
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2011

Power and chip-area aware network-on-chip
simulation
Masoud Oveis Gharan
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Gharan, Masoud Oveis, "Power and chip-area aware network-on-chip simulation" (2011). Theses and dissertations. Paper 1113.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1113?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

POWER AND CHIP-AREA AWARE NETWORK-ON-CHIP

SIMULATION

by

Masoud Oveis Gharan

B.S., Isfahan University of Technology, Iran, 1991

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2011

© Masoud Oveis Gharan, 2011

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis or dissertation.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or

individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis or dissertation by photocopying or

by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

iii

Abstract

Power and Chip-area Aware Network-On-Chip Simulation

 Masoud Oveis Gharan, 2011

Master of Applied Science

Electrical and Computer Engineering

Ryerson University

Among different communication architectures employed in Multi-Processor Systems-on-

Chip (MPSoC), Network-on-Chip (NoC) is recognized as a state of the art paradigm that can

overcome on-chip communication challenges. In this thesis, we introduce the simulation of NoC

systems. The structure of a new SystemC based NoC simulator (FANOOS) is presented in this

thesis. We discuss various components of the simulator by presenting their SystemC code. We

also provide an analytical methodology that employs the micro-architectural level of NoC routers

and links by considering their power and chip area requirements. An evaluation flow for early

stage design of NoC is introduced. Then different routing mechanisms are analyzed by trading

throughput and latency. The ability of our simulator in terms of predicting NoC power and chip-

area is demonstrated by investigating the relation between throughput and transactional power

consumption for various NoC application benchmarks.

iv

Acknowledgment

After decades far away from academic environment, Ryerson University gave the opportunity to

take part on an academic position to upgrade my knowledge and use my experiences. Hereby I

truly thank all administrators and staffs who helped and support me in financial and registration

matters to do the best my education. I really appreciate the teaching efforts of the professors who

taught me during these three academic years, and I really owe my education to them. Here I

would like to present my especial thanks to Dr. Gul N. Khan for being an exceptional advisor for

my entire graduate career. An advisor and friend, he has managed to perfectly balance

encouragement and criticism, and I am in his debt for providing me with the facilities to be a

successful researcher in an exciting field. I am astounded by his great breadth of knowledge, and

ability to focus on the details and big picture of a project simultaneously. His attention to detail

and network-on-chip opinion is an invaluable asset, and I am really thankful to be his student.

Above all, I am thankful for the love and support of my family. I am positively blessed to

have a wife, Maryam, and a daughter, Ghazal, as wonderful as mine who have given me an

amazing life. Their belief in me was a motivator in everything I did, and their advice and

understanding could not be more appreciated.

I owe many thanks to all my friends especially those who are in Micro-system Research

Laboratory for their unwavering support and friendship. I love spending time with you guys,

some of my best memories have been made here.

v

Table of Contents

1 Introduction………………………………………………………………………… 1

1.1 Motivation…………………………………………………………………. 3

1.2 Objectives and Contributions……………………………………………… 5

1.3 Thesis structure……………………………………………………………. 5

2 Overview…………………………………………………………………………… 7

2.1 NoC Topology……………………………………………………………... 9

2.1.1 2D 4×4 Mesh/Torus Topology ……………………………………. 9

2.1.2 Application Specific Topology …………….……………………… 10

2.2 Messages………………………………………………………………………… 11

2.2.1 Store-and-Forward Method ……………………………………….. 12

2.2.2 Virtual cut-Through Method………………………………………. 12

2.2.3 Wormhole Switching Method……………………………………... 13

2.2.4 Buffer Implementation…………………………………………….. 14

2.2.5 Virtual Channel (VC) ……………………………………………... 15

2.3 Routing Mechanisms…………………………………………………….. 15

2.3.1 Virtual Circuit Routing…...........………………………………….. 16

2.3.2 SOURCE Routing….………………………………………………. 17

2.3.3 XY Routing ……………………………………………………….. 16

2.3.4 Odd-Even Routing…………………………………………………. 19

2.3.5 Hot Potato Routing……………………………………………….... 21

2.3.6 Line Probe Routing………………………………………………... 21

2.4 Router…………………………………………………………………….... 24

2.4.1 Arbitration Techniques……………………………………………. 25

2.4.2 Round-Robin Scheduling………………………………………….. 26

2.5 Link………………………………………………………………………… 26

2.6 Traffic Generator, Source and sink………………………………………... 27

2.7 Traffic Pattern………………………………………………….………….. 27

2.7.1 Spatial Distribution……………………………………….……….. 28

2.7.2 Temporal Distribution…………………………………….……….. 31

vi

2.7.3 Message Size Distribution………………………………………… 31

2.7.4 Source-by-Source Distribution………………………….………… 32

2.7.5 Poisson Traffic Distribution……………………………….……… 32

2.7.6 Application- Oriented Pattern……………………………………… 32

2.8 Power Modeling……………………………………………………………. 33

2.8.1 Static Power Modeling Methodology………………………………… 33

2.8.2 Dynamic Power Dissipation……………………………………….. 36

2.8.3 Analytical Methodology…………………………………………… 37

2.8.4 Gate Capacitances………………………………………………….. 38

2.8.5 Drain Capacitances………………………………………………… 38

2.9 Area Modeling…………………………………………………………….. 40

2.10 Power, Area and Performance Metrics…………….……………………… 41

2.10.1 Throughput………………………………………………………… 42

2.10.2 Latency…………………………………………………………..... 43

2.10.3 Packet Drop………………………………………………………… 44

2.10.4 Link Utilization………………………………………………….... 45

2.10.5 Static and Dynamic Power Consumption………………………… 45

2.10.6 Area……………………………………………………………...... 46

2.11 NoC Simulation Systems Overview ……………………………………… 46

2.12 Chapter Summary ………………………………………………………... 49

3 Structure of NoC Simulator……………………………………………………… 50

3.1 Infrastructure of NoC Simulator ………………………………………… 51

3.2 Hardware Modeling of NoC Simulator…………………………………… 52

3.2.1 Modeling the Source Module…………………………….…………53

3.2.2 Traffic Generator…………………………………………………… 58

3.2.3 Modeling the Sink Module………………………………………… 60

3.2.4 Modeling the Router Module ……………………………………… 61

3.2.4a Arbiter Module…………………………………………… 63

3.2.4b Demultiplexer Module ………………………………… 66

3.2.4c FIFO and Virtual Channel ……………………………… 67

3.2.4d Crossbar Switch Module………………………………… 69

vii

3.2.5 Main Simulator Module…………………………………………… 70

3.3 Power Modeling of NoC Simulator………………………….…………… 72

3.3.1 Derivation of Leakage Current…………………………………… 72

3.3.2 Arbiter Leakage Modeling…………………………….…………… 73

3.3.3 Matrix Crossbar Leakage Modeling…………………..…………… 74

3.3.4 FIFO buffer Leakage Modeling.......……………………..………… 75

3.3.5 Physical Link Leakage Modeling ………………………..……….. 76

3.3.6 Component Modeling in Dynamic Power…….…………………… 77

3.3.7 FIFO Dynamic Modeling…………………………….………….…. 80

3.3.8 Crossbar Dynamic Modeling ……………………………………. 83

3.3.9 Arbiter Dynamic Modeling …………………….………………… 84

3.3.10 Clock Dynamic Modeling …………………………………….…… 85

3.3.11 Physical Link Dynamic Modeling ………………………………… 88

3.3.12 Approaches to Obtain Parameters………………………………… 88

3.4 Area Modeling of NoC Simulator ………………………………………… 89

3.4.1 Router Area……………………………………………………….. 89

3.4.2 Link Area………………………..………………………………… 90

3.5 Link Length Estimation …………..……………………………….……… 91

3.5.1 Maximum Link Length in 2D Topologies ………………………… 91

3.5.2 Maximum Link Length in Application Specific Topologies ……… 92

3.6 Performance, Power and Area Estimation of NoC………………………… 93

3.6.1 Performance Estimation…………………….……………………… 93

3.6.2 Architectural Power Estimation…..……………………………….. 95

3.6.3 Transactional Power Estimation…..……………………………….. 97

3.7 An Evaluation Flow Model ……………………………………………… 100

3.8 Conclusion………………………………………………………………… 101

4 Experimental Work ……………………………………………………………… 103

4.1 Configuration and Installation…………………………………………… 104

4.1.1 NoC Core Graph to Core Text File Conversion…………………… 104

 4.1.2 User Interface……………………………………………………… 106

 4.1.3 Implementation of NoC Simulation program……………………… 110

viii

4.2 Contention Due to Multi Points ……………………….………………… 111

4.3 Configuration for the First Set of Simulation Experiment ………………. 112

4.4 NoC Simulation for Uniform Traffic……………………………………… 113

4.5 Locality Traffic Base Simulation………………………………………….. 115

4.5.1 Contention Free in LP Routing……………………………………. 116

4.5.2 Advantages of Locality traffic……………………………………. 118

4.6 Mesh Topology Simulation……………………………………………….. 119

4.7 Simulation for Application-Oriented Traffic…………………………….… 120

4.7.1 Simulation Time for Irregular Traffic…………………………….. 121

4.7.2 NoC Simulation for MPEG-4 Decoder …………………………… 123

4.7.3 NoC Simulation for AV Benchmark ……………………………… 125

4.7.4 NoC Simulation for Irregular Topologies………………………… 127

4.8 Power and Area Chip……………………………………………………… 129

4.8.1 Simulation for 2D topologies……………………………………… 129

4.8.2 Simulation for NoC Applications…………………………….…… 133

4.9 Chapter Summary………………………………………………………… 142

5 Conclusions……………………………………………………………………….. 143

References……………………………………………………………………………………. 146

ix

List of Tables

2.1 Traffic……………………………………………………………………………… 31

2.2 Process and technology input parameters used in the gate area model …………… 40

3.1 Isub and Igate………………………………………………………………………… 72

3.2 Leak parameters of matrix crossbar model…………………………………………75

3.3 Leak parameters of SRAM FIFO buffer model …………………………………… 75

3.4 Capacitance notations………………………………………………………………78

3.5 FIFO buffer model ………………………………………………………………… 80

3.6 Matrix crossbar parameters and equations………………………………………… 83

3.7 Matrix arbiter model ……………………………………………………………… 85

4.1 Parameters and their descriptions in regular topology…………………………… 107

4.2 Parameters and their descriptions in irregular topology…………………………… 108

4.3 Border of contention free in LP routing…………………………………………… 117

4.4 XY routing in locality traffic……………………………………………………… 118

4.5 Characteristics of the selected SOCs applications………………………………… 133

x

List of Figures

1 NoC architecture…………………………………………………………………… 7

2 Network …………………………………………………………………………… 8

2.1 Different topologies ……………………………………………………………… 9

2.2 Mesh topology and Torus topology ……………………………………………… 10

2.3 Core graph and core switch graph of AV application……………………………… 11

2.4 Packet message in the NoC………………………………………………………… 13

2.5 Pseudocode of XY routing algorithm……………………………………………… 19

2.6 Pseudocode of OE routing algorithm……………………………………………… 20

2.7 An example of layout……………………………………………………………… 22

2.8 Blocked packet…………………………………………………………………… 22

2.9 Blocked packet is freed by LP algorithm ………………………………………… 22

2.10 Pseudocode of LP routing algorithm……………………………………………… 23

2.11 5×5 regular router ………………………………………………………………… 25

2.12 Transistor geometry if width < 10 µm …………………………………………… 37

2.13 Transistor geometry if width >=10 µm …………………………………………… 37

2.14 Two stacked transistor if width >=10 µm………………………………………… 37

2.15 Layout model of gates……………………………………………………………… 41

3.1 NoC Simulator Structure……………………………………………………………51

3.2 A small NoC……………………………………………………………………… 52

3.3 Header and payload flit…………………………………………………………… 54

3.4 Pseudocode of source process……………………………………………………… 57

3.5 Pseudocode of function in the traffic generator module ………………………… 60

3.6 Pseudocode of sink process ……………………………………………………… 61

3.7 5×5 wormhole router or regular router…………………………………………… 62

3.8 Pseudocode of arbiter process …………………………………………………… 65

3.9 Demux module …………………………………………………………………… 66

3.10 Pseudocode of the demux process………………………………………………… 66

3.11 FIFO module……………………………………………………………………… 67

3.12 Pseudocode of FIFO process……………………………………………………… 68

xi

3.13 Pseudocode of a condition in crossbar process…………………………………… 69

3.14 Pseudocode of main function……………………………………………………… 70

3.15 Gate level design of matrix arbiter………………………………………………… 73

3.16 Matrix crossbar with I input ports………………………………………………… 74

3.17 FIFO buffer with one read and one write port …………………………………… 75

3.18 Structure of transmission and tri-state gate………………………………………… 79

3.19 SRAM-based FIFO buffer with one read and one write port……………………… 80

3.20 Schematic for a negative edge-triggered D flip-flop……………………………… 82

3.21 Matrix crossbar with I input ports………………………………………………… 83

3.22 Gate level design of matrix arbiter………………………………………………… 85

3.23 Layout model of wires and repeaters……………………………………………… 90

3.24 An example of 2D NoC floorplanning topology NoC and its links……………… 92

3.25 An example of application specific NoC floorplanning…………………………… 92

3.26 Packet injection model…………………………………………………………… 95

3.27 5×5 wormhole router or regular router…………………………………………… 95

3.28 5×5 wormhole router or regular router…………………………………………… 99

3.29 NoC evaluation flow……………………………………………………………… 102

4.1 Core graph and core text file……………………………………………………… 106

4.2 Graphs in Uniform traffic, Torus topology………………………………………… 114

4.3 Graphs in uniform and locality traffic…………………………………………… 116

4.4 Graphs in locality traffic, Torus topology, coef 8-7-1-0…………………………… 118

4.5 Graphs in locality traffic, Mesh topology, coef 16-0-0-0………………………… 120

4.6 Application mapping on regular or irregular topologies…………………………… 121

4.7 Source of contention and scaling flow…………………………………………… 122

4.8 Core graph, mapping to 2D topology and throughput results of MPEG-4………… 124

4.9 Throughput results of MPEG-4 Decoder application……………………………… 124

4.10 Reversed core graph and its throughput results of MPEG-4 decoder …………… 125

4.11 Core graph, torus mapping and core txt of AV Benchmark application ………… 126

4.12 Throughput results of AV Benchmark…………………………………………… 126

4.13 Mapping of the MPEG-4 and AV application on irregular topology………………128

4.14 Throughput results of MPEG-4 and AV application……………………………… 128

xii

4.15 NoC synthesized results for the 3×3, 4×4, 5×5 and 6×6 Torus topologies ………133

4.16 MPEG4 core graph, txt core table and MPEG4 mapping………………………… 135

4.17 VOPD block diagram and core graph, txt core table, and VOPD mapping……… 136

4.18 MWD flow graph, core graph, txt core table and mapping……………………… 137

4.19 DVOPD core graph, core txt table and DVOPD mapping………………………… 138

4.20 NoC synthesized results for the MPEG4, MWD, VOPD and dVOPD…………… 141

xiii

Glossary

2D two-dimensional

AV Audio-Video

FAANOS A flexible and accurate NoC simulator

FCFS First Come First Serve

FIFO First-in First-out

FPGA Field programmable gate array

HP HOT-POTATO Routing

IP Intellectual property

LP LINE_PROBE Routing

MWD Multi-Window Display

NoC Network on Chip

OE ODD_EVEN Routing

PB Priority Based

PRBB Priority Based Round Robin

PTMP point-to-multipoint

xiv

RR Round Robin

SoC System on Chip

VC Virtual Channel

VOPD Video Object Plane Decoder

1

Chapter 1

Introduction

In VLSI technology, we recently have had a revolutionary development namely System

on Chip (SoC) and Network-on-chip (NoC). SoC is the integration of all the components of a

computer system on a single integrated circuit (chip). It may contain digital, analog and often

radio-frequency functions – all on a single chip substrate [1]. These many interesting systems are

too complex to fit on a single chip. There are a lot of challenging overhead, and among them, the

two challenges are communication and synchronization between modules [2]. As a solution to

these and other problems such as performance, area and power consumption, NoC has emerged.

NoC is an emerging paradigm for on chip data transfer of large VLSI systems implemented on a

single chip. In an NoC system, modules such as processor cores, memory cores and specialized

intellectual property (IP) blocks exchange data using an on-chip network [1]. NoC replaces

dedicated, design-specific interconnection (buses, point-to-point ports, etc.) in SoC with scalable,

general purpose network, and it establishes a communication between modules [3].

At every stage of NoC design, there are various options such as topology, switching

policy, routing mechanism, traffic pattern, etc. that have impact on the performance, power and

area of NoC. Each of the above options has a large design space on its own. Many of these

2

options are important to the efficiency of over-all SoC systems, and for NoC simulation, all of

these options need to be parameterized.

For designers and architects of NoCs, obtaining an optimal NoC is a big challenge due to

number of constraints and objectives. One of the best solutions to this challenge is to simulate

NoC in a suitable environment. NoC simulators are dedicated testbed frameworks which serve a

variety of NoC needs. They simulate relatively fast and inexpensive as compared to the cost and

time involved in setting up a test system. NoC simulators allow designers to test NoCs that might

be difficult or expensive to emulate using real hardware. For example, simulating the effects of a

sudden burst in message flow will be difficult to investigate in hardware setup. Moreover, NoC

simulators are particularly useful in allowing designers to test new techniques or amend existing

technique. Our work is a modular and extensible SystemC based simulator (FAANOS) [4]. It

allows experimenting with various options available at every stage of NoC design such as

topology, switching technique, virtual channels and routing methods. FAANOS can be easily

extended to include new topologies and routing algorithms. It also produces performance, area

and power metrics for a given set of traffic choices.

As the CMOS technology developed at sub-micron levels, the power consumption of an

NoC will be a major concern and sometimes may affect the NoC design performance and area.

Power dissipation in CMOS circuits is generally classified into two sources: static (or leakage)

power dissipation and dynamic (or switching) power dissipation. The estimation of dynamic

power dissipation of a chip is a challenging task. In this estimation, one should compute the

power when the data transactions happen in the NoC. Two main power models ranging from

RTL power estimation tools [5] to early stage architectural power models [6 and 7] have been

proposed in the NoC area. In the RTL power estimation, the power models can be obtained from

3

synthesis and place / route of the RTL code using commercial tools. The generated library of the

NoC components is then used during topology synthesis. The shortcomings of this model are the

requirement of having complete RTL code and slow simulation (in the order of hours). However,

the architectural power model takes only few seconds. This encourages us to choose the

architectural power model to incorporate into our NoC simulation framework. This model allows

NoC architects to estimate the power in transactional level or maximum condition (when NoC is

applied by a full traffic pattern). This property of our NoC simulator is unique as compared with

the past similar works.

1.1 Motivation

Two important reasons encourage us to do research on NoC. The first one is the rapid

development of NoC that is going to be prevalent in the future of electronic technology. To

support our claim, we can say that it is possible to imagine an NoC-based chip as a future field

programmable gate array (FPGA). Such a field programmable resource array (FPRA) will use a

big number of configurable computation resources by using a programmable NoC platform.

Already there have been proposals for designing programmable NoC platforms [8 and 9]. One

can easily imagine a scenario where a mesh topology NoC chip, populated with the application-

oriented cores, could be available as a mass-produced standard product. A future NoC

architecture must be general enough to allow mass production and must have features for

configuration to match and meet the applications constrain requirements. Therefore, NoC with

such bright future and with many challenging research problems at all levels need further

investigation, research and development. For example in terms of power, it is important to

understand the different tradeoffs when we balance the energy of on-chip and off-chip

4

communication for a given energy budget. A better understanding of the area and power

tradeoffs will enable the design of more energy and area efficient router architectures, as well as

interconnection networks.

The second reason that encourages us is the lack of a homogenous, general and accurate

simulator in the NoC area. Most of today’s design optimization tools estimate power,

performance or both based on architectural aspect of NoC systems. They do not have any facility

to estimate the transactional metrics of NoC, or if they have then it is incomplete. This

shortcoming leads to the inaccurate or deficient results of power, area and performance metrics.

The inefficiency of the simulators that do not create transactional results is obvious. The

transactional results give an accurate view of the behaviour of NoC in a real chip that is really

important in making early design decisions of NoC. However, for the simulator that have

incomplete link to the transactional aspect of NoC, we have noticed that they are not

homogenous. In other words, the parts of simulator that estimate performance or power are not

homogenously developed (i.e., the performance and power parts are not developed by a group).

The users of heterogeneous simulator cannot establish a complete link between different parts of

their tool. In this condition, they estimate transactional results from architectural results that is

not enough accurate. The other important drawback in most of the today’s simulators is their

development under software platform that do not have hardware description property (i.e.,

VHDL and Verilog). By considering the above mentioned points, we developed our simulator in

a transaction-level modeling language (SystemC), which deliberately mimics the hardware

description languages. This advantage of our simulator enables a designer to synthesize an NoC

application like synthesizing a hardware platform, and simulate it using concurrent processes

where each process is described using a plain C++ syntax.

http://en.wikipedia.org/wiki/Verilog

5

1.2 Objectives and Contributions

As we mentioned earlier, the bright future of NoC technology and the lack of a general

purpose NoC simulator has encouraged us to investigate NoC simulation. Our work starts with a

research on almost all the important layers of NoC simulator. We first develop a homogenous,

general and accurate NoC simulation framework. It is homogenous because the backbone of the

tool is structured by SystemC language, and all of its parts are developed by our group. It is

general because the simulator employs most of the previous approaches and techniques with

some new approaches developed during our research. In terms of accuracy of the simulator, we

can argue that in such a homogenous and general simulation environment the metric results tend

to be accurate. This accomplishment is not achievable without introducing the recent NoC

characteristics and issues as well as representing the ability of our simulator by experimental

work.

1.3 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 provides a background on on-

chip networks. We introduce the concept, architecture and configuration of NoC as well as

propose an analytical methodology for parameterized NoC router components. We conclude this

chapter by definition of power, area and performance characteristics and briefly discussing the

related work. In chapter 3, we pay attention to the structure of our simulator. The hardware

modeling of every NoC module is described in detail, and the working of SystemC process of

each module is depicted. This chapter delves into the micro-architecture and circuit-level design

of a router synthesized in our simulation framework, and the technological and analytical

parameters accompanied by the related formulas for every component are demonstrated. At the

6

end of this chapter, an evaluation flow is presented and based on that we start an experimental

work in chapter 4. We implement two sorts of experiments. In the first experiment set, we

configure the simulator and traffic generator to investigate the impact of three different routing

algorithms, XY, odd-even (OE), and line-probe (LP) on different NoC applications. In the

second experiment set, we first propose a methodology to estimate the maximum length of link

in different topologies and based on that we experiment the area and power of some SoC

applications. Finally, Chapter 5 concludes this thesis and presents directions for future work.

7

Chapter 2

Overview

The general structure of NoCs has been presented in the past works [3 and 10]. It consists

of cores and switches that are directly connected such that the cores are able to communicate

concurrently by sending messages asynchronously. Figure 1 illustrates a typical on-chip network,

the on-chip components such as MEMORY, CPU, DSP, RISC, RF interface and I/O that

communicate by using an interconnected group of switches.

To illustrate the concept of NoC, we take a detailed look in Fig. 2, where the NoC

architecture provides the communication infrastructure for the resources (cores or IPs). It has a

bonded structure of elements such as routers or switches, network adapters, and links based on a

particular topology [2]. The core can be a sender, a receiver or both and represents SoC modules

Figure 1: NoC architecture

CPU

Memory
RF

DSP RISC

1

2 3 4

5 6 7 8

Graphics

processor
I/O

8

such as processor cores, memories or specialized IP blocks. The network adapters couple these

cores to the network to create an environment, where the cores send or receive messages

asynchronously. In other words, it allows communication from a core to the outside world via a

channel. The router consists of different modules such as arbiter, crossbar, demultiplexer, and

FIFO or virtual channels. The routers communicate among each other asynchronously to deliver

a message to the destination. The link is the communication elements in NoC that connects two

routers or a router and a core together. It can be either simple wires or complex communication

mechanisms like FIFOs. In the following sections, we introduce the techniques, modules and

metrics which are employed in NoC architecture. Section 2.1 describes the architecture of

different topologies. The details of messages along with different packet switching methods are

discussed in section 2.2. Different routing mechanisms and the architecture of router are

presented in sections 2.3 and 2.4 respectively. In sections 2.5 and 2.6 we introduce the details of

link, traffic generator, source, and sink modules. Different traffic patterns are discussed in

section 2.7. In sections 2.8 and 2.9, we explain the micro-architectural structure of router and

link to introduce the model and formulation of the basic electronic elements for estimating power

and area. Lastly, we define the power, area and performance metrics in section 2.10 and the

related work is discussed in section 2.11.

Figure 2: Network

Core /Resource

Network interface

Router/switch

Link/channel

 Arbiter

 Crossbar

 Arbiter

 Crossbar

 Arbiter

 Crossbar

 Arbiter

 Crossbar

 Arbiter

 Crossbar

 Arbiter

 Crossbar

 Arbiter

 Crossbar

 Arbiter

 Crossbar

 Arbiter

 Crossbar

 Arbiter

 Crossbar

 Arbiter

 Crossbar

 Arbiter

 Crossbar

Source

Sink

Source

Sink

Source

Sink

Source

Sink

Source

Sink

Source

Sink

Source

Sink

Source

Sink

Source

Sink

Source

Sink

Source

Sink

Source

Sink

Source

Sink

Source

Sink

9

2.1 NoC Topology

 An NoC topology is the layout pattern of interconnections of various elements such as

links and routers [11]. Generally, NoC topology is classified into two main groups: regular and

irregular [12]. The regular topologies are simpler than the irregular ones, and the local

interconnections between resources and routers are independent of the network size. Besides,

routing in regular topologies is easy that results in potentially small switches, more efficient,

high bandwidth, faster clock cycle, and overall scalability [13]. Figure 2.1 depicts different

topologies where a, b and c are regular, and d is an irregular topology.

2.1.1 2D Mesh/Torus Topology

 Mesh and/or torus topology is a regular topology which is most commonly used and

studied topology so far [10]. In this topology, each node consists of a core connected to a router.

 Figure 2.1: Different topologies

(a) Torus (b) Mesh

(c) Fat Tree (d) Irregular

1

2

3 4

5 6 7 8

9 10 11 12

 13 14 15 16

1

0

0

3 4

5 6 7 8

9 10 11 12

 13 14 15 16

MCPU

1

Media

CPU

1

IDCT

8

IDCT,

etc

8

RAST

4

RAST

4

AU

3

AU

3

VU

2

VU

2

SDRA

M9

SDRA

M

9

BAB

7

BAB

7

SRAM

2-11

SRAM

2

11

RISC

0

RISC

0

USMP

6

Up-

SAMP

6

ADSP

5

ADSP

5

SRAM

1-10

SRAM

1

10

1

RISC

0

4

RISC

0

6

RISC

0

7

RISC

0

9

RISC

0

10

RISC

0

11

RISC

0

9

10

6

7

8

9

0

1

1

2

2

3

3

4

4

5

5

6

7

8

10

Each router is connected to four other neighbouring routers by using input and output channels.

Each channel consists of two uni-directional point-to-point links between two routers or a core

and a router. Routers may have internal queues to handle congestion. Each node is identified by

a unique integer called Node_ID. Moreover, each node can be identified by an x and y

coordinates. Figure 2.2 depicts 3 × 4 mesh and torus topologies, where each square represents a

node in the network.

