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Abstract 

COMPLEXITY ANALYSIS IN MAINTENANCE SYSTEMS 

 

Sareh Shafiei Monfared  

Master of Applied Science 

2010 

Mechanical Engineering 

Ryerson University 

 

Complexity is a very broad subject that applies to project management, engineering design 

and manufacturing, arithmetic, software, statistics, etc. In maintenance systems, complexity can 

be defined based on technical and managerial aspects of a maintenance project. Because relative 

complexity between two projects can be used as a yardstick for resource allocation between 

them, quantifying the complexity becomes important. To quantify the complexity of 

maintenance projects, this thesis reports two models.  

In uncertain situations, a fuzzy graph-based model is developed that determines relative 

complexities of maintenance projects based on experts‟ opinions with respect to technical and 

managerial aspects. These aspects may not be measured precisely due to uncertain situations. 

The model uses an aggregation operator to mitigate conflict of experts‟ opinions on complexity 

relations. Using a fuzzy relation matrix representing the degrees of membership of relative 

complexities, the model maps the fuzzy graph into a scaled Cartesian diagram. 

Also, complexity of a maintenance project can be investigated through time to repair 

(TTR). Performing statistical analysis shows that human cognition and project complexity have 

significant influence on TTR. These influential factors can be studied by a learning curve. Due to 

the nature of maintenance calls for repairs, a learning curve model made up of two segments is 

proposed. A project complexity can be derived from the learning curve at the breakpoint time. 

Taking into account human cognitive abilities, the breakpoint indicates the required number of 

trials in order to reach mastery level for performing certain tasks unsupervised.   
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Chapter1 

Introduction and literature review  

 

 

1.1     Background  

While complexity in maintenance is an extremely important subject to most organizations, 

it is neither well understood nor adequately characterized in the literature. To discuss 

complexity, it is first necessary to precisely define it. However, there is no unique definition for 

complexity that can be used for all the fields of study, such as biology, information theory, 

computer science, and manufacturing systems. According to the Merriam-Webster dictionary, 

"complex" is defined as "composed of two or more parts; hard to separate, analyze, or solve". 

Alternatively, Oxford dictionary defines the word "complex" as "consisting of many different 

and connected parts; not easy to understand; complicated". The common element in both 

definitions is that a complex system is composed of numerous but related parts, and that it is 

difficult to understand. Therefore, the words complex and complexity should be defined 

according to the field of study. 

 

Generally, complexity is a very broad subject. It has been studied in many fields, such as 

project management, engineering design and manufacturing, arithmetic, chaos theory, entropy, 

fuzzy logic, games, information, philosophy, software, and statistics. As a result, several models 

have been developed to quantify complexity (Bashir & Thomson, 1999; Bashir & Thomson, 

2001; El-haik & Yang, 1999; Rodriguez-Toro et al., 2003; Smith & Jenks, 2006). Complexity 

can be used as a yardstick for budgeting, resource allocation, and planning in enterprise 
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maintenance projects. Complexity of a maintenance project can be determined based on 

technical and managerial aspects of the project that cannot be precisely measured due to 

uncertainties. In a wide variety of systems, automation is a significant substation of mechanical, 

electrical or computerized actions representing human effort. However, automation has a limited 

application in maintenance systems because of the impact of human intelligence in diagnoses 

and repairs. Moreover, as organizations move towards shorter production times, workers must 

regularly learn new skills, technology, and processes. Therefore, workers must cross-train and be 

competent at multiple tasks simultaneously. As a result, a substantial portion of the workforce 

will constantly be on the steep portion of their learning curve regarding their ability to perform 

any particular task. 

 

Human behaviour is highly flexible because man switches from one task to another, either 

in response to the availability of new information or as a function of fluctuations in the 

temporary goals that guide human actions. Figure 1.1 shows a general learning process for a 

repetitive task. It shows that a worker learns to perform tasks more efficiently with instruction 

and repetition. In other words, a learning curve or experience curve is a graphical representation 

of the changing rate of learning (in the average person) for a given activity. 

 

Figure 1.1. General learning curve for a repetitive task (Pegels, 1969) 
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Reductions in operation times achieved through the effects of learning curves can directly 

translate to cost savings for manufacturers. Learning curves, also known as progress functions, 

cost-quantity relationships, cost curves, product acceleration curves, improvement curves, 

performance curves, experience curves, or efficiency curves, are essential for functions such as 

setting production goals, cost control, and resource allocation. 

 

Learning curves have been receiving increasing attention by researchers and practitioners 

for almost seven decades, and there have been several models that researchers have utilized. 

Some of these models are the log-linear model (Wright, 1936), The Stanford-B model(Asher, 

1956) , DeJong‟s learning (DeJong, 1957), Pegel‟s exponential function (Pegels, 1969), Knecht‟s 

upturn model(Knecht, 1974) , Levy‟s adaptation function (Levy, 1965) and Yelle‟s product 

model(Yelle, 1976) power low model (Rosenbloom & Newell, 1987) . The rate and shape of 

improvement are fairly common across tasks. Among several models that researchers have 

investigated, the power function fit appears to be the most robust, regardless of the methods 

used. Heathcote et al., (2000) suggest that the power law might be an artefact arising from 

averaging (Anderson & Tweney, 1997). Further, the exponential function may be the best fit 

when individual subjects employ a single strategy. Differentiation between the power and 

exponential functions is not just an esoteric exercise in equation fitting. If the learning process 

follows an exponential, then learning is based on a fixed percentage of what remains to be learnt. 

On the other hand, if the learning process follows a power law, then learning slows down as it 

continues. 

 

Recently, there has been an increasing amount of attention among researchers in industrial 

engineering attempting to account for the opposite phenomenon: that there is a breakpoint in the 

learning study. The breakpoint, or steady state, of the learning curve occurs when a person 

knows a task well enough to perform it unsupervised and without spending more time to learn 

the task (Figure 1.2). After this point, individuals perform certain tasks in a standard time. Two 

influential factors on the breakpoint are human cognitive abilities and task complexity.  
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Figure 1.2. Learning curve with breakpoint 

Human cognition is a significant factor in the learning process, and is the most consistent 

factor in all systems where humans are a part of the systems. Wang (2005) explored the 

cognitive foundations of human traits and cognitive properties of human factors in engineering 

and societies. Motivation and cognitive abilities represent two basic determinants of learning and 

work performance. Numerous studies have investigated the role of cognitive - intellectual 

abilities in predicting individual differences in job performance. The most common 

conceptualization of ability motivation interaction in industries and organization psychology is 

that suggested by Vroom (1964), who indicates that when motivation is low, both low and high 

ability individuals demonstrate similar low levels of performance. However, when motivations 

are high, performance variability due to individual differences in ability will be more obvious. 

Bransford et al., (1986) investigates areas in which technology can facilitate learning in schools. 

When human cognitive abilities are taken into account within the learning process, the 

complexity of the assigned task becomes a nuisance factor.   

 

Cognitive abilities are the brain-based skills and mental processes that are needed to carry 

out any task – from the simplest to the most complex. Every task can be broken down into the 

different cognitive skills that are needed to complete that task successfully. If they are not used 
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regularly, a person‟s cognitive abilities will diminish over time. Fortunately, these skills can also 

be improved at any age with regular practice.  

 

In light of this, a great deal of work has been performed by many researchers. It has been 

revealed that a large portion of human performance related problems was attributed to the 

complexity of tasks because a complicated task places a substantial cognitive demand on task 

doers (Campbell & Gingrich, 1986). It is expected that human performance would be impaired 

due to a huge amount of cognitive demands, which exceeds the ability of human operators 

(Stassen et al., 1990). Fortunately, these skills can also be improved at any age with regular 

practice (Latham, 2006). These cognitive abilities include: 

 

Alternating Attention: The ability to shift the focus of attention quickly. 

Auditory Processing Speed: The time it takes to perceive relevant auditory stimuli, 

encode, and interpret it and then make an appropriate response. 

Central Processing Speed: The time it takes to encode, categorize, and understand the 

meaning of any sensory stimuli. 

Conceptual Reasoning: Includes concept formation, abstraction, deductive logic, and/or 

inductive logic. 

Divided Attention: The capability to recognize and respond to multiple stimuli at the 

same time. 

Fine Motor Control: The ability to accurately control fine motor movements.  

Focused (or Selective) Attention: The ability to screen out distracting stimuli.  

