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Abstract 

Dynamic magnetic resonance imaging requires rapid data acquisition to provide an appropriate 

combination of spatial and temporal resolution, and volumetric coverage for clinical studies. In the 

most challenging clinical situations, conventional dynamic MR scanners are often incapable of 

simultaneously providing images with sufficient temporal resolution and high spatial resolution. 

In practice, clinicians are often forced to compromise between these parameters, often resulting in 

sub-optimal performance.  

Cardiac MRI is the most challenging and inspiring dynamic MRI application. In cardiac MRI, the 

main challenge is the sensitivity of reconstruction methods to large inter frame motion. The 

reconstructions often suffer from temporal blurring and motion related artifacts at high 

acceleration factors.  

In this dissertation, three novel approaches are proposed specifically designed to minimize the 

sensitivity of the reconstructions to inter frame motion. First, a compressed sensing (CS) based 

image reconstruction method in conjunction with spiral sampling is developed for the 
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reconstruction of dynamic MRI data from highly accelerated / under-sampled Fourier 

measurements. In the second algorithm, the problem of motion artifacts including respiratory 

motion and cardiac motion in compressed sensing reconstructions is addressed. A motion 

estimation/motion compensation algorithm based on a modified search that aids block matching 

and results in improved residual reconstruction is incorporated into the CS reconstruction for 

dynamic MRI. In the third algorithm, a novel formulation for the joint estimation of the 

deformation and the dynamic images in cardiac cine MR imaging is introduced. The motion 

estimation algorithm estimates the deformation by registering the dynamic data to a reference 

dataset that is free of respiratory motion, which is derived from the measurements themselves. A 

variable splitting framework is used to minimize the objective function, and thus derive the 

deformation and the dynamic images.  

The validation of the proposed algorithms is illustrated using a numerical phantom and in-vivo 

cine MRI data to show the feasibility in precisely recovering cardiac MRI data from extensively 

under-sampled data. 
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 Introduction 

 

1.1. Overview and Motivation  

Magnetic resonance imaging (MRI) is a widely-used medical imaging technique, which uses 

nuclear magnetic resonance (NMR) to image the nuclei of water atoms within the human body. 

MRI has become a popular diagnostic tool for clinical purposes due to the following advantages: 

First of all, MRI, in comparison with other imaging tools such as computed tomography (CT) or 

positron emission tomography (PET), provides non-invasive (no ionizing radiation but only 

intense magnetic field) images with high resolution and contrast. Secondly, while X-rays are 

effective when looking at bones, MRI provides improved visualization of soft tissues, organs, 

ligaments and the circulatory system compared with CT. Therefore, it serves as a powerful 

diagnostic tool. By changing the parameters of its impulse sequences, MRI can provide various 

tissue contrast images useful for differential diagnosis. For example, T1-weighted MRI images 

have high contrast between gray matter and white matter in the brain, and it is useful for accurate 

assessment of myelination, while T2-weighted MRI increases the contrast of myocardial edema. 

Many physicians have recognized MRI as an indispensable imaging diagnosis tool in practice. 

However the technology of MRI is still in its infancy, and a faster dynamic MRI is desirable in the 

clinic. The current application of MRI is limited due to its long data acquisition time. By reducing 

scan time, faster MRI techniques could considerably improve the patient’s comfort levels. More 

importantly, the development of a faster MRI technique could also expand its application and 

scope. For example, dynamic MRI, by providing continuous imaging with much shorter scan 
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times, would allow physicians to better access real time vascular information for tumor and 

coronary artery disease diagnosis.  

Dynamic MRI schemes are used to image the body at different time points to visualize temporal 

change. For example, cardiac MRI provides images of both still and moving heart and nearby 

vessels, both of which are helpful in diagnosis. Due to its high contrast spatial resolution of MRI 

images, cardiac MRI is often preferred to diagnose and evaluate a number of diseases and 

conditions, including: coronary artery disease, congenital heart defects, heart tumors and valvular 

disease. The key technical difficulty in dynamic MRI is to shorten image acquisition time while 

still maintaining image quality. Conventional MR scanners are limited in providing images with 

both high temporal resolution and high spatial resolution. Clinicians are often forced to 

compromise between spatial resolution, SNR, and scan time, often resulting in sub-optimal 

performance. Fig. 1.1 illustrates the three-way tradeoff among the three factors in MRI.  

 

  

Fig. 1.1: MRI is a compromise between three tradeoff factors: the scan time, resolution, and the SNR1. 

                                                 

 

1 http://hdl.handle.net/1802/28286 
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1. Tradeoff between SNR and scan time: SNR is one of the most important parameters of image 

quality. Theoretically, increasing field strength leads to a linearly increased SNR [1]. However, as 

the main magnetic field (B0 field) strength increases, the scanner becomes considerably more 

expensive and the scan time gets longer. In addition, a higher B0 field strength leads to increment 

of both B0 field inhomogeneity and RF magnetic field (B1 field) inhomogeneity. As a result, it is 

often difficult to get excellent compromise between the two factors. 

2. Tradeoff between SNR and resolution: If the scan time remains unchanged, the resolution can 

be increased by either using higher gradient field or less signal averaging. Both approaches lead 

to a reduction of SNR. Moreover, increased gradient field strength can cause undesirable 

peripheral nerve stimulation [2, 3]. In fact, the US Food and Drug Administration (FDA) has strict 

limits on the gradient strength, which limits the compromise between SNR and resolution. 

3. Tradeoff between scan time and resolution: It is known that MRI scanners acquire samples of 

the images in the Fourier domain, which is termed as k-space. According to Nyquist theorem, the 

extension of the k-space region determines the spatial resolution, while the density of the samples 

in k-space determines the field of view (FOV). Fig. 1.2 shows the relationship between image 

domain and k-space. An effective way to shorten the scan time is to undersample k-space. 

However, undersampling violates the Nyquist criterion, which can lead to aliasing artifacts in the 

recovered image.  
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Fig. 1.2: The relation between image domain and k-space. The two domains form a Fourier transform pair. The sampling parameters 

are inversely proportional. Specifically, ���	 = 1 Δ�⁄ , Δ
	 � 	1 ���
⁄ . The coverage of the k-space samples (���
) determines the 

spatial resolution of the image. The sampling density in k-space determines the image FOV
2

. 

 

Dynamic imaging provides the biggest challenge for MRI due to the above mentioned tradeoffs. 

There are several applications for dynamic MR imaging such as cardiac, perfusion, and vocal tract 

imaging, etc. Various efforts have been made to simultaneously achieve high spatio-temporal 

resolution. For example, in cardiac MRI, the periodicity of the heartbeats is exploited to enable 

data sharing in k-space. Subsets of k-space are filled within each heartbeat and the image is 

reconstructed by combining the k-space samples from different heartbeats. This is possible when 

the heart is beating periodically, where the motion is captured by electrocardiogram (ECG) gating. 

Another physiological motion, i.e. respiratory motion, can be minimized by the subjects holding 

their breath. Fig. 1.3 (a) shows an ECG gated breath-holding cardiac MRI, with a k-space sampling 

pattern in (c) and the reconstructed heart image in (d). Good reconstruction is only possible when 

                                                 

 

2 http://hdl.handle.net/1802/28286 
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the ECG gating is perfect and patients are holding their breaths. However the assumptions of data 

sharing (periodic heartbeats and breath-holds) are often not met in many clinical scenarios. For 

instance, patients with arrhythmia have high variability in their heart rates. Pediatric patients and 

other patients suffering from asthma, dyspneic respiration or congestive heart failure may not be 

able to comply with the strict breath-hold demands. This results in inconsistent data sharing, shown 

in Fig. 1.3 (b), and leads to blurring and other motion related artifacts in reconstruction as 

demonstrated in (e).  

  

Fig. 1.3: Classical dynamic cardiac MRI. (a) depicts the ECG gated breath-holding imaging protocol. For a frame of the cardiac image, 

the k-space data are collected during different cardiac cycle. As shown in (c), each line of k-space samples corresponds to one heartbeat. 

The corresponding reconstructed image is presented in (d). However, the conditions of data sharing (periodic heartbeats and breath-

holds) usually are not satisfied, shown in (b), which leads to artifacts in the recovered image, as (e) shows
3

.  

                                                 

 

3 http://hdl.handle.net/1802/28286 
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Therefore, dynamic cardiac MRI is one of the most challenging and demanding MRI application.  

Scan time is a crucial parameter in the development of dynamic cardiac MRI. Many researchers 

have attempted to speed up cardiac MRI techniques. It is still a demanding task to obtain cardiac 

sequences with enough spatio-temporal resolution to accurately capture the dynamic activity of 

heart. Even with the advanced fast imaging sequences (bSSFP [4]), it is hard to collect data for the 

entire heart volume within a single breathhold [5]. 

The most straightforward way to reduce total scan time is to decrease the number of samples 

acquired in in k-space. However, sub-Nyquist sampling results in undesirable artifacts, shown in 

Fig.1.1. (Uniform downsampling scheme results in structured aliasing artifacts.) It is important to 

note that the aliasing caused by randomly undersampling is incoherent in nature and hence quality 

appears better.  

 

Fig. 1.4: In the first row, several sampling schemes to acquire k-space data are shown. In the second row, reconstructed images from 

samples using k-space trajectories are shown as in the figures above. According to sampling theory, the original image can be recovered 

from the fully sampled (above or equal to Nyquist rate) Fourier data. However, if the k-space is downsampled uniformly thus acquire 

only one portion of the k-space data, aliasing artifacts contaminate the reconstructed images. Since the main subject, brain, completely 

becomes indistinguishable in the reconstructed image, this kind of aliasing artifacts need to be avoided. On the other hand, if k-space is 

randomly sampled and collected the same numbers of samples, the artifacts show less pattern and we can still identify the brain image 

[12] 
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Many image reconstruction schemes have been developed to speed-up the data acquisition of 

dynamic MRI without degrading the image quality. A brief review of existing acceleration 

schemes and challenges associated with these methods will be presented in chapter 3 of this thesis. 

1.2. Overall objective  

The overall objective of this thesis is to develop novel dynamic cardiac MR imaging frameworks 

that can enable free breathing dynamic cardiac imaging with high spatiotemporal resolution. To 

achieve this, this dissertation deals with developing novel image reconstruction methods for the 

reconstruction of dynamic cardiac MRI data from highly accelerated / under-sampled Fourier 

measurements.  

We are inspired by the recent developments in compressed sensing theory and its application to 

image reconstruction. It states that as long as the image is sparse in a certain domain, it is possible 

to reconstruct images from dramatically fewer samples than the numbers needed by Nyquist 

sampling theory. Compressed sensing formulates the recovery as an optimization. The 

optimization criterion can be represented by a linear combination of a quadratic data consistency 

term and a non-quadratic image prior, which is termed as the regularization penalty. In this 

dissertation, we try to improve both components to accelerate the reconstruction algorithm and to 

reduce the reconstruction error by solving the image recovery optimization problem. We aim at 

fast MRI techniques with high spatial and temporal resolution and to apply our algorithms in the 

real-world clinical applications such cardiac MRI.  

1.3. Main contributions  

 

1.  A compressed sensing based image reconstruction method in conjunction with spiral sampling 

is developed for the reconstruction of dynamic MRI data from highly accelerated / under-sampled 
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Fourier measurements. The main novelties and benefits of the proposed algorithm over existing 

methods are:  

- Exploiting spatio-temporal sparsity of cardiac MRI by applying 3D wavelet-Fourier transform  

- Using golden angle spiral trajectories for efficient coverage of k-space:  Compared to 

conventional Cartesian k-space sampling, spiral sampling allows faster acquisitions and results in 

a reduction of the high gradient demand in fast cardiac scans. Another advantage is that the 

sampling density can be varied in the center of k-space, where the most energy in MR k-space 

images is concentrated. Moreover, spiral trajectory is very flexible. High temporal and spatial 

resolution, as required for dynamic MR imaging can be obtained by tuning the number of 

interleaves and spiral parameters. However, spiral images are more susceptible to off-resonance 

effects that cause blurring artifacts and distortions of the point spread function (PSF), and thereby 

degrade the image quality. Since off-resonance effects scale with the readout duration, the 

respective artifacts can be reduced by shortening the readout trajectory. Multi shot (interleaved) 

spirals are used to reduce these artifacts. And in order to reduce incoherent aliasing artifact, 

different random undersampling pattern is used for each temporal frame. 

-  Using non uniform fast Fourier transform (NUFFT): since k-space samples are no longer aligned 

on a Cartesian grid, reconstruction of such data is no longer straight forward. Non uniform fast 

Fourier transform algorithm is used to reconstruct the image from the non-uniformly acquired 

samples.  

2. To address the problem of motion artifacts in typical compressed sensing reconstructions, a 

novel motion estimation and compensated compressed sensing reconstruction scheme has been 

proposed. The proposed scheme decomposes the given dynamic cardiac MR images into a low 

rank and a sparse component. This allows robust separation of motion component and background 
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component that can be registered. Robustness to different types of motion for this Motion 

Compensated Data Decomposition (MCDD) algorithm will be demonstrated on both simulated 

and in-vivo dynamic cardiac MRI data. 

3. Also, a novel formulation for the joint estimation of the deformation and the dynamic images in 

cardiac cine MR imaging has been introduced. The hypothesis is that low rank plus sparse 

decomposition coupled with a registration algorithm provides accurate registration of dynamic 

time series in a broad range of organs and for various breathing protocols. The motion estimation 

algorithm estimates the deformation by registering the dynamic data to a reference dataset that is 

free of respiratory motion, which is derived from the measurements themselves. A variable 

splitting framework is used to minimize the objective function, and thus derive the deformation 

and the dynamic images. The novelties enabled by this framework are derivation of a reference 

dataset that is free of motion from the measurements themselves and efficient decoupling of the 

motion estimation problem from the reconstruction problem. Unlike existing motion compensated 

compressed sensing schemes, the proposed scheme does not require fully sampled prescans or 

navigators for motion estimation.  

The work has contributed to the following papers: 

“Compressed sensing in MR imaging”, A. Tolouee, J. Alirezaie, P. Babyn, Computer Aided 

Radiology and Surgery: Int. Journal of Computer Assisted Radiology and Surgery, Volume 8, 

Supplement 1, S20-21, June 2013.  
 

