
 

 

 

 

 

 

 

 

EXPLORING TRANSIT PERFORMANCE AND TRAFFIC CONGESTION IN DOWNTOWN 

TORONTO USING BIG DATA 

 

by 

 

Christopher Chun Kong Yuen 

Bachelor of Commerce, University of British Columbia, 2012 

 

 

A Major Research Paper 

Presented to Ryerson University 

 

 

 

in partial fulfillment of the requirements for the degree of 

 

Master of Planning 

in 

Urban Development 

 

 

 

 

Toronto, Ontario, Canada, 2017 

 

 

 

 

 

 

© Christopher Chun Kong Yuen, 2017 



ii 

 

Author’s Declaration for Electronic Submission of MRP 

I hereby declare that I am the sole author of this MRP.  This is a true copy of the MRP, including 

any required final revisions. 

 

I authorize Ryerson University to lend this MRP to other institutions or individuals for the purpose 

of scholarly research. 

 

I further authorize Ryerson University to reproduce this MRP by photocopying or by other means, 

in total or in part, at the request of other institutions or individuals for the purpose of scholarly 

research. 

 

I understand that my MRP may be made electronically available to the public.  



iii 

 

EXPLORING TRANSIT PERFORMANCE AND TRAFFIC CONGESTION IN DOWNTOWN 

TORONTO USING BIG DATA 

© Christopher Chun Kong Yuen, 2017 

 

Master of Planning 

in 

Urban Development 

Ryerson University 

 

Abstract 

This exploratory research evaluates the linkages between roadway operations and mixed-traffic 

transit performance on three arterial corridors in Toronto- King Street, Queen Street, and Dundas 

Street.  Using Inrix traffic speed probe data as well as GPS location data from the Toronto Transit 

Commission’s vehicles between January 2014 and June 2016, this research visualizes spatial and 

temporal trends in traffic congestion and transit headway regularity.  Three regression models were 

estimated that indicate both traffic congestion and terminus departure times are statistically 

significant, but weak predictors of mixed-traffic transit reliability.  These models leave most of the 

variability unexplained.  The findings highlight opportunities and limitations for congestion 

management and transit scheduling as tools for improving headway reliability.  They also illustrate 

the complexity of the relationships between transportation modes in downtown Toronto.  

 

 

An article on transit and transportation planning in the city of Toronto, key words: planning, Big 

Data, quantitative analysis, headway reliability 
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1.0 Introduction 

Faced with an forecasted annual growth of over 130,000 residents by year 2031, the 

immense pressures placed on the City of Toronto transportation system has been met with policy 

directives that list public transit as an integral tool for mitigating the negative impacts of traffic 

congestion.  Significant transit investment in the Greater Toronto Area is currently underway with 

projects such as the Eglinton Crosstown Light Rail Transit line as well as the Yonge-Spadina 

subway extension expected to have a significant impact on travel patterns.  Despite the continued 

implementation of transit expansion on grade-separated (ROW A) or exclusive right-of-way 

corridors (ROW B), much of the surface transit network in the City of Toronto continues to operate 

in mixed-traffic (ROW C), with potential implications on schedule and headway reliability.  Given 

that the performance of mixed-traffic transit may be directly impacted by traffic congestion itself, 

are additional policy levers needed to enable transit as a path to mitigate the impacts of congestion? 

Across the City of Toronto arterial roadway network, rush-hour congestion levels have been 

steadily increasing over the past years (Sweet, Harrison, & Kanaroglou, 2015).  While policies for 

development intensification within built-up areas such as the Ontario Places to Grow Act and the 

City of Toronto’s Official Plan aim to increase in the share of trips made by walking, cycling, and 

transit, it is unlikely that the trend of increasing roadway congestion will reverse in the foreseeable 

future.  At the same time, concerns regarding transit service unreliability in Toronto have recently 

been brought to light and specifically targeted by new operating procedures by the TTC (Toronto 

Transit Commission, 2015). 

Traditionally, roadway performance has been measured based on impacts on general 

vehicular traffic, but as the City of Toronto adopts a broader, multi-modal approach that recognizes 

the diverse role of streets in the public realm, the implicit impacts of policy actions on transit 
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operations needs to be better understood.  As such, estimating the extent to which streetcar 

performance is a function of traffic congestion, external factors, or operating characteristics is 

important for effectively improving transit services.  If reduced transit performance is largely a 

function of traffic congestion, this would suggest policy recommendations such as dedicated lanes, 

increased transportation demand management strategies, or signal timing changes may be effective.  

However, if traffic plays no role and transit reliability is fundamentally determined by initial 

operating conditions, this suggests that a focus on improving transit operating procedures would 

yield the best results.  

This exploratory research exploits newly available Big Data sources on transit operations 

and roadway traffic in Toronto to increase understanding of reliability trends across three arterial 

corridors- King Street, Queen Street, and Dundas Street.  Furthermore, it attempts to establish 

several models for roadway congestion and transit operating conditions as predictors of transit 

reliability in Toronto. 
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2.0 Background & Previous Studies 

2.1 Congestion trends in Toronto 

Roadway congestion in the City of Toronto has grown significantly between 2011 and 2014, 

with speeds across city-wide and downtown arterials decreasing by 7kph during the peak period, 

(Sweet, Harrison, & Kanaroglou, 2015).  While travel speeds within the downtown core are 

generally lower than on the arterial network elsewhere in the city, travel time reliability is higher 

(Sweet, Harrison, & Kanaroglou, 2015).  This is fairly consistent with overall trends across other 

North American cities where hours of delay per automobile commuter has been increasing over the 

past decades in cities of all sizes (Schrank D. , Eisele, Lomax, & Bak, 2015). 

