gamma subordinated processes,

K = $52, S0 = $57, dt = 1/250, T = 1/12

Option Price Confidence Interval Number of Computation

($) (α = 0.95) Simulations (10n) Time (s)

5.0542 ±0.3447 n = 0 0.026497

5.3405 ±0.4453 n = 1 0.053204

5.0627 ±0.2368 n = 2 0.048611

4.9910 ±0.1626 n = 3 0.151043

5.0050 ±0.0674 n = 4 0.738055

5.0061 ±0.0243 n = 5 8.5354010

5.0056 ±0.0091 n = 6 221.478561

In Figure 4.6 we show that for Monte Carlo simulations the convergence of errors at a confidence

level of 0.95.As the number of simulation increases the error bounds decrease. This experiment

shows that a tight boundary of prices is achieved at n ≥ 5. We present a summary of computed

option prices up to the nearest percent in Table 4.1. The numbers are generated by the Michael,

Schucany and Hass algorithm. To achieve the required accuracy using an efficient MC method we

require 221.48 seconds, while Using the Fourier cosine expansion for IG subordinated processes

we get an option price of $5.0119 with a computation time of 3.04554 seconds. Table 4.2 is a

summary of computed option prices up to the nearest cent with numbers generated by Jonk’s

algorithm. To achieve the required accuracy using an efficient MC method we require 221.48

seconds, using the Fourier cosine expansion for Gamma subordinated processes we get an option

price of $5.0141 with a computation time of 2.998690 seconds.
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4.5.2 Bivariate Simulations Results

Through numerical simulations we study the impact of the coefficient c in the bivariate model

given by Eq.(3.2) and (3.3). We use the calibrated parameters in Table 6.1 to price the risk-

neutral Asian basket spread options and make some observations.
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Figure 4.7: Simulation of dependent subordinator for c = {0,0.5,1} values

We show that as c increases the slope of the subordinated process gets steeper as shown in

Figure 4.7. The slope of the line will be given by m = dRt
dt = L0,dt+cLdt

dt . We can immediately see

that for c > 0 the slope is proportional to c in a linear way and this implies that the stochastic

time change occurs at faster rates, adding to the volatility in the simulated price process.
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Figure 4.8: Monte Carlo pricing using the bivariate model with parameters from calibration,

the asset weights were set as w1 = 0.8 and w2 = 0.2.

In Figure 4.8 we plot the sensitivity of the MC simulated Asian basket spread option price with

respect to the strike price. As the maturity time increases the payoff curve moves away from

the strike axis around the at-the-money point. We also observe the same monotonic behavior

observed in the payoff curve in the univariate case. Prices shift right as the maturity times

increase, this shows us that the spread is actually increasing as maturity increases. We do not

use the Fourier-Cosine method to price the bivariate model. This is because the dependence

structure between the two assets are not know. However, this dependence structure can be

estimated by Lévy copulas.
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Chapter 5

Semi-Static Hedging Using Fourier

Cosine Expansion

5.1 Introduction

Hedging strategies are used by investors and writers of financial contracts to minimize the loss

on returns due to exposure to market risk. These risks are mitigated by creating a replicating

portfolio that replicates the payoff of the option. In this work we assume that the investor only

re-balances (hedges) their portfolio outside some time interval [t, T ], this is called semi-static

hedging. Kolkiewicz and Liu, [27], argue that continuous dynamic trading is only beneficial in

a complete market setting with perfect replication. They propose that static hedging, where a

hedging portfolio is created at t = 0 and held to maturity t = T , is more advantageous since

it reduces transaction costs. Kolkiewicz and Liu, show that for path dependent derivatives,

the semi-static hedging strategy can be applied at t = T . We follow in Kolkiewicz and Liu’s

reasoning and look at the semi-static hedging problem.

The semi-static hedging strategies described in this chapter are based on the strategies out-

lined in Föllmer and Schweizer, [24], and Föllmer and Leukert, [23], respectively. Kolkiewicz

and Liu, [27], apply Föllmer and Schweizers results to hedging with path dependent options, see

[27]. Alonso-Garćıa et al, [2], tried to use the COS-method to delta hedging, they tried to ex-

tend the framework to quadratic risk and quantile risk, but did not show any numerical evidence.

We replicate the payoff of an Asian options given by equation (4.9) with the predictable wealth

process

Xt =X0 + ∫
T

0
βrdt + ∫

T

0
αdSt
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CHAPTER 5 5.2. QUADRATIC HEDGING

To follow the notation of Kolkiewicz and Liu, see [27], we let α = πsXt and β =X0−S0α. Where

πs is the fraction of wealth invested in equity that is predictable for t ∈ [0, T ] and πp = 1 − πs is

the fraction of wealth invested in the cash account, and r is the constant interest rate.

The price dynamic of the underlying asset is a discounted cádlág process given by St = S0e
Yt ;

where Yt is given by Eq.(3.2) and (3.3). In our work we prescribe two subordinating distribu-

tions; the IG subordinator and the Gamma subordinator.

5.2 Quadratic Hedging

For payoff function Ht, and wealth process Xt we can define the quadratic hedging error as

J = EQ[∣Xt −Ht∣2] (5.1)

with maturity, t = T . Assuming that X0 = e−r(T−t)E[HT ] =H0, then the cost function J is given

by

J = EQ[H2
0 + 2H0STα − 2H0HT + S2

Tα
2 − 2HTSTα +H2

T ]

=H2
0 + 2H0αEQ[ST ] − 2H0EQ[HT ] + α2EQ[S2

T ] − 2αEQ[HTST ] +EQ[H2
T ]

Then taking the derivative with respect to α, setting it to zero and solving for α∗ we get

α∗ = Cov[HT , ST ]
Var[ST ]

(5.2)

this is the same result given as shown in Kolkiewicz and Liu, see [27], it interesting to note

that the optimal hedging portfolio is the ratio σHt/σSt , which gives a relative measure of risk

in quadratic variation.

5.2.1 Simulation of Quadratic Hedging

We look at simulating the quadratic hedging loss using MC simulation and the ASCOS method.

To hedge the option by MC simulation, first we price the option using MC simulation, then

we use Eq.(5.2) to determine the optimal stock portfolio α∗, then we find π∗s = α∗/XT and

π∗p = 1 − π∗s .

Similarly, to hedge the option by COS method, we get the option payoff process from

Ht ≈ exp[−r(T − t)]Re[ϕZT (
kπ

b − a ∣y) exp(−ikπ a

b − a)]Vk
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for k = [0, ...,N − 1]. We next generate the price process from

St = S0e
Yt

≈ 2

b − aRe[φY ( kπ

b − a) exp(−ikπ a

b − a)]Vk

where Vk is given by

Vk = S0
2

b − a ∫
b

a
ex cos(kπx − a

b − a )dx

where φY is the characteristic function of Yt. Then using Eq.(5.2) we find α∗ which is used to

find π∗s = α∗/XT and π∗p = 1 − π∗s .
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Figure 5.1: PDF of Monte Carlo simulation of quadratic hedging loss from (a) IG subordinated

BM and (b) Gamma subordinated BM, using parameters S0 = 57, K = 52, a = 1/250κ, b = 1/κ,

µ = 0, σ = 0.02, κ = 0.1, n = 100000.

We start our analysis with the quadratic hedging problem using Monte Carlo simulation. Figure

5.1 shows the quadratic hedging error distribution from MC simulations. Fig.5.1(a) shows the

hedging error where the underlying distribution is assumed to follow the NIG process. Fig.5.1(b)

shows the hedging error where the underlying distribution is assumed to follow the VG pro-

cess. We observe two things; the first is the the hedging loss from the VG process generates a
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wider distribution. We can explain this by looking at Fig.4.3(b), which shows that the Gamma

subordinated process generates numbers outside the tail of IG subordinated process, and gen-

erates hedging errors in the extremes. The second observation is the hump in the upper tail

of Fig.5.1(b). This is likely caused by the slight skewness in the Gamma subordinated process

generating asymmetric jumps, as shown in Fig.4.3(b).

We observe that the COS method is more efficient at generating the expected cost. The MC

simulation for n = 100000 NIG processes took 3.228895 seconds while the COS method took

2.977460 seconds. The MC simulation for n = 100000 VG processes took 5.240039 seconds while

the COS method took 2.961511 seconds.

Table 5.1: Summary of expected quadratic hedging losses, S0 = 57, K = 52, a = 1/250κ, b = 1/κ,

µ = 0, σ = 0.02, κ = 0.1, n = 100000

Distribution EQ[XT −HT ] EQ[XT,COS −HT,COS]

NIG 2.9646 2.9465

VG 3.0491 2.9545

We summarize the expected hedging error simulated from MC and the COS method in Table 5.1.

We observe that the expected hedging error from quadratic hedging is non zero for all methods,

this is to be expected because quadratic hedging strategies cannot be perfectly hedged in an

incomplete market. From Figure 5.2, we observe for both IG subordinated processes, Fig.5.2(a)

and Gamma subordinated processes.
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Figure 5.2: CDF of Monte Carlo simulation of quadratic hedging loss from (a) IG subordinated

BM and (b) Gamma subordinated BM, using parameters S0 = 57, K = 52, a = 1/250κ, b = 1/κ,

µ = 0, σ = 0.02, κ = 0.1, n = 100000.

Table 5.2: Optimal portfolios with quadratic hedging loss, n = 100000, K = $52, S0 = $57,

dt = 1/250, κ = 0.1

Distributions πs πs,COS πp πp,COS

NIG 0.1236 0.1240 0.8764 0.8760

VG 0.1210 0.1237 0.8790 0.8763

We show the comparison of portfolio allocations simulated from MC and the COS method in

Table 5.2. The portfolio allocations tell us that for an investor who want to hedge quadratic

variation risk, they will invest most of their wealth in the cash account and less than 15% in

the underlying.
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5.3 Quantile Hedging

With the financial crisis in 2008 regulators started requiring financial institutes to hold enough

reserves to offset losses they may occur from portfolio returns. This lead to the development of

risk measures such as Value at Risk, average Value at Risk and etc. We want to now develop a

hedging portfolio that minimizes these risk measures. For this work we assume we are working

in risk-neutral probability. Intuitively, we can interpret the risk given by Value at Risk as the

risk that the smallest loss the portfolio will incur given a specified probability. AVaR risk has

a similar interpretation, but captures more losses than VaR. The hedging VaR and AVaR risks

are similar, they both try to replicate the risks using the underlying and cash account.

Definition 5.1. Quantile Function

A function qX ∶ (0,1)→ R is a quantile function for X if

FX(qX(s)−) ≤ s ≤ FX(qX(s)), ∀s ∈ (0,1)

The left and right continuous inverse functions of FX

q−X(s) = inf[x ∈ R∣FX(x) ≥ s]

and

q+X(s) = sup[x ∈ R∣FX(x) ≤ s]

are called the lower and upper quantile functions respectively, qX(u) at a given level u ∈ [0,1]

is called an u-quantile, see [43].

Value at risk is a quantile function, intuitively, it is the minimum amount of cash that an

investor must hold to offset unlikely loss in a portfolio

Definition 5.2. Value at Risk (VaR)

For some fixed level u ∈ [0,1] and a return function X we define the loss as L = −X, then the

value at risk of level u is defined as

V aRu(L) ∶= inf{c ∈ R∣P[L > c] ≤ 1 − u}

see, [43]

We redefine V aRu as the smallest amount of initial capital X0 required to ensure the hedging

error is greater than or equal to zero with a probability higher than u conditioned on a risk

neutral setting.
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Definition 5.3. VaR Hedging

For some fixed high level u ∈ [0,1] and wealth process X, the average value at risk of level u is

defined as

V aRQ
u (Xt∣Ft) ∶= inf{Ht ∈ R∣Q[Ct ≥ 0] ≥ u}

where Ct = EQ[Xt −Ht∣Ft], for readability we drop Q and Ft on V aRQ
u as we move forward.

Intuitively, this can be interpreted as the cheapest replicating portfolio that results in positive

hedging error with probability greater than or equal to u. Now we can define the success set

to minimize the smallest payoff as A = {Ht1Ct≥0}. Generally, VaR is not a convex measure

and penalizes diversification which is not an desirable feature. However, it is the minimum

requirement in the industry which justifies studying it.

The problem of VaR hedging was originally addressed by Föllmer and Leukert [23] and solved

using the Neyman-Pearson lemma. Bouchard, Elie and Touzi, see [6], solved the problem by

reformulating it as a stochastic target problem by introducing a new random process. Moreau

further extended Bouchard, Elie and Touzi’s analysis to jump diffusion models, see [36]. In our

work, we use a semi-static hedging strategy to hedge for quantile risk. The following proposition

is taken from Leukert and Fölmer and is presented without proof

Proposition 5.4. Quantile Hedging

For C = {VT ≥H}, let C̄ ∈ Ft be a solution of the problem

P[C] = max

under the constraint

EQ[H1C] ≤ V̄0

where Q is a unique EMM. Let ξ̄ denote the hedge for the option H̄ =H1C ∈ L1(Q), i.e.

EQ[H1C̄ ∣Ft] = EQ[H1C̄] + ∫
T

0
ξ̄tdXt P-a.s.

Then (V̄0, ξ̄) solves the optimization problem given by

P[V0 + ∫
T

0
ξtdXt] = max

under the constraint

V0 ≤ V̄0

Proof. see Leukert and Föllmer, [23].
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Corollary 5.5. Building on Proposition 5.4 of Leukert and Föllmer, see [23]. Let πs and πp be

the fraction of wealth invested in a stock and risk free asset respectively. An investor who wants

to minimize VaR at level u ∈ [0,1] will have the optimal portfolio allocation given by

π∗s = α∗/XT

π∗p = 1 − π∗s

by solving the following system of equations

Xt = e−rTA(n) + erTβ + αST

β =H0 − αS0

Ct = 0

at the nth element in the set A = Ht1Ct≥0, where n = floor[N(1 − u)] + 1, and N is the size of

the set A(1,2, . . . , n).

Proof. Let A = EQ[Ht1Ct≥0] be the success set, then the optimal VaR, V aR∗
u, is given by

V aR∗
u ∶= V aRu(n)

To find the optimal portfolio we want to find the success set A such that Ct ≥ 0 and order the

payoffs in ascending order. Then we find the index n = floor[Nu] + 1, where N is the length

of the set [1,2, . . . , n], then the optimal VaR is given by V aR∗
u = V aRu(n). By replicating the

portfolio for V aR∗
u we get the portfolio weights

V aR∗
u =Xt

= e−rTA(n) + erTβ + αST

β =H0 − αS0

then solving for α such that Ct = 0 we get the optimal α∗, where Ct = e−rT (Xt −Ht)

π∗s = α∗/XT

πp = 1 − π∗s

We can extend this to find a hedging portoflios under average value at risk (AVaR).

Definition 5.6. Average Value at Risk (AVaR) Hedging

The average value at risk at level u ∈ [0,1] of a payoff function X ∈ L1(Ω) is given by

AV aRQ
u (Xt∣Ft) =

1

u
∫

1

u
V aRQ

s (Xt∣Ft)ds

again for readability we drop Q and Ft on AV aRQ
u as we move forward.
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Then our success set to minimize is again given by A

Corollary 5.7. Building on Proposition 5.4 of Leukert and Fömer, see [23]. Let πs and πp be

the fraction of wealth invested in a stock and risk free asset respectively. An investor who wants

to minimize AVaR at level u ∈ [0,1] will have the optimal portfolio allocation given by

π∗s = α∗/XT

π∗p = 1 − π∗s

by solving the following system of equations

Xt = e−rT
1

Nu

n−1

∑
i=1

A(i) + e−rTA(n) + erTβ + αST t

β =H0 − αS0

Ct = 0

where the nth index is found as in VaR and N is the size of the set A(1, ..., n), we denote M

as the last index of the set A.

Proof. The discretized AVaR at level u is given by

AV aRu =
1

Nu

n−1

∑
i=1

V aRu(i) + V aRu(n)

then we can replicate the AVaR by

AV aR∗
u = e−rT

1

N(1 − u)
n−1

∑
i=1

A(i) + e−rTA(n) + erTβ + αST

then solving the system of equations

AV aR∗
u =Xt

= e−rT 1

Nu

n−1

∑
i=1

A(i) + e−rTA(n) + erTβ + αST

β =H0 − αS0

Ct = 0

solving for α such that Ct = 0 we get the optimal α∗, where Ct = e−rT (Xt −Ht)

π∗s = α∗/XT

π∗p = 1 − π∗s
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5.3.1 Simulation of Quantile Hedging

We simulate the quantile hedging loss using MC simulation and COS method. We put into

practice the method to determine the optimal wealth to hedge quantile risk presented by Leukert

and Fø”llmer, see [23]. To adjust the method to the COS method we assume that the wealth

process follows the same distribution as the underlying asset, and the CDF of Xt is given by

FX ≈ Re[φY ( kπ

b − a) exp(−ikπ a

b − a)]Vk

where Vk is given by

Vk =
2

b − a ∫
b

a
ex cos(kπx − a

b − a )dx

where Yt is the underlying Lévy process, and φY (⋅) its characteristic function. To determine

the index from the CDF, we looked for the first CDF index that resulted in a value greater than

u, where u ∈ [0,1]. We determine the optimal hedging portfolio for VaR and AVaR as shown

in Corollary 5.5 and Corollary 5.7. We observe that the Fourier-Cosine method is an efficient

method, but Monte Carlo method is more robust and tractable. A Monte Carlo simulation with

100000 trajectories was efficiently computed in 5.015140 seconds. On the other hand the COS

method completed it’s calculations in 2.940627 seconds.
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Figure 5.3: CDF of Monte Carlo simulation of (a) VaR and AVaR hedging error for NIG process

and (b) VaR and AVaR Hedging error for VG process, using parameters n = 100000, K = $52,

S0 = $57, dt = 1/250, κ = 0.1,σ = 0.02, µ = 0, r = 0.036.

The CDF of the hedging error for VaR and AVaR are shown in Figure 5.3. In a more intuitive

sense, hedging VaR is equivalent to creating a replicating portfolio for the smallest positive

hedge that results in a positive hedge at a high probability. This gives us the smallest underlying

holding we need to hedge this option with a positive hedging error. Table 5.3 shows that when

hedging VaR the investor is only required to hold a small portion of wealth in the underlying

and a large amount in cash. This implies that to hedge VaR risk, we can simply hedge the

option by holding mostly cash.

Table 5.3: Optimal portfolios with VaR hedging error, n = 100000, K = $52, S0 = $57, dt = 1/250,

κ = 0.1,σ = 0.02, µ = 0, r = 0.036

Distributions πMC
s,V aR πCOSs,V aR πMC

p,V aR πCOSp,V aR

NIG 0.0287 0.1671 0.9713 0.8329

VG 0 0.1681 1 0.8319

Table 5.4: Optimal portfolios with AVaR hedging error, n = 100000, K = $52, S0 = $57,

dt = 1/250, κ = 0.1,σ = 0.02, µ = 0, r = 0.036

Distributions πMC
s,AV aR πCOSs,AV aR πMC

p,AV aR πCOSp,AV aR

NIG 0.5931 0.5143 0.4069 0.4857

VG 0.3773 0.5191 0.6227 0.5191

Counter intuitively, hedging AVaR requires a more risky portfolio as seen in Table 5.4. However,

this is to be expected because to hedge a large loss, simply holding cash cannot provide sufficient

returns. Thus the investor must seek higher returns by looking for more risky investments.

Table 5.5: Expected hedging error, EQ[XT−HT ] ,comparison between MC and COS, n = 100000,

K = $52, S0 = $57, dt = 1/250, κ = 0.1,σ = 0.02, µ = 0, r = 0.036

Distributions VaR: MC VaR: COS AVaR: MC AVaR: COS

NIG 4.5785 2.2064 −0.6249 −0.2416

VG 6.4388 4.3868 0.4197 −0.0883

We summarize the discounted expected hedging errors in Table 5.5. For an investor looking

to hedge VaR they should expect their returns to reflect the payoff of the option as most of

their hedging investments are allocated to the cash account and will at most lose a fraction of
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any negative movements in the underlying asset. The investor hedging AVaR is actually more

exposed to risk as they need to generate higher returns to hedge risk in the entire tail.

5.3.2 Robust Risk Hedging

We can extend AVaR hedging to a robust setting. Following Föllmer et al, see [23], we present

risk hedging where the risk measure is robust. Intuitively, this can be thought of as hedging

the expected loss regardless of the probability measure used.

Definition 5.8. Robust Risk Measure

For a random variable X ∈ L1(Ω) and Q∗ ∈ Q is a robust probability measure in a set of

probability measures Q and is absolutely continuous w.r.t. some probability measure P. A

robust risk measure is given by

ρ(X) = sup
Q∗∈Q

EQ[X − α(Q)]

Proposition 5.9. Let Z∗ = dQ∗

dQ be the Radon-Nikodym derivative such that EQ[Z ∣Ft] = 1 then

setting α(Q) = 0 and Q∗ = {Q ∈ Q∣Z∗ ≥ 1
u}. For some u ∈ [0,1], Ct = EQ[Xt−Ht∣Ft] and success

set A, the optimal portfolio allocation is given by

π∗s = α∗/XT

π∗p = 1 − π∗s

by solving the following system of equations

Xt = e−rT ÂV aRu + erTβ + αST t

β =H0 − αS0

Ct = 0

where ÂV aRu is given by

ÂV aRu =
1

u
[A(n)(u −

n−1

∑
i=1

q(i)) +
n−1

∑
i=1

A(i)q(i)]

Proof. From the Neyman-Pearson lemma, see [23], Definition (2.32) and subsequent examples,

we get that

Z∗ = 1

u
(1XT >HT + ε1XT =HT )

where

ε =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 Q[XT =HT ] = 0

u−Q[XT >HT ]
Q[XT =HT ] otherwise
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then

ÂV aR
Q
u (Xt∣Ft) = sup

Q∗∈Q
EQ[ZV aRu(Xt∣Ft)] = EQ[Z∗V aRu(Xt∣Ft)] =

= e−rT 1

u
[V aRu(n)(u −

n−1

∑
i=1

q(i)) +
n−1

∑
i=1

V aRu(i)q(i)] + erTβ + αST

= e−rT 1

u
[A(n)(u −

n−1

∑
i=1

q(i)) +
n−1

∑
i=1

A(i)q(i)] + erTβ + αST

β =H0 − αS0

Ct = 0

solving for α such that Ct = 0 we get the optimal α∗, where Ct = e−rT (Xt −Ht)

π∗s = α∗/XT

π∗p = 1 − π∗s

where q(i) = Q[XT (i) = HT (i)], is a counting probability of the number of times the option

payoff greater the value at risk of at indices i = n, ...,M , where n is found as in VaR.
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Chapter 6

Calibration

6.1 Introduction

The problem of solving for unknown parameters given current data is known as the calibration

or the inverse problem. We refer the reader to Cont and Tankov for an overview, see [15]. When

historic data is used to solve the inverse problem it is known called parameter estimation. In

this section we show that our model can reproduce the volatility smile observed in empirical

data and present a conditional calibration method to calibrate the bivariate model.
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(a) Strike Sensitivity for WTI Asian Call Prices
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(c) Strike Sensitivity for Brent Euro Call Prices
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CHAPTER 6 6.2. MODEL PARAMETER CALIBRATION

Figure 6.1: Current Option market prices of (a) WTI Asian call options (b) WTI Asian put

options (c) Brent crude European call options. The market data was collected from Bloomberg’s

database via the Bloomberg Terminal

Some paths of current option prices for two different underlying assets, WTI crude oil, j = 1,

and Brent crude oil, j = 2 are shown in Figure 6.1. We observe that the actual market price

of the option is different from the theoretical prices. The market price also doesn’t follow the

monotonic behavior of the time value of money. These differences are likely caused by market

friction, randomness in other variables, i.e. interest rate and a phenomenon known as the

volatility smile.

6.2 Model Parameter Calibration

A common way of calibrating pricing models is to set the cost function as some distance function,

d(⋅), to minimize. This results in the following minimization problem.

J(y) = min
y∈U

{d(H(y) −Hmkt)} (6.1)

where y and x are vectors of parameters in a solution set U .

Definition 6.1. Calibration Problem

Let U be a set of solutions such that, there exists a collection of optimal solutions (y∗, x∗) ⊂ U

that solves the minimization problem. Given prices of a call option Hj(y) where j ∈ [1,2] is

the jth. We construct the Lévy process Zt such that the discounted asset price St = S0 exp(Zt)

is a martingale.

Hj(y) = e−rTEQ[(Sj(y) −K)+∣Ft] (6.2)

Where Sj(y) is some functional that describes the price process, i,e. Sj(y) = 1
M+1

M

∑
t=0
St(y)

for arithmetic Asian options. Then the calibration problem is the solution of the following

minimization problem

y∗ = min
y

¿
ÁÁÁÀ∑Ni=1 (H

j
i (y) −Hmkt)

2

N
, for j = 1,2 (6.3)

We follow Schoutens, see [44], and apply the root mean squared error (RMSE) as our calibration

minimization criteria, on market option price of that day.

Remark 6.2. The cost function given by the RMSE ∶=
√
∑Ni=1(Xi−X̂i)2

N is convex for [x, y] ∈X

a convex set and z ∈ R.
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Proof. We can reduce the RMSE to the SE as follows

RMSE =
√

MSE

MSE =
N

∑
i=1

(SE)/N

SE = (Xi − X̂)2

then let f(x) ∶= (x − z)2 and f(y) ∶= (y − z)2. Without loss of generality, set λ = 1/2 and

[x, y] ∈X, then

f(λx + (1 − λ)y) = f(1

2
x + 1

2
y))

= (1

2
x + 1

2
y − z)2

= (1

2
x − 1

2
z + 1

2
y − 1

2
z)2

= (1

2
(x − z) + 1

2
(y − z))2

by the Triangular inequality

≤ 1

2
(x − z)2 + 1

2
(y − z)2

= λf(x) + (1 − λ)f(y)

Since f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) the cost function is convex.