Visual spatial Classification: The ability to discriminate between visual objects based on 

a concept or rule. 

Visual spatial sequencing: The ability to discern the sequential order of visual objects 

based on a concept or rule). 

http://www.sharpbrains.com/blog/author/caroline/
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Visual Perception: The ability to perceive fixed visual objects. 

Visual Processing Speed: The time it takes to perceive visual stimuli. 

Visual Scanning: The ability to find a random visual cue and the ability to follow a 

continuous visual cue. 

Working Memory: The ability to hold task-relevant information while processing it. 

Through these abilities, complexity of a task can be derived from the learning curve. A 

complex task requires more human cognitive abilities. Consequently, the worker needs more 

time to reach standard time for performing the task. Due to the following reasons, a new learning 

curve for maintenance task is required that is made of cognition factor and breakpoint time. 

1- A maintenance task is a repetitive in a random and long interval time 

2- A maintenance task requires more time to be performed because of diagnosis process 

3- A maintenance task requires deeply human cognitive abilities 

Therefore, existing learning curve models may not be suitable for maintenance task. Also, 

there is a little attention has been paid to quantify the complexity of a maintenance task. 

 

1.2     Literature Analysis 

A comprehensive review of the published literature during the period 1967-2010 is 

presented below. Figure 1.3 presents a stacked bar chart of publications on complexity based on 

the techniques and application used in the publications. Also, Figure 1.4 shows a stacked bar 

chart of publications with respect to the method and type of input data. Sources of reviewed 

journals and conference papers are: 

o Architectural Engineering and Design Management 

o Concurrent Engineering: Research and Applications 

o Engineering Technology Management 

o Harvard Business Review 

o Learning Curves in Manufacturing. Science 

o Environment and Planning B: Planning and Design 

o International Journal of Reliability, Quality and Safety Engineering 
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o International Journal of Production Research 

o IIE Transactions 

o Research Policy 

o Project Management Journal 

o Industrial Engineering 

o Peabody Journal of Education 

o Memory & Cognition 

o IEEE Transactions on Engineering Management 

o International Journal of Production Research 

o Engineering Design 

o The Accounting Review 

o Intelligent Manufacturing- Special Issue on Advanced Technologies for Collaborative 

Manufacturing 

o Environment and Planning B: Planning and Design 

o Management Science 

o Journal of Production Economics 

 

 

 
 

Figure 1.3. Classification of techniques and applications  
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Figure 1.4 Classification of methods and type of input data  

 

  

1.3      Literature Review 

Today's competitive environment means that the manufacturing systems need to respond 

rapidly to changing market demands, with the focus on higher quality products at a lower price. 

Therefore, industrial entities face increasing challenges in their manufacturing and assembly 

systems where different results and a greater variety and diversity in products are demanded. On 

the other hand, products become more complex in terms of their production. Nowadays, 

customers‟ needs have expanded and their many miscellaneous requirements are complicated in 

order to bring the functions to their products that they seek. In addition to variety, products 

should be offered with high quality in conjunction with a low price. All these factors impose 

complexity to all stages of development, such as design, manufacturing, and maintenance. 
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A number of experts and researchers distinguish complex processes in quite a number of 

specific ways. For example, Burns & Stalker (1961) considered managing a process, which 

comprises of unfamiliar activities in unfamiliar environment as “complex”. Also, Perow (1965) 

defines the complexity of a task as the degree of difficulty of the search process in performing 

the task, the amount of thinking time required to solve work-related problems, and the body of 

knowledge that may provide guide lines for performing the task.  

 

Further, Sors et al., (1981) presented a rating system for measuring mould maintenance 

complexity that utilized the outer and inner surface complexity. Steward (1981) presented 

Design Structure Matrix (DSM) method to model project tasks. The precedence relationship is 

presented by a value in the lower diagonal section of the matrix. Also, an iteration relationship is 

shown by the upper diagonal section. These values are probabilities of one task going to another 

task in sequence. Using the expected value of this matrix is an efficient ordering of the tasks. The 

expected value of the matrix can be calculated by repeatedly multiplying the probability matrix 

to itself until the steady-state is reached.  

 

McFarlan (1981) suggested that uncertainty required adapting one‟s management style to 

the project‟s uncertainty profile as measured by the dimensions of project size, project structure, 

and experience with the technology. 

 

In respect to the engineering design of a product, the independence and the information 

axioms as foundations for a design were proposed by Suh (1984). The independence axiom 

requires that all functional requirements be independent. The information axiom requires the 

information content in the design be minimized, where the information requirement is the 

complexity measures. These axioms and the complexity measures can be defined by an array that 

its elements are functional requirements, design parameters, and process variables. Further, the 

complexity can be classified as organized or disorganized variables (Weaver, 1984). Weaver 

assumed the organized complexity is characterized by a small number of significant variables 

that are tied together in deterministic relationships. On the other hand, the disorganized 

complexity is characterised by a huge number of variables that are tied together by stochastic 

relationships. 
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Gibson & Senn (1989) studied system structure and software maintenance. Their study was 

designed to allow for the preliminary investigation of the relationship between system structure 

(complexity) and maintainability. This study was conducted to examine how complexity 

differences exhibit themselves in a system. 

 

Also, complexity can be defined in the physical and functional domains. In the physical 

domain, complexity is defined as the inherent characteristic of physical components, like 

algorithms, products, processes, and manufacturing systems. As a result, it is inferred that the 

more parts a physical object has, the more complex it is. On the other hand, the complexity is 

defined as a measure of uncertainty in achieving a set of tasks defined by FD (Suh, 1990). 

 

Complexity in maintenance projects is generally considered in relation to technical, 

managerial and human learning aspects. Ambiguity and project complexity lead to information 

inadequacy. Ambiguity refers to a lack of awareness of the maintenance crew about a system 

(i.e., subsystem interrelation, geometry, topology, manufacturability, and assembly factors) 

(Riggs & Simth, 1993). A subjective approach to calculate the complexity of a product based on 

the physical size of its components was proposed by Ulrich et al., (1993). Project complexity 

means that the crew deals with a system made up of many subsystems with different functions 

and states, so that the effect of functions is difficult to assess (e.g., Kauffman, 1993).  

 

Boothroyd et al., (1994) reported a novel tooling cost estimation model based on a part 

geometric complexity. The model takes into account the number of hours required for 

maintenance and shop hourly rate. 

 

Calinescu et al., (1998) presented a comparative analysis among quantitative approaches 

for complexity measures. This study concluded that entropic measures offered substantial 

advantages. Dvir et al., (1998) proposed an empirical classification method that used degrees of 

technical uncertainty and complexity of the project.  
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According to Xu (2000), system components can operate as independent elements.  

However, when they are incorporated into a system, their behaviour depends on interactions with 

other system components (Siggelkow, 2002). In relationship to the engineering design of a 

product, Denker et al., (2001) described the rows of the design structure matrix as the inputs and 

the columns as the outputs to complete a task and that the scope of a process should be narrowed 

by limiting the iterations. 

 

The project complexity also can be analyzed through two major aspects: technical and 

managerial. However, technical and managerial aspects of a project are major pieces of 

information that cannot be measured precisely because of uncertain situations (Pich et al., 2002). 

As a result, project failures are numerous in practice; for example, budget and schedule overruns 

compromised performance, and missed opportunities (Tatikonda & Rosenthal, 2000).  

 

Using three dimensional CAD drawings and analyzing the assembly of a product, 

manufacturability complexity has been quantified (Rodriguez et al., 2003). Although this is the 

more concrete side of looking at complexity, there is also a more abstract side, which deals with 

information and decisions.  

 

In conjunction with design complexity, Thomas & Singh (2006) explained how to reduce 

complexity in a design project by using Six Sigma and taking into account customer opinion. 

Their model differentiates between value-added and non-value added complexity. Sinha et al., 

(2006) developed a model for resource allocation among projects based on complexity measures. 

Seol et al., (2007) used the restricted topological sorting (RTS) and the module finding 

(MF) algorithms as decomposition methods to reduce the complexity of a project. The results of 

this approach can be used for the allocation of tasks among a group of designers. Alternatively, 

they proposed a network approach to define a modularity index in complex products. 
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Sosa et al. (2008) studied the complexity measures in the software products by using DSM. 