2.1.2 Application Specific Topology

There is a wide variety of irregular topologies in the NoC domain that are also known as

application specific topologies. Various researchers consider different layout pattern for it. In this

thesis, we introduce application specific topology whose pattern is derived from the specification

of an SoC application. Since every application has different specification, the topology derived

from that does not have a predefined or well ordered shape, and this leads to limited use of

various routing algorithms in application specific topologies. For instance, among various

routing mechanisms that are described in section 2.3, only two deterministic routing mechanisms

(VIRTUAL CIRCUIT and SOURCE routing) can serve such topologies. To demonstrate the

architecture of this topology, we present Fig. 2.3, where an Audio-Video (AV) application is

Figure 2.2: Mesh topology (left) and Torus topology (right)

 Arbiter

 Crossbar

Source

Sink

11

drawn in the form of nodes and arrows, which is commonly known as core graph [14]. If we put

a switch at every node of the core graph, we can have an application specific topology of the

application that will be called a core switch graph in this thesis. The router in this topology is

modeled to have dedicated output for each input channel. In this way, there is no contention

within each router because of the pattern of the topology.

2.2 Messages

In the NoC area, a message is an arbitrary amount of information which is sent from a

source to a destination. Transferring messages through an NoC can be achieved by two methods:

circuit switching and packet switching. In the circuit switching, a limited number of dedicated

connections are established between routers prior to transferring the message, and there is no

need of buffering in this method. The packet switching is a newer digital communication

method that splits messages into distinct packets that are transmitted independently and then put

together into the original message at the destination [15]. The packet in this method is defined as

a sequence of binary digits including data and control signals, which is transmitted and switched

Figure 2.3: Core graph and the core switch graph of AV benchmarking application

12

as a composite entity [11]. The network in the packet switching can operate a synchronous

message passing system. To have a synchronous message passing system between nodes, the

nodes need to wait for transfer of message. In other words, the sender will not continue to

transfer the message until the receiver absorbs the message. However, there is no need of

buffering between the sender and receiver nodes. The message can always be stored at the

receiving node, because the sender will not continue until the receiver is ready.

 The other advantage of this method is that a channel is occupied during the transmission

of the packet only, and upon completion of the transmission, the channel is made available for

the transfer of other packets [11]. This leads to an optimized use of the channel capacity,

minimize the transmission latency, and increase robustness of communication. Three forms of

packet switching such as store-and-forward, virtual cut-through and wormhole are defined in the

NoC area.

2.2.1 Store-and-Forward Method

In this method, the whole packet is received and stored at the router, and then forwarded

to the next router or destination. In this method, a router needs the buffering capacity of at least

one full packet [16].

2.2.2 Virtual cut-Through Method

The router starts forwarding a packet before the whole packet has been received.

Normally, as soon as the header information is processed, the packet is transmitted to the

destination. This technique reduces latency through the router, but compromises the reliability as

compared to store-and-forward method. In this method, a router needs buffering capacity for at

13

least one full packet. If there is contention in the network, then the packet is stored at the router

level [17].

2.2.3 Wormhole Switching Method

In this method, the routing is done as soon as possible similarly to cut-through routing.

However, the cut-through flow control assigns buffers and channel bandwidth on a packet level,

while wormhole flow control does this at the flit level [1]. The flit (flow control digits) is defined

as a small piece of data which is created from splitting the network packet. It is also defined as

the fundamental unit of data transferred in the communication network at the clock rate. The first

flit of a packet is called the header flit that holds information about the packet's route (namely the

destination address) and sets up the routing path for all subsequent flits of the packet. The header

flit is followed by one or more body flits, containing the actual pay load of message as depicted

in Fig. 2.4.

Figure 2.4: Packet message in the NoC

Body Body Body Header

Messages

Packet

Flit

1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0

Source Sink

Clk

H/V Tail bit

1

V_ch

Body Body

1 0 1 1 1 0

Data

0 0

Pause Burst

14

The final body flit called the tail flit performs some tasks to close the connection between two

routers. Since a packet is transmitted flit by flit, it may occupy several flit buffers along its path,

creating a worm-like image. The wormhole switching is the most popular and well suited for on

chip communication, and we have chosen this method for transferring message in our NoC

simulation framework. Figure 2.4 provides a detailed description of a message format in this

method. The size of messages can have great impact on the performance that is important request

in the early design of an NoC [18]. To implement this method, NoC requires a small FIFO flit

buffer at each intermediate node. The wormhole flow control also facilitates the implementation

of virtual channels. The Virtual-Channel switching is an extension of worm-hole switching,

where multiple virtual channels are provided for each input port.

2.2.4 Buffer Implementation

Buffers are a storage medium used to store the message content temporarily due to a

difference in rate of flow of data, or time of occurrence of events, when data is transferred from

one node to another [11]. The capacity of buffers can affect the network contention as well as

cost. The higher buffer capacity leads to the reducing of network contention, thereby improving

performance. However, buffers are area and power hungry, and their use should be carefully

investigated. The buffers are implemented in a first-in first-out (FIFO) way. In a FIFO, what

comes in first is handled first and what comes in next waits until the first is finished, etc. When

the packet is small, a suggested optimized size of the FIFO buffer is to be equal to the size of a

packet. If the size of the packet is larger than the size of FIFO, then the packet occupies more

than a router’s buffer, and in the case of contention the situation get worse.

15

2.2.5 Virtual Channel (VC)

A VC connection is an association established at the asynchronous transfer mode

between two or more endpoints for the purpose of resource-switch or switch-switch information

transfer [11]. A virtual channel virtually splits a single physical channel into two or more

channels, providing two or more virtual paths for the packets to be routed. The VCs improve the

performance at the expense of area and power consumption. However, there are several other

advantages such as contention alleviation, latency and wire cost reduction. In an NoC

environment, the virtual channel is modeled in FIFO buffers and characterized with the

parameter “VC”.

2.3 Routing Mechanisms

The term routing mechanism refers to the mechanism used to implement any routing

algorithm. It is the process of determining and prescribing the path so that a message data can

reach the destination, or it is the method to be used for forwarding messages [11]. In an NoC

system, routing directs packets from their source toward their destination through the NoC

infrastructure. Routing schemes have been classified in several ways in literature. In one of the

classifications, they are categorized in deterministic and adaptive groups [18]. The deterministic

routing always follows a deterministic path of the network. The examples for such routing

mechanisms are SOURCE, VIRTUAL CIRCUIT and XY routing. The adaptive routing

mechanisms need more information about the network to avoid congested paths in the network.

In adaptive routing implementation, the routing function is described by means of if-then-else

statements that are synthesized into a combinatorial logic circuit. The examples are OE (odd-

even), LP (line-probe) and HOT POTATO. These routing mechanisms are obviously more

16

complex to implement, and they are more expensive in area, cost and power consumption. The

SOURCE, VIRTUAL CIRCUIT, XY, OE, HOT POTATO routing have been introduced and

researched in the past works [19, 20 and 12]. The LP routing is a new routing method that is

being presented in this thesis. It is being investigated here in the context of NoC simulation.

2.3.1 VIRTUAL CIRCUIT Routing

Virtual circuit routing is a connection oriented communication service that emulates

circuit switching. In virtual circuit routing, the packets are delivered by means of packet

switching where the connection is established before any packets are transferred and

handshaking overhead produce during the connection establishment phase [21]. However, the

bit rate and latency service are similar to circuit switching which might be different in a virtual

circuit routing due to three main differences. First, the FIFO lengths in the routers vary in the

virtual circuit. Secondly, the packet rates generated by the cores are not the same in the virtual

circuit. Thirdly, the loads from different cores sharing the same links are different in the virtual

circuit. Virtual circuit routing implementation uses a routing table that stores routing information

in the form of a set of entries (an entry for each destination), each containing the information

about the output port (or the set of output ports) through which the packet must be forwarded to

reach its destination. This routing table is constructed and located at the router level in advance

when the topology is generated. Therefore, the flit in this routing can be as small as possible and

it leads to small channel width and small FIFO buffer.

17

2.3.2 SOURCE Routing

In SOURSE routing, the sender sends the packet through a partially or completely

specified routing path to the destination [12]. SOURCE routing permits comfortable

troubleshooting, better trace route, and lets a router to have access to all the possible routes to

destination. It also allows a source to have direct effect on performance by directing packets

through the network to prevent congestion.

The differences between SOURCE and VIRTUAL CIRCUIT routing is that in SOURCE

routing, the routing path (routing table) is constructed by the source, and it is stored in the header

flit during run-time. However, in VIRTUAL CIRCUIT routing, the routing path is constructed

and located on the router. In this way, the SOURCE routing becomes the most flexible routing

solution as it can be updated at run-time (re-configuration) to be adapted to particular scenarios

such as the changes in traffic conditions (e.g., multi use-case applications) and the variation of

NoC topology (e.g., due to transient or permanent faults) [22]. Although the power dissipation of

the routing logic in the router is minimized, the increase in packet size can have negative impact

on the performance, resulting in an increase in the energy consumption.

2.3.3 XY Routing

The XY routing is a deterministic routing method for mesh topologies, where the flits are

first routed in the X direction until reaching the Y coordinate of the destination, and then it is

routed in the Y direction to reach the destination. If a link at the route is in use by another packet,

the flit remains blocked in the router until that link is released. The XY routing is simple and

easy for mesh routing where a few routers participate in the path routing [20]. In other words, it

cannot employ the network capacity fully that leads to increase in the system contention. To

18

benefit of the features of this routing, we use the XY routing algorithm as the basic routing

algorithm for some other routing mechanisms such as OE, LP and HOT POTATO routing in

FAANOS.

The XY routing basically works for 2D network topologies like mesh or torus. The

mechanism of this routing is simple and easy where the flit must be routed to the destination

router address (Dx, Dy) and then to the core port of the router. In other words, in a 2D mesh

topology, if each router is identified by its coordinate (x, y) (see Fig. 2.2), the current router

address (Cx, Cy) is compared to the destination router address (Dx, Dy) which is stored in the

header flit. If the Dx > Cx, flit will be routed to the East port and Dx < Cx, flit will be routed to

the West port. For Cx=Dx, the header flit is reached horizontally, and then Dy (vertical) address

is compared to the Cy address. If Dy<Cy, flit will be routed to the South port. If Dy>Cy, flit is

routed to the North port. For Cy =Dy, the header flit is already in the destination router. When

the chosen port is busy, the header flit and all the subsequence flits of the packet should wait in

their routers, until the port gets free. Figure 2.5 demonstrates the pseudocode of XY routing

algorithm.

19

2.3.4 Odd-Even Routing

Odd-Even routing is an adaptive method in which some turning directions are not

allowed in order to lower the contention of the NoC system. In a 2D mesh topology, each node is

recognized by its coordinate (x, y). In this topology, if the x dimension of nodes of a column is

even number, the column is called even, and if the x dimension of nodes of a column is an odd

number, the column is called odd. A turn is a 90-degree change of traveling direction which is

described as following. There are eight kinds of 90-degree turns that can be associated to each

node in a 2D topology. If a turn consists of a change in direction from East to South we call it ES

turn. Similarly, the EN, WS, WN, SE, SW, NE and NW turns are defined where E, W, S and N

point to East, West, South and North respectively [19]. Generally, the Odd-Even routing is based

on two rules. The first rule prevents of EN and ES turns for packets that are in nodes located at

the even columns. The second role prevents SW and NW turns for packets that are in nodes

/*Source router: (Sx, Sy); destination router: (Dx, Dy); current router: (Cx, Cy).*/

begin

if (Dx>Cx) //eastbound messages

return E;

else

if (Dx<Cx) //westbound messages

return W;

else

if (Dx=Cx)

{ //currently in the same column as destination

if (Dy<Cy) //southbound messages

return S;

else

if (Dy>Cy) //northbound messages

return N;

else

if (Dy=Cy) //current router is the destination router

return C;

}

end

Figure 2.5: Pseudocode of XY routing algorithm

20

located on the odd columns. Figure 2.6 demonstrates the pseudocode of minimal Odd-Even

routing algorithm in which out_dir contains the forwarding directions of the packet.

/*Source router: (Sx, Sy); destination router: (Dx, Dy); current router: (Cx, Cy).*/

begin

out_dir < 0;

Ex< Dx-Cx;

Ey< Dy-Cy;

if (Ex=0 && Ey=0) return C; //current router is destination

if (Ex=0)

{ //current router in same column as destination

if (Ey<0) add S to out_dir;

else add N to out_dir;

}

else

{

if (Ex>0)

{ //eastbound messages

if (Ey=0) add E to out_dir; //current in same row as destination

else

{

if(Cx % 2 != 0 or Cx=Sx) //NS turn allowed only in odd column.

if(Ey < 0) add S to out_dir;

else add N to out_dir;

if(Dx% 2 != 0 or Ex != 1) add E to out_dir;

//allow to go E only if destination is odd column

// EN and ES turn not allowed in even column

}

}

else

{ // westbound messages

add W to out_dir;

if(Cx%2=0) //allow to go N/S only in even column because

// N->W and S->W not allowed in odd column

if(Ey<0) add S to out_dir;

else add N to out_dir;

}

}

Select a dimension from out_dir to forward the packet.

end

Figure 2.6: Pseudocode of OE routing algorithm

21

2.3.5 Hot Potato Routing

Hot Potato routing (known as deflecting routing) is a decentralized and adaptive routing

mechanism, which decreases the need of buffering packets in the routers [23]. The prominent

feature of Hot Potato routing is that does not require FIFO buffer in the routers. In wormhole

routing, when multiple packets contend for a single outgoing channel, the packets wait at the

FIFO buffer level to avoid congestion. However, in Hot Potato routing, when multiple packets

want to pass through the same link (the contention link), only one of the packets pass through the

link, while the others are routed to other available links, even though the other links do not yield

the shortest paths. In a router, every packet has preferred output ports along which it wants to be

routed, and when possible a packet is sent along one of these outputs. The implementation of this

method creates an environment where the packets are bounced around like a "hot potato"

sometimes moving further away from their destination because they have to keep moving

through the network. They are constantly transferred until they reach their final destination as the

input port cannot keep more than one packet at a time. This technique allows multiple packets to

reach their destinations without being dropped. Since it has no FIFO buffer and flow

management, a deflection router can be designed with higher speed and lower cost than a

wormhole or virtual cut-through switch.

2.3.6 Line Probe Routing

The LP routing is normally used in VLSI technology to design the routing part of an IC

(integrated circuit) layout [24]. Figure 2.7 shows the working of this algorithm for a 2D layout of

an IC. The line moves from the source in X direction toward the sink. When it reaches to a

blocking area it probes the neighbours and chooses one that is in Manhattan distance (the

22

shortest distance between two points). It turns to Y direction until it reaches to a blocking area.

Again it probes the neighbour and chooses one that is Manhattan distance. As you can see it

turns around the blocking area until it reaches the sink.

Figure 2.8 and 2.9 show a LP-based routing in a 2D mesh topology.

 Compare the LP-routing with the previous routing mechanisms we can say that it has a

combined property of wormhole switching and hot potato routing. The switching in this routing

Source Sink

Figure 2.7: an example of layout

Figure 2.9: Blocked packet is freed by LP algorithm

source

F3
F2
HF

TF

Figure 2.8: a packet is blocked

source

Dest

F3 F2 HF
TF

23

is wormhole as the router can have a FIFO buffer or even virtual channels, but the routing

method is like hot potato mechanism. When multiple packets request for a single output, the

packets with a lower priority are mis-routed to other output paths. Therefore, due to hot potato

property it can choose shorter FIFO buffer without virtual channel. In this way, the router can be

designed with higher speed and lower cost, and wormhole switching property prevents or

alleviates some problems related to hot potato routing such as high rate of link utilization. In

terms of implementation, only one bit extra is used in the header flit, and in the router also LP

function can be described with a few if-then-else statements. The pseudocode in Fig.2.10

describes the LP algorithm.

/*Source router: (Sx, Sy); destination router: (Dx, Dy); current router: (Cx, Cy); current entrance direction

(ent_dir)*/

begin

out_dir= CALL XY algorithm; // call XY algorithm and save the direction in out_dir

temp=out_dir; // save this direction to a temp memory

if out_dir is free // check the requested output is free

 return out_dir; // yes, so return this direction

else //No

{

 out_dir = choose a direction out of out_dir , ent_dir, and local direction;

 if out_dir is free

 return out_dir;

 else

 {

 out_dir = choose the last direction;

 if out_dir is free

 return out_dir;

}

}

out_dir=temp; //if all directions are blocked, so stay in first direction for the next clock cycle in router

end

Figure 2.10: Pseudocode of LP routing algorithm

24

2.4 Router

The heart of an NoC is a router or switch. We call it router in this thesis. Routers route

and buffer messages between resources (IP core). The design model of router is the same as

hardware design, and it is similar to the design presented in Orion NoC design [25]. The router

design in Orion is based on the hardware of four real NoC routers: Alpha 21364 router [26], IBM

InfiniBand 8-port 12 × switches [27], Intel 80-core Teraflops chip [28], and Intel Scalable

Communications Core chip [29]. The other advantage of our router design is its model in terms

of power and area parameters that will be introduced later.

The router consists of different modules such as arbiter, virtual channel (VC) allocator,

crossbar, demultiplexer, and FIFO or virtual channels. Incoming data (packet) is stored at the

input buffers that the VC allocator selects. The arbiter decides to which output port, the input

data will be routed. The crossbar gets the data from the input buffers and transfers to the output

port which the arbiter assigns. The crossbar is usually implemented as a matrix crossbar.

Two kinds of router models are investigated in this report: regular and irregular. The

regular router has five input ports and five output ports as depicted in Fig. 2.11 that is used in 2D

topologies such as Torus or Mesh topology. It employs all routing mechanisms that are described

in section 2.3. The irregular router has flexible input and output channels and is more effective in

irregular topology. Due to its irregular nature, it is limited to utilize every routing mechanism.

25

2.4.1 Arbitration Techniques

In asynchronous circuits, arbitration selects the order of access to a shared resource

among asynchronous requests. Its function is to prevent two operations from occurring

concurrently when they should not. For example, in the router that has multiple input messages

accessing an output channel, there is a possibility that the requests from two input messages can

happen nearly at the same time. The arbiter module must decide that which request to be

serviced first. Ivan Sutherland and Jo Ebergen describe arbiters as following [30]. “An arbiter is

like a traffic officer at an intersection who decides which car may pass through next. When there

are two cars to pass through an intersection at the same time, the traffic officer first stops the cars

and decides which car should go first. Then he or she let only one car passes through the

Figure 2.11: 5×5 regular router

Req L grant L

Req N grant N

Req E Arbiter grant E

Req S grant S

Req W grant W

 Aselect free_out

In L out L

In N out N
 Crossbar

In E out E

 (5×5)
In S out S

In W out W

FIFO 0

FIFO 1

 FIFO 0

 FIFO 1

co

nfi

g

D
E
M
U

X

D

E

M

U

X

 FIFO 0

 FIFO 0

 FIFO 1

 FIFO 1

In_ack

Out_ac

k

Router

D

E

M

U

X

D

E

M

U

X

Virtual
Channel
Allocator

D

E

M

U

X

 FIFO 0

 FIFO 1

Link L

Link N

Link E

Link S

Link W

Link L

Link N

Link E

Link S

Link W

Inputs
outputs

26

intersection. When the first car passes through completely, the second cars is allowed to pass

through. The same situation happens in an arbiter, i.e. when an arbiter gets two requests at once,

it must decide which request to grant first. For example, when two packets request access to an

output channel at approximately the same time, the arbiter puts the requests into a sequence and

grants access to only a packet at a time.”

There are various arbitration scheduling mechanisms such as Round Robin (RR), First

Come First Serve (FCFS), Priority Based (PB), and Priority Based Round Robin (PRBB) in

asynchronous circuits. Usually, RR and FCFS are used for best effort data flits and PB and

PBRR are employed for guaranteed traffic.

2.4.2 Round-Robin Scheduling

Round-robin (RR) is one of the simplest scheduling algorithms for processes in a data

packet scheduling in NoC, which allocates equal portion of time slices circularly to each process

and manage all processes without any priority. RR scheduling is both simple and easy to

implement, and it can be starvation-free. However, if the sizes of the jobs of the processes vary

considerably, the RR scheduling may not be suitable. In other words, a process that does a big

job will consume more time over other processes. In an NoC system, the processes in the arbiter

of a router take the same task time, and there is no significant difference between them.

Therefore, the round robin will be suitable in an NoC system.

2.5 Link

Links connect routers and cores, and they are implemented as parallel global wires on

metal resources. In NoC, the number of links in each channel is set to be equal to the size of a

27

flit, and a larger flit size can increase link utilization and need more metal resources for power

and ground interconnects. Buffered wires are modeled to fit link delay within a single cycle [31].

2.6 Traffic Generator, Source and Sink

We have introduced the architecture of NoC, and now it is time to introduce the modules

embedded in our NoC simulation framework. These modules deal with the generation and

sending different packet models to assess the effectiveness of an NoC system on three metrics:

performance, power and area. In fact these modules imitate the communication behaviour of

resources in an SoC system. In terms of sending packet, the resources are classified in two main

groups i.e., sender and receiver. The sender is responsible to generate packet based on a given

traffic pattern and injects them to the system. In this report, the dummy packets are generated

and injected into the system by the source module, and the traffic generator is responsible to

dictate the traffic pattern of source module. Therefore, both the source and traffic generator play

a key role of sender in our NoC simulation framework. The sink plays the role of a

destination/receiver which receives packet and records the number of incoming packets.

2.7 Traffic Pattern

In terms of traffic generation pattern, the traffic can be classified in two patterns:

synthetic and application-oriented. In the case of synthetic traffic, the traffic generator generates

pattern resembling a simplified packet data model. The sources in the simplified packet data

model are generally greedy sources. A greedy source is a traffic model that generates packets at

the maximum possible rate and at the earliest opportunity [32]. There will always be packets to

transfer, and the source will never be in the idle state due to congestion avoidance or other local

28

traffic type. When the transfer of a past packet is completed, a new data packet is produced. It

means that the queue of the source is never congested.

In terms of the distribution of traffic, synthetic pattern is categorized along three

dimensions: spatial distribution, temporal flow distribution and message size distribution. The

spatial distribution is associated to the locations of sources and destinations. The temporal flow

distribution is related to the message generation probability over time. The message size

distribution defines the length of messages to be routed in the NoC.

In application-oriented traffic, the traffic generator generates packet in a pattern that

matches with a real application model. It considers all the aspects of traffic such as the rate of

packet flow, the burst time or pause time of packet flow, as well as the size of flit and packet.

The source and traffic generators should be configured in advance by the users. The following

sections discuss further about these patterns.

2.7.1 Spatial Distribution

 In spatial distribution, each source core sends packets to different destination cores at

each simulation cycle. In other words, the distribution of destinations varies in each simulation

cycle. All the sources share the same temporal and size parameters, and the traffic is classified

into two categories: the uniform and locality patterns. With the uniform traffic, a network node

sends packets to other nodes with the same probability [33]. With the locality traffic, a network

node sends packets to its neighbouring nodes with higher probability. In order to build a unified

expression for both types of traffic, we define communication distribution probability in terms of

communication probability as follows:

29

 Communication probability P(i,j) is the probability of sending messages from node i to

node j. Assume the probability Pc of sending messages to the network from every node is

the same. Therefore, we define Equation 2.1 for any source node i with N destination.

 = Pc (2.1)

 Communication distribution probability Dp(i,j) is the probability of distributing messages

from node i to node j where node i sends messages to the network. For any source node i

with its N destination nodes, we define Equation 2.2, meaning that all the messages from

node i are aimed to all the N destination nodes in the network.

 =1 (2.2)

 The distribution coefficient α (d) is the coefficient of distribution of destination around

node i where d is the distance between source i and its destination nodes. This array is

constant for each NoC system during the simulation and the value of its elements is

selected based on the locality of system. Assuming the maximum distance between nodes

is D, the value of coefficients is defined in Equation 2.3.

 =D 0< α i<D (2.3)

Now, we define communication distribution probability Dp as a relative probability to

common probability factor Pc in Equation 2.4.

 = coef . Pc (2.4)

where

 coef =

The coef is the coefficient probability and when all the elements of α has the same value of

one, then the traffic is uniformly distributed due to the uniform distribution of destination for all

30

the sources. If the value of an element related to a distance has bigger value, the traffic has more

tendencies to the nodes related to that distance. Therefore, for a maximum locality distribution

(i.e., the sources send message to nearby nodes), the first element of α should have a maximum

value of D. To better understand Equation 2.4 an example is given as follows. This example will

demonstrate the spatial distribution of destinations in a 2D 4×4 NoC topology. Table 2.1 shows

the coefficient distribution (α) and coefficients probability (coef) which is based on the distance

parameter, d, (i.e., the distance between two nodes). If we assume the distance between two

nearby nodes is one, then the maximum distance between two nodes will be six. When d is equal

to zero, then it is the distance between a node and itself. When d is equal to one, it is the distance

between a node and its first neighbouring nodes and so on. The coef is the probability coefficient

of sending packets to other nodes. When the coef is equal to zero, then the probability of sending

packet is also zero. As expected, each node should not send packet to itself. In other words, when

d=0 the coef is also zero.

Table 2.1 depicts some sample numbers for three traffic patterns of uniform, locality and

non-locality. In a uniform traffic, the coef for a node to itself is zero and a node to other nodes is

constant and equal to 0.16. In full locality traffic, the coef for a node to itself is zero, to the first

neighbouring nodes is one, and to other nodes is zero. In a non-locality traffic, it is completely in

reverse order. The coef for a node to itself is zero, to the sixth neighbouring nodes is one, and to

other nodes is zero. The other locality conditions will be located between the non-locality and

full locality cases.

31

Table 2.1 Traffic

TRAFFIC d 0 1 2 3 4 5 6

Uniform α 0 1 1 1 1 1 1

 Coef 0 0.16 0.16 0.16 0.16 0.16 0.16

Full Locality α 0 6 0 0 0 0 0

 Coef 0 1 0 0 0 0 0

Non- Locality α 0 0 0 0 0 0 6

 Coef 0 0 0 0 0 0 1

2.7.2 Temporal Distribution

From the temporal distribution point of view, traffic can be classified into two categories

of bursty pattern and continues pattern. In a continuous traffic pattern, the source module

continuously sends packets on a regular interval as close as possible to the bit rate specified,

where the source is a greedy source. The bursty traffic pattern sends a burst of data at the

maximum specified burst rate, and then pauses for a specific amount of time. In other words, it

can be represented by an alternating on and off time periods. During the on period, packet is

generated in fixed intervals, and during off, no packet is generated.

2.7.3 Message size distribution

The message size specification defines the length of communicated messages. There are

two variables for changing the size of message, the size of flit and packet. The size of a flit also

determines the width of buffers in the router. Therefore, a small flit needs the small buffer size

leading to a small size of the router and consequently lower amount of resources and links. The

size of packet that is made of flits does not have effect on the structure of NoC.

32

2.7.4 Source-by-Source Distribution

Source-by-source traffic is a combinational traffic pattern of two distribution patterns: the

temporal flow and message size. In this traffic pattern, each source is configured depending on

its own temporal and size parameters. In addition, it statically defines communication before the

simulation starts, implying that the destination nodes are fixed for source node during the entire

network simulation. The temporal characteristics and message size specification of each node

can be approximated using communication traces. This type of traffic is used to construct

application-oriented workloads.