“Accelerating dynamic MRI by compressed sensing reconstruction from undersampled k-t space 

with spiral trajectories “, A. Tolouee, J.Alirezaie, , P. Babyn, Proceedings of Middle East 

Conference on Biomedical Engineering (MECBME) ,  pp. 17 - 20, Feb 2014. 
 

“Compressed Sensing Reconstruction of Cardiac Cine MRI using Golden Angle Spiral 

Trajectories”, A. Tolouee, J.Alirezaie, P. Babyn, Journal of Magnetic Resonance, Volume 260, 

pp. 10–19, 2015. 
 

“Motion Compensated Data Decomposition Algorithm to Accelerate Dynamic Cardiac MRI", A. 

Tolouee, J.Alirezaie, P. Babyn, Magnetic Resonance Materials in Physics, Biology and Medicine 

2017. DOI: 10.1007/s10334-017-0628-x. 
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“Motion Compensated Compressed Sensing Reconstruction in Cardiac Cine MRI”, A. Tolouee, 

J.Alirezaie, P. Babyn, Proceedings of IEEE Nuclear Science Symposium and Medical Imaging 

Conference, 2017.  
 

“Nonrigid Motion Compensation in Compressed Sensing Reconstruction of Cardiac Cine MRI”, 

A. Tolouee, J.Alirezaie, P. Babyn, Magnetic Resonance Imaging Journal, 46, 114-120, 2018.  
  

1.4. Outline of the thesis 

In the following, the organization of this thesis is introduced. 

Chapter 2, entitled "Background", provides a brief overview of magnetic resonance imaging (MRI) 

and the compressed sensing (CS) theory.  

Chapter 3, entitled “Accelerating Dynamic Cardiac MRI", briefly discusses the need for fast 

cardiac MRI techniques, existing methods and limitations in dynamic cardiac MRI. 

Chapter 4, entitled “Compressed Sensing Reconstruction of Cardiac Cine MRI using Golden 

Angle Spiral Trajectories", presents the development of the first proposed algorithm to include 

non-Cartesian spiral sampling. Using the proposed frame work, this chapter demonstrates the 

feasibility of accelerating cardiac MRI data. Validations are performed on numerical phantom and 

in-vivo data to study the resulting formulation in terms of its performance against existing 

compressed sensing methods. 

Chapter 5, entitled “Motion Compensated Data Decomposition Algorithm to Accelerate Dynamic 

Cardiac MRI", presents a new reconstruction and motion estimation framework in the context of 

compressed sensing. The chapter discusses in detail the new formulation, and its performance on 

phantom and in-vivo cardiac MRI data.  

Chapter 6: entitled "Non-rigid Motion Compensation in Compressed Sensing Reconstruction of 

Cardiac Cine MRI", presents a robust non-rigid motion compensation approach applied to the 

compressed sensing reconstruction of dynamic cardiac cine MRI sequences. 
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Chapter 7: entitled "Summary and future work", provides conclusions and further directions for 

this research. 
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 Background 

 

2.1. Basics of MRI System 

MRI is based on the phenomenon of nuclear magnetic resonance (NMR). The nuclear spins have 

the intrinsic angular momentum, which gives rise to a nuclear magnetic moment "# . The overall 

magnetization of a system $ is defined as the vector sum of all the nuclear magnetic moments, 

i.e. $ � ∑"#. Without an external magnetic field, the moments of the spins have random 

directions. Hence, the net magnetization is zero. In the presence of an external static magnetic field 

&�, the spins are polarized and exhibit a net magnetization $� that is aligned with the magnetic 

field &�, as shown in Fig. 2.1 (a). 

The polarization and hence the magnetization increases with the main magnetic field strength &�. 

The motion of the spins in the presence of &� is termed as precession, with the precession 

frequency (also denoted as Larmor frequency) [6]:  

'� 	� 	�&� (2.1) 

where �  is the gyromagnetic ratio. In in-vivo MRI, the signal is produced by the spins of protons 

in water and fat molecules in the body [7]. 

When an RF excitation field (&(), modulated at the Larmor frequency, is applied in the transverse 

plane, the magnetization ($�) will be tipped away from the equilibrium state. There are two 

components of the deflected magnetization, i.e longitudinal magnetization ($�) and transverse 

magnetization ($
)). After &( is removed, the magnetization will gradually return to the original 
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position through a process termed as relaxation, as presented in Fig. 2.1 (b). The detectable signal 

that is produced by the relaxation of $
) is the MR signal. 

Formulation of the two-dimensional (2D) MR image will be described in the next section. 

(a) (b) 

Fig. 2.1: In the presence of an external magnetic field B0, the protons will be polarized and generate a magnetization M0, as shown in (a). 

Applying a RF excitation field B1 along x direction, the magnetization tips away from M0, producing two components, i.e. a longitudinal 

magnetization Mz and transverse magnetization Mxy, as shown in (b) [6]. 

 

2.1.1. Signal equation 

 

When an RF excitation pulse is applied to a volume, all the protons within the magnetic field are 

excited. In order to image a slice of the body, a linear gradient field along z direction, i.e. G,, is 

used. According to the linear relation between resonant frequency and the magnetic field strength, 

as Eq. (2.1) presents, the resonant frequencies vary linearly, shown in Fig. 2.2. Therefore, when 

the band-limited RF field B( is applied, only the protons at a slice of the body will be excited with 

the corresponding resonant frequency. The bandwidth of the RF pulse and slope of the applied 

gradient determine the thickness of the excited slice. Fig. 2.2 illustrates the relationship between 

the RF pulse bandwidth and the slice thickness.  
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Fig. 2.2: Illustration of slice selection. The linear gradient field �� is exerted to change the resonant frequencies linearly. When the RF pulse 

centered at �� with bandwidth of ∆� is applied, the protons with the corresponding resonant frequency at a slice of the body are excited. A 

higher gradient or a larger bandwidth results in thicker selected slice [6]. 

 

Similarly, gradient field along the 
 direction,�
, and along y direction, �), can be applied to 

further localize the MR signal. Hence, the magnetic field & experienced by protons at a specific 

spatial location .
; 	01 and time point 2 is determined by both the static magnetic field &� and the 

time-varying gradient field � in two directions [8]: 

&.21 � &� 3	
�
.21 3 0�).21 (2.2) 

By ignoring the relaxation and the field map effect in the Larmor frequency equation (2.1), the 

following equation can be obtained: 

4
).
, 0, 21 � 4.
, 0167�8 9 .
:;.�1<):=.�11>�?  
(2.3) 

The MR signal detected at a specific time point is the summation of MR signal of all voxels: 

@.21 � A A 4.
, 0167�8 9 .
:;.�1<):=.�11>�? B
B0)
  

(2.4) 

k-space location at the time point 2 is defined as: 

�
.21 � �2�A �
.C1BC�
�  

(2.5)  
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�).21 � �2�A �).C1BC�
�  

(2.6) 

The MR signal equation can thus be expressed as: 

@D�
, �)E � A A 4.
, 0167�FG
H;67�FG)H=B
B0)
  

(2.7) 

This equation indicates that the received k-space signal @D�
, �)E and the image 4.
, 01 form a 

Fourier transform pair, where the k-space trajectory is controlled by the gradients. 

 

2.1.2. K-space trajectories 

 

Currently, the most popular k-space trajectory is Cartesian acquisition, where the k-space is 

sampled line by line in order to obtain the whole coverage of k-space domain and reconstruct the 

image using Fourier transform. This sampling method is slow because it only samples one line per 

excitation. The time interval between successive excitation pulses is termed as repetition time 

(TR). Thus, in order to obtain the k-space data of a 256×256 image, the scan time is about 256×TR. 

There are several fast acquisition methods that have been developed. One of the most well-known 

is echo-planar imaging (EPI) shown in Fig. 2.3(b). In Cartesian EPI, the gradient �
 is 

continuously applied, with positive and negative alterations. In this case, the data is collected along 

a raster global trajectory.  
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Fig.2.3: Illustration of two classical Cartesian MRI sampling schemes. In Fig.2.3(a) the most straight forward sampling pattern in MRI is 

shown. After each excitation, it collects one single line in �
, the readout direction. Therefore multiple excitations are needed to cover the whole 

k-space. While, in Fig.2.3(b), the MRI scanner applies a much faster data acquisition method: EPI. It collects data along a zigzag trajectory able 

to cover k-space in one excitation. 

 

 

However, the EPI scheme is linked to several artifacts such as magnetic field inhomogeneity 

induced distortions and eddy current induced ghosting. In addition, the rapid switching gradients 

can cause peripheral nerve stimulation (PNS) [9]. American and European regulatory agencies 

insist that manufacturers stay below specified dB dtK limits (dB dtK  is the change in field per unit 

time) for any imaging sequence. 

Non-Cartesian schemes that use smoothly varying gradients (e.g. radial, spiral, rosette) were 

introduced to avoid the dB dtK  problems associated with the fast switching gradients in EPI. 

Besides, many of these schemes naturally oversample the center of k-space, where most of the 

signal energy is concentrated. Hence, there are reported to be more SNR efficient than EPI 

methods. 

The non-Cartesian scan starts at the center of k-space and proceeds to the edge to cover k-space. 

In both radial and spiral scans, the sampling locations are not on a Cartesian grid most of time. 

Therefore, it requires more complicated reconstruction algorithms since FFT is not amenable to 

  

(a) rectilinear scan (b) Echo planner imaging 
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non-Cartesian data set. However, the non-Cartesian scan is still very popular due to the advantages 

of fast imaging and less artifacts. Seen in Fig.2.4, the trajectories sample more intensely at the 

center and more sparsely near the edges. Since the k-space of MRI images have most of the energy 

at the center, the non-Cartesian sampling pattern (radial and spiral) would preserve the most of the 

energy even when undersampling. These trajectories are more suited to accelerate imaging by 

undersampling k-space since they can downsample the k-space non-uniformly. This is in contrast 

to 1-D downsampling with EPI-like methods. In compressed sensing, they can provide incoherent 

downsampling of k-space. From scan time reduction perspective, non-Cartesian scan will provide 

better reconstruction results with less patterned artifacts.  

 

  

(a) radial scan (b) spiral scan 

Fig. 2.4: Two classical non-Cartesian sampling patterns of MRI scanning: radial scan Fig.2.4(a) and spiral scan Fig.2.4(b) are shown. The 

trajectories begin at the center of the k-space and proceed to the edge along straight lines in radial scan and curve lines in spiral scan. 

 

2.2. Compressed Sensing 
 

The theory of compressed sensing (CS) is motivated by the sparse representations of images used 

in the field of image compression. The main question in compressed sensing is: if the data is known 

to be sparse, can it be recovered using fewer measurement samples? In the recent years, this 

research area has received tremendous interest. Most MR images are sparse in a pre-specified 
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transform domain. In compressed sensing based MRI, the reconstruction is formulated as an 

optimization problem by enforcing both the data consistency and the sparsity of the image. The 

solution of the optimization problem is achieved by using non-linear methods. 

Compressed sensing theory was first proposed by Candes, Romberg, and Tao [10], and D. Donoho 

[11]. Generally speaking, compressed sensing is a technique which reconstructs a sparse signal 

from a limited number of its linear measurements. Recently, Lustig has applied this technique to 

MRI [12]. He adapted the compressed sensing (CS) theory in the context of recovering a sparse 

image from its undersampled Fourier samples. Now, the essentials of compressed sensing based 

schemes will mathematically be described. 

Suppose L	 ∈ 	ℝO is a sparse signal, Φ is the sparsifying transform (e.g wavelet, finite differences). 

Q is an arbitrary linear operator such that QL	 3 R	 � 	S, where S is the observed noisy linear 

measurements. In the context of MRI, Q usually refers to the undersampled Fourier transform, 

and R is often modeled as a Gaussian white noise with standard deviation T. The compressed 

sensing method tries to find the signal LU that is sparsest in the Φ transform domain and satisfies a 

data consistency requirement, 

LU.V1 � WVX	min\ ‖ΦL‖�  such that  ‖QL	 − S	‖F �	TF (2.8) 

where the objective function ‖. ‖�  is the !� norm, which indicates the number of non-zero 

coefficients in the sparse signal. The sparsity is enforced by the minimization of ‖ΦL‖� . The 

constraint ‖QL	 − S	‖F �	TF	promotes data consistency. 

The problem is often reformulated using Lagrange's multipliers as: 

LU.V1 � WVX	min\ D‖ΦL‖� 3 ^.‖QL	 − S	‖F −	TF1E (2.9) 
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However, the !� reconstruction problem (2.9) is numerically infeasible. Candes et al. and Dohono 

[10, 11, 13] have theoretically proved that !( minimization is equivalent to !� minimization on 

signal recovery if the restricted isometric property (RIP) is satisfied [14]. The !( optimization 

problem is thus presented as: 

LU.V1 � WVX	min\ D‖QL	 − S	‖F 3 ^‖ΦL‖�_E (2.10) 

where the !( norm is defined as ‖L‖�_ � ∑ |L�|� . The restricted isometric property (RIP) guarantees 

the accuracy of CS reconstruction if the sparsifying transform Φ and the undersampled Fourier 

transform Q satisfies certain conditions. When the signal is sparse in its domain, i.e. Φ � I, 
suppose that there is a constant bc of the operator Q, such that 

.1 − bc1	‖L‖�dF ≤ ‖QL‖�dF ≤ .1 3 bc1	‖L‖�dF  (2.11) 

holds for all sparse vectors L with s non-zero coefficients [33], Q is considered to satisfy RIP. 

Essentially, the aim of RIP is to define an incoherent sampling scheme, so that the operator Q 

behaves almost like an orthogonal matrix when the data L is sparse. When the sparsifying 

transform Φ is not identity, RIP requires the matrix E = QΦ7( to satisfy the condition (2.11).  

A large number of optimization algorithms have been introduced to solve the problem in Eq. 

(2.10). Generally, these algorithms fall into three categories: discrete algorithms, convex 

algorithms, and majorize-minimize (MM) algorithms.  

 

2.2.1. Discrete Methods 

 

Most discrete reconstruction algorithms are greedy algorithms, which are a family of heuristic 

methods that compute a local optimal solution at each stage in order to find the global optimal 
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answer at the end. The idea of greedy algorithms can be traced back to Mallat et.al. [15] in 1993, 

where he put forward the matching pursuit (MP) method. The algorithm decomposes a signal into 

a linear combination of waveforms, which are chosen from a redundant dictionary of functions. 

