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ABSTRACT

The cost of a hardware failure in high-performance computing systems is usually 

extremely high because of the system stall where billions of operations can be lost within 

one second. Thus, implementation of self-restoration mechanisms is one of the most 

effective approaches to keep system performance on a required level.

The project presents a new approach, which allows retaining the performance of 

the Run-Time Reconfigurable stream processing system on its maximum level. This 

becomes possible by development of multi-level self-restoration mechanism that consists 

of: restoration by FPGA-scrubbing, restoration by FPGA-slot replacement and restoration 

with optimum performance degradation. All above levels of restoration procedure were 

developed and tested on reconfigurable computing platform based on XILINX Virtex 

FPGA. Analysis of achieved results of the developed mechanism shows a very fast 

restoration of functionality and dramatic increase of lifetime of FPGA based computing 

platforms.
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CHAPTER 1 

INTRODUCTION

1.1 Motivation

In many areas o f application: video and image processing systems, high-speed 

communication, digital TV and audio broadcasting, data encryption and compression, 

multimedia and DSP the major requirement is processing of high volume of streamed data 

with very high performance. Recently, these performance requirements are in a range of 10- 

100 Giga bits per second. Usually, for all o f the above areas of application the Application 

Specific Processors (ASP) are used. Most o f these computing systems based on Application 

Specific Integrated Circuits (ASIC) are logic devices with a fixed  architecture optimized for 

tasks algorithm and data structure. Within recent decade, the complexity of ASICs has 

increased in orders. That is why the probability o f hardware fault in ASIC based computing 

platforms also has increased. On the other hand, in many applications such as: aerospace, 

nuclear power stations, military and some others the data-stream processing systems must 

reliably perform their functions in radiation intensive environment. The usual approaches of 

increasing system reliability based on modular or information redundancy as well as 

shielding technique is very expensive and power consumable. Simultaneously in most of the 

mission critical applications such as: satellite platforms, process control equipment in nuclear 

power stations, planetary exploration systems, earth orbital stations and many military 

applications hardware failure of even one system gate (out o f millions) can cause incredible 

damage or even lost o f very expensive systems. Even in most o f commercial stream



processing systems such as Digital Video Broadcasting (DVB) and Digital Audio 

Broadcasting (DAB) every minute of broadcasting interruption costs many thousands of 

dollars.

The promising approach to increase system reliability for complex and mission 

critical computing systems is utilization of reconfigurable computing systems based on Field 

Programmable Array (FPGA) devices. This approach assumes ability to configure the 

' application optimized processing micro-architecture by programming logic fimctions and on- 

' * chip intercoimections into special Static Random Access Memory (SRAM) incorporated to 

' ■ the FPGA as a circuit configuration memory unit. This ability gives this system a unique 

feature for restorating its functionality simply by re-programming a configuration file into the 

configuration SRAM. In the case when one or more logic gates are damaged, micro- 

f architecture can be redesigned to avoid faulty logic gates and loaded then into the FPGA. 

'  Thus, this approach allows restoration or even modification of system functionality by 

’ remote reprogramming of the FPGA’s configuration SRAM. However, several problems still 

' exist for the FPGA based computing platforms. Firstly, configuration SRAM itself can be 

affected by radiation and / or power instability. Secondly, it can take a lot of time for re

designing on-chip micro-architecture avoiding faulty logic cells. In many practical 

applications long restoration time means complete mission fault.

Instead, in this paper the novel approach for restoration of the FPGA based 

reconfigurable computing system is presented. This approach allows self-restoration of on- 

chip processing micro-architectures of stream processing logic circuits within very short 

period of time (hundreds of microseconds). A multi-level self-restoration mechanism 

developed in the capacity of this project can itself make decision what kind of restoration



procedure has to be implemented to; a) minimize restoration time, b) minimize logic 

resources, c) minimize performance degradation if, there is no other way to restore 

functionality o f a system.

1.2 Major principles of the proposed approach

The proposed approach is based on the following major principles:

1. Utilization of partially reconfigurable FPGA devices as a component base of 

proposed se lf  restoration mechanism. This type of FPGA devices allows 

reconfiguration of small portions of on-chip logic circuitry without any 

interruption of data processing in the rest of FPGA device.

2. Utilization of Run-Time Reconfigurable computing platform as a system base 

o f proposed self-restoration mechanism. This type of a computing platforms 

allows utilization of one part of system logic resources to restore other part of 

(damaged) logic without suspending of all computational processes running 

on a system.

3. Implementation of proposed method of self-assembling o f processing micro

architectures on a base of the pre-compiled Virtual Hardware Components 

(VHC). This approach allows dynamic on-chip assembling of Application 

Specific Virtual Processors (ASVP). ASVP is a logic circuit with micro

architecture optimized for algorithm and data structure o f a task to be



executed. On the other hand, if any hardware fault occurs restoration can be 

performed by virtual re-assembling of ASVP micro-architecture.

4. Organization of self-restoration mechanism as multi-level procedure. This 

approach reflects nature of possible hardware faults occurring in the SRAM 

based FPGA devices. Multi-level organization allows to react on each type of 

possible reasons with respective restoration procedure. Multi-level 

organization of self-restoration also reflects internal conditions in the FPGA. 

There can only be two possible situations: there are spare logic resources or 

all off them are in use. In case when there is no spare logic resources in the 

FPGA self-restoration procedure reaches the highest possible level of 

restoration — restoration with performance degradation.

5. Incorporation of Architecture-to-T ask Optimization System (ATOS) - 

automated high-level architectural synthesis mechanism for optimization of 

the restored micro-architecture to the task algorithm and data structure 

reflecting limitations of available logic resources.

All of the above principles that are embedded into the proposed self-restoration 

mechanism allowed reaching very high cost-reliability, cost-performance parameters and 

increase system lifetime of high-performance parallel stream processing systems working in 

harsh and radioactive intensive environment.

1.3 Original Contributions

The thesis presents a new approach for self-restoration mechanism and methods for its 

implementation in Run-Time Reconfigurable data-stream processing systems based on



partially reconfigurable Field Programmable Gate Array devices. This approach allows fast 

and effective restoration of system functionality after temporary and permanent hardware 

faults. Temporary hardware faults in the SRAM based FPGA devices usually are caused by 

radiation effects (e.g. SEU - Single Event Upset). However, permanent hardware faults can 

be caused by: hidden manufacturing defects, corrosion, time-dependant dielectric breakdown, 

etc. The proposed self-restoration mechanism being multi-level is adaptive to the type of a 

hardware failure because it can apply strategies o f different levels o f restoration. For 

example, it tries first to recover from the fault assuming that fault is temporal. However if, 

after certain attempts fault still exists mechanism jumps to the next level o f restoration using 

logic replacement procedures. It can happen that all spare logic resources are already in use 

when permanent hardware fault is detected. In this case, mechanism would jump to the level 

of restoration with performance degradation. On this level mechanism selects the best 

configuration of stream processing micro-architecture with minimum performance 

degradation.

In this regard the major contributions are as follows;

• Development o f logic replacement technique based on re-addressing of Virtual 

Hardware Components to the spare slots in the partially reconfigurable FPGA 

devices (Xilinx Virtex-E, Virtex-2 and Virtex-2Pro families o f FPGAs). This 

technique was presented in [1].

• Development o f method for optimization performance degradation in case of a 

restoration o f functionality with limited logic / routing resources. This method was 

presented in [2] .



• Analysis of radiation effects which can cause hardware failure in SRAM based 

FPGA devices and possible mitigation techniques for this effects. On a base of this 

analysis the complete multi-level hardware restoration mechanism was developed 

and presented in [3].

• Modeling and simulation of major elements of the proposed self-restoration 

mechanism were performed using ALTERA MAX Plus II and XILINX ISE 6.2i 

CAD systems. Results were presented in [3] and [4].

• Implementation and testing of major elements of the proposed self-restoration 

mechanism in the RTR Multi-Stream Processor AGORA-2 (Adaptive Group 

Organized Reconfigurable Architecture). Results were presented in [2], [3] and [4].

• Modeling of prototype of Hamming Distance Calculator with ability of restoration 

with optimum performance degradation. Analysis of results was utilized for 

preliminary study for development process of the new generation of on-board 

computing platform for Canadian satellite RADARSAT-2.

1.4 Thesis Organization

The thesis consists of eight Chapters. The rest of the thesis paper is organized as follows:

• Chapter two consists of the literature overview and classification of major types 

of existing reconfigurable computing systems. This chapter gives background on 

run-time reconfigurable computing platforms.

• The third chapter presents analysis of radiation factors that can cause hardware 

fault in the semiconductor devices. Also, a special section in this chapter gives 

literature survey on radiation effects in the SRAM based FPGA devices.



Chapter four encompasses the analysis of existing methods of hardware fault 

detection, location and restoration based on extensive literature survey. This 

study was very important because it allows utilization of some existing methods 

of hardware fault detection and location. This component of fault tolerance for 

FPGA based computing platforms was not a target for this project. However, 

without understanding fault detection and location methods and procedures it 

would be difficult to develop fault restoration procedures.

Chapter five describes architecture organization of multi-task reconfigurable 

stream processor with self-assembling micro-architectures of application specific 

computing circuits. This chapter gives background information for computing 

platform where the proposed self-restoration mechanism can be implemented. 

Self-assembling procedure and its application for self-restoration of the 

Application Specific Virtual Processor is also described in details in this chapter. 

Chapter six gives the overview of the proposed method. It consists o f a full 

description of all components of the proposed self-restoration mechanism. 

Interaction between different levels of the self-restoration mechanism is also 

described. In this chapter the method of restoration with performance degradation 

also is presented. This chapter gives also background on architectural synthesis 

method used for the developed method of restoration.

The implementation and analysis of test results are presented in Chapter seven. 

Brief description of test platform is given, as well as comparative analysis of test 

results o f FPGA scrubbing and logic replacement procedures comparing with the 

existing approaches. The detailed explanation of Hamming Distance Calculator



(HDC) prototype implementation with ability for restoration with performance 

degradation is also presented in deep details. Analysis of results of modeling of 

prototype behavior also is given.

Finally, conclusions and description of future work is given in the Chapter eight.



CHAPTER 2 

REVIEW ON RECONFIGURABLE COMPUTING PLATFORMS

Recently more and more research and development groups and organizations working 

in the area of high-performance computing systems start to use Field Programmable Gate 

Array (FPGA) devices as a component base of their systems. Since 1995, number of types of 

FPGA-based computing platforms (R&D stage) had doubled [5]. The reason is that in many 

applications where the performance of a software implementation is not sufficient and the 

high expense and long design time of Application Specific Integrated Circuits (ASICs) 

cannot be afforded, FPGA devices has provided a very cost-effective solution. These new 

types o f microprocessor-free architectures based only on reconfigurable devices are 

becoming more and more popular solution for high-performance computing platforms. Main 

areas of application for these platforms are digital signal processing, image processing and 

pattern recognition, digital video/ audio broadcasting and communication, high-performance 

data acquisition and control systems, compression / decompression and encryption / decoding 

devices.

Broadly all FPGA-based computing systems can be divided on two big categories:

1. Statically configurable systems and

2. Run-time reconfigurable systems.

The first approach is normally used for rapid prototyping and small production, where 

development o f ASICs is too expensive and time-to-market is very short.

Run-time reconfigurable systems allow reuse of FPGA hardware during the lifetime of 

the task in the system. This gives a rise to a powerful computing paradigm where one or



more reconfigurable hardware components can serve as a virtual hardware space, similar in 

principle to virtual memory. Several architectural approaches were proposed and 

implemented in different reconfigurable computing platforms within the recent decade.

From system architecture viewpoint, run-time reconfigurable computing systems can 

broadly be classified into three categories associated with the level of computational process 

where re-configuration takes place:

1) Instruction level;

2) Task level and

3) Task segment level.

2.1 Instruction level reconfigurable architectures

These systems are based mostly on Dynamically Programmable Gate Array (DPGA) 

devices [ 6 ] and allow reuse DPGA parts (often called frames) for different instructions. This 

reconfiguration could be done in a very short time and allow implementation of a custom 

instruction set. The reconfigurable device in these systems usually tightly coupled with the 

processor to be used as the accelerator for computationally intensive and repetitive segments 

of a program. There are many examples of such systems [ 7 ], [8 ] and [ 9 ]. The Hybrid 

RISC reconfigurable architectures, where reconfigurable component is a part of CPU [ 9 ] 

and [ 10 ] also can be associated with this class of architectures. An advantage of this type of 

reconfigurable accelerators is that being implemented into common general purpose 

computing architectures they can dramatically increase CPU performance. However this 

performance still is limited by performance of a microprocessor coupled with FPGA. This 

microprocessor now becomes responsible for management of the reconfigurable component
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and synchronization o f two parallel processes in the microprocessor itself and in FPGA- 

based accelerator. It increases amount of extra control hardware or decrease performance of 

the microprocessor. Another disadvantage of this type of systems appears in a 

multiprocessing environment. Cost-performance parameters are very poor because of 

limitations for reconfigurable resource sharing among the processors due to the tight 

coupling.

2.2 Task level reconfigurable architectures

This type of systems usually contains a collection of configurable processing elements 

(functional units) communicating via a network o f configurable switches.

The architecture o f these systems has to be configured for the task. There is a big number o f 

systems that fall in this category; RaPid [ 11], NAPA [ 12 ], Splash-2 [ 13 ] and many others. 