2.2 Factors influencing transit reliability 

The Transit Capacity and Quality of Service Manual, 3rd edition, provides a reference guide 

and standardized operational metrics to be used by transit agencies.  It describes several factors that 

influence transit reliability and finds that they can be generally characterized into two categories- 

“internal” factors under a transit agency’s control, and “external” factors outside of a transit 

agency’s control (Transportation Research Board, 2013).  Figure 1- Factors Influencing Transit 

Reliability, lists these items in detail.   
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Figure 1: Factors Influencing Transit Reliability (Transportation Research Board, 2013) 

The causes of day-to-day transit travel time variability for on-road public transport has been 

studied through a Melbourne case study in 2008.  In this research, a model was developed to predict 

travel time variability through explanatory variables such as route length, stop spacing, time of the 

day, land use, and timing point departure delay (Mazloumi, Currie, & Rose, 2008).  This study 

found departure delay from timing points to be significantly associated with travel time variability, 

with every minute of early running per unit section length correlated to an increase in travel time 

variability of 4% (Mazloumi, Currie, & Rose, 2008). 

In 2015, the Toronto Transit commission piloted a streetcar service quality improvement 

initiative on the 512 St Clair and 504 King routes whereby operational procedures such as 

scheduling, additional supervising staff, and the location of spare vehicles were adjusted to improve 

service reliability (Leary, 2015).  Prior to the pilot, short turning- the procedure of prematurely 
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taking a transit vehicle out of service along a route to turn it around and fill a gap in service in the 

opposite direction caused by headway unreliability, was regularly used, to the detriment of 

customer satisfaction.  By the end of the year, short turns on the 504 King route decreased from 

approximately 310 per week to 40 per week (Toronto Transit Commission, 2015).  This suggests 

that transit agencies’ own operating procedures have major impacts on schedule reliability. 

2.3 Bunching phenomenon 

On frequent transit lines with short headways between vehicles, variability in headway is 

exacerbated by the “bunching” phenomenon.  This behaviour, also known as “platooning”, is 

caused by two properties that work in tandem with a positive feedback effect.  Firstly, dwell time at 

transit stops are positively correlated with the number of passengers boarding and alighting 

(Pilachowski, 2009).  At the same time, the number of people waiting to board at each stop 

generally increases with the time between vehicle arrivals.  When the first vehicle begins to fall 

behind schedule, the next vehicle faces shorter dwell times as little time has elapsed since the 

preceding vehicle’s departures from each stop, causing the second vehicle to catch up. 

Transit bunching is associated with “longer waiting times for some riders, uneven passenger 

distribution, overcrowding in late [vehicles], and an overall decrease on level of service and 

capacity” (Feng & Figliozzi, 2010). 

2.4 Roadway congestion’s link to transit operations 

Based on a review of literature, I found no previous study directly linking roadway 

congestion and transit reliability.  Instead, studies have focused on different elements of congestion 

or transit operations and transit performance.  For example, the New Jersey Department of 

Transportation and US Federal Highway Administration explored the links between roadway 



6 

 

congestion and transit operating speeds in 2003.  This study used a regression model to estimate 

transit run times under free flow conditions, comparing that with actual observed run times 

(McKnight, Levinson et al., 2003). 

One study used a linear regression approach to model variations between scheduled 

headways and actual headways, finding that a 15 percent increase in scheduled travel time 

correlates with a 160 percent increase in deviation from scheduled headway” (Cooper & Gould, 

1994).  Scheduled travel times were used as a proxy for congestion as it was expected that the 

transit agencies would schedule in extra travel time during periods of the day when congestion is 

common. 

2.5 Measurements of headway reliability 

Transit agencies use several reliability metrics, the most common of which is schedule 

adherence.  The Toronto Transit Commission uses an on-time performance standard of +- 3 minutes 

at timing points (Toronto Transit Commission, 2005).  Schedule adherence is considered to be 

important to the customer experience particularly when headways exceed 15 minutes.  When transit 

customers make their travel decisions based on a transit schedule, schedule adherence determines 

whether the customer experiences excessive wait time at the stop or misses the vehicle altogether. 

Conversely, for transit services operating at short headways like Toronto’s extensive “10 

minute or better” network, “headway adherence becomes more important from the perspective of a 

passenger” (Saberi & Zockaie, 2013).  For example, if every transit vehicle on a route scheduled at 

10-minute headways is 10 minutes late, a schedule adherence metric would determine this to be a 

failure even though customers' perceptions may be very favorable.  

On the other hand, if vehicles along a 10-minute headway route alternated between being 

exactly 3 minutes early and 3 minutes late, the schedule adherence metric may indicate that these 
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services are very successful, while in actuality, passengers may experience up to a 16-minute wait 

when the average is 10 minutes.  As such, headway regularity can be a more meaningful metric for 

customer experience on routes with frequent service. 
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3.0 Knowledge Gap 

Transportation planning in urban areas involves trade-offs between many competing 

interests.  Especially within the spatially constrained context of urban centres, some cities are 

attempting to optimize the use of public streets not just for mobility objectives, but also as 

components of the public realm that enhances quality of life for city dwellers.  For example, the 

City of Toronto’s Transportation Services Division is currently implementing measures in the 2016-

2020 Congestion Management Plan, not to fight traffic congestion outright, but to limit the 

economic impacts of it, and to manage the effects of it on strategically important travel modes (City 

of Toronto, 2016).  However, for cities to improve their understanding of the linkages between 

different transportation modes in terms of congestion and reliability, planning practitioners need 

high quality data on speed and travel time.  For transit, complete datasets on schedule adherence 

and headways are essential.  This kind of data has historically been difficult to capture. 