2.7.5 Poisson Traffic Distribution

Another simplified traditional traffic generation model in the network technology is the

Poisson process where the number of incoming messages follows a Poisson distribution.

2.7.6 Application-Oriented Pattern

This pattern is a subset of source-by-source distribution, where the packet flow mimics

the communication characteristics of a given application. Therefore, each source is configured in

accordance with its constraints at the application. The destination nodes are fixed for the source

node during the entire network simulation. The temporal characteristics and the message size

specification of each node are defined and they can be varied depending on the limitation in the

application. Every source node should be defined in advance in terms of its destination, temporal

characteristics and message size specification. This information can be derived and provided in

form of a set of text entries from the application.

33

2.8 Power modeling

As the CMOS technology developed under sub-micron levels, the power consumption of

an NoC design has become a major concern and sometimes dominates the design performance

and area. Power dissipation in CMOS circuits can be classified in two sources: static (or leakage)

power dissipation and dynamic (or switching) power dissipation. Static power is mainly

dependent on the required chip resources, whereas dynamic power is determined by the

switching activity. Dynamic power is still the major component of the overall power

consumption during active operations. An enormous power dissipation of the CMOS circuits is

consumed only when the transistors are switching. In context of NoC design, we need to take

care of static power, since it has already been consuming a considerable portion of the active

power in recent process technologies. It will further increase while dynamic power becomes

smaller when the technology is scaled down. Different types of energy models have been used

for the calculation of energy requirements of NoC systems. These models are commonly based

on static and dynamic power estimates from synthesized gate-level models of network

components. The following sections introduce an analytical method which consider the micro

architecture of basic components of an NoC system to estimate the overall power consumption.

2.8.1 Static Power Modeling Methodology

Static power dissipation is currently one of the main factors limiting the performance of a

computer system. It is formulated as P =Istatic . Vdd where Istatic is the static current and Vdd is the

supply voltage. Therefore, the static power dissipation in each clock cycle is formulated as:

P =Istatic Vdd/Fclk where Fclk is the clock frequency. We can calculate Istatic for each component of

the NoC system i.e., based on architectural and technological parameters of each component of

34

the system. However, Vdd and Fclk are the input parameters which should be specified by users in

network simulation. Istatic or leakage current has five basic sources [34]:

 sub-threshold leakage current

 Gate tunnelling current

 Reverse biased pn junction current

 Punch through current

 Gated induced drain leakage.

The sub-threshold condition happens when a transistor is OFF. It is due to the gate–source

threshold voltage of the transistors is below the supply voltage of CMOS design (Vdd might have

been 5 V and Vth for both NMOS and PMOS might have been 700 mV). Tunnelling Current

through SiO2 (Gate Oxide)is very small but at very small thickness levels, electrons can tunnel

across the very thin insulation. Tunnelling current becomes very important for transistors below

130nm technology. There is a small reverse leakage current, which is formed due to formation of

reverse biased between pn junctions. It is very small as compared to sub threshold and tunnelling

currents, however, it may be ignored during power calculations. Two last sources are also very

small as compared to sub threshold and tunnelling currents, and they will be ignored.

For estimating leakage power, an architectural approach is proposed by Chen and Peh

[34] where the leakage current resources have an almost linear relation with the transistor width.

For instance, sub threshold current Isub, which currently dominates leakage current is defined as

follows:

Isub=Io

 (2.5)

Io= µ

 (2.6)

35

To derive an architectural leakage power model, we can separate the technology-

independent variables such as transistor width from those that stay invariant for a specific

process technology:

Ileak(i, s) =

 . I’leak(i,s) (2.7)

where

 Ileak is total leakage current;

 I'leak is leakage current per unit transistor width over length;

 W(type(i; s)) refers to the transistor width of NMOS when NMOS determines the leakage

current (i.e. type(i; s) is N), or PMOS (when type(i; s) is P).

Orion 2.0 [25] follows the same approach as of Chen and Peh [34], however, it adjusts the

approach as follows. Chen and Peh only considered sub-threshold leakage, whereas from 65nm

and beyond, gate leakage gains importance and becomes a significant portion of the leakage

power. This is even more visible for high-performance applications where gate oxides are much

thinner (i.e., 1.5nm in 65nm high-performance library). We will follow the same methodology

proposed in Orion 2.0, and our architectural leakage power model is formulated by Equation 2.8.

Ileak(i, s) = W(i, s) . (Isub(i, s) + Igate(i, s)) (2.8)

where

 Ileak is total leakage current;

 Isub and Igate are sub-threshold and gate leakage currents per unit transistor width for a

specific technology, respectively;

 W(i, s) refers to the effective transistor width of component i at state s.

Isub and Igate are measured by using HSPICE simulation. Then we compose architectural

leakage power model in a bottom-up fashion for each building block [34].

36

2.8.2 Dynamic Power Dissipation

The estimation of dynamic power dissipation of a chip is a challenging task in the design

of chip. For the estimation of NoC power we should compute the power when the chip is doing

transactions. The dynamic power dissipation has two basic elements: switching dissipation and

short circuit dissipation. In switching power dissipation, the CMOS circuit dissipates power by

charging the various load capacitances (mostly gate and wire capacitance as well as drain and

some source capacitances) whenever they are switched. In one complete cycle of CMOS logic,

current flows from VDD to the load capacitance to charge it and then flows from the charged load

capacitance to GND during discharge. In short circuit power dissipation, as there is a finite

rise/fall time for both pMOS and nMOS during transition (say from OFF to ON), the transistors

will be ON for a small period of time in which current will find a path directly from VDD to GND

i.e. short circuit. Short circuit dissipation can be minimized by matching the rise/fall times of the

input and output signals and it is a small function of switching dissipation. This element of

dynamic power is ignorable in estimation of power. In this thesis, dynamic power is estimated

based on switching power dissipation and it is formulated by:

P =

 .C.

 . (2.9)

where

 α is the switching activity;

 C is the switch capacitance;

 and are the supply voltage and clock frequency respectively.

The detailed parameterized equations for estimating switch capacitance C of each component

of an interconnection network are derived from different resources like Cacti [35] and the

switching activity α of these components are tracked through network simulation.

37

2.8.3 Analytical Methodology

Our proposed analytical method is derived by decomposing the circuit into many

equivalent RC circuits, and using simple RC equations to estimate the area and power of each

stage [35]. In the following sections, we decompose the structure of smallest component of a

CMOS circuit, a transistor and describe how resistances and capacitances are estimated as well

as how they are combined and the power of a stage calculated.

A Typical Transistor Layout

Figure 2.12 and 2.13 show typical transistor layouts for small and large transistors

respectively and Fig. 2.14 depicts two stacked transistors. It has assumed that if the transistor

width is larger than 10 µm, the transistor is split as shown in Fig. 2.13.

3× Leff 3× Leff

Leff

W

Figure 2.12: Transistor geometry if width < 10 µm

Gate Source Drain

3× Leff 3× Leff

Leff

W/2

Figure 2.13: Transistor geometry if width >=10 µm

Gate

Source Drain

3× Leff

Source

3×Leff

3×Leff

Leff

W/2

Figure 2.14: Two stacked transistor if width >=10 µm

Gate

Source Drain

3×Leff

Source

n

38

2.8.4 Gate Capacitances

The gate capacitance of a transistor consists of two parts: the capacitance of the gate, and

the capacitance of the poly silicon line going into the gate. By considering Fig. 2.12, if Leff is the

effective length of a transistor, Lpoly is the length of the poly line going into the gate, Cgate is the

capacitance of the gate per unit area, and Cpolywire is the poly line capacitance per unit area,

then a transistor of width W has a gate capacitance of:

gatecap = W. Leff .Cgate + Lpoly . Leff . Cpolywire (2.9)

The same formula holds for both NMOS and PMOS transistors. The value of Cgate depends

on whether the transistor is being used as a pass transistor (i.e. the device may conduct current in

either direction) or as a pull-up or pull-down transistor in a static gate. Thus, two equations for

the gate capacitance are given below.

gatecap (W,Lpoly) = W. Leff .Cgate + Lpoly .Leff .Cpolywire (2.10)

gatecappass (W,Lpoly) = W. Leff .Cgate,pass + Lpoly . Leff .Cpolywire (2.11)

The values for Cgate, Cgate,pass, Cpolywire, and Leff are derived from Cacti [35]. A different Lpoly

was used in the model for each transistor. Lpoly was chosen based on typical poly wire lengths for

the structure in which it is used.

2.8.5 Drain Capacitances

The drain capacitance is composed of both an area and perimeter component. Using the

geometries in Fig. 2.12 and 2.13, the drain capacitance for a single transistor can be obtained. If

the width is less than 10 µm,

draincap(W) = 3 Leff . W . Cdiffarea + (6 Leff + W) . Cdiffside + W.Cdiffgate (2.12)

Where

39

 Cdiffarea, Cdiffside, and Cdiffgate are process dependent parameters (there are two values for

each of these: one for NMOS and one for PMOS transistors).

Cdiffgate includes the junction capacitance at the gate/diffusion edge as well as the oxide

capacitance due to the gate/source or gate/drain overlap. Values for n-channel and p-channel

Cdiffgate are also derived from Cacti [35]. If the width is larger than 10 µm, it is assumed that the

transistor is folded (see Fig. 2.13) reducing the drain capacitance to:

draincap(W) = 3 Leff . W/ 2 .Cdiffarea + 6 Leff .Cdiffside + W . Cdiffgate (2.13)

Consider two transistors (with widths less than 10 µm) connected in series, with only a single

Leff.W wide region acting as both the source of the first transistor and the drain of the second. If

the first transistor is on and the second transistor is off, the capacitance is seen by looking into

the drain of the first one is:

draincap(W) = 4 Leff . W . Cdiffarea + (8 Leff + W). Cdiffside + 3W . Cdiffgate (2.14)

Figure 2.14 shows the situation if the transistors are wider than 10 µm. In this case, the

capacitance seen looking into the drain of the inner transistor (n in the figure) assuming it is on,

but the outer transistor is off is:

draincap(W) = 5 Leff .W/ 2 . Cdiffarea + 10 Leff . Cdiffside + 3W. Cdiffgate (2.15)

To summarize, the drain capacitance of n stacked transistors is:

if W>= 10 µm

draincap(W,n) =3 Leff .W/ 2 .Cdiffarea + 6 Leff .Cdiffside + W.Cdiffgate +

(n - 1) . { Leff .W.Cdiffarea + 4 Leff .Cdiffside + 2W.Cdiffgate} (2.16)

if W<10µm

draincap(W,n) =3 Leff .W.Cdiffarea + (6 Leff +W) .Cdiffside + W.Cdiffgate +

(n - 1) . { Leff .W.Cdiffarea + 2 Leff .Cdiffside + 2W.Cdiffgate} (2.17)

40

2.9 Area Modeling

With the increasing cores on a single NoC design, the area occupied by the

communication components such as links and routers will also increase. As area is an important

economic incentive in IC (integrated circuit) design, it needs to be estimated early in the design

flow to enable design space exploration. We employ a similar model and analysis as used in

Orion 2.0 to estimate the areas of transistors and logic gates. Orion 2.0 also used a model

described by Yoshida et al. [36] and the analysis put forward by Thoziyoor et al [35]. This is a

fast technique to estimate standard cell characteristics before the cells are laid out. Figure 2.15

shows the layout model that has been used by Yoshida et al [36]. Table 2.2 shows the process

and technology-level input parameters required by this gate area model. When a transistor

exceeds a certain maximum value, the transistor assumed to be folded. Given the width of an

NMOS transistor as Wn, the number of folded transistors can be calculated as follows:

Nfolder_transistor =

 (2.18)

The total diffusion width of Nstacked transistors when they are not folded is given by Equation

(2.19).

Wdiffusion-area = 2(Wcontact+2Spc)+Nstacked Wpoly + (Nstacked -1)Spp (2.19)

The Total diffusion width of Nstacked transistors when they are folded is given by Equation

(2.20).

Wdiffusion-area = Nfolder_transistor(2(Wcontact+2Spc)+Nstacked Wpoly + (Nstacked -1)Spp) (2.20)

Finally the height of a gate is calculated using Equation (2.21).

Hgate = Hn-diff +Hp-diff +Hgap-opp +2Hpower-rail (2.21)

41

Table 2.2 Process and technology input parameters used in the gate area model [35]

Parameter Description

Hn_di f f Maximum height of n-diffusion

Hp_di f f Maximum height of p-diffusion

Hgap_same Minimum gap between diffusions of the same type

Hgap_opp Minimum gap between n and p diffusions

Hpower_rail Height of Vdd and Vss rails

Wpoly Minimum width of poly

Spp Minimum poly-to-poly spacing

Wcontact Contact width

Spc Minimum poly-to-contact spacing

2.10 Power, Area and Performance Metrics

NoC designers and researchers are often interested in knowing the expected performance,

power and area of their system. From the user point of view, this is often said as either "which

system will implement my data that is most effective for my needs?" or "which system will

convey the most data per unit cost?” NoC designers are interested in choosing the most effective

architecture or design constraints which implements its final constrains. In most cases, the

benchmark of what an NoC system can do, or its “maximum performance” is what a user

designer will be interested. In this section, we intent to describe the definition of some important

metrics related to performance, power and area that are used in the NoC area and especially in

VDD rail

GND rail

Tr
an

si
st

o
r

re
gi

o
n

 h
ei

gh
t

D
if

fu
si

o
n

 g
ap

 h
ei

gh
t P-type

diffusion
region

N-type
diffusion

region

Contact with

Minimum poly-to-
contact spacing

Minimum poly-to-
poly spacing

Figure 2.15: Layout model of gates [38]

42

our NoC simulation work to be a supportive of the trade-offs, while will be presented in this

thesis.

In terms of performance, there are four characteristics such as throughput, latency, packet

drop and link utilization that have important role for choosing the most effective design. In terms

of power, there are four characteristics such as static, dynamic, architectural and transactional

power estimation that easily describe the power behaviour of NoC design. In terms of area, we

do not propose extra metric. The followings are a short description of these metrics.

2.10.1 Throughput

The maximum data throughput rate of a system is the first important performance

characteristic that designers are often keen to measure. When examining throughput, the term

'Maximum Throughput' is frequently used. In NoC design, a typical method to measure the

throughput is to deliver successfully a large number of packets and measure the time taken for

delivery. The throughput is calculated by dividing the number of packets by the time in order to

find the throughput in terms of packet per second. The throughput is also the average rate of

successful packets transferred over a communication channel. This data may be transferred over

a physical or logical link, or pass through a certain network router. The throughput is usually

measured in data packets per second or data packets per time slot (the time slot is equal to

simulation cycles in our work). The system throughput or the aggregate throughput is the sum of

the data rates that are transferred to all routers in an NoC. In this thesis, we measure the

throughput in percentage. In other words, the average rate of successful packets transferred

divided by the maximum rate of packet flow in the network.

43

2.10.2 Latency

The second important performance metric is latency. Latency refers to a short period of

delay between the packet entry time and when its emergence from the system. A fundamental

factor in latency is known as delay. Network delay is also an important design and performance

characteristic of the NoC. The delay of a network specifies how long it takes for a packet to be

transmitted across the network from one point to another. It is typically measured in multiples or

fractions of seconds. Delay may differ slightly, depending on the location of the specific pair of

communicating cores. Although users only care about the total delay of a network, for the sake

of better understanding of function of our NoCsimulator, we divide the delay into several parts

[37]:

 Processing delay – time which the routers take to process the packet header

 Queuing delay – time which the packet spends in FIFO

 Transmission delay - time which takes to push the packet's flits onto the link

 Propagation delay - time for a packet to reach its destination

In our NoC simulator, the processing delay is ignored as insignificant in comparison with other

forms of network delay. Due to which, our simulator does not perform complex algorithms and

examining or modifying the packet content. The queuing delay is the time a packet waits in a

FIFO until it can be transmitted. It is a key component of NoC delay. When packets arrive at a

router, they have to be processed and transmitted. A router can only process one packet for each

output channel at a time. If packets arrive faster than the router can process them, the router puts

them into the FIFO until it gets time to transmit them. Transmission delay is the amount of time

required to push all of the packet's flits into the link. In other words, transmission delay is a

function of the packet's length and has no relation with the NoC architecture. Therefore, we

44

ignore it in our simulator. Propagation delay is the medium amount of time taking for the header

flit to travel from the source core to the destination. The combination of propagation,

transmission, queuing, and processing delays produces the latency of an NoC.

In FAANOS, the measurement of delay is a little simpler. The routers are stimulated by

flit event, and when a flit reaches the router, it starts delivering to local sink or nearby routers. In

our simulator this deliverance does not have latency. Therefore, the latency a network creates for

a packet is zero. If a flit reaches a router and the router cannot deliver it at that event, the latency

will be created. Latency depends on how many clock cycles the flit is waited on the router to be

delivered.

2.10.3 Packet Drop

The third performance metric is the packet drop. Dropping packets in computer networks

is different with NoC technology. In computer networks, packets may be dropped when the

network devices are overwhelmed. However, in NoC design, we cannot allow packet dropping in

the router. We use this term to have a measure of packet generation in each source module. In a

simplified packet data model, each source always has data to transmit and is never in an idle state

due to congestion. A new data-packet is generated when the transmission of previous packet is

completed, meaning that the sender is never congested. Therefore, in congestion condition, the

source might drop some packets. This characteristic of NoC design helps designers to have a

measure of the rate of generation of packets in the sources on different location of the topology.

For this reason, each source has an individual record of dropped packets in output results

45

2.10.4 Link Utilization

The fourth performance metric is the link utilization. It is the proportion of the NoC links

which is used by the traffic that arrives at it. It should be strictly less than one for the system to

function well. Lower link utilization leads to the more effective systems. This characteristic

affects indirectly on two other important metrics such as delay and power consumption. On

measuring a delay, we did not consider the delay related to passing the packet through the link. If

it is considered, in this matter, then higher utilization link leads to more delay. Moreover, in

terms of power metric, higher utilization link means more movement of packets in the network

that leads to higher consumption of power in the system. The link utilization also can be used to

calculate delay and power consumption to compensate their errors. For example, if the frequency

of a system is high, then the delay time of links are considerable, and constant proportion of the

link utilization can be added to the total delay to compensate. This methodology can also be used

to compensate the error of power consumption.

2.10.5 Static and Dynamic Power Consumption

As mentioned earlier, static power consumption is a function of leakage current and

leakage current is stagnant during transaction level of system. However, dynamic power

consumption is different. In order to highlight this difference we define two metrics for power

estimation namely architectural and transactional power estimation. The architectural power

estimation is the estimation of power by considering the full transactional characteristic of a

network. In this case, we estimate the full static and dynamic power consumption for all NoC

components. The transactional power estimation is the power consumption when an NoC is

operated by a specific traffic pattern. In this case, we estimate full static power for all the

46

components and dynamic power for only those components that switch during simulation time.

For example, during simulation time if the commuting of flits is half of the maximum NoC

capacity, then the dynamic power consumption will be half of the maximum capacity of NoC.

2.10.6 Area

We are using two metrics for area in this thesis: router area and link area. Router area is the chip

space that all the routers of an NoC occupy. It is measurable in terms of parameters of an NoC

system. However, link area is different. Link length varies depending on the location of routers

in an SoC system. The location of routers is assigned during the process of floor planning of a

chip, which is not accessible during simulation time. To solve this problem, we assume an area

for each core, and then by measuring the area of routers, we can calculate the NoC area without

link area. Now, by having this area we can estimate the total link length of NoC system (see

section 3.5).

2.11 NoC Simulation Systems Overview

The routing mechanism is one of the most important parts of NoC design. Many

researchers have worked on different routing algorithms in 2D topologies. Ge-Ming Chiu

presented the odd-even turn model for designing partially adaptive wormhole routing algorithms

without adding virtual channels [19]. They concluded that the communication performance of 2D

meshes may be improved under non-uniform traffics by using their proposed model. Wang

Zhang et al. compared XY routing algorithm and Odd-Even routing algorithm for a 2D 3x3 mesh

using NIRGAM simulator [20]. They concluded that Odd-Even routing algorithm performs

better than XY routing with Constant Bit Rate traffic. Jie Wu proposed a simple and efficient

deterministic fault-tolerant and deadlock-free routing for 2D meshes without virtual channels

47

[38]. The novelty of their approach is the use of two boundary lines at the east and west of a

faulty block.

In terms of power modeling, two main power models ranging from RTL power

estimation tools [5] to early stage architectural power models [6 and 7] have been proposed in

NoC area. The first model requires complete RTL code and simulate slowly in the order of

hours, while an architectural power model takes in the order of seconds. The shortcomings of the

RTL power estimation models has led the development of early-stage architectural power models

and simulators such as the widely-used ORION [6] used in academia and incorporated into

industry tool chains for NoC power modeling.

The main methodology of the RTL-level NoC power models can be described by two

papers [5, 39]. Banerjee et al. have developed an RTL level power model for NoCs by first

extracting the SPICE level net list from the layout and then integrating the characterized values

into the VHDL based RTL design [39]. An accurate power characterization of a range of NoC

routers was performed through RTL synthesis and place and route using standard ASIC tool flow

by Synopsys [5]. Both studies has limitations of RTL-level power simulation such as slow

simulation time, and they require detailed RTL modeling that make them unsuitable for early-

stage NoC design space explorations. Besides, power models cannot be targeted for future

technology nodes. Patel et al. [40] first proposed an architecture level power model for

interconnection networks, deriving its power estimates based on transistor count. As the model is

not instantiated with architectural parameters, it cannot be used to explore tradeoffs in router

micro architecture design. ORION is an early-stage architectural power model for NoCs that was

originally proposed and released in 2002 [6]. It has since been widely used in academia and

incorporated into industry tool chains (such as Intel, AMD, IBM, and Freescale)[6]. Bona et al.

48

also presented a methodology for automatically generating the energy models for on-chip

communication infrastructure [40]. However, the focus is on bus based and crossbar based

communication for SoC systems. Bhat et al. proposed an architecture level regression analysis

model for different router components based on the energy volumes obtained from simulations

using MAGMA tools [41].

In terms of NoC simulator development, a lot of research has been done on developing a

SystemC simulation platform for analyzing the different aspects of an NoC system. Among the

current SystemC simulators, NIRGAM and NOSTRUM are the prominent one.

NOSTRUM is a SystemC NoC simulator intending to develop NoC architecture [33]. It

mainly concentrates on the communication issues from the general to the application level.

NOSTRUM utilizes wormhole switching, regular topologies such as 2D mesh or torus, XY

routing and deflecting routing. It employs a traffic flow generator that generates packets in

spatial, temporal and size distributions.

NIRGAM is a SystemC based discrete event, cycle accurate simulator for NoC design

[42]. It provides considerable support to examine different NoC designs in terms of routing

algorithms and various topologies. It is capable of simulation on 2D regular mesh or torus

topologies using wormhole switching. The routing algorithms are XY, OE, and SOURCE

routing. The traffic generator in NIRGAM generates packets in constant and bursty bit rate.

FAANOS covers all the functions of NIRGAM and NOSTRUM works with some new

approaches. It considers different bit rates in the application-oriented workloads and supports

them by producing appropriate output results. FAANOS implements a complete and diverse

routing mechanism in 2D topologies by using the mechanisms such as SOURCE, VIRTUAL-

CIRCUIT, Odd-Even and LP routing. These mechanisms lead to flexibility and simulation

49

accurate results, and it is more supportive for users to provide efficient NoC design environment.

FAANOS employs an analytical method to estimate the power and area of NoCs that is a fast

and accurate methodology in NoC area. It produces different power and area characteristics such

as static, dynamic, architectural and transactional power estimation as well as link and router

area that completely describe the power and area behaviour of an NoC design.

2.12 Chapter Summary

We described the concept, architecture and configuration of an NoC as well as outlined

and challenged the characteristic of NoC from the point of view of our simulator. In switching

techniques, we introduced the most current switching methods for example the wormhole

switching that is the most popular and well suited on chip [18] and employed it as the exclusive

and prominent switching technique in our simulator. In terms of topology, we introduced regular

and irregular topologies. The different kinds of traffic patterns have been introduced. In terms of

power and area, we proposed an analytical method which dive in micro-architectural structure of

NoC modules and extract the power models of each module using the structural characteristics of

smallest component of a CMOS circuit (transistor). We broke down and defined the concept of

performance to four characteristics such as throughput, latency, packet drop, and link utilization.

The concept of power was also broke down to four characteristics such as static, dynamic,

architectural and transactional power estimation, and then they were defined. At last, we briefly

explained some previous works in terms of routing algorithm, power modeling and framework

development.

50

Chapter 3

Structure of NoC Simulator

In NoC technology, there are a wide variety of NoC simulators, ranging from very simple

to complex. Minimally, a network simulator may enable a user to define basic NoC elements

such as network topology, router, link, and traffic pattern in the network. More complex

simulator can allow users to specify everything like the current routing methods or power and

area simulation for the NoC. Our NoC simulator, FAANOS, is a complex simulator coded in

SystemC language representing a flexible and accurate NoC simulation framework [4]. It gets

the configuration of a given NoC and provides accurate results related to power, area and

performance of the NoC. We have used SystemC to create a cycle-accurate model of NoC

hardware architecture, and NoC interfaces. The outline of this chapter is as follows. The

infrastructure of NoC simulator is introduced in section 3.1. The hardware, power and area

modeling of the NoC are described in sections 3.2, 3.3 and 3.4 respectively. An estimation

methodology for the link length is proposed in section 3.5, and the performance, power and area

estimations of NoC are provided in section 3.6. Finally in section 3.7, we propose an evaluation

flow model for NoC systems.

51

3.1 Infrastructure of NoC Simulator

The block diagram of the structure of our simulator (FAANOS) is demonstrated in Fig.

3.1. The blocks and arrows indicate the flow of data and information in the simulator. The first

executive block in the figure is the User Interface. It gets NoC parameters in the form of various

data numbers and text file related to NoC cores and their parameters. The User Interface converts

the input data into core graph and core switch graph of NoC for visualization, and finally it

generates a file which will be used for NoC simulation in the next block. The NoC Simulation

block consists of all the hardware descriptions of NoC modules in the form of SystemC and

some of the SystemC modules are utilized for producing output results.

Figure 3.1: NoC Simulator Structure

User

Interface

Display

core

graph

Display

core

switch

graph

Core text

file
Parameters

Main file

Performance

Results

Power

Results

Area

Results

Trace

File

Input to simulator

Executive Block

Output Graph

SystemC modules

Output results

Main

Module

Router

modules

Source

modules

Sink

modules

Traffic

generator

module

T

TIERS (L, I, SG, G)

Building Blocks

INVX1

NORX1

NAND2X1

.Lib

Orion 2.0
Technology Parameters

Devices Interconnect

LEF/ITF

ITRS

PTM

Local

Intermediat
e Semi-global

Global

Automatic

Extraction

MASRER

SPICE Sim

Interconnect

Chapter

Extraction
Automatic

NoC Simulation

52

The main functions of NoC Simulation block is completely depicted in the figure as described

next. The inputs to this program are the files, which are prepared by the user and the User

Interface program, as well as libraries of power and area parameters. The NoC power and chip

area details are embedded in the simulator. The NoC Simulation block uses these inputs to

synthesize the final NoC structure and then start the simulation process. After the completion of

simulation, it produces the area, power and performance results of NoC accompanied by a trace

file.