Proposition 6.3. Under the risk neutral assumption the conditional calibration method looks

to solve the following problem. Let

H1(y) = e−rdtEQ [(∑
M
t=0 S

1
t (y)

M + 1
−K)

+
]

H2(y, x∣y) = e−rTEQ [(S2
T (y, x) −K)+ ∣ y = y∗]

Where H1(y) is the modelled arithmetic Asian call option payoff for the first underlying asset,

and H2(y, x) is the modelled European call option payoff for the second underlying asset, in a

basket of assets. y is a vector of independent parameters to be calibrated and x is a vector of

conditionally independent parameters to be calibrated. Then the calibration problem becomes the

following optimization problem

J1(y) =

¿
ÁÁÀ∑Ni=1 (H1

i (y) −H1,mkt)2

N

J2(y, x∣y = y∗) =

¿
ÁÁÀ∑Ni=1 (H2

i (y, x) −H2,mkt)2

N
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such that

y∗ = min
y∈U

{J1(y)} (6.4)

x∗ = min
x∈U

{J2(y, x)∣ y = y∗ ∈ U} (6.5)

where [y∗, x∗] ∈ U are the pair of optimal solutions to the inverse problem 6.4 and 6.5 respec-

tively. This optimal solution lives in the space of solution sets U

Proof. This follows from the fact that the set of solutions for x∗ ∈ U is disjoint from y∗ ∈ U when

conditioned on y = y∗ ∈ U , i.e. for a function inf
x,y
f(x, y) = inf

x
f̃(x), where f̃(x) = inf

y
f(x, y)

Remark 6.4. To model

H2(y, x∣y = y∗) = e−rTEQ [(SjT (y, x) −K)
+
∣ y = y∗]

we require the conditional characteristic function of the second independent subordinated pro-

cesses. To do this we apply Bayes rule to get

φLj ∣L0
(u) =

φL0(u)φcjLj(u)
φL0(u)

= φcjLj(u)

Proof. This follows from the direct application of Bayes rule and the independence of the sub-

ordinating processes

For univariate models, the vector y = [κ0, µX , σX] are the three parameters that needs to be

calibrated. In the bivariate case, things get more complicated, y = [κ0, κ1, c1, µ
1
X , σ

1
X] and

x = [κ2, c2, µ
2
X , σ

2
X]. We can interpret σjX , for j = 1,2, as the volatility in the independent BM,

and µjX is interpreted as it’s mean. We can recover the µjY and σjY by computing the moments

in Table 3.3 and Table 3.4. The parameter κk, where k = 0,1,2 is interpreted as the variance

of the subordinating process. As κk → 0 the process becomes normal, thus for our simulation

κk ≠ 0. As subordinating processes are monotonically increasing functions, we can see that

κk > 0. It is important to note that the parameters above are not directly observable, that is

why we treat them as arbitrary parameters to be calibrated.

To solve the minimization problem, we look at an approach known as the Generalized Pattern

Search (GPS) algorithm with constraints. The general idea of the GPS algorithm is to evaluate

the cost function at the initial point, evaluate the cost function at perturbed points and if one

the evaluated perturbed points has a value less than the initial, it becomes the new initial point

and the perturbation radius is doubled. If the perturbation fails to yield a value less than the

initial point, the perturbation radius is halved. The convergence is considered in the following
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paper by Torczon, see [46]. The algorithm is readily available in Matlab as the function pat-

ternsearch. This approach has the advantage in that it is not a gradient method, so it doesn’t

require the function to be differentiable; therefore it is quite ideal to use for stochastic processes.

The figure below, shows the calibrated payoff and the market payoff at each strike. We can see....

Table 6.1 is shows a snap shot of solutions to the calibration problem for the univariate and

bivariate model. Parameters were calibrated using data collected from the Bloomberg ter-

minal. The underlying asset for j = 1,2 was chosen to be WTI crude (June 2018 - June

2019) and Brent crude (June 2018 - June 2019), respectively. The initial points for Calibra-

tion was set to y0 = [κ0, µX , σX] = [0.25,0.3,0] in the univariate case, and the pair (y0, x0) =

([κ0, κ1, c1, µ
1
X , σ

1
X], [κ2, c2, µ

2
X , σ

2
X]) = ([0.25,0.25,0.2,0.3,0], [0.25,1,0,0]) in the bivariate case.

Table 6.1: Calibrated Parameters for NIG Process, n = 100000, K1 = K2 = $52, S1
0 = $68.58,

S2
0 = $74.88, dt = 1/12

Model κ0 κj cj µjX σjX

Univariate 0.8744 (−,−) (−,−) (−0.1875,−) (0.0005,−)

Bivariate 0.9829 (0.7500,0.6777) (0.0633,0.2) (−0.2499,−0.9988) (0.00047,0.00047)

Fig.6.2(a) and Fig.6.2(b) show the calibrated models against market prices. The models were

priced using Monte carlo pricing. At each strike point 1000000 paths were generated. The

pattern search algorithm was run until the mesh grid size was less than 1e-6.
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(a) Calibration of Univariate Model Call
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(b) Calibration of Univariate Model Put
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(c) Calibration of Asian Payoff
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(d) Conditional Calibration of European Payoff

Figure 6.2: (a) Calibrated univariate model matched to current market price of WTI Asian

Call Option (b) Calibrated bivariate model matched to current market price of WTI Asian

Call Option and (c) Calibrated conditionally univariate model to current market price of Brent

European Call Option expiring in 1 year.

Figures 6.2 shows a a general good fitness of the calibrated price to the market price. This is one

of the advantages to parametric models with more degrees of freedom. However, we can pose

the question, how many degrees of freedom is appropriate? As one would expect The run time of

the calibration process shows that the more free parameters there are in a model the longer the

calibration process. The calibration of parameters for the univariate model took 4820.758297

seconds, over 101 different strikes and 11529.775153 seconds for the bivariate model.

6.3 Implied Volatility

Determining the implied volatility is a key calibration problem for financial models. A pricing

model needs to be able to be able to show a volatility smile to ensure that it accounts for the

change in volatility with strike price. This phenomenon is observed in empirical data as shown

in Figure 6.3.
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Sensitivity of Volatility in WTI Asian Option Prices to Strike Price

Figure 6.3: Current market sensitivity of volatility in WTI Asian options to strike price.

It is well known that models that like the Black-Scholes model overprices options. This is

thought to be the consequence of implied volatility, see [21]. Implied volatility is found by

solving the inverse problem for σ, i.e. for the price of an option given by H(σ,K) and the

market payoff Hmkt(t,K), the implied volatility (σ) is found by solving H(σ,K) =Hmkt(t,K)

for σ for a fixed S0, T and each K. The main argument against the Black-Scholes model is that

it assumes a constant implied volatility.

We approximate the implied volatility of Arithmetic Asian option payoff following the work of

Ewald, et al, see [21]. Ewald, et al, argue that σ also depends on the type of option, which is

normally neglected. They show that to price general Asian options, fixed strike Asian options

should be used to compute implied volatility instead of European options, see [21]. First we need

to find vega, denoted ν ∶= ∂H
∂σ . Vega is the sensitivity of the option with respect to volatility. In

our work we will use the classical method to solve for vega. Then for call options vega is given

by

∂

∂σ
EQ

⎡⎢⎢⎢⎢⎣
( 1

M + 1

M

∑
t=0

St −K)
+⎤⎥⎥⎥⎥⎦

= EQ [1S̄t>K
1

M + 1

M

∑
t=0

St(BRt − σRt)]
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where S̄t is the average price of the underlying asset and for put options we look for 1S̄t<K , see

[21]. Next we use Newtons method to approximate implied volatility at each strike price K,

and t = T is the maturity time of the option. Newtons method is given by

σk+1 = σk −
H(σk,K) −Hmkt(T,K)

∂
∂σH(σk,K)

For call options the initial point is approximated by

σ0 ≈
¿
ÁÁÀ 2

M
∣E

Q[St]
K

∣

and for put options

σ0 ≈
¿
ÁÁÀ 2

M
∣ K

EQ[St]
∣
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Figure 6.4: Implied volatility smile of the model for different strike prices, the parameters at

each strike price, K, were calibrated for both call and put options as described in Section 6.2.

After solving the calibration problem, we can see that our model produces an implied volatility

smile, as shown in Figure 6.4. This shows that our model is rich enough to capture the non-

linearity of the implied volatility.
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Chapter 7

Robust Consumption and Portfolio

Choice with Stochastic Interest

Rates and Learning about Stock

Predictability

7.1 Introduction

We consider an institutional investor who wants to maximize their expected utility over an

infinite horizon. We also assume that the investor is willing to substitute consumption of the

the risky asset with the risk free asset, in a more intuitive sense the investor is willing to have

lower returns to for safer investments. The investor is assumed to trade in two risky assets (a

stock and a bond) and one risk-free asset (a money market account). The investor is assumed

to learn about stock returns using two parameters; λt (observable) and βt (unobservable). βt

only predicts the expected return, while the observed parameter, λt, predicts both the expected

return and volatility. This is to reflect the fact that estimating the conditional expected re-

turns cannot fully explain the variations in stock risk premium. Like Escobar et al, see [20], we

assume in the model that the stock risk premium is driven by an affine combination of func-

tion of λt and βt. We assume the investor estimates the unobservable parameter by Bayesian

learning and that the stock return volatility depends on the observed parameter; this implies

that a stochastic volatility model is a special case of our general model. We assume that an

investor has an Epstein-Zin type recursive preferences, see [19]. This preference disentangles

the the inverse relationship between the coefficient of relative risk aversion and the elasticity
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of intertemporal substitution (EIS), implied by the CRRA (Constant Relative Risk Aversion)

preferences. Furthermore, the investor worries that the model describing the investment oppor-

tunities is subject to model misspecification which follows the robust optimization problem of

Anderson (2002) and outlined in Escobar et al, see [20], this implies the investor is willing to

seek robust consumption and portfolio choice. We extend the work of Escobar et al, see [20], by

considering Duffie and Epstein recursive preferences, see [19] in an infinite investment horizon.

We extend the work of Liu, see [31] by using a bond portfolio to hedge interest risk and the

inclusion of unobservable parameters in stock risk premiums.

We summarize some of the existing literature. Campbell and Viceira, see [10], shows that

i) at high levels of risk aversion, γ, the optimal consumption-wealth ratio increase with EIS. At

low levels of EIS, i.e ψ < 1, the optimal ratio rises with risk aversion. While at high levels of ψ,

i.e ψ > 1, it declines with risk aversion. ii) If the investor is highly risk averse, then they hold

almost all wealth in the bond and earn low returns, if they have low to moderate risk aversion

they borrow at the riskless rate to earn high leveraged returns. iv) Highly risk-averse investors

choose safe portfolios with low average returns, so a higher ψ corresponds to a higher average

consumption-wealth ratio. v) Investor with a low risk aversion coefficient is more invested in

the risky asset. Maenhout, see [32], shows that robustness in the model reduces equity demand,

and effectively acts like risk aversion. He also concludes that robustness decreases the risk free

rate. Liu, see [31], shows that when stock returns and expected returns are negatively correlated

the robustness actually causes the total equity demand to increase. This is due the increase

in hedging demand from state variables, and the decrease in myopic demand (mean-variance

hedging). Ju and Miao, see [26], conclude that for EIS, ψ > 1, the consumption-wealth ratio is

a convex function of robustness and for EIS, ψ < 1, the consumption-wealth ratio is a concave

function of robustness. They report a calibrated ambiguity aversion, θ = 8.86 and show that

ambiguity aversion helps generate variation in consumption-wealth ratio. They also observed

that as ambiguity aversion increases, consumption-wealth ratio increases. Escobar et al, see

[20], shows that stock return predictability significantly impacts the optimal bond portfolio in

the sense that hedge components for the observed and unobserved variables are substantial.

The hedge components are larger in the bond portfolio compared with the respective hedge

components in the stock portfolio. They also observe that the correlation between bonds and

learning parameters determines the investors position in the risky assets. For ρλP > 0 and

ρPβ > 0 the investor will short the bond and for ρλP < 0 and ρPβ < 0 the investor will buy the

bond.
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7.2 Background

7.2.1 Expected Utility

Why do we choose to optimize an investors expected utility over a more natural measure such

as the expected returns? This is because in 1713, Nicholas Bernoulli pointed out a critical flaw

in choosing expected returns by posing the ”St. Petersberg Paradox”. The paradox goes like

this:

Peter tosses a coin and continues to do so until it lands ”heads”. He pays Paul one ducat

if he gets ”heads” on the very first throw, two ducats if he gets it on the second, four if on the

third, eight if on the fourth, and so on, so that on each additional throw the number of ducats

he must pay is doubled.

The paradox in the problem is that the expected amount that Peter must pay Paul is infi-

nite, but, intuitively, most people would not be willing to pay an infinite amount. In 1738,

Daniel Bernoulli (Nicholas’ cousin) provided an explanation for the St. Petersberg Paradox

by introducing the concept of expected utility. The concept was later formalized by John von

Neuman and Oskar Morgenstein in 1944, see [39].

The von Neumann-Morgenstern axioms of expected utility1 are as follows

1) Completeness

For any two lotteries P and Q, either Q ≻ P or P ≻ Q or P ∼ Q

2) Transitivity

If Z ⪰ Q and Q ⪰ P , then Z ⪰ P

3) Continuity

If Z ⪰ Q ⪰ P , there exists some λ ∈ [0,1] such that Q ∼ λZ + (1 − λ)P

4) Dominance

Let P1 be the compound lottery λ1P +(1−λ1)Q and P2 be the compound lottery λ2P +(1−λ2)Q.

If P ≻ Q then P1 ≻ P2 iff λ1 > λ2

This axiom tells us that the investor prefers the lottery with highest expected utility. It is well

known that this is only a partial explanation of investors behaviour, see [39]. We now look at

risk aversion.

1We omit the Independence axiom, as empirical data exists that shows that the axiom does not hold.
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7.2.2 Risk Aversion

Let U(X) denote some utility function. It was proposed by Daniel Bernoulli in 1738 that utility

functions should be an increasing concave function of wealth. To show that this concavity

represented the investors reservations to invest in a fair lottery, John W. Pratt(1964) used the

concept of risk premium RP , where

U(X −RP ) = E[U(X +L)]

where L is the value of the lottery. Now setting L = 0, and taking the taylor expansion about

L = 0 and X = 0

RP = −1

2
σ2U

′′(X)
U ′(X)

where σ2 = E[L2]. We can see that RP > 0 when U(X) is a concave function and this led to

the development of the Pratt(1964)-Arrow(1971) absolute risk aversion measure.

Definition 7.1. Absolute Risk Aversion

Let U(X) in C2 be a utility function for given wealth X then the absolute relative risk is given

by

R(X) = −U
′′(X)

U ′(X)

Definition 7.2. Relative Risk Aversion2

Let U(X) in C2 be a utility function for given wealth function X then the absolute relative risk

is given by

Rr(X) = −XU ′′(X)
U ′(X)

7.2.3 Filtering

Filtration is a heavily studied topic in fields such as engineering and economics. It is generally

used for signal processing and estimation, however it is quickly becoming common in Finance,

we direct the reader to Date and Ponomareva’s review on linear and nonlinear filtering in math

finance, see [16]. The main use of filtering is to estimate an unobservable parameter, βt with

an observable parameter, λt. We assume that λt and βt follow mean-reverting processes, and

apply the non-linear(in βt) filtering technique to βt and obtain a set of filtered equations, see

[29] and [30]. We present the main theorem of non-linear filtering without proof below.

2The relative risk aversion is more frequently used in financial economics, this is because it allows us to account

for different levels of wealth.
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Theorem 7.3. Filtering3,4

Let (βt, λt) be random processes with differentials given by equations

dβt = [a0(t, λ) + a1(t, λ)βt]dt + b1(t, λ)dW1(t) + b2(t, λ)dW2(t)

dλt = [A0(t, λ) +A1(t, λ)βt]dt +B(t, λ)dW2(t)

where W1(t) and W2(t) are independent Brownian motions and the functions a0, a1, b1, b2,A0,A1,B

meet all boundedness conditions in Liptser and Shiryaev, see [30],[29], and the conditional dis-

tribution P (β0 ≤ a∣λ0) ∼ N(m0, v0), then mt and vt are given by

dmt = [a0 + a1mt]dt +
b2B +A1vt

B2
[dλt − (A0 +A1mt)dt]

dvt
dt

= 2a1vt + b21 + b22 − (b2B +A1vt
B

)
2

subject to the conditions m0 = E[θ0∣λ0], v0 = E[(θ0 −m0)2∣λ0]

Proof. see [29], Sections 8.1 and 12.1

We can see that vt is the conditional variance, also known as the tracking error and mt is the

conditional mean also known to be the optimal value in the mean-square sense, see [29].

7.2.4 Overview of Stochastic Control

Fix U ⊆ Rd as our domain, i.e. the subspace of admissible portfolios, see Definition 2.15, and

let Xt be a stochastic process of the form

dXu
t

Xu
t

= µ(u)dt + σ(u)dWt

The predictable process, u = u(t, ω), is known as the control process, µ(u), is the mean as a

function of the control process, and σ(u) is the standard deviation as a function of the control

process then we call Xt =Xu
t our controlled process, see [37].

In stochastic control problems we consider the performance criterion J(t, x, u) = Ju(x) with

stopping time T as:

Ju(x) = E [∫
T

t
f(Xt, u)dt +U(XT )1T<∞∣Ft] (7.1)

Where f(⋅) and U(⋅) are given continuous functions. We call u ∈ U admissible when there exists

a unique strong solution for Xt for all x ∈ R. The stochastic control problem is to find the value

function, Vt, and, optimal control u∗ ∈ U defined by

Vt(x,u) = sup
u∈U

Ju(x) = Ju∗(x) (7.2)

3For a comprehensive look at how to apply filtering to price dynamics we refer the reader to Gennotte, see [25]
4For boundedness conditions we refer the reader to Liptser and Shiryaev, see [29] and [30]
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If u = u(x) is a Markov control, i.e controls of the form u(t, x) = u(Xt−) then Xt has the

infinitesimal generator given by Auv(t, x), see [37]

7.2.5 Dynamic Programming

One way to solve the stochastic control problem is by using the Hamilton-Jacobi-Bellman equa-

tion. This approach was originally derived to solve control problems in the deterministic sense.

Other ways include backward-stochastic differential equations, or determining the dual problem.

It is known that there is an equivalence that exists between the three methods to solve control

problems.

Theorem 7.4. Hamilton-Jacobi-Bellman Equation

We assume that v(t, x) ⊂ C1,2 and that it satisfy the following conditions

(1) ∂v
∂t +A

u∗v(t, x) + f(t, x, u) ≤ 0 for all x ∈ R, u∗ ∈ U .

(2) XT ∈ Ft a.s. on T <∞ and lim
t→T−

U(XT )1T<∞ a.s. for all u ∈ U .

(3)

E [∣v(T,XT )∣ + ∫
T

t
(∣Av(t,Xt)∣ + ∣σ ∂v

∂x
∣
2

)dt∣Xt = x] <∞

for all u ∈ U and all T̃ in the set of all stopping times.

(4) v−{XT̃ }T̃<T is uniformly integrable for all u ∈ U and x ∈ R

then

v(t, x) ≤ Vt for all x ∈ R (7.3)

Next, suppose that for each x ∈ R there exists u∗ ∈ U such that

(1) sup
u∈U

{Auv(t, x) + f(t, x, u)} = 0

(2) v(t,Xu∗

T̃
)T̃<T is uniformly integrable

Let u∗ ∈ U , then u∗ is an optimal control and

Vt(x,u∗) = Ju
∗(t, x) for all x ∈ R (7.4)

Proof. see [37], Theorem 3.1
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7.3 Problem Formulation

Let (Ω,F ,{Ft}t∈[0,T ],P) be a complete probability space with a non-decreasing right continuous

filtration. We assume the usual assumptions holds. We consider a market with a stock index, a

zero-coupon bond and a money market account. We work in the perspective of an institutional

investor with an infinite investment horizon. The money market account is given by

dAt = rtAtdt (7.5)

where rt is the short term interest rate. The stock price, St is described by the stochastic

differential equation
dSt
St

= µS,tdt + σs,tdWS
t (7.6)

where µS,t is the expected stock return, σS,t > 0 is the stock return volatility and WS
t is a Wiener

process. The interest rate is given by a Ornstein-Uhlenbeck (OU) process

drt = κr(r̄ − rt)dt − σrdWP
t (7.7)

where κr is the degree of mean reversion, r̄ is the long-run mean of the interest rate(r),

σr > 0 is the interest rate volatility and WP
t is a WS

t correlated Wiener process such that

dWS
t dW

P
t = ρS,Pdt.

We assume that stock risk premium, αt = µs.t−rt
σs,t

, is an affine function of two stochastic pa-

rameters λt and βt. λt is the parameter observable to the investor and βt is the parameter

unobservable to the investor. The parameter dynamics is given by

dλt = κλ(λ̄ − λt) + σλdW λ
t (7.8)

dβt = κβ(β̄ − βt) + σβdW β
t (7.9)

where κλ and κβ are the degrees of mean reversion. λ̄ and β̄ are the long-run means. σλ > 0

and σβ > 0 are the parameter volatilities of λt and βt, respectively. W λ
t and W β

t are correlated

Wiener processes such that dWS
t dW

λ
t = ρS,λdt, dW

P
t dW

λ
t = ρP,λdt, dW

S
t dW

β
t = ρS,βdt and

dWP
t dW

β
t = ρP,βdt.

It is assumed that the stock return volatility is dependent on the observable parameter λt,

i.e. σS(λt). This setup is the same setup presented in Escobar, et al, see [20]. They present a

model where the stock risk premium depends on the observed and unobserved parameters while

the stock return volatility depends on the parameter observed by the investor. Their setup

further implies that the expected stock return depends on the two parameters λt and βt, i.e
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µS,t = µS,t(λt, βt) in a recursive relative risk utility framework. From this the investor assumes

the risky asset with the following dynamics

dSt
St

= (rt + σS(λt)(P + Pλλt + Pββt))dt + σS(λt)dWS
t (7.10)

where P , Pλ and Pβ are real constants. Pλ and Pβ specify the predictive power of λt and βt for

the risk premium, respectively. For convenience we will simplify the notation and write σS(λt)

as σS . The price of the zero-coupon bond expiring at a time T is given by

dPt
Pt

= (rt + q)dt + σP,tdWP
t (7.11)

where q = qrσP,t is the expected excess return on the bond, qr is the constant market price of

interest rate risk and σP,t = σr 1
κr

(1 − e−κr(T−t)) is the bond price volatility. It is assumed that

the investor follows a roll-over strategy and the maturity is kept constant i.e. σP,t = σP . The

model of stock and bond dynamics follows the principle of no-arbitrage.

The optimal filtered equations from Proposition 1. in Escobar et al, see [20] is restated below.

Proposition 7.5. Let FS,r,λt be the σ-algebra generated by St, λt and rt . The stock and bond

prices of the investor is given by

⎡⎢⎢⎢⎢⎢⎣

dSt
St

dPt
Pt

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

rt + σS(P + Pλλt + Pββ̂t)

rt + q

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=µ

dt +
⎡⎢⎢⎢⎢⎢⎣

σS 0

ρSPσP σP
√

1 − ρ2
SP

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=ΣX

⎡⎢⎢⎢⎢⎢⎣

dBt,1

dBt,2

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∶=dB

(7.12)

and the dynamics of the state variables are given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

dλt

drt

dβ̂t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
²
dY

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

κλ(λ̄ − λt)

κr(r̄ − rt)

κβ(β̄ − β̂t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=µY =κ(Ȳ −Y )

dt +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σλρS,λ σλρ̂λ 0

−σrρS,P −σrρ̂λ,P −σrρ̂P
A1 A2 A3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=ΣY

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

dBY
t,1

dBY
t,2

dBY
t,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∶=dBY

(7.13)

where

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

κλ 0 0

0 κr 0

0 0 κβ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=κ

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̄

r̄

β̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
°
∶=Ȳ

and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λt

rt

β̂t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
±
∶=Y

The processes Bt,i and BY
t,j are FS,r,λt -adapted correlated Wiener processes, for i = 1,2 and

j = 1,2,3, with the correlation matrix

ρ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0
ρ̂λ,P√
1−ρ2S,P

0 ρ̂P√
1−ρ2S,P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.14)
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where ρi,j = dB̂Y
t,jdBt,i, A1, A2, A3, ρ̂λ, ρ̂λ,P and ρ̂P are found in Appendix A of Escobar et al.,

see [20]

Proof. see [20], Appendix A

Let Φt = [πSt , πPt ]⊺ be the vector of the fraction of wealth invested in the stock and bond.

Let (1 − πSt − πPt ) be the amount invested in the money market account. Then following Liu,

[31], the wealth, Xt, of the investor is given by

dXt =Xt(rt +Φ⊺
t (µ − r) −Ct)dt +XtΦ

⊺
tΣXdBt (7.15)

where ΣXΣX
⊺ is a positive semi-definite covariance matrix and Ct is consumption at time t.

We assume that the investor has recursive preferences over consumption with the Duffie and

Epstein continuous-time parametrization as shown in Liu, see [31]. In the absence of robustness

the parametrization has the form

Vt = ∫
∞

t
f(Cs, Vs)ds

where Vt is the value function and f(C,V ) is a normalized aggregator of current consumption

and continuation utility given by

f(C,V ) = ϕ

1 − 1
ψ

(1 − γ)V
⎛
⎜
⎝
⎛
⎝

C

(V (1 − γ))
1

1−γ

⎞
⎠

1− 1
ψ

− 1
⎞
⎟
⎠

(7.16)

We can define a space of admissible portfolios, U , such that {πt}t∈[0,∞) ⊂ R2 satisfies

(1) πt ∶ [0,∞) ×Ω↦ R2 is FS,λ,rt -progressively measurable;

(2) in the subspace U , there exists an optimal π∗t for any x ∈ (0,∞) such that equation (7.15)

admits a unique strong solution;

(3) the utility function needs to satisfy the integrability condition, i.e. EP ∣f(Ct, Vt)∣ < ∞

where f(Ct, Vt) is given by equation (7.16);

(4) Xt ≥ 0 a.s, t ∈ (0,∞) .