3.1 Traditional data sources 

Traditionally, travel time and delay studies which measure real-world traffic speeds, have 

been dependent on data collected through manual sampling methods.  The most common 

techniques have required the use of test vehicles, also referred to as “floating cars”, where drivers 

are employed to drive in the traffic stream for the sole purpose of data collection (Turner & Eisle, 

1998).  These methods were labour intensive and costly, and therefore impractical for the collection 

of large samples.  Schedule adherence and headway reliability were similarly difficult to capture for 

transit vehicles.  The resulting small sample sizes, while useful for estimating averages, were 

generally insufficient for estimating extreme values, such as the 85th percentile (Furth & Hemily, 

2006).  Yet, for many transportation outcomes, such as travel time and transit reliability, it is these 
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extreme values that are most frustrating for commuters as they must plan for them during their day 

to day lives. 

3.2 Big Data Promises 

The recent emergence of “Big Data” has brought about new opportunities for transportation 

planning analysis.  With anonymous, aggregated data being generated from mobile devices and 

vehicle fleets, transportation studies can now cover a much larger geographic and temporal spread 

than was possible with the manual sampling approaches of the past.  Not only that, Big Data allows 

for the study of extreme events and the statistical distribution of transportation outcomes.  By 

combining datasets of performance measures of different transportation modes, it is now also 

possible to model the relationships between potentially competing planning outcomes. 

  



10 

 

4.0 Research Design 

This project is exploratory in nature and as such, focuses on the descriptive analysis of 

trends and patterns in both transit performance and streetcar reliability.  It also explores the linkages 

between traffic congestion and transit performance through a regression framework.  This 

predictive model takes the following functional form: 

y =  βx +  ε 

where y represents transit headway reliability, β represents a matrix of coefficients representing 

estimated links between exogenous variables (x) and the dependent variable of interest (y), and ε 

represents a vector of error terms.   

4.1 Data Sources 

Data to complete this analysis was procured from two sources.  Traffic data was purchased 

from Inrix as a part of the City of Toronto Big Data Innovation project.  Inrix traffic data consists of 

billions of anonymous, crowdsourced “GPS probe” speed data points collected from private and 

commercial vehicles, as well as from GPS-enabled smartphones such as iPhone and Android 

devices (Eagle & Greene, 2014).  These speed and travel time readings are recorded at the link 

level, and are coded by directionally-specific “Traffic Message Centre” (TMC) identifiers.  These 

links are illustrated below in figure 2.   
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Figure 2: Illustration of roadway links and Inrix TMCs.  Note that TMCs are directional and this 

illustration only includes westbound and southbound TMCs for clarity 

Stop locations were drawn from the TTC’s General Transit Feed Specification (GTFS) 

dataset published on the City of Toronto’s open data portal (Toronto Transit Commission, 2016).  

In addition to the location coordinates of each stop, the GTFS data also provided a unique Stop ID 

code and a name for each stop.   

Archived transit vehicle location data was provided by the Toronto Transit Commission 

through an agreement with the City of Toronto.  While the Toronto Transit Commission is in the 

process of procuring a modern Computer Aided Dispatch/Automatic Vehicle Location (CAD/AVL) 

system which is expected to collect high quality location data, CAD/AVL data was not available at 

the time of this study.  As such, vehicle location data was retrieved from TTC’s legacy 

Communications and Information system (CIS).  This system collects location-at-time data every 

20 seconds, creating a complete record of every bus and streetcar’s physical movements throughout 
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the day.  Every record includes a timestamp, a route identifier, a run number, a vehicle identifier, 

and geographic coordinates. 

4.2 Transit Routes and Study Corridors 

This research focuses on three major transit routes in Toronto- 501 (Queen St), 504 (King 

St), and 505 (Dundas St).  These routes were chosen for their unique characteristics as high-

frequency surface routes operating in mixed traffic.  The 504 (King St.) route is the busiest surface 

route in Toronto, with over 65,000 boardings per weekday (Toronto Transit Commission, 2016).  

These routes were also chosen because they travel through Downtown Toronto, an area targeted for 

additional development intensification in the Official Plan (City of Toronto, 2015).   Downtown 

Toronto is a part of the TOcore planning initiative, which will potentially introduce changes to the 

use of public right-of-way to increase multi-modal transportation options and to allow for public 

realm improvements (City of Toronto, 2017). 

While all three routes are primarily served by streetcars, during the peak hours, route 504 

and 505 are often supplemented by buses.  This is evident in the CIS data, which differentiates 

between vehicle number and type.  With the ability to maneuver around obstacles, buses by 

themselves may be less susceptible to headway unreliability.  However, as buses operate on the 

same street and serve the same customers as streetcars, it is difficult to isolate each from the other 

for analysis.  As such, this study assumes that buses and streetcars running on these routes do not 

exhibit drastically different operating characteristics. 

It should be noted that for the purposes of this project, the analysis of Route 501 was 

truncated to eliminate the western portion of the route, some of which operates on dedicated right of 

way (ROW B), and where Inrix traffic data is unavailable.  Maps of the analyzed stop locations of 

these routes are below: 
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Figure 3: Stop locations included in analysis of Route 501 (Queen St) 

 
Figure 4: Stop locations included in analysis of Route 504 (King St) 
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Figure 5: Stop locations included in analysis of Route 505 (Dundas St) 

4.3 Methodology 

Vehicle location data can be presented in two ways.  The first is “location-at-time”, where a 

location record is generated at a regular, fixed time interval.  The second is “time-at-location”, 

where a record is generated only when a vehicle passes by a pre-determined location of interest, 

such as a transit stop or major intersection.  Headway analysis requires the use of “time-at-location” 

data because headway is defined by the time between successive arrivals at a fixed location.  Since 

the Toronto Transit Commission’s CIS data is in “location-at-time” format, this study processes the 

data to estimate “time-and-location” at the transit stops of interest. 