3.2 Hardware Modeling of NoC Simulator

Our simulator is divided into a number of NoC component modules that represent various

areas of functionality of an NoC design. These modules are the basic container object
*
 of

SystemC. To better understand the structure of simulator, we start from a small NoC design that

is depicted in Fig. 3.2. It consists of a source module, a traffic generator, a sink (receiver) module

and a router module. These four modules are connected by communication links together. The

source, sink and traffic generator modules play the role of SoC cores in the simulator. However,

we use only one traffic generator. The source, sink and router module can be more than one and

are identified by unique ID numbers. For the specific NoC of Fig. 3.2, the ID for the source,

router and sink modules are the same and equal to zero.

*A container is a class, a data structure, or an abstract data type .

Figure 3.2: a small NoC

Router

Source

Sink
ack_in

Acknowledgment

Traffic Generator
CLK

Router_id=0 Sink_id=0

Traffic_id

Source_id=0

Packet_out Packet_in

ack_out

sclk

53

Each module contains of two basic elements such as port and process [43]. Ports allow

communication among the modules. Processes are the main computation elements which execute

concurrently. In the following sections, we describe the port and process element for each

module.

3.2.1 Modeling the Source Module

The source module and traffic generator play the role of a source core in our NoC

simulator. The source module in is configured as a greedy source, which produces synthetic and

random packets at the highest rate possible and at the earliest opportunity. The source module

uses a particular message structure, which gives the design access to the packet definition and

methods associated with the packet. A message consists of packets where a packet is formed by

various number flits. A flit is the smallest element of data which travels inside NoC at a clock

cycle. In FAANOS, a packet has at least two flits of header and payload. The header flits are

needed to route data from the source node to the sink node. The header flit has various routing

information as depicted in Fig. 3.3 and described as follows:

 Source and sink address bits are used to identify the sender and receiver nodes. The

size of them is defined by a parameter such as FW. The parameter FW is determined

depending on the number of cores in NoC. For example, if the number of cores is sixteen

meaning FW should be more than four. It also determines the size of the FIFO buffer

such as 2.FW+5.

 Virtual channel bits determine the number of virtual channels used in each channel of

the router. The parameter vcid specifies the size of these bits. The default is 2 bits for 4

virtual channels.

54

 Vertical/horizontal bit determines the movement of packet. It is obvious that switching

this bit switch XY to YX routing. In the router this bit can be changed depending on the

routing algorithm used in the simulator.

 Imaginary clock bit flips between 0 and 1 in each new flit and plays the role of a clock

in a packet. An NoC system is stimulated by events and an event is invoked for a new flit.

If two flits have the same contents, then an event will not be created. In order to

differentiate between two flits, this clock bit is employed in every flit.

 Tail/Header bit determines the end of a packet and this bit is set high in the last flit. The

payload can be more than a flit. Each payload flit carries data as well as tail/header and

imaginary clock bits.

The source module has four input ports traffic_id, source_id, ach_in and CLK as well as one

output ports packet_out (see Fig. 3.2). The output port, packet_out is connected to the router, and

the source module uses it to send packets to the router. The input port, source_id has the

identification code that identifies the source module in the NoC. The input port, traffic_id is

connected to traffic generator and at each clock cycle has a destination address related to that

source. The input port, ach_in is connected to router and gets the acknowledgement for sending a

new packet. The input port CLK is connected to the clock generator. The source module has a

1 1 0 1 1 0 1 0 0 0

CLK
Tail bit

0 1

Data

0

B: payload flit

1 1 0 1 1 0 1 0 0 0

Source Sink

V/H
CLK

Tail bit

0 1

vcid

0

A: header flit

Figure 3.3: Header and payload flit

55

process, which is sensitive to positive edge transitions on the input port CLK. The main duty of

the source process is to make packets depending on the packet specification and to send packets

inside NoC depending on the characteristics of traffic pattern. The source process is invoked by a

clock event. It calls two subroutines depending on the chosen traffic pattern as follows.

In the case of regular pattern (i.e. fixed, uniform and locality), the function regular_gen()

will be executed. At the beginning of regular_gen() function, there are local variables to keep the

frames and local data and the function continuously sends data packets to network and have a

termination condition depending on how many packets has been sent. When the termination

condition happens, the source module stops the simulation and starts the calculation of output

results. The other condition is whether the router is ready to receive packets. In each clock, the

acknowledgment port of router is read, and if the router is not ready, it increases the packet drop

of the source and returns. When the router is ready, it goes into a loop to send packets. The

function gets the destination ID from the input traffic_id and generates the header flit and sends

it to the router. Then the function generates the flit consisting of data, h_d bit and flit_clk bit, and

then sends it to the router. The pseudocode for the source process is illustrated in Fig. 3.4.

In the case of irregular pattern or application-oriented traffic, the function irregular_gen()

is executed. In this case, the source module does not use the traffic generator module, however it

reads a core txt file that contains the core information of NoC application and then saves this

information in an array buffer. Then it derives the destination addresses and rate of packet related

to the sources. As each source is independent from the other sources, a source should

independently calculate some parameters to operate under the same configuration with other

sources. The source process then scales all the packet rates by dividing it with the minimum

packet rate. This scaling is useful for large packet rates. Therefore, we have considered a variable

56

SCALE_P in the configuration parameters that activate this operation in the simulator. The

source process then calculates the parameter PERIOD from the scaled packet rates and assigns as

simulation time. PERIOD is the minimum guaranteed time in which every source sends at least a

packet to its destination. The simulation time is the same in all the sources and all the sources

operate under the same scaling factor. The source process then enters to a loop, while has a

termination condition depending on the number of packets sent. When termination condition

happens, that stops the simulation as well as starts calculating the output results. Another

condition in the loop is whether the router is ready to receive packets. In each clock cycle, the

source process reads the acknowledgment port of router. If the router is not ready, it increases the

dropped packet variable and returns. When the router is ready, it goes into a loop to send packets.

The function depending on the destination addresses derived from core txt file generates the

header flit as well as sends it to the router. Moreover, the function generates the flit consisting of

the data bits, and then sends them to the router. The pseudocode of the source process is

illustrated in Fig. 3.4 that can be consulted for further details.

57

void source:: func()

{

 if(IRREG_TRAFFIC==0)regular_gen(); //when traffic pattern is regular

 if(IRREG_TRAFFIC==1)irregular_gen(); //when traffic pattern is irregular

}

void source ::regular_gen() //the source function using regular traffic pattern

{

 define the local variables;

 Initial the local variables;

 while(sim_count++ < SIM_NUM) //continue till current time is less than SIM_NUM

 {

 wait();

 if(sim_count > (SIM_NUM*LOAD)) goto exclude; //when current time is higher than

 //SIM_NUM*LOAD do nothing

 ack = (bool)ach_in.read(); //read the acknowledgment port of the router

 if(ack) ++flt_drp; //when the router does not accept packet

 else //when the router accepts packet

 {

 Handle the burst messages;

 Read the input port which connected to traffic generator;

 Save it as destination ID;

 Generate packet related to destination ID;

 Send packet;

 Keep records of the total time and number of packets

 Initial for next clock cycle

 exclude:;

 }

 }

 sc_stop();

}

void source ::irregular_gen()//the source function using irregular traffic pattern

{

Define the local variables;

 Initial the local variables;

 Read file, core.txt, and save in a array buffer;

 Derive the associated destination Id;

 Derive the associated rate of packet;

 Derive the parameter PERIOD and assign to SIM_NUM;

 Scale the rate by dividing it by the minimum rate;

 New initiation of the local variables;

 while(sim_count++ <(SIM_NUM*period)) //continue till current time is less than SIM_NUM

 {

 wait();

 ack = (bool)ach_in.read(); //read the acknowledgment port of the router

 if(ack) temp++; //when the router does not accept packet

 else //when the router accepts packet

 {

 Handle the burst messages;

 Generate packet related to destination ID;

 Send packet;

 Keep records of the total time and number of packets;

 Initial for next clock cycle;

 exclude:;

 }

 }

 stop function

}

Figure 3.4: Pseudocode of source process

58

3.2.2 Traffic Generator

 In FAANOS, the traffic generator is responsible for dictating the traffic pattern to the

source modules. When the traffic is application-oriented, it is implemented as a separate function

for each source module. We described it an irregular_gen()function as part of a source module in

the previous section. But when the traffic is spatial (i.e. uniform or locality) and topology is

regular (i.e. Mesh or Torus), it is synthesized as a single module.

In this configuration, by considering the traffic generator as a single model, we can fully

control on the generation of uniform or locality traffic. For example, in each clock cycle, a new

traffic pattern is generated once for each destination address. In other words, each source sends

packet to a sink and each sink receives the packet from a source. The traffic generator module

has a number of output ports that are connected via an array of signals to every source in the

NoC. In each clock cycle, the traffic generator sends the address of destination of each source via

these signals. It contains one process which runs at each positive edge of clock cycle. The traffic

pattern has three types: fixed, uniform and locality. The process first checks the traffic

configuration, and then depending on the pattern it activates a particular pattern as follows.

In the case of fixed traffic pattern, the traffic generator sends a fixed traffic pattern to the

sources during simulation time. This fixed traffic pattern should be assigned in advance by the

user.

 In the case of uniform traffic pattern, the process randomly chooses a destination address

from the current available destination addresses and sends to a source. In this pattern, each

destination address is repeated one time and no source sends packet to itself. The pattern can be

changed in each clock cycle.

59

In the case of locality traffic pattern, the locality coefficients are assigned in advance by

the user and before starting the simulation. These coefficients determines with what probability a

destination address can be chosen for a source. For example, if we assume that there are four

coefficient probability in the system that they are intialized as LOC_ONE=8, LOC_TWO=4,

LOC_THREE=3, LOC_FOUR=1, so for each source, the probability of choosing the destination

among its neighbours is assigned for each source as follows. The probability of choosing a

destination among the first neighbours far from the source is 8 out of 16. The probability of

choosing a destination among the second neighbours far from the source is 4 out of 16. The

probability of choosing a destination among the third neighbours far from the source is 3 out of

16. Finally the probability of choosing a destination among the fourth neighbours far from the

source is 1 out of 16. Therefore, the process first considers a source and randomly chooses a

number between 1 and 16. If the number is between 1 and 8, the destination is randomly chosen

among the first neighbours far from the source. If the number is between 9 and 12, the

destination is randomly chosen among the second neighbours far from the source. If the number

is between 13 and 15, the destination is randomly chosen among the third neighbours far from

the source. Finally, if the number is 16, the destination is randomly chosen among the 4th

neighbours far from the source. The other consideration of making the pattern is that each

destination address should be repeated one time in the pattern and no source sends packet to

itself. The pattern is changed in each clock cycle. At the end, the destination address of each

source is sent to the output port connected to the source. The pseudocode in Fig. 3.5 shows the

operation of the traffic generator process.

60

3.2.3 Modeling the Sink Module

The sink module accepts packets from the router module and keeps record of the number

and time of incoming packets. It plays the role of a receiver core in the NoC. When the sink

module successfully receives a packet, it sends an acknowledgment bit back to the router

module. The sink module has four ports consisting of three input ports, packet_in, sink_id and

sclk, and an output port, ack_out (see Fig. 3.2). The input port, packet_in accepts packets from

the router. The clock port, sclk is connected to the clock generator. The input port, sink_id has a

fixed value that identifies the sink module in the network. The output port, ack_out is used to

send acknowledgment bit to the router. The sink module contains a process receive_data that is

invoked when a new packet arrives on packet_in port (packet event) and a positive edge

transitions on the clock port (clock event). In the case of a packet event, the process first stops

receiving of new packet from the router. Then it reads packet and keeps the records of time and

// traffic_gen.cpp

void traffic_gen:: func()

{

 if(fixed)

 {

Send the destination address of each source

to the related output port depending on the fixed pattern;

 }

 if(UNIFORM)

 {

 Randomly chooses a destination address from

the current available destination address;

Generate traffic pattern;

Send the destination address of each source

to the related output port based on uniform pattern;

 }

 if(LOCALITY)

 {

 Consider a source;

 Randomly Choose a number among the sum of the locality coefficients;

Determine the neighbours related to the chosen number;

Randomly choose a destination address amonge the chosen neighboures;

Generate traffic pattern;

Send the destination address of each source

to the related output port based on the locality pattern;

 }

}

Figure 3.5: Pseudocode of function in the traffic generator module

61

number of incoming flits. In the case of a clock event, the process lets the router send new

packet. The clock adjusts the speed of sink by controlling the acknowledgment to the router. The

pseudocode in Fig. 3.6 shows the operation structure of a sink process.

3.2.4 Modeling the Router Module

Two kinds of router namely the regular and irregular are used in our simulator. The

regular router has five input ports and five output ports as shown in Fig. 3.7. It is used in the

regular topologies such as Mesh or Torus. The regular router employs all the routing

mechanisms described in chapter 2. However, the irregular router has flexible input and output

ports depending on the application specific topology of the system. It is modeled to have

maximum 16 input/output ports as well as it is used in irregular topologies.

void sink::receive_data()

{

 if (clock event)

{
let the router send new packet;

}

 if (packet event)

 {

 stop receiving new data;

 read data;

 keep records of the total time of received flits;

 keep records of the total incoming flits;

 }

}

Figure 3.6: Pseudocode of sink process

62

The router module accepts packets from the source (or other router modules) and passes them to

the sink (or other router modules). When the router receives a packet, it puts the packet into a

channel. The address of the channel is determined by the incoming packet. The router checks

whether the channel is full or no. If the channel is full, the router sends back an acknowledgment

bit to the source module to tell the module to hold any further packets for the channel. The router

also waits for acknowledgment from the receiver module after it sends a packet to the receiver.

The router consists of some lower level modules such as FIFO, crossbar, arbiter and demux

which are connected by signals together as illustrated in Fig. 3.7. A regular router module of 5×5

size contains 22 ports consisting of twelve input ports and ten output ports. The first input port,

in [0] accepts packets from the source module and port inact0 accepts acknowledgment bit from

the sink module. Port outact0 and out [0] send acknowledgment bit to the source module as well

as data packets to the sink module respectively. The input port router_id has the constant value

Outack 0

Req L grant L

Req N grant N

Req E Arbiter grant E

Req S grant S

Req W grant W

 Arbiter_id

 aclk Aselect free_out

Local

Source
Link L

 FIFO

D

E

M

U

X

rclk

Link N

FIFO n

FIFO 0

Local

Sink
D

E

M

U

X

Inack0
co

nfi

g Link L
Link E

 FIFO 0

Link N

 FIFO n

In L out L

In N out N

 Crossbar

In E out E

 (5×5)

In S out S

In W out W

Link E

D

E

M

U

X

 FIFO 0

Link S

Link S

 FIFO n

 FIFO 0

D

E

M

U

X

Link W
Link W

Router_id

Router

 FIFO n

Figure 3.7: 5×5 wormhole router or regular router

In[4]

Out[0]

In[0]

In[3]

In[2]

In[1]

63

of router ID. The clock input port rclk is used to get clock pulse from clock generator. Figure 3.7

shows these ports. The router process contains a process called r_func (). This process is

sensitive to the events on the four input ports: in [1], in [2], in [3] and in [4]. When a new

packet is received, the router function r_func () is invoked to keep the records of the number of

incoming packets. All the router tasks like incoming packets, acknowledgments, routing and

transferring packets are done by the lower level modules of the router. The router only binds

these modules and executes the router process. To provide a better understanding of how they

work, we describe the journey of a header flit inside the router. Assume a local source module

injects a header flit into the input port of first FIFO module. The FIFO module writes the flit

into the tail of its buffers. When the flit emerges at the header of FIFO module, a request

containing the route information is sent to the request port of arbiter module (Req L) for the

desired output port (assume the north output port). The arbiter module performs the required

arbitration. When the request is granted, the arbitration result is sent to the configure port of

crossbar module (config). A grant signal is also sent to the grant port of FIFO module. Then the

FIFO module activates its read port resulting the injection of flit to the input port of crossbar

module. The flit then traverses through the crossbar module from its input port In L to its north

output port Out N. Finally, the flit will leave the router. The following sections describe these

modules and their implementation in detail.

a) Arbiter Module

When a router is the heart of NoC, the arbiter is the brain of router. The arbiter module

handles all the methods in a router like the routing and switching algorithms. When the router

has one virtual channel, the arbiter module has eight input ports and six output ports as shown in

64

Fig. 3.7. The request and grant ports are connected to FIFO buffers. Aselect port is connected to

the crossbar module and when the arbitration is done, it will have the free requested output port.

Free_out is connected to the in_act port of router and contains the acknowledgment from the

receiver modules. Arbiter_id is connected to the router_id so that the arbiter has access to id of

the router. Aclk is connected to rclk and by this means to the router clock generator. The arbiter

module contains one process called a_func (). This process is sensitive to the events on the

request ports and the positive edge of aclk. The arbiter process has one main function called

a_func () and eleven sub functions.

The arbiter process performs its jobs in two modes. In the first mode, it is invoked by a

clock event and in the second mode by the request event. In other words, when a packet is

injected into an input port of a router, it is directed by a demultiplexer into the first free virtual

channel (FIFO buffer). The FIFO module sends the routing address of packet to the arbiter as a

request event. When the arbiter detects that event, it reads the destination address and checks that

whether the output address is free. If it is free, then the packet will be sent through that output

port. The arbiter then disables a specific bit in the variable, free_output meaning that no data can

be sent through the output port. This bit stays disable until the next clock event. When a clock

event is invoked, the arbiter first checks that whether any output port gets free. If it is free, the

arbiter enables the free_output bit related to that output port. Enabling this bit means that the

related output port is ready to operate. The second duty of clock event is to pay attention to any

unanswered requests. If there is any unanswered request, the arbiter checks its requested output

port. If it is free, the data can go through that port. If the output port is not available, the request

will stay until the next clock event. Figure 3.8 lists the pseudocode of arbiter process.

65

void arbiter :: a_func()

{

 while(true) {

wait();

 initiate the local variable in each while loop;

 if (aclk.event()) { //Start of clock event

 Start of whether any output port is free ;

 End of whether any output port is free;

 Start of checking whether there is any remaining request for output port;

 Start of condition when input is reseved and after a while output will be freed;

 End of condition when input is reseved and after a while output will be opened;

 Start of condition when a header flit is in VC and requested output port is freed;

 Start line_probe algorithm;

 End line_probe algorithm;

 End of condition when a header flit is in VC and requested output is freed;

 Start of condition when input is reseved and after a while output will be freed;

 End of condition when input is reseved and after a while output will be opened;

 Start of condition when a header flit is in VC and requested output is freed;

 Start line_probe algorithm;

 End line_probe algorithm;

 End of condition when a header flit is in VC and requested output port is freed;

 End of checking whether there is any remaining request for output port;

End of clock event;

Start of request events;

 else {

 if (req0.event()) {

Start of sending the body of packet;

End of sending the body of packet;

 Start of reading the header and sending the packet;

Start ODD_EVEN;

 End ODD_EVEN;

Start line_probe algorithm;

End line_probe algorithm;

End of reading the header and sending the packet;

Start for checking whether output port is free;

End for checking whether output port is free;

Start of sending the body of packet;

End of sending the body of packet;

 Start of reading the header and sending the packet;

 Start ODD_EVEN;

End ODD_EVEN;

Start line_probe algorithm;

End line_probe algorithm;

End of reading the header and sending the packet;

}}} //End of the request events, while and a_func()

Figure 3.8: Pseudocode of arbiter process

66

b) Demultiplexer Module

The demultiplexer module receives packet from a sender module via the input port of the

router. The module (demux) directs the packet to a FIFO module depending on the vcid value of

header flit. When the router has four VCs, the demux module has one input port and four output

port as illustrated in Fig. 3.9. It has one process called d_func(). The process d_func() is sensitive

to event on the input port d_in. When an event happens, the function d_func() is provoked. First

it read the data and if it is a header flit, the function stores its vcid value for a switch condition. In

the switch condition, the process jumps to a case depending on the vcid value of the header flit.

The case instructions write the flit to the input port of associated channel. Figure 3.10 depicts the

pseudocode of the demux process.

void demux :: d_func()

{

while(true)

 {

 wait();

 read input flit;

 if the flit is header{ store its vcid to v_demux; }

 switch (v_demux)

{

 case 0: write flit to the output port of associated channel;

 case 1: write flit to the output port of associated channel;

 case 2: write flit to the output port of associated channel;

 case 3: write flit to the output port of associated channel;

}}}

Figure 3.10: Pseudocode of demux process

d_out2

d_out0

d_out1

d_out3

d_in

d
e
m
u
x

Figure 3.9: demux module

67

c) FIFO and Virtual Channel

Each input port of a regular router has at least a FIFO buffer module or maximum four

FIFO modules. When the demux module directs a flit to the input port of FIFO module, the

FIFO module writes the flit into the tail of its buffers. When the flit emerges at the head of

FIFO, a request containing the route information is sent to the request port of arbiter module for

the desired output port. After the arbiter module performs the required arbitration, it sends a

grant signal to the grant port of FIFO module that leads to the activation of the read port of

FIFO. The flit is injected to the input port of crossbar module. The detailed description of the

above mentioned operation fallows.

The FIFO module has three input ports: wr, grant and bclk as well as three output ports:

re, req and ack as illustrated in Fig. 3.11. It has a process called f_func(). The process f_func() is

sensitive to the events on the three input ports. The process function is provoked when one or

more events happen on the input ports. In the write event wr.event(), the packet is stored in the

tail of FIFO buffer. In the grant event grant.event(), the packet is sent to the crossbar module. In

the clock event bclk.event(), the FIFO module sends a request to the arbiter module. The FIFO

struct object provides a first in first out property to the buffers of FIFO module. The module

creates this property by two functions i.e. packet_out() and packet_in(). The packet_in function

stores the flit in the tail of FIFO buffer and if the buffer is full, it causes the FIFO module to stop

receiving new packets. The packet_out function shifts the contents of all registers once toward

the head of FIFO module and if the module is full, it changes the condition in which FIFO starts

receiving new packet. The pseudocode of Fig 3.12 depicts the functionality of this process.

 ack grant req

wr FIFO re
 clk

Figure 3.11: FIFO module

68

void buf_fifo :: f_func(){

 while(true){

 wait();

 if (wr.event()){ // start reading incoming packets

 read flit from input port;

 store in the FIFO module;

 send back the new condition of FIFO;

 send a request to arbiter module;

 }

 if (grant.event()){ // start sending the packets out

 send flit to crossbar module;

 send back the new condition of FIFO;

 }

 if (bclk.event()){

 send a request to arbiter module;

 }

}}

/* define FIFO */

struct fifo {

 define some registers (their number is equal to the size of FIFO);

 define a vaiable for the condition that FIFO is full;

define a vaiable for the condition that FIFO is empety;

define a vaiable (regnum) that points to the number of tail register;

define two function packet_in and packet_out;

}

/* store data in the tail register of FIFO */

void fifo::packet_in(data){

 increament the variable regnum that points to the tail of FIFO;

 store data in the register that regnum points to it

 state the FIFO is not empty

 if (regnum == the size of FIFO) state the FIFO is full

}

/* read data from the header register of FIFO and shift the FIFO one register to the right */

packet fifo::packet_out(){

 decreament the variable regnum that points to the tail of FIFO;

 if (regnum == 0) state the FIFO is empty;

 else shift the content of FIFO one register to the right;

 state the FIFO is not full;

 send out the content of the first register;

}

Figure 3.12: Pseudocode of FIFO process

69

d) Crossbar Switch Module

When a flit is injected to the input port of crossbar module, the crossbar module reads the

address of output port associated to the packet from the input port config, and then sends the

packet out of the router via that output port. The functionality of crossbar is provided in detail

here. When the router is regular and has four VCs, the crossbar module has eighteen input ports

and five output ports as illustrated in Fig. 3.7. It has a process called c_func (). The process

c_func() is sensitive to the events on seventeen input ports (except config port). The process

c_func () is provoked when one or more events happen on the input ports. In the event, it reads

the configuration address from the config port and then sends the packet via its associated output

ports. The pseudocode of Fig. 3.13 is an event condition for the input i0. The remainder event

conditions in the crossbar process are the same as the codes in this figure.

Read the output addresses from the config port

if (i0.event())

{

 Read the flit from the input i0;

 switch (associated output address)

{

 case 2: send the flit of input port to the north output port;

 case 3: send the flit of input port to the east output port;

 case 4: send the flit of input port to the south output port;

 case 5: send the flit of input port to the west output port;

 break ;

 }

}

Figure 3.13: Pseudocode of a condition in crossbar process

70

3.2.5 Main Simulator Module

The main function is the top-level entity that ties all the NoC modules together and

provides the clock generation and tracing capabilities. The pseudocode of main simulator module

is shown in Fig 3.14.

// main_noc.cpp

include "files"

int sc_main(int argc, char *argv[])

{

 Define local signals;

 Define local variables;

 Declare clocks;

 Instantiate the traffic generatore;

 Connect its ports to lacal signals;

 Instantiate the sources;

 Connect its ports to lacal signals;

 Instantiate the sinks;

 Connect its ports to lacal signals;

 Instantiate the routers;

 Connect its ports to lacal signals;

 Trace instractions;

 sc_start(); // start simulation

Close trace files; // stop simulaton

if(REG_TRAFFIC) // regular traffic

{

Calculate the performance, power and area metrics;

}

if(IRREG_TRAFFIC) // irregular traffic

{

Calculate the performance, power and area metrics;

 }

}

Figure 3.14: Pseudocode of main function

71

The main SystemC function includes all of the modules in the NoC design. We

instantiate each of the lower level modules as well as connect their ports with signals to create

our NoC design. To instantiate a lower level module, the interface of the module must be visible.

The local signals are declared to connect the module ports together. Three types of signals with

different sizes such as packet, Boolean and FW (e.g. eight) are needed to cross connect the

source, sink, traffic generator and router modules. After declaration of signals, there are three

clock generation declarations: clock1, clock2 and clock3. The number of clock generator is

optional and can be equal to the number of modules in the design. However, we design the

simulator to have three clock generators. Clock1 generates clock cycle for the source modules.

Clock2 generates clock cycle for the router modules while Clock3 generates clock cycle for the

sink modules.

The modules in the simulator design are instantiated after the declaration statements. The

traffic generator, source, sink and router module are instantiated as well as connected together

with the locally declared signals. This completes the implementation of NoC simulator design.

The SystemC program can now be built and run. To make it easier to determine if the design

works as intended, we create a trace file with the built-in signal tracing methods in SystemC.

After simulation is executed, we can examine the results stored in the trace file with a number of

visualization tools that generate waveforms and tables of results. After the simulation is

completed, the instructions related to the calculation of output results are executed. We explain

the definition and calculation of these results in section 3.6. After the example is completely

described in SystemC, the commands to build the simulator need to be specified.

72

3.3 Power Modeling of NoC Simulator

In this section, we propose an analytical method for estimating the power and area of

NoC routers and interconnection links by varying the router architecture, ports, and

interconnection link widths. We use the architectural models of different NoC components as

well as the parameters and equations which are established inside these models to obtain the area

and power consumption estimates. The results, which we obtain in this section, will be used not

only to develop better energy/area models of NoC components, but also to understand the

bottlenecks as well as suggest directions for the improvement of router architecture.