This type of architecture allows achieving very high performance because the data-flow 

graph of the task can be completely “covered” by hardware specifically tuned for task 

operations. However, the time for compiling a system can be very long and consequently it is 

very difficult or even impossible to employ these systems in applications where fast dynamic 

recompilation in real-time needed.

Another performance limitation comes from the communication network. Three main 

concepts were used in this type of systems: a) direct (point-to-point) connections between 

FPGA-based functional units (usually pipeline connections [11 ], [ 13 ]). This type of 

connectivity gives minimum propagation delay for the data transfer; b) crossbar switches 

(switching networks) [ 14 ], [15]. This type of connectivity gives higher propagation delay 

than direct connections, because signals have to pass a multi-stage multiplexing units; c) 

system buses usually used as a message passing networks for multi-processing

11



reconfigurable systems [16], [17]. Information transfer rate is the lowest comparing with 

previous types of interconnections but cost-effectiveness is usually much better.

2.3 Segment level reconfigurable architectures

These types of reconfigurable computing systems are based on the idea that a task can be 

divided on several segments when the processing time of each segment is equal or higher 

than FPGA reconfiguration time. In this type of systems the first temporal partition receives 

input data, performs computation and stores the intermediate result into on-board memory. 

FPGA-based functional unit is then reconfigured for the next segment, which computes 

results based on intermediate data from previous partition. Such temporally partitioned 

systems are called Run- Time Reconfigured (RTR) systems [18], [19]. RTR-systems allow to 

“program” cost-performance parameters. If it is necessary to reach maximum performance, 

all segments of the task can be mapped in different FPGA-based functional units. If 

performance requirements are low, task segments can be performed one after another on one 

functional unit. Thus, the concept of RTR systems allows achieving very high level of cost- 

efficiency. Another big advantage of this type of systems is that reliability of the system can 

be very high. If system architecture contains many uniform RTR modules and fault occurs in 

one module within task processing, system can eliminate fault module by reconfiguration. In 

worst case it can cause reduction of performance if no spare modules are available. Time 

delay in this ease is equal to the segment processing time plus module configuration time and 

is in matter of tens of milliseconds. Thus, there is a direct relationship between performance 

and reliability for such type of systems when the module fault causes only performance 

reduction but not a fault of all system.

12



Proposed research was concentrated on the Run -Time Reconfigurable-computing 

systems because o f high cost-performance and performance-reliability characteristics.
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CHAPTERS 

RADIATION TOLERANCE OF THE RCP

One of the major problems for FPGA based computing systems as well as any other 

semiconductor devices is radiation tolerance. To mitigate this problem usually a special 

radiation hardened devices have to be utilized. However, high cost of such devices increases 

system price dramatically. Furthermore, radiation hardened semiconductor devices still have 

limited lifetime. Instead, as an alternative the recovery mechanisms can be implemented.

This approach is conceptually impossible to implement in regular logic devices due to the 

lack of hardware flexibility. However, it is possible to implement it in reconfigurable logic, 

especially in SRAM based FPGA devices. To investigate this possibility of radiation effects 

in semiconductor devices including FPGA, the literature research was conducted.

3.1 Radiation Damage of the Semiconductor Devices

The operation under radiation of any semiconductor devices depends on the near perfection 

of the crystalline lattice to prevent defects that can trap charge carriers and lead to incomplete 

charge collection. Any extensive exposure of semiconductor devices, however, ensures that 

some damage to the lattice will take place because of the disruptive effects of the radiation 

passes through the crystal. While the energy that goes into the creation of electron-hole pairs 

leads to fully reversible processes that leave no damage, non-ionizing energy transfers to the 

atoms of the crystal lead to irreversible changes. The effects tend to be relatively minor for 

lightly ionizing radiation (beta particles or gamma rays) but can become quite significant

14



under typical conditions of use for heavy charged particles. For example, prolonged 

exposure of silicon surface p-n junction to heavy ions or fission fragments will lead to 

measurable increase in the leakage current [20].

The radiation-induced damage can be classified into the two categories o f bulk and surface 

effects. The most fundamental type of bulk radiation damage is the Frenkel defect, produced 

by the displacement o f an atom of the semiconductor material from its normal lattice site. 

The vacancy lefi: behind, together with the original atom now at an interstitial position, 

constitutes a trapping site for normal charge carriers. These are sometimes called point 

defects to distinguish them from more complex “clusters” o f crystalline damage that are 

formed along the track of a primary “knock-on” atom if sufficient energy is transferred. 

Gamma rays and electrons with energy of a few MeV or less create only point defects, 

whereas heavy charged particles of equivalent energy are generally more damaging because 

they also form clusters. The number of Frenkel defects produced by a fission fragment is 

estimated to be about 100-1000 times greater than that produced by an alpha particle. At the 

other extreme, an incident electron or beta particle requires a minimum of about 145 keV to 

produce a defect, and very little damage is observed for electrons whose energy is much 

below 250 keV. The severity of damage to be anticipated is therefore a strong function of the 

nature of the radiation involved. Some minor annealing of the radiation damage can occur 

over long periods of time, but for all intents and purposes, the damage is permanent [21].

The increase in leakage current appears to be more directly related to surface effects and also 

contributes to increase in leakage current fluctuation. In devices such as silicon MOS-FET 

that include oxide passivity layers, the surface effects are closely related to the ionization 

created within the oxide and its trapping at interfaces. For penetrating radiation including

15



gamma rays or neutrons, the damage is generally distributed throughout the device and the 

direction of incidence of the radiation has little effect. For electrons or charged particles, 

however, the orientation with respect to the silicon wafer is important. Irradiation of the 

front (or gates) surface of totally depleted MOS-FET requires exposures that are several 

orders of magnitude less than those needed to produce the same effects by irradiation of the 

back (or aluminum) contact.

For silicon surface p-n junction various data have been published on the integrated flux of 

charged particles required to produce a significant deterioration in p-n junction performance. 

Although subject to a great deal of variability, depending on the specifics of each experiment, 

serious changes appear to take place for irradiations of about lO*'* fast electrons/cm^, lO'^ to 

10̂  ̂protons/cm^, 10^’ alpha particles/cm^, and about 3x10® fission fragments/cm^. Exposure 

to fast neutron fluxes of about 3x10“ neutrons/cm^ and gamma rays doses of about lO^R are 

also sufficient to lead to significant performance degradation

An effect known as type inversion has been observed to occur in high resistively «-type 

silicon after prolonged exposure to fast neutrons or high-energy particles with integrated 

fluency of about lO'^/cm^. The effective concentration of donors gradually decreases with 

exposure, until a transition to //-type behavior is observed. Some models for this change 

postulate the radiation-induced formation of deep acceptor levels, close to the center of the 

band gap, that become electrically active when voltage is applied to p-n junction. The device 

may continue to function after the inversion with the same polarity of applied voltage, but 

eventually the growing concentration of acceptors raises the voltage level required for ftill 

depletion to levels beyond those causing breakdown.

16



3.2 Radiation Effects on Field Programmable Technologies

Field programmable gate array (FPGA) devices, used in spacecraft electronics, have grown 

in size (number o f logic gates) over the past few years. Manufacturers o f FPGA take different 

technological and architectural approaches that directly affect radiation performance. After 

analyzing current technologies and architectures and their radiation effects implications we 

can consider as following:

1. There are basic radiation effects on semiconductor devices as was described in the 

paragraph 3.1, radiation damage of the semiconductor devices. The radiation start to 

directly affect the Single Event Upset (SEU) performance with threshold LET far beyond 

60 MeV-cm^/mg and total dose more than 400 krad(Si).

2. There is limitation for MOS-FET -  devices with the dielectric layers in the active area of 

device. This layer accumulates the electrical charge with the radiation dose. During 

exposure to ionizing radiation, electron-hole pairs are formed in the insulating silicon 

oxide layer immediately below the gate. If a positive bias voltage is applied to the gate 

during the exposure period, there is a tendency for these charges to separate. The 

electrons will move toward the gate, and the holes toward the SiOz-Si interface where 

they tend to be trapped and form a fixed positive charge. The effect of this charge is to 

cause a shift to more negative values in the threshold gate voltage, and the amount of this 

voltage shift is a reasonably linear measure of the integrated dose. The higher the bias 

voltage, the greater will be the fraction of the charges collected, resulting in higher no 

stability. If the MOSFET structures have an effective area of less than O.I mm^ and 

oxide thickness of lOOnm it shows sensitivities in the range of 10-1000 mV/Gy. With a

17



readout capable of measuring changes of the order of 0.5 mV, the corresponding 

minimum measurable dose would be 5x10^ Gy (5 rad) to 5x10^ Gy (50 mrad). 

MOSFET designs with very thin oxide layers and low threshold voltage can achieve 

radiation stability. It can reach SEU performance for total dose more than 300 krad and 

threshold LET 65MeV-cm^/mg.

3. There is technological and architectural “noise”. Manufacturers update their designs and 

continue to shrink the fabrication process. As the result it is difficult to understand the 

causes of changing radiation characteristics. Sometimes change of technology can lower 

SEU performance for total dose less than 3 krad and threshold LET 5MeV- cm^/mg. The 

racing for the Commercial-Off-The-Shelf (COTS) devices to be used in a radiation 

environment leads to very complicate situation. Several studies performed to determine 

the affect of design and process on total dose capability of commercial parts and gain 

additional insight into the devices’ total dose limitation [24, 25] had little success. When 

quick radiation test can not be performed during the manufacturing, the very nature of 

radiation stability requires carefully selected architecture of the device and very stable 

technological process. We have reasons to believe that radiation stable FPGA will be 

fabricated on special foundry in the very near future. The research group from NASA and 

Actel Corporation has the same vision and shifted the research efforts to the development 

of new software to improve the SEU performance of a flip-flop, exploiting the 

configurable nature of FPGA technology, untill radiation -  proof FPGA will be available.

4. There are radiation-proof technologies MNOS (Metal-Nitride-Oxide-Semiconductor) - 

EPROM devices and radiation stable MNOS-FET devices on an insulating silicon nitride
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substrate. It has been found [22] that under an irradiation of 1000 krad in these devices 

was not produced inversion layer in the silicon and no leakage current was observed.

5. Recently XILINX Inc. has developed the Vertex QPRO family of radiation hardened 

FPGA devices for space and satellite applications with up to 1,124,022 system gates (96 

frames x 64 CLBs per frame) and guaranteed total ionizing doze to 100 KRad(si) with 

latch-up immune to LET = 125 MeV cm2 / mg [23].

The Appendix C “Radiation in Space Environment” describes some particles and their 

properties important for radiation effects for semiconductor devices. It also gives definitions 

and conversion units in irradiation physics used above.

19



CHAPTER 4 

FAULT DETECTION AND RECOVERY IN FPGA DEVICES

Another aspect to be considered was fault tolerance of RCP-based on-board 

computing systems. Conceptually, the uniform organization of all levels of system hierarchy 

of RCP hardware such as:

a) logic gates in Common Logic Blocks (CLBs),

b) CLBs in FPGAs

c) memory cells in ROM and SRAM-devices

allows simple replacement of faulty elements (system gates, memory cells, etc.). This 

conceptual possibility needs to be researched more deeply for the development of reliable 

run-time diagnostic and recovery mechanisms.

The objective of the research is development of methods and hardware/software 

means, which being incorporated into the RCP would increase its fault tolerance. These 

methods should provide high reliability and small time for tolerating faults, and the 

corresponding means should have small hardware/software overhead. We will break this task 

into three subtasks:

1. Fault detection,

2. Fault location and

3. Fault recovery

Each of these subtasks will contribute to the above-mentioned characteristics of fault 

tolerance.

20



The simplified architecture of the On-Board RCP is presented in Figure 4.1. The 

Configuration Controller (CC) supplies configuration sequence to the RCP.

FPGAFPGA FPGAConfiguration
Controller

Bus

Figure 4.1: A simplified architecture of the Adaptive Re-Configurable Platform

4.1 Fault detection and location

Fault detection in FPGA devices directly depends on internal organization of FPGA 

micro-architecture. This micro-architecture consists of a number of Configurable Logic 

Blocks (CLBs) interconnected by wires and switch boxes with each other and to the 

Input/Output Blocks (lOBs). The simplified architecture is shown on Figure 4.2. The CLB 

contains logic function generators, flip-flops (latches), and a number of multiplexers and 

associated circuitry. Wires within the FPGA are connected through pass transistors. The pass 

transistor is turned on or off by loading a binary value into the configuration SRAM cell 

connected to its gate. The CLBs contain function generators, which are also made up of 

SRAMs. A function generator has a Look-Up Table (LUT) made out o f SRAM cells, 

together with some addressing circuitry. The LUT can be used for implementing 

combinational logic or as a RAM.

For an FPGA-based Reconfigurable system, faults can occur in the logic blocks 

(LUTs, CLBs, etc) and in switches that provide connection between the different logic 

blocks. A typical fault in a logic block may be a stuck-at fault in any LUT location. A typical
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interconnect fault may be a stuck-at fault in the configuration SRAM cell whose content 

turns a pass transistor on or off, providing interconnection between two leads. Both of these 

types of faults are equally important. From the test point of view, it is now widely admitted 

that FPGAs cannot be considered as classical digital ASICs [35].
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Figure 4.2; Architecture of a Field Programmable Gate Array (FPGA)

Classical test approaches fail when applied on FPGA. In the recent published works, 

different test aspects are considered: Boolean testing of FPGA [25, 26, 28], BIST for FPGA
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[25, 26], I d d q  testing of FPGA [27], diagnosis of FPGA [29]. Because of the complexity of 

FPGA testing, usually each paper targets a specific FPGA part: the interconnect in [26, 

28,30], the logic cells in [25, 27], the memory cells in [32, 33, 34],

the logic interconnect interface. Indeed, FPGAs appear as very complex circuits and these 

works use a classical divide and conquer approach.