This project used the R programming language for Transit CIS and Inrix traffic data 

processing.  The next section provides an overview of the main steps of analysis. 
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4.3.1 Mapping Stop Locations 

Using the GTFS to Shapefile conversion tool (Morang, 2017), all TTC transit stops were 

mapped in ArcGIS.  To reduce the number of stops analyzed, the timepoints of route 501, 504, and 

505 were isolated from the full dataset based on information on the TTC’s website (Toronto Transit 

Commission, 2016).  While they are considered timepoints by the TTC, the terminus station of all 

the routes were removed from the analysis and replaced with the second stop and the penultimate 

stop on each route.  This was done to mitigate challenges with estimating travel direction and 

departure times from the terminus stations where transit vehicles loop around and layover in 

preparation for their next trip.  Because stops used in this study correspond with TTC timepoints, 

whereby observed headways can be expected to best match their scheduled intent, deviations from 

scheduled headway may be higher at other stations.  As such, the estimates of headway variability 

in this study may best be interpreted as lower bounds. 

4.3.2 CIS Data Processing 

The sheer size of the CIS dataset presented computational challenges for headway analysis.  

With over 13 gigabytes of “location-at-time” records for each route, it was necessary to subset and 

reduce the data to be processed for each stop level analysis.  Furthermore, the CIS system 

occasionally produced rogue data points, with GPS coordinates that were nowhere near the transit 

routes, some of which were in the middle of Lake Ontario. 
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Figure 6: CIS Data for one trip in one direction 

To subset the CIS data by the geographic location of each station, CIS data points within 

125 metres of each stop of interest were isolated.  The timestamp of the CIS data point closest to 

each stop was then used to approximate arrival times at the stop. 

 
Figure 7: Illustration of bounding box applied around one stop of interest 
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 Within the weekday PM peak period, this analysis was limited to a two-hour window during 

the weekday PM peak between 4:00 pm and 6:00 pm.  This study assumes that any linkages 

between traffic congestion and transit reliability sufficiently propagate within a 2-hour window to 

be reflected in the results.  While it is likely that the onset of peak hour congestion can have 

immediate impacts on transit running speeds, its effects on headway reliability is not immediate as 

it takes time for bunching and gapping to develop between transit vehicles.  Likewise, transit base 

operating conditions at the first stop may not have an immediate impact on headway reliability 

down the line as it takes every transit vehicle approximately one hour to travel from one terminus to 

the other. 

Since the CIS data did not differentiate by travel direction, this analysis determined 

directionality using a lag function for each trip based on time and location.  This was done through 

a comparison of the geographic coordinate of the subject data point and the point seven 

observations prior. 

4.3.3 Estimating Base Operating Conditions 

To enable analysis of the impact of transit base operating conditions, headway statistics 

from the first stop of every route in each direction was appended to each record.  This allowed for 

further investigation into whether headway regularity at the start of each route was linked with 

headway regularity throughout the remainder of each route. 

4.4 Aggregation by Month 

All data in this study was aggregated by month, and by year.  The study assumes that 

monthly aggregation does not occlude important day to day effects.  For example, this study 

assumes that if a given month has five days of extreme traffic congestion that has severe impacts on 

transit, this congestion is reflected in the buffer-time index of that month.  However, depending on 
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the actual distribution of periods of abnormal traffic congestion, and whether there is sufficient 

month to month variation in the aggregated values, it is possible for monthly aggregation to hide 

important trends.  This is a limitation of the research design. 

Summary statistics of the main outputs are available in Appendix A: Table of Summary 

Statistics by Route. 

4.5 Dependent Variable 

Headway Buffer Time Index (BTI) 85 was chosen as the dependent variable that represents 

transit reliability.  This measure is the difference between 85th percentile headways and 50th 

percentile headways, divided by the mean headway.  For example, based on a headway BTI85 of 

2.0, a route with a scheduled headway of every 5 minutes, would see actual headways of shorter 

than 10 minutes, 85 percent of the time.   

𝐻𝑒𝑎𝑑𝑤𝑎𝑦 𝐵𝑇𝐼85 =  
85𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 − 50𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ℎ𝑒𝑎𝑑𝑤𝑎𝑦

𝑚𝑒𝑎𝑛 ℎ𝑒𝑎𝑑𝑤𝑎𝑦
 

Headway BTI85 differs slightly from the industry standard metric for headway reliability- 

the coefficient of variation of headways (Cvh) as defined below. 

𝐶𝑣ℎ =
𝑆𝐷 𝑜𝑓 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ℎ𝑒𝑎𝑑𝑤𝑎𝑦
 

Headway BTI85 and Cvh are similar in that they both include a measure of deviation from 

typical headway in the numerator, and a measure of typical headway in the denominator.  For both 

measures, a higher number corresponds to a worse experience for transit customers. 

4.6 Independent Variables 

Five predictors of streetcar headway reliability were explored in this analysis.  These 

variables are explained in detailed below: 
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4.6.1 Scheduled Headway 

Mean headway, the average amount of time between successive transit vehicle arrivals, 

measured in minutes, was included to show the actual number of trips that serve each stop.  It 

serves as a control for the possibility of route diversions that lead to no service being offered at 

some stops during construction or other disruptions.  It also serves as a proxy for the scheduled 

headway at each stop. 

4.6.2 Distance from Start of Route 

The Stop Number variable is an ordinal estimate of the distance from the starting terminus 

of each route in each direction.  As the distances between selected stops in the analysis were not 

consistent, this variable should not be treated as a perfectly linear estimate of distance from the 

starting terminus.  Stop order was expected to be positively correlated with transit unreliability 

based on a previous study that showed a general upward trend in transit unreliability as transit 

routes progressed from the starting terminus to ending terminus (Feng & Figliozzi, 2010). 