The investor is assumed to have a Epstein-Zin type preferences with the Value function for

preferences given by

V = [G(t, Y )]−
1−γ
1−ψ

X1−γ
t

1 − γ (7.17)

We assume γ > 1 and ψ ≠ 1 to avoid imaginary solutions. ψ = 1 case corresponds to the CRRA

utility case.

G(t, Y ) is the ansatz given by

G(t, Y ) = exp(A(t) +B⊺(t)Y + 1

2
Y ⊺Q(t)Y )
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where

A(t) = [a0(t)] , B(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(t)

b2(t)

b3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11(t) c12(t) c13(t)

c21(t) c22(t) c23(t)

c31(t) c32(t) c33(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
the partials of G(t, Y ) with respect to the state variables are given by

GY = G(t, Y )(B + 1

2
(Q +Q⊺)Y ),

GY Y = G(t, Y )[(B + 1

2
(Q +Q⊺)Y )(B + 1

2
(Q +Q⊺)Y )⊺ + 1

2
(Q +Q⊺)]

To simplify notation we drop time in notation, i.e. At ∶= A, and all subscripts denote derivatives.

The partials of the recursive utility function, V (X,Y ), with respect to time,t, the Wealth

process, X, and state vector, Y , is given by

VX = G− 1−γ
1−ψX−γ

VXX = −γG− 1−γ
1−ψX−γ−1

VY = − 1

1 − ψG
− 1−γ

1−ψX1−γGY
G

VY Y = 1

1 − ψ ( 1 − γ
1 − ψ + 1)G− 1−γ

1−ψX1−γGYGY
⊺

G2
− 1

1 − ψG
− 1−γ

1−ψX1−γGY Y
G

VXY = − 1 − γ
1 − ψG

− 1−γ
1−ψX−γGY

G

A robust investor is one who deems the state dynamics of equations (7.7), (7.8), (7.9) and (7.15)

to be approximates and possibly mis-specified. To ensure robustness, we introduce a change

of measure Pu such that, Pu is absolutely continuous with respect to P, denoted Pu << P. We

denote Yt = [λt, rt, β̂t]⊺ as the state vector where rt, λt and β̂t are the state variables such that

each state variable follows the filtered dynamics shown in the paper by Escobar et al., see [20],

Proposition 1.

Under the filtered measure Pu, it follows from Girsanov’s theorem that the Radon-Nikodym

derivative is given by

(dPu
dP

) = E(X,Y )

where
dE(X,Y )
E(X,Y ) = u(X,Y )⊺dBY , E(X0, Y0) = 1

then the compensated Brownian motion is given by

B̃
Y = ∫

t

0
usds + dBY
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where ut ∶= u(Xt, Yt) is a vector process that compensates the drift such that B̃
Y
t is a Wiener

process with respect to the probability measure Pu. Under the new measure Pu the state

dynamics of the model is given by

dY = [κ(Ȳ −Y ) −ΣY u]dt +ΣY dB̃
Y

where µY −ΣY u is the perturbed drift vector, ΣY is the volatility matrix of Y , and ΣY ΣY
⊺

is the positive semi-definite covariance matrix. Under this new framework our wealth dynamics

are given by

dXt = [Xt(rt +Φ⊺
t (µ − r) −Φ⊺

t Σ̃Xut) −Ct]dt +XtΦ
⊺
t Σ̃XdB̃

Y
t

Then the optimization problem for a robust investor becomes

sup
C,φ

inf
u
EPu [∫

∞

0
(f(Cs, Vs) − e−ϕs

1

2
u⊺sη

−1us)ds] (7.18)

where the second term is a penalty term given by the discounted relative entropy. η is a matrix

of preference parameters which measures the strength of preference for robustness in the three

independent Brownian motions, dB̂λ
t . dB̂r

t and dB̂β
t . With a slight abuse in notation; these

three independent Brownian terms account for the ambiguity aversion in the stock model, bond

model and the ambiguity in the unobserved parameter, β. When η = 0, is the zero matrix, the

investor believes the model is correct.

For an uncertainty averse investor the HJB equation in the infinite horizon is given by

0 = sup
C,Φ

inf
u
{f(C,V ) +AV − VXXΦ⊺ΣXρ

⊺u −u⊺ΣY
⊺VY + 1

2
u⊺η−1u} (7.19)

We let Σ̃X ∶= ΣXρ
⊺, and AV is the infinitesimal generator of V given by

AV = VX[X(r +Φ⊺(µ − r)) −C] + (κ(Ȳ −Y ))⊺VY

+ 1

2
VXXX

2Φ⊺ΣXΣX
⊺Φ +XΦ⊺Σ̃XΣY

⊺VXY + 1

2
Tr(ΣY ΣY

⊺VY Y ) (7.20)

Substituting AV into the HJB equation we get

0 = sup
C,Φ

inf
u
{f(C,V ) + VX[X(r +Φ⊺(µ − r)) −C] + (κ(Ȳ −Y ))⊺VY

+ 1

2
VXXX

2Φ⊺ΣXΣX
⊺Φ +XΦ⊺Σ̃XΣY

⊺VXY + 1

2
Tr(ΣY ΣY

⊺VY Y )

− VXXΦ⊺Σ̃Xu −u⊺ΣY
⊺VY + 1

2
u⊺η−1u}

where

VY =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vλ

Vr

Vβ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

VXY =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

VXλ

VXr

VXβ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

VY Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vλr Vλλ Vλβ

Vrr Vrλ Vrβ

Vβr Vβλ Vββ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Given the space U of admissible portfolios we can find the first order condition with respect

to u as

u∗ = VXXηΣ̃X
⊺
Φ + ηΣY

⊺VY (7.21)

Substituting the first order condition back into the HJB equation and simplifying gives us

0 = sup
C,Φ

{f(C,V ) + VX[X(r +Φ⊺(µ − r)) −C] + Ȳ ⊺
κ⊺VY −Y ⊺κ⊺VY

+ 1

2
VXXX

2Φ⊺ΣXΣX
⊺Φ +XΦ⊺Σ̃XΣY

⊺VXY + 1

2
Tr(ΣY ΣY

⊺VY Y )

− 1

2
V 2
XX

2Φ⊺Σ̃XηΣ̃X
⊺
Φ

− VXXΦ⊺Σ̃XηΣY
⊺VY

− 1

2
VY

⊺ΣY ηΣY
⊺VY } (7.22)

Then the first order condition(FOC) for consumption becomes

C∗ = V −ψ
X [(1 − γ)V ]

1−γψ
1−γ ϕψ (7.23)

Substituting the value function we get that

C∗ = Xϕψ

G(Y )

to find the FOC for the portfolio vector Φ we take the derivative of the HJB equation with

respect to Φ and set it to 0. Then, solving for Φ we get the expression

Φ∗ = Ā−1
B̄

Where

Ā = V 2
XX

2Σ̃XηΣ̃X
⊺ − VXXX2ΣXΣX

⊺

B̄ = VXX(µ − r) +XΣ̃XΣY
⊺VXY − VXXΣ̃XηΣY

⊺VY

and Ā is non-singular. Following Maenhout, see [32], we impose the homothetic robustness

specification. We assume the preference parameter η takes the form

η(X,Y ) = θ

(1 − γ)V (X,Y ) > 0 (7.24)

where θ = diag([θ1, θ2, θ3]⊺) is a diagonal matrix of uncertainty aversion parameter about the

stock model, bond model and learning estimation, respectively. Then substituting in V , VX ,

VXY , VY , VY Y , G(Y ) into the optimal portfolio we get

Φ∗ = Ā−1
B̄ (7.25)
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where

Ā = ΣX(ρ⊺θρ + γI2)ΣX
⊺

B̄ = (µ − r) − 1 − γ
1 − ψ Σ̃XΣY

⊺GY
G

+ 1

1 − ψ Σ̃XθΣY
⊺GY
G

= (µ − r) + 1

1 − ψ Σ̃X(θ − I3 + γI3)ΣY
⊺GY
G

and

In ∶= diag([11,12, ...,1n])

Then the optimal portfolio becomes

Φ∗ = [ΣX(ρ⊺θρ + γI2)ΣX
⊺]−1[(µ − r) + 1

1 − ψ Σ̃X(θ − I3 + γI3)ΣY
⊺GY
G

]

= [ΣX(ρ⊺θρ + γI2)ΣX
⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=φ1[2×2]

]−1(µ − r)

+ 1

1 − ψ [ΣX(ρ⊺θρ + γI2)ΣX
⊺]−1 [Σ̃X(θ − I3 + γI3)ΣY

⊺]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=φ2[2×3]

GY
G

= φ1
−1(µ − r) + 1

1 − ψφ1
−1φ2

GY
G

Substituting V , VX , VXX , VXY , VY , VY Y , and G into the HJB equation we get

0 = f(C∗, V ) − ϕ
ψ

G
V (1 − γ) + V (1 − γ)(r +Φ∗⊺(µ − r))

− 1

1 − ψV (1 − γ)(Ȳ ⊺
κ −Y ⊺κ⊺)GY

G

− γ
2
V (1 − γ)Φ∗⊺ΣXΣX

⊺Φ∗

+ γ − 1

1 − ψV (1 − γ)Φ∗⊺Σ̃XΣY
⊺GY
G

+ 1

2

1

1 − ψV (1 − γ)( 1 − γ
1 − ψ + 1)GY

⊺

G
ΣY ΣY

⊺GY
G

− 1

2

1

1 − ψV (1 − γ)Tr[ΣY ΣY
⊺GY Y

G
]

− 1

2
V (1 − γ)Φ∗⊺Σ̃XθΣ̃X

⊺
Φ∗

+ 1

1 − ψV (1 − γ)Φ∗⊺Σ̃XθΣY
⊺GY
G

− 1

2
V (1 − γ) 1

1 − ψ
GY

⊺

G
ΣY θΣY

⊺ 1

1 − ψ
GY
G

(7.26)

where

f(C∗, V ) = 1

1 − ψG
− 1−γ

1−ψX1−γ (ϕψ − ϕ
ψψ

G
)
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Dividing by V (1 − γ), multiplying (1 − ψ) and substituting Φ∗ we get

0 = −ϕ
ψ

G
+ ϕψ + (1 − ψ)r

+ (1 − ψ)(µ − r)⊺φ1
−1(µ − r) + GY

⊺

G
φ2

⊺φ1
−1(µ − r)

− (Ȳ ⊺
κ −Y ⊺κ⊺)GY

G

− 1

2
(1 − ψ)(µ − r)⊺φ1

−1ΣX(γI2 + θ)ΣX
⊺φ1

−1(µ − r)

− (µ − r)⊺φ1
−1ΣX(γI2 + θ)ΣX

⊺φ1
−1φ2

GY
G

− 1

2

1

1 − ψ
GY

⊺

G
φ2

⊺φ1
−1ΣX(γI2 + θ)ΣX

⊺φ1
−1φ2

GY
G

+ (µ − r)⊺φ1
−1Σ̃X(−I3 + γI3 + θ)ΣY

⊺GY
G

+ 1

1 − ψ
GY

⊺

G
φ2

⊺φ1
−1Σ̃X(−I3 + γI3 + θ)ΣY

⊺GY
G

+ 1

2

GY
⊺

G
ΣY ( 1 − γ

1 − ψI3 + I3 −
1

1 − ψθ)ΣY
⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=φ3

GY
G

− 1

2
Tr[ΣY ΣY

⊺GY Y
G

] (7.27)

Collecting like terms and simplifying we get

0 = −ϕ
ψ

G
+ ϕψ − 1

2
Tr[ΣY ΣY

⊺GY Y
G

]

+ (1 − ψ)r − (κ(Ȳ −Y ))⊺GY
G

+ (µ − r)⊺[1

2
(1 − ψ)φ1

−1](µ − r)

+ (µ − r)⊺[φ1
−1φ2]

GY
G

+ 1

2

GY
⊺

G
[ 1

1 − ψφ2
⊺φ1

−1φ2 +φ3]
GY
G

(7.28)

Multiplying G and collecting terms to the HJB equation we get the following PDE

0 = −ϕψ + ϕψG − 1

2
Tr[ΣY ΣY

⊺GY Y ]

+ (1 − ψ)rG − (κ(Ȳ −Y ))⊺GY

+ 1

2
(1 − ψ)(µ − r)⊺φ1

−1(µ − r)G

+ (µ − r)⊺φ1
−1φ2GY

+ 1

2G
GY

⊺( 1

1 − ψφ2
⊺φ1

−1φ2 +φ3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=φ4

)GY (7.29)

To separate the state variables from (µ − r) we need to look more closely at the following two

terms; (µ − r)⊺φ1
⊺(µ − r) and φ2

⊺φ1
−1(µ − r). We first expand (µ − r)⊺φ1

⊺(µ − r) to it’s
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components

Since

φ1
−1 =

⎡⎢⎢⎢⎢⎢⎣

φ−1
1 (1,1) φ−1

1 (1,2)

φ−1
1 (2,1) φ−1

1 (2,2)

⎤⎥⎥⎥⎥⎥⎦

Where

φ−1
1 (1,1) =

ρ̂2
λ(θ1ρ

2
SP − γ) + θ2(ρ̂2

λP − ρ̂2
λPρ

2
SP ) + θ3(ρ̂2

P − ρ̂2
λPρ

2
SP )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=ϑ0

σ2
S(γ + θ1) (γ(ρ̂λ2 − ρ̂2

λρ
2
SP ) + θ2(ρ̂2

λP − ρ̂2
λPρ

2
SP ) + θ3(ρ̂2

P − ρ̂2
Pρ

2
SP ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=ϑ1

φ−1
1 (1,2) = −ρSP ρ̂2

λ

σPσSϑ1
= φ−1

1 (2,1)

φ−1
1 (2,2) = ρ̂2

λ

σ2
Pϑ1

Then

(µ − r)⊺Φ̄1
⊺(µ − r) = (P + Pλλ + Pββ̂)2ϑ0 − 2(γ + θ1)ρSP ρ̂2

λqr(P + Pλλ + Pββ̂) + q2
r(γ + θ1)

(γ + θ1)ϑ1

= J0 + J1
⊺Y + 1

2
Y ⊺I3J2I3Y

Where

J0 =
P 2ϑ0 − 2(γ + θ1)(ρSP ρ̂2

λ)qrP + q2
rρ

2
λ(γ + θ1)

(γ + θ1)ϑ1

J1 = −
2((γ + θ1)(ρSPρ2

λ)qr − Pϑ0)
(γ + θ1)ϑ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pλ

0

Pβ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

J2 =
2ϑ0

(γ + θ1)ϑ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 2
λ 0 PλPβ

0 0 0

PλPβ 0 P 2
β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Next we look at φ2
⊺φ1

−1(µ − r). We let

φ2 ⋅φ1
−1 =H

where

F = σSH( ∶ ,1), R = qrσPH( ∶ ,2)

g0 = PF +R
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g1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

PλF (1) 0 PβF (1)

PλF (2) 0 PβF (2)

PλF (3) 0 PβF (3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
then

φ2
⊺φ1

−1(µ − r) = g0 + g1Y (7.30)

Then the PDE becomes

0 = −ϕψ + ϕψG − 1

2
Tr[ΣY ΣY

⊺GY Y ]

+ ((1 − ψ) r®
∶=%⊺Y

+1

2
(1 − ψ) (µ − r)⊺φ1

−1(µ − r)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=J0+J1⊺Y + 1

2
Y ⊺I3J2I3Y

)G

+ (φ2
⊺φ1

−1(µ − r)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=g0+g1Y

−(κ(Ȳ −Y )))⊺GY

+ 1

2G
GY

⊺φ4GY (7.31)

Where % ∶= [0,1,0]⊺.

We use a log-linear approximation to linearize the non-linear consumption to wealth ratio to

reduce the system of ODEs to a system of equations, this same procedure has been used by

Chan et al, see [8], Campbell et al, see [9], and Liu, see [31]. So we let

C

X
= ϕ

ψ

G
= exp(c − x) ≈ exp(k0 + k1(ψ log(ϕ) − log(G)))

where

k1 = exp(E[c − z])

c = log(C), z = log(X)

k0 = k1(1 − log(k1))

Then we get the following system of equations

0 = −k0 − k1ψ log(ϕ) + k1A − 1

2
Tr[ΣY ΣY

⊺Q̃] − 1

2
B⊺(ΣY ΣY

⊺ −φ4)B

− 1

2
(ψ − 1)J0 + (g0 −κȲ )⊺B

0 = k1B − Q̃(ΣY ΣY
⊺ −φ4)B − 1

2
(ψ − 1)J1 − (ψ − 1)% + Q̃(g0 −κȲ ) + (g1 +κY )⊺B

0 = k1Q̃ − Q̃(ΣY ΣY
⊺ −φ4)Q̃ − 1

2
(ψ − 1)J2 + (g1 +κ)⊺Q̃ + Q̃(g1 +κ)

Where Q̃ ∶= 1
2(Q+Q

⊺). The original Ricatti equation gives us the condition thatQ is symmetric

matrix such that

Q̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13

c12 c22 c23

c13 c23 c33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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We then retrieve the equation

0 = −k0 − k1ψ log(ϕ) + k1A − 1

2
Tr[ΣY ΣY

⊺Q̂] − 1

2
B⊺(ΣY ΣY

⊺ −φ4)B

− 1

2
(ψ − 1)J0 + (g0 −κȲ )⊺B (7.32)

0 = k1B − Q̂(ΣY ΣY
⊺ −φ4)B − 1

2
(ψ − 1)J1 − (ψ − 1)% + Q̂(g0 −κȲ ) + (g1 +κY )⊺B (7.33)

0 = k1Q̂ − Q̂(ΣY ΣY
⊺ −φ4)Q̂ − 1

2
(ψ − 1)J2 + (g1 +κ)⊺Q̂ + Q̂(g1 +κ) (7.34)

We solve the system of equations in Equations (7.32)-(7.34) using the routine originally proposed

by Campbell and Viceira, see [10]. This was implemented in Matlab where we used the vpasolve

function to numerically solve Equations (7.32)-(7.34). The function vpasolve uses a Newton’s

method type approach to solve the symbolic equations numerically. The symbolic toolbox in

Matlab was used to verify that, indeed, the optimal portfolio solves the system of equations

given by minimizing the HJB equation with respect to portfolio Φ. A check was formed to

verify that the derived optimal portfolio was correct, i.e. the linear equation ĀΦ∗−B̄ ∶= [0,0]⊺.

Where Ā is a 2 × 2 matrix with the coefficients of Φ∗ and B̄ is a vector of constant terms.

7.4 Simulation and Results

Chan et al, see [8], show that the optimal strategy portfolio strategy does not depend on the EIS

parameter ψ, instead it is dependent on ψ indirectly through the consumption-wealth ratio. We

simulate the optimal portfolio allocations in stocks and bonds, as well as the myopic demand

and hedging components. We use a mix of parameters taken from Escobar et al, [20], and Liu,

see [31]. We take the uncertainty aversion parameter γ = 4, the time preference parameter

ϕ = 0.0153, and the EIS parameter ψ = [1/40,1/20,1/γ,1/2,1/0,75]. We do not simulate ψ = 1

to avoid numerical instability. ψ = 1 reduces the problem to the CRRA utility case, ψ = 1/γ

reduces to the power utility case and ψ = 1, γ = 1 case reduces to the log utility case as noted

in Campbell and Viceira, see [10]. We refer the reader to Campbell and Viceira, see [11], or a

comprehensive summary on portfolio choice and long-term investments. Campbell and Viceira,

see [10], show that the expected utility is only maximized if the solution to Equation (7.34) is

given by the positive square root of the discriminant.

We begin our analysis by looking at the optimal stock and bond allocation as a function of

EIS and ambiguity. In Fig.7.1(a) shows us that in general, the change in EIS has a small

decreasing affect on the optimal stock allocation. This is due to the decreasing effects of EIS

on stock hedging demands for moderately risk averse investors. The investors preference for
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robustness causes the optimal stock allocation to decrease. In Fig.7.1(b) the effects of EIS are

quite profound. At low levels of EIS (ψ < 1) we observe that the investor that learns about

stock returns, monotonically increases their short position in bonds as EIS increases, but the

preference to short bonds decreases(absolute) as the investor becomes more robust. At moder-

ate to high levels of EIS (ψ > 1) the investor takes on less risky positions and their willingness

to substitute increases, as observed by Campbell and Viceira, see [10]. We observe that as the

preference for robustness increases the investor decreases their investments in the risky assets.

This is explained further by Maenhout’s observations as follows.
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(a) Optimal Stock Allocation
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(b) Optimal Bond Allocation

Figure 7.1: (a) optimal stock allocation, (b) optimal bond allocation

Maenhout, see [32], observed that as EIS increases the investors preference to consume decreases

their positions in risky assets. This explains the sudden decrease(absolute) in the short position

in the bond and stock demand and the sudden change in allocation was also observed in empirical

data by Maenhout, he observed that as EIS increases, the risk aversion parameter becomes very

large to keep the portfolio within 100%. Maenhout attributes this behaviour to ’effective’ risk

aversion. He notes that as EIS increases, the ambiguity aversion plus risk aversion effectively

becomes the risk aversion and this explains the decrease in equity demand as robustness increases

as shown in Figure 7.1. This relationship between EIS and ’effective’ risk aversion also supports
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the observation that for higher EIS, the investor aggressively decreases(absolute) short positions

and slightly decrease their stock allocation as ambiguity aversion increases, as shown in Figure

7.1.

0 1 2 3 4 5 6 7 8 9 10

1
=

2
=

3
[0,10]

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

W
e
a
lt
h
 A

llo
c
a
ti
o
n

Optimal Consumption to Wealth Ratio

=1/40

=1/20

=1/

=1/2

=4/3

Figure 7.2: Relationship between consumption-wealth ratio, ambiguity and EIS

Campbell and Viceira, see [10], observed that at moderate and high levels of risk aversion, con-

sumption increases as EIS increases, as shown in Figure 7.2. We observe that for ψ < 1, there is

a concave behavior in the consumption-wealth ratio as ambiguity increases, conversely for ψ > 1,

the consumption-wealth ratio shows convex behavior, this behavior was also observed by Ju and

Miao, see [26]. This behavior is attributed to observation that for ψ > 1, the investor becomes

more willing to substitute consumption with savings thus the investor at moderate levels of risk

aversion seeks safer investments as shown in Figure 7.1. The effective increase in risk aversion

causes the investor to invest in safer investments decreasing their consumption-wealth ratio, the

opposite behavior is observed for ψ < 1.

The effects of learning at low levels of ambiguity aversion, increases the willingness of the

investor to short the bond for all levels of ψ, this is observed in Fig.7.1(b). This is explained by

the fact that learning encourages the investor to short the bond to increase their consumption-
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wealth ratio, but as ambiguity aversion grows this willingness diminishes. The change in EIS,

is negligible in the myopic demand. However, we observe that the myopic stock demand de-

creases with increased preference for robustness as shown in Figure 7.3. The same affect was

observed by Liu, see [31], this affect goes back to Maenhout’s observation that the preference

for robustness effectively increases risk aversion.
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Figure 7.3: (a) Myopic stock allocation, (b) Myopic optimal bond allocation

We say that Myopic demand in the portfolio, as shown in Figure 7.3 is equivalent to the optimal

portfolio derived from the mean-variance optimal portfolio problem solved by Merton, see [33].

At first glance it appears that Figures 7.1, 7.4 and 7.5, investors behave in a counter intuitive

manner. However, our result is in line with observations from Campbell and Viceira, see [10],

who also observe that for ψ < 1 the increase in EIS, increases the investors demand for higher

returns. We can see this is exactly the case, for ψ < 1, we see that an investor who is less willing

to substitute inter-temporally shorts the bond, but not at the level of the investors who are less

more willing to substitute inter-temporally. This is also reflected in the optimal consumption

to wealth ratio, which increases for moderate to high risk aversion as EIS increases, shown in

Figure 7.2. Holding wealth constant, we observe from Figure 7.2 that the investors consumption

is less at ψ = [1/20,1/40] compared to ψ = [1/4,1/2], this means that they are less willing to
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substitute consumption for investments in risky or risk free asset. This explains why an investors

with ψ = [1/4,1/2] is more willing to take riskier positions over investors with ψ = [1/40,1/20]

as shown in Figure 7.1
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(a) Stock Allocation from Observable Parameter Hedging Demand
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(b) Bond Allocation from Observable Parameter Hedging Demand

Figure 7.4: (a) Stock demand due to observable parameter hedging, (b) Bond demand due to

observable parameter hedging

The equity demand coming from the observable parameter, Fig.7.4(a), is non zero. This is

attributed to the assumption that this parameter is used to predict stock returns and stock

volatility which implies the long run average of the obserbvable parameter is not zero. For an

investor with ψ < 1, that has no preference for robustness, the equity demand increases with EIS.