In [25 -34] authors try to generate a manufacturing oriented test procedures. In [35], 

the application oriented test procedure is proposed, which can be used by an FPGA user. In 

this procedure, the user does not need to test the complete FPGA. He is only interested in 

testing the part o f the FPGA used for his specific application. Test pattern generation in such 

case can be significantly accelerated. The paper targets only logic cells o f an FPGA.

In [24] authors address the fault location problem for the FPGA logic blocks. Testing 

the logic blocks of Reconfigurable FPGA devices has been studied by many researchers [36- 

38]. Testing interconnect switches was discussed in [28, 39], Techniques to locate faulty 

FPGA interconnects are described in [29, 40]. The technique, discussed in [38] requires a 

fixed number o f reconfiguration sessions. It reconfigures some of the logic blocks as pattern 

generators or response analyzers, while testing the other blocks and vice-versa. The 

technique does not use any knowledge of the application that was implemented in the FPGA. 

Hence, it requires a set of configurations that cover all the faults under consideration for all 

possible configurations. This technique is extended in [41] for diagnosis to locate the faulty 

logic blocks in an FPGA.

‘ Iddq is the quiescent current consumed by an FPGA. If two gate’s outputs (or interconnects) are connected 
(bridging fault) then placing opposite logic values on those outputs will lead to the increase in I d d q . This current 
can be measured for every possible bridging fault, which allows testing the FPGA [Error! Reference source 
not found.].
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The method discussed in [42] can be used to locate multiple faults in an FPGA. The 

basic idea is similar to that of [41]. Typically, a part of the FPGA is reconfigured to test 

another part and vice-versa. For example, the FPGA is divided into three sets of CLBs and 

each set tests another set according to a diagnostic graph. The test time in this method 

depends on the number of faults and is independent of the array size. The techniques in [41] 

are based on BIST.

Another application independent diagnostic technique is presented in [43]. The 

technique consists of two steps: horizontal diagnostic and vertical diagnostic. These two 

steps identify the row and column respectively that contain a faulty CLB. The C-testability 

concept [44] is used to improve this technique such that the test time is independent of the 

array size.

All the techniques mentioned in [28, 29, 36-44] are application independent and can 

be used for both production test and field test. However, when diagnostic is needed for an 

FPGA that implements a fixed application, the diagnostic procedure can be accelerated by 

using the design information rather than testing for all possible configurations [24]. In [24], 

the authors focus on combinational logic. A novel aspect of the technique is the way the 

concept of pseudo-exhaustive BIST has been applied for fault-location purposes. Another 

novelty of the approach lies in the fact, that the routing structure of a CLB is not altered. This 

is important feature, because typically designs mapped to FPGAs are routing-limited. Also, 

modifying the existing routing configuration during each fault location step is time 

consuming. Another advantage of this technique is that, with partially Reconfigurable 

FPGAs, while the circuit under consideration is being diagnosed, the remaining part of the 

system whose inputs are not connected to the outputs of this circuit can still be operational.
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In [45] distinction is made between configuration-independent testing and 

configuration-dependent testing. In configuration-independent testing, no assumptions are 

made about the way in which the user will configure the FPGA. The goal is to maximize the 

fault coverage for all possible configurations.

Configuration-independent testing is done when the FPGA is manufactured. 

Configuration-dependent testing, on the other hand, involves testing that a particular FPGA 

configuration is fault free. Higher fault coverage (for the particular configuration) can be 

achieved with less test time. The approach described in [45] is a configuration-dependent test 

technique for interconnects. Configuration-independent test techniques for interconnects [27- 

29, 37, 46] has the following drawbacks;

1. Time it takes to develop the diagnostic test necessary to locate the faults

2. Time to develop test configurations that provide a high coverage

3. Time to run the tests

The configuration-dependent test technique test method of [45] addresses all of the 

above problems. The method detects and locates all stuck-at and bridging faults in the 

interconnect switches for particular FPGA configuration. This is done by modifying the 

original configuration by only changing the logic function of the CLBs to form test 

configurations that can be used to quickly test the interconnect (the “walking-1” approach). A 

systematic procedure is applied to the original configuration to generate a small set o f test 

configurations. The logic functions of the CLBs in the test configurations are chosen in such 

a way that the “walking-1” approach can be used to detect and locate all stuck-at and 

bridging faults in the interconnect with a small set of test vectors. Since only the logic
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functions of the CLBs are changed, time-consuming placement and routing is avoided. The 

process of generating the test configurations and test vectors is fully automated and very fast.

4.2 Fault recovery

If the fault has been detected and located, then it can be tolerated in a way described 

in [47]. Each primary cell u in the FPGA is assigned a cover cell, which can be reconfigured 

to replace it in the event that cell u becomes faulty. Primary cells are assigned to cover other 

primary cells in a chain-like manner, with a spare cell covering the last primary cell in the 

chain (Figure 4.3). These chains are defined to be along either rows or columns of the array, 

with a spare cell at the end of each row or column. In order for a cell to cover another cell, 

first, the cover cell must be able to duplicate the functionality of the dependant cell. This is 

easy in an FPGA, since all cells are identical.

Spare

<-

2>—©<—©

Figure 4.3: A covering graph for a fault tolerant FPGA with four primary cells and one spare 

cell. Reconfiguration in the covering graph after cell # 2 becomes faulty.

Second, the cover cell must be able to duplicate the connectivity of the dependant cell 

with respect to the rest of the array. The method of ensuring connectivity is described in [47].
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Each net connected to a cell must also include a cover (reserved) segment bordering the 

cover cell. These cover segments allow the logical connectivity to be maintained. The 

reconfiguration procedure Eissumes that cover segments necessary for reconfiguration around 

a faulty cell are provided by the routing tools and included in the initial configuration data 

that is loaded serially. Channel segments reserved for use in reconfiguration do not add extra 

parasitic delay to nets in a non-reconfigured array, since they are connected only when 

needed. No re-routing is necessary in the event o f a fault.

In their fault tolerant technique, Kumar at al. used adaptive customization to avoid defective 

sections and artificially enhance a programmable gate array’s yield [48]. Their technique was 

strictly off-line and fault tolerance was achieved by bypassing faulty programmable logic 

cells at the time the circuit was initially mapped to the FPGA. They described a two-step 

process to achieve defect tolerance: test of an un-programmed device to locate defective 

components and program the device to avoid the defective portions. They presented 

heuristics for adaptively programming an FPGA in the presence of faults.

Hatori at al. introduced redundancy as a fault tolerant method for FPGAs [49]. Their method 

used specialized selector circuitry to reconfigure FPGA circuits in the presence of faults. 

Similar to methods used for fault tolerance in SRAMs, an additional column of 

programmable logic blocks is added to the FPGA. In the event that a logic block was faulty, 

all functions mapped to the column where the faulty block was located were shifted toward 

the spare column. All subsequent columns of functions between the column with the faulty 

block and the spare column were also shifted toward the spare column. They did not detect 

faults, only reconfigure around them. Since they eliminated an entire column for one fault.
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their fault tolerance was low, and they estimated a performance degradation of 5%. This was 

an off-line technique.

Durand and Piquet proposed a fault tolerant FPGA architecture with the ability to repair itself 

in the presence of faults [50]. They used a special multiplexer with repair and self-diagnosis 

capabilities. Their special circuitry was capable of detecting logic failures during runtime, 

and the architecture had a limited capability to reconfigure itself dynamically. Their fault 

tolerant technique allocated two extra columns of cells, and in the event that a fault was 

detected, they bypassed the faulty column by shifting toward the spare column. Since the 

author’s reported that more than complete logic redundancy was required for their method, 

the area overhead for fault tolerance exceeded 50%.

Narasimhan at al. developed an of-line fault tolerant technique for FPGAs or Wafer Scale 

Integrated Arrays [51,52], They use a pebble shift algorithm to reconfigure around faulty 

blocks. Their method is flexible, since it is not limited to one fault per row, column or tile.

Howard and Tyrrell described ideas for increasing yield on FPGAs [53]. Their idea was to 

insert extra bypassing columns or rows into the FPGA. They looked at both removing an 

entire row (column), if it contained a fault and removing only the faulty block from the row. 

Their methods were strictly for yield enhancement and the faults were bypassed at the time 

the configuration for the FPGA was downloaded. They also introduced global long lines to 

reduce the performance hit associated with reconfiguration.

Kelly and Ivey used redundancy to tolerate faults in applications mapped to FPGAs [54]. 

Their technique used a shift method to reconfigure in the presence of faults. They 

incorporated a reconfiguration switch and used normal place and route tools for mapping
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circuits to FPGAs. A step-based switch configuration algorithm was used to configure the 

special switches around faulty elements. This technique was also off-line.

Cuddapa and Corba used Xilinx SRAM based FPGAs to demonstrate the fault tolerant 

capabilities of FPGAs [55]. In their study, they randomly picked logic blocks to be faulty. 

Then they reconfigured the circuit around these faults using commercially available tools.

The main contributions of their work were an algorithm to determine fault coverage of a 

design and a definition of the fault recovery rate for any given design implemented in 

SRAM-based FPGAs. Additionally, they demonstrated that fault recovery was possible on 

FPGAs by other than modular redundant methods. This technique was off-line and did not 

include fault detection.

Hanchek and Dutt developed a method to increase FPGA yield [47,56]. Their method uses 

node covering and reserved routing resources to replace the functionality o f faulty cells. One 

row (column) of cells is reserved for spares. If a cell in any given column (row) goes bad, the 

functionality of all cells in the column (row) from the faulty cell to the spare is shifted toward 

the spare cell. Spare routing resources are used to eliminate overhead of re-routing the 

updated circuit placement. Relative to covering interconnect faults, they use a similar idea 

where spare interconnect resources are allocated as a grid, and when a fault occurs, it is 

replaced by an extra segment or grid of segments. The main advantage of this method is that 

it is very fast. Since the spare resources have already been allocated to cover a limited 

number of faults, the reconfiguration time is linear with respect to the number o f faults. The 

main problem o f this method is limited fault tolerance, namely only one cell per column 

(row). If  two faults were found in the same row, this method breaks down.
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Mahapatra and Dutt proposed a method that dynamically allocates interconnect resources to 

bypass faulty cells after faults have been located [57]. If the new required segments conflict 

with the current usage of routing tracks, the layout is incrementally modified to make room 

for the new segments. This method is dynamic only with respect to the interconnect 

resources, as the spare cells are statically allocated.

Emmert and Bhatia developed a fault tolerant technique for incrementally reconfiguring 

FPGA mapped circuits around faulty programmable resources [58, 59]. They used minimax 

grid matching, to match faulty PLB locations to unused spare PLB resources. Then they 

incorporated a shift methodology to shift PLBs between the faulty PLB and its matched spare 

location toward the spare location. For interconnect faults they introduced the idea of an 

embedded incremental router to route around faulty interconnect resources. The router uses 

the read/write capability of the FPGA configuration memory to rip-up and reroute without a 

netlist. While their method for reconfiguring around faulty PLBs was applied to the Xilinx 

FPGA, their fault tolerant technique for interconnects was applied to an artificial FPGA 

architecture, not to a commercial FPGA.

Lach et al. developed a low-overhead on-line fault tolerant system [60]. Their basic approach 

was to partition a design into a number of tiles. Each tile was allocated one spare PLBs. In 

the event a fault in a tile was found, the spare PLB was used to replace the faulty PLB by 

using a precompiled replacement configuration. Several replacement configurations were 

stored for each tile. In the event that a fault was detected, the configuration associated with 

that fault was downloaded. The main drawbacks of this method are static spare allocation and 

low tolerance, typically limited to one fault per tile. If multiple faults occur in close
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proximity (within a tile), this method breaks down. There is no ability to draw spares from 

other tiles to cover several faults in a single tile.

Fault tolerance in a system relies on spare resources to replace the faulty ones. Spare 

resources lead to area overhead and degradation in the system performance. In all of the 

above-mentioned works, spare resources are statically allocated prior to fault occurrence. But 

static allocation may not provide sufficient resources in an area affected by multiple faults, 

while resources in areas not affected by faults will be wasted. Efficient spare usage is critical 

in long-life missions, which must be terminated when one more fault occurs in an area where 

all spares have been used. The regular structure of FPGAs and their inherent redundancy 

enable the implementation of low-cost fault-tolerant techniques. Since a typical design uses 

only a portion of the logic and interconnect resources of the FPGA, the unused resources can 

provide spares to be used to replace the faulty ones.

On-line testing that occurs concurrently with the normal system operation is essential 

in high-availability systems that may not be taken off-line for testing, and whose operation 

should be interrupted as little as possible. In such systems, fault diagnosis and 

reconfiguration must be accomplished very fast. On-line testing typically relies on modular 

redundancy and on information redundancy used in coding techniques.

One problem with conventional on-line testing is that it detects only faults that affect 

the current operation performed in the system. New faults, however, are equally likely to 

occur in spare resources or in the currently unused portion of the operational part of the 

system. Thus to guarantee a reliable operation, the on-line test must completely check all the 

system resources, including spares.
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A novel on-line fault-tolerant approach for CLBs of an FPGA is presented in [61]. 