The waveforms are then selected to match the signal optimally. This method is proved to have 

good approximation property [16] and converges for any signal in the dictionary space. Other 

greedy methods based on MP are also developed [18, 19]. However, there are two primary 

drawbacks of MP related methods [20]. 

Firstly, a prior sparsity level parameter is required, which is unknown under most practical 

circumstances. Secondly, the algorithms are not robust to noise. These limitations have motivated 

the development of other types of optimization algorithms. 

 

2.2.2. Convex Programs 

 

Convex optimization studies the problem of finding the minimum of a convex function over a 

convex set. One of the most common types of convex optimization problems is one with linear 

constraints and a linear objective, which is called a linear program (LP) [21]. With the development 

of convex optimization, semidefinite programs (SDP) [22] become widely used in compressed 

sensing [22]. However, SDP based algorithms are computationally inefficient for large scale 

problems. Beyond these computation concern, SDP is not applicable to optimization problems 

with combined penalties. 
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2.2.3. Majorize-Minimize Methods 

 

The main advantage of MM algorithms is that they replace the original difficult regularized 

optimization problem by a sequence of easier quadratic surrogate problems. The surrogate criteria, 

denoted by @.�1.L1, majorize the original objective function f.L1, and are dependent on the 

current iterate L.�1: 
f.L1 ≤, ∀L;			@.�1.L.�11 � f.L.�11 (2.12) 

Thus, the 4th iteration of the MM algorithm involves the following two steps (i) evaluate the 

majorizing criterion @.�1.L1,  that satisfy (2.12), and (ii) solve for L.�<(1.V1 � WVX	min\ @.�1.L1 
using an appropriate quadratic solver (e.g. conjugate gradients (CG) algorithm). Fig. 2.5 shows the 

basic concept of MM algorithm.  

 

Fig. 2.5: Illustration of MM algorithm. The goal is to minimize the cost function C(f). Using a surrogate function S(m)(f) to maximize C(f), the 

minimization of the surrogate function is used to find the next iteration. By successively minimizing the surrogate function, the minima of C(f) 

can be obtained [23]. 

 

One of the special cases of MM algorithm is the Expectation Maximization (EM) algorithm, where 

there are two steps: E (expectation) step and M (maximization) step. In the E step, the conditional 
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expectation of the data log likelihood is computed, which basically creates a minorizing surrogate 

function. In the M step, minorizing surrogate function is maximized. Therefore, EM algorithm is 

essentially an example of MM algorithm [23]. There are other extensions of MM algorithms such 

as iterative shrinkage thresholding algorithm (ISTA) and fast ISTA (FISTA) [24, 25].  
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 Accelerating Dynamic Cardiac MRI 

 

3.1. Dynamic Cardiac MRI  

Dynamic MRI acquires a series of images of a dynamically evolving object at different time points 

to show the structure and function of the object. Dynamic MRI collects more information than 

static MRI, which is helpful in detection of certain type of diseases (e.g cardiovascular diseases) 

[26]. However, obtaining dynamic MR images with high spatial and temporal resolution in a short 

period of time is challenging. Cardiac MRI is the most challenging and inspiring dynamic MRI 

application. There are many image reconstruction schemes developed to speed-up the data 

acquisition of dynamic cardiac MRI without degrading the image quality. The introduction of 

parallel MRI had a great impact on dynamic cardiac MRI applications [27]. In addition, 

electrocardiogram (ECG) gating along with breath holding is typically used to enable data sharing 

in k-space. Subsets of k-space are filled within each heartbeat and the image is reconstructed by 

combining k-space samples from different heartbeats. Good reconstruction is only possible when 

the ECG gating is perfect and patients are holding their breaths. However the assumptions of data 

sharing (periodic heartbeats and breath-holds) are often not met in many clinical scenarios. For 

instance, patients with arrhythmia have high variability in their heart rates. Pediatric patients and 

other patients suffering from asthma, dyspneic respiration or congestive heart failure cannot 

comply with the strict breath-hold demands [28-30]. This results in inconsistent data sharing and 

manifests as artifacts in the reconstruction.  
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In non-gated techniques (i.e., with no cardiac synchronization), however, significantly higher 

accelerations are required to achieve a desirable spatio-temporal (S-T) fidelity−defined as a 

measure of how closely the reconstructed motion matches the true dynamics of cardiac tissue. 

Although modern cardiac MRI protocols use combination of fast pulse sequences and parallel 

imaging technology to achieve higher acquisition speeds, in non-gated imaging such techniques 

alone are typically insufficient for achieving simultaneous high S-T resolutions and high S-T 

fidelity [31, 32]. This is because of restrictions on gradient encoding performance, e.g., constraints 

to avoid peripheral nerve stimulation in addition to restrictions on accelerations gained through 

parallel imaging due to the associated signal-to-noise ratio (SNR) penalty [27]. Therefore, there 

has been huge interest in moving beyond such limits. There is an arsenal of techniques for highly 

accelerated cardiac MRI, which will be reviewed in the following section:  

3.2. Literature review and challenges with existing acceleration 

schemes 

As it is pointed out before, to address the challenges associated with slow cardiac MR imaging 

acquisition speed, recent interest has focused on accelerated schemes that recover the signal from 

sub-sampled/accelerated k-t measurements. Current state-of-the-art methods for dynamic MRI can 

be categorized as follows: parallel imaging methods, spatio-temporal model based methods, 

compressed sensing based methods, and a combination of these methods that can use multiple 

independent sources of prior information.  

Parallel imaging approaches compensate for the missing information due to downsampling with 

multichannel measurements. For example SMASH [33], SENSE [27], PILS [34], and GRAPPA 

[35] reduce the acquisition time by omitting phase encoding steps. In the reconstruction phase, 
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SENSE restores the original images from a set of aliased images by solving linear sensitivity 

equations, whereas SMASH and GRAPPA calculate the missing k-space data with estimated 

kernels from multiple coil measurements. In principle, the data acquisition time for parallel 

imaging can be reduced by up to the number of receiver channels. However, these methods have 

limitations such as low SNR and the presence of aliasing artifacts for high acceleration factors. 

Also hardware design restricts acceleration factor. 

The main idea behind spatio-temporal model based methods such as UNFOLD [36] is to exploit 

the spatio-temporal redundancy that is often available in dynamic imaging because parts of the 

field of view remain static over time. UNFOLD obtains measurements in a sheared grid pattern in 

k-t space, wherein the phase encoding in k-space is shifted for every frame.  This results in 

repetition of the support region in x-f (spatial-frequency) space and the original image can be 

reconstructed using a spatio-temporal filter. Theoretically, the optimal UNFOLD design problem 

can be formulated as a spatio-temporal sampling problem in the k-t space under so-called time 

sequential sampling (TSS) constraint [37]. Bresler et al. [38, 39] proposed PARADIM which 

achieves high temporal and spatial resolution with a multi-fold reduction using the optimal TSS 

pattern calculated on the fly. 

Researchers have tried to combine UNFOLD with parallel imaging for even faster scanning or 

reduced artifacts. For example, TSENSE [40] combines UNFOLD with SENSE in such a way that 

any residual artifacts are temporally frequency-shifted to the band edge and thus may be further 

suppressed by temporal low-pass filtering. UNFOLD-SMASH [41] meanwhile obtains additional 

phase encoding lines using SMASH, after which images are reconstructed using UNFOLD. 

Furthermore, a generalization of PARADIGM to multiple coils, called PARADISE, has been 

proposed by Sharif et al [42]. The advantage of these combined methods is that they allow aliasing 
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in the x-f domain in designing a sampling lattice. The aliased x-f image is then converted into the 

final aliasing -free x-f image by exploiting the coil sensitivities. In theory, the maximum 

achievable acceleration factor can be as much as the parallel imaging acceleration factor multiplied 

by that of the optimized time sequential sampling. However, the main technical difficulty of these 

algorithms is that exact knowledge of the x-f supports is difficult to obtain.  

Another model-based approach called k-t BLAST/SENSE [43, 44, 45, and 46] has been proposed 

that largely overcomes the shortcomings of the aforementioned classical methods. The k-t 

BLAST/SENSE takes advantage of a priori information about x-f support obtained from the 

training data set in order to enhance the time resolution during data acquisition time.  Unlike the 

above method, k-t BLAST/SENSE does not require precise knowledge of the spectral support. 

Furthermore, the signal does not need finite support. Significant quality improvements have been 

reported relative to the conventional methods. Furthermore, using regular lattice sampling patterns, 

fast implementation is possible.  

Another recent development in dynamic MRI is the introduction of compressed sensing (CS) 

theory by the signal processing community. The application of compressed sensing (CS) to 

increase imaging speed and efficiency in MRI demonstrated great potential to overcome some of 

the major limitations of current techniques in terms of spatial resolution, temporal resolution, 

volumetric coverage and reduced sensitivity to organ motion. CS exploits the fact that an image is 

sparse in some appropriate basis to reconstruct undersampled data (below the Nyquist rate) without 

loss of image information [10, 11, and 12]. Generally speaking, CS is a technique which 

reconstructs a sparse image from a limited number of its linear measurements without loss of image 

information [10, 11]. Lustig has applied this technique to MRI [12]. He adapted the CS theory in 

the context of recovering a sparse MRI image from its undersampled Fourier samples. Most MR 
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images are sparse in a pre-specified transform domain such as wavelets, finite differences (total 

variation), learned dictionaries [47] and many others. In compressed sensing based MRI, the 

reconstruction is formulated as an optimization problem by enforcing both the data consistency 

and the sparsity of the image. The solution of the optimization problem is achieved by using non-

linear methods.  CS can be combined with parallel imaging to further increase imaging speed by 

exploiting joint sparsity in the multicoil image ensemble rather than in each coil separately [48-

51]. Dynamic MRI is particularly well suited for the application of CS, due to extensive 

spatiotemporal correlations that result in sparser representations than would be obtained by 

exploiting spatial correlations alone.  

The idea of CS for signals / vectors can be utilized for recovering missing entries of a low rank 

matrix with incoherencies [52].  Low-rank matrices with a few large eigen values depend on a few 

parameters. Low-rank matrix is completed as the nuclear-norm is minimized with respect to the 

data body constraints, where the nuclear-norm is the analog of the !(-norm for signal vectors [53]. 

Low-rank matrix completion has been applied to dynamic MRI by considering each temporal 

frame as a column of a space-time matrix, where the spatiotemporal correlations produce a low-

rank matrix [54, 55]. Local k-space correlations in multi-coil data have been exploited to perform 

calibrationless parallel imaging reconstruction via low-rank matrix completion [56].  

Combining CS with low-rank matrix completion represents an attractive proposition for further 

increases in imaging speed. In dynamic MRI, previous work on this combination proposed finding 

a solution that is both low-rank and sparse [57, 58]. A different model suggested decomposing a 

data matrix as a superposition of a low-rank component (L) and a sparse component (S) [59-62]. 

The L+S method is particularly suitable for dynamic imaging, where L can model temporally 

correlated background and S can model the dynamic information that lies on top of the background. 
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Preliminary study on the application of L+S to dynamic MRI has been reported by Gao et al. [63] 

to reconstruct retrospectively undersampled cardiac cine data sets and to separate cardiac motion 

from a common background among frames. 

In [64], Otazo et al extended the work by Gao et al. [63] by using L+S decomposition for dynamic 

MR imaging with joint multi-coil reconstruction. They also demonstrated the superior 

compressibility of the L+S model compared to use of a sparse model alone. Reconstruction of 

highly-accelerated dynamic MRI data corresponding to cardiac perfusion, cardiac cine, time -

resolved peripheral angiography, abdominal and breast imaging were presented to show feasibility 

and general applicability of L+S method.  

While all of these methods demonstrate successful recovery when the motion is minimal, the main 

challenge is the sensitivity of these methods to large inter frame motion. Specifically, the 

compactness of the signal representation decreases with inter frame motion, thus restricting the 

maximum possible acceleration; the reconstructions often suffer from temporal blurring and 

motion related artifacts at high acceleration factors. 

To address the above challenge, several motion estimation and compensation (ME-MC) schemes 

have been developed. When applied to dynamic MRI reconstruction, motion estimation and 

motion compensation techniques lack the appropriate dynamic image information to estimate 

motion. A common approach is to perform the ME step from an initial reconstruction of the images 

themselves. However, this will be affected by the artifacts introduced by the undersampling pattern 

that the initial reconstruction cannot correct, and hinders the estimation of the true motion 

information. This effect becomes more relevant as the acceleration factor increases. In k-t 

FOCUSS with ME/MC [65, 66] a high quality reference frame is needed to perform ME by means 

of a block matching algorithm applied independently to each frame. However the reference frame 
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may not be available and the final reconstruction result depends heavily on its quality. In MASTeR 

[67], motion is estimated sequentially between each pair of consecutive frames. In both k-t 

FOCUSS with ME/MC and MASTER approaches only two frames of the sequence are available 

for the ME algorithm at each execution, therefore the ME algorithm cannot benefit from the 

additional information present in the rest of the frames making it more sensitive to artifacts in the 

sequence. In [68] a motion corrected compressed sensing framework has been proposed that 

benefits from the higher acceleration available with CS, and corrects for arbitrary (affine or non-

rigid) motion in the CS reconstruction. However, this framework needs longer acquisition time per 

slice than a standard breath-hold acquisition (~10 s), as enough samples for accurate motion 

estimation are required in each respiratory position. In [69], a groupwise temporal registration 

procedure, shown to be more robust to artifacts than its pairwise counterparts, was proposed for 

ME/MC reconstruction of breath-hold cine acquisitions. However, the acceleration factors 

achieved did not enable its direct application to free-breathing real time imaging. Additionally this 

algorithm lacks a true dynamic image to estimate the motion from. It needs estimating the motion 

directly from highly undersampled data.  

In this study, three novel approaches are introduced specifically designed to minimize the 

sensitivity of compressed sensing to inter frame motion.  