3.3.1 Derivation of Leakage Current (Ileak)

As we mentioned in section 2.8.1, we need two characteristics Isub and Igate for each basic

circuit components to estimate the static power. Isub and Igate for each component are listed in

Table 3.1. They are derived from HSPICE and 65nm foundry SPICE model with corresponding

technology parameters. Therefore, as the structure of each NoC module is hierarchically

composed from these basic circuit components, FAANOS can calculate the Ileak for each based

on the Equation 2.8 in section 2.8.

Table 3.1 Isub and Igate (per-micron of gate width) for each basic circuit component i at

different input state s, 25
◦
C and for high Vth.

i s Isub (A) Igate (A)

NMOS 0 1.097e-07 4.622e-09

PMOS 1 3.172e-07 3.291e-09

INV 0

1

1.097e-07

3.172e-07

4.622e-09

3.291e-09

NAND2 00

01

10

11

7.098e-08

1.134e-07

1.342e-07

1.766e-07

3.549e-09

5.103e-09

1.194e-08

1.625e-08

NOR2 00

01

10

11

1.971e-07

1.034e-07

1.412e-07

7.245e-08

6.701e-09

4.343e-09

8.048e-09

6.448e-09

73

3.3.2 Arbiter Leakage Modeling

In spite of different routing strategies in the arbiter, three types of arbiters namely matrix,

round robin, and queuing are modeled in FAANOS. Here, we just explain the matrix arbiter,

which is introduced in Orion [6]. For an arbiter with R requesting entities, one can represent its

priorities by an R×R matrix. With one in row i and column j, if requester i has higher priority

than another requester j, and zero otherwise. This method requires just R(R −1)/2 matrix

elements in flip-flops. Equation 3.1 represents the relation between the nth grant and the

requests.

grantn= reqn ×

 (3.1)

where

 reqi is the ith request;

 grantn is the nth grant;

 mij is the ith row and jth column element in the matrix.

Figure 3.15 shows the combinational logic of matrix arbiter. By considering Equation 3.1 and

Fig. 3.15, the power static of matrix arbiter can be estimated by Equation 3.2.

 Figure 3.15: Gate level design of matrix arbiter

Req 1 grant 1

Grant generation logic

Req n

Req R grant R

 Aselect free_out

Priority matrix
(R(R-1)/2 flip flops)

Ti

Tn2

grant n
reqn

reqR
mRn

reqn+1

m(n+1)n

T1

reqn-1
m(n-1)n

req1
m1n

Tn1

74

Pleak (arbiter) = Ileak (arbiter). Vdd (3.2)

where

 Ileak (arbiter) = Ileak (NOR2). ((2R-1)R) + Ileak(INV). R + Ileak (DFF). R(R-1)/2

 R= number of request

3.3.3 Matrix Crossbar Leakage Modeling

FAANOS models the crossbar in two kinds: matrix and multi-tree. Here, we explain the

matrix model of Crossbar. Figure 3.16 shows the gate level structure of normal matrix crossbar.

The matrix crossbar consists of several horizontal input wires over vertical output wires, plus

trans-gate or tri-state buffers at the cross-points. These tri-state buffers allow each input port to

be electrically connected to any output port [44]. Table 3.2 shows the parameters and equations

related to the static power of matrix crossbar.

Input 1

Input 2

Input I

O
u

tp
u

t 1

O
u

tp
u

t 2

O
u

tp
u

t O

W columns

W
 ro

w
s

Tid

Tod

Figure 3.16: Matrix crossbar with I input ports, O output ports and W port width in bit. The connectors are

transmission gate.

75

Table 3.2 Leak parameters of Matrix crossbar model

I No. of crossbar input ports (default 5)

O No. of crossbar output ports (default 5)

W Port width in bits (default 21)

Ileak (transmission gate) Ileak(NMOS). I .O. W (3.3)

Ileak (input driver) Ileak(INV). I . W (3.4)

Ileak (output driver) Ileak(INV). O. W (3.5)

Ileak (control signal) Ileak(INV). I .O (3.6)

Ileak (crossbar) Ileak (transmission gate)+ Ileak (input driver)+

 Ileak (output driver)+ Ileak (control signal) (3.7)

Pleak (crossbar) Ileak (crossbar). Vdd (3.8)

3.3.4 FIFO Buffer Leakage Modeling

The FIFO buffer is modeled in two types of SRAM and Register in FAANOS. Here, we

explain the SRAM model of FIFO buffer. Figure 3.17 shows the gate level structure of normal

SRAM. By considering this figure and the parameters and equations in Table 3.3, the static

power of SRAM FIFO buffer model is estimated by Equation 3.16.

Sense amplifier

F columns

B rows

Tc

Tbd

Figure 3.17: FIFO buffer with one read and one write port.

Twd

Tpw

Tm
Tpr

wordline

Bitline

76

Table 3.3 Leak parameters of SRAM FIFO buffer model

F Flit width in bits (default 21)

B Buffer size in flits (default 2)

Pr No. of buffer read ports (default 1)

Pw No. of buffer write ports (default 1)

V_CH The number of virtual channel (default is 1)

Ileak (bitline) 2. Pw .F.Ileak(INV) (3.9)

Ileak (pre-bitline) 2. Pr .F.Ileak(PMOS) (3.10)

Ileak (wordline) (Pr+Pw).B. Ileak(INV) (3.11)

Ileak (memory cell) 2.B.F. Ileak(INV) (3.12)

Ileak (read port pass) 2. Pr .F.B.Ileak(NMOS) (3.13)

Ileak (write port pass) 2. Pw .F.B.Ileak(NMOS) (3.14)

Ileak (in FIFO buffer) Ileak (bitline)+ Ileak (pre-bitline)+ Ileak (wordline)+ Ileak (memory cell)+ Ileak (read port pass)

+ Ileak (write port pass) (3.15)

Ileak (FIFO buffer) I. V_CH . Ileak (in FIFO buffer)

Pleak (FIFO buffer) Ileak (FIFO buffer).Vdd (3.16)

3.3.5 Physical Link Leakage Modeling

The static power of links is due to the repeaters inserted in them. For repeaters, the

leakage occurs in both output states. NMOS devices produce leakage current when the output

state is high while PMOS devices leak when the output state is low. This is applicable to buffers

also as the second stage devices are the primary contributors due to their large sizes. As

mentioned, leakage power has two main components: sub-threshold leakage and gate-tunnelling

current. Both components depend linearly on device size. Therefore, leakage power can be

calculated using the equations given below [25]:

Ps=(pns+pps)/2 (3.17)

pns=kn0+kn1.Wn (3.18)

pps=kp0+kp1.Wp (3.19)

Where

 pns and pps are the leakage power for NMOS and PMOS devices respectively;

 kn0 = -6.034, kn1= 26.561, kp0 = 1.238 and kp1 = 27.082 are coefficients determined using

linear regression against 65nm low-power library.

77

State-dependent leakage modeling can also be performed using Equations 3.18 and 3.19

separately.

3.3.6 Component Modeling in Dynamic Power

This section explains the methodology of dynamic power modeling which we use in FAANOS.

As we mentioned in section 2.8.2, the switching energy is calculated by Equation 3.20.

E = 0.5αCVdd
2
 (3.20)

Where

 α is the switching activity;

 C is the switching capacitance;

 Vdd is the supply voltage.

To model an NoC module, we divide the module into several atomic components, whose

switching activities and capacitance can be independently calculated. A component is atomic if it

only consists of one capacitor, or multiple capacitors that have identical switching behaviour.

This property ensures that an atomic component can be represented by one capacitance. Usually

an atomic component consists of several physically connected capacitors. For example, a

wordline is physically connected to the gate ends of pass transistors connecting the wordline and

memory cells. In this way, the wordline and the gate ends of pass transistors belong to one

atomic component. There are cases where an atomic component consists of capacitors that are

not physically connected. For example, the gate ends of NMOS and PMOS transistors of an

inverter and their drain ends belong to one atomic component because they always switch

together. The dynamic power modeling of an NoC module is thus developed as described here.

First of all, we divide the NoC module into atomic components. Secondly, we derive capacitance

equations for each atomic component. Thirdly, the possible operations (functions) of NoC

78

module is identified (e.g. read, write, update, and their arguments). These operations and their

arguments are supposed to be accurately reported by the simulator. At the end, the equations that

compute switching activities (i.e. energy) of each atomic component are derived from the

operation arguments.

Component Power Modeling

Table 3.4 gives the capacitance notations used throughout the following sections. We use CACTI

to compute the actual values of Cg, Cd and Cw [35]. Transistor sizes can be user-input parameters

or automatically determined by Orion 2.0 [44] with a set of default values from CACTI and

applied with scaling factors from WATTCH [7]. Sizes of the driver transistors, e.g. crossbar

input drivers are computed according to their load capacitance. Ex denotes the energy dissipation

per switch of component x and is implicitly defined when component capacitance Cx is defined.

For each component, we first describe its regular structure in terms of architectural and

technological parameters. We then proceed with a detailed analysis and derive parameterized

capacitance equations by taking into account both the gate and wire capacitances. The

capacitance equations are then combined to estimate switching activity to determine energy

consumption per component operation.

Table 3.4 Capacitance notations

Notation Description

Cg(T) Gate capacitance of transistor/gate T

Cd(T) Drain capacitance of transistor/gate T

Ca(T) only applicable if T is an inverter. Ca(T)=Cg(T) + Cd(T)

Cw(L) Capacitance of metal wire of length L

Cin_cnt Input node capacitance of a crossbar connector

Cout_cnt Output node capacitance of a crossbar connector

Cctr_cnt Control node capacitance of a crossbar connector

CFF Switch capacitance of a flip-flop

CFC Clock capacitance of a flip-flop

Ex 1/2Cx
 or Cx

 depending on how to count switches, provided Cx is defined

79

Metal Wire Capacitance

The metal wiring is modeled using the values for bitmetal and Cwordmetal derived from

CACTI 5.1 [35]. These values include an expected value for the area and sidewall capacitances

to the substrate and other layers. We use these values for the capacitance estimation of bitlines

and wordlines in the FIFO module. Moreover, they are used to model the capacitance of pre-

decode lines, data / address bus, and other signals in the memory. Although the capacitance per

unit length would be probably lower for many of these busses than for the bit lines and word

lines, we have used the same value for the sake of simplicity.

Drain Cap of Transmission and Tri-state Gates

Figure 3.18 depicts the structure of transmission and tri-state gate respectively. The

transmission gate is made by a single nMOS or pMOS transistor, or by the parallel combination

of both.

out

Tri-State Gate

in

ctrl

Transmission Gate

Figure 3.18: structure of transmission and tri-state gate

:Transmission Gate

http://en.wikipedia.org/wiki/NMOS_logic
http://en.wikipedia.org/wiki/PMOS_logic

80

3.3.7 FIFO Dynamic Modeling

Most of the FIFO power is consumed when NoC is in the transaction condition. For

NoCs, a FIFO buffer can be implemented by either static RAM (SRAM) or shift registers [25].

Designers typically implement FIFO buffers as SRAM arrays. Y. Hoskote et al. have concluded

that the FIFO buffers consume up to 22% of the total router power [45]. An explanation of both

the SRAM array-based model and shift register-based model is provided as following.

SRAM-Based FIFO Buffers

Several architectural- level SRAM array power models have been proposed [25]. These

models are adopted and made more fine grained and also modified to take into account the

specific router micro architecture. For instance, a FIFO buffer does not need a decoder. Figure

3.19 shows the structure of an SRAM-based FIFO buffer and Table 3.5 lists the model

parameters and equations [6].

Figure 3.19: SRAM-based FIFO buffer with one read and one write port

Sense amplifier

F columns

B rows

Tc

Tbd

hcell

dw dw

Twd

Tp
wcell

Tm

81

Table 3.5 FIFO buffer model

Characteristic Description

Architectural parameters
B Buffer size in flits

F Flit size in bits

Pr No. of buffer read ports

Pw No. of buffer write ports

Technology parameters
Hcell Memory cell height

Wcell Memory cell width

dw Wire spacing

Model equations
Word line length Lwl = F[wcell+2(Pr + Pw)dw] (3.21)

Bit line length Lbl = B[hcell + (Pr +Pw)dw] (3.22)

Read Word line capacitance Cwl = 2FCg(Tp) + Ca(Twd) + Cw(Lwl)** (3.23)

Write Word line capacitance Cwl = 2FCg(Tp) + Ca(Twd) + Cw(Lwl) (3.24)

Read bit line capacitance Cbr = BCd(Tp) + Cd(Tc) + Cw(Lbl) +2Cg(Ts) (3.25)

Write bit line capacitance Cbw = BCd(Tp) + Ca(Tbd) + Cw(Lbl) (3.26)

Pre charge capacitance Cchg = Cg(Tc) (3.27)

Memory cell capacitance Ccell = 2(Pr + Pw)Cd(Tp) +2Ca(Tm) (3.28)

Sense amplifier energy Eamp from empirical model***

**Tp is the pass transistor connecting bit lines and memory cells; Twd, the word

line driver; Tbd, the write bit line driver; Tc, the read bit line precharge transistor; and Tm, the

memory cell inverter.

*** V. Zyuban and P. Kogge, The Energy Complexity of Register Files, Proc.

Int’l Symp. on Low Power Electronics and Design, 1998.

Register-Based FIFO Buffers

Some on-chip networks, such as the RAW microprocessor that evaluated by M. B. Taylor

et al, use shift registers to form the FIFO buffer [46]. The flip-flops are used as the building

block of shift registers [25]. Figure 3.20 shows the circuit schematic for a negative edge-

triggered D flip-flop. It can be changed to a positive edge-triggered device by using the clock's

complement. Hence, a FIFO buffer with size n can be implemented as a series of n flip-flops.

82

Write Operation

The write operation occurs at the tail of shift register. Assuming the new flit is and the

old flit is , the number of switched flip-flops is the Hamming distance between them.

Therefore, the write energy is calculated by Equation 3.29.

 =

 (3.29)

Where

is the energy to switch one bit.

To simplify the analysis, let denote the average switching activity (0.5 in the case of our

simulator); then the average write energy can be defined by Equation 3.30.

 = .

 (3.30)

Read operation

The read operation has two steps.

 The flit stored at the header of buffer is read into the crossbar. This step does not

consume any energy in the buffer. Since the header of buffer is directly connected to the

input port of crossbar.

Q

Q

Clk

D

Figure 3.20: The schematic for a negative edge-triggered D flip-flop

C2

C1

C3

C5

C6

C4

83

 Subsequent flits in the buffer are shifted one position towards the header. If the buffer

holds n flits before the read operation then (n-1) flip-flop writes are performed to shift the

data. Hence, the average read energy is calculated by Equation 3.31.

 read = (n-1) write (3.31)

The capacitance value across different drive strengths is obtained from TSMC 65nm G and

low-power standard cell library data sheets [25].

3.3.8 Crossbar Dynamic Modeling

We consider two ordinary crossbar implementations: multiplexer tree and matrix. Here,

we explain just the matrix crossbar model. Figure 3.21 shows the model of a matrix crossbar.

The data from an input port propagates to the input ends of connectors belonging to the same

row. The open/close states of the connectors determine which output ports receive the input data.

The components that can switch during data transfer are input, output, and control lines. Table

3.6 lists the model parameters and equations for the matrix crossbar.

Input 1

Input 2

Input I

O
u

tp
u

t 1

O
u

tp
u

t 2

O
u

tp
u

t O

W columns

W
 ro

w
s

Tid

Tod

Figure 3.21: Matrix crossbar with I input ports, O output ports and W port width per bit. The connectors are

tri-state buffers

84

Table 3.6 Matrix crossbar parameters and equations

Characteristic Description

Architectural

parameters

I No. of crossbar input ports

O No. of crossbar output ports

W Port width in bits

Technology parameters

ht Track height

wt Track width

Model equations

Input line length Lin = O.W. wt (3.32)

Output line length Lout = I. W. ht (3.33)

Input line capacitance Cxb_in = O.Cin_cnt + Ca(Tid) + Cw(Lin)* (3.34)

Output line capacitance Cxb_out = I.Cout_ cnt + Ca(Tod) + Cw(Lout) (3.35)

Control line capacitance Cxb_ctr = W.Cctr_cnt + Cw(Lin/2)** (3.36)

*Tid is the input driver, Tod is the output driver.

**We use average length for control lines and assume control lines are along the same

direction as input lines.

3.3.9 Arbiter Dynamic Modeling

As mentioned earlier, there are three types of arbiters such as matrix, round robin, and

queuing that are modeled in FAANOS. We will describe the matrix arbiter in this section. For an

arbiter with R requesters, R(R −1)/2 flip-flops are required. The relation between the nth grant

and the requests is given by Equation 3.1. Figure 3.22 shows the combinational logic of matrix

arbiter. One can derive the capacitance equations of request, grant, and priority signals; internal

nodes between the two levels of NOR gates; and the clock signal driving all the priority flip flops

by using Equation 3.1 and Fig. 3.22 which are shown in Table 3.7.

85

Table 3.7 Matrix arbiter model

Characteristic Description

Architectural parameter

R No. of requesters

req_len request wire length estimation is ad hoc

Model equations

Request capacitance Creq = Ca(Ti) + (R-1)Cg(Tn1) + Cw(req_len)+ Cg(Tn2)* (3.37)

Grant capacitance Cgnt = Cd(Tn2) (3.38)

Priority capacitance Cpri = CFF + 2Cg(Tn1) (3.39)

Internal capacitance Cint = Cd(Tn1) + Cg(Tn2) (3.40)

Clock capacitance Cclk = CFC

* Tn1 is the first-level NOR gate; Tn2, the second-level NOR gate; and Ti, the inverter.

3.3.10 Clock Dynamic Modeling

Clock distribution and generation include a major portion of power consumption in

synchronous designs [47]. They represent a maximum of 33% of the power consumption in a

high-performance router [45]. We estimate the term Cclk as shown in Equation 3.41.

Cclk =Csram-fifo +Cpipeline-registers+Cregister-fifo +Cwiring (3.41)

Where

Figure 3.22: The gate level design of matrix arbiter

Req 1 grant 1

Grant generation logic

Req n

Req R grant R

 Aselect free_out

Priority matrix
(R(R-1)/2 flip flops)

Ti

Tn2

grant n
reqn

reqR
mRn

reqn+1

m(n+1)n

T1

reqn-1
m(n-1)n

req1
m1n

Tn1

86

 Csram-fifo, Cpipeline-registers, Cregister-fifo, and Cwiring are capacitive loads due to SRAM-based

FIFO structure, pipeline registers, shift register-based FIFO, and clock distribution wiring

respectively.

We assume that all components are built by using static CMOS gates. Moreover, we assume

an H-tree distribution style in the NoC design.

Clock in Memory Structures

We use the SRAM model of section 3.3.7 to determine the pre-charge circuitry capacitive

load on the clock network. The circuit is just the pre-charging transistor (Tc), which is just a

single ordinary PMOS transistor. Hence, its capacitance (Cchg) is due to its gate and drain end

capacitances, Cg (of Tc) and Cd (of Tc) respectively as shown in Equation 3.42. In an SRAM

FIFO with B buffers and flit size F, the total capacitance due to pre-charging circuitry can be

derived using Equation 3.43, where Pr and Pw are the number of read and write ports

respectively.

Cchg =Cg +Cd (3.42)

Csram_f i f o = (Pr +Pw) .F .B.Cchg (3.43)

Clock in Pipeline Registers

Typical interconnection network routers have different pipeline stages. To advance, each

flit must proceed through the steps such as routing computation, VC allocation, switch

allocation, and switch traversal. We assume D flip-flop as the building block of pipeline

registers. In a router with flit size of F bits and pipeline stages Npipeline, the capacitive load on the

clock due to pipeline registers is demonstrated as following formula.

87

Cpipeline_registers = Npipeline. F. Cff (3.44)

Where

 Cff is the flip-flop capacitance and it is extracted from 65nm high-performance and low-

power libraries.

Clock in Register-Based FIFOs

FIFO buffers can be implemented as a series of flip-flops. We assume simple D flip-flop

to construct the FIFO. In a register-based FIFO with size B and flit size of F bits, the capacitive

load on the clock can be computed by Equation 3.45 as given below.

Cregister_f i f o = F .B. Cf f (3.45)

Where

 Cf f is the flip-flop capacitance and is obtained from TSMC 65nm G and low-power

standard cell library data sheets [40].

Architectural parameters change the effective loading of each gate in the design. Therefore,

to employ appropriate drive strength for the registers, we use their load capacitance and timing

requirements. In this work, we assume minimum-size D flip-flops for all the registers.

Clock in Wiring Load

For a 5-level H-tree clock distribution, total wire capacitance is given in Equation 3.46.

Cwiring = (16/2 ×D+1×8/2×D+2×4/2×D+4×2/2×D+8×1/2×D) ×Cint (3.46)

where

 Cint is the per-unit-length wire capacitance;

 D is the chip dimension.

88

3.3.11 Physical Link Dynamic Modeling

The main source of dynamic power of links is due to charging and discharging of

capacitive loads (wire and input capacitance of next stage repeater). Internal power dissipation,

due to charging/discharging of internal capacitors and short-circuit power, is only significant for

repeaters when the input slew times are extremely large. Link power is a major component of the

router total power (around 17%) [45]. Previous works, such as Heo and Asanovic, only use delay

as the objective for buffer insertion [48]. These results in large repeaters increase the power

consumption significantly. In this work, we use a hybrid buffering solution that minimizes the

linear combination of delay and power. We evaluate the objective function exhaustively for

given number and size of repeaters, while searching for the optimal (number, size) values. Link

dynamic power is given by the equations as below.

Plink = α.Cl .
 . fclk (3.47)

Cl =Cin +Cgnd +Ccc (3.48)

Where

 Plink, α, Cl , Vdd and fclk denote the link dynamic power, activity factor, load capacitance,

supply voltage, and frequency, respectively.

The load capacitance is the sum of input capacitance of next repeater Cin, and the ground

(Cgnd) and coupling (Ccc) capacitances of wire being driven. Cin can be reliably obtained from

the industry library files. The unit Cgnd and Ccc are also extracted from industry LEF files [25].

3.3.12 Approaches to Obtain Parameters

Detailed technology parameters are not always available for a given device. When these

are unavailable, we propose to obtain them by using three approaches as follows.

 Measure the parameters from the floor plan or its photo if available.

89

 Determine the size of some transistors by using their load capacitance and timing

requirements.

 Use default values, many of which come from the WATTCH framework [7].

Therefore, an NoC designer can use our model before determining all the low-level details.

But knowing these technology parameters can greatly improve the model’s accuracy.

3.4 Area Modeling of NoC Simulator

To estimate the router area we basically compute the area of each NoC module and sum

them up with an additional of 10% (rule of thumb) of area to account for global whitespace. For

each NoC module we first identify the implementation style of module and then decompose the

module into its basic logical elements (e.g., gate-level netlist). Then, we use the gate area model

described in section 2.9 to estimate the area of entire block.

3.4.1 Router Area

Designers typically implement buffers as SRAM arrays. Some NoC networks used shift

registers due to less demanding buffer space. We have modeled the area of both

implementations, but explain only the SRAM-based model here. We use the same SRAM-based

FIFO buffer as in ORION [6]. Equation 3.49 and 3.50 compute the word line and bit line lengths

of FIFO, respectively.

Lword-line=F.(Wcell+2(Pr+Pw)dw) (3.49)

Lbit-line=B.(Hcell+(Pr+Pw)dw) (3.50)

Where

 F, B, Wcell, Hcell, dw, Pr, and Pw are flit size in bits, FIFO size in flits, memory cell width,

memory cell height, wire spacing, number of read ports and number of write ports

respectively.

90

Therefore, the total area for a FIFO with B buffers and flit size of F is calculated by Equation

3.51. In this model, Hcell and Wcell are computed using the gate area model described earlier in

section 2.9.

AreaFIFO = Lword-line . Lbit-line (3.51)

For other router components, namely, crossbar and arbiter we first decompose them into

their circuit building block (i.e., gate level netlist). Then, using the gate area model we estimate

the area of individual circuit components and compute the area of entire module.

3.4.2 Link Area

The area occupied by NoC links is due to wires and repeaters as illustrated in Fig. 3.23.

We use the earlier gate area model described to estimate the area of repeaters. The area of global

wiring can be calculated as given in Equation 3.52.

Arealink = F .(Ww +Ws)+sw (3.52)

Where

• Arealink denotes the wire area;

• F is the flit size in bits;

• sw is the repeater area;

• Ww and Ws are the wire width and spacing computed from the width and spacing of layer

(global or intermediate) on which the wire is routed, and from the design style.

Wire width

Wire space

Flit size

repeaters

Figure 3.23: Layout model of wires and repeaters

91

3.5 Link Length Estimation

In order to estimate area and power dissipation of an NoC, we need to know the exact

size and position of each core and the length of every link. These parameters are determined in

the process of making chip specifically during the floor planning of system. We propose an

estimation method which only needs the core areas of an SoC application to guess the maximum

length of links on an NoC to reduce the complexity of NoC simulator and to avoid floor planning

tools. We describe our method for 2D as well as application specific topologies, covering all the

topologies used in FAANOS.

3.5.1 Maximum Link Length in 2D Topologies

An example of an SoC which is mapped on 2D topology, Mesh or Torus is illustrated in

Fig. 3.24. The SoC is floor planned on an area with size AREA with N_CLM ×N_ROW cores.

We assume all routers are located on the area as is shown in Fig. 3.24. In this condition, we need

maximum length link equal to 2*(N_CLM + N_ROW)* to route all the cores

bidirectionally inside the chip for Mesh topology and two times of that of Torus topology.

Equation 3.53 and 3.54 shows the average link length (Ave_Link) in Mesh and Torus topology

respectively.

Ave-Link=2*(N_CLM+N_ROW)*sqrt(AREA)/(4*(N_CLM-2)*(N_ROW-2)+

 3*2*((N_CLM-2)+ (N_ROW-2))+ 4*2) (3.53)

Ave-Link=2*2*(N_CLM + N_ROW)*sqrt(AREA) /(2*2*N_CLM * N_ROW) (3.54)

92

3.5.2 Maximum Link Length for Application Specific Topologies

Figure 3.25 shows an SoC consisting of N cores, which are floor planned in an area with

size AREA. We assume the SoC is of square shape and its NoC is mapped to an irregular

topology. The condition which needs the longest link to floor plan the system happens when the

NoC is placed in the corner of chip and each core is connected directly to it (Fig. 3.25). In this

case, the maximum link is equal to the diameter of chip (2× in a 2D layout). As the cores

are uniformly spread in the chip, the average of a link is half of the diameter of area (.

Therefore, we need maximum length link equal to N× to route all the cores bi-

directionally inside the chip. Equation 3.55 shows average of link length in an application

specific topology.

Ave-Link = (3.55)

Figure 3.24: An example of 2D NoC floorplanning

topology NoC and its links

Figure 3.25: An example of application specific NoC floorplanning

93

3.6 Performance, Power and Area Estimation of NoC

We have described the performance, power and area metrics of each NoC module separately. In

this section, we explain how these metrics are integrated and create the performance, power and

area metrics of the NoC system.