The approach employs the Self-Testing AReas (STARs) of the FPGA that are off-line and 

under test, while the rest of the device is on-line, continuing normal system operation. Partial 

run-time reconfigurations via the boundary scan interface of the FPGA allow the test 

configuration used by STARs to be downloaded without any impact on the system operation. 

After testing of a STAR has been completed, the STAR moves to a new location, which is 

implemented by a sequence of pre-computed partial reconfigurations and assures that the 

entire FPGA will be eventually tested. If faulty CLB is detected, spare one from a STAR will 

replace it. Every working CLB has a spare one. The configuration that replaces the working 

CLB with the spare one is pre-computed.

Most previous methods described in literature are for off-line fault tolerance and used 

for manufacturing yield improvement. In contrast with them, the proposed approach removes 

these limitations.

Reconfiguration process in a system is controlled by a module external to the FPGAs 

(typically this is embedded microprocessor having some storage for the various FPGA 

configurations). The tasks of this processor are also extended to controlling the test, 

diagnosis, and fault-tolerance functions, including their associated reconfigurations.

STAR is configured as several disjoint regions with independent BIST structures. 

Every such structure (Figure 4.3) is composed of a Test Pattern Generator that applies 

pseudo-exhaustive test patterns to two identically configured programmable logic Blocks 

Under Test (BUTs), whose outputs are compared by an Output Response Analyzer. The 

BUTs are repeatedly configured for testing in all their programmable modes of operation.
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Once the BUT has been completely tested, the next pair of BUTs is tested in all of their 

modes of operation.

The cost of the approach is significantly lower than replicated modular redundancy.

Start/Reset

Output
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Block 
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Block 
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Test Pattern 
Generator

Figure 4.4: Testing Programmable Logic Blocks.
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CHAPTER 5

ORGANIZATION OF MULTI TASK RE-CONFIGURABLE STREAM 
PROCESSOR WITH SELF-ASSEMBLING MICRO-ARCHITECTURE

In most of industrial data-stream processing systems (e.g. video-surveillance, video

recognition, digital video-broadcasting and digital communication systems, etc.) it is required 

to process multiple streams of data with very high rate (GB/s). The usual approach is 

implementation of application specific integration circuits (ASICs) or Field Programmable 

Gate Array (FPGA) devices were application specific processor core (ASPC) is loaded [62]. 

This approach seems cost-effective when ASIC or ASPC architecture is designed for one 

specific application (task).

However, there are several disadvantages associated with this approach. One of the 

main problems associated with ASICs is lack of hardware flexibility and inability for 

modification of its micro-architecture if any change of processing algorithm is required or 

hardware bug is found. Generally, FPGA utilization can mitigate this problem. However, 

FPGA by its nature requires much more logic resources (configuration SRAM, routing 

switches, look-up table logic etc.) than ASIC for the same application [63]. On the other 

hand, in most of real applications multiple streams should be processed in parallel and 

processing algorithms can vary in different processing modes. ASIC and ASPC approach 

assumes that all processing architectures for all tasks and their modes should be stored in the 

ASIC or FPGA in the form of real hardware. However, in most of real applications:

a) Not all tasks are initiated at the same time in the multi-task workload and

b) Only one mode from many can be requested for each task.

34



Thus, if  all application processing architectures are presented in a form of real 

hardware a lot o f logic resources and power will be wasted because o f non-active hardware. 

To solve this problem the concept of run-time re-configurable (RTR) systems can be 

implemented. RTR approach discussed in Chapter 2, assumes utilization of FPGA devices 

with partially reconfigurable micro-architecture [63], [64]. This approach allows loading into 

the FPGA only that processing core, which is needed for the task and task mode going to be 

activated. However, in the existing RTR computing platforms each processing core has to be 

developed and pre-compiled using CAD system associated with utilized FPGA family (e.g. 

ISE Foundation for Xilinx FPGA devices). Instead, in [66] was proposed an approach where 

Application Specific Virtual Processor (ASYP) can be assembled on-chip by uniformed 

“LEGO” blocks. These LEGO blocks are cores, which were called Virtual Hardware 

Components (VHC). Furthermore, this approach assumes that the ASVP assembling 

procedure is fully automated because it should be performed during hundreds of 

microseconds without any influence of designer / system operator.

Thus, the process o f creation of ASVP micro-architecture is organized as self- 

assembling procedure. Same procedure can be activated when any hardware fault is detected 

in any o f ASVP running in the FPGA. In this case any damaged Virtual Hardware 

Component can be restored by scrubbing procedure [65] or re-loaded to another available 

slot o f the FPGA. That is why RTR computing platform based on above concept allows 

creation of a universal computing platform with self-assembling micro-architecture for 

parallel acquisition, processing and transmitting (via high-bandwidth network) multiple data- 

streams where each data-stream task can be initiated, terminated and re-loaded without 

interruption o f other data-stream execution and / or data transmission processes.
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5.1 Organization of Virtual Hardware Components (VHC)

Most of the data-stream processing architectures can be represented as a pipeline 

reflecting the structure of Data-Flow Graph (DFG) [62]. Considering the structural 

organization of different FPGA families we found that the best candidate for these 

requirements was Xilinx “Virtex” family of partially re-configurable FPGA devices [64]. 

The structure of “Virtex” FPGA consists of (Figure 5.1):

1) Arrays of CLBs {Configurable Logic Blocks),

2) Arrays of lOBs {Input Output Blocks),

3) SRAM memory blocks {Block RAM),

4) Clock logic resources (DLLs, etc.) and

5) Routing resources.

These resources can be configured into one or more data-paths for one or more 

pipelined data-stream processors. The configuration can be done by loading configuration 

data file into the Configuration SRAM, which programs logic functions of Look-Up-Table 

(LUT) of each CLB and interconnections between logic, I/O, clock and memory resources. 

The configuration data file for entire FPGA device can be divided into smaller configuration 

data files for partial FPGA reconfiguration. Each small configuration data file can represent a 

Virtual Hardware Component (VHC) to be downloading into addressable FPGA slots (CLB- 

columns).
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Figure 5.1: Structure o f partially reconfigurable Xilinx “Virtex” FPGA device

The micro-architecture o f VHC consists of two major parts (Figure 5.2):

a) Processing Element (PE): Adder, Multiplier, FFT, etc.

b) Interface Element (IE): 8-bit, 16-bit, 32-bit, etc.

Xilinx “Virtex” FPGA structure allows loading of VHC partially, because partial 

reconfiguration for this family of FPGAs allows addressable configuration of each frame 

(part o f a CLB-column). As was shown in “Virtex” FPGA device data sheet [63] the special 

tri-state buffers (T-buffers) can be implemented to connect or disconnect Virtual Hardware 

Components (VHCs) to the Global Routing Lines. Those T-buffers can be dedicated to 

specific global routing lines. Thus, each VHC, which contains the Interface Element with T-
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buffers associated with specific global routing lines, will be connected to those lines but 

initially tri-stated at the initial architecture loading state.

fe r s

Figure 5.2: Micro-architecture of a Virtual Hardware Component (VHC)

5.2. Application Specific Virtual Processor assembling procedure

Architectural synthesis of application specific processor normally is based on 

application (task) algorithm analysis, creation of the Data Flow Graph (DFG), architectural 

optimization based on DFG and data-path synthesis [66]. As a result, a complete processing 

architecture described in one of Hardware Description Languages (VHDL, AHDL or 

Verilog) is usually compiled to be implemented in the ASIC or FPGA. Instead, the approach 

of self-assembling of task optimized Application Specific Virtual Processor (ASVP) inside 

the partially re-configurable FPGA using pre-compiled sub-cores -  VHCs was implemented.
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This is similar to “Port Map” procedures in Hardware Descriptive Language but in on-chip 

level. To illustrate this concept let us consider the following example. Let us assume that the 

task requires to process four streams of data A, B, C and D. These streams should be 

processed as follows:

y= (A+BJ* (C+D)

In this case task algorithm can be represented by the Data Flow Graph (DFG) shown in 

Figure 5.3. To simplify the case, in our example we will not consider scheduling and binding 

procedures and assume that the DFG should be mapped in hardware “as is”.

A
B

C
D

► Ÿ

Figure 5.3: Data Flow Graph of stream processing task

To assemble any micro-architecture by VHCs -  we have to have the library of 

available VHCs. Because Virtual Hardware Components (VHCc) are pre-compiled cores 

(configuration data files for certain FPGA device), each VHC has to be located in VHC- 

memory in certain location. The VHC-identifier consists of two parts: Processing Element 

Type Identifier (PETID) and Interface Element Type Identifier (lETID). Based on this ID- 

information, the requested VHC can be retrieved from VHC-library and loaded into the 

FPGA to the selected slot (addressed CLB-column). All above operations such as: getting 

VHC from the library assigning available FPGA slot for the VHC and loading VHC to the 

FPGA has to be done by special hardware unit - Hardware Operating System (HOS). HOS 

structure will be described in the Section 5.3. In our example (Figure 5.3) we need two
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adders and one multiplier. Let us assume that 8-bit adder has PETID = 01 and 8-bit multiplier 

PETID = 02, Let us also assume that Interface Element with two groups of input lines 

connected to Global Routing Lines (Figure 5.2) with numbers from 0 to 7 and from 8 to 15 

and with output tri-state buffers (T-buff) connected to Global Routing Lines (GRL) with 

numbers from 16 to 23 has 1ETID= 00. Similar, Interface Element with IETID=01 will have 

two groups of 8-bit inputs connected to GRL #24 - #39 and output T-buffs connected to GRL 

#40 - #47. Interface Element with lETID =12 has two groups of input lines connected to 

GRL #16 - #23 and #40 -  47 and 16 output T-buffs cormected to GRL #48 - #63. Thus, 

VHCs, which should be requested to create Application Specific Virtual Processor for our 

task will have the following ID:

a) Adder #1 : [0100] for {A+B) - operation,

b) Adder #2: [0101] for (B+C) -operation,

c) Multiplier: [0212] for Y  calculation.

Other components, which have to be provided for ASVP configuration, are the following:

a) External interface: Input / Output buffers,

b) Internal link routing and

c) Clock routing scheme.

All this components are usually task-specific and should be combined to the fixed part of 

ASVP architecture. Thus, for task Ti we will have fixed part of ASVP[/] architecture -  

Afix[i]. Now we can consider complete process of ASVP creation in the partially re- 

configurable FPGA. This process consists of the following steps:

1. Hardware Operating System (HOS) receives a request for task activation and loads fixed 

part of ASVP optimized for this task.

40



2. HOS receives the mode o f data processing and retrieves from special table list o f VHC- 

identifiers to be loaded into the FPGA,

3. Using ID-Address Conversion Table, HOS generates one after another, addresses o f each 

VHC-configuration data files,

4. Each VHC-core HOS stores in the VHC-loading buffer. Then, HOS concatenates the 

FPGA-slot address to the VHC-core and creates configuration bit-stream for this Virtual 

Hardware Component,

5. Bit-stream of the selected component, HOS loads to the FPGA into selected slot,

6. When all components are loaded, HOS initiates data processing. For our example ASVP 

architecture is shown in Figure 5.4: Let us assume that mode o f task has to be switched from 

Mode 1: T = (A+B)*(C+D) to Mode 2: Y = (A+B) / (C+D)

J

•*s
/*■
V r

-----------V
G l o b a l  R o u t i n g  L i n e s  ( # 0  - # 6 3 )  
r e s e r v e d  f o r  t h i s  A S V P  a n d  i n t e r f a c e d  
t o  r e s p e c t i v e  I n p u t  /  O u t p u t  b u f f e r s

F P GA 
a d d r e s s a b l e  
s l o t s  ( C L B -  

c o l u m  n s )  f o r  
V H C  

a l l o c a t i o n

Figure 5.4: ASVP architecture assembled in the FPGA from pre-compiled VHCs reflecting 

task DFG (Figure 5.3)
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In our case only Multiplier should be replaced by Divider with the same Interface Element. 

So, if Divider’s PETID = 04 the VHC 1D=[0412]. This replacement can be done very fast. In 

our experiments we measured time for replacement of one CLB-column VHC equal to 140 

uS (for Xilinx XCV-400E, 50MHz parallel load). This was 142 times faster than if complete 

ASVP is replaced by re-configuration of entire FPGA. More detailed these results are 

discussed in the Chapter 7. We would like to mention that the process of VHC replacement 

in existing ASVP architecture looks like automated plug-in operation of virtual component in 

Virtual Bus. Thus, the mode switching in the proposed approach can be done not by 

switching between existing hardware modules (Multiplier and Divider) but by re-configuring 

same logic resources (CLB) in short period of time (hundreds of microseconds). This 

reconfiguration time for many applications is close to switching time. However, 

reconfiguration allows dramatic minimization of hardware resources and associated cost, 

dimensions, weight and power consumption. Comparison with regular FPGA-based systems 

will be discussed in Chapter 7.

5.3 Re-configurable Parallel Stream Processor Architecture organization

Re-configurable Parallel Stream Processor (RPSP) architecture, adaptable for the multi

task and multi-mode workload includes the following major components shown in Figure 5.5

a) Re-configurable Functional Module (RFM) based on partially re-configurable FPGA 

contains all necessary circuits: power regulators, line buffers, etc. This module is a field 

of uniform logic resources that can be configured to a number of task-optimized data- 

stream processors.
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b) VHC memory based on ROM (Read Only Memory) contains configuration data files for 

all available Virtual Hardware Components to be utilized in all modes of all tasks in 

workload.