4.6.3 Transit Base Operating Conditions 

Transit Headway Buffer Time Index (BTI) 85 was selected from the first stop along the 

route to determine the regularity of departures from the starting terminus.  This measure was 

included as an estimate of the base operating conditions allowed by the TTC’s schedules of 

terminus recovery times and dispatching practices.  It was expected that unreliability at the first stop 

would be positively correlated with unreliability further down the line. 

4.6.4 Traffic Unreliability 

Derived from Inrix travel time data, Buffer Time Index (BTI) represents the ratio between 

the 95th percentile slowest travel times to the average travel time during the same time of the day.  It 

reflects the amount of extra “buffer” time a person must budget to be on-time 95 percent of the 
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time.  Since BTI captures extreme values, it is indicative of some months having more days where 

PM peak traffic is abnormally slow.  Especially in mixed traffic environments like King Street, 

Queen Street, and Dundas Street, it was expected that BTI would be positively linked with transit 

unreliability. 

4.6.5 Traffic Congestion 

Travel Time Index (TTI) is a comparison between the average travel time during the peak period 

and travel time under free flow conditions like what a driver may experience at 4am in the morning.  

It represents the typical rush hour congestion during every month of study instead of the extreme 

days that BTI covers.   

4.7 Expected Signs 

Independent Variable Expected Sign 

Transit Headway Mean (ln) ? 

Stop Order + 

Transit Headway BTI 85 (ln) at beginning of route + 

Traffic Buffer Time Index (BTI) (ln) + 

Traffic Travel Time Index (TTI) (ln) + 
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5.0 Results 

Using the outlined methodology, this study explores the potential linkages between road 

operations and transit performance in Toronto’s city centre.  Specifically, it estimates traffic 

congestion and transit base operating conditions as predictors of transit headway reliability.  Results 

are presented first by focusing on general descriptive statistics and then by highlighting model 

results. 

5.1 Descriptive Statistics 

As this study is based on a complete dataset of transit movements along three routes, as well 

as data on traffic speed along corresponding roadway links, some trends and patterns are visible 

through descriptive statistics.  Specifically, two topics are explained below- seasonality and 

location. 

5.1.1 Seasonality 

Seasonal trends are apparent in both transit reliability and roadway traffic congestion.  The 

next few graphs explore these seasonal trends using several different metrics. 
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5.1.1.1 Transit Headway Reliability by Route 

 
Figure 8: Headway BTI85- By Route 

The mean of the Headway BTI85 measure is approximately 1.99 for all three routes.  This 

shows that 85 percent of the time, wait times between two arrivals are lower than twice the 

expected average headway.   

By using mean headway as a denominator, this measure controls for times during which 

transit services may have been diverted from the normal route, resulting in a lower observed mean 

headway than reality.  The plots suggest that seasonal variation is generally consistent between all 

three routes.  The summer months tend to fare better than the winter months, with an apparent peak 

in headway unreliability during the month of September.  Many factors may be behind this trend, 

but it is conceivable that weather and ridership may both be contributors to these seasonal trends.  

Based on the figures from 2009 to 2015, the TTC typically sees the highest systemwide ridership in 

the month of September (Toronto Transit Commission, 2016).   
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5.1.1.2 Distribution of Transit Headways (in minutes) 

 
Figure 9: Distribution of Headways- Route 501 (Queen St). 

 

 

Figure 10: Distribution of Headways- Route 504 (King St.) 
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Figure 11: Distribution of Headways- Route 505 (Dundas St.) 

Figures 2, 3, and 4 illustrate the distribution of headways for the three routes based on the 

TTC CIS data analysis.  As expected, the data shows that Route 501 has a mean headway of 

approximately 5 minutes during the 4 pm to 6 pm hours, just as indicated in the TTC’s schedule.  

Route 504, as the TTC’s surface route with the highest ridership, shows a mean headway of the 3 

minutes, while Route 505 shows a mean headway of 6 minutes.  For all routes, the 85th percentile 

headways appear to have more variation than the mean, potentially suggesting some months are 

skewed by days with very poor reliability. 

1 2 3 4 5 6 7 8 9 10 11 12

85Percentile 12.2 11.6 10.8 11.5 11.4 11.2 11.8 11.8 13.5 13.4 12.8 12.2

Mean 6.2 5.9 5.5 5.8 6.0 5.7 6.1 6.1 6.8 6.7 6.5 6.2

15Percentile 1.4 1.5 1.4 1.4 1.6 1.4 1.6 1.6 1.4 1.5 1.5 1.4

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

h
ea

d
w

ay
 (

m
in

u
te

s)

Month

Distribution of Headways- Route 505



25 

 

5.1.1.3 Transit Headway Reliability- by Year 

 
Figure 12: Headway Reliability- By Year 

Aggregating the headway reliability, as measured by “Headway Buffer Time Index 85” 

reveals differences in performance between the years, but no clear pattern as to which year had 

better performance. 
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5.1.1.4 Traffic Congestion 

 
Figure 13: Traffic congestion along transit routes between 16:00 and 18:00 in year 2014, 2015, 

and 2016. 

As explained previously, Buffer Time Index (BTI) is a measure of extreme events in traffic 

congestion. By isolating the road segments that each transit route runs on, it is apparent that traffic 

congestion along each route follows a similar seasonal pattern along the King, Queen, and Dundas 

street transit corridors.  Congestion is shown to be lower during the summer months, and appear to 

peak during the fall.   
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Figure 14: Travel Time Index for mixed traffic along transit corridors between 16:00 and 18:00 in 

year 2014, 2015, and 2016 

Based on the Travel Time Index (TTI) measure of typical congestion, Dundas St, Queen St, 

and King St all appear to follow a similar seasonal pattern, with PM peak travel times between 1.5 

and 1.8 times as long as during free flow conditions. 