For an investor with ψ > 1 the decrease in equity demand is due to the willingness to substitute

as observed by Maenhout, see [32]. However, we observe that as preference for robustness

increases any difference in equity demand vanishes rapidly and overall demand decreases. For

the bond (Fig.7.4(b)), we observe that an investor who learns, shorts the bond, regardless of

EIS, ψ. The observable parameter contributes about a third of the demand for shorting the

bond. In Figure 7.5 we observe that the investor assumes more risk due to the unobservable

parameter. Filtering about the unobservable parameter creates the largest demand to short the

bond, learning about this parameter contributes the remaining two-thirds of the demand for
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shorting the bond. The stock allocation from the unobservable parameter hedging demand is

nearly non-existant, this is because in the long run average of the unobservable parameter is

zero, this makes sense because the mean of the log process is assumed to go to zero in the long

run. As observed by Escobar et al, see [20], the bond component of the hedge of the observed

and unobserved components is much higher than the stock component and depends on the

correlation values ρλP and ρPβ. The investors preference to short the bond was explained by

Escobar et al, see [20], through the following example; if ρλP > 0 and ρPβ > 0, then the bond

tends to have higher returns when future stock risk premium is expected to worsen, and thus,

the bond provides a hedge against this uncertainty in future investment opportunities. The

investors value this hedge by investing more in bonds (φP,obs < 0 and πP,unobs < 0).
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(b) Bond Allocation from Unobservable Parameter Hedging Demand

Figure 7.5: (a) Stock demand due to unobservable parameter hedging, (b) Bond demand due

to unobservable parameter hedging

The initial convex behavior of the observable and unobservable hedging demand are due to the

negative correlation they have with the stock return. This effect was a key result of Liu, see [31].

We can see this behaviour appearing for an investor that learns about stock return through the

unobservable and observable hedging demands. Whereas, we don’t see this behaviour in the

interest rate hedging demand in Figure 7.6. However, as the investors preference for robustness
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increases the effects of correlation vanishes. This is due to the diluting influence of the correlation

coefficients as ambiguity aversion increases.
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(b) Bond Allocation from Interest Rate Hedging Demand

Figure 7.6: (a) Stock demand due to interest rate hedging, (b) Bond demand due to interest

rate hedging

Maenhout, see [32], notes that as the preference for robustness increases the risk free rate

decreases. We can see this behaviour reflected in Fig.7.6(b). The investor recognizes that the

risk free rate changes randomly and hedges the risk purely using bonds. This is due to the

perfectly negative correlation between the bond and interest rate, see [20]. We observe that as

the EIS increases, the hedging demand for the bond to hedge interest rate risk decreases. This

is explained by the increase in consumption of the investor at the moderate to high levels of

risk aversion. However this is not enough to offset the investors willingness to short the bond.

For ψ > 1 as ambiguity aversion increases, the effective risk aversion increases and drastically

lowers the demand to short the bond, this supports the hypothesis proposed by Maenhout, see

[32], which says that ambiguity aversion adds to the affect of risk aversion.
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Conclusion

Pricing and hedging has been a topic extensively studied in literature. There are many different

viewpoints on how to model the movement of underlying assets. We propose a parametric model

using the techniques of time-changed subordination, applied to Brownian Motion. This adds

stochastic volatility in a tractable manner. Our model builds in inherent dependence between

any number of assets in a portfolio. Intuitively this is equivalent to saying the underlyingassets

have a common priving factor. The parametric nature of the model also let’s us use heavy-tailed

distributions to capture heavy tailedness in the data. For future work we propose incorporating

learning about underlying returns into the model. This model is well suited to model incom-

plete information as it is a conditionally normal and fits well into the non-linear optimal filtering

framework in Liptser and Shiryaev, see [30].

We show that our model can be priced using classical Monte Carlo method and the more

efficient Fourier-Cosine method. We compare the two methods in pricing Arithmetic average

Asian call options. We show that the Fourier-Cosine method is a very efficient method, but we

noticed some instability of the method at a strike price of $0, this is due to the solution being

imaginary at that point. However, in practice nobody trades at a strike price at $0, so it is not

an issue for standard options. When used in calibration, this method does fails to reach the error

tolerance of 1×10−6. We suggest that this method be used with a grain of salt. It is a highly effi-

cient method, but it is not as robust as Monte Carlo and it is sensitive to the integration bounds.

We use the Fourier-Cosine method to replicate option payoffs for quadratic risk, VaR risk and

AVaR risk. We simulate the hedging strategies numerically using MC method as a benchmark

and compare it to results based on the Fourier-Cosine method. The Fourier-Cosine method is

tractable at determining cost functions under expectations. Thus it is quite successful at hedg-
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ing quadratic and AVaR risk, however, it does not perform as well with VaR. This is because

the Fourier-Cosine method was derived with the intention to compute expectations, and not a

specific points in the distribution, as the sinusoidal nature makes it difficult to find a unique

point. The Fourier-Cosine method does not explore the entire domain of the characteristic func-

tion and requires higher truncation bounds to perform more accurately for quadratic hedging

problems.

In this work we show that hedging VaR is equivalent to creating a replicating portfolio for

the smallest positive hedge that results in a positive hedge at a high probability. Table 5.3

shows that when hedging VaR the investor is only required to hold a small portion of wealth in

the underlying and a large amount in cash. This implies that to hedge VaR risk, we can simply

hedge the option by holding mostly cash. Counter intuitively, hedging AVaR requires a more

risky portfolio as seen in Table 5.4. However, this is to be expected because to hedge a large

error, simply holding cash cannot provide sufficient returns. We also look at the discounted

expected hedging errors in Table 5.5. For an investor looking to hedge VaR they should ex-

pect their returns to reflect the payoff of the option as most of their hedging investments are

allocated to the cash account and will at most lose a fraction of any negative movements in

the underlying asset. The investor hedging AVaR is actually more exposed to risk as they need

to generate higher returns to hedge risk in the entire tail. We also extend AVaR hedging to a

robust framework using the Neyman-Pearson lemma as outlined in Föllmer et al, see [23]. For

future work it would be interesting to extend the work to include more assets in the portfolio,

consider stochastic interest rates and simulate the robust AVaR hedging portfolio.

The appearance of the volatility smile after the crash of 1987 created a new problem to ex-

plore. The cause the volatility smile is still not clear, but new models were proposed to capture

the phenomenon. We show through numerical example that our model can replicate the volatil-

ity smile. We also propose a conditional calibration method to calibrate parameters. The

calibration problem is reduced to two separate optimization problems. To solve this problem

we use the pattern search algorithm. This direct method is known to have a global optimal

point if the cost function is convex as shown by Torczon, see [46]. We show that with the

RMSE cost function coupled with the pattern search algorithm effectively calibrates our model

and matches market prices of WTI Asian options and Brent crude European options.

In the second part of this thesis, we explore the behavior of robust infinitely-lived investor
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who maximizes their recursive utility. We also assume that the investor learns about the stock

returns. We performed our simulation using the method found in Campand Viceira, see [10].

From our numerical study, we found that, generally, as the EIS increases the equity demand

decreases, however the effect is small, and as preference for robustness increases the demand

for equity decreases. This is due to the preference for robustness adding more risk aversion to

the behaviour of the investor, effectively increasing risk aversion. It was observed that when

ψ > 1, the investor decreases(absolute) short positions in riskless assets. We also observed that

for any level of EIS, as ambiguity aversion decreases(absolute) short positions in the risk free

asset. This is due to the investor becoming more risk averse. When ψ < 1, the investor increases

short positions in riskless assets as EIS increases, in this case ambiguity aversion behaves the

same as when ψ > 1.

We found that for ψ > 1 there is a convex behavior in consumption-wealth ratio as ambigu-

ity increases. This is because the investor is less willing to seek risky investments and decreases

their consumption-wealth ratio. Conversely for ψ < 1 there is a concave behavior, because the

when ψ < 1 the investor is more willing to seek higher returns, but the preference for robustness

diminishes this willingness to take risk. For moderate levels of risk aversion, consumption-wealth

ratio increases as EIS increases and like Liu, see [31], we observed that as ambiguity increases,

the myopic demand for stock decreases. We also found that learning about stock returns drives

the investor to short the riskless asset regardless of ψ. The majority of the demand for shorting

comes from the unobservable parameter, which is about two-thirds of the demand, while the

observable parameter contributes one-third. Interest rate risk, creates a hedging demand for the

bond, but the hedging demand is not enough to overcome the willingness to short the bonds.

For future work, it would be interesting to consider the effects of inflation, this is quite relevant

in long-term investing, as inflation is no longer constant. It would also be interesting to look at

the general utility proposed by Jun and Miao, see [26].
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Appendix A: Matlab Code

Pricing Asian Options

MC Pricing

Time-changed Univariate Main Code

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % The i s the main s c r i p t %

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 c l e a r ;

5 c l c ;

6 t i c

7 %%

8 % I n i t i a l i z e Var i ab l e s

9 M = 250 ; % sampling f requency

10 T = 1 ; % maturity time in years

11 dT = T/M; % sampling per iod

12 N = 100000; % number o f s imu la t i on s

13 r a t e = 0 . 0 3 6 7 ; % r i s k f r e e ra t e o f re turn in %∗100

14 S0 = 57 ; % i n i t i a l s tock p r i c e o f two a s s e t s

15 K = 1 : 1 0 0 ; % S t r i k e

16 KSpread = 52 ; % S t r i k e f o r Spread

17 time = transpose ( l i n s p a c e (0 ,T,T/dT) ) ;

18 k = 1 ; l = 1 ;

19 f p r i n t f ( ’ Total number o f s imu la t i on s : %i \n ’ ,N)

20 %%

21 % Parameters from c a l i b r a t i o n

22 muY = 0 ; % d r i f t parameter

23 sigmaY = 0 . 0 2 ; % v o l a t i t l i t y

24 kappa = 0 . 1 ;

25 c = 0 ;

26 %%
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27 % IG Subordinated Process

28 % Generate dependent IG random time proce s s

29 [ R1 , L0 ] = IGProc ( kappa , c , dT,T,N, 0 ) ;

30 % Generate NIG proce s s

31 [ S1 , dY1 , Y1 ] = NIGProc (R1 , S0 ,muY, sigmaY ) ;

32 f p r i n t f ( ’Done IG Sub\n ’ )

33 %%

34 % Gamma Subordinated Process

35 % Generate dependent Gamama random time proce s s

36 [ R2 ,G0 ] = GammaProc( kappa , c , dT,T,N, 0 ) ;

37 % Generate VG proce s s

38 [ S2 , dY2 , Y2 ] = VGProc(R2 , S0 ,muY, sigmaY ) ;

39 f p r i n t f ( ’Done Gamma Sub\n ’ )

40 %%

41 % Geometric Brownian Motion Process

42 % Z = normrnd ( 0 , 1 , [M,N] ) ;

43 % dY3 = muY∗dT+s q r t (dT) ∗sigmaY .∗Z ;

44 % Y3 = cumsum(dY3) ;

45 % S3 = S0∗exp (Y3) ;

46 %%

47 % Asian opt ion payo f f f o r each s t r i k e p r i c e

48 Payof f1 = ze ro s (1 , l ength (K) −1) ; Payof f2 = Payof f1 ; %Bls = Payof f1 ;

49 whi le k < l ength (K)+1

50 % Generating Asian opt ion p r i c e (p) and payo f f (h)

51 [ Payof f1 ( k ) ] = AsianOption ( S1 ,K( k ) , rate ,dT) ;

52 [ Payof f2 ( k ) ] = AsianOption ( S2 ,K( k ) , rate ,dT) ;

53 % Bls ( k ) = b l s p r i c e ( S0 ,K( k ) , rate , dT, sigmaY ) ;

54 % % Generating Spread opt ion p r i c e (p) and payo f f (h)

55 % [H( : , k ) ] = SpOpt( S1 , S2 , KSpread ( k ) , rate , dT,N) ;

56 k = k+1;

57 end

58 f p r i n t f ( ’Done Payof f c a l c u l a t i o n s \n ’ )

59 toc

60

61 %%

62 % Save r e s u l t s

63 % save ( ’ MCTimeChangedData . mat ’ , . . .

64 % ’K’ , ’ time ’ , ’ Payoff1 ’ , ’ Payoff2 ’ )

65 % f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

66

67 % save ( ’ MCTimeChangedDataCI . mat ’ , ’ H1 ’ , ’ S1 ’ , ’ dY1 ’ , ’ Y1 ’ , ’ R1 ’ , ’ H2 ’ , ’ S2 ’ , . . .

68 % ’dY2 ’ , ’ Y2 ’ , ’ R2 ’ , ’H’ , ’K’ , ’ KSpread ’ , ’N’ , ’ time ’ )
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69 %f p r i n t f ( ’ More v a r i a b l e s saved !\n ’ )

70 %%

71 % GPU S t u f f

72

73 % i f M <= 1000

74 % N = M;

75 % % Parameters to Generate IG random numbers

76 % alpha0 = 6 . 1 8 8 ;

77 % beta0 = −3.894 ;

78 % de l ta0 = 0 . 1 6 2 2 ;

79 % alpha = alpha0 ;

80 % beta = beta0 ;

81 % d e l t a = de l ta0 ;

82 % a = [ 1 1 1 ] ;

83 % b = [ de l t a0 ∗ s q r t ( alpha0 ˆ2−beta0 ˆ2) , d e l t a ∗ s q r t ( alpha ˆ2−beta ˆ2) , d e l t a ∗ s q r t (

alpha ˆ2−beta ˆ2) ] ;

84 % c = [ 1 1 ] ;

85 % % Generate dependent IG subord inato r s

86 % [ R1 , L0 ] = IGProc ( a , b , c (1 ) ,dT,T,N, 0 , 1 ) ;

87 % [ R2 ] = IGProc ( a , b , c (2 ) ,dT,T,N, L0 , 2 ) ;

88 % R = [ R1 ; R2 ] ;

89 % % Generate NIG p r o c e s s e s

90 % covar iance = [ d e l t a ˆ2 d e l t a ∗ d e l t a ; d e l t a ∗ d e l t a de l t a ˆ 2 ] ;

91 % d r i f t = [ beta ∗ d e l t a ˆ 2 , . . .

92 % beta ∗ d e l t a ˆ 2 ] ;

93 % [ S1 ] = NIGProc (R, i n i t i a l S t o c k P r i c e s , d r i f t (1 ) , covar iance ( 1 , : ) ,T, dT,N) ;

94 % [ S2 ] = NIGProc (R, i n i t i a l S t o c k P r i c e s , d r i f t (2 ) , covar iance ( 2 , : ) ,T, dT,N) ;

95 % % Generating Asian opt ion p r i c e (p) and payo f f (h )

96 % [ P1 ] = AsianOption ( S1 , s t r i k e P r i c e , rate ,T, dT,N) ;

97 % [ P2 ] = AsianOption ( S2 , s t r i k e P r i c e , rate ,T, dT,N) ;

98 % % Generating Asian Spread opt ion p r i c e (p) and payo f f (h)

99 % [P] = AsianSpOpt ( S1 , S2 , sp r eadSt r i k ePr i c e , rate ,T, dT,N) ;

100 % s1 = gather ( S1 ) ;

101 % s2 = gather ( S2 ) ;

102 % p1 = gather (P1) ;

103 % p2 = gather (P2) ;

104 % p = gather (P) ;

105 % r e s e t ( dev ) ;

106 % end

Time-changed Bivariate Main Code
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % The i s the main s c r i p t %

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 c l e a r ;

5 c l c ;

6 t i c

7 %%

8 % I n i t i a l i z e Var i ab l e s

9 M = 12 ; % sampling f requency

10 T = 1/75 ; % maturity time in years

11 dT = T/M; % sampling per iod

12 N = 1000000; % number o f s imu la t i on s

13 r a t e = 0 . 0 2 ; % r i s k f r e e ra t e o f re turn in %∗100

14 S0 = [ 6 8 . 5 8 ; 7 4 . 8 8 ] ; % i n i t i a l s tock p r i c e o f two a s s e t s

15 K = 3 9 : 0 . 5 : 4 8 ; % S t r i k e

16 time = transpose ( l i n s p a c e (0 ,T,T/dT) ) ;

17 k = 1 ; l = 1 ;

18 f p r i n t f ( ’ Total number o f s imu la t i on s : %i \n ’ ,N)

19 %%

20 % % Gamma Subordinated Process

21 % % Generate dependent Gamama random time proce s s

22 % [ R2 ,G0 ] = GammaProc( kappa , c , dT,T,N) ;

23 % % Generate VG proce s s

24 % [ S2 , dY2 , Y2 ] = VGProc(R2 , S0 1 ,muY, sigmaY ) ;

25 % f p r i n t f ( ’ Done Gamma Sub\n ’ )

26 %%

27 % Geometric Brownian Motion Process

28 % Z = normrnd ( 0 , 1 , [M,N] ) ;

29 % dY3 = muY∗dT+s q r t (dT) ∗sigmaY .∗Z ;

30 % Y3 = cumsum(dY3) ;

31 % S3 = S0∗exp (Y3) ;

32 %%

33 load ( ’ BivarY1 . mat ’ )

34 load ( ’ BivarX1 . mat ’ )

35 % Parameters from c a l i b r a t i o n

36 muX = [ y ( 4 , 1 3 : 3 1 ) ; x ( 3 , 1 : 1 9 ) ] ;

37 sigmaX = [ y ( 5 , 1 3 : 3 1 ) ; x ( 4 , 1 : 1 9 ) ] ;

38 kappa = [ y ( 1 , 1 3 : 3 1 ) ; y ( 2 , 1 3 : 3 1 ) ; x ( 1 , 1 : 1 9 ) ] ;

39 c = [ y ( 3 , 1 3 : 3 1 ) ; x ( 2 , 1 : 1 9 ) ] ;

40 muY = dT.∗muX+c .∗muX∗dT;

41 sigmaY = s q r t (dT . ∗ ( ( kappa ( 1 , : )+c . ˆ 2 . ∗ [ kappa ( 2 , : ) ; kappa ( 3 , : ) ] ) .∗muX. ˆ 2 + . . .

42 ( [ 1 ; 1 ] + c ) .∗ sigmaX . ˆ 2 ) ) ;
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43 % Asian opt ion payo f f f o r each s t r i k e p r i c e

44 Payof f1 = ze ro s (1 , l ength (K) −1) ; %Payof f2 = Payof f1 ; %Bls = Payof f1 ;

45 whi le k < l ength (K)+1

46 % IG Subordinated Process

47 % Generate dependent IG random time proce s s

48 [ R1 , L0 ] = IGProc ( kappa ( : , k ) , c (1 , k ) ,dT,T,N, 1 ) ;

49 [ R2 ] = IGProc ( kappa ( : , k ) , c (2 , k ) ,dT,T,N, 2 , L0) ;

50 % Generate NIG proce s s

51 [ S1 ] = NIGProc (R1 , S0 (1 ) ,muY(1 , k ) , sigmaX (1 , k ) ) ;

52 [ S2 ] = NIGProc (R2 , S0 (2 ) ,muY(2 , k ) , sigmaX (2 , k ) ) ;

53 f p r i n t f ( ’Done IG Sub\n ’ )

54 % Generating Asian opt ion p r i c e (p) and payo f f (h)

55 [ Payof f1 ( k ) ] = AsianSprOption ( S1 , S2 ,K( k ) , rate , dT, 0 . 8 5 ) ;

56 k = k+1;

57 end

58 f p r i n t f ( ’Done Payof f c a l c u l a t i o n s \n ’ )

59 toc

60

61 %%

62 % Save r e s u l t s

63 f i l ename = s p r i n t f ( ’MCTCSprSim %d . mat ’ ,T) ;

64 save ( f i l ename , . . .

65 ’K ’ , ’ time ’ , ’ Payof f1 ’ )

66 f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

67

68 % save ( ’ MCTimeChangedDataCI . mat ’ , ’ H1 ’ , ’ S1 ’ , ’ dY1 ’ , ’ Y1 ’ , ’ R1 ’ , ’ H2 ’ , ’ S2 ’ , . . .

69 % ’dY2 ’ , ’ Y2 ’ , ’ R2 ’ , ’H’ , ’K’ , ’ KSpread ’ , ’N’ , ’ time ’ )

70 %f p r i n t f ( ’ More v a r i a b l e s saved !\n ’ )

71 %%

72 % GPU S t u f f

73

74 % i f M <= 1000

75 % N = M;

76 % % Parameters to Generate IG random numbers

77 % alpha0 = 6 . 1 8 8 ;

78 % beta0 = −3.894 ;

79 % de l ta0 = 0 . 1 6 2 2 ;

80 % alpha = alpha0 ;

81 % beta = beta0 ;

82 % d e l t a = de l ta0 ;

83 % a = [ 1 1 1 ] ;

84 % b = [ de l t a0 ∗ s q r t ( alpha0 ˆ2−beta0 ˆ2) , d e l t a ∗ s q r t ( alpha ˆ2−beta ˆ2) , d e l t a ∗ s q r t (
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alpha ˆ2−beta ˆ2) ] ;

85 % c = [ 1 1 ] ;

86 % % Generate dependent IG subord inato r s

87 % [ R1 , L0 ] = IGProc ( a , b , c (1 ) ,dT,T,N, 0 , 1 ) ;

88 % [ R2 ] = IGProc ( a , b , c (2 ) ,dT,T,N, L0 , 2 ) ;

89 % R = [ R1 ; R2 ] ;

90 % % Generate NIG p r o c e s s e s

91 % covar iance = [ d e l t a ˆ2 d e l t a ∗ d e l t a ; d e l t a ∗ d e l t a de l t a ˆ 2 ] ;

92 % d r i f t = [ beta ∗ d e l t a ˆ 2 , . . .

93 % beta ∗ d e l t a ˆ 2 ] ;

94 % [ S1 ] = NIGProc (R, i n i t i a l S t o c k P r i c e s , d r i f t (1 ) , covar iance ( 1 , : ) ,T, dT,N) ;

95 % [ S2 ] = NIGProc (R, i n i t i a l S t o c k P r i c e s , d r i f t (2 ) , covar iance ( 2 , : ) ,T, dT,N) ;

96 % % Generating Asian opt ion p r i c e (p) and payo f f (h )

97 % [ P1 ] = AsianOption ( S1 , s t r i k e P r i c e , rate ,T, dT,N) ;

98 % [ P2 ] = AsianOption ( S2 , s t r i k e P r i c e , rate ,T, dT,N) ;

99 % % Generating Asian Spread opt ion p r i c e (p) and payo f f (h)

100 % [P] = AsianSpOpt ( S1 , S2 , sp r eadSt r i k ePr i c e , rate ,T, dT,N) ;

101 % s1 = gather ( S1 ) ;

102 % s2 = gather ( S2 ) ;

103 % p1 = gather (P1) ;

104 % p2 = gather (P2) ;

105 % p = gather (P) ;

106 % r e s e t ( dev ) ;

107 % end

IG Random Number Generator

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This func t i on gene ra t e s IG random numbers . I r e tu rn s the IG generated %

3 % numbers V re tu rn s the Chi squared generated numbers and Y re tu rn s the %

4 % uni formly generated numbers . a and b are the IG parameters , n i s the %

5 % number o f subord ina to r s and m i s the number o f s imu la t i on s . %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 f unc t i on [ I ] = IGRNG( a , b , n ,m)

8 % I n i t i a l i z e v a r i a b l e s

9 a ones = ones (1 ,m) ; b ones = ones (1 ,m) ;

10 a = ( t ranspose ( a ) ∗ a ones ) ; b = ( t ranspose (b) ∗ b ones ) ;

11 % Schucany ’ s a lgor i thm to generate IG random numbers

12 V = ( normrnd ( 0 , 1 , [ n m] ) ) . ˆ 2 ; % gene ra t e s a ch i squared n by m array

13 W = a .∗V;

14 C = a . / ( 2 . ∗ b) ;

15 X = a + C. ∗ (W − s q r t (W. ∗ ( 4 . ∗ b + W) ) ) ;
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16 P = a . / ( a+ones (n ,m) ) ; Y = uni f rnd ( 0 , 1 , [ n ,m] ) ;

17 % Yg = gather (Y) ; Pg = gather (P) ; %Only r equ i r ed f o r gpu ar rays

18 i f Y >= P

19 I = ( a . ˆ 2 ) . /X;

20 e l s e

21 I = X;

22 end

23 end

IG Process Generator

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This func t i on w i l l generate the IG d i s t random time %

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 f unc t i on [R, L0 ] = IGProc ( kappa , c , dT,T,N, j , L0)

5 a0 = dT/ s q r t ( kappa (1 ) ) ; b0 = 1/ s q r t ( kappa (1 ) ) ;

6 i f j>0

7 a j = dT/ s q r t ( kappa ( j +1) ) ; bj = 1/ s q r t ( kappa ( j +1) ) ;

8 e l s e

9 a j=a0 ; bj=b0 ;

10 end

11 i f narg in < 7

12 % pd = makedist ( ’ InverseGauss ian ’ , ’mu’ , a , ’ lambda ’ , b ) ;

13 L0 = ze ro s ( u int64 (T/dT) ,N) ; L = L0 ;

14 n = length ( a0 ) ; m = N; i = 1 ; t = 0 ;

15 whi le t < T−dT

16 t = t+dT;

17 % X = random (pd , [ n ,m] ) ; Y = random (pd , [ n ,m] ) ;

18 X = IGRNG( a0 , b0 , n ,m) ; Y = IGRNG( aj , bj , n ,m) ;

19 % Independent IG Proce s s e s

20 L0( i +1 , : ) = L0( i , : )+X( 1 , : ) ;

21 L( i +1 , : ) = L( i , : )+Y( 1 , : ) ;

22 i = i +1;

23 end

24 % Dependent IG Proce s s e s

25 R = L0 + c∗L ;

26 e l s e

27 % pd = makedist ( ’ InverseGauss ian ’ , ’mu’ , a , ’ lambda ’ , b ) ;

28 L = ze ro s ( u int64 (T/dT) ,N) ;

29 n = length ( a0 ) ; m = N; i = 1 ; t = 0 ;

30 whi le t < T−dT

31 t = t+dT;
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32 % X = random (pd , [ n ,m] ) ; Y = random (pd , [ n ,m] ) ;

33 X = IGRNG( a0 , b0 , n ,m) ; Y = IGRNG( aj , bj , n ,m) ;

34 % Independent IG Proce s s e s

35 L( i +1 , : ) = L( i , : )+Y( 1 , : ) ;

36 i = i +1;

37 end

38 % Dependent IG Proce s s e s

39 R = L0 + c∗L ;

40 end

41 end

NIG Process Generator

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This gene ra t e s a IG subord inated time changed proce s s

%

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 f unc t i on [ S ,dY,Y,dW]=NIGProc (R, S0 ,mu, sigma )

5 n = s i z e (R, 1 ) ; m = s i z e (R, 2 ) ;

6 Z = normrnd ( 0 , 1 , [ 1 ,m] ) ;

7 dR = [ z e ro s (m, 1 ) , d i f f (R) ’ ] ;

8 dR =dR ’ ;

9 dY = sigma∗ s q r t (dR) .∗Z + . . .