In another related study, Gero & Sosa (2008) used entropy functions in their computational 

approach for complexity measures as a basis for mass customization in designs. Frizelle & 

Suhov (2008) gave a review of three case studies of the complexity of production systems in 

maintenance and commercial industry and developed mathematical methods stemming from 

these studies. Song & Kusiak (2009) studied the role of maintenance complexity and product 

diversity in customer oriented maintenance systems. 

 

The geometry is defined as polygon meshes including coordinate values of vertices of the 

meshes making up the model. The topology is concerned with redundant references to vertices 

and edges that are shared by entities. The manufacturability deals with equipment setup time, 

manufacturing yield, direct supervision, and finishing. Also, the assembly factor takes into 

account the number of parts, assembly time, and assembly tools that are impacted by complexity 

(Rodriguez et al., 2003, Jenab & Liu, 2009). Also, a graph-based model to analyze the 

manufacturing complexity in non-fuzzy (crisp) situation is proposed by Jenab & Liu (2009). 

Their model uses cost utility function to construct the complexity graph and find the direction of 

the links. They use another measure called similarity in order to map the complexity graph in a 

Cartesian diagram. This model is not applicable to analyze the complexity of the maintenance 

projects in uncertain situations. 

 

1.4      Shortcomings 

1) In a maintenance project, there is no model to quantify complexity of tasks in fuzzy situations 

by taking into account technical and managerial aspects. 

2) Due to the nature of maintenance projects, which are not repetitive tasks and are subject to a 

chance failure, there is a need to quantify the complexity by considering human cognition and 

learning curve. 

3) There is no study on the amount of training required for maintenance projects to be performed 

without supervision. 
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1.5      Objectives 

The major objectives of this thesis are: 

Chapter 2 investigates complexity using a fuzzy model for enterprise maintenance projects. 

In this chapter, a fuzzy graph-based model to measure the relative complexity of projects 

is presented that uses an aggregation operator to mitigate experts‟ opinions over a 

complexity relation. Using a fuzzy relation matrix representing the degree of complexity, 

the model maps the fuzzy graph into a scaled Cartesian diagram that depicts the relative 

degree of complexity among projects. 

 Chapter 3 analyzes human cognitive abilities and complexity in maintenance.  

The learning curve for a repetitive job or task represents the relationship between 

experience and productivity. However, this is not applicable in maintenance because of 

chance failure. Therefore, a maintenance crew can do the task once in a while. With an 

instructor, the maintenance crew can learn the task and do it in a way that reduces the 

time and cost. In this chapter, a learning curve model for maintenance systems is reported 

that can be used to determine complexity of a task based on the breakpoint and human 

cognition factor.  

Finally chapter 4 provides conclusions and future research. 
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Chapter 2 

Complexity model for enterprise 

maintenance projects with fuzzy situation 

 
 

2.1     Background 

The term enterprise refers to a comprehensive framework used to manage and align an 

organization‟s processes, information technology, hard and soft resources, and projects. Today‟s 

enterprise performance depends on the safe, reliable and productive operations of assets. 

Therefore, having effective Enterprise Maintenance Information Systems (EMIS) becomes very 

important. The related literature on enterprise maintenance systems considers EMIS composed of 

Operational Reliability, Maintenance Economics, Human Factors, Maintenance Programs, and 

Maintenance Optimization Sub-Systems (Jenab & Zolfaghari, 2008). By collecting information 

from all enterprise divisions that are physically distributed across the environment, these sub-

systems aim at managing maintenance projects. However, technical and managerial aspects of a 

maintenance project are major pieces of information that may not be measured precisely due to 

the uncertainty of many situations (Pich et al., 2002). As a result, project failures are numerous in 

practice, for example: budget and schedule overruns, compromised performance, and missed 

opportunities (Tatikonda & Rosenthal 2000). Therefore, adapting management style to the 

project uncertainty profile, as measured by the dimensions of the project size, project structure, 

and experience, is required (McFarlan, 1981). Also, a project empirical classification method 

was proposed that used degrees of technical uncertainty and the complexity of the project to map 

the overall uncertainty (Dvir et al., 1998). As complexity measures has become an efficient 

yardstick to manage a group of maintenance projects, having a quantitative model to analyze the 
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relative complexity under uncertain situations is a must. There are several methods to analyze 

complexity. The knowledge base rule uses the knowledge encoded in some form such as rule-

based systems, and decision tree. Generally, the construction of a complexity model has been 

carried out by interviewing experts in complexity aspects and painstakingly translating the 

experts‟ opinions into an appropriately structured set of rules (e.g., if-then) (Filev, 1997). Due to 

time consuming, complexity of consistency check, and difficulty of maintenance, knowledge 

base approach is not considered. Alternatively, fuzzy TOPSIS approach for complexity analysis 

is studied. Since the complexity criterion with the highest score has disproportionate impact in 

the complexity ranking process, the sensitivity analysis cannot be done with TOPSIS (Braglia et 

al., 2003). Also, Analytic Hierarchy Process (AHP) technique is considered to determine the 

preferential weight of relative complexity between projects. This approach works based upon 

three principles: 1) decomposition, 2) comparative judgements, and 3) synthesis of priorities. 

AHP has several shortcomings for complexity analysis, such as man-made inconsistency in pair 

wise comparisons, and rank reversal when new projects are introduced. Considering the 

simplicity of and efficiency of the proposed method, this chapter makes two contributions. First, 

by defining a fuzzy relation, a quantitative method for expressing the relative complexity among 

projects is presented. The method uses an aggregation operator to mitigate experts‟ opinions on a 

complexity relation. Second, a pictorial model mapped in a scaled Cartesian diagram to show 

relative complexity among maintenance projects is proposed. Outcomes of this graph can help in 

budgeting, planning and allocating soft and hard resources among projects. A hypothetical 

example for five maintenance projects is demonstrated to present the application of the model. 

 

2.2      Method of Fuzzy Complexity Analysis 

The impact of complexity on outcomes, which are realizable from maintenance projects 

over their life cycle has become a major concern in today‟s enterprise performance. Complexity 

measures can be derived from technical and managerial aspects of maintenance projects. 

However, quantifying these aspects is often uncertain and vague.  As a result, most of the 

traditional tools for modeling, reasoning and computing, which are crisp, deterministic, and 

precise in character, may not be suitable for complexity analysis in maintenance. In this chapter, 

a fuzzy relation, which is an element of a fuzzy graph, is proposed to define complexity relations 
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among projects. A fuzzy complexity graph composed of a set of fuzzy relations can be 

represented by a fuzzy matrix containing a list of all projects and the degree of membership of 

the fuzzy relative complexity. In crisp situation, the relative complexity means in what degree 

project i is more complex than project j denoted by ji PP  . In uncertain situations, experts may 

express the fuzzy relative complexity between project i and project j by values in a range [0-10] 

where the spectrum of the linguistic variables and corresponding values in responding to the 

question of if iP  is more complex than jP are 0=No(N) (i.e. Less or Equal), 1=Very Low(VL), 

2=Low Plus(L+), 3=Low(L), 4=Low-Medium(LM), 5=Medium(M), 6=Medium Plus(M+), 

7=Medium-High(MH), 8=High(H), 9=High Plus (H+), and 10=Very High(VH). Accordingly, 

the expert may express the complexity relation for ij PP   by any value in range [0-10]. By 

using a membership function, the degree of membership can be calculated for the fuzzy relative 

complexity obtained from experts. Since experts do not often agree on the relative complexity 

between projects, an aggregation operator is used to mitigate conflict of experts‟ opinions. As a 

result, the fuzzy matrix is composed of the aggregated degrees of membership. By using the first 

and the second projects of the expected value of the fuzzy matrix, the fuzzy complexity graph 

can be mapped into a scaled Cartesian diagram. This diagram and the membership function are 

the elements for computing the coefficient factor used for budgeting and resource allocation 

among projects in a maintenance system. 