5.1.2 Spatial Distribution for Transit Unreliability 

 Each route has a unique spatial profile for reliability, with some sections of every route 

exhibiting more variation than others.  Although headway reliability appears show a slight positive 

relationship with the number of stops from the terminus, the trend is not clear, especially towards 

the end of each route.  This pattern may explain why “Stop Order” is a poor predictor variable for 

headway reliability in the regression models in Section 5.2. 
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Figure 15: Headway Unreliability by Stop- Route 501 (Queen St.) Eastbound 

Based on the Headway BTI85 reliability measure, it appears that the Route 501 Queen 

Street service has varying levels of reliability in the eastbound direction.  A sudden increase in 

unreliability is apparent at Stop 4 (Eastbound Queensway at Roncesvalles Ave).  This is the final 

stop before the route goes through a major intersection and transitions from dedicated right-of-way 

to mixed traffic.  Another potential contributor to this sudden spike in measured unreliability may 

be that the TTC’s Sunnyside operations and maintenance facility is located just before this stop.  It 

is possible that additional transit vehicles are dispatched from this facility, or that some vehicles are 

short-turned at this stop.  Headway regularity appears to recover between stop 4 and 7, before 

deteriorating again as the route enters the central business district.  Conditions generally recover as 
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the route leaves the central business district until the route reaches Coxwell Ave, when it 

deteriorates once again.  An isolated peak at Carlaw Ave exists with no obvious explanation. 

Note that while they are included in the descriptive analysis, stops 1, 2, and 3 were removed 

from the regression analysis explained in Section 5.2 since they were situated in a section of the 

route with dedicated right of way (ROW B) and no associated Inrix traffic data. 
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Figure 16: Headway Unreliability by Stop- Route 501 (Queen St.) Westbound 

In the Westbound direction, the route appears to exhibit predictable gradual changes in 

unreliability.  A “re-adjustment” in headway regularity is apparent at Leslie Street before gradually 

deteriorating as vehicles progress through downtown Toronto.  A second “re-adjustment” is 

apparent at stop 23.  At this location, the route changes from mixed-traffic to dedicated right-of-way 

and gores through a major intersection.  As well, the Sunnyside operations and maintenance facility 

may be a location where some vehicles are turned around. 
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Figure 17: Headway Unreliability by Stop- Route 504 (King St) Eastbound 

The route 504 King Street service has varying reliability in the eastbound direction.  A spike 

in unreliability is visible at stop 3.  The cause of this spike is not apparent as headway regularity 

appears to recover at stop 4.  Potential causes of this abnormality include the change in travel 

direction and that stop 3 just prior to a major intersection. 

 



32 

 

 

Figure 18: Headway Unreliability by Stop- Route 504 (King St) Westbound 

In the Westbound direction, the plots show that unreliability generally increases as the route nears 

the central business district.  It peaks at stop 8- University Avenue, before appearing to recover.  

Unreliability “re-adjusts” to a higher level at stop 12, when the route changes from a westbound to a 

northbound direction. 
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Figure 19: Headway Unreliability by Stop: Route 505 (Dundas St.) Eastbound 

The route 505 Dundas Street service appears to become more unreliable as vehicles enter 

downtown.  Headways recover after Yonge street. 
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Figure 20: Headway Unreliability by Stop: Route 505 (Dundas St.) Eastbound 

In the westbound direction, Route 505 seems to fluctuate in unreliability throughout the 

route, with peaks at stop 10 (Spadina) and stop 14 (Dufferin). 
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5.2 Models of Headway Reliability 

This study produced three models using Ordinary Least Squares regression, all of which predict 

Transit Headway Buffer Time Index (BTI) 85 using variables related to transit operations and 

traffic congestion variables.  All three models control for year, and for route and direction.  All 

continuous variables except stop order, are natural logged.  These models are presented below: 

Dependent variable = Transit Headway Buffer Time Index (BTI) 85 (ln)    

 Model 1 Model 2  Model 3 

Variables coef.est sig. coef.est sig. coef.est sig. 

(Intercept) 0.781 *** 0.709 *** 0.702 *** 

Headway Mean (ln) -0.055 *** -0.051 *** -0.050 *** 

             

Transit Operations            

Stop Order* -0.001 **        

Headway BTI 85 (ln) at beginning of route     0.091 *** 0.095 *** 

             

Traffic Congestion            

Buffer Time Index (ln) 0.072 *** 0.065 ***    

Travel Time Index (ln)         0.051 *** 

             

Dummy Variables            

Year 2014 control   control   control   

Year 2015 0.004   0.003   -0.006   

Year 2016 -0.010 * -0.007 . -0.015 ** 

Route 501 Eastbound -0.030 *** -0.040 *** -0.038 *** 

Route 501 Westbound -0.021 *** -0.018 *** -0.017 *** 

Route 504 Eastbound -0.055 *** -0.053 *** -0.051 *** 

Route 504 Westbound -0.052 *** -0.051 *** -0.050 *** 

Route 505 Eastbound -0.021 *** -0.011 . -0.012 * 

Route 505 Westbound control   control   control   

       

Adjusted R-squared: 0.118  0.125  0.127  
Degrees of freedom 3015  2990  2990  

 

Notes: * Statistical significance at the p = 0.10 level; ** statistical significance at the p = 0.05 level; 

*** Statistical significance at the p = 0.01 level. 
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5.2.1 Model 1 

Model 1 predicts transit headway reliability using Stop Order and Traffic Buffer Time 

Index.  While both variables are statistically significant factors, the impact of Stop Order is 

extremely small and opposite of what was expected.  Using Traffic Buffer Time Index as a 

representation of the extreme values within each aggregated month, this model suggests a 7.2% 

decrease in headway unreliability can be expected for every unit decrease in traffic congestion.  