Input data-stream s O utput data-stream s

F P G A l: Reconfigurable 
Functional M odule (RFM)

S R A M : 
V H C  Cache 

T "
Configuration 

data-bus

F P G A  2: HOS
(H ardw are 

O perating System )
VHC- 

address bus
\
/

Code o f  a task  to be 
ativated o r  term inated

R O M : Task 
m em ory for 
fixed part o f  

A SV Ps 
architecture

R O M : VHC
m em ory for 
sub-cores o f  
configurable 

part o f  
A SV Ps 

architecture

Figure 5.5: Architecture of Re-configurable Parallel Stream Processor (RPSP) for multi-task 

and multi-mode workload

c) Task memory based on ROM (Read Only Memory) stores the configuration data files of

the fixed part o f architecture {Afix[i]} for all tasks in the workload.

d) VHC cache based on SRAM (Static Random Access Memory) stores all VHC cores that

can be used for active tasks (loaded in RFM). 

f) Hardware Operating System (HOS) based on FPGA performs the following major 

functions: i) Task initiation and termination; ii) Mode switching by loading respective set
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of VHCs to certain slots of RFM; ill) Data-streams switching and interface control; vi) 

RFM diagnostic and restoration functions.

The proposed architecture allows significant minimization of hardware resources for 

processing multi-task workload when each task can work in multiple modes of operation. 

Our approach is based on the fact that “density” of data processing structure (e.g. application 

specific processing circuits) is much higher in a form of configuration data files rather than in 

a form of real hardware logic. It can be “squeezed” even more when configuration data file 

for an entire Application Specific Processor is assembled from “LEGO”-type component 

cores (VHC in our terminology) It is possible because of utilization of the same component 

cores in different ASVP. Thus, the architecture of RPSP contains hierarchy of memory units 

reflecting above concept:

i) Non-volatile memory for fixed and re-configurable parts of ASVP’s

architectures,

ii) Cache for VHCs to be used for active ASVPs and

iii) Configuration SRAM in the Functional Module itself.

Let us consider the process of task activation under the HOS control. Firstly, HOS 

receives the code of the application (task) to be activated (Figure 5.5). Task code = ASVP 

code which contains of:

i) Code of fixed part of ASVP architecture.
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ii) List o f all VHCs associated with requested version of ASVP. In case of example 

discussed in Section 5.2, that application code of ASVP will look as shown in 

Table 5.1

Table 5.1: Code of associated ASVP

Fixed p a rt # V H C l VHC2 VHC3 VHCn

0001 0100 0101 0212 0000

Secondly, HOS converts VHC # to the start-address of VHC configuration file in VHC 

Memory. The conversion mechanism is based on special table which is located in the VHC 

Cache and looks as shown in Table 5.2 

Table 5.2: VHC# to VHC-core address conversion table

lETID#

PETID#

0x01 COO0x01100 0x01200

0x038000x022000x02000

After that HOS retrieves address of the first VHC, sends it to VHC Memory and starts 

VHCl loading process to the RFM FPGA to the dedicated slot(s). In our example for VHCl : 

Adder 1 [0100], the start-address of configuration data file is equal to 0x01100. This 

procedure HOS repeats for all VHCs in the ASVP code till the end (0000). At this moment of
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time a complete processing architecture is assembled in the RFM FPGA. Now, HOS can 

initiate data-stream processing. We have described this process to demonstrate major steps of 

interaction between HOS, Cache memory and RFM to show the high-level of ASVP self

assembling mechanism implemented in the RPSP.
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CHAPTER 6

MECHANISM FOR ASVP SELF-RESTORATION

There are a few main reasons for hardware faults that can occur in FPGA-based 

devices; i) physical defects in wafer; ii) hidden manufacturing defects; and iii) radiation 

effects. In our project, we considered faults occurring in small amount o f CLBs in the SRAM 

based FPGA devices. Mostly, this type of faults occurs as a result of radiation effects (SEU -  

single event upset, SEL -  single event lutch-up, etc.) usual for aerospace applications or 

applications for radiation intensive environment (nuclear power stations, etc). We have 

discussed major rediation factors and their influence on SRAM based FPGA devices in the 

Chapter 3. The methods for off-line and on-line diagnostic and fault location were analysed 

in the Chapter 4. The focus of the proposed research was on development of the mechanism 

for self-restoration of parallel reconfigurable stream processors based on the concept of 

Application Specific Virtual Processors described in the Chapter 5. As an alternative 

approach based on protection of materials from radiation intensive environment, we proposed 

self-restoration mechnism based on re-assembling of damaged ASVP processing structures.

To restore ASVP a three-level procedure was developed:

First level of self-restoration is based on VHC-scrubbing: re-loading of same VHC 

configuration data-file to the same address area (CLB-slot) of configuration SRAM, of the 

FPGA where this VHC was located. This can eliminate wrong state of Flip-Flops in the 

configuration SRAM and correct damaged VHC structure. This prosedure can be performed 

using the same ASVP assembling mechanism discussed in Chapter 5. This approach allows
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dramatic reduction of restoration time, logic resources and power consumption in comparison 

with the common approach [71], [72]. That is when scrubbing procedure should be 

performed cyclically for the entire FPGA device. Experimental results and comarison 

analysis in this regard will be discussed in Chapter 7. Another benefit is that there is no 

additional hardware expenses for this level of restoration.

Necessity of second level of self-restoration appears when radiation effects or other 

reasons (e.g. hidden manufacturing deffects) make one of logic gates damaged. This case can 

be considered only when VHC scrubbing does not restore ASVP functions. In this case, the 

damaged gate should be avoided. However, because any VHC is based on CLB-column 

(slot) organization we developed a mechanism for re-location of VHC from the damaged 

slot, to the spare slot. In this approach extra hardware cost is involved to increase reliability 

of the system. However, it is possible that after some period of time (may be very long) all 

reserved slots will be used.

Third level of restoration with performance degradation appears when all spare CLB- 

columns (slots) are used. In this case it is possible to load the existing CLB-columns with 

another variant of VHC, with a reduced area and functional parameters. It allows the 

computing system to overcome the damaged CLB in the coluirm being corrupted. In this case 

we “pay” extra processing time to increase the reliability.
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6.1 VHC scrubbing

Firstly, the self-restoration mechanism based on scrubbing procdure was developed for 

platform based on partially reconfigurable Xilinx Virtex family of FPGA devices [68], [70]. 

This level of self-restoration of ASVP consists of the following steps:

i) Determination o f a VHC which doesn’t process data properly using Built-in-Self Test 

sub-system [73].

Note: The BIST was not a target for this project and thus, it was assumed that we 

already know the fault location.

ii) Pausing the data-stream computation in the damaged pipeline

iii) Re-programming (scrubbing) the faulty VHC using the same VHC configuration 

bitstream.

iv) Continuing the data-stream computation in the restored ASVP.

v) Doblecheck ASVP performance.

vi) If fault still exist in the same CLB-column, increment the number of counted 

restoration cycles in this CLB-column and return to the step ii).

vii) If the number of counted restoration cycles exceed the preset limit initiate the 

second level of VHC restoration -  CLB-column replacement.

Thus, if  VHC scrubbing procedure does not help it means that hardware fault is 

permanent. In the proposed restoration procedure we do not analyse the reason which causes 

this fault. In this case an entire CLB-column where VHC was located is considered to be 

damaged and has to be excluded from further utilization. To restore the functionality of 

ASVP, VHC that is where the hardware fault was detected has to be re-located to another
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CLB-slot(s). This is guiding us into the second level of self-restoration mechanism CLB- 

column replacement.

6.2 CLB-column (slot) replacement

When the Hardware Operating System (see Figure 5.5) detects the case when the first

level of self-restoration mechanism does not restore ASVP functions (when the counter of

scrubbing cycles exceeds the limit) the second level of self-restoration mechamsm: CLB-slot 

replacement is activated by the HOS.

The following can be considered to be the process of replacement of damaged slot by 

reserved ones. This process consists of the following steps;

i) Pausing the damaged ASVP pipeline.

ii) Disabling damaged Virtual Hardware Component by loading “dummy” VHC 

(marked as * in Figure 6.1) to tri-state all outputs and thus, to prevent data contention 

on the bus;

iii) Selecting the available CLB-coIumn(s) for loading configuration bitstream of VHC 

to be restored;

iv) Composing the configuration bit-stream by inserting the selected slot frames 

addresses and associated information into the VHC-configuration data file.

v) Loading the VHC configuration file to the selected column(s) while continuing data- 

stream processing.

In the case of a lack of spare CLB-columns, HOS detects this fact and initiates the third 

level of self-restoration procedure. In this case different variant of VHC with reduced area
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and performance should be loaded to the non damaged part of the same CLB-column. For 

example, a 16-bit VHC architecture can be replaced by the 8-bit VHC, which can restore a 

ASVP, but with a reduced performance. This will be discused in more ditail in Section 6.3.

A B C D Y A B C D Y
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/ I
— ►

+►

*
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%

— ►

"  1

r  ' r

Figure 6.1: VHC replacement using spare CLB-slots.

In this example a fault is detected in the CLB-column where Multiplier ( X ) VHC was 

located. The “dummy” VHC (indicated as *) is loaded to the faulty CLB-slot and then. 

Multiplier VHC is loaded to one of spare CLB-slots.

6.3 ASVP functional restoration with performance degradation

In this situation let us consider that all spare CLB-columns were already used or were not 

reserved at all. We also should put in account the fact o f hardware fault in some CLB-slots, 

which means that one or few transistors in one or few logic gates are damaged, A CLB- 

column consists o f 20,000 up to 50,000 transistors (depending on FPGA device specifics). 

Therefore, damaged logic gates can be avoided by reloading other variants o f Virtual
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Hardware Component - Ri, which requires less logic gates. In result we have considered two 

possible solutions to restore ASVP with performance degradation:

a) First approach — “Minimization of restoration time” — implies reloading another 

variant of the same VHC (e.g. Multiplier), which requires less area, to the same 

CLB-slot. This approach gives the shortest restoration period and a simplest 

restoration control scheme. However, this solution may not provide minimum of 

performance degradation. For example, if a fault appears in a CLB-slot where 

Multiplier is located it may be more efficient to relocate Multiplier as is to another 

slot and load the damaged slot by a smaller variant of another VHC (e.g. Adder).

b) Second approach -  “Minimization of performance degradation” -  implies that 

before functional restoration an optimisation of ASVP architecture to the task 

algorithm & data structure should be done. This procedure should select the variant 

of ASVP architecture which satisfies new (after fault) resource limitations and 

allows minimization of the performance degradation (e.g. latency, data processing 

rate, etc.)

6.3.1 ASVP restoration with minimum restoration time

Firstly the approach which allows minimization of the restoration time was considered. 

The restoration procedure consists of the following steps:

i) Suspension of damaged ASVP pipeline.

ii) Selection of one of VHC variants with reduced logic area and performance 

(usually in this VHC some part is “dummy” and thus different VHC variants have 

different “location” of the “dummy” component).

52



iii) Loading configuration bit-stream of selected variant o f VHC to the damaged CLB- 

slot.

iv) Continuation the data-stream processing on restored ASVP.

v) If hardware failure still affects data-stream processing the next VHC variant with

reduced area and performance should be selected from the VHC table.

vi) Return to the point iii) of presented procedure.

This is a very general description of the restoration procedure. The detailed description

o f this procedure is specific for Xilinx Virtex FPGA devices and requires detailed 

explanation o f organization of this family of FPGA devices. More detailed this procedure 

will be discussed in Chapter 7.

6.3.2 ASVP restoration with minimum performance degradation

Generally, if the goal is to minimize performance degradation when amount of logic 

resources had decreased, the entire ASVP architecture should be reconsidered in this regard. 

This means that ASVP architecture must be once again optimized to the task DFG and data 

structure but with more strict requirements for hardware resources. In the case o f self

restoration this architecture-to-task optimization procedure should be performed: a) 

automatically without operator and b) as fast as possible.

To solve this problem the method of data-flow architecture to task adaptation [67] was 

implemented and modified for ASVP self-restoration specifics. As it was mentioned in 

Chapter 5, ASVP is assembled by Virtual Hardware Components (VHC). Each VHC can be 

presented in the system architecture in few different variants -  RiJ, where i -  indicates the 

type o f resource (adder, multiplier, shifter, FFT, etc.) and;- indicates the variant o f resource
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presentation in the architecture (for example: 8-bit adder, 16-bit adder, etc.). Graphically RiJ, 

can be presented as it is shown in Figure 6.2.

Mi

Figure 6.2; Graphical presentation of a Virtual Hardware Component - R i, j

Assuming that ASVP architecture contains n types of different VHCs -  R l .. Rn, 

(reflecting operators in the task DFG) all set of ASVP architecture configurations based on 

R l . . .  Rn VHCs can be presented as a Tree, shown in Figure 6.3.