3.6.1 Performance Estimation

The definition of performance characteristics have been presented in section 2.10. Now it

is time to have an exact view of how these characteristics are measured and create the

performance results in our NoC simulator. Figure 3.26 depicts the packet injection model in

FAANOS. When data packets commute between the NoC modules, each module stores the NoC

transaction characteristics in different variable memories. These variables facilitate the collection

of transaction statistics and assist the integration of performance metrics in FAANOS. The

following variables assist the integration of performance results in FAANOS

M the number of network nodes

C the number of link in the network

T the number of simulation cycles

LOAD a proportion of SIM_NUM in which the traffic generator produces packets

BURST the number of packet generated in the burst time

PAUSE the pause per flit between two burst messages

FF the number of flits in each packet

Nin the number of flits injected into the network

Nof the number of flits offered into the network

Nout the number of flits ejected from the network

Ni the number of flits ejected from the source i

Di the links a flit i travels

Tof the time a flit i offered into the network

Tout the time a flit i ejected from the network

94

Dof or

 the total link traveled by all offered flits

Tof or

 the total time of flit offered into the network

Tout or

 the total time of flit ejected from the network

 The following formulas represent the general relationship between above terms and calculate

the integration of performance results in FAANOS.

Nin= M × (LOAD×T) ×

 (3.56)

Total Packet drop=

 (3.57)

Packet drop in source i=

 (3.58)

Link_utilization=

 (3.59)

Flit_injection_rate=

 (3.60)

Throughput =

 (3.61)

Latency = Tout - Tof + (Nof-Nout) ×T (3.62)

Where

 M = and C = 4K (K -1) For a K× K mesh;

 M = and C = 4 For a K×K torus.

In the latency calculation, we assume the flits that are injected but still not ejected the same

as the flits that are ejected.

95

3.6.2 Architectural Power Estimation

Static power consumption is a function of leakage current and leakage current is constant

during transaction level of NoC system as explained in section 2.10.5. However, dynamic power

consumption is different. For architectural power estimation, the estimating of power by

considering the maximum transactional characteristic of network is considered. In other words,

the maximum static and dynamic power consumption of all NoC components is estimated. In

this section, we demonstrate the estimation of maximum dynamic power consumption by using a

probabilistic approach. Maximum power, Pmax is the power consumed with maximum achievable

switching activity at a certain network load. To simplify the illustration, we assume a simple

wormhole router as shown in Fig. 3.27. It has five input/output ports, where each input port has a

buffer space for four 32-bit flits (B = 4, F = 32, Pr = 1 and Pw = 1). The router has a 32-bit wide,

5×5 crossbar (I = 5, O= 5 and W= 32) and a 4:1 arbiter at each output port. Assuming flits do not

make u-turns (R = 4). The maximum power, Pmax is calculated by Equation 3.63.

Pmax = fclk(5Ebuffer + Ecrossbar + 5Earbiter + 5Evc_al) (3.63)

where

 Ebuffer, Ecrossbar, Evc_al and Earbiter are the energy of each input buffer, crossbar, VC allocator

and arbiter consumes in one cycle.

 Figure 3.26: Packet injection model

Source 0

Source 1

Source 15

Packet injected

1

Packet injected

Packet injected

Offered

Offered

Offered

Dropped

Dropped

Dropped

Sink 0

Sink 1

Sink 15

Ejected

Ejected

Ejected

Packet Latency

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

Ar

bit

er

Cr
os
sb
ar

96

We assume network traffic is uniformly distributed across all the router ports and define

flit arriving rate, Pf as the probability that each input port receives a flit in every cycle. We also

assume input traffic equals output traffic. Therefore, in one cycle, Pf flits are written into each

input buffer and Pf flits are read out from each input buffer. The maximum switching activity is

achieved when all 32-bit lines and memory cells switch during read/write.

Ebuffer = Pf (Ewrite + Eread) (3.64)

Ewrite = Ewl + 32(Ebw + Ecell) (3.65)

Eread = Ewl + 32(Ebr + 2Echg + Eamp) (3.66)

Assuming 5 × Pf flits enter the crossbar in each cycle. A maximum switching activity

happens when all 5 × Pf flits travel to different ports. For example, there is no contention, and for

each input/output port, all 32 lines will switch.

Ecrossbar = 5.Pf .32(Exb_in + Exb_out) (3.67)

Req L grant L

Req N grant N

Req E Arbiter grant E

Req S grant S

Req W grant W

 Aselect free_out

In L out L

In N out N

 Crossbar

In E out E

 (5×5)

In S out S

In W out W

FIFO 0

 FIFO 0

 FIFO 0

 FIFO 0

In_a

ck

Out_

ack

Figure 3.27: 5×5 wormhole router or regular router

 FIFO 0

Link L

Link N

Link E

Link S

Link W

Link L

Link N

Link E

Link S

Link W

Local

Source

Local

Sink

97

The arbiter energy consists of the energy consumed by the arbitration action, and the energy

consumed during clocking of flip-flops. Assume L is the number of flits in each packet. Since the

contention and arbitration is only necessary for header flits therefore each arbiter receives one

request in every L/Pf cycle. Upper bound of maximum switching activity comes from the

situation when all the relevant priorities and all the internal nodes switch. Although in practice,

this is not achievable. Clocking energy is summed for all the flip-flops and it is a constant.

Earbiter = Pf /L Earbitration + Eclock (3.68)

Earbitration = (4 -1)Epri + 4(4 -1)Eint + Ereq + (Egnt + Exb_ctr) (3.69)

Eclock = 1/2 .4(4 -1)Eclk (3.70)

We add Exb_ctr to Egnt because grant signals load crossbar control signals. Similarly, we can

derive the switching activity for average power. Since our power model is activity sensitive, it is

also capable of computing average power, or more realistic power estimation based on the real

data trace.

3.6.3 Transactional Power Estimation

The transactional power estimation is the power consumption when an NoC is operated

by a specific traffic pattern as discussed in section 2.10.5. In this case, we estimate maximum

static power for all the components and dynamic power for only those components that switch

during simulation. When data travel between NoC modules, each module keeps records of its

transactional characteristics. These records facilitate the collection of transaction statistics and

assist the integration of power results in FAANOS. When a simulation is stopped, the traversal

energy (the energy consumed at each transaction in a module) related to each module is

98

multiplied by the transactional record of that module and then accumulated and result in the

energy consumption of NoC design.

Here, we describe the journey of a flit from one router to another to show how the

transactional power consumption is estimated. Consider a router that has five input/output ports,

a 5×5 crossbar and an arbiter as shown in Fig. 3.28. Each input port has two FIFO buffer module

containing four registers (VC=2, FIFO=4), and each register has 32-bit. We also assume XY

routing for simplicity. In the figure, we have added a virtual channel allocator (VC_allocator)

module to separate the duty of demux module to a switch module (i.e. demux) and an allocator

module (i.e. VC_allocator). The local source module injects a header flit into the local link. The

header flit passes the local link and will be entered into the input port of router. The router

module keeps a record of incoming flit in a variable called v_link. Then the flit will enter to

demux module. The demux module keeps a record of incoming flit in a variable called vc_al. The

demux module sends it to a FIFO module depending on the vcid value of header flit. The FIFO

module writes the flit into the tail of its buffers and keeps a record of incoming flit in a variable

called v_wr. When the flit emerges at the header of FIFO module, a request containing the route

information is sent to the request port of arbiter module (Req L) for the desired output port, the

north output port is assumed here. The arbiter module performs the required arbitration and

keeps a record of request in a variable called v_arb. If the request is granted, the arbitration result

is sent to the configure port of crossbar module (config). A grant signal is also sent to the grant

port of FIFO module, leading to the FIFO read port be activated. At this stage, a record of grant

signal is kept in a variable called v_ read. The flit is injected to the input port of crossbar

module. The crossbar module keeps a record of incoming flit in a variable called v_crossbar.

99

The flit next traverses through the crossbar, from its input port (In L), to its north output port

(Out N). Finally, the flit leaves the router and enters to link N.

By entrance of each flit to a router, the router keeps a record of incoming flit in v_link. In this

way, a router covers all the links events except the links connected to the local sinks. Therefore,

a router should also keep a record of incoming flit only for the exit link connected to a sink.

Now, the dynamic energy for passing header flits inside a router during simulation can have the

following equation.

Edyn_router = v_link . Elink +vc_al . Evc_al + v_wr . Ewrite + v_read . Eread +

 v_arb . Earbiter + v_crossbar . Ecrossbar (3.71)

Where

 Elink, Evc_al, Earbiter and Ecrossbar are the traversal energy of link, VC_allocator, arbiter and

crossbar modules respectively when a transaction happens in a module.

Req L grant L

Req N grant N

Req E Arbiter grant E

Req S grant S

Req W grant W

 Aselect free_out

In L out L

In N out N

 Crossbar

In E out E

 (5×5)

In S out S

In W out W

FIFO 0

FIFO 1

 FIFO 0

 FIFO 1

D

E

M

U

X

D

E

M

U

X

 FIFO 0

 FIFO 0

 FIFO 1

 FIFO 1

In_a

ck

Out_

ack

Figure 3.28: 5×5 wormhole router or regular router

D

E

M

U

X

D

E

M

U

X

VC
 Allocator

D

E

M

U

X

 FIFO 0

 FIFO 1

Link L

Link N

Link E

Link S

Link W

Link L

Link N

Link E

Link S

Link W

Local

Source

Local

Sink

100

 Ewrite and Eread are the traversal energies when a write and read transaction happens in a

FIFO module.

As the arbitration and VC allocation happen only for header flits, so the dynamic energy for

passing body flits inside a router during simulation is calculated by Equation 3.72.

Edyn_router= v_link . Elink + v_wr . Ewrite + v_read . Eread + v_crossbar . Ecrossbar (3.72)

Each router in the NoC accumulates the dynamic energy for the flits, which has passed

through it. The following equations show the process of calculating the total power of NoC

network, Pnetwork.

Pdyn

Pstatic = (Pleak (VC allocator) +Pleak (FIFO) +Pleak (arbiter)+ Pleak (crossbar) + Pleak (Link)) ×m×n

Pnetwork = Pdyn + Pstatic (3.73)

where

 m×n, N, fclk and Edyn are the number of routers, the number of simulation cycle, the NoC

frequency, the total dynamic energy of network during simulation time respectively;

 Pdyn and Pstatic are the total dynamic and static power of NoC network;

 Pleak (VC allocator), Pleak (FIFO), Pleak (arbiter), Pleak (crossbar)and Pleak (Link) are the

static power of VC_allocator, arbiter and crossbar modules respectively.

3.7 An Evaluation Flow Model

We propose an evaluation flow model by which the effectiveness of an NoC system is

evaluated in terms of performance, power and area metrics by using NoC simulator. In another

aspect, the evaluation flow model is the process of configuring, implementing, recording,

101

analyzing, and iterating tasks by using FAANOS to gain the best effective results of an NoC

system.

One should first configure the network and traffic pattern and then apply different traffic

patterns to evaluate an NoC where Figure 3.29 shows this flowchart. The NoC evaluation flow

may be iterative until a user is satisfied. There are two loop processes in the flowchart. The first

one is partially implemented in the User Interface program and the rest in the NoC Simulator. In

this step, users should specify the configuration of NoC system in terms of size and kind of

message, topology, switching and routing mechanism, FIFO buffer and virtual channel. These

configurations are specified in terms of NoC parameters and a core txt file. The parameters are

requested via the console screen by the User Interface program that a user should include into the

program. The core txt file is a file produced from the core graph of NoC application. The output

of User Interface is a file that is used as the main file of NoC Simulation program (Fig. 3.1). The

NoC Simulation program implements the hardware simulation part of FAANOS. It generates the

performance, area and power results of NoC. In the second loop, the user cannot change the

topology of NoC, but other configurations can be changed. These configurations are saved in the

SystemC file, main_noc.cpp. The user can change them and run the NoC Simulation program

iteratively to gain the best results of NoC. This evaluation flow method typically is called try and

error method.

3.8 Conclusion

The structure of FAANOS has been analyzed in this chapter. We used SystemC, which is a C++

class library and dedicated language, to create the cycle-accurate models of the hardware part of

simulator and a user interface program. The hardware modeling of every NoC module was

102

described in detail. We demonstrated the developing of our NoC simulator from a simple

network to a more complex and automatic NoC simulator. In terms of power and area, we have

presented an analytical model for the power and area of different modules of an NoC such as

FIFO buffer, arbiter, crossbar, and link. We have introduced the different architectural model of

each NoC module and then decomposed them into gate level and presented the technological and

analytical parameters accompanied by the related formula. We proposed an estimation method

for the average link length of NoC. We also described how the performance, power and area

results of an NoC calculated in FAANOS. At the end, an evaluation flow model for early design

of NoC has been presented.

Figure 3.29: NoC evaluation flow

Start

Configure topology of system

Configure network Specification

(Message, traffic, switching & routing)

Build NoC simulator

Evaluate Output Results

(performance, latency, power, and area)

Satisfied

Satisfied

End

Y

Y

N

N

103

Chapter 4

Experimental Work

The routing mechanism refers as a deterministic or adaptive routing algorithm for the

NoC. It is one of the most important network components of NoC design. The adaptive routing

mechanisms are effective for regular topologies such as Mesh or Torus. A regular topology has a

predictable and well-ordered shape where the routing paths can be addressed by well defined

functions. These routing mechanism has become a good research subject for additional

investigation and development. This has encouraged us to configure the simulator and implement

the first set of experiment for different NoC routing mechanisms to investigate their performance

trade-off. We show how an adaptive routing mechanism has some advantages over the

deterministic one, and present a comparative analysis among LP routing and other routing

techniques. For the second set of experiments, we investigate different SoC applications by

trading power and area characteristics with the performance of NoCs. We illustrate different

aspects of our simulator in the following sections. The configuration and installation of

FAANOS is described in section 4.1. In section 4.2, a special type of contention is proposed for

NoCs. The configuration for the first set of experiment is presented in section 4.3. Different

experiments in uniform as well as locality traffic patterns are presented in sections 4.4 and 4.5.

104

The Mesh topology and application-oriented traffic have been experimented and their results are

presented in sections 4.6 and 4.7. We present the second set of experiment by also taking into

account the power consumption and chip area of NoC in sections 4.8. A summary of the chapter

is given in section 4.9.

4.1 Configuration and Installation

FAANOS is a Windows base executable NoC CAD tool, which needs an (input) file,

core.txt that is provided by the user from the specification of NoC application. The execution of

FAANOS generates the User Interface program. After generating the User Interface program, a

main_noc.cpp file is created. This file and core.txt construct the NoC Simulation program. A

user can create a SystemC project in Microsoft Visual C++ and add these two files to it then

build the project and execute it. After the completion of execution, the results of NoC

performance, power and area are displayed on the console.

4.1.1 NoC Core Graph to Core Text File Conversion

A core graph is a special type of block diagram of an NoC application where the core

blocks are connected by arrows indicating the data flow relationships among the core blocks.

The core graph is a visual representation therefore we need to convert a core graph into a text file

readable by the NoC simulator. We convert the core graph into a text file (core.txt) and utilize it

as an input to our simulator. Figure 4.1 depicts an example of relation between the contexts of

core.txt file with the core graph of an AV application. Each line of the core.txt file corresponds

to an arrow between two cores of the core graph. Each line represents the direction of packet

flow from source to destination. If the link between two cores has two arrows then two lines (in

105

the core text file) represent it. The first part of each line of the core.txt file represents the

character “S” followed by and the source ID. The second part represents the character “D”

followed by the destination ID. The third part is the character “R” followed by the rate of packet

flow from the source to destination. For simplicity, the rate less than one should be rounded to

one and the floating point numbers should be rounded to first natural number greater than or

equal to them. When the rates of packet flow are close together, the floating part of numbers has

prominent effect on the system. In this case, the user should scale up all the bit rates by

multiplying each rate to 10, 100, etc to enable an accurate measurement. The simulator can also

allow the core.txt file without the rate part where the rates are same and equal to the clock cycle

of sources. For source by source distribution where each source has different temporal and

message size packet flow, the core.txt file (data format) is extended. Each line gets longer by

adding four more parts. The fourth part is the Burst information character “B” followed by the

number of packets being generated continuously in the burst message. The fifth part is the pause

in burst messages character “P” followed by the pause per flit between two burst messages. The

sixth part is the flits character “F” followed by the number of flits in each packet. The seventh

part is the number of bits character “N” followed by the number of bits in each flit. For example,

the line S2D5R150B5P2F4N8 indicates that source 2 sends packet to sink 5 at the rate of 150

packets per second. The source continuously sends five packets then pauses for two flits and

does it consecutively. Each packet consists of four flits, and each flit is made of eight bits.

106

4.1.2 User Interface

To lower the complexity of our simulator and to create a visual environment to

communicate with the application, a User Interface program is provided in addition to the NoC

Simulation program. The graphical User Interface allows the user to easily visualize the

simulation environment. The text-based characteristic of User Interface may provide a less

intuitive interface, but it permits various advanced forms of customization. User Interface is

separated from NoC Simulation program because it makes a file that forms the main body of

NoC Simulation program. We have created the NoC simulator program as an executable file that

can be easily executed in Windows environment. The program starts by asking for the type of

topology. One of the irregular or regular topologies should be selected. Then it asks different

parameter values related to regular or irregular topologies. In the case of regular topology, the

parameters are listed in the Table 4.1 as given below.

26924

DSP5

11

DSP2

12

DSP1

13

DSP7

3

ASIC1

1

DSP3

6

CPU

10

DSP6

7

DSP8

2

ASIC2

0

ASIC3

4

ASIC4

9

MEM1

14

MEM2

5

25

80 25

80 28265

764 640
641 7005

7705

38016 144

197

197

33848

33848

20363

33848
116873

7061

75205

38016

7061

MEM3

15

75584

38016

DSP4

8

 3672

(b) The context of Core.txt

S0D1R80
S0D4R764
S0D5R640
S1D0R25
S1D2R25
S2D1R80
S2D3R28265
S3D5R7005
S4D2R641
S4D8R144
S5D4R7705
S6D7R7061
S6D9R38016
S6D11R7061
S8D10R197
S8D13R3672
S9D10R197
S9D13R33848
S10D14R38016
S10D15R38016
S11D7R26924
S12D0R33848
S12D13R20363
S13D12R33848
S14D9R116873
S14D10R75205
S15D10R75584

(a) AV benchmark core graph

Figure 4.1: core graph and core text file

107

Table 4.1 Parameters and their descriptions in regular topology

Parameter value Description

Regular/Irregular 1

0

Regular topology. (default is 1)

Irregular topology.

Area R The area of SoC chip in mm^2. (default is 7)

N_COL 1≤N≤80 The number of columns in mesh or torus topology. (default is 4)

N_ROW 1≤N≤80 The number of rows in mesh or torus topology. (default is 4)

SIM_NUM 1≤N The total clock cycle that simulator runs. In the case of irregular traffic this

number is a coefficient of PERIOD, so it is better to be chosen less than 10.

(default is 100)

LOAD 0<R≤1 A proportion of SIM_NUM which the traffic generator produces packets. This

parameter is used only in uniform or locality traffic. (default is 1)

FW 2≤N It is related to the address of source or destination. The flit width is equal to

(2×FW+5) bits. Increasing it will extend the size of register and therefore will

raise the resource cost. (default is 8)

NUM_FLIT 1≤N≤256 The number of flits per packet. (default is 5)

FIFO 1≤N≤256 The number of registers in FIFO. Increasing will extend the depth of FIFO and

therefore raises resource cost. (default is 2)

TORUS B Torus topology. (default is 1)

MESH B Mesh topology. (default is 0)

XY B XY routing. (default is 1)

YX B YX routing. (default is 0)

ODD_EVEN B Odd_even routing, this routing is used only in mesh topology. (default is 0)

L_PROBE B L_probe routing, this routing normally employ one VC. In default L_probe uses

XY. It also can use YX. (default is 0)

V_CH 1≤N≤4 The number of virtual channel. (default is 1)

IRREG_TRAFFIC B Implementing irregular topology as part of a regular topology. In this case users

should provide a core text file. (default is 0)

FIXED B Fixed traffic. (default is 0)

UNIFORM B Uniform traffic. (default is 1)

LOCALITY B Locality traffic, in this case following LOC parameters should be specified.

(default is 0)

LOC_ONE N Probability of sending packet to first place close to source. (default is 12)

LOC_TWO N Probability of sending packet to second place close to source. (default is 2)

LOC_THREE N Probability of sending packet to third place close to source. (default is 2)

LOC_FOUR N Probability of sending packet to fourth place close to source. (default is 0)

108

LOC_FIVE N Probability of sending packet to fifth place close to source. (default is 0)

LOC_SIX N Probability of sending packet to sixth place close to source. (default is 0)

BURST 1≤N The number of packets generated continuously during the burst time. (default is 1)

PAUSE N The pause per clock cycle between two burst messages. (default is 0)

GAP_P 0<R≤1 A proportion of PERIOD added to itself and makes new PERIOD. (default is 0)

PRN_OUT B Show sending and receiving flits on the console screen. (default is 0)

R_ROBIN B Implementing the round robin technique in the routers. (default is 0)

SCALE_P 0<R≤1 The coefficient to scale PERIOD (0= maximum scale meaning calculating

PERIOD based on the current rating packets, 1= no scale meaning calculating

PERIOD based on the current rating packet divided by minimum rating packet in

the system). (default is 1)

In the case of irregular (application specific) topology, the parameters are listed in the Table 4.2.

Table 4.2 Parameters and their descriptions for irregular topology

Parameter Value Description

Regular/Irregular 1

0

Regular topology. (default is 1)

Irregular topology.

Area R The area of SoC chip in mm^2. (default is 7)

SIM_NUM 0<N The total clock cycle that simulator runs. It is better to be chosen less than 10. The

default is 1. (default is 1)

FW 0<N It is related to address of source or destination. The flit width is equal to

(2*FW+5) per bit. Increasing it extends the size of registers, and so raises

resource cost. (default is 8)

NUM_FLIT 1≤N≤256 The number of flits per packet. (default is 5)

FIFO 1≤N≤256 The number of registers in FIFO. Increasing it extends the size of registers and

therefore raises resource cost. (default is 2)

BURST 1≤N The number of packets generated continuously in the burst time. (default is 1)

PAUSE N The pause per clock cycle between two burst messages. (default is 0)

GAP_P 0<R≤1 The proportion of PEROD added to itself and makes new PERIOD. (default is 0)

PRN_OUT B Show sending and receiving flits on the console screen. (default is 0)

SCALE_P 0<R≤1 The coefficient to scale PERIOD (0= maximum scale meaning calculating

109

PERIOD based on the current rating packets, 1= no scale meaning calculating

PERIOD based on the current rating packet divided by minimum rating packet in

the system). (default is 1)

Following points have to be considered:

 N= natural number {0, 1, 2 ...}.

 R= real number.

 B= {1 Active, 0 Inactive}.

 Either Torus or Mesh should be activated in a time.

 LOAD parameter is only used in locality or uniform traffic.

 Only one of XY, YX, L_PROBE and ODD_EVEN routings should be activated at a time.

 ODD_EVEN routing works only in the case of Mesh topology.

 Only one of the IRREG_TRAFFIC, UNIFORM, FIXED and LOCALITY traffic

generators should be activated at a time.

 LOC_ONE, LOC_TWO, LOC_THREE, LOC_FOUR, LOC_FIVE and LOC_SIX are

only used in locality traffic and the probability of each one is equal to its number divided

by the total of all numbers. For example, If the numbers (9, 5, 4, 3, 2, 1) represent the

values of these parameters respectively, the probability of LOC_FOUR is 3/24= 0.125 or

12.5 %.

 SCALE_P and GAP_P are used for irregular traffic only.

 The above parameters are included in at the top file main_noc.cpp. All of the parameters

can be changed in the file to have new configurations of NoC except the kind of topology

and the two parameters N_COL and N_ROW. Users can change these parameters and

apply to the simulator as a new configuration without running the User Interface

program.

After typing the values of these parameters, User Interface will show the core graph and the

core switch graph of NoC on the console, and then it makes the file, main_noc.cpp.

110

 4.1.3 Implementation of NoC Simulation program

The NoC Simulator program consists of several modules such as arbiter, crossbar,

demux and FIFO that construct the hardware, power and area modeling of NoC. These modules

are coded on the file main_noc.cpp. This file and core.txt construct the NoC Simulation program.

The execution of NoC Simulator generates a trace file (graph.vcd). Users can use tools to view

the waveforms from the trace file and determine whether or not the simulation has succeeded.

The program also displays the power, area and performance results on the console screen as

given below.

In the case of uniform and locality traffic patterns, following results can be generated.

i. Total number of packets dropped

ii. Flit injection rate

iii. Throughput

iv. Average latency of a packet

v. Offered load

vi. Link utilization

vii. Dynamic architectural power dissipation of routers

viii. Static architectural power dissipation of routers

ix. Total areas of routers and links

x. Dynamic transactional power dissipation of routers

xi. Static transactional power dissipation of routers

xii. Architectural power dissipation of links

xiii. Transactional power dissipation of links

 In the case of irregular traffic, following simulation results can be obtained.

i. Total number of outgoing flits

ii. Total number of incoming flits

111

iii. Throughput

iv. Minimum PERIOD

v. Total latency of a packet

vi. Throughput per clock cycle

vii. Average latency of a packet

viii. Dynamic architectural power dissipation of routers

ix. Static architectural power dissipation of routers

x. Total area of routers

xi. Dynamic transactional power dissipation of routers

xii. Static transactional power dissipation of routers

xiii. Architectural power dissipation of links

xiv. Transactional power dissipation of links

xv. Total area of links

4.2 Contention Due to Multi Points

Before starting the simulation experiment, we first discuss about the source of contention in

NoC. This contention is created due to spatial distribution of the source and sink cores and we

call it point-to-multipoint (PTMP) contention. The PTMP contention is created when the instant

rate of packet production is more than the instant rate of packet acceptance. It may happen when

a source sends packets to multiple sinks or a sink receives packets from multiple sources. In

other words, if each source sends packet to only one sink and each sink receives packet from

only one source, NoC will not have PTMP contention. There are large numbers of solutions to

solve the contention in NoC such as by adding virtual channel, using routing mechanism,

changing buffer size, etc. However, these solutions do not solve the PTMP contention problem.

For example, changing the configuration of NoC structure might only alleviate the PTMP

contention but will not eliminate it completely even when we add more virtual channels. The

112

only solution to this problem is the temporal changing in the traffic where the sources can pause

the traffic to let the waiting packets reach their destinations.

4.3 Configuration for the First Set of Simulation Experiment

As mentioned in section 3.8, the user should first initialize the NoC and its traffic pattern.

The following configuration is an example based on some typical resources to conduct an

experimental simulation.

We use a 4×4 regular topology (Mesh or Torus) and application specific topology (related to

MPEG4 and AV benchmark applications).

We use routing mechanisms of XY with one channel, YX with one channel, XY with four virtual

channels, LP with one channel, and Odd-Even with one channel. For simplicity we name them

XY, YX, VC4, LP, Odd-Even respectively.

For traffic generation, we employ three traffic patterns such as uniform, locality, and application-

oriented. In application-oriented traffic, the simulation time is chosen a particular value of time

which is parameterized to PERIOD. PERIOD is the minimum guaranteed time in which every

source sends at least one packet to its destination (for more detail see section 4.7.1). In uniform

and locality traffic, the simulation time is chosen to be 100 (or any other suitable value), and the

traffic generator dictates synthetic traffic to the sources. In other words, the sources inject

packets into the network with a constant rate. In uniform and locality traffic, each node sends

packets to only one destination node at a time, and on the contrary, each node receives packet

from only one destination node at a time i.e. no PTMP contention in the NoC. In the case of

uniform traffic, a network node sends packets to other nodes with the same probability. In the

case of locality traffic, a network node sends packets to its neighbouring nodes with a higher

113

probability. The number of VCs per physical channel is maximum four and the depth of a VC is

selected as two. One message contains only one packet and each packet is split into five flits.