Despite this, the Adjusted R-squared for this model is only 0.118, indicating that the vast majority 

of variation in headway unreliability is not explained with these variables.   

5.2.2 Model 2 

Model 2 removes the stop order variable due to its low explanatory power and instead, 

introduces Transit Headway BTI85 from at the start of every route as a new variable.  Since the 

dependent variable would be the same as the dependent variable at stop 1 for each route in each 

direction, all stop 1 records were removed from this analysis, resulting in a reduced sample size.  In 

this model, both variables are statistically significant predictors of headway reliability.  This model 

suggests a 9.1% increase in headway unreliability throughout each route can be expected by 

doubling unreliability at the start of the route.  A 6.5% increase in headway unreliability can be 

expected for every doubling in Traffic Buffer Time Index.  The Adjusted R-squared for this model 

is 0.125- higher than Model 1, but still leaving most of variation in headway unreliability 

unexplained. 
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5.2.3 Model 3 

Model 3 replaces Traffic Buffer Time Index with Travel Time Index and therefore depends 

on average peak hour levels of traffic congestion instead of extreme values that may be experienced 

only several days a month.  This model suggests that a 9.5% increase in headway unreliability 

throughout each route can be expected with every unit increase in unreliability at the start of the 

route.  A 5.1% increase in headway unreliability can be expected for every unit increase in traffic 

congestion as measured by Travel Time Index.  The Adjusted R-squared for this model is 0.127- the 

highest of all three models, but still leaving most of variation in headway unreliability unexplained.   
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6.0 Discussion 

This study’s descriptive analysis shows that some patterns in mixed-traffic transit reliability 

do exist in downtown Toronto.  Seasonal patterns are apparent, with the spring months being the 

most reliable, and the month of September being the least reliable.  Similarly, traffic congestion 

along these corridors also follows a seasonal trend peaking in the fall months.  Reliability along 

each route fluctuates, showing localized spatial patterns.  Changes in reliability along each route 

generally progress gradually, although exceptions exist. 

Models show that despite estimated links between several of the model variables, 

approximately 88% of variation in streetcar headway unreliability remains unexplained.  Given the 

low explanatory power of these models, it may be prudent to further explored the results using 

alternative datasets and other contexts in the future.  While this study suggests that congestion 

influences transit service reliability, without knowledge of the extent to which the balance of 

variation in unreliability can be explained by other factors, these results should be interpreted 

cautiously. 
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7.0 Conclusion 

This study illustrates some ways in which big data can be leveraged to quantify the linkages 

between related transportation performance outcomes.  Analyzing roadway congestion and transit 

performance data, this study produced both descriptive statistics, and regression models.  

Conclusions from this study address two issues: 1) the complexity of downtown transportation, and 

2) how transportation big data may improve data-driven decision making in the future. 

7.1 Substantive Findings and Implications 

Based on two-hour PM peak data aggregated by month, traffic congestion is positively 

associated with transit headway unreliability, with elasticities between 0.051 to 0.072 depending on 

the specific model and measure used.  The irregularity of transit departures from the originating 

terminus is also positively linked to transit headway unreliability, with elasticities between 0.091 

and 0.095.  Under the specific spatial and temporal limitations of this study, these two factors only 

explain a small portion of the total variation in transit reliability. 

Results indicate that there is no panacea for improving transit headway reliability and that 

the contributors to headway reliability are complex in urban environments.  As such, the results of 

this study serve as a caution for planning practitioners to temper their expectations for mixed-traffic 

transit.  The lack of predictability for headway reliability also suggests that cities should avoid 

overengineering their mixed-traffic corridors with the expectation of both reduced traffic congestion 

and improved transit reliability.  

However, this study shows that there is an outlook, albeit limited, for improving transit 

through transit operations and through managing traffic congestion.  Adopting scheduling practices- 

such as incorporating more recovery time at terminus stations, that allow for more regular 

departures at the start of each route, can be expected to lead to reduced unreliability throughout the 
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entire route.  Insofar that the cities can influence traffic congestion through expedited incidence 

response, or measures such as traffic signal optimization and on-street parking policies, reducing 

congestion can also be expected reduce transit unreliability. 

Extrapolating further, under the assumption that dedicated right-of-way transit functions like 

transit on a non-congested arterial road, this study also suggests that projects such as the King Street 

dedicated transit right-of-way pilot are likely to see headway reliability benefits from shielding 

transit vehicles from traffic congestion.  It should be noted that beyond headway unreliability, 

existing studies demonstrate poor peak hour transit performance in other ways.  With the current 

mixed-traffic design, typical streetcar speeds in the downtown portion of the 504 King route often 

fall below the brisk walking speed of 8km/h during the PM peak (City of Toronto, 2017).   

7.2 Big Data Opportunities for Transportation Planning 

As the quality and quantity of transportation data available to cities continues to grow, it is 

likely that cities will seek to take a more data driven approach in decision making.  As this research 

demonstrates, the linkages between different transportation outcomes may not always be clear cut 

and easy to interpret.  Moreover, a dependence solely on big data may bring the risk of de-

prioritizing qualitative city planning outcomes such as those related to pedestrian experience and 

quality of life. 