10 dR∗mu;

11 dW = sigma∗ s q r t (dR) .∗Z − . . .

12 dR∗ sigma ;

13 Y = cumsum(dY) ;

14 S = S0∗exp (Y) ;

15 end

Gamma Random Number Generator

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This func t i on gene ra t e s Gamma random numbers

%

3 % U and V return uni formly generated random numbers

%

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 f unc t i on [G] = GammaRNG( a , n ,m)

6 % I n i t i a l i z e v a r i a b l e s

7 a ones = ones (1 ,m) ;

8 a = ( t ranspose ( a ) ∗ a ones ) ;
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9 X = ones (n ,m) ; Y = ones (n ,m) ;

10 % Jonk ’ s a lgor i thm to generate Gamma d i s t r i b u t e d randon numbers

11 whi le X+Y > 1

12 U = uni f rnd ( 0 , 1 , [ n ,m] ) ; V = uni f rnd ( 0 , 1 , [ n ,m] ) ;

13 X = U. ˆ ( 1 . / a ) ; Y = V.ˆ (1 . / (1 − a ) ) ;

14 end

15 Z = − l og ( un i f rnd ( 0 , 1 , [ n ,m] ) ) ;

16 G = Z.∗X. / (X+Y) ;

17 end

Gamma Process Generator

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This func t i on w i l l generate the Gamma d i s t random time %

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 f unc t i on [R,G0 ] = GammaProc( kappa , c , dT,T,N, j )

5 a0 = dT/kappa (1 ) ;

6 i f l ength ( kappa )>1

7 a j=dT/kappa ( j +1) ;

8 e l s e

9 a j=a0 ;

10 end

11 % pd = makedist ( ’Gamma’ , ’ a ’ , a ) ;

12 G0 = ze ro s (T/dT,N) ; G = ze ro s (T/dT,N) ;

13 n = length ( a0 ) ; m = N; i = 1 ; t = 0 ;

14 whi le t < T−dT

15 t = t+dT;

16 % X = random (pd , [ n ,m] ) ; Y = random (pd , [ n ,m] ) ;

17 X = GammaRNG( a0 , n ,m) ; Y = GammaRNG( aj , n ,m) ;

18 % Independent IG Proce s s e s

19 G0( i +1 , : ) = G0( i , : )+X( 1 , : ) ;

20 G( i +1 , : ) = G( i , : )+Y( 1 , : ) ;

21 i = i +1;

22 end

23 % Dependent IG Proce s s e s

24 R = G0 + c∗G;

25 end

26

VG Process Generator

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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2 % This gene ra t e s a Gamma subordinated time changed proce s s

%

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 f unc t i on [ S ,dY,Y,dW]=VGProc(R, S0 ,mu, sigma , L , j , l )

5 n = s i z e (R, 1 ) ; m = s i z e (R, 2 ) ; dY=ze ro s (n ,m) ;

6 i f narg in <= 6

7 Z = normrnd ( 0 , 1 , [ 1 ,m] ) ;

8 dR = [ z e ro s (m, 1 ) , d i f f (R) ’ ] ;

9 dR =dR ’ ;

10 dY = sigma∗ s q r t (dR) .∗Z + . . .

11 dR∗mu;

12 dW = sigma∗ s q r t (dR) .∗Z − . . .

13 dR∗ sigma ;

14 e l s e i f narg in > 6

15 % j i s the row index o f covar iance matrix

16 % l i s the column index o f j th row that cor responds to the other s tock

17 sigma1 = sigma ( j , j ) ; sigma2 = sigma ( j , l ) ;

18 Z = normrnd ( 0 , 1 , [ 1 ,m] ) ;

19 dR = [ z e ro s (m, 1 ) , d i f f (R) ’ ] ;

20 dR =dR ’ ;

21 dL = [ z e ro s (m, 1 ) , d i f f (L) ’ ] ;

22 dL =dL ’ ;

23 dY = sigma1∗ s q r t (dR) .∗Z + . . .

24 sigma2∗ s q r t (dL) .∗Z + . . .

25 dR∗mu( j ) ;

26 dW = sigma∗ s q r t (dR) .∗Z − . . .

27 dR∗ sigma ;

28 end

29 Y = cumsum(dY) ;

30 S = S0∗exp (Y) ;

31 end

Asian Option Payoff

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This computes Asian Option Pr i ce %

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 f unc t i on [ payo f f ] = AsianOption (S ,K, r , dT)

5 % opt ion payo f f

6 h = mean(max(mean(S)−K, 0 ) ) ;

7 % opt ion di scounted value

8 payo f f = exp(− r ∗(dT) ) ∗h ;
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9 end

Asian Basket Spread Option Payoff

1 f unc t i on [ payo f f ] = AsianSprOption ( S1 , S2 ,K, r , dT,w)

2 % opt ion payo f f

3 h = mean(max( (w∗mean( S1 ) −(1−w) ∗mean( S2 ) )−K, 0 ) ) ;

4 % opt ion di scounted value

5 payo f f = exp(− r ∗(dT) ) ∗h ;

6 end

Hedging Asian Options

Quadratic Hedging

NIG Quadratic Hedging

1 c l e a r ;

2 c l c ;

3 format long

4

5 T=1;

6 dt =1/250;

7 M=T/dt ;

8 S0=57;

9 r =0.0367;

10 N = 100000;

11 K = 52 ;

12 f i n a l S t r i k e P r i c e = K;

13

14 %% Hedging by MC

15 t i c

16 k = 1 ; l = 1 ;

17 f p r i n t f ( ’ Total number o f s imu la t i on s : %i \n ’ ,N)

18 % Parameters from c a l i b r a t i o n

19 muY = 0 ; % d r i f t parameter

20 sigmaY = 0 . 0 2 ; % v o l a t i t l i t y

21 kappa = 0 . 1 ;

22 c = 0 ;

23 % IG Subordinated Process

24 % Generate dependent IG random time proce s s
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25 [ R1 , L0 ] = IGProc ( kappa , c , dt ,T,N) ;

26 % Generate NIG proce s s

27 [ S ] = NIGProc (R1 , S0 ,muY, sigmaY ,T, dt ) ;

28 V = max(mean(S)−K, 0 ) ;

29 f p r i n t f ( ’Done IG Sub\n ’ )

30

31 %% Hedging MC by r e p l i c a t i o n

32 St = mean(S , 2 ) ;

33 alpha = cov (S( end , : ) ,V) / var (S( end , : ) ) ;

34 beta = exp(− r ∗dt ) ∗(mean(V)−alpha ∗St ( end ) ) ;

35 % wealth proce s s

36 X = exp(− r ∗dt ) ∗mean(mean(V) )+exp ( r ∗T) .∗ beta+alpha .∗ St ( end ) ;

37 % determining optimal alpha and beta

38 J = mean ( ( mean(V)−X) . ˆ 2 ) ;

39 [ L , I ]=min ( J ( : ) ) ;

40 [ row , c o l ] = ind2sub ( s i z e ( J ) , I ) ;

41 alpha = alpha ( row , c o l ) ;

42 beta = beta ( row , c o l ) ;

43 X = exp(− r ∗dt ) ∗mean(mean(V) )+exp ( r ∗T) .∗ beta+alpha .∗ St ( end ) ;

44 % f r a c t i o n o f wealth in s to ck s and bonds

45 p i s = alpha . /X;

46 p i p = 1− p i s ;

47 % hedging e r r o r

48 RL = V − X;

49

50 toc

51

52 %% Hedging with COS Method

53 t i c

54 f p r i n t f ( ’ S ta r t T=%i \n ’ ,T)

55 %Note : According to our e r r o r ana ly s i s , the re i s term N( e r r o r ( q ) ) , so when

56 %N goes up , N I MUST BE INCREASED AT THE SAME TIME!

57 %Defau l t va lue s

58 N=256;

59 N I =400;

60

61 % I n i t i a l i z i n g

62 t i c ;

63 i=complex (0 , 1 ) ;

64

65 q=0;

66
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67 % Parameters from c a l i b r a t i o n

68 muX = 0 ; % d r i f t parameter

69 sigmaX = 0 . 0 2 ; % v o l a t i t l i t y

70 kappa = 0 . 1 ;

71 c = 0 ;

72

73 a0 = 1/ s q r t ( kappa ) ; b0 = 1/ s q r t ( kappa ) ;

74 % % Cumulant and t runc t i on range f o r NIG

75 c1 = dt∗muX;

76 c2 = dt ∗( sigmaXˆ2+muX∗kappa ) ;

77 %

78 % % i n t e g r a t i o n t runcat i on

79

80 % L=10 converges we l l to the r e f e r e n c e value . When i n c r e a s i n g L , N, N I

81 % should a l s o be i n c r e a s e d . And when L i s very la rge , should use put− c a l l

82 % par i ty .

83 L=10;

84 a=c1−L∗ s q r t (M∗ c2 ) ;

85 b=log (M)+M∗ c1+L∗ s q r t (M∗ c2 ) ;

86

87

88 k=0:N−1;

89 omega=k ’∗ pi /(b−a ) ;

90 v = i ∗muX∗omega−0.5∗omega .ˆ2∗ sigmaX ˆ2 ;

91 c f Z=exp(−a0∗dt ∗( s q r t (−2∗ i ∗(− i ∗v )+b0 ˆ2)−b0 ) ) ;

92 Int As ian=ze ro s (N, N) ;

93

94 % Only f o r Clenshaw−Curt i s quadrature

95 Ni =0:2: N I ;

96 Ni=Ni ’ ;

97 d=2./(1−Ni . ˆ 2 ) ;

98 d (1) =1;

99 d( end ) =0.5∗d( end ) ;

100 n=0:1: f l o o r ( N I /2) ;

101 D=n ’∗ n ;

102 D=2/(N I ) ∗ cos (D∗2∗ pi /N I ) ;

103 D( : , 1 ) =0.5∗D( : , 1 ) ;

104 D( : , end ) =0.5∗D( : , end ) ;

105 w1=D’∗ d ;

106

107 f o r k1=1:N−1

108 f o r k2=1:N−1
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109 Int As ian ( k1 , k2 ) = asianmat ( omega ( k1 ) , omega ( k2 ) , N I , a , b , a , w1) ;

110 end

111 end

112

113 % % Only f o r Beta func t i on

114 % f o r k1=1:N−1

115 % f o r k2=1:N−1

116 % Int As ian ( k1 , k2 ) = asianmat ( k1 , k2 , a , b ) ;

117 % end

118 % end

119

120 c f B=c f Z ;

121

122 f o r j =2:M

123 A=r e a l ( c f B .∗ exp(− i ∗a∗omega ) ) ;

124 A(1) =0.5∗A(1) ;

125 Phi B =(2/(b−a ) ) ∗ Int As ian ∗A;

126 c f B=c f Z .∗ Phi B ;

127 end

128

129

130 % ep stand f o r ’ e x e r c i s e point ’

131 ep=log (K∗(M+1)/S0−1) ;

132

133 i f ep>b

134 ep=b ;

135 e l s e i f ep<a

136 ep=a ;

137 end

138

139 %% Hedging with s to ck s and bonds

140 U=(2./(b−a ) ) ∗ ( ( S0 . / (M+1) ) ∗Chi ( ep , b ,N, a , b ) −(K−(S0 /(M+1) ) ) ∗ Psi ( ep , b ,N, a , b) ) ;

141 Re=r e a l ( c f B .∗ exp(− i ∗a∗omega ) ) ;

142 % Asian opt ion vlaue

143 H=U.∗Re ’ ;

144 H(1) =0.5∗H(1) ;

145 % Price p roce s s

146 Re=r e a l ( c f Z .∗ exp(− i ∗a∗omega ) ) ;

147 % E[ S0exp (Y) ] = V.∗Re ’

148 V = ( 2 . / ( b−a ) ) ∗S0∗Chi ( a , b ,N, a , b) ;

149 % stock p r i c e at t=T

150 S=V.∗Re ’ ;
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151 S (1) =0.5∗S (1) ;

152 % FOC

153 a lpha cos = cov (H, S) / var (S) ;

154 be ta co s = exp(− r ∗dt ) ∗(sum(H)−a lpha cos ∗sum(S) ) ;

155 % Wealth proce s s

156 X cos = exp(− r ∗dt ) ∗sum(H)+exp ( r ∗T) .∗ be ta co s+a lpha cos .∗ sum(S) ;

157 % determing the minimum

158 J = ( ones (2 , 2 ) ∗sum(H)−X cos ) . ˆ 2 ;

159 [M, I ]=min ( J ( : ) ) ;

160 [ row , c o l ] = ind2sub ( s i z e ( J ) , I ) ;

161 % optimal s t o ck s and bonds

162 a lpha cos = a lpha cos ( row , c o l ) ;

163 be ta co s = beta co s ( row , c o l ) ;

164 X cos = exp(− r ∗dt ) ∗sum(H)+exp ( r ∗T) .∗ be ta co s+a lpha cos .∗ sum(S) ;

165 % f r a c t i o n o f wealth in s to ck s and bonds

166 p i s c o s = a lpha cos / X cos ;

167 p i p c o s = 1− p i s c o s ;

168 % hedging l o s s

169 RL cos = sum(H) −( X cos ) ;

170 toc

171

172 f p r i n t f ( ’Done\n ’ )

173 save ( ’NIGQHedge . mat ’ , ’RL ’ , ’ RL cos ’ , ’ a lpha ’ , . . .

174 ’ beta ’ , ’ a lpha cos ’ , ’ b e ta co s ’ , ’ p i s ’ , ’ p i p ’ , . . .

175 ’ p i s c o s ’ , ’ p i p c o s ’ , ’ r ’ , ’ S0 ’ , ’ dt ’ , ’T ’ , ’muX’ , ’K ’ , ’ kappa ’ , ’ sigmaX ’ , . . .

176 ’ a ’ , ’ b ’ )

177 f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

VG Quadratic Hedging

1 c l e a r ;

2 c l c ;

3 format long

4

5 T=1;

6 dt =1/250;

7 M=T/dt ;

8 S0=57;

9 r =0.0367;

10 N = 100000;

11 K = 52 ;

12 f i n a l S t r i k e P r i c e = K;
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13

14 %% Hedging by MC

15 t i c

16 k = 1 ; l = 1 ;

17 f p r i n t f ( ’ Total number o f s imu la t i on s : %i \n ’ ,N)

18 % Parameters from c a l i b r a t i o n

19 muY = 0 ; % d r i f t parameter

20 sigmaY = 0 . 0 2 ; % v o l a t i t l i t y

21 kappa = 0 . 1 ;

22 c = 0 ;

23 % Gamma Subordinated Process

24 % Generate dependent Gamama random time proce s s

25 [R,G0 ] = GammaProc( kappa , c , dt ,T,N) ;

26 % Generate VG proce s s

27 [ S ] = VGProc(R, S0 ,muY, sigmaY ,T, dt ) ;

28 V = max(mean(S)−K, 0 ) ;

29 f p r i n t f ( ’Done Gamma Sub\n ’ )

30

31 %% Hedging MC by r e p l i c a t i o n

32 St = mean(S , 2 ) ;

33 alpha = cov (S( end , : ) ,V) / var (S( end , : ) ) ;

34 beta = exp(− r ∗dt ) ∗(mean(V)−alpha ∗St ( end ) ) ;

35 % wealth proce s s

36 X = exp(− r ∗dt ) ∗mean(mean(V) )+exp ( r ∗T) .∗ beta+alpha .∗ St ( end ) ;

37 % determining optimal alpha and beta

38 J = mean ( ( mean(V)−X) . ˆ 2 ) ;

39 [ L , I ]=min ( J ( : ) ) ;

40 [ row , c o l ] = ind2sub ( s i z e ( J ) , I ) ;

41 alpha = alpha ( row , c o l ) ;

42 beta = beta ( row , c o l ) ;

43 X = exp(− r ∗dt ) ∗mean(mean(V) )+exp ( r ∗T) .∗ beta+alpha .∗ St ( end ) ;

44 % f r a c t i o n o f wealth in s to ck s and bonds

45 p i s = alpha . /X;

46 p i p = 1− p i s ;

47 % hedging e r r o r

48 RL = V − X;

49

50 toc

51 %% Hedging with COS Method

52 t i c

53 f p r i n t f ( ’ S ta r t T=%i \n ’ ,T)

54 %Note : According to our e r r o r ana ly s i s , the re i s term N( e r r o r ( q ) ) , so when
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55 %N goes up , N I MUST BE INCREASED AT THE SAME TIME!

56 %Defau l t va lue s

57 N=256;

58 N I =400;

59

60 % I n i t i a l i z i n g

61 t i c ;

62 i=complex (0 , 1 ) ;

63 q=0;

64

65 % Parameters from c a l i b r a t i o n

66 muX = 0 ; % d r i f t parameter

67 sigmaX = 0 . 0 2 ; % v o l a t i t l i t y

68 kappa = 0 . 1 ;

69 c = 0 ;

70

71 a0 = 1/kappa ; b0 = 1/kappa ;

72 % % Cumulant and t runc t i on range f o r VG

73 c1 = dt∗muX;

74 c2 = dt ∗( sigmaXˆ2+muX∗kappa ) ;

75 %

76 % % i n t e g r a t i o n t runcat i on

77

78 % L=10 converges we l l to the r e f e r e n c e value . When i n c r e a s i n g L , N, N I

79 % should a l s o be i n c r e a s e d . And when L i s very la rge , should use put− c a l l

80 % par i ty .

81 L=10;

82 a=c1−L∗ s q r t (M∗ c2 ) ;

83 b=log (M)+M∗ c1+L∗ s q r t (M∗ c2 ) ;

84

85

86 k=0:N−1;

87 omega=k ’∗ pi /(b−a ) ;

88 v = i ∗muX∗omega−0.5∗omega .ˆ2∗ sigmaX ˆ2 ;

89 c f Z =(1− i .∗( − i ∗v ) . / b0 ) . ˆ ( a0∗dt ) ;

90 Int As ian=ze ro s (N, N) ;

91

92 % Only f o r Clenshaw−Curt i s quadrature

93 Ni =0:2: N I ;

94 Ni=Ni ’ ;

95 d=2./(1−Ni . ˆ 2 ) ;

96 d (1) =1;
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97 d( end ) =0.5∗d( end ) ;

98 n=0:1: f l o o r ( N I /2) ;

99 D=n ’∗ n ;

100 D=2/(N I ) ∗ cos (D∗2∗ pi /N I ) ;

101 D( : , 1 ) =0.5∗D( : , 1 ) ;

102 D( : , end ) =0.5∗D( : , end ) ;

103 w1=D’∗ d ;

104

105 f o r k1=1:N−1

106 f o r k2=1:N−1

107 Int As ian ( k1 , k2 ) = asianmat ( omega ( k1 ) , omega ( k2 ) , N I , a , b , a , w1) ;

108 end

109 end

110

111 % % Only f o r Beta func t i on

112 % f o r k1=1:N−1

113 % f o r k2=1:N−1

114 % Int As ian ( k1 , k2 ) = asianmat ( k1 , k2 , a , b ) ;

115 % end

116 % end

117

118 c f B=c f Z ;

119

120 f o r j =2:M

121 A=r e a l ( c f B .∗ exp(− i ∗a∗omega ) ) ;

122 A(1) =0.5∗A(1) ;

123 Phi B =(2/(b−a ) ) ∗ Int As ian ∗A;

124 c f B=c f Z .∗ Phi B ;

125 end

126

127

128 % ep stand f o r ’ e x e r c i s e point ’

129 ep=log (K∗(M+1)/S0−1) ;

130

131 i f ep>b

132 ep=b ;

133 e l s e i f ep<a

134 ep=a ;

135 end

136 %% Hedging with s to ck s and bonds

137 U=(2./(b−a ) ) ∗ ( ( S0 . / (M+1) ) ∗Chi ( ep , b ,N, a , b ) −(K−(S0 /(M+1) ) ) ∗ Psi ( ep , b ,N, a , b) ) ;

138 Re=r e a l ( c f B .∗ exp(− i ∗a∗omega ) ) ;
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139 % Asian opt ion vlaue

140 H=U.∗Re ’ ;

141 H(1) =0.5∗H(1) ;

142 % Price p roce s s

143 Re=r e a l ( c f Z .∗ exp(− i ∗a∗omega ) ) ;

144 % E[ S0exp (Y) ] = V.∗Re ’

145 V = ( 2 . / ( b−a ) ) ∗S0∗Chi ( a , b ,N, a , b) ;

146 % stock p r i c e at t=T

147 S=V.∗Re ’ ;

148 S (1) =0.5∗S (1) ;

149 % FOC

150 a lpha cos = cov (H, S) / var (S) ;

151 be ta co s = exp(− r ∗dt ) ∗(sum(H)−a lpha cos ∗sum(S) ) ;

152 % Wealth proce s s

153 X cos = exp(− r ∗dt ) ∗sum(H)+exp ( r ∗T) .∗ be ta co s+a lpha cos .∗ sum(S) ;

154 % determing the minimum

155 J = ( ones (2 , 2 ) ∗sum(H)−X cos ) . ˆ 2 ;

156 [M, I ]=min ( J ( : ) ) ;

157 [ row , c o l ] = ind2sub ( s i z e ( J ) , I ) ;

158 % optimal s t o ck s and bonds

159 a lpha cos = a lpha cos ( row , c o l ) ;

160 be ta co s = beta co s ( row , c o l ) ;

161 X cos = exp(− r ∗dt ) ∗sum(H)+exp ( r ∗T) .∗ be ta co s+a lpha cos .∗ sum(S) ;

162 % f r a c t i o n o f wealth in s to ck s and bonds

163 p i s c o s = a lpha cos / X cos ;

164 p i p c o s = 1− p i s c o s ;

165 % hedging l o s s

166 RL cos = sum(H) −( X cos ) ;

167 toc

168

169 save ( ’VGQHedge . mat ’ , ’RL ’ , ’ RL cos ’ , ’ a lpha ’ , . . .

170 ’ beta ’ , ’ a lpha cos ’ , ’ b e ta co s ’ , ’ p i s ’ , ’ p i p ’ , . . .

171 ’ p i s c o s ’ , ’ p i p c o s ’ , ’ r ’ , ’ S0 ’ , ’ dt ’ , ’T ’ , ’muX’ , ’K ’ , ’ kappa ’ , ’ sigmaX ’ , . . .

172 ’ a ’ , ’ b ’ )

173 f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

Quantile Hedging

NIG Quantile Hedging

1 c l e a r ;
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2 c l c ;

3 format long

4 %% I n i t i a l Parameters

5 T=1;

6 dt =1/250;

7 M=T/dt ;

8 S0=57;

9 r =0.0367;

10 N = 100000;

11 K = 52 ;

12 eps = 0 . 9 9 ;

13

14 %% Hedging by MC

15 t i c

16 f p r i n t f ( ’ Total number o f s imu la t i on s : %i \n ’ ,N)

17 % Parameters from c a l i b r a t i o n

18 muY = 0 ; % d r i f t parameter

19 sigmaY = 0 . 0 2 ; % v o l a t i t l i t y

20 kappa = 0 . 1 ;

21 c = 0 ;

22 % IG Subordinated Process

23 % Generate dependent IG random time proce s s

24 [ R1 , L0 ] = IGProc ( kappa , c , dt ,T,N) ;

25 % Generate NIG proce s s

26 [ S ] = NIGProc (R1 , S0 ,muY, sigmaY ,T, dt ) ;

27 V = max(S−K, 0 ) ;

28 ST = S( end , : ) ;

29 VT = V( end , : ) ;

30 V0 = exp(− r ∗T) ∗mean(mean(V) ) ;

31 f p r i n t f ( ’Done IG Sub\n ’ )

32 %% VaR Hedging with MC by r e p l i c a t i o n

33 % hedging p o r t f o l i o

34 % i n i t i a l p o r t f o l i o g iven by C0 == 0

35 syms a

36 b = V0−a∗S0 ;

37 x = b+a∗S0 ;

38 c = x−V0 ;

39 system = c == 0 ;

40 var = a ;

41 alpha = double ( s o l v e ( system , var ) ) ;

42 beta = V0−alpha ∗S0 ;

43 % wealth proce s s
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44 X = V0+exp ( r ∗T) .∗ beta+alpha .∗ST;

45 % determining q u a n t i l e index

46 C = exp(− r ∗T) ∗X−exp(− r ∗T) ∗VT;

47 [ row , c o l ] = f i n d (C>=0) ;

48 A = VT( c o l ) ;

49 [ J , I ] = s o r t (C( c o l ) , ’ ascend ’ ) ;

50 A = A( I ) ;

51 idx = f l o o r ( l ength (A) ∗( eps ) ) +1;

52 dN = length (A( 1 : idx ) ) ;

53 % alpha at C == 0

54 syms a

55 V1 = exp(− r ∗T) ∗A( idx ) ;

56 b = V0−a∗S0 ;

57 x = V1+exp ( r ∗T) ∗b+a∗mean(ST) ;

58 c = exp(− r ∗T) ∗x − V0 ;

59 system = c == 0 ;

60 var = a ;

61 % optimal p o r t f o l i o f o r VaR

62 alpha = double ( s o l v e ( system , var ) ) ;

63 beta = V0−alpha ∗S0 ;

64 X var = V0+exp ( r ∗T) ∗beta+alpha ∗mean(ST) ;

65 p i s v a r = alpha /X var ;

66 p i p v a r = 1− p i s v a r ;

67 % I n i t i a l investments

68 H0 var = beta+alpha ∗S0 ;

69 % hedging e r r o r

70 RL var = exp(− r ∗T) ∗( X var−VT) ;

71

72 %% ES Hedging with MC by r e p l i c a t i o n

73 % optimal p o r t f o l i o f o r ES

74 % alpha at C>=0 from 1 : idx −1

75 syms a

76 V2 = exp(− r ∗T) ∗ (1/(dN∗ eps ) ) ∗sum(A( 1 : idx −1) )+V1 ;

77 b = V0−a∗S0 ;

78 x = V2+exp ( r ∗T) ∗b+a∗mean(ST) ;

79 c = exp(− r ∗T) ∗x − V0 ;

80 system = c == 0 ;

81 var = a ;

82 a lpha a = double ( s o l v e ( system , var ) ) ;

83 % optimal p o r t f o l i o

84 a lpha e s = alpha a ;

85 b e ta e s = V0−a lpha e s ∗S0 ;
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86 X es = V0+exp ( r ∗T) ∗ b e ta e s+a lpha e s ∗mean(ST) ;

87 p i s e s = a lpha e s / X es ;

88 p i p e s = 1− p i s e s ;

89 % I n i t i a l investments

90 H0 es = b e ta e s+a lpha e s ∗S0 ;

91 % hedging e r r o r

92 RL es = exp(− r ∗T) ∗( X es−VT) ;

93 toc

94 %% Hedging with COS Method

95 format long

96

97 T=1;

98 dt =1/250;

99 M=T/dt ;

100 S0=57;

101 r =0.0367;

102 K = 52 ;

103 f i n a l S t r i k e P r i c e = K;

104 eps = 0 . 9 9 ;

105

106 f p r i n t f ( ’ S ta r t T=%i \n ’ ,T)

107 %Note : According to our e r r o r ana ly s i s , the re i s term N( e r r o r ( q ) ) , so when

108 %N goes up , N I MUST BE INCREASED AT THE SAME TIME!