The first algorithm is based on compressed sensing using golden-angle variable density spiral 

sampling. By using spiral trajectories, reduced scan time can be achieved by making more efficient 

use of gradient hardware capabilities. Variable density trajectories have been proposed to achieve 

further scan time gains, as they allow increased flexibility in the tradeoff between resolution, field 

of view (FOV), and acquisition duration. Moreover, since the acquisition starts near the centre of 

k-space, there is relatively little gradient-on time before passing through the centre of k-space 
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(where the echo signal is largest) and thus the first-order moment at this point in time is low, and 

hence the sensitivity to motion can be low. The motion artefacts associated with non-Cartesian 

sequences are more benign than for regular Cartesian sampling (they can be less pronounced and 

also may appear outside the region of interest). The proposed algorithm can be used to highly 

accelerate the free-breathing dynamic cardiac MRI. The performance of the extended approach 

will be compared with the state of the art algorithms.  

In the second algorithm, the problem of motion artifacts including respiratory motion and cardiac 

motion in compressed sensing reconstructions is addressed. A ME/MC algorithm based on a 

modified search that aids block matching and results in improved residual reconstruction is 

incorporated into the CS reconstruction for dynamic MRI. The process of the proposed Motion 

Compensated Data Decomposition (MCDD) algorithm can be described as follows: First, a set of 

dynamic images are decomposed into L and S components. The L component includes periodic 

motion in the background, since it is highly correlated among frames and S component corresponds 

to respiratory motion. A motion estimation/motion compensation (ME/MC) algorithm is then 

applied to the low-rank component to reconstruct a cardiac motion compensated dynamic cardiac 

MRI. Robustness to different types of motion including respiratory motion and cardiac motion for 

MCDD algorithm will be demonstrated on both simulated and in-vivo dynamic cardiac MRI data. 

In the third algorithm, a novel formulation for the joint estimation of the deformation and the 

dynamic images in cardiac cine MR imaging is introduced. The motion estimation algorithm 

estimates the deformation by registering the dynamic data to a reference dataset that is free of 

respiratory motion, which is derived from the measurements themselves. A variable splitting 

framework is used to minimize the objective function, and thus derive the deformation and the 

dynamic images. The validation of the proposed algorithm is illustrated using a numerical phantom 
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and in-vivo cine MRI data to show the feasibility in precisely recovering cardiac MRI data from 

extensively under-sampled data. 
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 Compressed sensing reconstruction of 

cardiac cine MRI using golden angle spiral trajectories 

  

4.1. Introduction 

Cine MRI allows non-invasive and reproducible evaluation of cardiac function. Clinically, cine 

imaging is acquired in a multi-slice breath-hold acquisition where one or two slices are acquired 

within a breath-hold (BH) and the patient will breathe normally for a period of 20-30 second 

between BHs. As the spatiotemporal resolution of the cine imaging increases, the number of 

heartbeats required for the segmented acquisition and the duration of the BH increase. To improve 

the imaging throughput, multiple slices are acquired within a BH to reduce total scan time spent 

for evaluation of cardiac function. In patients with difficulty in breath-holding or pediatric patients, 

real-time cine or segmented cine and a short BH is used. For multiple-BH acquisitions to cover 

the entire left ventricle (LV), majority of time is devoted to resting period between scans so that 

the patient recover from BH. In a typical patient for a 10 second BH, 20-30 second is spent in 

between BHs, which results in substantially low acquisition efficiency of 30-50%. Acceleration 

techniques for dynamic cine MRI have been reviewed in the previous chapter.  

In this chapter, a compressed sensing based algorithm is presented to improve efficiency and 

accelerate dynamic cardiac cine MRI based on undersampled k-t space with a stack of variable 

density spiral trajectories by exploiting both spatial and temporal sparsity of dynamic cardiac 

images. 



33 

 

4.2. Materials and methods 

Successful CS requires image sparsity, incoherent undersampling and a nonlinear reconstruction 

procedure. Dynamic MRI is a good candidate for CS, due to extensive correlations between image 

frames which typically result in sparse representations after applying an appropriate spatial-

temporal transform, and also the possibility of using a different random undersampling pattern for 

each temporal frame, which increases incoherence and distributes the incoherent aliasing artifacts 

along the temporal dimension resulting in artifacts with lower intensity. Each requirement of CS 

will be discussed in more detail in the following subsections. 

4.2.1. Spatial-temporal sparsifying transform 

Dynamic cardiac MR images are highly redundant in space and time. By using linear 

transformations (such as wavelets, Fourier etc.), a dynamic scene can be represented using only a 

few sparse transform coefficients.  The wavelet transform (Daubechies 4 with 3 decomposition 

levels) is used in the spatial dimensions and the Fourier transform is used in the temporal 

dimension (Fig. 4.1). Wavelets sparsify each time frame whereas the Fourier transform sparsifies 

smooth or periodic temporal behavior of dynamic cardiac MR images. The sparse representation 

of a phantom dynamic dataset is illustrated in Fig. 4.2. It can be seen that the transform domain of 

the cross section is truly sparse.   
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Fig. 4.1: sparsifying transform 

 

Fig. 4.2: (a) The phantom dynamic data (b) The x-t cross section of the dataset corresponding to the horizontal line in (a), and (c) the 

transform domain of the cross section. 
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Scan time is a limiting factor for many MRI applications. Trajectories which sample k-space non-

uniformly, such as spirals [70], reduce scan time by making more efficient use of gradient 

hardware capabilities. Variable density (VD) trajectories have been proposed to achieve further 

scan time gains, as they allow increased flexibility in the tradeoff between resolution, field of view 

(FOV), and acquisition duration. In VD schemes, k-space sampling density is reduced below the 

Nyquist rate, typically decreasing in density, as a function of distance from the origin. However, 

as a consequence of the below Nyquist rate sampling, the collected data does not in general provide 

sufficient information to completely resolve the imaged object. Standard non-uniform image 

reconstruction methods such as density compensation and gridding reconstruction [71] can be 

applied to samples collected using VD trajectories, relying on the trajectory to minimize artifacts 

[72, 73].  

Spiral sampling offers an alternative to standard Cartesian sampling by effectively using the 

gradients and reducing the scan time needed to traverse k-space.  

A single-shot spiral trajectory can be written as:  

k.t1 � λτkemno (4.1) 

where k.t1 is the complex location in k-space, τ is a function of time, α is the variable density 

parameter, ω � 2πn with n is number of turns in spiral trajectory, and λ � N .2 × FOV1⁄  with N 

the image size.  

By using interleaved-spirals, in which the k-space data are acquired with several interleaves, the 

acquisition time of each spiral and off-resonance effects can be reduced significantly. This results 

4.2.2. k-t space sampling scheme
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in high spatial resolution and less off-resonance effects. In this case, the k-space trajectory of the 

nth leaf has the form of: 

k�.t1 � λτke.mno< Fxyz{|�1 (4.2) 

where N}�~ is the total number of interleaves. The problem is how to choose τ.t1 such that 

following hardware constrains be satisfied:  

|G| ≤ G���, |S| ≤ S��� (4.3) 

where G and S are gradient amplitude and slew rate respectively and are defined as follows: 

G.t1 � 1γ k� .t1, S.t1 � 	G� .t1 (4.4) 

The analytical solution of solving the differential equations in (4.4) was given by Kim et al. [74]. 

They defined the function τ.t1 as follows: 

τ.t1 �
��
�
����S���γλωF �α2 3 1� t�

( .k F⁄ <(1⁄
slew	rate	limited	

�G���γλω .α 3 11t�( .k<(1⁄ 							amplitude	limited	
 

 

(4.5) 

Near the center of k-space, the trajectory is only limited by the gradient slew-rate since gradient 

amplitude is low. For this slew-rate-limited case, S.t1 is set to the maximum available slew-rate 

S���. Then, when reaching the maximal gradient amplitude, we come into the amplitude limited 

case where G.t1 is equal to the maximum available gradient amplitude G���. More information 

on spiral trajectory design can be found in [90].  
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This formulation is used to design interleaved variable density spiral trajectories. Fig. 4.3 shows 

an example of 3D stack of spirals used.  

 

Fig. 4.3: Stack of interleaved variable density spirals in k-space 

 

In our experiments gradient characteristics of maximum amplitude: 4 G/cm and maximum slew 

rate: 15 G/cm/ms as well as variable density parameter: 3 are used to design variable density spiral 

trajectories with 16 interleaves. Maximum amplitude and slew rate values are chosen so that they 

are within the range of typical and clinically acceptable gradient characteristics. Other parameters 

of spiral trajectories are selected empirically to maximize the quality of the reconstructed image.  

Undersampling with different acceleration factors can be achieved by acquiring different subsets 

of interleaves. It is worth noting that interleaved spiral trajectories based on a rotation of an angle 

2π⁄Nint of interleaves, ensures a homogeneous coverage of k-space when all the interleaves are 

t

Kx

Ky
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acquired. However, if only a subset of interleaves is considered, we end up with very 

inhomogeneous k-space coverage as it is illustrated on Fig. 4.4. One way to resolve this problem 

was first proposed in the context of radial sampling by Winkelmann et al. [75] and then by Kim et 

al. [76] for spiral sampling. The proposition is to rotate the spiral interleave by 222.4969 ×	(n	 −
	1), where n is the actual interleave indice, an angle referred to as the golden-ratio angle. By using 

this angle, a more homogeneous coverage of k-space is obtained. Therefore, in our algorithm for 

each temporal frame a different subset of consecutive interleaves is chosen randomly in order to 

increase incoherency and distribute the incoherent aliasing artifacts along the temporal dimension 

which results in incoherent (noise like) artifacts.  

  

(a) (b) 

Fig 4.4: improved coverage of k space (a) 4 consecutive interleaves of the 16 interleaved spiral trajectory, with constant rotation of 2� ����⁄  

between interleaves and (b) 4 consecutive interleaves of the 16 interleaved spiral trajectory, with with golden ratio angle rotation between 

interleaves 
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A main disadvantage of spiral trajectories in MR imaging is the increased complexity of the 

reconstruction process, since taking the inverse Fourier transform does not produce correct results. 

FFT is used widely in signal processing for efficient computation of the FT of finite-length signals 

over a set of uniformly spaced frequency locations. However, in many applications, one requires 

non-uniform sampling in the frequency domain, i.e., a non-uniform FT.  Several papers have 

described fast approximations for the non-uniform FT based on interpolating an oversampled FFT. 

An interpolation method is used for the non-uniform FT that is optimal in the min-max sense of 

minimizing the worst-case approximation error over all signals of unit norm. The proposed method 

easily generalizes to multidimensional signals. Numerical results show that the min-max approach 

provides substantially lower approximation errors than conventional interpolation methods. The 

min-max criterion is also useful for optimizing the parameters of interpolation kernels such as the 

Kaiser–Bessel function.  

Therefore, in order to reconstruct the image from the non-uniformly acquired samples, an 

interpolation step must be performed before FFT to convert the samples onto a regular Cartesian 

grid. Non-Uniform FFT (NUFFT) algorithm [77] is used in which the value of the Cartesian 

samples are determined from the adjacent samples from the spiral acquisition by convolving the 

acquired data with a kernel. After resampling the data onto the Cartesian grid, FFT takes the data 

to the image domain. In our experiments, Kaiser-Bessel kernel with optimal parameters and 6 

neighbors in each direction were used to estimate Cartesian samples from spiral trajectory.  

4.2.3. Reconstruction
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Now consider the case that the 3D cardiac data in (x, y, t) space to be reconstructed is m, Ψ is the 

3D operator that compresses the cardiac data from voxel representation to a sparse representation, 

ℱ�� is undersampled Non-Uniform FFT operator mapping the image domain to k-space, and y is 

the k-space measurement data. The compressed sensing reconstruction is then obtained by solving 

the following constrained optimization problem: 

minimize	‖Ψm‖( 

s. t.			‖ℱ��m− y‖F < � 
(4.6) 

Where ε is a threshold that can be set based on the expected noise level in the data. Minimizing 

the above objective produces an image that has the sparsest representation in the transform domain 

while remaining consistent with the acquired measurements. The non-linear conjugate gradient 

method which is an extension of the algorithm presented in [12] is used to minimize the following 

unconstrained Lagrangian form:  

D(x) = 	‖ℱ��m− y‖F + λ‖Ψm‖( (4.7) 

Where λ is a regularization parameter that controls the tradeoff between sparsity and data 

consistency.  

4.3. Experimental results 

The algorithm was tested on a numerical phantom and a single-coil cardiac MRI data sets. The 

free breathing physiologically improved non-uniform cardiac torso (PINCAT) phantom 

(dimensions Nx = Ny = 128, Nt = 50). A single-coil cardiac cine data set was acquired using a 1.5T 

Philips scanner at Yonsei University Medical Center, Korea: the acquisition sequence was ECG 
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triggered bSSFP, with a flip angle of 50. The heart rate of the subject was 75 bpm and retrospective 

cardiac gating was used for data acquisition. The imaging parameters were as follows: 

FOV=345×270 mm2, matrix size=256×256, TR/TE=3.17/1.09ms, 25 number of cardiac phases, 8 

views per segment, and 32 heartbeats. This provided 8×32=256 views for each frame, and temporal 

resolution was 3.17×8ms≈25ms. Slice thickness was 10.0 mm and the sampling trajectory was 

Cartesian.  

The proposed algorithm was compared with the conventional 2D approach and fixed spiral 

approach (FSA). In FSA the selected interleaves are fixed for all slices. In the 2D approach each 

frame is treated as a separate reconstruction. Each frame is randomly undersampled using spiral 

trajectories and wavelets are used as spatial sparsifying transform. Tests were performed on the 

single-coil data. 

The reconstructions were evaluated at a range of acceleration factors defined as the ratio of the 

number of acquired spiral interleaves in the fully sampled dataset to the number of interleaves used 

to reconstruct the dataset. The performance of the algorithms is qualified using the peak signal to 

noise ratio (PSNR) specified as: 

PSNR = 20 log(�maximum	pixel	value	of	input	image√MSE  
(4.8) 

Where MSE is the mean squared error between the original image and the reconstructed image.  

First, a simulation experiment was performed comparing fully sampled data to retrospectively 4 

fold undersampled reconstruction results using four different sparsifying transforms: spatial 

Discrete Cosine Transform (DCT)+temporal FFT, spatial DCT+temporal TV, spatial Discrete 

Wavelete Transform (DWT) + temporal Total Variation (TV), and spatial DWT+ temporal FFT.  
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Both spatial DCT+temporal TV and spatial DWT+temporal TV, as shown in Fig. 4.5b, c (x–y 

plane), produced temporal blurring artifact in the myocardial wall. In contrast, both spatial DCT + 

temporal FFT, and spatial DWT+ temporal FFT (Fig. 4.5d, e) did not produce the specific temporal 

blurring artifact. The signal intensity profiles along y–t were also evaluated along the white dotted 

lines drawn on Fig. 4.5a. These spatial-temporal profiles also show more temporal blurring 

artifacts for the spatial DCT+temporal TV and spatial DWT+temporal TV than spatial DCT + 

temporal FFT, and spatial DWT+ temporal FFT. Based on these preliminary results, spatial DWT+ 

temporal FFT is elected to be used as the sparsifying transform for accelerated dynamic MR data 

reconstruction. 