R l R l  ,m I

R i Ri Ri

Rn Rn Rn Rn

Figure 6.3: Architecture Configurations Graph - ACG

This graph represents the ASVP design space and thus, was called the Architecture 

Configurations Graph or ACG. On the ACG the vertices are associated with types of Virtual
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Hardware Components - RL.Rn and the edges are associated with possible variants of VHC 

presentation in the architecture. Thus, each path from the root to any terminal vertex on ACG 

presents one o f possible variant of architecture configuration. For example, in Figure 6.3 is 

the bold path: {R l, ml R i, I R n , l } can be interpreted as ASVP that consists of:

{32 bit-multiplier; 16 bit-adder and 16-bit logic module}

To select the variant o f architecture configuration that satisfies performance requirements 

and needs a minimum of resources, it is necessary to estimate performance on all possible 

ASVP architecture variants and select the best one. In the majority of real applications it is 

very difficult or even impossible to do this because the number of all possible architecture 

variants is very high. However, in [69] was proposed an approach for a strong decrease of 

number o f estimated variants of ASVP architecture configurations using partial arrangement 

of the ACG in order o f increasing of value of performance parameter Ps (e.g. cycle time, 

latency or complete computing time for a block of data, etc.). It was shown, that appropriate 

partial arrangement o f the ACG can be done by performing two procedures:

1. Local arrangement o f the VHC-variants in order of decreasing the performance parameter 

(e.g. complete processing time for a data block) - T(Ri,j):

T(Ril )  >...>T(Ri j  )> ...>  T(Ri,mi ) fo r all i = 1 ... n

2. Hierarchic arrangement on the ACG of all VHC Rl..Rn, associated with respective 

operators on the task DFG.

Local arrangement for each type of resource can be done in most practical cases without 

calculations or £iny other type of estimation. For example, if  in architecture Ai is used an
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adder with higher bit rate then in Aj architecture, it is clear that performance of^z will be at 

least not less then performance of architecture Aj.

For hierarchic arrangement of ACG it is necessary to perform following steps 

(see Figure 6.4):

Ri Ri mi

R lRlR l l ,m l

Rn RnRnRn

Tmax(Ri)

Figure 6.4: ACG hierarchic arrangement

Tmin(Ri)

1. Associate each VHC - Ri with ACG root;

2. Measure the minimum level of performance parameter (data-block processing time, 

latency, etc.) -  Tmin(Ri) for the ASVP architecture variant with maximum used resources 

(see bold path form the top to bottom vertex in Figure 6.4):

Tmin(Ri) =>{Ri, mi; Rl,ml;... Rn,mn}

3. Measure maximum level of performance parameter - Tmax(Ri) for the ASVP architecture 

variant with minimum used logic resources of the VHC Ri (marked on Figure 6.4 by 

dotted lines): Tmax(Ri) => { Ri,i; Ri,ml;... Rn,mn}
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4. Calculate the value o f  arrangement criterion — K(Ri ):

\ ~ ^  niax( R i) ~ T  min( Ri) . ,
K ( K i  J --------------------- -—  --------------- , where mi  -  is number o f  possib le variants o f  the

mi - \

VHC Ri presentation.

5. Repeat steps from # 1 to # 4 for the all types of VHCs used in ASVP

6. Arrange VHCs hierarchically on the ACG levels according to the rule:

should be put on higher level than Rj in ACG if K(Ri)  > K(RJ )"

When ACG is arranged, the value of the performance parameter (e.g. processing time) on 

each possible variant of ASVP architecture associated with respective terminal vertex will 

decrease from the left to the right terminal vertex.

If required performance — Tlim  is given in the specification, there are a few well known 

methods and algorithms [De Michelly] to find the closest path (ASVP variant) on the 

partially arranged ACG associated with respective architecture configuration -  Aopt so that 

T(Aopt )  < T Urn .

Thus, we can select an architecture configuration Aopt, (bold on Figure 6.5), which 

satisfies performance requirements {T(Aopt)  < Tlim ) and on the other hand needs minimum 

hardware resources.
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Rl Rl ,m I

RnRnRn Rn

T(Ai)

T kiax

T(Aopt)Tlii
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Aopt with T(Aopt) < T lim

.Ai

Figure 6.5: Selection of the optimal variant of ASVP processing architecture on the partially 

arranged ACG

For fast selection of the optimal variant of ASVP architecture the number of architectural 

variants to be estimated on the ACG should be minimal. The total number of ASVP 

configuration variants, which are necessary to estimate for selection of the Aopt can be found 

by the following equation:

N ( Aopt) = (n + 1)+ \og j(Y [m i )
i=\
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Where; (n + 1) is number of variants to be estimated for ACG partial arrangement and

n

) is number of variants to be estimated for selection the Aopt on the partially
i= i

arranged ACG. Therefore, for Aopt selection it is necessary to estimate a very small number 

of variants on ACG. For example, assuming that the total number of types of VHC utilized 

for ASVP architecture is 32 and each VHC can be represented in 32 different variants (32 

different configuration files for each virtual component). Thus, to select the Aopt for this case 

we need to estimate:

N  (Aopt) = (32+1) +log2(32^^) = 193 variants of ASVP architecture configurations 

when the total number of architecture configuration variants on ACG is equal to:

N  total = 32^  ̂— 7,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

Therefore, the above method allows selection of ASVP architecture configuration on the 

enormous set of possible configurations within very short time and thus, can perform this 

selection procedure in real-time. In the [69] was shown that the implementation of this 

method for ASVP selection can be done within hundreds of milliseconds.

Now let us consider the extension of the above method on application in self-restoration 

with minimum performance degradation. As was assumed earlier (in Chapter 4) the hardware 

fault in our consideration can occur only in one or very few transistors in local area o f the 

FPGA device. Being an element o f pipelined data processing structure of ASVP, it results 

fault o f a complete VHC associated with the CLB-column where the damaged transistor(s). If 

no one previous levels o f self-restoration does not restore ASVP functionality, the third and 

last level o f restoration has to be initiated. However, at this moment of time the ACG of 

damaged ASVP is already arranged and thus hierarchical arrangement of VHCs included in
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this ASVP is known. Therefore, using the hierarchical arrangement of the ACG it is possible 

to minimize performance degradation by a replacement of that VHC which is located on the 

lowest level of the ACG because it can cause the smallest degradation of performance 

parameter (see Figure 6.6).

Rl R l ,m ]

Rn RnRnRn

R n

Tmùpc

Tlw >■ Tdeg(Rl) 

^  T deg(Rn) 

T min

“ T “ T
 I

AI A2 A3 A4 Aopt (before fault)A5

Aopt (after fault)

Figure 6.6: Architecture Configurations Graph (partially arranged Design Space) for an 

ASVP (Top tree) and performance diagram associated with ASVP variants.

For example, let us assume that ASVP architecture: {Ri,ml~>R i.l ->Rn,mn} (marked 

bold on the ACG presented in Figure 6.6) was determined as optimal for a task. Let’s also

60



assume that a hardware fault has occurred in CLB-slot where VHC -R l is located. In this 

case VHC - R l,m i (for example 32-bit adder) has to be replaced by smaller variant of VHC - 

R l (for example VHC- Ri,i: 8-bit adder) the architecture will change from Aopt to variant 

A2 This will result performance degradation Tdeg(Rl).

Let us assume for simplicity that VHC - Rl,ml and VHC — Rn,mn require equal amount of 

logic resources (for example — 2 CLB-columns) as well as amount of logic resources for 

VHC - R l  variant Rl,i is equal to amount of logic resources for VHC -  Rn in variant Rn,i (for 

example 1 CLB-column). However, if we change architecture Aopt to variant A5 changing 

VHC from variant Rn,mn to Rn,i it will cause performance degradation equal to T deg(Rn). 

This level of performance degradation is much smaller than Tdeg(Rl) because VHC -  Rn 

stands in lower level of the arranged ACG when R l stands in the top level of ACG. Now, let 

us re-load the configuration file of VHC - Rl,ml to the location (CLB-slots) where VHC - 

Rn,mn was mapped. It is possible to do because logic area for both VHC variants is equal. 

After that we can re-load smaller version of Rn

the Rn,i configuration file to non-damaged CLB-column where previously VHC - Rl,ml was 

allocated. In this case the architecture A5 is created {R l,m l-^ R i,I Rn,I} and the

performance degradation T deg(Rn) is minimal comparing with any other variant of possible 

architectures. It is because the A5 is the “closest” terminal on the arranged ACG to the Aopt 

- optimal architecture variant before the fault.

This example shows that replacement of VHC allocated on the lower level of ACG than 

damaged one can restore data processing with minimum performance degradation. Thus, for 

restoration with minimum performance degradation we have to check if  there are VHCs
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other than damaged one located in lower levels of ACG, which require same or bigger area 

(logic resources). If answer is “Yes”, than the following procedure can be applied assuming 

that data-stream processing was already suspended on previous stages of ASVP restoration:

i) Create list of VHCs and their variants included in ASVP architecture need to be restored.

ii) Select the one VHC variant from the above list, which is located on the lowest level of 

ACG associated with damaged ASVP.

iii) Re-load the configuration file of the damaged VHC to the area where VHC selected in ii) 

was allocated.

iv) Select on partially arranged ACG the “next left” variant of VHC which was replaced by 

damaged VHC in step # iii) of this procedure.

v) Load the selected in step # iv) “next left” VHC variant to the non-damaged area of CLB- 

columns where the damaged VHC was originally located.

vi) Activate data processing on the restored ASVP.

This is a general procedure, which does not include many technical details such as: 

automated mapping procedure, data-stream suspension procedure, etc. These details are chip 

specific and thus, are reflected in associated circuitry of the Hardware Operating System. 

This procedure at this moment of time is not fully automated. However, all of the above 

mentioned steps were implemented on the prototype platform and tested manually.

The step-by-step analysis of the implementation of the above procedure is presented in 

Chapter 7 of this thesis.
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CHAPTER 7

IMPLEMENTATION OF THE ELEMENTS OF SELF RESTORATION 

MECHANISM AND ANALYSIS OF THE RESULTS

7.1 Test Platform

All levels of self-restoration procedures were implemented and tested on the base of 

multi-task and multi-mode Reconfigurable Parallel Stream Processor (RPSP). This data- 

stream processing platform (see Figure 7.1) was developed with utilization of the concept of 

AGORA: Adaptive Group Organized Reconfigurable Architecture [74].

Reconfigurable Parallel Stream Processor (RPSP) architecture, adaptable for the 

multi-task and multi-mode workload, implements the ASVP architecture-to-task adaptation 

mechanism described in Chapter 6. Architecture of RPSP includes the following components 

described in Chapter 5:

i) Re-configurable Functional Module (RFM) is based on partially re-configurable Xilinx 

Virtex-E FPGA device XCV-400E and contains all of the necessary circuits: power 

regulators, line buffers, etc. This module is a field of uniform logic resources that can be 

configured to a number of task-optimized Application Specific Virtual Processors.

ii) Task memorv and VHC memorv is based on 20 GB Hard Drive in this implementation 

incorporated in PC Pentium III. This memory contains the library o f configuration data 

files (configuration bit-streams) of all initial architectures of ASVPs and associated 

Virtual Hardware Components to be utilized in all modes of all tasks of the workload.
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iii) VHC Cache is based on SRAM (Static Random Access Memory) IDT71V416S (4 

SRAM chips x 4Mb). This Cache module is able to store all VHC cores that can be used 

for up to 4 active tasks running in parallel at RFM,

iv) Hardware Operating System (HOS) is based on Xilinx Virtex-E FPGA XCV-50E and 

performs the following functions;

a) Task initiation & termination,

b) Mode switching by loading set of VHCs to certain CLB-slots in RFM,

c) Switching data-streams,

d) Performing interface control,

e) RFM diagnostic and restoration functions,

v) Dynamically reconfigurable LVDS Input / Output subsystem with the bandwidth equal 

to 7.2 Gb/sec,

vi) Statically configurable LYTTL bus interface with aggregate bandwidth equal to 8.5 

Gb/sec.

Host-PC is based on Pentium III with re-configurable high bandwidth (~lGb/s) interface 

module (see Figure 7.2). It plays role of human-machine interface, high-level (Software) 

Operating System for RPSP and secondary storage for all ASVPs and associated VHC. It 

also contains all instrumentation CAD tools.
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The block diagram of the Reconfigurable Parallel Stream Processor (RPSP) is presented 

in Figure 7.1. RPSP consists of two major parts: RPSP-platform and Host PC.

Host PC: Pentium 3

Library of ASVP 
and VHCs on 
Disk

I

24 bit
x300
MHz
LVDS
Input
Port

\ PCI - Bus I
Reconfigurable 
PCI-Interface Module

64 bit X 133 MHz (LYTTL) Bus I/O

O
RFM:
Reconfigurable
Functional Module
(FPGA XCV-400E)

Hardware 
Operating System 
(FPGA XCV-50E)

n
M Cache 

for 
VHC 
4x 4Mb

LVTTL LVTTL
/ Configuration Data Bus \

24 bit
x300
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LVDS
Output
Port

Figure 7.1: Block diagram of the Reconfigurable Parallel Stream Processor (RPSP)

The RPSP-platform is presented in Figure 7.2. In the centre of the platform the RFM 

is located (mezzanine board). The HOS FPGA and Cache SRAM are located under RFM 

board when configuration data bus is connected to the bottom DB-15 and DB-25 connectors. 

Reconfigurable PCI-Interface module is presented in Figure 7.3 with attached 4 M bit 

SRAM-buffer (mezzanine board).
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Figure 7.2 : Reconfigurable Parallel Stream Processing platform
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Figure 7.3: Reconfigurable PCI-interface Module *

* Pictures 7.2 and 7.3 courtesy of Materials & Manufacturing Ontario (MMO) and CAN Inc.
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7,2 Implementation of procedures for restoration without performance degradation

To test and adjust ASVP restoration procedures a set of “Faulty” Virtual Hardware 

Components (FVHCs) was developed for parallel video-stream processing tasks such as: 

Video Edge Detection (ASVP 1 : “VED”), Brightness-to-Colour Conversion (ASVP2: “B2C”) 

and Run-time Image Combination (ASVP3: “RIC”).