109 %Defau l t va lue s

110 N=256;

111 N I =400;

112

113 % I n i t i a l i z i n g

114 t i c ;

115 i=complex (0 , 1 ) ;

116

117 q=0;

118

119 a0 = 1/ s q r t ( kappa ) ; b0 = 1/ s q r t ( kappa ) ;

120 % % Cumulant and t runc t i on range f o r NIG

121 c1 = dt∗muY;

122 c2 = dt ∗( sigmaYˆ2+muY∗kappa ) ;

123 %

124 % % i n t e g r a t i o n t runcat i on

125

126 % L=10 converges we l l to the r e f e r e n c e value . When i n c r e a s i n g L , N, N I

127 % should a l s o be i n c r e a s e d . And when L i s very la rge , should use put− c a l l

112



APPENDIX A

128 % par i ty .

129 J=10;

130 a=c1−J∗ s q r t (M∗ c2 ) ;

131 b=log (M)+M∗ c1+J∗ s q r t (M∗ c2 ) ;

132

133

134 k=0:N−1;

135 omega=k ’∗ pi /(b−a ) ;

136 v = i ∗muY∗omega−0.5∗omega .ˆ2∗ sigmaY ˆ2 ;

137 c f Z=exp(−a0∗dt ∗( s q r t (−2∗ i ∗(− i ∗v )+b0 ˆ2)−b0 ) ) ;

138 Int As ian=ze ro s (N, N) ;

139

140 % Only f o r Clenshaw−Curt i s quadrature

141 Ni =0:2: N I ;

142 Ni=Ni ’ ;

143 d=2./(1−Ni . ˆ 2 ) ;

144 d (1) =1;

145 d( end ) =0.5∗d( end ) ;

146 n=0:1: f l o o r ( N I /2) ;

147 D=n ’∗ n ;

148 D=2/(N I ) ∗ cos (D∗2∗ pi /N I ) ;

149 D( : , 1 ) =0.5∗D( : , 1 ) ;

150 D( : , end ) =0.5∗D( : , end ) ;

151 w1=D’∗ d ;

152

153 f o r k1=1:N−1

154 f o r k2=1:N−1

155 Int As ian ( k1 , k2 ) = asianmat ( omega ( k1 ) , omega ( k2 ) , N I , a , b , a , w1) ;

156 end

157 end

158

159 % % Only f o r Beta func t i on

160 % f o r k1=1:N−1

161 % f o r k2=1:N−1

162 % Int As ian ( k1 , k2 ) = asianmat ( k1 , k2 , a , b ) ;

163 % end

164 % end

165

166 c f B=c f Z ;

167

168 f o r j =2:M

169 B=r e a l ( c f B .∗ exp(− i ∗a∗omega ) ) ;
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170 B(1) =0.5∗B(1) ;

171 Phi B =(2/(b−a ) ) ∗ Int As ian ∗B;

172 c f B=c f Z .∗ Phi B ;

173 end

174

175

176 % ep stand f o r ’ e x e r c i s e point ’

177 ep=log (K∗(M+1)/S0−1) ;

178

179 i f ep>b

180 ep=b ;

181 e l s e i f ep<a

182 ep=a ;

183 end

184

185 %% VaR and ES Hedging with COS Method

186

187 U=(2./(b−a ) ) ∗ ( ( S0 . / (M+1) ) ∗Chi ( ep , b ,N, a , b ) −(K−(S0 /(M+1) ) ) ∗ Psi ( ep , b ,N, a , b) ) ;

188 Re=r e a l ( c f B .∗ exp(− i ∗a∗omega ) ) ;

189 % Asian opt ion vlaue

190 H=U.∗Re ’ ;

191 H(1) =0.5∗H(1) ;

192 H0 = exp(− r ∗T) ∗sum(H) ;

193 % Price p roce s s

194 Re=r e a l ( c f Z .∗ exp(− i ∗a∗omega ) ) ;

195 % E[ S0exp (Y) ] = V.∗Re ’

196 V = ( 2 . / ( b−a ) ) ∗S0∗Chi ( a , b ,N, a , b) ;

197 % stock p r i c e at t=T

198 S=V.∗Re ’ ;

199 S (1) =0.5∗S (1) ;

200 % Fourier −Cosine o f 1

201 W = ( 2 . / ( b−a ) ) ∗ Psi ( a , b ,N, a , b ) ;

202 F = r e a l ( exp(− i ∗a∗omega ) ) ’ .∗W;

203 F(1) =0.5∗F(1) ;

204 h = sum(H)+F;

205 s = sum(S)+F;

206 % The CDF of c f B

207 W = ( 2 . / ( b−a ) ) ∗Chi ( a , b ,N, a , b) ;

208 CDF = r e a l ( c f Z .∗ exp(− i ∗a∗omega ) ) ’ .∗W;

209 CDF(1) =0.5∗CDF(1) ;

210 % i n i t i a l p o r t f o l i o g iven by C0 == 0

211 syms a
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212 b = H0−a∗S0 ;

213 x = b+a∗S0 ;

214 c = x − H0 ;

215 system = c == 0 ;

216 var = a ;

217 a lpha cos = double ( s o l v e ( system , var ) ) ;

218 be ta co s = H0−a lpha cos ∗S0 ;

219 % Wealth proces

220 X cos = exp(− r ∗T) .∗H+exp ( r ∗T) .∗ be ta co s .∗F+alpha cos .∗ S ;

221 p i s c o s = a lpha cos /sum( X cos ) ;

222 p i p c o s = 1− p i s c o s ;

223 % determining q u a n t i l e index

224 n = 1 ;

225 whi le n < l ength (H)+1

226 J (n) = sum(CDF( 1 : n) ) ;

227 i f J (n) >= eps && J (n) < 1

228 break ;

229 e l s e

230 n = n+1;

231 end

232 end

233 idx = n−1;

234 C = exp(− r ∗T) .∗ sum( X cos ( idx : end ) ) .∗F−exp(− r ∗T) .∗ sum(H( idx : end ) ) ∗F;

235 [ row , c o l ] = f i n d (C>=0) ;

236 A cos = sum(H( c o l ) )+F;

237 dN = length ( A cos ( idx : end ) ) ;

238 % alpha at C>=0 at idx

239 syms a

240 h1 = exp(− r ∗T) ∗A cos ( idx ) ;

241 b = H0−a∗S0 ;

242 x = h1+exp ( r ∗T) ∗b+a∗sum(S) ;

243 c = exp(− r ∗T) ∗x−H0 ;

244 system = c == 0 ;

245 var = a ;

246 % optimal p o r t f o l i o f o r VaR

247 a lpha cos = double ( s o l v e ( system , var ) ) ;

248 be ta co s = H0−a lpha cos ∗S0 ;

249 X var cos = H0+exp ( r ∗T) ∗ be ta co s+a lpha cos .∗ sum(S) ;

250 p i s v a r c o s = a lpha cos / X var cos ;

251 p i p v a r c o s = 1− p i s v a r c o s ;

252 % I n i t i a l investments

253 H0 var cos = beta co s+a lpha cos ∗S0 ;
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254 % hedging e r r o r

255 RL var cos = exp(− r ∗T) ∗ X var cos −H0 ;

256 % alpha at C>=0 from idx

257 syms a

258 h2 = exp(− r ∗T) ∗ (1/(dN∗ eps ) ) ∗sum( A cos ( idx +1:end ) )+h1 ;

259 b = H0−a∗S0 ;

260 x = h2+exp ( r ∗T) ∗b+a∗sum(S) ;

261 c = exp(− r ∗T) ∗x − H0 ;

262 system = c == 0 ;

263 var = a ;

264 a lpha a co s = double ( s o l v e ( system , var ) ) ;

265 % optimal p o r t f o l i o f o r ES

266 a l p h a e s c o s = a lpha a co s ;

267 b e t a e s c o s = H0−a l p h a e s c o s ∗S0 ;

268 X es cos = H0+exp ( r ∗T) ∗ b e t a e s c o s+a l p h a e s c o s ∗sum(S) ;

269 p i s e s c o s = a l p h a e s c o s / X es cos ;

270 p i p e s c o s = 1− p i s e s c o s ;

271 % I n i t i a l investments

272 H0 es cos = b e t a e s c o s+a l p h a e s c o s ∗S0 ;

273 % hedging e r r o r

274 RL es cos = exp(− r ∗T) ∗( X es cos −H) ;

275 toc

276

277 f p r i n t f ( ’Done\n ’ )

278 save ( ’NIGVarHedge . mat ’ , ’ RL var ’ , ’ RL es ’ , ’ RL var cos ’ , ’ RL es cos ’ , . . .

279 ’ a lpha a ’ , ’ a lpha ’ , ’ beta ’ , ’ a l pha e s ’ , ’ b e t a e s ’ , ’ a l pha a co s ’ , ’ a lpha cos ’ , ’

b e ta co s ’ , ’ a l p h a e s c o s ’ , ’ b e t a e s c o s ’ , . . .

280 ’ a ’ , ’ b ’ , ’ p i p e s c o s ’ , ’ p i p v a r c o s ’ , ’ p i s e s c o s ’ , ’ p i s v a r c o s ’ , ’ p i p e s ’

, . . .

281 ’ p i p v a r ’ , ’ p i s e s ’ , ’ p i s v a r ’ , ’ H0 var ’ , ’ H0 es ’ , ’ H0 var cos ’ , ’ H0 es cos ’ )

282 f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

VG Quantile Hedging

1 c l e a r ;

2 c l c ;

3 format long

4 %% I n i t i a l Parameters

5 T=1;

6 dt =1/250;

7 M=T/dt ;

8 S0=57;
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9 r =0.0367;

10 N = 100000;

11 K = 52 ;

12 f i n a l S t r i k e P r i c e = K;

13 eps = 0 . 9 9 ;

14

15 %% Hedging by MC

16 t i c

17 k = 1 ; l = 1 ;

18 f p r i n t f ( ’ Total number o f s imu la t i on s : %i \n ’ ,N)

19 % Parameters from c a l i b r a t i o n

20 muY = 0 ; % d r i f t parameter

21 sigmaY = 0 . 0 2 ; % v o l a t i t l i t y

22 kappa = 0 . 1 ;

23 c = 0 ;

24 % Gamma Subordinated Process

25 % Generate dependent Gamama random time proce s s

26 [R,G0 ] = GammaProc( kappa , c , dt ,T,N) ;

27 % Generate VG proce s s

28 [ S ] = VGProc(R, S0 ,muY, sigmaY ,T, dt ) ;

29 V = max(S−K, 0 ) ;

30 ST = S( end , : ) ;

31 VT = V( end , : ) ;

32 V0 = exp(− r ∗T) ∗mean(mean(V) ) ;

33 f p r i n t f ( ’Done Gamma Sub\n ’ )

34

35 %% VaR Hedging with MC by r e p l i c a t i o n

36 % hedging p o r t f o l i o

37 % i n i t i a l p o r t f o l i o g iven by C0 == 0

38 syms a

39 b = V0−a∗S0 ;

40 x = b+a∗S0 ;

41 c = x−V0 ;

42 system = c == 0 ;

43 var = a ;

44 alpha = double ( s o l v e ( system , var ) ) ;

45 beta = V0−alpha ∗S0 ;

46 % wealth proce s s

47 X = V0+exp ( r ∗T) .∗ beta+alpha .∗ST;

48 % determining q u a n t i l e index

49 C = exp(− r ∗T) ∗X−exp(− r ∗T) ∗VT;

50 [ row , c o l ] = f i n d (C>=0) ;
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51 A = VT( c o l ) ;

52 [ J , I ] = s o r t (C( c o l ) , ’ ascend ’ ) ;

53 A = A( I ) ;

54 idx = f l o o r ( l ength (A) ∗( eps ) ) +1;

55 dN = length (A( 1 : idx ) ) ;

56 % alpha at C == 0

57 syms a

58 V1 = exp(− r ∗T) ∗A( idx ) ;

59 b = V0−a∗S0 ;

60 x = V1+exp ( r ∗T) ∗b+a∗mean(ST) ;

61 c = exp(− r ∗T) ∗x − V0 ;

62 system = c == 0 ;

63 var = a ;

64 % optimal p o r t f o l i o f o r VaR

65 alpha = double ( s o l v e ( system , var ) ) ;

66 beta = V0−alpha ∗S0 ;

67 X var = V0+exp ( r ∗T) ∗beta+alpha ∗mean(ST) ;

68 p i s v a r = alpha /X var ;

69 p i p v a r = 1− p i s v a r ;

70 % I n i t i a l investments

71 H0 var = beta+alpha ∗S0 ;

72 % hedging e r r o r

73 RL var = exp(− r ∗T) ∗( X var−VT) ;

74

75 %% ES Hedging with MC by r e p l i c a t i o n

76 % optimal p o r t f o l i o f o r ES

77 % alpha at C>=0 from 1 : idx −1

78 syms a

79 V2 = exp(− r ∗T) ∗ (1/(dN∗ eps ) ) ∗sum(A( 1 : idx −1) )+V1 ;

80 b = V0−a∗S0 ;

81 x = V2+exp ( r ∗T) ∗b+a∗mean(ST) ;

82 c = exp(− r ∗T) ∗x − V0 ;

83 system = c == 0 ;

84 var = a ;

85 a lpha a = double ( s o l v e ( system , var ) ) ;

86 % optimal p o r t f o l i o

87 a lpha e s = alpha a ;

88 b e ta e s = V0−a lpha e s ∗S0 ;

89 X es = V0+exp ( r ∗T) ∗ b e ta e s+a lpha e s ∗mean(ST) ;

90 p i s e s = a lpha e s / X es ;

91 p i p e s = 1− p i s e s ;

92 % I n i t i a l investments
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93 H0 es = b e ta e s+a lpha e s ∗S0 ;

94 % hedging e r r o r

95 RL es = exp(− r ∗T) ∗( X es−VT) ;

96 toc

97 %% Hedging with COS Method

98 t i c

99 f p r i n t f ( ’ S ta r t T=%i \n ’ ,T)

100 %Note : According to our e r r o r ana ly s i s , the re i s term N( e r r o r ( q ) ) , so when

101 %N goes up , N I MUST BE INCREASED AT THE SAME TIME!

102 %Defau l t va lue s

103 N=256;

104 N I =400;

105

106 % I n i t i a l i z i n g

107 t i c ;

108 i=complex (0 , 1 ) ;

109 q=0;

110

111 % Parameters from c a l i b r a t i o n

112 muX = 0 ; % d r i f t parameter

113 sigmaX = 0 . 0 2 ; % v o l a t i t l i t y

114 kappa = 0 . 1 ;

115 c = 0 ;

116

117 a0 = 1/kappa ; b0 = 1/kappa ;

118 % % Cumulant and t runc t i on range f o r VG

119 c1 = dt∗muX;

120 c2 = dt ∗( sigmaXˆ2+muX∗kappa ) ;

121 %

122 % % i n t e g r a t i o n t runcat i on

123

124 % L=10 converges we l l to the r e f e r e n c e value . When i n c r e a s i n g L , N, N I

125 % should a l s o be i n c r e a s e d . And when L i s very la rge , should use put− c a l l

126 % par i ty .

127 L=10;

128 a=c1−L∗ s q r t (M∗ c2 ) ;

129 b=log (M)+M∗ c1+L∗ s q r t (M∗ c2 ) ;

130

131

132 k=0:N−1;

133 omega=k ’∗ pi /(b−a ) ;

134 v = i ∗muX∗omega−0.5∗omega .ˆ2∗ sigmaX ˆ2 ;
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135 c f Z =(1− i .∗( − i ∗v ) . / b0 ) . ˆ ( a0∗dt ) ;

136 % cf Z=exp ( i ∗omega∗( r−q+w) ∗dt −0 .5∗ ( omega . ˆ 2 ) ∗( sigma ˆ2) ∗dt+dt∗ d e l t a ∗( s q r t ( alpha ˆ2−

beta ˆ2)− s q r t ( alpha ˆ2−( beta+i ∗omega ) . ˆ 2 ) ) ) ;

137 Int As ian=ze ro s (N, N) ;

138

139 % Only f o r Clenshaw−Curt i s quadrature

140 Ni =0:2: N I ;

141 Ni=Ni ’ ;

142 d=2./(1−Ni . ˆ 2 ) ;

143 d (1) =1;

144 d( end ) =0.5∗d( end ) ;

145 n=0:1: f l o o r ( N I /2) ;

146 D=n ’∗ n ;

147 D=2/(N I ) ∗ cos (D∗2∗ pi /N I ) ;

148 D( : , 1 ) =0.5∗D( : , 1 ) ;

149 D( : , end ) =0.5∗D( : , end ) ;

150 w1=D’∗ d ;

151

152 f o r k1=1:N−1

153 f o r k2=1:N−1

154 Int As ian ( k1 , k2 ) = asianmat ( omega ( k1 ) , omega ( k2 ) , N I , a , b , a , w1) ;

155 end

156 end

157

158 % % Only f o r Beta func t i on

159 % f o r k1=1:N−1

160 % f o r k2=1:N−1

161 % Int As ian ( k1 , k2 ) = asianmat ( k1 , k2 , a , b ) ;

162 % end

163 % end

164

165 c f B=c f Z ;

166

167 f o r j =2:M

168 B=r e a l ( c f B .∗ exp(− i ∗a∗omega ) ) ;

169 B(1) =0.5∗B(1) ;

170 Phi B =(2/(b−a ) ) ∗ Int As ian ∗B;

171 c f B=c f Z .∗ Phi B ;

172 end

173

174

175 % ep stand f o r ’ e x e r c i s e point ’
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176 ep=log (K∗(M+1)/S0−1) ;

177

178 i f ep>b

179 ep=b ;

180 e l s e i f ep<a

181 ep=a ;

182 end

183 %% VaR and ES Hedging with COS Method

184

185 U=(2./(b−a ) ) ∗ ( ( S0 . / (M+1) ) ∗Chi ( ep , b ,N, a , b ) −(K−(S0 /(M+1) ) ) ∗ Psi ( ep , b ,N, a , b) ) ;

186 Re=r e a l ( c f B .∗ exp(− i ∗a∗omega ) ) ;

187 % Asian opt ion vlaue

188 H=U.∗Re ’ ;

189 H(1) =0.5∗H(1) ;

190 H0 = exp(− r ∗T) ∗sum(H) ;

191 % Price p roce s s

192 Re=r e a l ( c f Z .∗ exp(− i ∗a∗omega ) ) ;

193 % E[ S0exp (Y) ] = V.∗Re ’

194 V = ( 2 . / ( b−a ) ) ∗S0∗Chi ( a , b ,N, a , b) ;

195 % stock p r i c e at t=T

196 S=V.∗Re ’ ;

197 S (1) =0.5∗S (1) ;

198 % Fourier −Cosine o f 1

199 W = ( 2 . / ( b−a ) ) ∗ Psi ( a , b ,N, a , b ) ;

200 F = r e a l ( exp(− i ∗a∗omega ) ) ’ .∗W;

201 F(1) =0.5∗F(1) ;

202 h = sum(H)+F;

203 s = sum(S)+F;

204 % The CDF of c f B

205 W = ( 2 . / ( b−a ) ) ∗Chi ( a , b ,N, a , b) ;

206 CDF = r e a l ( c f Z .∗ exp(− i ∗a∗omega ) ) ’ .∗W;

207 CDF(1) =0.5∗CDF(1) ;

208 % i n i t i a l p o r t f o l i o g iven by C0 == 0

209 syms a

210 b = H0−a∗S0 ;

211 x = b+a∗S0 ;

212 c = x − H0 ;

213 system = c == 0 ;

214 var = a ;

215 a lpha cos = double ( s o l v e ( system , var ) ) ;

216 be ta co s = H0−a lpha cos ∗S0 ;

217 % Wealth proces
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218 X cos = exp(− r ∗T) .∗H+exp ( r ∗T) .∗ be ta co s .∗F+alpha cos .∗ S ;

219 p i s c o s = a lpha cos /sum( X cos ) ;

220 p i p c o s = 1− p i s c o s ;

221 % determining q u a n t i l e index

222 n = 1 ;

223 whi le n < l ength (H)+1

224 J (n) = sum(CDF( 1 : n) ) ;

225 i f J (n) >= eps && J (n) < 1

226 break ;

227 e l s e

228 n = n+1;

229 end

230 end

231 idx = n−1;

232 C = exp(− r ∗T) .∗ sum( X cos ( idx : end ) ) .∗F−exp(− r ∗T) .∗ sum(H( idx : end ) ) ∗F;

233 [ row , c o l ] = f i n d (C>=0) ;

234 A cos = sum(H( c o l ) )+F;

235 dN = length ( A cos ( idx : end ) ) ;

236 % alpha at C>=0 at idx

237 syms a

238 h1 = exp(− r ∗T) ∗A cos ( idx ) ;

239 b = H0−a∗S0 ;

240 x = h1+exp ( r ∗T) ∗b+a∗sum(S) ;

241 c = exp(− r ∗T) ∗x−H0 ;

242 system = c == 0 ;

243 var = a ;

244 % optimal p o r t f o l i o f o r VaR

245 a lpha cos = double ( s o l v e ( system , var ) ) ;

246 be ta co s = H0−a lpha cos ∗S0 ;

247 X var cos = H0+exp ( r ∗T) ∗ be ta co s+a lpha cos .∗ sum(S) ;

248 p i s v a r c o s = a lpha cos / X var cos ;

249 p i p v a r c o s = 1− p i s v a r c o s ;

250 % I n i t i a l investments

251 H0 var cos = beta co s+a lpha cos ∗S0 ;

252 % hedging e r r o r

253 RL var cos = exp(− r ∗T) ∗ X var cos −H0 ;

254 % alpha at C>=0 from idx

255 syms a

256 h2 = exp(− r ∗T) ∗ (1/(dN∗ eps ) ) ∗sum( A cos ( idx +1:end ) )+h1 ;

257 b = H0−a∗S0 ;

258 x = h2+exp ( r ∗T) ∗b+a∗sum(S) ;

259 c = exp(− r ∗T) ∗x − H0 ;
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260 system = c == 0 ;

261 var = a ;

262 a lpha a co s = double ( s o l v e ( system , var ) ) ;

263 % optimal p o r t f o l i o f o r ES

264 a l p h a e s c o s = a lpha a co s ;

265 b e t a e s c o s = H0−a l p h a e s c o s ∗S0 ;

266 X es cos = H0+exp ( r ∗T) ∗ b e t a e s c o s+a l p h a e s c o s ∗sum(S) ;

267 p i s e s c o s = a l p h a e s c o s / X es cos ;

268 p i p e s c o s = 1− p i s e s c o s ;

269 % I n i t i a l investments

270 H0 es cos = b e t a e s c o s+a l p h a e s c o s ∗S0 ;

271 % hedging e r r o r

272 RL es cos = exp(− r ∗T) ∗( X es cos −H0) ;

273 toc

274

275 f p r i n t f ( ’Done\n ’ )

276 save ( ’VGVarHedge . mat ’ , ’ RL var ’ , ’ RL es ’ , ’ RL var cos ’ , ’ RL es cos ’ , . . .

277 ’ a lpha a ’ , ’ a lpha ’ , ’ beta ’ , ’ a l pha e s ’ , ’ b e t a e s ’ , ’ a l pha a co s ’ , ’ a lpha cos ’ , ’

b e ta co s ’ , ’ a l p h a e s c o s ’ , ’ b e t a e s c o s ’ , . . .

278 ’ a ’ , ’ b ’ , ’ p i p e s c o s ’ , ’ p i p v a r c o s ’ , ’ p i s e s c o s ’ , ’ p i s v a r c o s ’ , ’ p i p e s ’

, . . .