  (a) (b ) (c) (d) (e)  

(x-y) 
 

 

(y-t) 

 

Fig. 4.5: Simulation results comparing the (a) fully sampled data to the retrospectively 4 fold undersampled reconstruction results using four 

different sparsifying transforms: (b) spatial DWT+temporal TV, (c) spatial DCT+temporal FFT, (d) spatial DCT+temporal TV, and (e) spatial 

DWT+temporal FFT. (First row) end-systolic reconstructed images, (second row) error images, (third row) spatial-temporal profile of the images.  
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The average PSNR over all frames v/s acceleration factors from 1.3 to 16 is plotted for the 

proposed algorithm, FSA and the 2D approach applied on phantom data in Fig. 4.6. It can be seen 

that the proposed method provides significantly higher PSNR over the 2D approach and FSA at 

all accelerations. This experiment is repeated on cardiac cine MRI data with result shown in Fig. 

4.7. A similar trend to the phantom comparisons can be seen here.  

 

Fig. 4.6: Average PSNR as a function of acceleration factor for the phantom data 

 

Fig. 4.7: Average PSNR as a function of acceleration factor for the cardiac cine MRI data 
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To enable visual comparisons, the reconstructed images as well as their corresponding error image 

at with an acceleration factor of 4 are shown in Figs. 4.8 and 4.9. The improved reconstruction 

using our proposed algorithm can be easily seen. The reconstructed image exhibits significant 

suppression of the aliasing artifacts compared to 2D approach in both phantom and cine cardiac 

data.  

 

 

 

 

 

 

Fig. 4.8: Performance of the proposed algorithm (bottom) in comparison with the 2D scheme (top) on the phantom data. Reconstructed 

images (left), error images (right) 

  

  
Fig. 4.9: Comparisons for the cardiac cine MRI data. 2D algorithm (top), our proposed algorithm (bottom), reconstructed images (left), error 

images (right) 
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In another experiment the performance of the proposed algorithm is compared with k-t FOCUSS 

and k-t FOCUSS with ME/MC algorithm proposed in [65]. As it can be seen in Fig. 4.10, the 

proposed algorithm outperforms both algorithms.  

 
Fig. 4.10:  Quantitative comparison of our proposed algorithm, k-t FOCUSS and k-t FOCUSS with ME/MC at a range of accelerations on cardiac 

MRI data 

 

For another quantitative comparison, the frame-by-frame Mean Squared Error is plotted in Fig. 

4.11 for the different reconstruction methods and with an acceleration factor of 4. As it can be 

seen, the proposed algorithm clearly reduces MSE over almost all frames. 

In Fig. 4.12 the reconstruction and error images are illustrated for k-t FOCUSS and k-t FOCUSS 

with ME/MC and our proposed algorithm at an acceleration rate of 4. As it can be seen in this 

figure, k-t FOCUSS exhibits aliasing artifacts. Furthermore, the cardiac wall was not clearly 

visible using this algorithm due to temporal blurring. The difference error image also clearly shows 

temporal blurring. For k-t FOCUSS with ME/MC, the heart muscles still exhibit aliasing artifacts. 

However, images obtained using our proposed algorithm is much improved, and outperforms both 

methods, with a few noticeable artifacts. The difference image clearly shows the improvements. 

2 4 6 8 10 12 14 16
15

20

25

30

35

40

45

Acceleration Factor

A
v
e

ra
g

e
 P

S
N

R

 

 

Proposed algorithm

k-t FOCUSS with ME/MC

k-t FOCUSS



46 

 

 

Fig. 4.11: The frame-by-frame MSE plot for each method 

  
(a) 

  
(b) 

  
(c) 

Fig. 4.12: The reconstructed and error images for (a) k-t FOCUSS (b) k-t FOCUSS with ME/MC, and (c) the proposed algorithm 
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For temporal resolution analysis, y-t images of the heart at a 4-fold acceleration factor are 

compared (Fig. 4.13). As a reference result, the fully sampled image is shown at the top. As it can 

be seen, in k-t FOCUSS because of temporal blurring, the heart movement is not reproduced well. 

k-t FOCUSS with ME/MC shows some improvement but some significant temporal variations 

were not well reproduced. However, the proposed algorithm closely follows the reference results, 

for this acceleration factor. 

 

   

(a) (b) (c) 

Fig. 4.13: Temporal variation analysis. At the top, y-t slices of fully sampled image is shown. The reconstructed y-t slices using (a) k-t FOCUSS, 

(b) k-t FOCUSS with ME/MC, and (c) proposed algorithm are shown at the bottom. 

 

In another experiment, the spiral golden-ratio undersampling scheme is compared with Cartesian 

undersampling (as in k-t SPARSE [78]) and golden radial undersampling (as in iGRASP [79]) for 

same acceleration factors and reconstruction approaches. For iGRASP algorithm the open source 

code available from the authors is used [80].  
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Reconstruction results from 6-fold acceleration for the case of cardiac MRI data at a cardiac phases 

with the largest motions are compared in Fig. 4.14. The first rows show image frames at a certain 

time index, and the second rows show their difference images from the ground truth. The positions 

of the selected cardiac phase is indicated in the temporal profile image Fig. 4.14(C). In Fig. 

4.14(A), k-t SPARSE results show blurring artifacts near edges and it is difficult to observe the 

fine structures. Also, there still remains temporal blurring as shown in Fig. 4.14(C). While iGRASP 

algorithm shows better results compared to those of k-t SPARSE method. However, as shown in 

Fig. 4.14(A), the fine structures were not clearly reconstructed. On the other hand, as shown in 

Fig. 4.14(A), in the proposed algorithm, edges in the dynamic region and valve structure were 

clearly reconstructed. In Fig. 4.15, reconstruction results of the dynamic cardiac data applied on a 

ROI are shown. 

In Fig. 4.16, the algorithms are compared using quantitative measures, MSE and PSNR. These 

qualitative and quantitative results show that data acquisition strategy (k-space trajectory) affects 

scan time and the resulting image quality. Partial radial or spiral acquisition can be achieved to 

reduce scan time without much affecting the image quality. However, due to its acquisition nature, 

spatial resolution is compromised with k-space trajectory. For the same scan time, spiral 

acquisition allowed for improving resolution, compared to Cartesian or radial, despite longer 

reconstruction time. 
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(A) 

 

 

(B) 

 

 
Fig. 4.14. Reconstruction results of the dynamic cardiac data. The acceleration ratio is x6. Box (A) represents the 8th frame images of the 

ground-truth, the first row represents image frames, and the second row represents difference frames. Box (B) represents temporal slice profile 

images. Each column represents ground truth, k-t SPARSE, iGRASP algorithm and Proposed algorithm, respectively. 
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(A) 
 

 

(B) 

 

 

Fig. 4.15. Reconstruction results of the dynamic cardiac data applined on a ROI. The acceleration ratio is x6. Box (A) represents the 8th frame 

images of the ground-truth,The first row represents image frames, and the second row represents difference frames. Box (B) represents 

temporalslice profile images. Each column represents ground truth, k-t SPARSE, iGRASP algorithm and Proposed algorithm, respectively. 

 

Fig. 4.16: MSE and PSNR values for each time frame 
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In this chapter, k-t sparse algorithm has been extended to spiral trajectories to reconstruct dynamic 

MRI data from under-sampled k-t space data with spiral trajectories.  The proposed scheme 

exploits the correlations in the dynamic imaging dataset by modeling the data to have a compact 

representation in sparse domain. The quantitative and qualitative comparisons of the proposed 

algorithm on phantom data and in vivo MRI data demonstrate the ability of the proposed algorithm 

to significantly accelerate dynamic MRI, while introducing few artifacts. 
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 Motion Compensated Data Decomposition 

Algorithm to Accelerate Dynamic Cardiac MRI 

 

 

5.1. Introduction 

In analogy to video sequences and following the work of Gao et al. [63], dynamic MRI can be 

inherently represented as a superposition of a background component and a dynamic component. 

The background component corresponds to the highly correlated information among frames, 

which is slowly changing over time. The dynamic component captures the innovation introduced 

in each frame, which is rapidly changing over time and can be assumed to be sparse since 

substantial differences between consecutive frames are usually limited to comparatively small 

numbers of voxels. It has been shown that the L+S decomposition can model dynamic MRI data 

more efficiently than a low-rank or sparse model alone, or than a model in which both constraints 

are enforced simultaneously.  

By extending the prior works, a Motion Compensated Data Decomposition (MCDD) algorithm is 

proposed to improve the performance of CS for accelerated dynamic cardiac MRI. The process of 

MCDD can be described as follows: First, the dynamic images are decomposed into L and S 

components. The time-frames from the resulting motion component are discarded and a motion 

estimation/motion compensation (ME/MC) algorithm is then applied to background component to 

reconstruct a motion compensated dynamic cardiac MRI.  
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5.2. Materials and methods 

 

To apply the L+S decomposition algorithm to dynamic MRI, the time –series of images is 

converted to a grid M, where every column is a temporal frame. The use of the L+S decomposition 

will create a lattice L that represent the background element and a grid S that corresponds to 

innovation from column to column. Note that the L component is not consistent after some time, 

but rather will be fairly gradually changing among frames, which contrasts from simply taking a 

temporal average. Truth be told, for the instance of cardiovascular cine, the L part incorporates 

motion in the background, since which could be attributed to high motion correlation among 

frames among frames. The S segment has sparser representation than the first matrix M, since the 

background has been suppressed. This sparsity is evident in the y-t space, but it is more declared 

in a suitable transform domain where dynamic MRI is typically sparse, for example, the temporal 

frequency area (y-f) generated from applying a Fourier transform along columns of S. This 

increase in sparsity given by the background suppression will on a fundamental level empower 

higher acceleration factors, since less coefficients need to be recovered. 

Let M be a Casorati matrix with each column being formed from all the pixels of a 2D time-frame. 

Such a matrix is splitted into a low rank component L and a sparse component S. This is achieved 

under the constraint that the sum of L and S must correspond exactly to the initial dataset M. It 

was shown that such a decomposition can be formulated as an optimization problem:   

4«R«4«¬6	‖­‖∗ + ^‖@‖(			¯°S±6²2	2³	­ + @ = $ (5.1) 

5.2.1. Background and Dynamic Decomposition
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where ‖. ‖∗ and ‖. ‖( respectively represent the nuclear norm (i.e. the sum of the matrix singular 

values) and !(-norm (i.e. the sum of the absolute values of the matrix elements). The parameter ^ 

appearing in (5.1) is a trade-off parameter: for high values all the information will appear in L 

while S will be empty, and vice-versa. The optimal setting of ^ may depend on the application and 

the nature of the data. However, a suggested value independent of any knowledge of expected rank 

or sparsity was introduced in Candès et al. [59]: 

^� = 1 ´max	(�µ, ��)K  
(5.2) 

where �µ and �� respectively represent the number of pixels in each frame and the number of 

time-frames in M.  

The L+S decomposition given in Eq. (5.1) was modified to reconstruct undersampled dynamic 

MRI as follows: 

4«R«4«¬6	‖­‖∗ + ^‖¶@‖(			¯. 2.			·(­ + @) = B (5.3) 

where T is a sparsifying transform for S, E is the encoding or acquisition operator, and d is the 

undersampled k-t data. L and S are defined as space-time matrices, where each column is a 

temporal frame; and d is defined as a stretched-out single column vector. The dynamic component 

S is assumed to have a sparse representation in some known basis T (e.g., temporal frequency 

domain), thus, the idea of minimizing ‖¶@‖( and not ‖@‖( itself. Note that E is a general linear 

operator that maps a matrix to a vector. For a single-coil acquisition, the encoding operator E 

performs a frame-by-frame undersampled spatial FT.  
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A version of Eq. (5.3) using regularization rather than strict constraints can be formulated as 

follows: 

min¸,¹ 	
1
2 ‖·(­ + @) ] B‖F

F 	+ ^¸‖­‖∗ + ^c‖¶@‖(						 
(5.4) 

where the parameters ^¸ and ^c trade off data consistency versus the complexity of the solution 

given by the sum of the nuclear and !( norms. In this work, the optimization problem in Eq. (5.4) 

is solved using iterative soft thresholding of the singular values of ­ and of the entries of ¶@. 

The soft thresholding or shrinkage operator is defined as Λ»(x) = ¼
|¼|$½¾(|¾| ] ^, 0), in which 


 is a complex number and the threshold ^ is real valued. this is extended  to matrices by applying 

the shrinkage operation to each entry. Next, the singular value thresholding (SVT) is defined by 

@¶�»($) = ¿Λ»(Σ)�Á, where $ = ¿Σ�Á is any singular value decomposition of $. 

Fig. 5.1 summarizes the L+S decomposition algorithm. Where at the k-th iteration the SVT 

operator is applied to $H7( ] @H7(, then the shrinkage operator is applied to $H7( ] ­H7( and the 

new $H is obtained by enforcing data consistency, where the aliasing artifacts corresponding to 

the residual in k-space ·Á(·(­H + @H ] B))	are subtracted from ­H + @H. Here EH refers to the 

adjoint operator of E, which maps a vector to a matrix. More details can be found in [64]. 

 

Fig. 5.1: Sequence of operations for the k-th iteration of the low-rank plus sparse decomposition algorithm [64]. 
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Here the concept of video compression and it's analogy to maximally exploiting the temporal 

redundancies in dynamic MRI is first briefly reviewed. A typical video encoder divides a video 

sequence into disjoint groups of T frames. Out of T frames in each group, one frame is designated 

to be the I (intra-coded) frame and the rest are designated to be P (predictive) frames (or sometimes 

B (bi-predictive) frames). The I-frame is encoded as a static image. P-frames are encoded in terms 

of motion compensated residuals between the original P-frames and their respective motion 

compensated predictions from the neighboring frames. In the B-frame the temporal redundancy is 

further exploited. More specifically, two frames (I and P frames) are used as reference frame for 

motion estimation and forward and backward motion estimation are performed. Since adjacent 

frames in a video sequence are very similar to each other, the prediction error is usually very sparse 

and allows efficient encoding. Inter-frame motion between pairs of two images is typically 

estimated using block matching. To predict an image X from an image Y, block matching first 

divides X into non-overlapping blocks of equal size (e.g. 8×8 or 16×16), and then finds the closest 

matching from Y. The matching of one block to another is based on the output of the cost function. 