However, despite the inherent complexity of urban transportation that this study illustrates, 

it is clear that cities will have take a proactive approach in managing change.  Given the 16.2% 

population growth rate over five years in downtown Toronto, four times the rate of the rest of the 

city (City of Toronto, 2017), targeted policies should continue to be explored to manage demand 

pressures and allow Toronto to meet its liveability, environmental and mobility goals set out it 

Official Plan.  Big Data offers promise for cities as a part of the decision-making process to help 
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link policy to outcome.  For example, pilot projects such as the King Street transit priority corridor 

may be expeditiously implemented to demonstrate effectiveness and to gauge public support.  Big 

Data can provide the possibility to evaluate certain quantitative transportation outcomes across the 

transportation network that the traditional four-step travel forecasting models may not capture. 

A final observation from the process of conducting this study is that institutional barriers 

present limitations to the use of Big Data in planning policy.  While the Toronto Transit 

Commission is a wholly owned arm of the City of Toronto, and while this research was funded by 

the City’s Transportation Services Division, acquiring the TTC’s transit location data proved to be 

more challenging than expected.  In the end, for this data to be provided by TTC, senior leadership 

involvement was required.  Furthermore, although the TTC has developed tools to further process 

the CIS transit location data into a more useable format which this project would have greatly 

benefited from, this post-processed data was unavailable for this research due to policies that 

restricted sharing of data developed for internal TTC use.  Institutional barriers like these are likely 

not limited to the City of Toronto and the TTC.  To realize the full potential of Big Data for urban 

planning, increased clarity in data sharing agreements ought to be established between government 

institutions, particularly within organizations which are part of the same public entity.   

7.4 Recommendations 

The conclusions of this study suggest several actions that the City of Toronto and the 

Toronto Transit Commission should consider.  The general unpredictability of headway deviation 

observed in this study suggests that drastic measures may be necessary to have make a significant 

impact.  To improve the speed and reliability of transit services, the city should continue to pursue 

measures to protect critical transit corridors from the impacts of congestion.  This can be achieved 

through implementing a dedicated transit right-of-way on these streets, or through managing 
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upstream traffic volumes through signalization or bottlenecks.  City-wide demand-management 

measures such as road pricing may also be effective for lessening the negative impacts of 

congestion on surface-running transit. 

Given the measurable relationship between terminus departure regularity and reliability 

throughout the line, the Toronto Transit Commission should continue to explore operations 

management practices for improved reliability at the start of each route.  Measures may include 

scheduling more recovery time at the terminus or staging spare vehicles at strategic locations. As 

this is an general operational recommendation with financial impacts for the transit operator, the 

TTC should make decisions regarding this recommendation based on cost-benefit analysis. 

To address the institutional barriers that hinder the potential of big-data in municipal 

decision making, the City of Toronto should establish a data-sharing agreement between all its 

departments and subsidiaries such as the TTC.  Such an agreement would enhance the ability for 

departments such as Transportation Services to build off of the TTC’s operational expertise and 

experience with CIS data. 

A final recommendation is for this study to be repeated with new data once the TTC’s new 

Computer Assisted Dispatch / Automatic Vehicle Location (CAD/AVL) system is in place and 

producing more accurate time-at-location data.  This, combined with more fine-grain traffic speed 

and congestion data may help pinpoint specific roadway links that are problematic and require 

special attention.   

7.3 Funding 

This research was funded through the City of Toronto Transportation Services Division.  

The results of this project will be submitted to the Big Data Innovation team.    
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Appendix A: Table of Summary Statistics by Route 

Route 501 Summary of Descriptive Statistics     

Statistic N Mean St. Dev Min Max 

transit headway mean 1,320 5.1 5.5 1.2 50.3 

transit headway- 85th percentile 1,320 9.9 10.3 2.0 92.5 

transit headway- 50th percentile 1,320 3.4 4.7 0.0 48.0 

transit headway bti85 1,320 2.0 0.2 1.2 2.5 

traffic mean speed 1,320 13.2 3.0 6.4 19.8 

traffic speed- 5th percentile 1,320 10.3 2.9 3.9 18.0 

traffic speed- 50th percentile 1,320 13.0 3.1 6.0 20.0 

traffic buffer time index 1,320 1.3 0.1 1.1 2.0 

traffic free flow speed 1,320 20.2 2.4 16.5 24.0 

traffic travel time index 1,320 1.6 0.3 1.1 2.9 

      

Route 504 Summary of Descriptive Statistics     

Statistic N Mean St. Dev Min Max 

transit headway mean 838 3 2.6 0.9 22.5 

transit headway- 85th percentile 838 5.9 5 2 48 

transit headway- 50th percentile 838 1.8 1.7 0 18 

transit headway bti85 838 2 0.2 1.6 2.7 

traffic mean speed 838 12.9 2.9 7.7 20.8 

traffic speed- 5th percentile 838 10.1 2.7 5.4 18.7 

traffic speed- 50th percentile 838 12.7 2.9 7 20.5 

traffic buffer time index 838 1.3 0.1 1.1 1.8 

traffic free flow speed 838 19.9 2.5 16 23 

traffic travel time index 838 1.6 0.3 1.1 2.2 

      

Route 505 (Dundas) Summary of Descriptive Statistics    

Statistic N Mean St. Dev Min Max 

transit headway mean 868 6.1 3.8 2.8 31.8 

transit headway- 85th percentile 868 11.9 7.1 6 53.6 

transit headway- 50th percentile 868 4.1 2.9 1 32 

transit headway bti85 868 2 0.2 1.1 2.5 

traffic mean speed 868 12.5 2.9 6.3 20.3 

traffic speed- 5th percentile 868 10 2.7 4.4 16.5 

traffic speed- 50th percentile 868 12.4 3 6.2 20 

traffic buffer time index 868 1.3 0.1 1.1 1.7 

traffic free flow speed 868 19.2 2.2 16.4 24 

traffic travel time index 868 1.6 0.3 1.1 2.6 
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