 

2.2.1      Fuzzy Complexity Relations 

Consider the fuzzy relation R
~

 that represents the relative complexity between the projects 

(Eq.2.1). The crisp relative complexity ji PP  determines if project i is more complex than 

project j by degree of membership (e.g., No=0 and Yes=1 in a non-fuzzy situation). In a fuzzy 

situation, the degrees of relative complexity can be defined by membership grades in a range [0-

1]. Thus, the fuzzy relations are fuzzy subsets of ji PP  , that is mapping from ji PP  .  Let 

RPP ji

~
,  be universal project sets, then R

~
is called a fuzzy relation on PP (Figure 2. 1) 
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 PPPPPPPPR jjiijiRji 


)),(,(
~

~               (2.1) 

 

 

Figure 2.1. Degree of complexity relation between iP  and jP  

To calculate the degree of membership of the relative complexity defined in Eq.2.1, experts 

are required to express their opinions about in what degree project i is more complex than project 

j by a value in a range [0-10] where values around 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 denote No(N) 

(i.e., Less or Equal), Very Low(VL), Low Plus(L+), Low(L), Low-Medium(LM), Medium(M), 

Medium Plus(M+), Medium-High(MH), High(H), High Plus (H+), and Very High(VH), 

respectively. There are many functions for assigning the degree of membership to a fuzzy 

number (i.e., relative complexity). These functions must be convex and assign the degree of 

membership in a range [0-1] (Zimmermann, 2001). In this chapter, the membership function 

(Eq.2.2) is used for simplicity (Figure 2.2). 

)complexityRelative(
10

1
),(~ jiR

PP
                    (2.2) 

 

Figure 2.2. Membership function of complexity relation ji PP 
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Maintenance projects are often complex with slight differences in their technical and 

managerial aspects. Therefore, the experts‟ opinions differ substantially because they do not 

often agree on the relative complexity of various aspects of the projects. To dilute conflict in 

experts‟ opinions, a conflict resolution technique is required that uses aggregation operators in 

fuzzy situation. Aggregation operators are operations that combine two or more fuzzy expert‟s 

opinion sets. Here, a relative cardinality is used (Eq. 2.3). 

expertsofnumbertotal

expertsall
jPiP

jPiP

 






              (2.3) 

 

2.2.2      Fuzzy Graph Complexity Model 

A graph is made of up a crisp set of nodes and a set of edges. Sometimes a pair of nodes is 

connected by multiple edges yielding a multi-graph. When a node is connected to itself by an 

edge, it is called a loop, yielding a pseudo-graph as shown in Figure 2.3. Finally, edges can also 

be given a direction yielding a directed graph (or digraph). 

 

Figure 2.3. Typical graph (left), Loop (middle), Directed graph (right) 

The fuzzy complexity graph is a directed graph made up of a crisp set of nodes and a fuzzy 

set of relations. Generally, let )
~

,(
~

RVG  be a complexity graph where  nPPPV ,..., 21 is a set of 

nodes representing maintenance projects and  PPPPPPR jiji
jPiP




),(
~

  is a 
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fuzzy set of complexity relations between projects. This complexity graph can be presented by a 

square matrix M
~

as follows: 







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M               (2.4) 

Where jijim
jPiPij 


,,  

To find direct and indirect complexity relations among projects, the expected value of the 

matrix M
~  denoted by '

~
M can be calculated by  

n

n Mlim'M
~~

                (2.5) 

Where jin}k)m,(m{minmaxM 1n

kjik

n

ij ,,...2,1  
 

The expected value of matrix M
~ is equal to nM

~  where 1~~  nn MM  (i.e., jimm n
ij

n
ij ,1  

) 

or ranking orders of  the projects based on cr ~/~ in nM
~

and 
1~ nM are similar. Using '

~
M , the degree 

of membership of relative complexity of projects denoted by r~  can be derived by the first 

projection (Eq. 2.6). Also, the second projection depicts the relaxation c~  of a project (Eq 2.7).  









 jPPPPmmaxPPr jiij
P

ji
j

))(,(~         (2.6) 







  iPPPPmmaxPPc jiij

P
ji

i

))(,(~         (2.7) 

Thus, mapping the complexity graph in )~()~( rc   Cartesian diagram presents a scaled 

degree of complexity and of relaxation memberships. Considering the required budget, soft and 

hard resources for a base project, this scaled graph can be used to estimate budget, soft and hard 

resources for other projects based on their relative complexity measures (Rodriguez et al., 2003). 
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In this model, it is assumed a Δ difference in relative complexities of two projects translates to 

Δ% difference in their budgets. 

 

 

 

 

Figure 2.4 shows the steps for constructing such graphs in uncertain situations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figurer 2.4. The fuzzy graph-based algorithm for complexity analysis (Shafiei-Monfared & Jenab,2010a)  

 

Start 

List all projects and define fuzzy complexity relations among them by obtaining the 

relative complexity for ji PP 
 

ji,  from experts. 

Calculate the degree of membership for each relative complexity (Eq.2.2). Aggregate 

experts’ opinions by using Eq.2.3 

Construct fuzzy complexity graph 

Generate matrix M representing the fuzzy complexity graph 

Compute expected value of matrix M called M’ 

Find the first projection r~  and the second projection c~  for all projects 

 

Map the graph in scaled Cartesian diagram 

Use relative complexity measures for estimating required budget, soft and hard 

resources for projects based on a base project. 

End 
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2.3      An Illustrative Example 

To illustrate the model, a hypothetical example is presented in this section. Consider an 

enterprise company with five overhaul maintenance projects, which must be managed for aircraft 

engines with some design variation. These projects require a budget and resources that can be 

estimated by using the relative complexity of the projects to the base project.  

Figure 2.5 shows the complexity graph for these projects that has five nodes representing 

the projects and fuzzy relations representing relative complexities. 

 

 

Figure 2.5. Complexity graph  

 

To determine the degrees of membership of the relative complexities, relative complexities 

among the projects are obtained from three experts. Each expert is asked to determine in what 

degree project i is more complex than project j by a value in the range [0-10].  

Table 2.1 shows the experts not only do not agree on ranking order of the projects based on 

complexity measures but also assign different values for the relative complexities among 

projects. (Appendix-A presents two scenarios for no conflict and some conflict among experts).  
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E
x

p
er

t 
1

 

Project 1 2 3 4 5 

1 0 8 8 10 9 

2 1 0 10 8 0 

3 2 1 0 0 1 

4 0 1 8 0 7 

5 1 10 8 5 0 

       

E
x

p
er

t 
2

 

Project 1 2 3 4 5 

1 0 9 9 10 10 

2 0 0 10 9 1 

3 1 0 0 1 0 

4 0 0 9 0 6 

5 0 9 9 6 0 

       

E
x

p
er

t 
3

 

Project 1 2 3 4 5 

1 0 9 9 9 10 

2 1 0 10 10 1 

3 0 0 0 1 0 

4 0 0 10 0 9 

5 0 10 10 2 0 

 

   Table 2.1. Relative complexity among projects obtained from three experts 

 

Using Eq.2.2, the degree of membership for each relative complexity can be calculated 

(Table 2.2). The degree membership function generates values in the range [0-1].  

To mitigate the conflict of experts‟ opinion on relative complexities, the degree 

membership values must be aggregated by using Eq.2.3. Table 2.3 presents the relative 

cardinality membership among projects. 
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E
x

p
er

t 
1

 

Project 1 2 3 4 5 

1 0 0.8 0.8 1 0.9 

2 0.1 0 1 0.8 0 

3 0.2 0.1 0 0 0.1 

4 0 0.1 0.8 0 0.7 

5 0.1 1 0.8 0.5 0 

       

E
x

p
er

t 
2

 

Project 1 2 3 4 5 

1 0 0.9 0.9 1 1 

2 0 0 1 0.9 0.1 

3 0.1 0 0 0.1 0 

4 0 0 0.9 0 0.6 

5 0 0.9 0.9 0.6 0 

       

E
x

p
er

t 
3

 

Project 1 2 3 4 5 

1 0 0.9 0.9 0.9 1 

2 0.1 0 1 1 0.1 

3 0 0 0 0.1 0 

4 0 0 1 0 0.9 

5 0 1 1 0.2 0 

 

 Table 2.2. Degree of membership for relative complexity between projects 

 

Project 1 2 3 4 5 

1 0 0.867 0.867 0.967 0.967 

2 0.067 0 1 0.9 0.067 

3 0.1 0.033 0 0.067 0.033 

4 0 0.033 0.9 0 0.733 

5 0.033 0.967 0.9 0.433 0 

Table 2.3. Relative cardinality values representing jijimij  ,,  in matrix M
~  

Now, the fuzzy complexity graph in Figure 2.5 can be shown by matrix M in Table 2.4. 