The network is asynchronous, and there is no relation between the clocks of source, sink or

router modules.

4.4 NoC Simulation for Uniform Traffic

In this section, different routing mechanisms are evaluated and the advantage of adaptive

routing mechanism such as LP routing is demonstrated by using uniform traffic pattern. As

mentioned earlier, the uniform traffic is a packet flow pattern in which a source node sends

packets to other nodes with the same probability [33]. The source in this pattern is a greedy

source as it produces packets at the highest rate possible and at the earliest opportunity possible

[32]. Figure 4.2 shows four graphs of performance metrics (i.e., packet drop, throughput, average

latency, and link utilization) vs. flit injection rate. These graphs demonstrate three routing

mechanisms of XY, LP and VC4 by using uniform traffic in a 4×4 torus topology. For better

understanding of these graphs, the following points determine which values in each graph are

optimums. In the packets dropped graph, the optimum value is zero i.e. no packet should drop in

the NoC. For throughput graph, the optimum throughput happens when it is equal to the injection

rate. For latency graph, the optimum value happens when latency is equal to five clock cycles

that is equal to the size of a packet.

114

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.3 0.6 0.9 1.2

VC=4

XY

Line_Probe

Injection rate

Li
n

k
u

ti
liz

at
io

n

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

Injection rate

A
ve

ra
ge

 o
f

La
te

n
cy

0

0.2

0.4

0.6

0.8

1

1.2

0.0625 0.125 0.25 0.5 1

VC=4

XY

Line_Probe

Injection rate

T
h

ro
u

gh
p

u
t

0

10

20

30

40

50

60

70

80

90

100

0.0625 0.125 0.25 0.5 1

Injection rate

#P
ac

ke
ts

d
ro

p
p

ed

In the case of link utilization graph, lower link utilization indicates the more effective system,

however, the throughput should also be considered.

 As it can be easily envisaged in the figures of 4.2, VC4 is contention free that means the

traffic does not have latency, packet drop is zero, and throughput is the highest. This claim can

be verified by two methods. In the first method, each node sends packets to only another node at

a time so that the instant rate of incoming packets are equal to the instant rate of outgoing

packets (i.e., there is no PTMP contention). Secondly, in small NoCs (e.g. 4×4), we have

figured out that no more than four messages pass through a link at a time. Therefore, four virtual

channels are enough to handle all the messages without contention. This capability of VC4 helps

Figure 4.2: Graphs in Uniform traffic, Torus topology

115

us to consider it as a base to compare two other routing mechanisms. Therefore, between two

graphs for LP (line probe) and XY, the graph that is closer to VC4 has better performance. When

we consider the three graphs related to throughput, packet drop and latency of Fig. 4.2, it can be

concluded that LP routing has advantage over XY up to 25% of the injection rate. However, the

results are opposite for link utilization. It is logical conclusion that to acquire a better

performance, the system should spend more resources or sacrifice for one performance factor in

place of the other. The LP routing improves the delay and throughput of system at the expense of

increasing link utilization. It can also indirectly affect the other two important metrics such as

delay and power consumption. Finally, we can conclude that the network shows significant

performance improvement for LP routing as compared to XY at 25% of cases in a uniform

traffic.

4.5 Locality Traffic Base Simulation

The on-chip network shows significant performance improvement if the traffic is more

locally distributed [33]. Moreover, locality traffic is more realistic than uniform traffic because a

designer tries to put the source and destination at the minimum distance. The best NoC design

will be where each node sends packet to near neighbour as shown in Figure 4.3. These two

figures depict throughput and delay related to the injection rate for three type of traffic: locality,

non-locality and uniform. Figure 4.3 indicates the advantage of locality traffic over the two other

traffics.

116

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

locality

Uniform

non-locality

Injection rate [flits/cycle/node]

Th
ro

u
gh

p
u

t
[f

lit
s/

cy
cl

e/
n

o
d

e]

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1 1.2

locality

uniform

non-locality

Injection rate [flits/cycle/node]

A
ve

ra
ge

 o
f

La
te

n
cy

4.5.1 Contention Free in LP Routing

In the case of a 4×4 torus topology, the maximum distance between two nodes is four.

Thus, there can be four coefficient probability in the NoC. For maximum locality in the system

(i.e. each source sends packet to its neighbour), we expect a contention free system. Maximum

locality is initialized as LOC_ONE=16, LOC_TWO=0, LOC_THREE=0, LOC_FOUR=0 (see

section 2.7.1) and shown as 16_0_0_0 in Table 4.3. We start decreasing the locality and at each

step execute the simulator and measure the packet drop. If a packet is dropped, it means that

there has been a contention in the NoC. Table 4.3 demonstrates these results. For obtaining these

results, we first decrease the probability of first neighbour and increase the probability of second

neighbour. We reach border 8_8_0_0 without contention. The setup coefficient 8_8_0_0

indicates the probability of sending packet to the first and second neighbours as eight and

probability of sending packet to third and forth neighbours is zero. We try to increase the

probability of third and forth neighbours where we reach the results given in Table 4.3.

Figure 4.3: Graphs in uniform and locality traffic

117

The following simulation results show 33% of the cases without contention in LP routing.

Total number of cases that each node sends packet to its first neighbours = 48

Total number of cases that each node sends packet to its second neighbours = 68

Total number of cases that each node sends packet to its third neighbours = 48

Total number of cases that each node sends packet to its forth neighbours = 16

The total number of cases= 48+68+48+16= 180

Table 4.3 coef 16_0_0_0, the number of cases without contention = 48

Table 4.3 coef 8_8_0_0, the number of cases without contention= 9

Table 4.3 coef 8_7_1_0, the number of cases without contention= 2

Table 4.3 coef 12_2_1_1, the number of cases without contention= 1

The total number without contention= 48+9+2+1= 60

The percent of contention free ability= 60÷180 × 100= 33%

Table 4.4 has the same coef like table 4.3 but for XY routing. Comparing these two tables

shows the significant improvement of LP routing.

Table 4.3 Border of contention free in LP routing with Specification: Sum_num=100, Torus topology 4×4, Virtual

channel=1, FIFO = 2, locality traffic, NUM_FLIT 5, XY and LOAD=0.9

Coef Packet drop Flit injection rate Throughput Average latency of a packet Offered load Link utilization

16_0_0_0 0 0.9 0.9 5 0.25 0.25

15_1_0_0 0 0.9 0.9 5 0.28125 0.28125

10_6_0_0 0 0.9 0.9 5 0.375 0.375

8_8_0_0 0 0.9 0.9 5 0.4 0.4

8_7_1_0 0 0.9 0.9 5 0.426562 0.426562

12_2_2_0 1 0.9 0.896875 5.09059 0.397969 0.397969

12_2_1_1 0 0.9 0.9 5 0.332812 0.332812

118

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.3 0.6 0.9 1.2

VC=4

XY

Line_Probe

Injection rate

Li
n

k
u

ti
liz

at
io

n

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

Injection rate

A
ve

ra
ge

 o
f

La
te

n
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Injection rate

Th
ro

u
gh

p
u

t

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Injection rate

#P
ac

ke
ts

d
ro

p
p

ed

4.5.2 Advantages of Locality Traffic

 Figure 4.4 shows the graphs of performance metrics for three routing mechanisms XY,

VC4, and LP using locality traffic with coefficient 8-7-1-0. For packet drop, throughput and

latency figures of 4.4, it can be concluded that the LP and VC4 graphs are completely

overlapped. We already mentioned that VC4 routing is contention free and LP routing is also

contention free when it only uses one FIFO buffer. However, the LP routing utilizes more links.

In previous sections, it was discussed that contention among packets, two or more packets may

need to pass along the same link. The XY routing only let one packet pass and others should stay

in the queue.

Table 4.4 XY routing in locality traffic with Specification: Sum_num=100, Torus topology 4×4, Virtual channel=1,

FIFO = 2, locality traffic, NUM_FLIT 5, XY and LOAD=0.9

coef Packet drop Flit injection

rate

Throughput Average latency of a

packet

Offered load Link utilization

16_0_0_0

6.2 0.9 0.8775 5.87296 0.239844 0.238704

15_1_0_0

14.6 0.9 0.851875 6.21214 0.253594 0.252706

10_6_0_0 39 0.9 0.774375 6.87149 0.287969 0.286715

8_8_0_0 32.2 0.9 0.794375 6.54496 0.32125 0.319611

8_7_1_0 43.6 0.9 0.75875 6.88462 0.314375 0.312745

12_2_2_0 28.6 0.9 0.808125 6.52506 0.309375 0.308545

12_2_1_1

21 0.9 0.834375 6.42397 0.300469 0.300469

Figure 4.4: Graphs in locality traffic, Torus topology, coef 8-7-1-0

119

The VC4 routing allows four packets pass simultaneously while LP routing allows one of the

packets pass via the link and rest are sent via other available links that may not yield shortest

paths. This causes the link utilization is increased in the system. In other words, LP routing takes

advantage of extra resources in torus topology and improves the performance of NoC.

4.6 Mesh Topology Simulation

 So far we have not discussed Odd-Even routing because its original mechanism works for

a mesh topology. We implemented it in a torus topology, but it encountered the looping process

in some cases. Wang Zhang et al. concluded that Odd-Even routing mechanism fits well with 2D

3×3 mesh topology even better than XY routing mechanism for constant bit rate traffic condition

[20]. Our results of Fig. 4.5 that consists of the throughput and latency graphs confirm their

conclusions. Figure 4.5 shows output results of XY, VC4, LP, and Odd-Even routing in mesh

topology by using locality traffic with coef 16-0-0-0-0-0. In this experiment, we found that VC4

and Odd-Even routings are faster than XY and LP routing. LP routing is slower than others

because the dimension of network is small (4×4) to efficiently implement the LP routing. In

other words, the four nodes in the corners do not have any cooperation in the LP routing, and

eight side nodes have semi-cooperation in the LP routing. Only four nodes out of sixteen nodes

are fully involved in LP routing that increases link utilization. LP routing performs better when

link utilization is low, or in other words when the network has more free resources.

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

VC=4

XY

Line_Probe

Odd_even

Injection rate [flits/cycle/node]

Th
ro

u
gh

p
u

t
[f

lit
s/

cy
cl

e/
n

o
d

e]

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

VC=4

XY

Line_Probe

odd_even

Injection rate [flits/cycle/node]

A
ve

ra
ge

 o
f

La
te

n
cy

 (
C

yc
le

)

4.7 Simulation for Application-Oriented Traffic

The ultimate goal of an NoC designer is to design the NoC system based on application.

The application can be mapped on regular or irregular topologies. For regular topology, the cores

of an application are numbered based on either a specific methodology or randomly. Then the

application cores are mapped on the nodes of a 2D topology. Figures 4.6.a and 4.6.b demonstrate

this methodology for an application. The traffic generator should generate the packet flow based

on the application (as it is called application-oriented traffic). The only consideration is that the

number of nodes in 2D topology should be more than the number of cores of the application. The

simulator automatically constructs the 2D topology of application and generates packet flow in

accordance with the core.txt file of the application. For irregular topology, if we put a switch at

every node of the core graph of the application, we have mapped the application on the

application specific topology that has an irregular pattern. Figure 4.6 depicts this methodology

for an application. The router in an irregular topology is modeled to have dedicated output for

each input channel. The simulator automatically builds the application specific topology and

generating packet flow in accordance with the application core.txt file. Some SoC applications

Figure 4.5: Graphs in locality traffic, Mesh topology, coef 16-0-0-0

121

have been used in the past and due to their repeated usages, they have become benchmark

applications for current and future research. In the next section, we investigate two applications

such as MPEG-4 decoder [49] and AV Benchmark applications [14]. The MPEG-4 application

can be mapped to a 3×4 2D topology and an AV application to a 4×4 2D topology. In section

4.11, we experiment the SoC applications as followings: a MPEG4 decoder (MPEG4), a Multi-

Window Display (MWD), a Video Object Plane Decoder (VOPD) and an enhanced VOPD

application, called DVOPD with the capability to decode two streams in parallel.

4.7.1 Simulation Time for Irregular Traffic

 To determine optimal condition for which the system can reach maximum throughput

(100%) for an irregular traffic, the simulation time of simulator should be initialized properly as

following. Consider Fig. 4.7.a showing a branch of nodes for an application implemented in the

simulator, and the simulation time is selected equal to the maximum rate of packets in the branch

i.e. one hundred. Moreover, assume that each packet is sent at one clock cycle, and each source

in

0

nr

1

mem1
2

Mem2
3

hs

4

hvs

5

Jug2
6

mem3

7

vs
8

Jug1

9

se
10

blend
11

In

0

nr

1

Vs

8

mem1

2

hs

4

Mem2

3

Mem3

7

Se

10

hvs

5

Jug2

6

blend

11

Jug1

9

64
64

64

64

64

96

96

96

96 96

96 96

128

(a) Core graph (b) Mesh mapping (c) Irregular mapping

in

0

nr

1

mem1

2

Mem2

3

 hs

4

hvs

5

Jug2

6

mem3

7

 vs

8

Jug1

9

se

10

blend
11

0

3

4

 5

6

7

 8

9

10

1

Figure 4.6: Application mapping on regular or irregular topologies

122

sends all of its rating packets once during simulation time. During simulation time, when core 6

sends packets to core 9, it does not have time to send packet to core 11. When core 11 finishes

receiving packet from core 0, it only can receive fifteen packets from core 6. To prevent such a

problem, we define a term PERIOD which is the minimum guaranteed time for which every

source sends at least a packet to its destination. To calculate this time, we should scale the flow

to one packet for minimum rate. Figure 4.7.b depicts this case.

In Fig. 4.7b, core 6 needs six clock cycles to send all its packets, and core 11 needs 5.5

clock cycles to receive all its packets. As we do not have decimal point in clock cycle, the

number 5.5 is rounded to six. Therefore, to guarantee at least one packet for every source,

PERIOD is chosen equal to six. If we multiply PERIOD to minimum rate of twenty we get 120

clock cycles. This amount of time is the minimum guaranteed time during which every source

sends the total of its dedicated packets to its destinations once. When the traffic is irregular,

FAANOS automatically calculates PERIOD and stores it as the minimum simulation time. The

parameter, SCALE_P lets users choose the simulation time equal to PERIOD when

SCALE_P=1, or the simulation time equal to multiplication of minimum rate and PERIOD when

SCALE_P=0. In the above example, when SCALE_P=0, then the simulation time is equal to 120

and when SCALE_P=1, then the simulation time is equal to six.

(b) Scaling flow to minimum rate

4.5 1

5

6
11

9

0

(a) Source of contention

85 20

100

6
11

9

0

Figure 4.7: Source of contention and scaling flow

123

4.7.2 NoC Simulation for MPEG-4 Decoder

Figure 4.8.a shows the core graph of MPEG-4 decoder with communication (in MB/s).

The mapping of MPEG-4 on the mesh topology is given in Fig. 4.8.b. The context of core.txt file

is given in Fig. 4.8.c which is based on the methodology presented in section 4.1.1. In this

application, each source sends packet with different rate and the spatial distribution of traffic is

fixed and based on the MPEG-4 decoder application. Figure 4.9 shows the results of throughput

for five routing mechanisms, XY, YX, LP with 1 channel (LP), XY with 4 virtual channels

(VC4), and ODD-EVEN with 1 channel (OE) in different configurations as following.

 “Torus” means the default configuration of a regular topology with

 ROW=3, COLUMN=4, SIM_NUM=1, IRREG_TRAFFIC =1 and UNIFORM=0.

 “Torus, SIM=2” means “Torus” with SIM_NUM=2.

 “Torus, r_robin” means “Torus” with R_ROBIN =1.

 “Mesh” means the same configuration as “Torus” with MESH=1 and TORUS=0.

 “Torus, 4×3” means the same configuration as “Torus” with ROW=4 and

COLUMN=3.

The graphs of Fig. 4.9 show that LP routing has the worst performance among all these

routing mechanisms. As mentioned earlier, this is due to the fact that LP routing is not suitable

for NoC systems with PTMP contention. Figure 4.8.a easily shows this problem for MPEG-4

where seven sources send packets to sink 9 concurrently. Sink 9 can receive the packets from

one source and the remaining packets travel in the network that will increase the link utilization

leading to lock a network (for example in “torus, r_robin” configuration). The following section

verifies our claim. We will verify this claim in the next paragraph.

124

 To verify the claim, we invert the direction of packet flow in the core graph of MPEG-4.

Figure 4.10 shows the reversed core graph and the throughput results of MPEG-4 that verifies

our claim. The LP routing is faster and has second place after VC4. In this system as there is no

PTMP contention, the instant rate of incoming packets is less than the instant rate of outgoing

packets. It provides the best condition for LP routing mechanism.

0

0.2

0.4

0.6

0.8

1

1.2

XY

YX

LP

VC4

Odd-Even

Th
ro

u
gh

p
u

t
[f

lit
s/

cy
cl

e/
n

o
d

e]

Figure 4.9: Throughput results of MPEG-4 Decoder application

S0D11B500

S1D10B40

S1D9B60

S2D9B190

S3D9B1

S4D10B40

S4D9B600

S5D9B1

S6D9B910

S6D11B670

S7D11B173

S7D9B32

S8D11B250

S0D11B500

S1D10B40

S1D9B60

S2D9B190

S3D9B1

S4D10B40

S4D9B600

S5D9B1

S6D9B910

S6D11B670

S7D11B173

S7D9B32

S8D11B250

(a) MPEG4 core graph

Figure 9: The core graph and core

text of MPEG-4

MCPU

1

Media

CPU

1

IDCT

8

IDCT,

etc

8

RAST

4

RAST

4

AU

3

AU

3

VU

2

VU

2

SDRAM

9

SDRA

M

9

BAB

7

BAB

7

SRAM2

11

SRAM
2

11

RISC

0

RISC

0

USMP

6

Up-

SAMP

6

ADSP

5

ADSP

5

SRAM1

10

SRAM
1

10

0.5

0.5

910

910

670

670

32

32

173

173

500

500

250

250

40

40

600

600

40

40

60

60

0.5

0.5

190

190

MCPU

1

Media

CPU

1
IDCT

8

IDCT,

etc

8

RAST

4

RAST

4

AU

3

AU

3

VU

2

VU

2

SDRAM

9

SDRAM

9

BAB

7

BAB

7

SRAM2

11

SRAM2

11

RISC

0

RISC

0

USMP

6

Up-

SAMP

6

ADSP

5

ADSP

5

SRAM1

10

SRAM1

10

Figure 4.8: MPEG4 core graph and its mapping to 2D topology

(c) MPEG4 txt core table

Figure 9: The core graph and core

text of MPEG-4

(b) Mesh mapping

125

4.7.3 NoC Simulation for AV Benchmark

AV Benchmark application core graph is given in Figure 4.11.a where Fig. 4.11.b shows

the mapping of this application on to a 4×4 torus topology. Figure 4.11.c is the context of

core.txt file which is created as an input to the simulator. In this NoC system, each source sends

packet with different rate, and the spatial distribution of traffic is based on the AV Benchmark

application. Figure 4.12 depicts the simulation results of throughput for various routing

mechanisms of XY, LP, VC4 and ODD-EVEN (one channel) in different configurations as

following.

 “Torus” means the default configuration (see section 4.1.2) of a regular topology with

 SIM_NUM=1, IRREG_TRAFFIC =1 and UNIFORM=0.

 “Torus, reverse” means the same configuration as “Torus” for reverse core graph

(inverting the direction of packet flow in the core graph of application).

 “Mesh” means the same configuration as “Torus” except on torus topology.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Torus Torus, SIM=3 Mesh

XY YX LP vc4 Odd-Even

Th
ro

u
gh

p
u

t
[f

lit
s/

cy
cl

e/
n

o
d

e]
Figure 4.10: Reversed core graph and its throughput results of MPEG-4 decoder

Media
CPU

1

IDCT,
etc
8

RAST
4

AU
3

VU
2

SD
RAM

9

BAB
7

S
RAM2

11

RISC
0

Up-
SAMP

6

ADSP
5

S
RAM1

10

0.5 910

670
32

173

500

250

40

600

40

60

0.5 190

126

 “Mesh, reverse” means the same configuration as “Mesh” for reverse core graph.

The bar graphs of Fig. 4.12 show that the LP routing has the worst performance among these

four routing mechanisms. Again the same issue as in MPEG-4 application has happened. LP

routing is not suitable where there is PTMP contention. Even by inversing packet flow in the

core graph of application again the LP routing has the worst performance in the system. This is

because in reversing core graph again there is PTMP contention.

0

0.2

0.4

0.6

0.8

1

1.2
XY LP VC4 Odd-Even

Th
ro

u
gh

p
u

t
[f

lit
s/

cy
cl

e/
n

o
d

e]

Figure 4.12: Throughput results of AV Benchmark

Figure 4.11: The core graph, torus mapping and core txt of AV Benchmark application

S0D1B80
S0D4B764
S0D5B640
S1D0B25
S1D2B25
S2D1B80
S2D3B28265
S3D5B7005
S4D2B641
S4D8B144
S5D4B7705
S6D7B7061
S6D9B38016
S6D11B7061

S8D10B197
S8D13B3672
S9D10B197
S9D13B33848
S10D14B38016
S10D15B38016
S11D7B26924
S12D0B33848
S12D13B20363
S13D12B33848
S14D9B116873
S14D10B75205
S15D10B75584

 (a) Core graph of AV Benchmark (c) Core text of AV

26924

26924

DSP5
11

DSP5

11

DSP2
12

DSP2

12

DSP1
13

DSP1

13

DSP7
3

DSP7

3

ASIC1

1

ASIC1

1

DSP3
6

DSP3

6

CPU
10

CPU

10

DSP6

7

DSP6

7

DSP8
2

DSP8

2

ASIC2

0

ASIC2

0

ASIC3

4

ASIC3

4

ASIC4

9

ASIC4

9

MEM1

14

MEM1

14

MEM2

5

MEM

2

5

25

25

80

80

25

25

80

80

28265

28265

764

764

640

640

641

641

7005

7005

7705

7705

38016

38016

144

144

197

197

197

197

33848

33848

20363

20363

33848

33848

116873

116873

7061

7061

75205

75205

38016

38016

7061

7061

MEM3

15

MEM3

15

75584

75584

38016

38016

DSP4
8

DSP4

8

3672

3672

33848

33848

(b) Torus mapping

ASIC2

0

ASIC1

1

DSP8
2

DSP7
3

ASIC3

4

MEM

2

DSP3
6

DSP6

7

 DSP4
8

ASIC4

9

CPU
10

DSP5
11

 DSP2
12

DSP1
13

MEM1
14

MEM3

15

127

Figure 4.11a indicates this problem. Core 0 sends packet to three other cores at the same time

and it also receives packets from two other cores at the same time. Core 0 can receive the packets

from one source and the remaining packets will wonder around in the NoC that will increase link

utilization.

4.7.4 NoC Simulation for Irregular Topologies

Figures 4.13a and 4.13b show the mapping of MPEG-4 and AV application to regular

topology. Figure 4.14 is the throughput results of MPEG-4 and AV application in regular or

irregular topology. The configuration of the simulator is selected as follows.

 “Torus” means the default configuration of Table 4.1 (see section 4.1.2).

 “Mesh” means the default configuration of Table 4.1 with Mesh=1 and Torus=0.

 “Irregular” means the default configuration of an irregular topology (see Table 4.2).

The advantage of regular topology over the irregular topology for MPEG-4 application and

the equal is shown in Fig. 4.14. However, in the case of AV application, there is no improvement

in throughput as depicted in Fig. 4.14. This is obvious as in the regular topology more resources

such as links and channels are employed. These extra sharing resources improve the performance

of network system. As in MPEG-4 application, the implementation in Torus topology has the

largest throughput.

128

0

0.2

0.4

0.6

0.8

1

1.2

MPEG_4 AV

Torus

Mesh

Irregular

Th
ro

u
gh

p
u

t
[f

lit
s/

cy
cl

e/
n

o
d

e]

(a) Mapping of MPEG-4 on regular topology (b) Mapping of AV on irregular topology

Figure 4.13: Mapping of the MPEG-4 and AV application on irregular topology

Figure 4.14: Throughput results of MPEG-4 and AV application in regular and irregular topology

MCPU

1

Media

CPU

1

IDCT

8

IDCT,

etc

8

RAST

4

RAST

4

AU

3

AU

3

VU

2

VU

2

SDRAM

9

SDRA

M

9

BAB

7

BAB

7

SRAM2

11

SRAM
2

11

RISC

0

RISC

0

USMP

6

Up-

SAMP

6

ADSP

5

ADSP

5

SRAM1

10

SRAM
1

10

1

RISC

0

4

RISC

0

6

RISC

0

7

RISC

0

9

RISC

0

10

RISC

0

11

RISC

0

7

8

9

10

11
12

DSP5
11

DSP5

11

DSP2
12

DSP2

12

DSP1
13

DSP1

13

DSP7
3

DSP7

3

ASIC1

1

ASIC1

1

DSP3
6

DSP3

6

CPU
10

CPU

10

DSP6

7

DSP6

7

DSP8
2

DSP8

2

ASIC2

0

ASIC2

0

ASIC3

4

ASIC3

4

ASIC4

9

ASIC4

9

MEM1

14

MEM1

14

MEM2

5

MEM

2

5

 MEM3

15

MEM3

15

DSP4
8

DSP4

8

1

2

3
4

5

6

0

13

14

129

4.8 Power and Area Chip

In this section, we present the second set of experiment by also considering the power

consumption and chip area of NoC. We are not seeking any claim to prove only the behaviour of

some characteristics of NoCs will be investigated. These analytical investigations demonstrate

not only the capability of our simulator but also the challenges in response to satisfaction of NoC

constrains. We present the investigation on 2D topology in section 4.8.1 and on application

specific topology in section 4.8.2.

4.8.1 Simulation for 2D topologies

We have selected the test cases based on several criteria such as the number of routers

ranging from 9 to 36 and the number of virtual channels (one and four). The goal is to study the

impact of NoC size and number of virtual channels on the power and area of NoC for torus

topologies. Specifically, we are interested in the architectural and transactional power and area

breakdown. We assumed a 90nm technology and a clock frequency of 1GHz. The area occupied

by cores is fixed and assumed to be 9 mm
2
. The other specifications of NoC are as follows.

 Number of simulation=1000 cycle.

 Depth of FIFO = 2.

 Traffic pattern = Uniform.

 Size of each packet = 5 flits.

 Routing strategy = XY mechanism.

 Size of each flit =31 bits.

130

The simulation results of synthesizing different torus NoCs are reported in Fig. 4.15. Each

histogram is divided into two zones: one virtual channel (VC=1) and four virtual channels

(VC=4). Each zone contains four bars and each bar for different NoC sizes such as 3×3, 4×4,

5×5 and 6×6. We choose different NoCs to show the effect of NoC sizes on the NoC metrics.