279 ’ p i p v a r ’ , ’ p i s e s ’ , ’ p i s v a r ’ , ’ H0 var ’ , ’ H0 es ’ , ’ H0 var cos ’ , ’ H0 es cos ’ )

280 f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

Calibration

Implied Volatility

1 %% MC Impl ied V o l a t i l i t y

2 c l e a r ;

3 c l c ;

4 format long

5 t i c

6 %%

7 % I n i t i a l i z e Var i ab l e s

8 load ( ’ AsianOptionMarketData . mat ’ ) ;

9 load ( ’ AsianOptionMarketDataPut . mat ’ ) ;

10 load ( ’ UnivarY1 . mat ’ ) ;

11 M = 12 ; % sampling f requency

12 T = 1 ;

13 dT = T/M;

14 N = 1000000; % number o f s imu la t i on s
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15 r a t e = 0 . 0 2 ; % r i s k f r e e ra t e o f re turn in %∗100

16 S0Cal l = 6 8 . 5 8 ; % i n i t i a l commodity p r i c e

17 S0Put = S0Cal l ;

18 % KSpread = 52 ; % S t r i k e f o r Spread

19 f p r i n t f ( ’ Total number o f s imu la t i on s : %i \n ’ ,N)

20 %%

21 % Asian opt ion payo f f f o r each s t r i k e p r i c e

22 s = s i z e (WTIAsnOpt) ;

23 s i g m a i m p l i n i t i a l C a l l = ze ro s ( s (1 ) ,1 ) ;

24 s i g m a i m p l i n i t i a l P u t = ze ro s ( s (1 ) ,1 ) ;

25 k=1;

26 t i c

27 f p r i n t f ( ’ Gett ing i n i t i a l po in t s \n ’ )

28 whi le k < s (1 )+1

29 % Parameters from c a l i b r a t i o n

30 muX = y (2 , k ) ;

31 sigmaX = y (3 , k ) ;

32 kappa = y (1 , k ) ;

33 c = 0 ;

34 muY = dT.∗muX;

35 sigmaY = s q r t (dT . ∗ ( kappa .∗muX.ˆ2+sigmaX . ˆ 2 ) ) ;

36 % i n i t i a l po int

37 [ R C ] = IGProc ( kappa , c , dT,T,N) ;

38 [ S C ] = NIGProc (R C , S0Call ,muY, sigmaY ) ;

39 s i g m a i m p l i n i t i a l C a l l ( k ) = s q r t (2/M∗( exp(− r a t e ∗dT) ∗abs (mean(mean( S C ) ) ) /K( k )

) ) ;

40 [ R P ] = IGProc ( kappa , c , dT,T,N) ;

41 [ S P ] = NIGProc (R P , S0Put ,muY, sigmaY ) ;

42 s i g m a i m p l i n i t i a l P u t ( k ) = s q r t (2/M∗( exp(− r a t e ∗dT) ∗abs (K( k ) /mean(mean( S P ) ) ) )

) ;

43 k = k+1

44 end

45 save ( ’ i n i t i a l P o i n t . mat ’ , ’ s i g m a i m p l i n i t i a l C a l l ’ , ’ s i g m a i m p l i n i t i a l P u t ’ )

46 f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

47 toc

48 %%

49 load ( ’ i n i t i a l P o i n t . mat ’ )

50 load ( ’ UnivarY1 . mat ’ )

51 % Asian opt ion observed payo f f

52 Payoff WTI mkt = WTIAsnOpt+WTIAsnOptPut ;

53 % Impl ied V o l a t i l i t y WTI

54 f p r i n t f ( ’ S t a r t i ng impl i ed vo l c a l c \n ’ )
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55 t i c

56 k=1;

57 sigma impl NIG = ze ro s (1 ,101) ;

58 whi le k < l ength (K)+1

59 % Parameters from c a l i b r a t i o n

60 muX = y (2 , k ) ;

61 sigmaX = y (3 , k ) ;

62 kappa = y (1 , k ) ;

63 c = 0 ;

64 muY = dT.∗muX;

65 sigmaY = s q r t (dT . ∗ ( kappa .∗muX.ˆ2+sigmaX . ˆ 2 ) ) ;

66 f p r i n t f ( ’ Elements Remaining : %d\n ’ , l ength (K)−k ) ;

67 i f S0Cal l > K( k )

68 sigma impl NIG ( k ) = s i g m a i m p l i n i t i a l C a l l ( k ) ;

69 e r r o r = 10 ; n = 2 ;

70 whi le e r r o r > 0 .5∗ (10ˆ( −4) )

71 s igma impl NIG old ( k ) = sigma impl NIG ( k ) ;

72 [ R1 , L0 ] = IGProc ( kappa , c , dT,T,N) ;

73 [ S1 , dY1 , Y1 ,W1] = NIGProc (R1 , S0Call ,muY, s igma impl NIG old ( k ) ) ;

74 [ Payof f1 ( k ) ] = AsianOption ( S1 ,K( k ) , rate ,dT) ;

75 vega NIG = mean(sum(mean( S1 )>K( k ) ) .∗ mean( S1 .∗W1) )

76 sigma impl NIG ( k ) = sigma impl NIG old ( k ) −(( Payof f1 ( k ) . . .

77 −Payoff WTI mkt (k , end ) ) /vega NIG )

78 e r r o r = abs ( sigma impl NIG ( k )−s igma impl NIG old ( k ) )

79 n = n+1;

80 i f n > 1000000

81 f p r i n t f ( ’Too many i t e r a t i o n s \n ’ ) ;

82 break ;

83 end

84 k = k+1;

85 end

86 e l s e i f S0Cal l <= K( k )

87 sigma impl NIG ( k ) = s i g m a i m p l i n i t i a l P u t ( k ) ;

88 e r r o r = 10 ; n = 1 ;

89 whi le e r r o r > 0 .5∗ (10ˆ( −4) )

90 s igma impl NIG old ( k ) = sigma impl NIG ( k ) ;

91 [ R1 , L0 ] = IGProc ( kappa , c , dT,T,N) ;

92 [ S1 , dY1 , Y1 ,W1] = NIGProc (R1 , S0Put ,muY, s igma impl NIG old ( k ) ) ;

93 [ Payof f1 ( k ) ] = AsianOption ( S1 ,K( k ) , rate ,dT) ;

94 vega NIG = mean(sum(mean( S1 )<K( k ) ) .∗ mean( S1 .∗W1) )

95 sigma impl NIG ( k ) = sigma impl NIG old ( k ) −(( Payof f1 ( k ) . . .

96 −Payoff WTI mkt (k , end ) ) /vega NIG )
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97 e r r o r = abs ( sigma impl NIG ( k )−s igma impl NIG old ( k ) )

98 n = n+1;

99 i f n > 1000000

100 f p r i n t f ( ’Too many i t e r a t i o n s \n ’ ) ;

101 break ;

102 end

103 k = k+1;

104 end

105 end

106 end

107 %% Correc t ion f o r sigma < 0 us ing weighted i n t e r p o l a t i o n

108 f p r i n t f ( ’ Applying c o r r e c t i o n \n ’ )

109 i f min ( s i z e ( f i n d ( sigma impl NIG <0) ) ) > 0

110 a = f i n d ( sigma impl NIG <0) ;

111 a = s o r t ( a ) ;

112 a = [ a (1 ) −1 ,a , a ( end ) +1] ;

113 j =2;

114 whi le j < l ength ( a )

115 sigma impl NIG ( a ( j ) ) = ( abs ( sigma impl NIG ( a ( j ) )−sigma impl NIG ( a (1 ) ) / . . .

116 ( sigma impl NIG ( a (1 ) )−sigma impl NIG ( a ( end ) ) ) ) ∗ sigma impl NIG ( a (1 ) ) . . .

117 +abs ( sigma impl NIG ( a ( j ) )−sigma impl NIG ( a ( end ) ) /( sigma impl NIG ( a (1 ) ) . . .

118 −sigma impl NIG ( a ( end ) ) ) ) ∗ sigma impl NIG ( a ( end ) ) ) / l ength (a−2) ;

119 j=j +1;

120 end

121 end

122 save ( ’ implVol . mat ’ , ’ sigma impl NIG ’ )

123 f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

124 %%

125 load ( ’ implVol . mat ’ )

126 f i g u r e

127 p lo t (K, sigma impl NIG , ’−o ’ )

128 ylim ( [ 0 . 3 , 0 . 9 ] )

129 x l a b e l ( ’ S t r i k e Pr i ce ( $ ) ’ )

130 y l a b e l ( ’ Impl ied V o l a t i l i t y ’ )

131 t i t l e ( ’ S e n s i t i v i t y o f Impl ied V o l a t i l i t y to S t r i k e ’ )

132 toc

Parameter Calibration

1 %% MC Impl ied V o l a t i l i t y

2 c l e a r ;

3 c l c ;
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4 format long

5 t i c

6 %%

7 dT = 1/12 ;

8 N = 100000; % number o f s imu la t i on s

9 r a t e = 0 . 0 2 ; % r i s k f r e e ra t e o f re turn in %∗100

10 S0 = 6 8 . 5 8 ; % i n i t i a l commodity p r i c e

11 S0 Cal l2 = 7 4 . 8 8 ;

12 % KSpread = 52 ; % S t r i k e f o r Spread

13 f p r i n t f ( ’ Total number o f s imu la t i on s : %i \n ’ ,N)

14 %%

15 var = 2 ; % 1 i s univar 2 i s b ivar

16 put = 0 ; % i f c a l i b r a t i n g puts s e t to 1

17 % I n i t i a l i z e Var i ab l e s

18 i f var == 2

19 load ( ’ AsianOptionMarketData . mat ’ ) ;

20 K Asn = K;

21 Payoff WTI mkt = WTIAsnOpt ;

22 load ( ’ EuroOptionMarketData . mat ’ ) ;

23 K Eur= K;

24 Payoff BRNT euro mkt = BRNTEuroOpt ;

25 e l s e

26 i f put == 1

27 load ( ’ AsianOptionMarketDataPut . mat ’ ) ;

28 K Asn = KPut ;

29 K = KPut ;

30 Payoff WTI mkt Put = WTIAsnOptPut ;

31 e l s e

32 load ( ’ AsianOptionMarketData . mat ’ ) ;

33 K Asn = K;

34 Payoff WTI mkt = WTIAsnOpt ;

35 end

36 end

37 % Parameters f o r c a l i b r a t i o n

38 i f var == 1

39 muX WTI Call = 0 . 3 ;

40 kappa0 = 0 . 2 5 ;

41 sigmaX WTI Call = 0 ;

42 e l s e

43 muX WTI Call = 0 . 3 ;

44 muX WTI Call2 = 0 ;

45 kappa0 = 0 . 2 5 ;
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46 kappa1 = 0 . 2 5 ;

47 kappa2 = 0 . 2 5 ;

48 c1 = 0 . 2 ;

49 c2 = 1 ;

50 sigmaX WTI Call = 0 ;

51 sigmaX WTI Call2 = 0 ;

52 end

53 %%

54 i f var == 2

55 k = 1

56 whi le k < l ength (K Asn)+1

57 f p r i n t f ( ’ S t a r t i ng b i v a r i a t e c a l i b r a t i o n f o r y\n ’ )

58 opt ions = opt imopt ions ( ’ pa t t e rnsea r ch ’ , ’ Display ’ , ’ i t e r ’ , ’ MeshTolerance ’ ,1

e −10 , ’ Funct ionTolerance ’ ,1 e −6 , ’ StepTolerance ’ ,1 e −6) ;

59 y0 = [ kappa0 ; kappa1 ; c1 ; muX WTI Call ; sigmaX WTI Call ] ;

60 lb = [ 0 ; 0 ; 0 ; − i n f ; 0 ] ; ub = [ i n f ; i n f ; i n f ; i n f ; i n f ] ;

61 fun WTI = @( y ) Payoff WTI NIG ( y (1 ) , y (2 ) , y (3 ) ,K Asn( k ) , y (4 ) , y (5 ) ,N, rate , S0 ,

Payoff WTI mkt (k , end ) ) ;

62 [ y ( : , k ) , f va l y , e x i t f l a g , output y ] = pat t e rn sea r ch ( fun WTI , y0 , [ ] , [ ] , [ ] , [ ] ,

lb , ub , [ ] , opt i ons )

63 muY = dT∗y (4 , k )+y (3 , k ) ∗y (4 , k ) ∗dT;

64 sigmaY = s q r t (dT∗ ( ( y (1 , k )+(y (3 , k ) ˆ2) ∗y (2 , k ) ) ∗y (4 , k ) ˆ 2 + . . .

65 (1+y (3 , k ) ) ∗y (5 , k ) ˆ2) ) ;

66 R1 = IGProc ( [ y (1 , k ) , y (2 , k ) ] , y (3 , k ) ,dT, 1 ,N, 1 ) ;

67 S1 = NIGProc (R1 , S0 ,muY, sigmaY ) ;

68 Payoff WTI cal ( k ) = mean( AsianOption ( S1 , K Asn( k ) , rate , dT, Payoff WTI mkt (k

, end ) ) ) ;

69 k = k+1

70 end

71 save ( ’ BivarY1 . mat ’ , ’ y0 ’ , ’ y ’ , ’ Payoff WTI cal ’ )

72 f p r i n t f ( ’ y Var i ab l e s saved !\n ’ )

73 %% x

74 f p r i n t f ( ’ S t a r t i ng c a l i b r a t i o n f o r x\n ’ )

75 load ( ’ BivarY1 . mat ’ )

76 load ( ’ EuroOptionMarketData . mat ’ ) ;

77 K Eur= K;

78 Payoff BRNT euro mkt = BRNTEuroOpt ;

79 l = 1

80 [ a , b ] = i n t e r s e c t (K Asn , K Eur ) ;

81 y = y ( : , b ) ;

82 whi le l < l ength ( K Eur )+1

83 f p r i n t f ( ’ S t a r t i ng the search f o r x\n ’ )
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84 opt ions = opt imopt ions ( ’ pa t t e rnsea r ch ’ , ’ Display ’ , ’ i t e r ’ , ’ MeshTolerance ’ ,1

e −10 , ’ Funct ionTolerance ’ ,1 e −6 , ’ StepTolerance ’ ,1 e −6) ;

85 x0 = [ kappa2 ; c2 ; muX WTI Call2 ; sigmaX WTI Call2 ] ;

86 lb = [ 0 ; 0 ; − i n f ; 0 ] ; ub = [ i n f ; i n f ; i n f ; i n f ] ;

87 fun BRNT = @( x ) Payof f NIG Cal l2 ( x (1 ) , x (1 ) , x (2 ) , K Eur ( l ) , x (3 ) , x (4 ) ,N, rate ,

S0 Cal l2 , Payoff BRNT euro mkt ( l ) ) ;

88 [ x ( : , l ) , f v a l x , e x i t f l a g , output x ] = pat t e rn sea r ch ( fun BRNT , x0

, [ ] , [ ] , [ ] , [ ] , lb , ub , [ ] , opt i ons )

89 [ R1 , L0 , L1 ] = IGProc ( [ y (1 , l ) , x (1 , l ) ] , x (2 , l ) , 1/12 ,1 ,N, 1 ) ;

90 muY = dT∗x (3 , l )+x (2 , l ) ∗x (3 , l ) ∗dT;

91 sigmaY = s q r t (dT∗ ( ( y (1 , l )+(x (2 , l ) ˆ2) ∗x (1 , l ) ) ∗x (3 , l ) ˆ 2 + . . .

92 (1+x (2 , l ) ) ∗x (4 , l ) ˆ2) ) ;

93 S1 = NIGProc ( x (2 , l ) ∗L1 , S0 Cal l2 ,muY, sigmaY ) ;

94 Payoff BRNT euro cal ( l ) = mean( EuroOption ( S1 , K Eur ( l ) , rate , dT,

Payoff BRNT euro mkt ( l , end ) ) ) ;

95 l = l+1

96 end

97 save ( ’ BivarX1 . mat ’ , ’ x0 ’ , ’ x ’ , ’ Payoff BRNT euro cal ’ )

98 f p r i n t f ( ’ x Var i ab l e s saved !\n ’ )

99 e l s e i f var == 1

100 i f put == 1

101 k = 1 ;

102 whi le k < l ength (K)+1

103 f p r i n t f ( ’ S t a r t i ng u n i v a r i a t e put c a l i b r a t i o n f o r y\n ’ )

104 opt ions = opt imopt ions ( ’ pa t t e rnsea r ch ’ , ’ Display ’ , ’ i t e r ’ , ’

MeshTolerance ’ ,1 e −10 , ’ Funct ionTolerance ’ ,1 e −6 , ’ StepTolerance ’ ,1 e

−6) ;

105 y0 = [ kappa0 ; muX WTI Call ; sigmaX WTI Call ] ;

106 lb = [0 ; − i n f ; 0 ] ;

107 ub = [ i n f ; i n f ; i n f ] ;

108 fun WTI = @( y ) Payoff WTI NIG Put ( y (1 ) , 0 , 0 , K Asn( k ) , y (2 ) , y (3 ) ,N, rate ,

S0 , Payoff WTI mkt Put (k , end ) ) ;

109 [ y ( : , k ) , f va l y , e x i t f l a g , output y ] = pat t e rn sea r ch ( fun WTI , y0

, [ ] , [ ] , [ ] , [ ] , lb , ub , [ ] , opt i ons )

110 R1 = IGProc ( y (1 , k ) ,0 ,1/12 ,1 ,N, 0 ) ;

111 muY = dT∗y (2 , k ) ;

112 sigmaY = s q r t (dT∗( y (1 , k ) ∗y (2 , k )ˆ2+y (3 , k ) ˆ2) ) ;

113 S1 = NIGProc (R1 , S0 ,muY, sigmaY ) ;

114 Payoff WTI cal Put ( k ) = mean( AsianOptionPut ( S1 , K Asn( k ) , rate , dT,

Payoff WTI mkt Put (k , end ) ) ) ;

115 k = k+1

116 end
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117 save ( ’ UnivarY1Put . mat ’ , ’ y0 ’ , ’ y ’ , ’ Payoff WTI cal Put ’ )

118 f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

119 e l s e

120 k = 1 ;

121 whi le k < l ength (K)+1

122 f p r i n t f ( ’ S t a r t i ng u n i v a r i a t e c a l i b r a t i o n f o r y\n ’ )

123 opt ions = opt imopt ions ( ’ pa t t e rnsea r ch ’ , ’ Display ’ , ’ i t e r ’ , ’

MeshTolerance ’ ,1 e −10 , ’ Funct ionTolerance ’ ,1 e −6 , ’ StepTolerance ’ ,1 e

−6) ;

124 y0 = [ kappa0 ; muX WTI Call ; sigmaX WTI Call ] ;

125 lb = [0 ; − i n f ; 0 ] ;

126 ub = [ i n f ; i n f ; i n f ] ;

127 fun WTI = @( y ) Payoff WTI NIG ( y (1 ) , 0 , 0 , K Asn( k ) , y (2 ) , y (3 ) ,N, rate , S0 ,

Payoff WTI mkt (k , end ) ) ;

128 [ y ( : , k ) , f va l y , e x i t f l a g , output y ] = pat t e rn sea r ch ( fun WTI , y0

, [ ] , [ ] , [ ] , [ ] , lb , ub , [ ] , opt i ons )

129 R1 = IGProc ( y (1 , k ) ,0 ,1/12 ,1 ,N, 0 ) ;

130 muY = dT∗y (2 , k ) ;

131 sigmaY = s q r t (dT∗( y (1 , k ) ∗y (2 , k )ˆ2+y (3 , k ) ˆ2) ) ;

132 S1 = NIGProc (R1 , S0 ,muY, sigmaY ) ;

133 Payoff WTI cal ( k ) = mean( AsianOption ( S1 , K Asn( k ) , rate , dT,

Payoff WTI mkt (k , end ) ) ) ;

134 k = k+1

135 end

136 save ( ’ UnivarY1 . mat ’ , ’ y0 ’ , ’ y ’ , ’ Payoff WTI cal ’ )

137 f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

138 end

139 end

140

141 toc

142

143 %% Plots

144

145 load ( ’ UnivarY1 . mat ’ )

146 load ( ’ AsianOptionMarketData . mat ’ )

147 Payoff WTI mkt = WTIAsnOpt ;

148 f i g u r e

149 subplot ( 4 , 1 , 1 )

150 hold on

151 p lo t ( Payoff WTI cal , ’−+ ’ , ’ LineWidth ’ , 0 . 5 )

152 p lo t ( Payoff WTI mkt ( : , end ) , ’−o ’ , ’ LineWidth ’ , 0 . 5 )

153 x l a b e l ( ’ S t r i k e Pr i c e s ( $ ) ’ )

130



APPENDIX A

154 y l a b e l ( ’ Pr i ce ( $ ) ’ )

155 t i t l e ( ’ ( a ) Ca l i b r a t i on o f Univar ia te Model Ca l l ’ )

156 % legend ( ’ Ar ithmet ic Asian Cal l Ca l ib rated Price ’ , ’ Asian Cal l Market Price ’ )

157

158 load ( ’ AsianOptionMarketDataPut . mat ’ ) ;

159 load ( ’ UnivarY1Put . mat ’ )

160 Payoff WTI mkt Put = WTIAsnOptPut ;

161 subplot ( 4 , 1 , 2 )

162 hold on

163 p lo t ( Payoff WTI cal Put , ’−+ ’ , ’ LineWidth ’ , 0 . 5 )

164 p lo t ( Payoff WTI mkt Put ( : , end ) , ’−o ’ , ’ LineWidth ’ , 0 . 5 )

165 x l a b e l ( ’ S t r i k e Pr i c e s ( $ ) ’ )

166 y l a b e l ( ’ Pr i ce ( $ ) ’ )

167 t i t l e ( ’ (b ) Ca l i b r a t i on o f Univar ia te Model Put ’ )

168 % legend ( ’ Ar ithmet ic Asian Put Ca l ib rated Price ’ , ’ Asian Put Market Price ’ )

169

170 load ( ’ BivarY1 . mat ’ )

171 load ( ’ AsianOptionMarketData . mat ’ )

172 Payoff WTI mkt = WTIAsnOpt ;

173 subplot ( 4 , 1 , 3 )

174 hold on

175 p lo t ( Payoff WTI cal , ’−+ ’ , ’ LineWidth ’ , 0 . 5 )

176 p lo t ( Payoff WTI mkt ( : , end ) , ’−o ’ , ’ LineWidth ’ , 0 . 5 )

177 x l a b e l ( ’ S t r i k e Pr i c e s ( $ ) ’ )

178 y l a b e l ( ’ Pr i ce ( $ ) ’ )

179 t i t l e ( ’ ( c ) Ca l i b ra t i on o f Asian Payof f ’ )

180 l egend ( ’ Ca l ib rated Pr i ce ’ , ’ Market Pr i ce ’ )

181

182 load ( ’ BivarX1 . mat ’ )

183 load ( ’ EuroOptionMarketData . mat ’ ) ;

184 Payoff BRNT euro mkt = BRNTEuroOpt ;

185 subplot ( 4 , 1 , 4 )

186 hold on

187 p lo t ( Payoff BRNT euro cal , ’−+ ’ , ’ LineWidth ’ , 0 . 5 )

188 p lo t ( Payoff BRNT euro mkt , ’−o ’ , ’ LineWidth ’ , 0 . 5 )

189 x l a b e l ( ’ S t r i k e Pr i c e s ( $ ) ’ )

190 y l a b e l ( ’ Pr i ce ( $ ) ’ )

191 t i t l e ( ’ (d ) Condi t iona l Ca l i b r a t i on o f European Payof f ’ )

192 % legend ( ’ European Cal l Ca l ib rated Price ’ , ’ European Cal l Market Price ’ )
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Portfolio Choice

Simulation

1 c l e a r a l l

2 c l c

3 % % loads the s i m p l i f e i d symbol ic p o r t f o l i o s from Check2 .m

4 % load ( ’ po r t f o l i oEZ . mat ’ ) ;

5 %%

6 % time counter s t a r t

7 t i c

8 %% Parameters

9 % I n i t i a l time

10 t0 =0;

11 % Terminal time

12 tT=20;

13 % I n i t i a l v a r i a b l e s

14 qr =0;

15 s igma r =0.03; s i gma l =0.1467; sigma b =0.2620; s igma s = 0 . 2 ;

16 rbar =0.02; l ba r =−2.1493; bbar =0;

17 k r =0.5 ; k l =0.2935; k b =4.0942;

18 P=3.7816; Pl =1.6315;Pb=13.4035;

19 rho sp =0; r h o s l =−0.2186; rho sb =−0.2164;

20 rho Pb =0.3 ; rho Lp =0.3; rho Lb =−0.4913;

21

22 % % mean r e v e r t i n g s igma s ( Long Run)

23 % e p s i l o n = 0 . 0 2 5 ;

24 % sigma s=e p s i l o n +( s i gma l ˆ2/(2∗ k l ) ) ;

25

26 % f i l t e r e d c o r r e l a t i o n parameter

27 r h o l=s q r t (1− r h o s l ˆ2) ;

28 rho lp =(rho Lp− r h o s l ∗ rho sp ) / r h o l ;

29 rho p=s q r t (1− rho sp ˆ2− rho lp ˆ2) ;

30 rho lb =(rho Lb− r h o s l ∗ rho sb ) / r h o l ;

31 rho pb=(rho Pb− rho sp ∗ rho sb − rho lp ∗ rho lb ) / rho p ;

32 rho b=s q r t (1− rho sb ˆ2− rho lb ˆ2− rho pb ˆ2) ;

33

34 % s o l v i n g f o r m

35 syms m

36 eqns = −2∗k b∗m+sigma b ˆ2−( sigma b∗ rho sb+(m∗Pb) ) ˆ 2 − . . .

37 ( sigma b∗ rho lb −((m∗Pb∗ r h o s l ) / r h o l ) ) ˆ 2 − . . .