Using Eq.2.5, the expected value of matrix M must be calculated. In this example, the expected 

value of matrix M can be reached at n=2 because the ranking orders of projects for n=1 and n=2 

are similar. Table 2.5 presents the expected value of matrix M. Using M’ in Table 2.6, the degree 
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of membership of relative complexity for a project complexity denoted by r~  can be derived by 

the first projection (Eq. 2.6). The high degree of membership corresponding to a relative 

complexity for a project means that the project is more complex than other project with respect 

to technical and managerial aspects. Furthermore, the second projection depicts the relaxation c~  

of a project (Eq. 2.7) which is used for mapping the fuzzy graph and ranking projects.  

Project 1 2 3 4 5        r
~

 

Ratio

cr ~/~  

Normalized  

 cr ~/~  Ranking 

1 0 0.867 0.867 0.967 0.967 0.967 9.67 1 1 

2 0.067 0 1 0.9 0.067 1 1.034 1 2 

3 0.1 0.033 0 0.067 0.033 0.1 0.1 0.1 5 

4 0 0.033 0.9 0 0.733 0.9 0.931 0.096 4 

5 0.033 0.967 0.9 0.433 0 0.967 1 0.103 3 

      c~  0.1 0.967 1 0.967 0.967 

     

Table 2.4: Matrix M
~  representing complexity graph 

 

Project 1 2 3 4 5        r
~

 

Ratio

cr ~/~  

Normalized  

 cr ~/~  Ranking 

1 0.1 0.967 0.9 0.867 0.733 0.967 9.67 1 1 

2 0.1 0.067 0.9 0.067 0.733 0.9 0.931 0.705 3 

3 0.033 0.1 0.1 0.1 0.1 0.1 0.103 0.0784 5 

4 0.1 0.733 0.733 0.433 0.033 0.733 0.814 0.084 4 

5 0.1 0.033 0.967 0.9 0.433 0.967 1.319 0.136 2 

      c~  0.1 0.967 0.967 0.9 0.733 

     

Table 2.5: '
~

M  – Expected value of matrix M
~

 

 

       c~        r
~

        cr ~/~  

 Normalized  

        cr ~/~  

Ranking 

P1 0.1 0.967 9.67 1 1 

P2 0.967 0.9 0.931 0.705 3 

p3 0.967 0.1 0.103 0.0784 5 

p4 0.9 0.733 0.814 0.084 4 

p5 0.733 0.967 1.319 0.136 2 

 

Table 2.6: The first and second projections of matrix '
~

M  
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Based on Table 2.6, Figure 2.6 shows the mapped scaled Cartesian diagram that indicates 

maintenance project 1 is the most complex project in terms of both managerial and technical 

aspects. Also, project 3 and 4 are the least complex projects. Since the first projection values for 

projects 3 and 4 are similar, normalized cr ~/~ can be used for ranking projects 3 and 4. 

Assuming required budget and resources for the maintenance project 3 are known, the required 

budget and resources for the other projects can be estimated by using their relative complexity. 

For example, in Figure 2.7, the relative complexities for the degrees of membership of projects 1 

and 3 are 9.67 and 0.1 that are corresponding to the degrees of membership 0.967 and 0.1 for 

projects 1 and 3, respectively. Thus, the coefficient factor, Δ, is 1 in scale 1 to 10, which means 

87% difference between relative complexities of projects 1 & 3 can be translated to 87% 

difference in their budgets and resources.  

 

 

 

Figure 2.6. Mapped complexity graph on )~()~( rc    axes 
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Figure 2.7. Coefficient factor curve 

 

   2.4      Conclusions 

The complexity of maintenance projects can be investigated through technical and 

managerial aspects of projects. However, these aspects may not be measured precisely due to 

uncertain situations or the lack of information. Therefore, a fuzzy graph-based model is proposed 

to evaluate the relative complexity of maintenance projects. The complexity measure can be used 

as a yardstick to estimate the required budget and resources for projects based on the known 

budget and resource of a base project. The proposed model collects fuzzy information from 

experts and uses conflict resolution operator to dilute their opinions on the relative complexity of 

projects. Having the degrees of complexity membership function, the relative complexity 

relations can be presented by a graph and alternatively by a Complexity Design Structure Matrix 

(CDSM). The model employs a pseudo factor (relaxation) in order to map the graph into a scaled 

Cartesian diagram for better pictorial view of the complexity relations. Having the degrees of 

relative complexity, one is able to calculate the coefficient factor that may be used as a yardstick 

for estimating the budget and resources of a project in comparison with the base project. This 
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model may be improved by utilizing a multi-layer graph whereby each layer represents one 

aspect of complexity. Further, interrelation between the layers will help in better analyzing the 

influence of various aspects of complexity of a project. 

In the next chapter, a learning curve model is developed that takes into account human 

cognition and task complexity as influential factors in TTR. The maintenance learning curve is 

made up of two segments that join at a breakpoint time. The breakpoint indicates the required 

number of trials in order to reach mastery level for performing a certain task unsupervised. As a 

result, complexity of a task can be derived from the learning curve. 
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Chapter 3  

Human cognitive and complexity analyses in 

maintenance 

 

 

3.1      Background  

Learning curves have been receiving an increasing attention by researchers and 

practitioners for almost seven decades (Yelle, 1979). The earliest learning curve is a geometric 

progression that expresses the decreasing time required to accomplish any repetitive operation. 

The theory in its general form states that as the total quantity of units produced doubles, the time 

per unit declines by some constant percentage. However, the form of the learning curve has been 

debated by many researchers and practitioners, by far, the Wrights learning curve (WLC) is the 

most widely used model (Yelle, 1980; Jaber & Guiffrida, 2004). Assuming a perfect system, the 

WLC shows that the time required to accomplish a repetitive task decreases with each 

subsequent repetition. In 2010, lot splitting in a serial production, Jaber & Khan (2010) proposed 

a learning curve for imperfect system with rework and scrap. Badiru (1992) classified existing 

univariate models as follows: 

 The log-linear model (Wright, 1936) 

 The Stanford-B model (Asher, 1956) 

 DeJong‟s learning formula (DeJong, 1957) 

 Levy‟s adaptation function (Levy, 1965) 

 Pegel‟s exponential function (Pegels, 1969)  
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  Knecht‟s upturn model (Knecht, 1974) 

  Yelle‟s product model (Yelle, 1976) 

  Multiplicative power model (Waller & Dwyer, 1981) 

The power function fit appears to be robust regardless of the methods used (Rosenbloom & 

Newell, 1987). However, Heathcote et al., (2000) suggest that the power law might be an artefact 

arising from averaging proposed by Anderson & Tweney, (1997). Also, the exponential function 

may be the best fit when individual subjects employing a single strategy. Differentiation between 

the power and exponential functions is not just an exercise in equation fitting. If learning process 

follows an exponential curve, then learning is based on a fixed percentage of what remains to be 

learnt. On the other hand, if learning process follows a power law, then learning slows down.  

In a wide variety of systems, automation is a significant substitution of mechanical, 

electrical, or computerized action for human effort. However, automation has a limited 

application in maintenance systems because of the impact of human intelligence in diagnoses 

and repairs. Also, call on maintenance is stochastic processes that may not be fitted into 

traditional learning curve models. Moreover, complexity of a maintenance project is another 

influential factor in time to repair that is not quantified. In this chapter, human cognition and 

complexity factors in maintenance projects are studied. Performing statistical analysis, a new 

learning curve is developed that is a best fit for time to repair curve with breakpoint feature. The 

breakpoint indicates the required number of trials in order to reach mastery level of performing a 

certain task, unsupervised. Using collected data from a jet engine manufacturer, a comparative 

analysis among existing and the newly developed models is performed and complexity measure 

is derived from the model. 

 

 3.2    Human Cognitive and Complexity Analysis in Maintenance 

To study the effects of human cognition and task complexity as two influential factors, 

factorial design method is used. This method can analyze all possible combinations of the levels 

of the factors. In this analysis, maintenance experts‟ opinions are used to define the level of 

complexity (None, Low, Medium, and High) and of human cognition (Low, Medium, High) for 



 

30 

twelve maintenance tasks performed by three maintenance technicians. Table 3.1 presents the 

time to repair in hour for these tasks. 