Each FVHC was developed on a base of normal VHC by corrupting some interconnection 

on its micro-architecture. The example of one of VHC (for ASVP2 B2C) is presented in 

Figure 7.4.

Figure 7.4: VHC with corrupted interconnection on its micro-architecture.

The experiment included the following steps:

i) Initiation o f ASVP and processing test-data stream.
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ii) Loading FVHC in selected CLB-slot at random moments of time.

iii) Initiation of first level of self-restoration procedure (VHC scrubbing).

iv) Measurement of scrubbing time till ASVP restoration.

v) Repetition of steps ii) -  iv) to initiate second level restoration.

vi) Initiation of CLB-slot replacement to the spare CLB-slot.

vii) Measurement of CLB-slot replacement time.

Results of the above experiments are summarized in Table 7.1. We have measured 

restoration periods for Level 1 (VHC-scrubbing) and Level 2 (CLB-slot replacement). Based 

on this information we calculated the acceleration of the functional restoration comparing 

with common approach when an entire FPGA device has to be re-programmed (See Table 1).

These results show that restoration time directly depends on size of VHC.

Restoration time is minimal if VHC can be allocated in one CLB-column and increases 

nearly linear when VHC requires 2, 3 or more CLB-columns.

Another result is that CLB-slot (column) scrubbing (1st level of restoration) works twice 

faster than CLB-slot replacement. This effect appears because of the extra time needed for a 

“dummy” VHC loading. Thus, for maximum acceleration (comparing with the scrubbing of 

entire FPGA) designers should develop a Virtual Hardware Components close to 1 CLB- 

column. This can dramatically increase the restoration time (up to 70 -  100 times depending 

on FPGA volume and organization), for the reason that it was mentioned in [8] most of 

hardware faults in LEO and GEO are caused by the SEU which can be restored by scrubbing 

procedure.
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Table 7.1: Experimental results of functional restoration time and acceleration of functional 

restoration comparing with entire FPGA re-programming (all results collected for Xilinx 

Virtex XCV-400E FPGA)

N um ber of CLB-Slots 

in the ASVP

1 2 3 4

Restoration time if 

VHC-scrubbing

0.09 ms 0.17 ms 0.25 ms 0.33 ms

Restoration time if 

CLB-slot replacement

0.18 ms 0.34 ms 0.50 ms 0.66 ms

Acceleration (in times) 

of restoration for 

scrubbing

73.3 38.8 26.4 20

Acceleration (in times) 

of restoration for CLB- 

slot replacement

36.6 19.4 13.2 10

7.3. Implementation of procedures for restoration with performance degradation

This implementation was performed in capacity of feasibility study for real-time image 

recognition o f the hyper-spectral sub-system based on the new generation o f on-board 

computing platform for perspective Canadian satellite RADARSAT-2.
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7.3.1 Specifications for ASVP: “Hamming Distance Calculator”

The ASVP “Hamming Distance Calculation” (HOC) should perform processing of data 

streams coming from the array spectral sensors and compare it with special spectral code

vectors from the on-board codebook. The process of spectral scanning on the Earth surface 

is shown in Figure 7.5

Objects on the 
Ground

Direction of 
satellite flight

Array of on-board spectral sensorsPixel size on 
the Ground

Swath width on the Ground 

Figure 7.5: Spectral scanning on the Earth surface by the array of spectral sensors

The data stream processing consists of the following steps:

1. Parallel reading of spectral data from array of sensors for each of spectral bands

2. Analogue-to-Digital Conversion (ADC) of spectral levels for each sensor and 

comparison with preset threshold. If level is higher than associated threshold than “1” 

is stored to the respective register cell, otherwise -  “0”. Thus at this step the spectral 

vector from appears for each of spectral bands.

3. Hamming Distance Calculation (HDC) between spectral vector from sensor’s array 

and spectral code-vector (from spectral code-book). Results of comparison with each
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code-vector for each spectral band are collected in specied memory unit for further 

processing.

In our implementation only the Step #3 was considered. This HD-calculation should be

performed by the formula; Dh (U j, Vi) = 2 ^  u j  (I) XOR vi (I), where
/= i

Uj = [u j  (1)... u j(Nb)] -  is a spectral vector from the sensor’s array 

Vj -  [ v j  (1)... Vj(Nb)] -  is a spectral code-vector 

Technical specifications consist of the following data:

1. Earth observation accuracy -  1.0 m * 1.0 m on Ground = 1 pixel size.

2. Swath width on the Ground -  2048 m (2048 pixels / track). Thus, Nb = 2048 in this 

case

3. Orbital period = 100 min. equal to 150 uS per 1 pixel row (on Ground).

4. Number o f spectral bands to be analyzed - 240

The Data Flow Graph for Hamming Distance Calculation reflecting the above analytical 

equation is presented in Figure 7.6.
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Figure 7.6; Data Flow Graph for Hamming Distance Calculation (HDC)

7.3.2. Hamming Distance Calculator Architectural Representation

Hamming distance calculator should contain two types of resources associated with 

respective DFG macro-operators: XOR and Adder and functional model of FPGA-based 

systems. Because FPGA-based processing circuits must be developed as synchronous digital 

circuits another component of HDC processor has to be internal clock generator. Thus, two 

Virtual Hardware Components (VHCs) were developed for this implementation in several 

variants:

1. VHCl (Rl): N-channel HDC => N-channel Adder &N-channel XOR, where:

R l.l:  8 channel HDC 

R1.2: 16 channel HDC;

Rl,10  : 4098 channel HDC

Example of R 1.1 and hardware organization of this variant of VHCl is presented in 

Figure 7.7. VHDL-code of R 1.1 and R 1.2 are attached in Appendix A
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2. VHC 1{R  2)'. Clock generator for HDC where: 

R 2 ,l : 80MHz clock generator 

R2,2: 1 OOMHz clock generator 

R2,3: 120MHz clock generator 

R2.4\ 140MHz clock generator

U f ( l )

Vi(l)

uj(3)
vi(3)

uf(4)
vj(4)

Carry

Adder

2-bit
Adder

Adder

3-bit
Adder

Adder

2-bit
Adder

Adder

Figure 7.7; Schematic diagram of resource R l,  Variant R l,l:  8- XOR channels 
& 8-bit Adder

Now, according to Section 6.3, all possible variants of architecture configurations of the 

Hamming Distance Calculator can be presented graphically as an Architecture
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Configurations Graph (AGO) presented in Figure 7.8. On this AGO each path from the root 

to a terminal vertex represents one of possible variants of Application Specific Virtual 

Processor (ASVP) for Hamming Distance Calculation (HDC). For example, the bold path: 

{R 1,1& R 2,4 } represents 8-channel HDC module coupled with 140 MHz Clock generator.

R l

R i,i R t,1 0R l,l

R2R2R2

Rs.i R2.1 R2.1

Figure 7.8: Architecture Configurations Graph (ACG) for HD-calculator variants

7.3.3 Performance Estimation Model

To create the performance estimation model the data computation process analysis was 

performed. As a result of this analysis the following analytical model was determined:

Tprocess = (T latency + Tpipeline * [(Npixels /  N  channels) -1 ] )  *N  bands
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This analytical model allows calculate the period of time while one row of pixels — N  

pixels will be compared with the spectral code-vectors in all spectral bands — N  bands taking 

in account a pipeline principle of data processing.

In this analytical model;

T latency — T xor + T Adder; where: T xor -propagation delay o f  data in XOR- elements 

and T Adder -  propagation delay of data in all stages of n-bit adder.

T xor = Number of clock cycles for XOR / Clock rate 

T Adder = Number of clock cycles for Adder / Clock rate 

Tpipeline = Number of clock cycles for pipeline stage / Clock rate 

The example of processing of data array for N  pixels = 32 and N  bands = i  on the 8- 

channel XOR coupled with 3-stage Adder (VHC variant - R I.I)  is shown in Figure 7.9.

0 Icc 2cc 3cc 4cc See 6ee 7ee 8ec
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Adder
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Adder
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u(9-16),
v(9-16)

XOR 1 Stage 
Adder

2Stage
Adder

3 Stage 
Adder

Output

v(17-24)
XOR 1 Stage 

Adder
2Stage
Adder

3 Stage 
Adder

Output

u(25-32),
v(25-32)

XOR 1 Stage 
Adder

2Stage
Adder

3 Stage 
Adder

Output

Figure 7.9: Hamming distances pipeline computational process of spectral and code 
vectors on the variant of calculator presented in Figure 7.8

This figure (Figure 7.9) shows that deepness of pipeline is equal to 4 and 32 component 

vectors will be processed within:

T process = (T latency + T pipeline * [(Npixels /  N  channels) -  1]) * N  bands =
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T process = (1 c.c. + 3 c.c. +1 c.c. * [ 3 2 / 8 - 1 ] ) *  1 = 7  c.c.

To check the accuracy of this analytical model the VHC variants R l . l  and R  1.2 where 

implemented in a form of virtual hardware (VHDL-cores) eompiled, simulated using Xilinx 

ISE 4.2 CAD software and emulated on the special prototype platform (see Appendix “A”).

The emulation results didn’t exeeed a 5% instrumental error o f real T process 

measurement. Thus, the above analytical model for data processing time estimation was 

accepted as satisfaetory and all further ealeulation was performed on the base of this model.

7.3.4. Architecture-to-Task Optimization for Hamming Distance Calculator

To find the optimal ASVP architeeture of HDC for the above data-flow task let us 

consider all steps of the method deseribed in Section 6.3:

• Hierarchical arramement o f  the ACG

1. Associate VHCl - R l  with ACG root (See Figure 7.8)

2. Measure the minimum of processing time -  min {T process (R l)} for the ASVP 

arehitecture variant ( Terminal #40 on ACG) with maximum used logic resources. This 

variant consists of: {Rl,10 & R2,4} => 4098-channels HDC eoupled with 140 MHz 

Clock generator.

Using the Performanee estimation model described in Seetion 7.3.3 

T process (Rl.lO & R2.4) = 22.3 uS (mieroseconds)

3. Measure maximum of processing time - max{Tprocess(Rl)] for the ASVP architecture 

variant with minimum used Rl resources (Terminal #4 on ACG). This variant 

consists of: { R l,l ;  R2,4j => 8-channels HDC eoupled with 140 MHz Clock generator:
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Tprocess(R L l & R2.4) = 443.8 uS (microseconds)

4. Calculate the value of arrangement criterion for VHC - R l : K(R1 ), using formula 

presented in Section 6.3

_ T m a x .(R i) -T m m (R i)
K(Ki ) --------------- —   , where rrn- is number of possible variants

of Ri resource presentation.

Thus, K(R1) = (443.8 -  22.3) / (10 -  1) = 46.83

Repeating same steps of the algorithm for the VHC2 - R2 the following results will appear:

5. Tmin(R2) for the ASVP architecture variant with maximum used resources is the same 

for all ASVP (Terminal #40 on the ACG).

Thus, Tmin(R2)= Tmin(Rl) = 22.3 uS.

6. To measure maximum of processing time for VHC2 - Tmax(R2) for the ASVP 

architecture variant with minimum used R2 resources (Terminal #37):

This variant o f ASVP consist of: {R2.1 & Rl.lO}

Tmax(R2) ={R2,I; RIJO ) = 39 uS.

7. Calculation of the value of arrangement criterion for VHC2 - R2\ K(R2 ),

Thus, K(R2) = (39 -  22.3) / (4 -  1) = 5.57
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In accordance to Step # 6 of the method described in Section 6.3 to arrange ACG it is 

necessary to associate resource Ri with higher level of ACG than Rj (1 < i, j  < n)

iîK(Ri )  > K(Rj ). In our case RI should be associated with the higher level of ACG than

R2 because K(R1 ) = 46.83 > 5.57 = K(R2).

Arranged ACG means that the value of the data processing time on architectures 

associated with respective terminal vertices will decrease from the left to the right terminal 

vertex. To check the quality of ACG arrangement we can calculate processing time of 

hamming distance computation for each of architecture variants of ACG. In our case it is 

possible because of little number of possible variants (10 x 4 = 40 variants).

Figure 7.10 shows the arrangement of ACG terminals in order of data processing time.

T process (uS) CLBs used

8oo
7 5 0
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5 5 0
500 .
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2 3 4  5 6 7 8 9 M 1  2 3 4  5 6 7 891Q.1 2 3 4 5  6 7  8 9 1 9 .1  2 3 4 5 6 7  8 9 1 9 . HDC-variant

Figure 7.10: Arrangement of architecture variants of Hamming Distance Calculator in 

order to values of data processing time.
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The graph presented in Figure 7.10 shows that values of data processing time 

monotonously decrease from the variant # 1 to variant # 40. It means that after hierarchical 

arrangement, which needed estimation of only three ASVP variants (#40, #4 and #37), the 40 

ACG terminal vertices are pretty well arranged by the data processing time value.

This result experimentally proves ACG arrangement method, which allowed arranging 

architecture selection area performing very little number of experiments.

•  Architecture Optimization

After ACG arrangement in order of data processing time it is possible to find an optimal 

architecture variant for this task.

There are many possible criteria of optimization. In this paper we consider two of them:

a) Maximum performance with minimum logic resources needed for HDC ASVP;

b) Performance, which satisfies real-time requirements with minimum logic resources 

needed for ASVP HDC.