The block that results in the least cost is the one that matches the closest to current block. There 

are various cost functions, of which the most popular and less computationally expensive is Mean 

Absolute Difference (MAD). Another cost function is Mean Squared Error (MSE). The relative 

locations of the blocks are stored in the form of the motion vectors. I-frame, motion compensated 

residuals, and associated motion vectors constitute the compressed data for a group of T frames.  

Based on lessons learned from video compression, it can be expected that by using ME/MC, the 

temporal redundancies in dynamic images can be exploited. In order to use ME/MC, at least one 

5.2.2. Motion Estimation and Compensation
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reference frame is required. Even if no reference frame is available in some applications, at least 

one reference frame can be generated using the temporal average of k-t space measurements.  

In order to calculate motion vectors accurately, dynamic frames such as P and B that have high 

correlation with the reference frame I should be known. In video, this is not a problem, since full 

resolution P and B are available at the encoder for ME/MC. However, for highly accelerated MR 

acquisition, direct Fourier inversion of the under-sampled k-t measurements does not provide high 

resolution P and B frames, as undersampling can affect the resolution and it will introduce aliasing 

artefacts which makes the ME inaccurate. Interestingly, this problem can be overcome by 

recursively applying our algorithm. 

Particularly, the L+S decomposition algorithm can be utilized first to give moderate quality 

reconstruction. At that point, motion estimation is repeated utilizing the completely sampled 

reference frames and background (L) segment of the L+S decomposition. Completely sampled 

reference frames are fully sampled frames in k-space. Inverse Fourier transform is applied on fully 

sampled frames to get original reference frames. Utilizing the motion vectors, another step of the 

algorithm is applied with the motion compensated prediction. The motion compensation is carried 

out on the image domain using only reference frames and motion vectors by simply relocating the 

specified blocks of the reference frames according to the estimated motion vectors.  

In order to obtain the motion vectors, Mean Absolute Difference (MAD) between the specified 

blocks of the reference frames and dynamic frames is calculated. When the search area is 

determined, the motion vectors for each block on individual dynamic frames are calculated by 

minimizing the MAD. These procedures to obtain the motion vectors are called ME. Then, the 

dynamic frames are newly estimated during MC using the estimated motion vectors.  The MC 



58 

 

procedure is done on image domain utilizing just the reference frames and motion vectors. The 

dynamic images are reproduced by basically moving the predetermined blocks of the reference 

frames as indicated by the estimated motion vectors.  

More specifically, suppose the motion vector for the (
, 0, 2) coordinate is	[«, ±]; MC is then 

accomplished as:	T�(
, 0, 2) = TÄÅ\(
 + «, 0 + ±).  Where T� and TÄÅ\  indicate the MC 

reconstruction and reference frame, respectively. In particular, when multiple reference frames are 

available, ME/MC can be performed for each reference frame and the resulting MC images can be 

averaged out to improve accuracies and PSNR. 

It is interesting to note that more powerful block matching in sequences with repetitive patterns 

such as heart movement can be acquired by searching over several previous frames. The previous 

frame is utilized as the reference for the typical block search for the blocks in current frame. The 

location of the resulting best-matching block in the reference frame is then in turn used as the start 

location for a motion search in the immediately preceding frame, and this process is repeated until 

the last frame is reached. At that point, the best match from any of the searched frames turns the 

resulting prediction.  

There are numerous advantages in utilizing ME/MC to get the prediction term. To start with, the 

structure of dynamic frames can be better reproduced by avoiding blurring because MC just 

relocates the relating pixels of the completely examined reference frames. Second, k-t samples are 

not fully allocated for prediction step because the estimation is performed on image domain rather 

than frequency domain.  
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5.2.3. Motion-compensated CS for dynamic MRI 

- Straightforward CS reconstruction 

The CS paradigm concerns the reconstruction of a sparse signal 
	with length � from $	 
measurements 0 = Φ
 where $ ≪ �, Φ	is an $ × � measurement matrix, and @ = $ �⁄  is 

subsampling ratio. For MRI data, a partial Fourier matrix is commonly used for	Φ.  

One effective method for CS reconstruction of 
	from measurements 0 is a conjugate gradient 

algorithm. CS algorithm designated for MRI is as follows: 

function 
(�<() = f@(
� , 0, Φ,Ψ, ^)  

ÇÈ(�) = Ψ
(�) 

Ç(�) = f³R±°XW26_XVWB«6R2(
ÇÈ(�), ^) 

̅(�) = Ψ7(
Ç(�) 

(�<() = 
̅(�) +ΦË(0 ] Φ
̅(�)) 

f³R±°XW26_XVWB«6R2(. ) is a conjugate gradient descent algorithm with backtracking line search 

as used in [94]. 

- Residual reconstruction 

The main focus of residual encoding step is to efficiently estimate the residual signal using small 

number of k-t samples.  This goal can be achieved based on compressed sensing. In order to 

employ compressed sensing safely, random sampling pattern is used on k-t space resulting in 

highly incoherent basis. An example of the sampling pattern is shown in Fig. 5.10 (a3).   

Suppose we have measurements, y, of the current frame, x, and its prediction yÌÍÎÏ where the latter 

is obtained by a ME/MC process using previously reconstructed frame(s). Instead of a 

straightforward CS reconstruction	strategy, the projected residual of the measurements can be 

reconstructed to exploit temporal correlation; i.e. 
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0Ä 	= 	0	 ] 	Φ
ÐµÄÅ> (5.5) 

It is clear that 0Ä is the projection of the residual, 
Ä, between our prediction 
ÐµÄÅ> and the original 

and still-unknown 
; i.e., 

0Ä 	= 	0	 ] 	Φ
ÐµÄÅ> = ΦD
	 ]	
ÐµÄÅ>E = Φ
Ä (5.6) 

If the prediction process is accurate, the residual frame 
Ä should be more compressible than the 

original frame 
, so its reconstruction should be more accurate. Consequently, a new 

approximation to 
 can be formed as 


Ð = 
ÐµÄÅ> + 
ÐÄ (5.7) 

This process is called residual reconstruction [66]. We now have a new approximation to the 

current frame that is of better quality than the initial approximation that is created from a direct 

CS reconstruction from 0.  

In conventional video, block-based ME/MC performs well when objects undergo geometric 

change (i.e., translation) from one frame to the next. In case of certain dynamic-MRI sequences, a 

motion search using only the immediately preceding frame is insufficient to find a good match 

which might exist in the sequence long before. An example of such a sequence is the dynamic 

MRI of a heart, wherein contractions and expansions of a cardiac chamber repeat at a certain 

interval; in this case, the best match for the current block might lie a number of frames previous, 

depending on the frequency of the cardiac pulsations. 

More effective block matching in sequences with repetitive patterns can be obtained by searching 

over several previous frames. The previous frame is used as the reference for the usual block search 
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for the current block in the current frame. The location of the resulting best-matching block in the 

reference frame is then in turn used as the start location for a motion search in the immediately 

preceding frame, and this process is repeated until the end of the group of pictures (GOP) is 

reached. Then, the best match from any of the searched frames becomes the final prediction. 

 

 

As mentioned before, the L+S algorithm is extended by incorporating ME/MC, resulting in the 

MCDD algorithm that reconstructs the current frame at time t as follows: 

 

L°R²2«³R	
Ð� 	= 	MCDD	(0� , Φ,Ψ, 
Ð�7(, ¾Ò)	

Ð���� 	= 	ÓR«2«W!«¬6(0,Φ,Ψ, 
�7()	

ÐµÄÅ> 	= 	MotionCompensation(
Ð����	, 
Ð�7()	0µÄÅ> 	= Φ
ÐµÄÅ> 	0Ä 	= 	0	 −	0µÄÅ> 	
ÐÄ 	= 	f@	(0Ä , Φ,Ψ)	
Ð� 	= 	 
ÐµÄÅ> 	+ 	
ÐÄ	

Here, Φ is an M × N measurement matrix. For MRI data, a partial Fourier matrix is commonly 

used for Φ. Ψ is a sparsity transform. A temporal Fourier transform is used as the sparsifying 

transform for both L+S and CS parts. MotionCompensation(.) implements block-based ME/MC, 

y~ is the set of measurements for the current frame, xÐ~7( is the previously reconstructed preceding 

frame, and XÕ is the set of P previously reconstructed frames for the P-frame that contains the current 

frame. Note that the reconstruction of the current frame, xÐ~, produced by MCDD algorithm is 

placed into the XÕ, replacing the corresponding frame there, prior to the application of MCDD to 

the next frame.  

5.2.4. MCDD algorithm 
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To obtain the initial reconstructions for group of pictures (GOP), XÕ, as needed to start MCDD, the 

following procedure is applied to produce each xÐ~ of the GOP: 

L°R²2«³R	
Ð���� = 	ÓR«2«W!«¬6(0, Ö,×, 
�7()	
$ = ­ + @ = ­ + @	Ø6²³4Ù³¯«2«³R½!X³V«2ℎ4		(0, Ö, ×)	

Ð���� = ­	
 

Here, ­ + @	Ø6²³4Ù³¯«2«³R½!X³V«2ℎ4		(0,Φ,Ψ) is used to decompose the cardiac MRI data to 

L and S components.  

Please note that $³2«³Rf³4Ù6R¯W2«³R(. ) for each frame is done using a group of pictures, XÕ. 

But MCDD algorithm is performed on each frame. The block diagram of the proposed algorithm 

is shown in Fig. 2. As it can be seen in Fig. 2, reconstruction is driven from a residual in the k-

space domain between the current-frame measurements and a corresponding motion-compensated 

prediction.  

The block diagram of the proposed algorithm is shown in Fig. 5.2.  

Undersampled/accelerated 

dynamic MRI 
L+S algorithm

L

CS 

reconstruction

FT

+

+

-
+

+

+

ME/MC

S

Reconstructed 

MRI

 

Fig. 5.2: the proposed MCDD algorithm 
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5.3. Experimental Results 

The proposed algorithm was validated by experiments using numerical dynamic phantom data and 

real in vivo dynamic cardiac data sets.   

The method is first studied on simulated data. The free breathing physiologically improved non-

uniform cardiac torso (PINCAT) phantom (dimensions Nx = Ny = 128, Nt = 50). The PINCAT 

phantom is an adaptation to MR of the NCAT phantom in CT and was proposed by Sharif and 

Bresler [81] for evaluating cardiac MR imaging schemes and reconstruction methods in MRI. The 

version has been modified by Lingala et al. [57] to include intensity changes (simulating perfusion 

dynamics) and respiratory motion.  

A single-coil cardiac cine data set was acquired using a 1.5T Philips scanner at Yonsei University 

Medical Center, Korea: the acquisition sequence was ECG triggered bSSFP, with a flip angle of 

50. The heart rate of the subject was 75 bpm and retrospective cardiac gating was used for data 

acquisition. The imaging parameters were as follows: FOV=345×270 mm2, matrix size=256×256, 

TR/TE=3.17/1.09ms, 25 number of cardiac phases, 8 views per segment, and 32 heartbeats. This 

provided 8×32=256 views for each frame, and temporal resolution was 3.17×8ms≈25ms. Slice 

thickness was 10.0 mm and the sampling trajectory was Cartesian.  

Also two multi-coil cardiac cine MRI data are used in our experiments.  The first one is acquired 

from a healthy adult volunteer using a 3T scanner (Tim Trio, Siemens Healthcare, Erlangen, 

Germany) and a 12-element matrix coil array. Fully-sampled data were acquired using a 256×256 

matrix size and 24 temporal frames and retrospectively undersampled by factors of 8 using a ky-t 

variable-density random undersampling scheme. The relevant imaging parameters include: FOV 



64 

 

= 320×320 mm2, slice-thickness=8mm, flip angle=10°, TE/TR=1.2/2.4ms, spatial 

resolution=3.2×3.2mm2, and temporal resolution=307ms. 

In the second multi-coil data, a healthy volunteer was scanned on a 1.5T Philips scanner (Philips 

Healthcare, The Netherlands) with a 32- element cardiac coil using a b-SSFP sequence. Relevant 

scan parameters include: TR/TE/flip angle=2.8 ms/1.39 ms/60º, matrix 160×160×16, FOV=320 × 

320 mm2, spatial resolution=2 ×2 mm2, slice thickness=8 mm with no gap between slices. This 

dataset made available by the authors of [69].   

Zero filling Fourier transform (direct IFFT), L+S decomposition [64], deformation correction 

compressed sensing (DC-CS) algorithm [82], and the proposed algorithm were compared. For L+S 

decomposition and DC-CS algorithm the open source code available from their authors was used 

[83, 84]. 

All the algorithms were implemented in MATLAB 2016 on a Windows workstation machine with 

seven cores, 2.8 GHz CPU, and 12 GB RAM. The run time of L+S and DC-CS were 2.7 minutes 

and 1.09 hours respectively. The run time for the proposed algorithm was 5.9 minutes. 

Different combinations of regularization parameters λL and λS were tested on cardiac phantom data 

and cardiac cine data. The regularization parameters with lowest RMSE were employed in 

subsequent reconstructions. For example, L+S reconstruction on cardiac cine data were performed 

with λL= 0.01and λS = 0.01, which presented the lowest RMSE. 

In our experiments, a GOP size of P = 8 frames was used. For the ME/MC process, a block size of 

32, a search window of ±7 pixels, and a search range within the respective GOP was used. 



65 

 

The algorithms were compared visually, as well as quantitatively. As numerical measures, the 

mean squared error (MSE) and the high frequency normalized error norm (HFEN) [85] were 

adopted. HFEN is computed to complement MSE because sometimes the MSE values do not fully 

reflect the visual quality. HFEN is computed as:  

Û�·� = 1
�Ü

‖­³�(
�) ] ­³�(
Ð�)‖ÝF
‖­³�(
�)‖ÝF

O

�Þ(
 

 

(5.8) 

where 
	is the ground truth and 
Ð is the reconstruction image, LoG stands for Laplacian of 

Gaussian filter. In this experiment, the filter size and a standard deviation were set to 15×15 and 

1.5, respectively, as in [85].  