 

 

Human Cognitive 

 

Complexity 

  None:1 Low:2 Medium:3 High:4 

 

1: Low 

7.4 7.9 8.2 9.9 

6.4 6.8 8.8 10.4 

6 7.3 9.2 9.6 

 

2: Medium 

9.2 9.8 9.9 10.4 

8.6 10.4 10.8 11 

8.8 8.8 9.5 9.9 

 

3: High 

9.9 10.4 10.8 11.4 

9.8 9.9 11 11.1 

10.2 9.5 9.9 10.7 

Table 3.1. Time to repair (in hours) data considering human cognitive and complexity factors 

The effect of a factor is defined as the change in response produced by a change in the level 

of the factor. This is frequently called a main effect because it refers to the primary factors of 

interest in the experiment. In Table 3.1, the experiment is designed for time to repair (TTR) that 

will be subject to some variations in both human cognition and task complexity. By performing 

factorial design analysis, the effect of complexity and human cognitive abilities on the TTR can 

be studied. Table 3.2 shows the result of the analysis of variance (ANOVA). The ANOVA table 

shows how the sum of squares (SS) is partitioned into the four components. Calculation steps are 

shown in Appendix-B. For each component, the table shows sum-of-squares (SS), degrees of 

freedom (df), mean square (MS), P-value, and F values. Each F value is the ratio of the mean-

square value for that source of variation to the residual mean square (with repeated-measures 

ANOVA, the denominator of one F ratio is the mean square for matching rather than α. In Table 

3.2, the P-Values are less than α=0.05. Therefore, it is concluded that the human cognitive 

abilities and task complexity influences on TTR are significant. In next section, the complexity 

measure of a maintenance task by developing a new learning curve, which takes into account 

human cognitive abilities in performing a certain task, is investigated. 
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Source of 

Variation SS df MS F P-value F 

Sample 10683.72 2 5341.861 7.911372 0.001976 3.354131 

Columns 39118.72 2 19559.36 28.96769 1.91E-07 3.354131 

Interaction 9613.778 4 2403.444 3.559535 0.018611 2.727765 

Within 18230.75 27 675.213 

   Total 77646.97 35         

Table 3.2. The result of ANOVA 

 

3.3   Complexity Analysis in Maintenance 

A number of learning curve models have been used to reflect the fact that workers often 

requires less time to perform a complex task after they acquires some familiarity and experience 

with the task (Bailey & McIntyre, 1992). In literature, the exponential, logarithmic, and power 

low learning curves seem to be suitable models for human behaviour in the learning process. 

However, these models may not be applicable to maintenance tasks, which not only occurs in a 

random and very long interval but also requires human cognitive abilities. For example, the 

number of failures for ten pumps is reported in Table 3.3.  

Assuming the total number of call for maintenance is fitted in Poisson distribution, the 

common λ can be calculated. As the total number of call is 75 within 305.4 months, the common 

call rate is 0.246. Although the common call rate across pumps is not warranted, it is assumed 

that it is the case.  

Therefore, it is expected to observe one pump failure in every four months. This long 

period does not allow maintenance crew to have opportunity for learning the maintenance 

procedure as quickly as repetitive jobs in manufacturing processes.  
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Pump 1 2 3 4 5 6 7 8 9 10 

No. of maintenance call 5 1 5 14 3 19 1 1 4 22 

Time (month) (ti) 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48 

λ .053 .064 .080 .111 .573 .604 .952 .952 1.904 2.099 

 

Table 3.3. Pump failure data 

Further, the complexity of a maintenance task is an influential factor in learning curve that 

existing models have paid a little attention to this factor. Complexity in maintenance is generally 

considered in relation to technical, managerial and human learning aspects. To analyze 

complexity impact, TTRs for three levels of complexity have been collected in Table 3.4.  

 

Complexity 

level 

n TTR Time 

(T)  

Low 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.14 

.71 

.72 

.68 

.66 

.69 

.64 

.65 

.64 

.65 

102 

274 

526 

608 

692 

824 

906 

999 

1094 

1184 

 

Complexity 

level 

n TTR Time 

(T) 

Medium 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1.2 

0.9 

0.4 

0.35 

0.3 

0.25 

0.25 

0.28 

0.24 

0.22 

35 

110 

220 

400 

610 

650 

690 

735 

775 

817 

 

Complexity 

level 

n TTR Time 

(T)  

High 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

.83 

.70 

.61 

.54 

.47 

.47 

.29 

.31 

.29 

110 

330 

660 

1100 

1650 

2310 

2970 

3630 

5080 

6535 

 

 

Table 3.4. TTR (hr) of maintenance tasks with three levels of complexity (Time in Min×1000) 

 

In Table 3.4, the number of collected data is denoted by „n‟ and the time of failure (i.e., call 

for maintenance) is shown by „T‟. By fitting learning curves, Figure 3.1 presents the learning 
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behaviour of the maintenance crew measured by TTR for three complexity levels of maintenance 

tasks. As shown in Figure 3.1, number of trials to reach the breakpoints is increased by 

complexity. For example, numbers of trials for low, medium, and high complex tasks are 3, 5, 

and 8, respectively. 

 

Figure 3.1. TTR (hr) v.s. Service time (Min ×1000) 
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Considering medium complexity data, the corresponding curve demonstrates that at first it 

takes maintenance crew about 1.2 hour to diagnose, repair and restore the system. However, after 

the fifth iteration, the maintenance crew learns how to do the task without losing time. As a 

result, the curve shows a constant trend after the sixth iteration.  

In general, the learning curve for a maintenance task that requires human cognitive is made 

up of two segments (exponential curve and constant linear segments).  

The first segment represents the learning period, which is an exponential curve. This 

segment joins to a linear segment at breakpoint that represents constant TTR as shown in Figure 

3.2.  

 

 

 

 

 

 

 

 

Figure 3.2. TTR curves based on complexity levels 

 

Considering cognitive value (β) is depended on the breakpoint time, this curve is defined as 

follows (Shafiei-Monfared & Jenab, 2010b):  

 

 

 

TTR 

Time 

Complexity              Breakpoint 
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           (3.1)
 

 

Where   is scale parameter, t represents time, and t0 denotes breakpoint time. 

To estimate the cognitive factor, β, and scale parameter, α, the SSE values of the best fitted 

curves must be compared.  

By moving breakpoint from the first occurrence to the next one, the β and α for Eq.3.1 can 

be estimated by RARE
©

 software. For computational purpose, visual inspection of the learning 

curve can help in finding the breakpoint time.  

In this case study, the cognitive factor varies between 0.5 to 1 before breakpoint while it 

varies between 1 to 1.25 after the breakpoint. 

For example, the cognitive factors for high, medium, and low complex tasks are 1.25, 0.7, 

and 0.5. As a result, the breakpoint of the task with low complexity occurs early.  

The breakpoint of a high complex task occurs at more iteration. Also, the breakpoint of the 

medium complexity task is between high and low complex ones (i.e., 0.5< β < 1.25). 

To evaluate the performance of the current model, a comparative analysis among existing 

models (exponential, logarithmic, and power) is performed.  

The results shown in Figures 3.3-5 indicate that the current model is slightly better in terms 

of SSE value. For a high complex task, the SSE values for exponential, logarithmic, and power 

leaning curves are 0.875, 0.9759, and 0.9074. However, the SSE of the current model is 0.7807 

(Details presented in Appendix C).  
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Figure 3.3. The best fit exponential, logarithmic and power law in high complex task. 

As depicted in Figure 3.4 for a medium complex task, SSE values for exponential, 

logarithmic and power models are 0.8604, 0.943, and. 0.9564. The SSE value for the current 

model is 0.1138. 

 

Figure 3.4.     The best fit exponential, logarithmic and power law in medium complex task. 
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Considering a medium complex task, the SSE values for exponential, logarithmic, and 

power learning curves are 0.5762, 0.8006, and 0.8278. On the other hand, the SSE of the current 

model is 0.3058 as presented in Figure 3.4. 

 

 

Figure 3.5. The best fit exponential, logarithmic and power law in low complex task. 

 

The results of this comparative analysis among models for different levels of complexity 

prove that the newly developed model is slightly better than other learning curve models for 

maintenance tasks. Because complexity of a task has direct relation to its breakpoint time in 

learning curves, a task‟s complexity can be derived from Eq.3.1. Having the time of the 

occurrence of the breakpoint denoted by t0, the complexity is expressed by 
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Considering a task performed by a standard worker, the time of a breakpoint in CP curve 

indicates the task‟s complexity. For example, the CP curves of three tasks are presented in 

Figure 3.6 that each one has different level of complexity.  