38 ( sigma b∗ rho pb+(m∗Pb∗( r h o s l ∗ rho lp − r h o l ∗ rho sp ) ) /( r h o l ∗ rho p ) ) ˆ2 ;

39 vars = m;
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40 [m]= s o l v e ( eqns==0,vars ) ;

41 m = vpa (m) ;

42 m = double (m(2) ) ;

43 a1=sigma b∗ rho sb+(m∗Pb) ;

44 a2=sigma b∗ rho lb −((m∗Pb∗ r h o s l ) / r h o l ) ;

45 a3=sigma b∗ rho pb+(m∗Pb∗( r h o s l ∗ rho lp − r h o l ∗ rho sp ) ) /( r h o l ∗ rho p ) ;

46

47 % t e s t i n g parameters , parameters f o r behavior

48 gamma=4; p s i =1/0.75; vphi =0.0153;% vphi i s time p r e f e r e n c e parameter>0

49 %%

50 % long run average o f va lue s

51 r=rbar ; l=lba r ; b=bbar ;

52 sigma p = ( s igma r / k r ) ∗(1− exp(− k r ∗( tT−t0 ) ) ) ; q = qr∗ sigma p ;

53 % v a r i a b l e s

54 vrho = [ 0 ; 1 ; 0 ] ;

55 I3 = diag ( [ 1 , 1 , 1 ] ) ;

56 I2 = diag ( [ 1 , 1 ] ) ;

57 % s t a t e v a r i a b l e means

58 kbar = [ k l ∗ l ba r ; k r ∗ rbar ; k b∗bbar ] ;

59 k =[ k l , 0 , 0 ; 0 , k r , 0 ; 0 , 0 , k b ] ;

60 % s t a t e v a r i a b l e v o l a t i l i t y matrix

61 Sy = [ r h o s l ∗ s igma l , r h o l ∗ s igma l , 0 ; . . .

62 − rho sp ∗ s igma r ,− rho lp ∗ s igma r ,− rho p ∗ s igma r ; . . .

63 a1 , a2 , a3 ] ;

64 % covar iance o f bonds and stock

65 S = [ sigma s , 0 , ; s igma p∗ rho sp , sigma p∗ s q r t (1− rho sp ˆ2) ] ;

66 rho = [ 1 , 0 ;

67 0 , rho lp / r h o l ;

68 0 , rho p / r h o l ] ;

69 Sx = S∗ rho . ’ ;

70 % mean o f bonds and stock minus i n t e r e s t

71 mu = [ s igma s ∗(P+Pl∗ l+Pb∗b) ; q ] ;

72 % T i s the ambiguity parameter

73 tau = 0 : 1 : 1 0 ;

74

75 %% Simulat ion

76 i = 1

77 check = 1 ;

78 whi le i<=length ( tau )

79 syms a 1 b1 1 b2 1 b3 1 q11 1 q12 1 q13 1 q21 1 q22 1 q23 1 q31 1 q32 1 q33 1

80 A = a 1 ;

81 B = [ b1 1 ; b2 1 ; b3 1 ] ;
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82 Q = [ q11 1 , q12 1 , q13 1 ; q21 1 , q22 1 , q23 1 ; q31 1 , q32 1 , q33 1 ] ;

83 t1 1 = tau ( i ) ; t 2 2 = tau ( i ) ; t 3 3 = tau ( i ) ;

84 T = [ t1 1 , 0 , 0 ; 0 , t2 2 , 0 ; 0 , 0 , t3 3 ]

85

86 % p o r t f o l i o cons tant s

87 phi 1=S∗( rho . ’∗T∗ rho+gamma∗ I2 ) ∗S . ’ ;

88 phi 2=Sx∗(T− I3+gamma∗ I3 ) ∗Sy . ’ ;

89 phi 3 = Sy∗(((1 −gamma) /(1− p s i ) ) ∗ I3+I3 −(1/(1− p s i ) ) ∗T) ∗Sy . ’ ;

90 phi 4 = (1/(1 − p s i ) ) ∗ phi 2 . ’∗ inv ( ph i 1 ) ∗ phi 2+phi 3 ;

91

92 % phi 1 components

93 vphi0 = t1 1 ∗ r h o l ˆ2∗ rho sp ˆ2 + gamma∗ r h o l ˆ2 − t3 3 ∗ rho p ˆ2∗ rho spˆ2+ . . .

94 t3 3 ∗ rho p ˆ2 − t2 2 ∗ rho lp ˆ2∗ rho sp ˆ2 + t2 2 ∗ rho lp ˆ2 ;

95 vphi1 = − gamma∗ r h o l ˆ2∗ rho sp ˆ2 + gamma∗ r h o l ˆ2 − t3 3 ∗ rho p ˆ2∗ rho sp ˆ 2 + . . .

96 t3 3 ∗ rho p ˆ2 − t2 2 ∗ rho lp ˆ2∗ rho sp ˆ2 + t2 2 ∗ rho lp ˆ2 ;

97

98 % mu. ’∗ inv ( ph i 1 ) ∗mu

99 J0 = (Pˆ2∗ vphi0 −2∗(gamma+t1 1 ) ∗( rho sp ∗ r h o l ˆ2) ∗qr∗P+ . . .

100 qr ˆ2∗( r h o l ˆ2) ∗(gamma+t1 1 ) ) / ( (gamma+t1 1 ) ∗vphi1 ) ;

101 J1 = −(2∗((gamma+t1 1 ) ∗qr ∗( rho sp ∗( r h o l ˆ2) )−P∗vphi0 ) ) / ( (gamma+t1 1 ) ∗vphi1 ) ∗ [

Pl ; 0 ; Pb ] ;

102 J2 = (2∗ vphi0 ) / ( (gamma+t1 1 ) ∗vphi1 ) ∗ [ Pl ˆ2 0 Pl∗Pb; 0 0 0 ; Pl∗Pb 0 Pb ˆ 2 ] ;

103

104 % phi 2 . ’∗ inv ( ph i 1 ) ∗mu

105 H = phi 2 . ’∗ inv ( ph i 1 ) ;

106 F = sigma s ∗H( : , 1 ) ; R = qr .∗ sigma p .∗H( : , 2 ) ;

107

108 g0 = P.∗F+R;

109 g1 = [ Pl∗F(1) 0 Pb∗F(1) ;

110 Pl∗F(2) 0 Pb∗F(2) ;

111 Pl∗F(3) 0 Pb∗F(3) ] ;

112

113 % Solv ing the System o f equat ions

114 k1 = vphi ;

115 j =1;

116

117 whi le j == 1

118 syms a 1 b1 1 b2 1 b3 1 q11 1 q12 1 q13 1 q21 1 q22 1 q23 1 q31 1 q32 1

q33 1

119 A = a 1 ;

120 B = [ b1 1 ; b2 1 ; b3 1 ] ;

121 Q = [ q11 1 , q12 1 , q13 1 ; q21 1 , q22 1 , q23 1 ; q31 1 , q32 1 , q33 1 ] ;

134



APPENDIX A

122 k1 o ld = k1

123 k0 = k1∗(1− l og ( k1 ) ) ;

124 const = −k0−p s i ∗k1∗ l og ( vphi )+k1∗A+vphi∗ p s i +(g0−kbar ) . ’∗B . . .

125 −0.5∗B. ’ ∗ ( Sy∗Sy . ’ − phi 4 ) ∗B−0.5∗ t r a c e ( Sy∗Sy . ’∗Q) −0.5∗( ps i −1)∗J0 ;

126

127 y = k1∗B+(g1+k ) . ’∗B−Q∗( Sy∗Sy . ’ − phi 4 ) ∗B+Q∗( g0−kbar ) −0.5∗( ps i −1)∗J1−( ps i

−1)∗vrho ;

128

129 y2 = k1∗Q+(g1+k ) . ’∗Q+Q. ’ ∗ ( g1+k )−Q. ’ ∗ ( Sy∗Sy . ’ − phi 4 ) ∗Q−0 .5∗ ( ps i −1)∗J2 ;

130

131 i f check ==1

132 q1 = −0.5∗( ps i −1)∗J2 ;

133 q2 = k1+(g1+k ) . ’ ;

134 q3 = ( g1+k ) ;

135 q4 = −(Sy∗Sy . ’ − phi 4 ) ;

136 A1 = q1 ; A2 = q2+transpose ( q3 ) ; A3 = q4 ;

137 quaddisc = A2.ˆ2 −4.∗A3.∗A1 ;

138 quadeqn = (−A2+quaddisc ) ∗0 .5∗ inv (A3)

139 check = check +1;

140 end

141

142 % s o l v e Q

143 f p r i n t f ( ’ S t a r t i ng s o l u t i o n \n ’ )

144 t i c

145 x = [ const ; y ; y2 ( : ) ] ;

146 % varsx = [ a 1 , b1 1 , b2 1 , b3 1 , q11 1 , q12 1 , q13 1 , q21 1 , q22 1 , q23 1 , q31 1 ,

q32 1 , q33 1 ] ;

147 % i n i t x = ze ro s (1 , l ength ( varsx ) ) ;

148 % Xsol = vpaso lve ( x==0,varsx , i n i t x )

149 Xsol = vpaso lve ( y2==0)

150 i f sum( s i z e ( Xsol . q11 1 ) )>2

151 i f p s i < 1

152 idx = i n t e r s e c t ( f i n d ( Xsol . q11 1 >0) , f i n d ( Xsol . q12 1==0))

153 i f l ength ( idx )>1

154 idx = i n t e r s e c t ( f i n d ( Xsol . q33 1 <0) , idx )

155 end

156 e l s e

157 idx = i n t e r s e c t ( f i n d ( Xsol . q11 1 <0) , f i n d ( Xsol . q12 1==0))

158 i f l ength ( idx )>1

159 idx = i n t e r s e c t ( f i n d ( Xsol . q33 1 >0) , idx )

160 end

161
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162 end

163 q11 1=Xsol . q11 1 ( idx ) ; q12 1=Xsol . q12 1 ( idx ) ; q13 1=Xsol . q13 1 ( idx ) ;

164 q21 1=Xsol . q21 1 ( idx ) ; q22 1=Xsol . q22 1 ( idx ) ; q23 1=Xsol . q23 1 ( idx ) ;

165 q31 1=Xsol . q31 1 ( idx ) ; q32 1=Xsol . q32 1 ( idx ) ; q33 1=Xsol . q33 1 ( idx ) ;

166 % b1 1 = Xsol . b1 1 ( idx ) ; b2 1= Xsol . b2 1 ( idx ) ; b3 1 = Xsol . b3 1 ( idx ) ;

167 % a 1 = Xsol . a 1 ( idx ) ;

168 e l s e

169 q11 1=Xsol (1 ) ; q12 1=Xsol (2 ) ; q13 1=Xsol (3 ) ;

170 q21 1=Xsol (4 ) ; q22 1=Xsol . q22 1 ; q23 1=Xsol . q23 1 ;

171 q31 1=Xsol . q31 1 ; q32 1=Xsol . q32 1 ; q33 1=Xsol . q33 1 ;

172 % b1 1 = Xsol . b1 1 ; b2 1= Xsol . b2 1 ; b3 1 = Xsol . b3 1 ;

173 % a 1 = Xsol . a 1 ;

174 end

175 Xsol = vpaso lve ( subs ( y )==0) ;

176 b1 1 = Xsol . b1 1 ; b2 1= Xsol . b2 1 ; b3 1 = Xsol . b3 1 ;

177 Xsol = vpaso lve ( subs ( const )==0) ;

178 a 1 = Xsol ;

179 % change to double

180 a=double ( a 1 ) ; b1=double ( b1 1 ) ; b2=double ( b2 1 ) ; b3=double ( b3 1 ) ;

181 c11=double ( q11 1 ) ; c12=double ( q12 1 ) ; c13=double ( q13 1 ) ;

182 c21=double ( q21 1 ) ; c22=double ( q22 1 ) ; c23=double ( q23 1 ) ;

183 c31=double ( q31 1 ) ; c32=double ( q32 1 ) ; c33=double ( q33 1 ) ;

184

185 A new = a

186 B new =[b1 ; b2 ; b3 ]

187 Q new = [ c11 , c12 , c13 ; c21 , c22 , c23 ; c31 , c32 , c33 ]

188 Y = [ l ; r ; b ] ;

189 k1 new = exp ( k0+k1∗ p s i ∗ l og ( vphi )−k1 ∗(A new+B new . ’∗Y+0.5∗Y. ’∗ Q new∗Y) ) ;

190 k1 = k1 new

191 de l tak = k1 new−k1 o ld

192 i f abs ( de l tak ) <10ˆ(−4)

193 syms a 1 b1 1 b2 1 b3 1 q11 1 q12 1 q13 1 q21 1 q22 1 q23 1 q31 1

q32 1 q33 1

194 A = a 1 ;

195 B = [ b1 1 ; b2 1 ; b3 1 ] ;

196 Q = [ q11 1 , q12 1 , q13 1 ; q21 1 , q22 1 , q23 1 ; q31 1 , q32 1 , q33 1 ] ;

197 k1=k1 new ;

198 k0 = k1∗(1− l og ( k1 ) ) ;

199 const = −k0−p s i ∗k1∗ l og ( vphi )+k1∗A+vphi∗ p s i +(g0−kbar ) . ’∗B . . .

200 −0.5∗B. ’ ∗ ( Sy∗Sy . ’ − phi 4 ) ∗B−0.5∗ t r a c e ( Sy∗Sy . ’∗Q) −0.5∗( ps i −1)∗J0 ;

201
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202 y = k1∗B+(g1+k ) . ’∗B−Q∗( Sy∗Sy . ’ − phi 4 ) ∗B+Q∗( g0−kbar ) −0.5∗( ps i −1)∗J1−(

ps i −1)∗vrho ;

203

204 y2 = k1∗Q+(g1+k ) . ’∗Q+Q. ’ ∗ ( g1+k )−Q. ’ ∗ ( Sy∗Sy . ’ − phi 4 ) ∗Q−0 .5∗ ( ps i −1)∗J2 ;

205

206 x = [ const ; y ; y2 ( : ) ] ;

207 % varsx = [ a 1 , b1 1 , b2 1 , b3 1 , q11 1 , q12 1 , q13 1 , q21 1 , q22 1 , q23 1 ,

q31 1 , q32 1 , q33 1 ] ;

208 % i n i t x = ze ro s (1 , l ength ( varsx ) ) ;

209 % Xsol = vpaso lve ( x==0,varsx , i n i t x )

210 Xsol = vpaso lve ( y2==0)

211 i f sum( s i z e ( Xsol . q11 1 ) )>2

212 i f p s i < 1

213 idx = i n t e r s e c t ( f i n d ( Xsol . q11 1 >0) , f i n d ( Xsol . q12 1==0))

214 i f l ength ( idx )>1

215 idx = i n t e r s e c t ( f i n d ( Xsol . q33 1 <0) , idx )

216 end

217 e l s e

218 idx = i n t e r s e c t ( f i n d ( Xsol . q11 1 <0) , f i n d ( Xsol . q12 1==0))

219 i f l ength ( idx )>1

220 idx = i n t e r s e c t ( f i n d ( Xsol . q33 1 >0) , idx )

221 end

222

223 end

224 q11 1=Xsol . q11 1 ( idx ) ; q12 1=Xsol . q12 1 ( idx ) ; q13 1=Xsol . q13 1 ( idx )

;

225 q21 1=Xsol . q21 1 ( idx ) ; q22 1=Xsol . q22 1 ( idx ) ; q23 1=Xsol . q23 1 ( idx )

;

226 q31 1=Xsol . q31 1 ( idx ) ; q32 1=Xsol . q32 1 ( idx ) ; q33 1=Xsol . q33 1 ( idx )

;

227 % b1 1 = Xsol . b1 1 ( idx ) ; b2 1= Xsol . b2 1 ( idx ) ; b3 1 = Xsol . b3 1 (

idx ) ;

228 % a 1 = Xsol . a 1 ( idx ) ;

229 e l s e

230 q11 1=Xsol . q11 1 ; q12 1=Xsol . q12 1 ; q13 1=Xsol . q13 1 ;

231 q21 1=Xsol . q21 1 ; q22 1=Xsol . q22 1 ; q23 1=Xsol . q23 1 ;

232 q31 1=Xsol . q31 1 ; q32 1=Xsol . q32 1 ; q33 1=Xsol . q33 1 ;

233 % b1 1 = Xsol . b1 1 ; b2 1= Xsol . b2 1 ; b3 1 = Xsol . b3 1 ;

234 % a 1 = Xsol . a 1 ;

235 end

236 Xsol = vpaso lve ( subs ( y )==0) ;

237 b1 1 = Xsol . b1 1 ; b2 1= Xsol . b2 1 ; b3 1 = Xsol . b3 1 ;
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238 Xsol = vpaso lve ( subs ( const )==0) ;

239 a 1 = Xsol ;

240 % change to double

241 a=double ( a 1 ) ; b1=double ( b1 1 ) ; b2=double ( b2 1 ) ; b3=double ( b3 1 ) ;

242 c11=double ( q11 1 ) ; c12=double ( q12 1 ) ; c13=double ( q13 1 ) ;

243 c21=double ( q21 1 ) ; c22=double ( q22 1 ) ; c23=double ( q23 1 ) ;

244 c31=double ( q31 1 ) ; c32=double ( q32 1 ) ; c33=double ( q33 1 ) ;

245 A = a

246 B = [ b1 ; b2 ; b3 ]

247 Q = [ c11 , c12 , c13 ; c21 , c22 , c23 ; c31 , c32 , c33 ]

248 j =2;

249 end

250 end

251 % f i n d i n g the p o r t f o l i o s

252 gy = B+Q∗Y;

253 Phi = (1/(1 − p s i ) ) ∗ inv ( ph i 1 ) ∗ phi 2 ∗gy+inv ( ph i 1 ) ∗mu;

254 Phi s = inv ( ph i 1 ) ∗mu;

255 P h i l = (1/(1 − p s i ) ) ∗ inv ( ph i 1 ) ∗ phi 2 ∗ [ gy (1 ) ; 0 ; 0 ] ;

256 Phi r = (1/(1 − p s i ) ) ∗ inv ( ph i 1 ) ∗ phi 2 ∗ [ 0 ; gy (2 ) ; 0 ] ;

257 Phi b = (1/(1 − p s i ) ) ∗ inv ( ph i 1 ) ∗ phi 2 ∗ [ 0 ; 0 ; gy (3 ) ] ;

258

259 p i p ( i )=Phi (2 )

260 p i s ( i ) = Phi (1 )

261 % s p e c u l a t i v e demandgamma

262 p i p s ( i )=Phi s (2 ) ; p i s s ( i ) = Phi s (1 ) ;

263 % hedging demand from unobse rvab i l i t y , o b s e r v a b i l i t y and s t o c h a s t i c

264 % i n t e r e s t r a t e s

265 p i p l ( i ) = P h i l (2 ) ; p i s l ( i ) = P h i l (1 ) ;

266 p i p r ( i ) = Phi r (2 ) ; p i s r ( i ) = Phi r (1 ) ;

267 p i p b ( i ) = Phi b (2 ) ; p i s b ( i ) = Phi b (1 ) ;

268 % consumption to wealth r a t i o

269 cwr ( i )=k1

270

271 i = i+1

272 end

273 save ( ’ s imu la t i onEZe i s4 3 . mat ’ , ’ p i s ’ , ’ p i p ’ , ’ p i s s ’ , ’ p i p s ’ . . .

274 , ’ p i s l ’ , ’ p i p l ’ , ’ p i s r ’ , ’ p i p r ’ , ’ p i s b ’ , ’ p i p b ’ , ’ cwr ’ )

275 f p r i n t f ( ’ Var i ab l e s saved !\n ’ )

276 % time counter end

277 toc

278

279 %% Plots
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280 c l o s e a l l

281 c l e a r a l l

282 c l c

283 tau = l i n s p a c e (0 , 10 ,11 ) ;

284 f i g u r e

285 subplot ( 2 , 1 , 1 )

286 hold on

287 load ( ’ s imu la t i onEZe i s1 40 . mat ’ )

288 p lo t ( tau , p i s , ’−> ’ )

289 load ( ’ s imu la t i onEZe i s1 20 . mat ’ )

290 p lo t ( tau , p i s , ’−o ’ )

291 load ( ’ s imu la t i onEZe i s0 25 . mat ’ )

292 p lo t ( tau , p i s , ’−d ’ )

293 load ( ’ s imu la t i onEZe i s0 5 . mat ’ )

294 p lo t ( tau , p i s , ’−s ’ )

295 load ( ’ s imu la t i onEZe i s4 3 . mat ’ )

296 p lo t ( tau , p i s , ’−ˆ ’ )

297 ylim ([ −5 1 ] )

298 y l a b e l ( ’ Wealth A l l o c a t i o n ’ ) , x l a b e l ( ’ \ the ta 1=\the ta 2=\the ta 3 \ in [ 0 , 1 0 ] ’ )

299 l egend ( ’ \ p s i =1/40 ’ , ’ \ p s i =1/20 ’ , ’ \ p s i =1/\gamma ’ , ’ \ p s i =1/2 ’ , ’ \ p s i =4/3 ’ )

300 t i t l e ( ’ ( a ) Optimal Stock A l l o ca t i on ’ )

301 %

302 subplot ( 2 , 1 , 2 )

303 hold on

304 load ( ’ s imu la t i onEZe i s1 40 . mat ’ )

305 p lo t ( tau , pi p , ’−> ’ )

306 load ( ’ s imu la t i onEZe i s1 20 . mat ’ )

307 p lo t ( tau , pi p , ’−o ’ )

308 load ( ’ s imu la t i onEZe i s0 25 . mat ’ )

309 p lo t ( tau , pi p , ’−d ’ )

310 load ( ’ s imu la t i onEZe i s0 5 . mat ’ )

311 p lo t ( tau , pi p , ’−s ’ )

312 load ( ’ s imu la t i onEZe i s4 3 . mat ’ )

313 p lo t ( tau , pi p , ’−ˆ ’ )

314 ylim ([ −5 1 ] )

315 x l a b e l ( ’ \ the ta 1=\the ta 2=\the ta 3 \ in [ 0 , 1 0 ] ’ )

316 y l a b e l ( ’ Wealth A l l o c a t i o n ’ )

317 l egend ( ’ \ p s i =1/40 ’ , ’ \ p s i =1/20 ’ , ’ \ p s i =1/\gamma ’ , ’ \ p s i =1/2 ’ , ’ \ p s i =4/3 ’ )

318 t i t l e ( ’ (b ) Optimal Bond A l l o c a t i o n ’ )

319 %

320 f i g u r e

321 subplot ( 2 , 1 , 1 )
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322 hold on

323 load ( ’ s imu la t i onEZe i s1 40 . mat ’ )

324 p lo t ( tau , p i s s , ’−> ’ )

325 load ( ’ s imu la t i onEZe i s1 20 . mat ’ )

326 p lo t ( tau , p i s s , ’−o ’ )

327 load ( ’ s imu la t i onEZe i s0 25 . mat ’ )

328 p lo t ( tau , p i s s , ’−d ’ )

329 load ( ’ s imu la t i onEZe i s0 5 . mat ’ )

330 p lo t ( tau , p i s s , ’−s ’ )

331 load ( ’ s imu la t i onEZe i s4 3 . mat ’ )

332 p lo t ( tau , p i s s , ’−ˆ ’ )

333 ylim ( [ −0 .5 0 . 5 ] )

334 x l a b e l ( ’ \ the ta 1=\the ta 2=\the ta 3 \ in [ 0 , 1 0 ] ’ )

335 y l a b e l ( ’ Wealth A l l o c a t i o n ’ )
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Quantitative Finance, 2017.

[3] Louis. Bachelier. The theory of speculation. Master’s thesis, L’Ecole Normale Superieure,

1900.

[4] Fred E. Benth and Paul Kruhner. Integrability of multivariate subordinated Lévy pro-
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[24] Hans Föllmer and Martin Schweizer. Hedging of Contingent Claims Under Incomplete

Information. University of Bonn, 1990.

145



REFERENCES

[25] Gerard Gennotte. Optimal portfolio choice under incomplete information. The Journal of

Finance, 1986.

[26] Nengjiu Ju and Jianjun Miao. Ambiguity, learning and asset returns. Econometrica, 2012.

[27] Adam Kolkiewicz and Yan Liu. Semi-static hedging for GMWB in variable annuities. North

American Actuarial Journal, 2012.

[28] Weiqing Li and Su Chen. Pricing and hedging of arithmetic Asian options via the Edge-

worth series expansion approach. Journal of Finance and Data Science, 2016.

[29] Robert Liptser and Albert Shiryaev. Statistics of Random Processes, Volume I. Springer,

2000.

[30] Robert Liptser and Albert Shiryaev. Statistics of Random Processes, Volume II. Springer,

2000.

[31] Hening Liu. Robust consumption and portfolio choice for time varying investment oppor-

tunities. Annals of Finance, 2010.

[32] Pascal J. Maenhout. Robust portfolio rules and asset pricing. The Review of Financial

Studies, 2004.

[33] Robert Merton. An intertemporal capital asset model. Econometrica, 1973.

[34] Robert Merton. Theory of rational option pricing. The Bell Journal of Economics and

Management Science, 1973.

[35] John R. Michael, William R. Schucany, and Roy W. Haas. Generating random variables

using transformations with multiple roots. The American Statistician, 1976.

[36] Ludovic Moreau. Stochastic target problems with controlled loss in jump diffusion models.

SIAM Journal on Control and Optimization, 2011.

[37] Bernt Karsten Øksendal and Agnés Sulem. Applied stochastic control of jump diffusions,

volume 498. Springer, 2005.

[38] Tommaso Pellegrino and Sabino Piergiacomo. Pricing and hedging multi-asset spread

options by a three-dimensional Fourier cosine series expansion method. Journal of Energy

Markets, 2014.

[39] George Pennachi. The Theory of Asset Pricing. Pearson Education, 2008.

146



REFERENCES

[40] Philip E. Protter. Stochastic Differential Equations. In Stochastic Integration and Differ-

ential Equations, pages 249–361. Springer, 2005.

[41] Sheldon M Ross. Simulation. Academic Press, 2012.

[42] Marjon J. Ruijter and Cornelis W. Oosterlee. Two-dimensional Fourier cosine series ex-

pansion method for pricing financial options. SIAM Journal of Scientific Computing, 2012.

[43] Alexander Schied. Lecture Notes of a Minicourse held at the 8th Symposium on Probability

and Stochastic Processes at Universidad de las Américas, Puebla. TU Berlin, Institut für

Mathematik, 2004.
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