The L+S algorithm iterates until the relative change in the solution is less than 10-5, namely, until 

	‖Là + Sà ] (Là7( + Sà7()‖F ≤ 107á‖Là7( + Sà7(‖F. CS algorithm is stopped when the desired 

convergence has been achieved or if the maximum number of iterations is reached. In practice, CS 

algorithm converges after 5-6 iterations.  

Reconstruction results for the numerical phantom at the cardiac phases with the largest motions 

compared in Fig. 5.3. The first rows show image frames at a certain time index, and the second 

rows show their differences with the ground truth. The positions of the selected cardiac phase are 

indicated in the temporal profile image Fig. 5.3 (B). In Fig. 5.3(A), IFFT results show blurring 

artifacts near edges and it is difficult to observe the fine structures. Also, there still remains 

temporal blurring as shown in Fig. 5.3(B). While L+S and DC-CS algorithm show better results 

compared to those of IFFT method. However, as shown in Fig. 5.3(A), the fine structures were not 

clearly reconstructed. On the other hand, as shown in Fig. 5.3(A), in the proposed algorithm, edges 

in the dynamic region and valve structure were clearly reconstructed. 
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(A) 

 

 

(B) 

  

Fig. 5.3. Reconstruction results of the PINCAT dynamic cardiac phantom. The -space data was obtained in Cartesian coordinates, and the 

acceleration ratio was x4. Box (A) represents the 24th frame images of the ground-truth, the first row represents image frames, and the second 

row represents difference frames. Box (B) represents temporal slice profile images. Each column represents ground truth, direct IFFT, L+S 

algorithm, DC-CS algorithm, and proposed algorithm, respectively. 

 

In Figs. 5.4, the algorithms are compared using quantitative measures, MSE, PSNR, and HFEN. 

From these visual and numerical comparisons, it can be seen that the proposed algorithm enjoys 

several advantages over the other algorithms.  
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Fig. 5.4: MSE, HFEN, and PSNR values for each time frame 
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(A) 

 

 

 

(B) 

 

(C) 

 

Fig. 5.5. Reconstructed images at 6 acceleration: Boxes (A) and (B) represent frames from the systole and diastole phases, respectively. (C) 

represents temporal slice profile images. Each column represents ground truth, direct IFFT, L+S algorithm, DC-CS algorithm, and proposed 

algorithm, respectively. 
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Fig. 5.5 shows the reconstruction results for the case of real cardiac MRI data with 256×256×25 

matrix size. Frames (A) and (B) are in systole and diastole, respectively. The first rows show image 

frames at a certain time index, and the second rows show their difference images from the ground 

truth. In Fig. 5.5(A), direct IFFT shows artifacts near the edges. While L+S and DC-CS algorithms 

show smooth edge reconstruction, the proposed algorithm provides clearer edge structures. In 

diastolic frame reconstructions (B), all the algorithms show better quality than those in the systolic 

phase (A), but the proposed algorithm shows better reconstruction results. 

In temporal profile images (C), the proposed algorithm shows the best performance. IFFT and L+S 

and DC-CS algorithms suffer from temporal blurring and noise. The proposed algorithm shows 

the motion most clearly. 

MSE, HFEN and PSNR values for each temporal frame are illustrated in Fig. 5.6 and show that 

the proposed algorithm outperforms the L+S and DC-CS algorithms. As it can be seen in these 

figures, the inter-frame variability of the metrics is due to different heart motion level in a cardiac 

cycle. For example in systole where the heart is contracted the PSNR plot has its minimum value, 

and MES and HFEN have their maximum value.  
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Fig. 5.6: PSNR, MSE, and HFEN values for each time frames for single-coil cardiac MRI data 

 

In another experiment, the proposed algorithm, L+S algorithm, and DC-CS algorithm are 

employed to reconstruct the cardiac cine MRI and test their sensitivity to the acceleration factors. 

Fig. 5.7(a) plots the average PSNR, (b) average MSE, and (c) average HFEN values versus 

different accelerating factors under the random sampling trajectory. For this experiment, different 

sampling trajectories are generated for different undersampling factors. A ky -t variable-density 
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random undersampling scheme is used in this experiment. Note that in this sampling scheme, low 

spatial frequencies are usually fully-sampled and the undersampling factor increases as we move 

away from the center of k-space.   

   

(a) 

(b) (c) 

Fig. 5.7: (a) PSNR, (b) MSE, and (c) HFEN as a function of acceleration factor  
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L+S  algorithm  

(PSNR=24.07, MSE=0.128, HFEN=0.51) 

DC-CS algorithm 

 (PSNR=26.13, MSE=0.124, HFEN=0.47) 

proposed algorithm  

(PSNR= 28.62, MSE=0.105, HFEN=0.43) 

   

   

Fig. 5.8: Systolic-phase images and y-t plots corresponding to reconstruction of multi-coil cardiac cine data with simulated 8-fold 

undersampling using low-rank plus sparse (L+S) decomposition, deformation correction compressed sensing (DC-CS) algorithm, and the 

proposed algorithm. 

 

Finally, the performance of the proposed method is compared with L+S algorithm and DC-CS 

algorithm by applying these algorithms on first multi-coil cardiac MRI data, which is 

retrospectively undersampled by a factor of 8 using a ky -t variable-density random undersampling 

scheme. The results are shown in fig. 5.8. The proposed approach yields higher PSNR than L+S 

approach and DC-CS algorithm. Both L+S and DC-CS algorithms show temporal blur artifact, 

particularly at systolic phases where the heart is contracted and the myocardial wall is prone to 

signal leak from other frames. The proposed algorithm can significantly reduce these artifacts and 

offers an improved reconstruction of the original cine image, as depicted by better preservation of 
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fine structures in the y-t plots and reduced residual aliasing artifacts. However, patient motion 

(typically breathing) during multi-channel acquisition can result in non-linear “staircase” imaging 

artifacts as it can be seen in the profiles. 

Fig. 5.9 plots the average PSNR values versus different accelerating factors under the random 

sampling trajectory for the case of first multi-coil cardiac MRI data.  

 

                 Fig. 5.9: PSNR in function of acceleration factor for multi-coil MRI data  

 

The reconstruction of the second multi-coil cardiac cine dataset using proposed algorithm, L+S 

algorithm, and MC-CS algorithm are shown in Fig. 5.10, along with their error images. The 

Cartesian sampling pattern corresponding to an undersampling factor of 4, was used to subsample 

the dataset. Two frames corresponding to peak diastole and systole cardiac phases are shown for 

each scheme. It can be observed that the quality of the proposed algorithm reconstructions is better 

compared to the L+S and DC-CS recovery. The error images show that the errors associated with 

proposed algorithm is more homogeneously distributed in the entire image. By contrast, the errors 

associated with L+S and MC-CS methods is more concentrated in the edge regions, indicating 

edge blurring.  
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(a1) (a2) (a3) (a4) 

  
(b1) (b2) (b3) (b4) 

  
(c1) (c2) (c3) (c4) 

  
(d1) (d2) (d3) (d4) 

Fig. 5.10: Recovery of a retrospectively undersampled Cine dataset using proposed algorithm (second row; b1&b2), MC-CS algorithm (third 

row; c1&c2), and L+S algorithm (forth row; d1&d2). The 128×128×16 dynamic dataset, which is acquired using 12 coils, is retrospectively 

undersampled by factor of 4 using Cartesian sampling pattern. The cardiac images of the fully sampled data corresponding to peak diastole and 

systole cardiac phases are shown in (a1) and (a2). The sampling patterns for corresponding frames are shown in (a3&a4). The reconstructed 

images are shown in the first two columns, while their error images are shown in the last two columns. 
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Table5.1 shows a quantitative comparison of the entire methods using PSNR, MSE, and 

HFEN metrics. 

Table5.1: Quantitative comparison of different methods using PSNR, MSE and HFEN metrics 

Scheme PSNR MSE HFEN 

    

MCDD 31.42 0.096 0.24 

MC-CS  30.84 0.112 0.41 

L+S 26.21 0.135 0.52 
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 Nonrigid Motion Compensation in 

Compressed Sensing Reconstruction of Cardiac Cine MRI 

 

 

6.1. Introduction 

In this chapter, a novel formulation for the joint estimation of the deformation parameters and the 

reconstructed images in dynamic cardiac cine MR imaging is introduced. Our method is based on 

the assumption that cardiac motion can be separated from respiratory motion. Here low rank plus 

the sparse decomposition algorithm proposed in [64] is chosen for data decomposition. Low rank 

plus sparse decomposition reformulates decomposition as an optimization problem to recover both 

the low rank (L) and sparse (S) components of the input data. The L component includes periodic 

motion in the background, since it is highly correlated among frames and S component corresponds 

to respiratory motion [86]. Our hypothesis is that low rank plus sparse decomposition coupled with 

a registration algorithm provides accurate registration of dynamic time series in a broad range of 

organs and for various breathing protocols. Given the explicit separation of a sparse term, low rank 

plus sparse decomposition should allow more flexibility and a greater degree of robustness, and 

can potentially benefit dynamic cardiac MRI registration. Since motion components and local 

changes cannot be perfectly separated, the remaining motion is modeled as an elastic deformation, 

whose parameters are estimated from the data. This model is extensively less constrained than the 

parametric scheme used in [87]. Our motion estimation algorithm estimates the deformation by 
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registering the dynamic data to a reference dataset that is free of respiratory motion, which is 

derived from the measurements themselves. A variable splitting framework is used to minimize 

the objective function, and thus derive the deformation and the dynamic images. The novelties 

enabled by this framework are derivation of a reference dataset that is free of motion derived from 

the measurements themselves and efficient decoupling of the motion estimation problem from the 

reconstruction problem. Unlike existing motion compensated compressed sensing schemes, the 

proposed scheme does not require fully sampled pre-scans or navigators for motion estimation. 

The validation of the proposed algorithm is illustrated using a numerical phantom and in-vivo cine 

MRI data to show the feasibility in precisely recovering cardiac MRI data from extensively under-

sampled data.  

6.2. Theory 

It is a demanding task to obtain cardiac sequences with good spatio-temporal resolution to capture 

the dynamic activity of heart. The performance of the image reconstruction schemes will be 

extremely compromised in the presence of inter-frame motion, which can emerge due to breathing 

or inconsistent gating.  

To defeat the above limitation, the deformation parameters and the dynamic images are 

simultaneously recovered. L+S decomposition algorithm is used which produces a matrix L that 

represents the background component and a matrix S that corresponds to the change from column-

to-column, e.g., organ motion. Note that the L component is not constant over time, but is rather 

slowly changing among frames, which differs from just taking a temporal average. In fact, for the 

case of cardiac cine, the L component includes periodic heart motion in the background, since it 

is highly correlated among frames [86].  
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Also, the deformation corrected dataset âã. L		is sparse and temporal variations of	âã. L are more 

organized than that of	L. The deformation parameters ä(
, 2)and the dynamic images ­(
, 2) +
@(
, 2)	are simultaneously recovered from under sampled data	B(�, 2)	using the following 

minimization scheme: 

min¸,¹,ã	
1
2 ‖·(­ + @) − B‖FF 	+ ^¸‖­‖∗ + ^c‖¶@‖ℓ_ + 	λ	‖Φ(âã. L)‖ℓ_ 				 

 

(6.1) 

Here	· is the Fourier sampling operator and	âãis the non-rigid image warping operator; ä(
, 2)	are 

the deformation parameters that describe pixel wise relocations because of motion, which are 

assessed from the under sampled data. The proposed scheme also yield	âã(�,~). L , which is the 

deformation corrected version of	L. In this work, a non-rigid deformation model is considered to 

model the motion. 

The regularization term in Eq. (6.1) promotes the sparsity of the deformation corrected 

dataset		âã. L, instead of	L. Here, 	Φ(u)			indicates an arbitrary prior to exploit the redundancy in 

the data; λ	is the corresponding regularization parameter. The primary advantage of the proposed 

algorithm is that it can be utilized with any spatio-temporal priors on the deformation corrected 

dataset. The particular priors can be chosen relying upon the particular application. The capability 

of the algorithm to handle arbitrary image priors makes this methodology definitely different from 

classical motion compensation algorithms that register each frame to a specific fully sampled 

frame. 

The deformation field in Eq. (6.1) is assumed to be parametrically represented in terms of the 

parameters. For example, Θ	is the set of B-spline coefficients if a B-spline model is used to 

represent the deformation field as in [88] and [89]. In this case, the spatial smoothness of the 

deformation map is controlled by the grid spacing of the B-spline map. The spatial smoothness 
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requirements can also be explicitly forced using regularization constraints on the deformation field 

as in [90]. Our approach is closely related to [90].  

A variable splitting approach [91], [92] is used to decouple the original problem in (6.1) to simpler 

sub problems. Specifically, the problem in (6.1) is reformulated to a constrained one below (6.2):  

min¸,¹,ã,ç	
1
2 ‖·(­ + @) − B‖FF 	+ ^¸‖­‖∗ + ^c‖¶@‖ℓ_ + 	λ	‖Φ(g)‖ℓ_				 

s. t.		âã. L = g 

 

(6.2) 

Eq.(6.2) is solved by relaxing the constraint and penalizing the corresponding quadratic violation 

as follows:  

min¸,¹,ã,ç	
1
2 ‖·(­ + @) − B‖FF 	+ ^¸‖­‖∗ + ^c‖¶@‖ℓ_ + 	λ	 è‖Φ(g)‖ℓ_ + é

2 ‖âã. L − g‖FFê				 
 

(6.3) 

where é	is the penalty parameter that determines the equivalence of (6.3) to (6.2). When 

é	approaches	∞, the solution of (6.3) tends to that of (6.2) and hence (6.1). 

The cost in (6.3) has to be now minimized with respect to four variables , @, θ, g ; To solve this 

problem, an iterative algorithm is used in which each variable is minimized assuming the rest to 

be fixed. This results in the following sub problems: 

(a) Quadratic regularization scheme to update ­	and	@,  

(b) Shrinkage algorithm to derive X by smoothing the warped dataset, and  

(c) Deformable registration algorithm to determine ä. 