The breakpoint on the high complexity curve labelled by β=0.9 occurs later than the 

breakpoints on the medium and low complexity curves. For example, the complexity levels of 

the tasks shown in Figure 3.2 are 0.51, 0.52, and 0.95 for low, medium, and high levels as 

depicted in Figure 3.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. The complexity curves 
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3.4     Conclusions  

In this Chapter, the impact of human cognitive and task complexity in maintenance is 

studied. Performing statistical analysis indicates that these factors are significant. Also, a 

maintenance task occurs in a random and very long interval that results in a longer learning 

period. As a result, the learning curves in the pertained literature not only may not be suitable for 

maintenance tasks but also cannot provide complexity measure of a task. Therefore, a new 

learning curve is developed that is composed of two segments. The first segment is an 

exponential curve that reflects the fact that the maintenance crew generally require less time to 

perform a task after they acquires some familiarity and experience with the task. The exponential 

segment is connected to linear segment that shows TTR is almost constant after the breakpoint 

time. The newly developed learning curve model has two parameters α and β that are scale and 

human cognitive abilities parameters. The value of β varies between 0 to 1.25 where the bigger 

value means a more complex task. The complexity of a task can be derived from the learning 

curve model at the breakpoint time by using Eq.3.2. Further application of this model is in 

demand-based manufacturing systems such as job shop with lot size 1 where orders arrive 

randomly in a long time interval. This model would be further investigated for uncertain 

situations. 
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Chapter 4   

Conclusions and future research 

 

This thesis reports two models for quantifying the complexity of the projects in 

maintenance systems. The complexity of a project can be used as a yardstick to estimate the 

required resources and budget for a project based on the other one. 

In maintenance projects, the complexity can be investigated through technical and 

managerial aspects of the projects. However, these aspects may not be measured precisely 

because of uncertain situations or the lack of information. Therefore, a fuzzy graph-based 

model is proposed to evaluate the relative complexity of maintenance projects. The 

proposed model collects fuzzy information from experts and uses conflict resolution  

operator to dilute their opinions on the complexity of the projects. Having the degrees of 

complexity membership function, the relative complexity relations can be presented by a 

graph and alternatively by a CDSM. The model employs a pseudo factor (relaxation) in 

order to map the graph into a scaled Cartesian diagram for better pictorial view of the 

complexity relations. This model may be improved by utilizing a multi-layer graph whereby 

each layer represents one aspect of complexity. Further, interrelation between the layers will 

help in analyzing the influence of various aspects of complexity in a project.  

Also, the impact of human cognition and task complexity in maintenance is studied. 

Performing statistical analysis indicates that these factors are significant. A maintenance 

task occurs in a random and very long interval that results in longer learning period. As a 

result, the learning curves in related literature not only may not be suitable to maintenance 

tasks but also cannot provide complexity measure for tasks. Therefore, a new learning curve 



 

41 

is developed that is composed of two segments. The first segment is an exponential curve 

that reflects the fact that maintenance crews generally require less time to perform a task 

after they acquire some familiarity and experience with the task. The exponential segment is 

connected to linear segment that shows TTR is almost constant after the breakpoint. The 

newly developed learning curve model has two parameters α and β that are scale and human 

cognitive abilities parameters. The value of β varies between 0 to 1.25 where the bigger 

value means a more complex task. The complexity of a task can be derived from the 

learning curve model at the breakpoint time. Also, the model can apply in manufacturing 

systems such as job shop where lot size is 1 and orders arrive randomly in a long time 

interval. For future work, one can adapt this model for type-2 fuzzy sets. Type 2 fuzzy sets 

provides more uncertainty because it incorporates uncertainty about the membership 

function for fuzzy relative complexity. The membership function of a general type-2 fuzzy 

set is composed of three-dimensions. The third dimension is the value of the membership 

function at each point on its two-dimensional domain that is called footprint of uncertainty.  
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Appendix-A 

Scenario I: Consider the hypothetical example presented in Section 2.3. In scenario I, it is 

assumed there is no conflict among experts on ranking order of the projects with respect to 

their complexity. Also, there is no disagreement on relative complexity values. 

 

 

E
x

p
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t 
1

 

Project 1 2 3 4 5 

1 0 10 10 10 10 

2 4 0 10 10 0 

3 0 1 0 10 1 

4 0 0 0 0 0 

5 0 9 9 10 0 

       

E
x

p
er

t 
2

 

Project 1 2 3 4 5 

1 0 10 10 10 10 

2 4 0 10 10 0 

3 0 1 0 10 1 

4 0 0 0 0 0 

5 0 9 9 10 0 

       

E
x

p
er

t 
3

 

Project 1 2 3 4 5 

1 0 10 10 10 10 

2 4 0 10 10 0 

3 0 1 0 10 1 

4 0 0 0 0 0 

5 0 9 9 10 0 

 

Table A.1. Scenario I: Relative complexity among projects obtained from three experts 
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E
x

p
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t 
1

 

Project 1 2 3 4 5 

1 0 1 1 1 1 

2 0.4 0 1 1 0 

3 0 0.1 0 1 0.1 

4 0 0 0 0 0 

5 0 0.9 0.9 1 0 

       

E
x

p
er

t 
2

 

Project 1 2 3 4 5 

1 0 1 1 1 1 

2 0.4 0 1 1 0 

3 0 0.1 0 1 0.1 

4 0 0 0 0 0 

5 0 0.9 0.9 1 0 

       

E
x

p
er

t 
3

 

Project 1 2 3 4 5 

1 0 1 1 1 1 

2 0.4 0 1 1 0 

3 0 0.1 0 1 0.1 

4 0 0 0 0 0 

5 0 0.9 0.9 1 0 

Table A.2. Scenario I: Degree of membership for relative complexity between projects 

 

Project 1 2 3 4 5 

1 0 1 1 1 1 

2 0.4 0 1 1 0 

3 0 0.1 0 1 0.1 

4 0 0 0 0 0 

5 0 0.9 0.9 1 0 

Table A.3. Scenario I: Relative cardinality values representing jijimij  ,,  in matrix M
~  

Project 1 2 3 4 5        r
~

 

Ratio

cr ~/~  

Normalized  

 cr ~/~  Ranking 

1 0 1 1 1 1 1 2.5 1 4 

2 0.4 0 1 1 0 1 1 1 1 

3 0 0.1 0 1 0.1 1 1 1 5 

4 0 0 0 0 0 0 0 0 3 

5 0 0.9 0.9 1 0 1 1 0.4 2 

      c~  0.4 1 1 1 1 

    Table A.4. Scenario I: Matrix M
~  representing complexity graph 
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Project 1 2 3 4 5        r
~

 

Ratio

cr ~/~  

Normalized  

 cr ~/~  Ranking 

1 0.4 0.9 1 1 0.1 1 2.5 1 4 

2 0 0.4 0.4 1 0.4 1 1.11 0.494 1 

3 0.1 0.1 0.1 0.1 0 0.1 0.1 0.044 5 

4 0 0 0 0 0 0 0 0 3 

5 0.4 0.1 0.9 0.9 0.1 0.9 2.25 1 2 

      c~  0.4 0.9 1 1 0.4 

    Table A.5. Scenario I: '
~

M  – Expected value of matrix M
~

 

 

 

 

Figure A.1. Scenario I: Mapped complexity graph on )~()~( rc    axes 
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Figure A.2. Scenario I: Coefficient factor curve 

For example, the required resources for project 1 is 90% more than those of project 3 (Δ= 0.9). 