For both of above criteria the binary search method or dichotomy can be applied. The 

difference is only how one can find the data processing time limit.

For the first criteria the role of time limit plays value reached on the architecture 

variant with maximum logic resources. This variant obviously gives absolute minimum 

of data processing time. In our case: Variant #40 with T process = 22.3 uS. If we take this 

minimum (T process} = limit {T process) and apply it as a time constrain for binary 

search we will find Variant #28 with the same value of data processing time: T process =
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22.3 uS (See Figure 7.10) but with much less logic resources (-3200 CLBs instead of 

-25,600 CLBs).

The explanation of this fact is that task Data Flow Graph has limited parallelism and 

cannot be mapped to all possible resources. That is why there is certain amount of logic 

resources on which task macro-operators can be allocated. Furthermore, for all ASVP 

variants with numbers higher than #12 doubling of logic resources does not increase 

much their performance (See Figure 7.10 “CLB used”).

For the second criteria when performance has to satisfy real-time requirements with 

minimum logic resources needed for ASVP the time limit is equal to 150 uS (See 

specifications in Section 7.3.1). In this case using binary search procedure the ASVP 

Variant #11 with T process = 137.5 uS was found. This is the closest to time limit value 

of T process =150 uS. ASVP variant #11 consist of:

{Rl,3 & R2,3} => 32-channels HDC coupled with 120 MHz Clock

• Minimization o f  performance degradation

If some permanent hardware failure occurs and there are no spare logic resources for 

replacement, the procedure for restoration with performance degradation will be initiated. 

Assuming that hardware fault has happened in the XOR or Adder circuits the following steps 

has to be performed according to algorithm described in the Section 6.3.2:

i) List of VHCs and their variants included in ASVP architecture will be created. This list 

will contain: R l,3  =32 channel HDC and R2,3 = Clock 120 MHz

80



ii) There is no (in our consideration) any VHC variants from the above list, which is located 

on the lower level on ACG and requires equal or higher logic resources. That is because 

clock generator circuit (VHC2) requires much less logic than VHCl and this logic is 

specifically adjusted for clock generation and distribution.

iii)Thus, the “next left” variant of VHCl on the arrange ACG should be selected. This is 

R l,2  the next left after Rl,3. However, to minimize performance degradation the closest 

left variant to optimal ASVP architecture (Variant #11) should be selected. This closest 

left variant, which contains R l,2  is the variant # 8:

{Rl,2 & R2,4} =>16 channel HDC with clock 140 MHz

In this case the time performance will decrease down to 226.2 uS instead of 137.5 uS. The 

difference however is minimal comparing with any other solutions (See Figure 7.10). It also 

has to be mentioned that some spare logic resources appeared after HDC ASVP restoration. 

As we may see in Figure 7.10, the original (before fault) ASVP, Variant# 11 required almost 

twice more CLBs than ASVP, variant #8 (after restoration).

To compensate reduction of performance the resolution can be reduced from 2048 to 

1024 pixels ([1 meter * 2 meters] resolution instead of [1 meter * 1 meter] on the Ground) 

with the original 240 spectral bands or number of spectral bands can be reduced to 130 

spectral bands. At the same time current consumption of HDC will also slightly decrease.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

The major contribution of this work is the creation of mechanism that allows run-time 

self-restoration of FPGA-based computing platforms and thus, mitigation of different types 

. of hardware faults. Ideally, this restoration should not cause performance degradation. 

However, it was assumed that if there is no other choice, it is better to have ability to 

decrease system performance and restore it rather than allow complete turndown of a system. 

That is why the proposed mechanism also allows restoration with performance degradation.

Thus, a multi-level self-restoration mechanism was developed based on the idea of 

self-assembled and task optimized Application Specific Virtual Processors (ASVP). These 

processors are stored in the memory in a form of configuration files for particular FPGA 

devices can be assembled on-chip from the LEGO-type Virtual Hardware Components 

(VHC). These VHCs are small configuration data files for partially reconfigurable FPGAs 

, , are representing different processing elements (Adders, Multipliers, FFT or IR-cores, etc.). 

Because ASVP is VHC-based devices they can be re-assembled inside the FPGA when 

hardware fault occurs in one of VHCs. Established on this idea special procedures were 

developed for temporal faults caused by radiation (e.g. SEU: Single Event Upsets) or 

permanent faults (e.g. physical defects in the wafer of the chip).

To develop this self-restoration mechamsm a deep literature research was conducted 

in the following areas:
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1. Reconfigurable computing platforms with the focus on Run-Time Reconfigurable 

(RTR) computing platforms.

2. Factors that can cause hardware faults in the digital systems with focus on 

environmental factors (first of all radiation) influencing on SRAM based FPGA devices

3. Methods for hardware fault detection, location and restoration with a focus on fault 

recovery o f FPGA based digital circuits.

After analysis o f available literature sources it was found to be that most of the fault 

restoration methods in the FPGA based computing systems were:

a) Oriented for specific type of hardware faults caused by a specific factor (e.g. scrubbing 

procedures for SRAM based FPGA devices which mitigates radiation effect called 

Single Event Upset -  SEU)

b) Require spare hardware resources in case of temporal hardware faults. The amount of 

these resources can be very large (e.g. very popular TMR: Triple Module Redundancy 

approach)

c) Usually requires operator’s control or even redesigning of processing micro-architecture. 

This prevents any kind of run-time restoration and causes lost of enormous amount of 

corrupted or non-processed data.

Instead, in this research was proposed approach, which allows avoiding the above 

limitations , which were found in the existing methods of restoration of reconfigurable 

platforms.

Major issues of the proposed approach were the follov/ing:
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1. Restoration mechanism should be as universal as possible to mitigate multiple (if not all) 

expected environmental and internal factors causing hardware faults. Although it is very 

difficult to perform run-time analysis of the reasons caused by hardware fault it was 

proposed to make restoration mechanism as multi-level procedure, where each level is 

responsible for specific group of factors that have predictable probabilities. This approach 

allows avoiding physical analysis of hardware fault, by starting restoration from 

procedures oriented to mitigate the most probable factors. If this procedure does not help, 

self-restoration mechanism switches to the next level of restoration oriented on another 

class of factors with lower probability of hardware faults.

2. Restoration has to be done without any control from the human being and thus, can be 

performed in real-time to minimize the data loss. Because degradation of logic resources 

can reach the level when it will be impossible to keep performance of the system at 

required level, restoration mechanism should have built-in architecture-to-fault 

adaptation sub-system. This sub-system should find very quickly the best possible variant 

of processing architecture with minimal degradation of performance parameters.

3. Implementation of restoration mechanism should require minimum logic resources. 

Furthermore, restoration control procedures should be presented in form of virtual 

hardware (configuration files) but not in a form of software or an application specific 

integrated circuits (ASICs). Software implementation is not effective because restoration 

period will be dramatically delayed. On the other hand, in case of ASIC implementation 

of self-restoration procedures many other problems can occur. Firstly, ASIC can be 

damaged itself by radiation or other factors that are influencing on semiconductor devices 

and thus, no further restoration of processing system will be possible. Secondly, no
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further modification of restoration procedures can be done because of fixed routing and 

logic configuration of any ASIC. However, if self-restoration procedures are 

implemented in a form of virtual hardware, even restoration controller can be self

restored and also can be easily modified or repaired remotely.

It is because of this reason this research was focused on solving the above listed of issues 

and thus the major contributions of this work can be divided on two groups: 

a) theoretical contributions and b) implementation and analysis of test results.

The theoretical contributions are as follows:

1. Development of logic replacement technique based on re-addressing of Virtual 

Hardware Components to the spare slots in the partially reconfigurable FPGA devices 

(Xilinx Virtex-E, Virtex-2 and Virtex-2Pro families of FPGAs). In the best of our 

knowledge that is based on the conducted literature research this is a novel technique 

that can dramatically reduce restoration time up to hundreds of microseconds. This 

method was presented in [1]

2. Development of method for minimization of performance degradation in a case of 

restoration of processing functionality with limited logic / routing resources. After 

analysis o f literature sources the novel approach was proposed. This approach assumes 

including an architectural synthesis sub-system into the self-restoration mechanism to 

allow run-time selection of new architectural configuration avoiding the damaged circuit. 

This method is based on special mathematical algorithm, which allows rapid 

arrangement of design space and selection of new processing architecture with reduced 

hardware resources. This method was presented in [2]
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3. Incorporation of different hardware fault mitigation techniques into one multi-level self

restoration mechanism. In the best of our knowledge this is also novel approach where 

each level or restoration is associated with respective factors, that can cause hardware 

faults. Furthermore, because these levels are hierarchically arranged by probability of 

factors causing hardware faults, restoration can be performed in most optimal way and 

thus reduce restoration period.

Contribution in implementation and analysis of test results are the follows:

1. Implementation and test of major elements of the proposed self-restoration mechanism 

(scrubbing and logic replacement) were performed on the base of RTR Multi-Stream 

Processor AGORA-2 (Adaptive Group Organized Reconfigurable Architecture). It was 

proven that scrubbing and logic replacing procedures can be performed much faster (in 

times) than using the existing methods. That is because the advantages of partially 

reconfigurable FPGA devices were utilized together with proposed in this research re

assembling procedures of Virtual Hardware Components. Results were presented in [2],

[3] and [4].

2. Modeling and simulation of major elements of the proposed self-restoration mechanism 

were performed using ALTERA MAX Plus II and XILINX ISE 6.2i CAD systems. The 

results were presented in [3] and [4]

3. Modeling of self-restoration with minimum performance degradation was performed 

step-by-step for real task: Hamming Distance Calculator. It was proven that dramatic 

minimization of number variants to be estimated for selection of the optimum using
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arranged design space presented in a form of Architecture Configurations Graph (ACG).

Analysis of the results was utilized for preliminary study for development process of the

new generation of on-board computing platform for Canadian satellite RADARSAT-2.

Summarizing all of the above contributions it is possible to say that the proposed novel 

self-restoration mechamsm can dramatically improve lifetime, and reliability of the 

embedded computing platforms based on reconfigurable logic devices (SRAM based 

FPGAs). However, because this work was the “first step” in this feasibility study, the 

implementation component of the work included testing only major elements of this 

mechanism. Thus, the further research and development in this direction is a must.

In the future work the following issues have to be considered:

1. Research the restoration level’s switching control mechanism, which will include 

development o f scheduling and synchronization of processes. This means that for case 

when self-restoration system has to switch from one level to another (e.g. from 

scrubbing to logic replacement) some transition steps has to be performed. These steps 

have to be properly scheduled and synchronized with existing data processing tasks.

2. Restoration with performance degradation also needs more deep development. At this 

work we did not consider any mapping procedure for replacement the VHC with 

smaller logic requirements to the damaged CLB-slot. However, there are many 

questions, which do not have clear answers today. At this stage of work we also did 

not touch the problem of scheduling loading sequence for restorable VHCs. We also 

did not develop a complete control program for this level of self-restoration.
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3. Built-In-Self-Test (BIST) system has to be incorporated with proposed self-restoration 

mechanism to create Built-In-Self-Recovery (BISR) system embedded to the 

Hardware Operating System (HOS), the process control core of RTR parallel 

computing platform. In capacity of this work we did not consider this incorporation. 

However, this research and development work is a must for any practical 

implementation of the proposed self-restoration mechanism.

Finally, we would like to mention once again that this project is the preliminary study and 

very first step to incorporate Run-Time Reconfigurable Parallel computing platform, based 

on partially reconfigurable FPGAs with self-restoration mechanism. Without this restoration 

mechanism a lot of applications of embedded high-performance computing platform are very 

difficult or even impossible. Thus, this work is very important and results are in big demand 

for modem aerospace, multimedia, digital signal processing and many other areas of 

application.
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List o f Acronyms

ACG -  Architecture Configuration Graph
ASIC -  Application Specific Integrated Circuit
ASPC -  Application Specific Processor Core
ASVP -  Application Specific Virtual Processor
BIST -  Built-in-Self-Test
BUT -  Block Under Test
CLB -  Configurable Logic Block
COTS -  Commercial-Off-the-Shelf
CPLD -  Complex Programmable Logic Device
CPU -  Central Processor Unit
DFG -  Data- Flow Graph
DPGA — Dynamically Programmable Gate Array
EPROM -  Electrically Programmable Read Only Memory
FFT -  Fast Fourier Transform
FPGA -  Field Programmable Gate Array
GPR -  General Purpose Routing
GRL -  Global Routing Lines
HDC -  Hamming Distance Calculation
HOS -  Hardware Operating System
lETID — Interface Element Type Identifier
lOB -  Input/Output Block
LET - Linear Energy Transfer
LUT — Look Up Table
MO -  Macro Operation
MOSFET -  Metal Oxide Semiconductor Field Effect transistor
MNOS -  Metal-Nitride-Oxide-Semiconductor
PETID -  Processing Element Type Identifier
RCS -  Reconfigurable Computing System
RFM -  Reconfigurable Functional Module
RIM -  Reconfigurable Interface Modules
RISC -  Reduced Instruction Set Computer
RPSP — reconfigurable Parallel Sream Processor
RTR - Run-Time Reconfigured
SEU -  Single Event Upset
SRAM -  Static Random Access Memory
STAR -  Self-Testing Area
TBG -  Test Pattern Generator
VCB -  Virtual Communication Bus
VHC -  Virtual Hardware Component
VHDL -  Very High Speed Logic Hardware Language
VHO- Virtual Hardware Object
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