The first sub problem is obtained by fixing X and âã in (6.3). So, 	
min¸,¹	

(
F ‖·(­ + @) − B‖FF 	+ ^¸‖­‖∗ + ^c‖¶@‖ℓ_ + 	λ	 íF ‖âã. L − g‖FF				 is solved using conjugate 

gradient optimization scheme. The second sub problem is specified by		minç	 �‖Φ(g)‖ℓ_ +
í
F ‖âã. L − g‖FF�. This sub-problem is solved using shrinkage algorithm, resulting in temporal 
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smoothing of	âã. L. Finally, the deformation parameters are solved by solving 

θ = arg	minã	 ‖âã. L − g‖FF			using a deformable registration algorithm. The scheme is initialized 

with X = 0 and	âã = Ó, starting with a small value of é and progressively increase it to enforce the 

constraint.  

6.3. Methods 

6.3.1. Data Acquisition 

Three different datasets were used, one numerical dynamic phantom data and two in vivo dynamic 

cardiac data sets utilizing both single and multi-coils.. In all cases the fully sampled data was 

retrospectively undersampled using a Gaussian variable density random undersampling pattern 

along the phase encoding direction. Eight central lines of the k-space were always selected. Each 

subject was screened for magnetic resonance imaging risk factors and provided informed consent 

in accordance with institutional policy. Each of the datasets is described as follows:  

- Phantom data 

 The method is first studied on simulated free breathing physiologically improved non-uniform 

cardiac torso (PINCAT) phantom data (dimensions Nx = Ny = 128, Nt = 50). The PINCAT 

phantom is an adaptation to MR of the NCAT phantom in CT and was proposed by Sharif and 

Bresler [81] for evaluating cardiac MR imaging schemes and reconstruction methods in MRI. The 

version has been modified by Lingala et al. [14] to include intensity changes (simulating perfusion 

dynamics) and respiratory motion.  

- Single-Coil Data 

A single-coil cardiac cine data set was acquired using a 1.5T Philips scanner at Yonsei University 

Medical Center, Korea: the acquisition sequence was ECG triggered bSSFP, with a flip angle of 
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50. The heart rate of the subject was 75 bpm and retrospective cardiac gating was used for data 

acquisition. The imaging parameters were as follows: FOV=345×270 mm2, matrix size=256×256, 

TR/TE=3.17/1.09ms, 25 number of cardiac phases, 8 views per segment, and 32 heartbeats. This 

provided 8×32=256 views for each frame, and temporal resolution was 3.17×8ms≈25ms. Slice 

thickness was 10.0 mm and the sampling trajectory was Cartesian.  

- Multi-coil Data 

The multi-coil data is acquired from a healthy adult volunteer using a 1.5T Philips scanner (Philips 

Healthcare, The Netherlands) with a 32- element cardiac coil using a b-SSFP sequence. Relevant 

scan parameters include: TR/TE/flip angle=2.8 ms/1.39 ms/60º, matrix 160×160×16, FOV=320 × 

320 mm2, spatial resolution=2 ×2 mm2, slice thickness=8 mm with no gap between slices.  

6.3.2. Implementation details 

Zero filling Fourier transform (direct IFFT), group wise compressed sensing algorithm (GW-CS) 

[69], MCDD algorithm [86], and the proposed algorithm are compared. GW-CS and MCDD 

algorithms were chosen as state-of-the-art nonrigid and rigid motion compensation methods 

respectively. For GW-CS algorithm the open source code is used [93].  

All the algorithms were implemented in MATLAB 2016 on a Windows workstation machine with 

seven cores, 2.8 GHz CPU, and 12 GB RAM. The run time of MCDD and GW-CS were 42 minutes 

and 16 minutes respectively. The run time for the proposed algorithm was 10 minutes. 

For quantitatively comparison of the reconstructions, two error metrics are used: Firstly, the Signal 

to Error Ratio (SER) defined as: 

@·î = 20log(� ‖
‖F
‖
 − 
Ð‖F 

 

(6.4) 

Where	
	is the ground truth and 
Ð is the reconstruction image and ‖. ‖F donates the ℓF	norm.  
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Second, the Structural Similarity index (SSIM) was also used for measuring image quality. The 

toolbox introduced by [94] was used, with default contrast values [0.01 0.03], Gaussian kernel size 

of 11 × 11 pixels with a standard deviation of 1.5 pixels to compare the reconstructions. 

6.4. Results 

Fig. 6.1 shows the reconstruction results of IFFT, MCDD, GW-CS, and the proposed algorithm at 

a high acceleration factor of 12, for the phantom data. The first row shows image frames at a 

certain time index, and the second row shows their difference images from the ground truth. 

Temporal slice profile images at the location indicated by red line is shown in Fig. 6.1 (B). Results 

indicate that the proposed algorithm provides lower error than the rest of the methods. In Fig. 6.1 

(B), it is observed that the proposed algorithm reconstructions follow temporal variations very 

closely whereas other methods results are noisy and tend to lose fine details.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1.  : Reconstructed images of the PINCAT dynamic cardiac phantom at 12-fold acceleration. Box (A) represents the 24th frame images 

of the ground-truth. The first row represents image frames, and the second row represents difference frames. Box (B) represents temporal slice 

profile images at the location indicated by red line. Each column represents ground truth, direct IFFT, MCDD algorithm, GW-CS algorithm, and 

proposed algorithm, respectively. 

(A) 

 

 

(B) 
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To evaluate the performance of the different methods along the cardiac cycle, Fig. 6.2 shows 

quantitative quality measures in terms of the SER and the SSIM introduced in the previous section 

for the case of phantom data, where the fully sampled image is used as reference. 

  

Fig. 6.2: SER and SSIM values for each time frame 

 

Fig. 6.3 shows the reconstruction results for the case of single coil cardiac MRI data. Frames (A) 

and (B) are in systole and diastole, respectively. The first rows show image frames at a certain 

time index, and the second rows show their difference images from the ground truth.  As it can be 

seen, the proposed algorithm generates better results than IFFT, MCDD, and GW-CS algorithms.  

In temporal profile images (C), the proposed algorithm shows the best performance. IFFT, MCDD, 

and GW-CS algorithms suffer from temporal blurring and noise. The proposed algorithm 

demonstrates the motion most clearly. 
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(A) 

 

(B)  

 

(C) 

 

Fig. 6.3. Recovery of a retrospectively undersampled single coil Cine dataset at 12-fold acceleration: Boxes (A) and (B) represent frames from 

systole and diastole, respectively. (C) represents the temporal profile images at the location indicated by red line. Each column represents ground 

truth, direct IFFT, MCDD algorithm, GW-CS algorithm, and proposed algorithm, respectively. 
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SER and the SSIM values along temporal frames are illustrated in Fig. 6.4 and show that the 

proposed algorithm outperforms other algorithms. 

Fig. 6.4: SER and SSIM values for each time frame for single-coil cardiac MRI data  

 

In Fig. 6.5, the performance of the compared methods for different acceleration factors is analyzed. 

Average SER and SSIM indices are calculated and plotted vs. the acceleration factor. 

Fig. 6.5: SER and SSIM in function of acceleration factor. 
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(a1) (a2) (a3) (a4) 

  
(b1) (b2) (b3) (b4) 

  
(c1) (c2) (c3) (c4) 

  
(d1) (d2) (d3) (d4) 

Fig. 6.6: Reconstructed images at 12-fold acceleration using proposed algorithm (second row; b1&b2), GW-CS algorithm (third row; c1&c2), 

and MCDD algorithm (fourth row; d1&d2). (a1) and (a2) represent the cardiac images of the fully sampled data corresponding to peak diastole 

and systole cardiac phases respectively. The sampling patterns for corresponding frames are shown in (a3&a4). The reconstructed images are 

shown in the first two columns, while their error images are shown in the last two columns. 
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Finally, the reconstructions of the multi-coil cardiac cine dataset using proposed algorithm, MCDD 

algorithm and GW-CS algorithm are shown in Fig. 6.6, along with their error images. The dataset 

is retrospectively undersampled by factor of 12 using Cartesian sampling pattern. Peak diastole 

and systole cardiac phase frames are shown for each scheme. It is observed that the proposed 

algorithm provides better image reconstructions, compared with MCDD and GW-CS schemes. 

The proposed algorithm preserves fine structures more effectively. Table 6.1 shows a quantitative 

comparison of the entire methods using SER and SSIM metrics. 

 

Table6.1: Quantitative comparison of different methods using SER and SSIM metrics on the multi-coil data set 

Scheme SER SSIM 

   

Proposed algorithm 32.6768 0.9714 

GW-CS   24.6824  0.8971 

MCDD  23.8442   0.8830 
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 Conclusions and Future Work 

 

7.1. Conclusions 

 

In this dissertation, I have focused on the development of mathematical and computational 

methods for inverse problems in magnetic resonance imaging, mainly to address the acquisition 

time constraints of the MRI procedure. This work was primarily inspired by significant 

developments both from theory and practice in signal recovery techniques from partial data that 

have emerged in the last past decade in the fields of signal processing and information theory. 

More specifically it is shown how prior information based on low-dimensional signal models such 

as low rank structure and sparseness could help in the reconstruction of spatio-temporal MR 

images from sub-Nyquist samples arising from a nuclear magnetic resonance experiment. The 

major contributions of this dissertation are as follows:  

The first algorithm was based on compressed sensing using golden-angle variable density spiral 

sampling. A randomly undersampled spiral k-space reconstruction method has been proposed for 

better incoherent artifact distribution in accelerated dynamic MRI. It was shown that sampling 

patterns with golden ratio spacing between successive spirals provided better reconstructions. 

Comparisons on phantom and real cardiac MRI data sets showed that the proposed algorithm was 

able to achieve feasible reconstructions using fewer spiral leaves while being robust to artifacts 

such as spatio-temporal and motion blurring.  
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Also, a novel framework have been developed that performs reconstruction and motion 

compensation in the context of compressed sensing. The proposed algorithm was based on 

decomposition of the data into low-rank (L) and sparse (S) components, where L models the 

correlated information between frames and S represents the rapid change of data over time. With 

validations on numerical phantom and in-vivo cardiac MRI data, the utility of the proposed scheme 

has been demonstrated in significantly improving compressed sensing reconstructions in terms of 

minimizing motion artifacts. 

In the third algorithm, a new CS reconstruction algorithm based on a non-rigid motion 

compensation method has been presented for accelerated dynamic cardiac MRI. A variable 

splitting based optimization algorithm was utilized to decouple the complex joint reconstruction 

and motion estimation problem to multiple well understood sub-problems.  The validation of the 

proposed algorithm using numerical phantom and in-vivo cine MRI data demonstrates the 

feasibility in precise recovering of cardiac MRI data from extensively under-sampled data. The 

proposed method is observed to provide improved reconstructions over state-of-the-art motion 

compensation schemes. 

In this study, the choice of regularization parameters and other parameters in spiral design were 

motivated by empirical observations. A thorough search in a high-dimensional space of parameters 

could improve the reconstructions. The automatic tuning of regularization parameters for iterative 

nonlinear reconstruction algorithms is an actively researched area. There exists some strategies 

such as cross validation [95], and Stein unbiased risk estimator methods [96]. In the future, the 

adaption of one of these methods to our setting is planned to be investigated. 
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The performance of all the nonlinear iterative reconstruction algorithms in this study were 

evaluated based on quantitative metrics that gave measures of image sharpness, temporal blurring, 

and overall mean squared error. Recently, the resolution of reconstructed images from nonlinear 

algorithms were characterized by determining the local point spread functions at every image pixel 

[97]. Such an analysis could be adapted to our setting to characterize the resolution of the images 

from the different algorithms. 

There are several limitations of the works presented in this dissertation. First, the acceleration 

factors achieved in second and third algorithms could not enable their direct application to free-

breathing real time imaging, due to the limitations of the Cartesian acquisition employed. The 

adoption of golden-angle spiral trajectory for continuous data acquisition in which the angular step 

between consecutive spokes is given by the Golden Ratio is planned. For a given under-sampling 

factor, golden-angle spiral trajectory provides a more efficient coverage of the k-space than the 

Cartesian scheme used in this dissertation.  

Another limitation of this work is that retrospectively undersampled data were used. The reasons 

this approach has been followed were two-fold. First, this allows to have access to a reference 

signal, the "ground truth", which is extremely helpful to further compare reconstruction 

algorithms. Second, retrospectively under-sampling makes it possible to generate as many 

sampling trajectories as necessary without the need of requiring a real scanning procedure, which 

saves a lot of time. Of course, the downside of this approach is that these sampling strategies are 

only approximate, but these are largely overwhelmed with the aforementioned benefits. 

Prospectively undersampling is generally more difficult because of limitations on commercial 

scanners to directly produce under-sampled data. However, it gives insights on the true 
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performance of reconstruction algorithms in a realistic procedure and for this reason should not be 

neglected. 

To sum up, important progress has been provided in terms of algorithmic developments and 

performance of these methods through undersampled MRI datasets with relatively realistic 

characteristics and comparative study of the state of the art methods. All three proposed algorithms 

have proved to provide a flexible computational tool for dynamic MRI reconstruction.    

The dynamic MRI methods developed in this dissertation are ultimately targeted towards clinical 

utility. The proposed methods have been tested on a limited number of subjects. To fully evaluate 

the efficiency and reproducibility of the developed methods in the clinical routine, a systematic 

study on a larger number of patient scans with different cardiac disorders is needed. In this section, 

a few potential improvements to the developed methods are suggested for future work. 

7.2. Future Work 

-  Extension to 3D imaging: 3D acquisitions have advantages over multi-slice 2D imaging 

in terms of providing contiguous spatial coverage. Extension of the 2D spiral sampling patterns to 

3D sampling schemes with variable density kz sampling would be more robust to downsampling, 

and more suitable for acceleration. Furthermore, due to higher redundancies in the 4D (3D+time) 

dataset, the joint recovery of the 4D data using the developed methods could provide better 

reconstructions than slice by slice (2D+time) reconstructions. 

- We also look forward to further exploration of the numerous directions, including the 

following: (1) the use of different optimization algorithms that might offer more efficient 

computation or improved convergence, (2) the use of different sampling trajectories for more 
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efficient k-space coverage, and (3) the use of a more efficient, or perhaps more flexible or 

extensible, frameworks for practical implementation. 
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