Scenario II: Consider the hypothetical example presented in Section 2.3. In scenario II, it is 

assumed experts have inconsistence opinions on the ranking order of the projects with 

respect to their complexity and the level of relative complexities. 
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Table A.6. Scenario II: Relative complexity among projects obtained from three experts 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10



 

46 

E
x

p
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t 
1

 

Project 1 2 3 4 5 

1 0 0.8 0.3 0.5 0.9 

2 0.4 0 1 0.9 0 

3 0.8 0.3 0 0.5 0.1 

4 0.6 0.3 0.5 0 0.5 

5 0.2 0.5 0.7 0.7 0 

       
E

x
p

er
t 

2
 

Project 1 2 3 4 5 

1 0 0.6 0.5 0.5 0.9 

2 0.2 0 1 0.9 0.1 

3 0.5 0 0 0.1 0.1 

4 0.6 0.2 0.9 0 0.5 

5 0.5 0.5 0.9 0.8 0 

       

E
x

p
er

t 
3

 

Project 1 2 3 4 5 

1 0 0.4 0.4 0.7 0.5 

2 0.5 0 0.9 0.8 0.1 

3 0.7 0 0 0.1 0.3 

4 0.6 0.1 0.8 0 0.5 

5 0.4 0.5 0.8 0.6 0 

Table A.7. Scenario II: Degree of membership for relative complexity between projects 

Project 1 2 3 4 5 

1 0 0.6 0.4 0.567 0.767 

2 0.367 0 0.967 0.867 0.067 

3 0.667 0.1 0 0.233 0.167 

4 0.6 0.2 0.733 0 0.5 

5 0.367 0.5 0.8 0.7 0 

Table A.8. Scenario II: Relative cardinality values representing jijimij  ,,  in matrix M
~

 

Project 1 2 3 4 5        r
~

 

Ratio

cr ~/~  

Normalized  

 cr ~/~  Ranking 

1 0 0.6 0.4 0.567 0.767 0.767 1.150 0.714 2 

2 0.367 0 0.967 0.867 0.067 0.967 1.612 1.000 1 

3 0.667 0.1 0 0.233 0.167 0.667 0.690 0.428 5 

4 0.6 0.2 0.733 0 0.5 0.733 0.845 0.525 4 

5 0.367 0.5 0.8 0.7 0 0.8 1.043 0.647 3 

      c~  0.667 0.6 0.967 0.867 0.767 

     

Table A.9. Scenario II: Matrix M
~  representing complexity graph 
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Project 1 2 3 4 5        r
~

 

Ratio

cr ~/~  

Normalized  

 cr ~/~  Ranking 

1 0.567 0.5 0.767 0.7 0.5 0.767 1.150 0.941 2 

2 0.667 0.367 0.733 0.367 0.5 0.733 1.222 1.000 1 

3 0.233 0.6 0.4 0.567 0.667 0.667 0.869 0.712 5 

4 0.667 0.6 0.5 0.567 0.6 0.667 0.953 0.780 4 

5 0.667 0.367 0.7 0.5 0.5 0.7 1.049 0.859 3 

     c~   0.667 0.6 0.767 0.7 0.667 

     

Table A.10. Scenario II: '
~

M  – Expected value of matrix M
~

 

 

 

Figure A.3. Scenario II: Mapped complexity graph on )~()~( rc    axes 
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Figure A.4. Scenario II: Coefficient factor curve 

For example, the required resources for project 1 is 10% more than those of project 3 (Δ=0.1). 
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Appendix-B 

Anova: Two-Factor With Replication 

   

       SUMMARY None:1 Low:2 Medium:3 High:4 Total 

 low:1 

      Count 3 3 3 3 12 

 Sum 19.8 22 26.2 29.9 97.9 

 Average 6.6 7.333333 8.733333 9.966667 8.158333 

 Variance 0.52 0.303333 0.253333 0.163333 2.055379 

 

       Medium:2 

      Count 3 3 3 3 12 

 Sum 26.6 29 30.2 31.3 117.1 

 Average 8.866667 9.666667 10.06667 10.43333 9.758333 

 Variance 0.093333 0.653333 0.443333 0.303333 0.640833 

 

       High:3 

      Count 3 3 3 3 12 

 Sum 29.9 29.8 31.7 33.2 124.6 

 Average 9.966667 9.933333 10.56667 11.06667 10.38333 

 Variance 0.043333 0.203333 0.343333 0.123333 0.368788 

 

        

Total 

      Count 9 9 9 9 

  Sum 76.3 80.8 88.1 94.4 

  Average 8.477778 8.977778 9.788889 10.48889 

  Variance 2.374444 1.824444 0.933611 0.376111 
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ANOVA 

Source of 

Variation SS df MS F P-value F crit 

Sample 31.605 2 15.8025 55.01838 1.09E-09 3.402826 

Columns 21.25111 3 7.083704 24.6628 1.65E-07 3.008787 

Interaction 5.570556 6 0.928426 3.232431 0.017973 2.508189 

Within 6.893333 24 0.287222 

   Total 65.32 35         
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Appendix-C 

                 0.7 < β < 1.27 (for high complex task) sample 1 
 

n RTT


 T B alpha B-1 Part I 
New model 

RTT


 

 

(TTR- RTT


)^2 

1 1 110 0.90 1000.00 -0.10 0.001 0.978435 0.000465 

2 0.83 330 0.90 1000.00 -0.10 0.001 0.695458 0.018101 

3 0.7 660 0.90 1000.00 -0.10 0.001 0.471512 0.052206 

4 0.61 1100 0.90 1000.00 -0.10 0.001 0.299855 0.096190 

5 0.54 1650 0.90 1000.00 -0.10 0.001 0.178201 0.130898 

6 0.47 2310 0.90 1000.00 -0.10 0.001 0.098909 0.137708 

7 0.47 2970 0.90 1000.00 -0.10 0.001 0.056253 0.171186 

8 0.29 3630 0.90 1000.00 0.25 0.014 0.056 0.054756 

9 0.31 5080 0.90 1000.00 -0.10 0.001 0.056 0.064516 

10 0.29 6535 0.90 1000.00 -0.10 0.001 0.056 0.054756 

      
 

SSE      0.780785 
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0.7 < β < 1.27 (for high complex task) sample 1 
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0.5 < β < 0.9 (for Medium complex task) sample 2 

  

 

 

 

 

 

n RTT


 T B alpha B-1 Part I 
New model 

RTT


 

 

(TTR- RTT


)^2 

1 1.2 35 0.70 1000. -0.30 0.001 1.0966 0.0106913 

2 0.9 110 0.70 1000 -0.30 0.001 0.6161 0.0805796 

3 0.4 220 0.70 1000 -0.30 0.001 0.3754 0.0006028 

4 0.35 400 0.70 1000 -0.30 0.001 0.2335 0.0135552 

5 0.3 610 0.70 1000 -0.30 0.001 0.1456 0.0238327 

6 0.25 650 0.70 1000 -0.30 0.001 0.23 0.0004 

7 0.25 690 0.70 1000 -0.30 0.001 0.23 0.0004 

8 0.28 735 0.70 1000 0.25 0.043 0.23 0.0025 

9 0.24 775 0.70 1000 -0.30 0.000 0.23 1E-04 

10 0.22 817 0.70 1000 -0.30 0.000 0.23 0.0001 

SSE 0.132761932 
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0.5 < β < 0.9 (for Medium complex task) sample 2 

 

 

 

 

 

TTR = 0.9348e-0.002t TTR = -0.309ln(t) + 2.2642 TTR = 9.064t-0.544

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600 700 800 900

T
im

e
 t

o
 r

e
p

a
ir

 (
T

T
R

)

Time
Expon. (TTR) Log. (TTR) Power (TTR)



 

55 

 

0.5 < β  (for Low complex task) sample 3 

 

 

 

 

 

 

 

 

SSE 0.305845152 

 

 

 

 

 

 

n RTT


 T B alpha B-1 Part I 
New model 

RTT


 

 

(TTR- RTT


)^2 

1 1.14 102 0.50 1000.00 -0.50 0.002 1.082018 0.003361915 

2 0.71 274 0.50 1000.00 -0.50 0.001 0.490038 0.048383237 

3 0.72 526 0.50 1000.00 -0.50 0.001 0.49 0.0529 

4 0.68 608 0.50 1000.00 -0.50 0.000 0.49 0.0361 

5 0.66 692 0.50 1000.00 -0.50 0.000 0.49 0.0289 

6 0.69 824 0.50 1000.00 -0.50 0.000 0.49 0.04 

7 0.64 906 0.50 1000.00 -0.50 0.000 0.49 0.0225 

8 0.65 999 0.50 1000.00 0.25 0.123 0.49 0.0256 

9 0.64 1094 0.50 1000.00 -0.50 0.000 0.49 0.0225 

10 0.65 1184 0.50 1000.00 -0.50 0.000 0.49 0.0256 
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0.5 < β  (for low complex task) sample 3 

 

TTR = 0.9258e-4E-04x TTR = -0.179n(t) + 1.8607 TTR = 2.6774t-0.208
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