Since the NoC size determines the number of routers in 2D topology, NoC with size 3×3 has 9

routers and so on for other mentioned NoCs. Therefore, we expect a variation with slope of 9,

16, 25, 36 (or 1, 1.8, 2.8, 4) between the metric results of these NoCs. In Fig. 4.15b, it can be

easily grasped that the router area is a function of NoC size in both VC=1 and VC=4 zones. It is

logical because routers have fixed size (5×5) in torus topology, and the NoC size has a linear

relation with the number of routers. Therefore, the slope of increasing in the router area is like

the NoC size in both zones of Fig. 4.15b. However, the slope of increasing in the link area is not

the same as router area. This is because the area of link is a function of the total link length that

is estimated based on SoC area, and the SoC area consists of the area occupied by the cores and

the routers; the area occupied by the routers is a function of the NoC size, but the area occupied

by cores is assumed to be fixed and 9 mm
2
; this fixed number causes the slope of increasing in

link area not to be the same as router area in both VC=1 and VC=4 zones. We also see this issue

in the architectural power graph. In Fig. 4.15c, the router architectural power is a function of

NoC size in both VC=1 and VC=4 zones. It is logical because the router size (5×5) is fixed, and

the NoC size has a linear relation with the number of routers. Therefore, the slope of increasing

in the router architectural power is like the NoC size in both zones. However, the slope of

increasing in link architectural power is not the same as router area. As mentioned before, this is

because the cores area is fixed and is not a function of the NoC size; this fixed number causes the

slope of increasing in link architectural power not to be the same as NoC size in both VC=1 and

131

VC=4 zones. In transactional power graph, the behaviour of bars are different in the VC=1 and

VC=4 zones. In the VC=4 zone of Fig.4.15d, which the routers have 4 virtual channels, there is

not contention in the NoCs and the throughputs are almost 100% as depicted in Fig. 4.15a. The

transactional power is a function of the rate of router and link transactions in NoC. The rate of

router transaction when throughput is 100% is a function of NoC size. In other word, when NoC

size increases, the number of cores will increase and more transactions occur in NoC, so when

throughput is 100%, the router transactional power will be a function of the NoC size. However,

the same issue as mentioned before is happen for link transactional power. The constant value of

core size changes the corresponding relation between the link transactional power and the NoC

size. In this case, the slope of increasing in transactional power bars resembles the architectural

power in VC=4 zone of Fig. 4.15c and Fig. 4.15d.

In the VC=1 zone of Fig. 4.15d, there is no relation between transactional power and NoC

size. We can find the reason of this difference in throughput graph as depicted in Fig. 4.15a

where the average of throughput is less than100%. In this case, we cannot estimate the behaviour

of NoC transactional power. In other words, in a deterministic (XY) routing strategy, the higher

throughput represents the higher rate of transaction that leads to the larger amount of

transactional power occurs in NoC. For example, the bar 6×6 is less than other bars because the

corresponding bar in Fig. 4.15a is the least.

Two other points that are highlighted in Fig. 4.15 are the inconsiderable static power and

considerable link power and area. The static power in architectural power is very small that we

can ignore it in our design. However, in transactional power especially in the VC=1 zone, it can

be a considerable amount in compared to dynamic power. Therefore, it needs to be available in

NoC design. The link characteristic is important because sometimes it includes a significant

132

amount of NoC power. For example, in Fig. 4.15c, the link architectural power includes over

one-third of each bar.

By considering the above mentioned points, we can conclude that the architectural power

consumption and the area occupied by the network are the increasing functions of the structural

specification of NoC such as size and number of virtual channel in 2D topologies. However, The

NoC transactional power is the increasing functions of the structural and transactional

specifications of NoC such as size, number of virtual channels, and throughput. The transactional

power is close to realistic power of NoC that can be helpful to determine the bottle neck of NoC

power, and the architectural power determines the maximum power that is consumed in the NoC.

This will be very helpful for the earliest step of pre-design of an NoC. For example, in the VC=4

zone which represents a guaranteed contention free NoC, the average area occupied by the

routers is 9.1 times more than the average area in the VC=1 zone. However, the variation in

architectural power are less i.e. the average power in the VC=4 zone is 1.7 times more than the

average power in the VC=1 zone. This gives an idea to designer which increasing virtual channel

from one to four imposes more cost on area than power.

0%

20%

40%

60%

80%

100%

VC=1 VC=4

a: Throughput

3x3

4x4

5x5

6x6
0

10

20

30

40

50

60

70

VC= 1 VC= 4

b: NoC Area (mm^2)

Links

Routers

 3×3 4×4 5×5 6×6 3×3 4×4 5×5 6×6
 3×3 4×4 5×5 6×6 3×3 4×4 5×5 6×6

133

4.8.2 Simulation for NoC Applications

Table 4.5 lists the SoC applications that we have synthesized in our simulator. The

second column of this table presents the chip area that each application occupies. Because the

area size of NoC is a characteristic that we measures during our experiment and is a function of

other NoC characteristic, we consider the values in the second column of Table 4.5 as the chip

area that the cores occupy in each application. The intent of our experiments is to study the

impact of features of these applications on the synthesized NoC. We are specifically interested in

the architectural and transactional power and area breakdown. We have selected the test cases

based on several criteria.

 The number of IP cores, ranging from 12 to 26, and the size of IP cores, as large as 12 mm
2
;

 The topologies which the applications are mapped namely Mesh, Torus, and application

specific topology [4].

0

1

2

3

4

5

6

VC=1 VC= 4

c: Architectural Power Consumption in
NoC(W)

Link

Router
Dynamic
Static

0

0.5

1

1.5

2

2.5

3

3.5

4

VC= 1 VC= 4

d: Transactional Power Consumption
in NoC(W)

Link

Router
Dynamic
Static

Figure 4.15: NoC synthesized results for the 3×3, 4×4, 5×5 and 6×6 Torus topologies. Power is expressed in

Watts, area in mm
2
 and throughput in percent. We used the following notation: VC for virtual channel, 3×3 for

3×3 torus topology,... and 6×6 for 6×6 torus topology.

 3×3 4×4 5×5 6×6 3×3 4×4 5×5 6×6 3×3 4×4 5×5 6×6 3×3 4×4 5×5 6×6

134

Table 4.5 Characteristics of selected SOC applications

Name Area (mm2) Ref.

MPEG4 3 ×2.35 [50]

MWD 3 × 4 [50]

VOPD 1.53×1.18 [51]

DVOPD 2×2.23 [51]

Figures 4.16, 4.17, 4.18 and 4.19 illustrate the block diagram and mapping topologies of

four NoC applications: MPEG4 decoder (MPEG4), a Multi-Window Displayer (MWD), a Video

Object Plane Decoder (VOPD), and an enhanced VOPD application, called DVOPD. We have

explained how to make the core txt file in section 4.1.1 as well as the 2D and irregular mapping

in section 4.7. We assumed a 90nm technology and a clock frequency of 1GHz. The other

specifications of NoC are as follows:

 The size of each flit =31 bits.

 The number of virtual channel =1.

 The depth of FIFO buffer = 2.

 The size of each packet = 5 flits.

 The traffic pattern = application oriented.

 The routing strategy = XY mechanism.

135

S0D11B500

S1D10B40

S1D9B60

S2D9B190

S3D9B1

S4D10B40

S4D9B600

S5D9B1

S6D9B910

S6D11B670

S7D11B173

S7D9B32

S8D11B250

S0D11B500

S1D10B40

S1D9B60

S2D9B190

S3D9B1

S4D10B40

S4D9B600

S5D9B1

S6D9B910

S6D11B670

S7D11B173

S7D9B32

S8D11B250

(a) MPEG4 core graph

Figure 9: The core graph and core

text of MPEG-4

MCPU

1

Media

CPU

1

IDCT

8

IDCT,

etc

8

RAST

4

RAST

4

AU

3

AU

3

VU

2

VU

2

SDRAM

9

SDRA

M

9

BAB

7

BAB

7

SRAM2

11

SRAM
2

11

RISC

0

RISC

0

USMP

6

Up-

SAMP

6

ADSP

5

ADSP

5

SRAM1

10

SRAM
1

10

0.5

0.5

910

910

670

670

32

32

173

173

500

500

250

250

40

40

600

600

40

40

60

60

0.5

0.5

190

190

MCPU

1

Media

CPU

1
IDCT

8

IDCT,

etc

8

RAST

4

RAST

4

AU

3

AU

3

VU

2

VU

2

SDRAM

9

SDRAM

9

BAB

7

BAB

7

SRAM2

11

SRAM2

11

RISC

0

RISC

0

USMP

6

Up-

SAMP

6

ADSP

5

ADSP

5

SRAM1

10

SRAM1

10

MCPU

1

Media

CPU

1

IDCT

8

IDCT,

etc

8

RAST

4

RAST

4

AU

3

AU

3

VU

2

VU

2

SDRAM

9

SDRA

M

9

BAB

7

BAB

7

SRAM2

11

SRAM
2

11

RISC

0

RISC

0

USMP

6

Up-

SAMP

6

ADSP

5

ADSP

5

SRAM1

10

SRAM
1

10

1

RISC

0

4

RISC

0

6

RISC

0

7

RISC

0

9

RISC

0

10

RISC

0

11

RISC

0

Figure 4.16: MPEG4 core graph with communication (in MB/s), txt core table and MPEG4 mapping onto

Mesh and application specific topology.

(b) MPEG4 txt core table

Figure 9: The core graph and core

text of MPEG-4

(c) Mesh mapping (d) Irregular mapping

136

S0D5B353

S1D0B16

S1D3B16

S2D3B94

S2D6B500

S3D2B313

S4D0B357

S5D6B300

S6D3B313

S7D4B27

S8D4B362

S8D7B49

S9D8B362

S10D9B362

S11D10B70

Rld

10

Vld

11

Iscan

9

Iquan

4

idct

0

Acdc

8

Arm

1
UpS

5

Vopr

6
Pad

3

vopm

2

Smem
7

70

362

362 362

49

313

94

500

16

300

313

353

16

357

27

(a) VOPD block diagram (b) VOPD core graph (c) Txt core table

demux ARM

Var.
length

decoder

Run
length

decoder

Inverse
scan

Padding

VOP
memory

VOP
reconstr

Stripe
memory

IDCT AC/DC
prediction

iQuant

Up
samp

16 16

313

94
313 500

300
353

16

357

362

362 362 70

27 49

Figure 4.17: VOPD block diagram, core graph with communication (in MB/s), txt core table, and VOPD

application mapping onto Mesh and application specific topologies.

idct

0

arm

1

vopm
2

pad
3

iquant

4

Up S

5
vopr

6

smem

7

 acdc
8

iscan

9

rld
10

vld
11

(d) Mesh mapping (c) Irregular mapping

idct
0

arm
1

vopm
2

pad
3

 iquan

4

UpS

5

vopr
6

Smm

7

acdc

8

iscan
9

rld
10

vld
11

0

7

6

5

4

3

2

 1

10

9

8

137

Figure 4.18: MWD signal flow graph, core graph with communication (in MB/s), MWD txt core

table and MWD application mapping onto Mesh and application specific topology.

S0D1B64

S0D4B128

S1D2B64

S1D3B96

S2D1B64

S3D5B96

S4D8B96

S5D6B96

S6D7B96

S7D10B64

S8D9B96

S9D7B96

S10D11B64

in

0

nr

1

mem1
2

Mem2
3

hs

4

hvs

5

Jug2
6

mem3

7

vs
8

Jug1

9

se
10

blend
11

In

0

nr

1

Vs

8

mem1

2

hs

4

Mem2

3

Mem3

7

Se

10

hvs

5

Jug2

6

blend

11

Jug1

9

64
64

64

64

64

96

96

96

96 96

96 96

128

64

64 64

64

64

96

96 96

96 96

96 96

128

nr

Mem1

Mem2

Mem3

Se

hvs

Jug2

blend

IN

hs

Vs

Jug1

(a) MWD block diagram (b) MWD core graph (c) MWD Txt core table

(d) Mesh mapping (e) Irregular mapping

in

0

nr

1

mem1

2

Mem2

3

 hs

4

hvs

5

Jug2

6

mem3

7

 vs

8

Jug1

9

se

10

blend
11

0

3

4

 5

6

7

 8

9

10

1

138

Rld

10

Vld

11

Iscan

9

Iquan

4

idct

0

Acdc

8

Arm

1
UpS

5

Vopr

6

Pad

3

vopm

2

Smem
7

70

362

362 362

49

313

94

500

300
313

353

16

357

27

Rld

20

Vld

21

Iscan

19

Iquan

14

idct

23

Acdc

18

Arm

24
UpS

15

Vopr

16

Pad

13

vopm

12

Smem
17

70

362

362 362

49

313

94

300
313

353

16

357

27

Mem1
22

Mem2
25

540

540

126

126

S0D5B353

S1D0B16

S1D25B540

S2D3B94

S2D6B500

S3D2B313

S4D0B357

S5D6B300

S6D3B313

S7D4B27

S8D4B362

S8D7B49

S9D8B362

S10D9B362

S11D10B70

S23D15B353

S24D23B16

S24D25B540

S12D13B94

S12D16B500

S13D12B313

S14D23B357

S15D16B300

S16D13B313

S17D14B27

S18D14B362

S18D17B49

S19D18B362

S20D19B362

S21D20B70

S22D11B126

S22D21B126

idct

0

arm

1

vopm
2

pad
3

iquant

4

Up S

5
vopr

6

smem

7

acdc
8

iscan

9

rld
10

vld
11

idct

23

arm

24

iquant

14

Up S

15
vopr
16

smem

17

 acdc
18

iscan

19

rld
20

vld
21

vopm
12

pad
13

Mem1
22

Mem2
25

26

(a) DVOPD block diagram (b) DVOPD txt core table

(c) Mesh mapping

Figure 4.19: DVOPD core graph with communication BW annotated (in MB/s), core txt

table and DVOPD mapping onto mesh and application specific topologies

23

11

me1
22

me2
25

idct

23

arm

24

vopm
12

pad
13

 iquan

14

UpS

15

vopr
16

Smm

17

acdc
18

iscan

19

rld
20

vld
21

22

15

16

17

18

19

20

 21

12

13

14

idct

0

arm

1

vopm
2

pad
3

 iquan

4

UpS

5

vopr
6

Smm

7

acdc

8

iscan

9

rld
10

vld
11

0

7

6

5

4

3

2

 1

10

9

8

139

The results are reported in Fig. 4.20 where each histogram is divided into four zones:

MPEG4, MWD, VOPD and DVOPD. Each zone contains 3 bars that each bar related to one of

mesh, torus and application specific mapping topologies. Each zone contains 3 bars that each bar

related to one of mesh, torus and application specific mapping topologies.

Figure 4.20a demonstrates the throughput results of the above mentioned NoC

applications in Mesh, Torus and application specific topologies. It is obvious that we cannot

predict a specified behaviour for the throughput because the topologies are not the same in each

application. In the case of MPEG4 decoder, torus topology is faster and for MWD and VOPD

application benchmarks, all three topologies have the same throughput and in the case of VOPD,

the application specific topology is faster.

The NoC area results are depicted in Fig. 4.20b. The router areas related to the mesh and

torus bars are a function of NoC size. For example, for the MPEG4, MWD and VOPD mapping

on torus and mesh, the size of NoC is 3×4. Therefore, the router areas are the same for these

applications. However, the router areas of application specific bars are different and depending

on the irregular mapping of the application. The area of link is a function of SoC area that

consists of the area occupied by the cores and the routers. For example, in torus bars related to

MPEG4 and MWD, the link area of MWD bar is bigger than MPEG4 bar because the cores area

of MWD application (12) is bigger than MPEG4 application (7.05). Another important point in

Fig. 4.20.b is the small amount of application specific bar (i.e. less than 0.2 mm) in compared to

mesh and torus bars. By considering of the SoC areas of Table 4.5, the NoC areas of torus

mapping for VOPD and DVOPD applications are bigger than their application area. However,

the application specific chip-area is a good candidate for each area constraints of the design.

140

The architectural power consumption results of the NoCs are depicted in Fig. 4.20c.

These results are an increasing function of changing topologies from application specific to

Mesh and then to Torus. This confirms the advantage of application specific over Mesh and

Torus topology in terms of minimum resources [4]. The reason for this increase is obvious. The

architectural power is a function of structure of NoC, and Torus topology uses more resources

than other two topologies. The router architectural power related to the mesh and torus bars are a

function of NoC size. For example, for the MPEG4, MWD and VOPD mapping on torus and

mesh, the size of NoC is 3×4 therefore the router architectural power are the same for these

applications. However, the router architectural powers of application specific bars are different

and depending on the irregular mapping of the application. The architectural power of link is a

function of the total length of link that estimated by the SoC or NoC system area. The SoC area

consists of the area occupied by the cores and the routers. For example, in torus bars related to

MPEG4 and MWD, the link architectural power of MWD bar is bigger than the MPEG4 bar

because the cores area of MWD application is bigger than the MPEG4 decoder application.

The histogram, which is very important in terms of power for the NoC designer is

transactional power consumption. The transactional power consumption is a function of

structural and transactional behaviour of NoC. The throughput is a performance metric, which

can explain the variation of transaction in NoC, but not in a network with adaptive routing

strategy. In other words, when we have deterministic routing strategy, every flit should pass

through a specific route. Moreover, in the case of contention the flit has to wait, in spite of

adaptive routing where the flit could move to some other routes. Therefore, in the case of mesh,

torus and application specific topologies when the routing strategy is deterministic, the higher

throughput represents the additional packets (message) passing or more transactions that leads to

141

additional transactional power consumption. However, the throughput results in Fig. 4.20a are

not helpful to explain the transactional power behaviour in Fig. 4.20d as the structural behaviour

of each application in Fig. 4.20a is different.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mpeg4 MWD VOPD DVOPD

a: Throughput

App

Mesh

Torus

0

1

2

3

4

5

6

MPEG4 MWD VOPD DVOPD

b: NoC Area (mm2)

Links

Routers

0

0.5

1

1.5

2

2.5

3

MPEG4 MWD VOPD DVOPD

c: Architectural Power Consumption
in NoC(W)

Link

Router
Dynamic
Static

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

MPEG4 MWD VOPD DVOPD

d: Transactional Power Consumption
in NoC(W)

Link

Router
Dynamic
Static

Figure 4.20: NoC synthesized results for the MPEG4, MWD, VOPD and DVOPD applications. Power

is expressed in Watts, area in and throughput in percent. We used the following notation: M for

Mesh, T for Torus, and A for application specific topology.

 A M T A M T A M T A M T

A

 A M T A M T A M T A M T

A

 A M T A M T A M T A M T

A

142

4.9 Chapter Summary

NoC simulation experiments have been conducted for some well-known routing

mechanisms as well as a new LP-routing mechanism. We investigated the locality traffic

performance improvement for Network-on-Chip. Moreover, the effect of deterministic and

adaptive routing mechanisms in mesh and torus topology has been investigated. It is concluded

that the LP-routing mechanism has contention free ability in almost one third of the cases for

locality traffic. We also did investigate for application specific topologies such as MPEG-4

Decoder and AV Benchmark applications. It is observed that LP routing is more effective when

the network system has extra sharing resources such as links, channels and techniques and when

there is no PTMP contention. For the second set of experiments, we selected a number of SoC

applications and traded off their results by considering further on power and area metrics. We

explained the relation of throughput with transactional power consumption and observed that the

throughput can explain the behaviour of transactional power for deterministic routing strategy.

143

Chapter 5

Conclusions

In this work, we have presented the development of a SystemC base NoC simulator,

FAANOS, and conducted experiments on various metrics of NoC design such as performance,

power and chip-area. We described the concept, architecture and configuration of NoC as well as

introduced the detailed structure and parameters of our simulator. Different kinds of traffic

patterns have been employed in the simulation of NoC. We broke down the concept of

performance to four characteristics such as throughput, latency, packet drop and link utilization

that play an important role to choose an effective design. We did a brief survey on some previous

works and found that they only output architectural power estimation of NoCs. Instead, our work

produces both transactional power estimation and architectural power estimation, where the first

one is very important parameter as compared to the second one in designing an NoC system. We

have presented a comparison analysis between the capability of our simulator and two

contemporary NoC simulators: NIRGAM and NOSTRUM. We highlighted the capability of our

simulator on different aspects and demonstrated its superior features. The structure of FAANOS

was analyzed, and the cycle-accurate models of the hardware part of simulator were described.

144

We demonstrated the development of our NoC simulator from a simple on-chip network

to a more complex and automatic NoC simulator. Then we proposed an analytical model for the

power and area of different modules of an NoC such as FIFO buffer, arbiter, crossbar, and link.

We have presented different architectural models of each module. Then we have decomposed

them into gate level models and presented the technological and analytical parameters

accompanied by the related formula. A test methodology for early design of NoC was presented,

and based on it two sets of experiments has been conducted for some characteristics of the NoC.

In the first set of experiment, it is argued that locality traffic has great performance improvement

in network on chip. Moreover, the effect of deterministic and adaptive routing mechanism in

mesh and torus topology has been investigated. We concluded that the LP routing mechanism

has contention free ability in about one third of the cases of locality traffic when there is

communication between one node to another node. We also did perform simulation experiments

for application specific topologies for MPEG-4 Decoder and AV Benchmark application. We

concluded that the LP routing is more effective when the network has more extra resources such

as links, channels and techniques (being regular than being irregular), and when there is no

PTMP contention in NoC (the instant rate of generation of flits is less than or equal to the instant

capacity of incoming flits).

In the second set of experiments, we conducted experiments on some NoCs by applying

two kinds of traffic patterns: dummy and application oriented pattern. The relationship between

the throughput and transactional power consumption is explored and it is concluded that the

throughput can explain the behaviour of transactional power when the routing strategy is

deterministic. The SoC technology is expanding very fast with new applications in consumer

electronics. So far the number of IP used in SoC is in the range of tens, and without a doubt it is

145

going to increase and sometime in the future reach millions IP. This vast development in SoC

needs more research especially in the NoC area. One layer of NoC that has not been researched

fully in the past is the topology generation. Topology generation is mapping an SoC application

on the different topologies including regular or irregular to reach an optimized system. It is

obvious that our work in this thesis can be a small part of topology generation. Therefore, the

future work is going to research this part of NoC technology.

146

References

[1] Gul N. Khan, V. Dumitriu,“ A modeling tool for simulating and design of on-chip network

systems,” Original Research Article Microprocessors and Microsystems, vol 34, No. 2-4,

pp. 84-95, March-June 2010.

[2] Tobias Bjerregaard and Shankar Mahadevan, “A Survey of Research and Practices of

Network-on-Chip,” ACM Computing Surveys, Technical University of Denmark, vol. 38,

No. 1, June 2006.

[3] L. Benini and G. De Micheli, “Networks on chips: A new SoC paradigm,” IEEE

Computer, vol. 35, No. 1, pp. 70–78, Jan. 2002.

[4] Masoud O. Gharan and Gul N. Khan,”Flexible simulation and modeling for 2D topology

NoC system design” IEEE CCECE 2011: Symposium on Computers, Software and

Applications, Niagara Falls, Canada, May, 2011.

[5] http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/PowerCompiler.aspx , accessed 1

September 2011.

[6] H. Wang, X. Zhu, L.-S. Peh and S. Malik, ”Orion: A Power-Performance Simulator for

Interconnection Networks,” Proceedings of the 35th Annual IEEE/ACM International

Symposium on Microarchitecture, Istanbul, Turkey, pp. 294-395, 2002.

[7] D. Brooks, V. Tiwari and M. Martonosi, ”Wattch: A Framework forArchitectural-Level

Power Analysis and Optimizations,” Proceedings of the 27th International Symposium on

Computer Architecture, Vancouver, Canada, pp. 83-94, 2000.

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/PowerCompiler.aspx

147

[8] K. Goossens, M. Bennebroek, J.Y. Hur, M.A. Wahlah, “Hardwired networks on chip in

FPGAs to unify functional and configuration interconnects,” IEEE International

Symposium on Networks-on-Chip, Newcastle, United Kingdom, pp. 45–54, 2008.

[9] M.B. Stensgaard, J. Sparsø, “ReNoC: A network-on-chip architecture with reconfigurable

topology,” IEEE International Symposium on Networks-on-Chip, Newcastle, United

Kingdom, pp. 55–64, 2008.

[10] S. Kumar, A. Jantsch, J.P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, and

A. Hemani, “A network on chip architecture and design methodology,” Proceedings IEEE

Computer Society Annual Symposium on VLSI, Pittsburgh, Pennsylvania, pp. 105 – 112,

2002.

[11] ATIS committee PRQC. "network topology". ATIS Telecom Glossary 20011, accessed 1

September 2011.

[12] G.N. Khan and V. Dumitriu, “Simulation environment for design and verification of

Network-on-Chip and multi-core systems,” IEEE International Symposium on Modeling,

Analysis & Simulation of Computer and Telecommunication Systems, London, England,

pp. 1 – 9, 2009.

[13] Jantsch Axel and Tenhunen Hannu, “ Network on Chip,” Royal Institute of Technology‚

Stockholm Springer, book, VIII, 303 p, 2003.

[14] V. Dumitriu and G.N. Khan, “Throughput-Oriented NoC Topology Generation and

Analysis for Performance SoCs,” IEEE Transactions on VLSI Systems, vol. 17 , No. 10,

pp. 1433 - 1446, 2009.

http://www.atis.org/glossary/definition.aspx?id=3516

148

[15] L.G. Roberts, “The evolution of packet switching,” Proceedings of the IEEE, vol. 66 , No.

11, pp. 1307 - 1313, 1978.

[16] F. Verbeek, J. Schmaltz, “A fast and verified algorithm for proving Store-and-Forward

networks Deadlock-Free,” 19th Euromicro International Conference on Parallel,

Distributed and Network-Based Processing (PDP), Ayia Napa, Cyprus, pp. 3 - 10, 2011.

[17] A. Roca, J. Flieh, F. Silla, J. Duato,” VCTlite: Towards an efficient implementation of

virtual cut-through switching in on-chip networks,” International Conference on High

Performance Computing (HiPC), Goa, India, pp. 1 – 12, 2010.

[18] Ankur Agarwal, Cyril Iskander, and Ravi Shankar, “Survey of Network on Chip (NoC)

Architectures & Contributions,” Journal of Engineering, Computing, and Architecture, vol.

3, No. 1, 2009.

[19] Ge-Ming Chiu, “The odd-even turn model for adaptive routing,” IEEE Transactions on

Parallel and Distributed Systems, vol. 11, No. 7, pp. 729 – 738, 2000.

[20] Wang Zhang, Ligang Hou, Jinhui Wang, Shuqin Geng, and Wuchen Wu, “Comparison

research between XY and Odd-Even routing algorithm of a 2D 3×3 mesh topology

Network-on-Chip,” WRI Global Congress on Intelligent Systems, Xiamen, China, vol. 3,

pp. 329 – 333, 2009.

[21] Yoshio Turner and Yuval Tamir, “Deadlock-free connection-based adaptive routing with

dynamic virtual circuits,” Journal of Parallel and Distributed Computing, vol. 67, No. 1,

pp. 13-32, January 2007.

149

[22] J. Duato, O. Lysne, R. Pang, T.M. Pinkston, “Part I: A theory for deadlock-free dynamic

network reconfiguration,” IEEE Transactions on Parallel and Distributed Systems, vol. 16,

No. 5, pp. 412– 427,2005.

[23] G. Michelogiannakis, D. Sanchez, W.J. Dally, C. Kozyrakis,” Evaluating bufferless flow

control for On-chip networks,” Fourth ACM/IEEE International Symposium on Networks-

on-Chip (NOCS), Grenoble, France, pp. 9 – 16, 2010.

[24] P.N. Parakh, R.B. Brown, K.A. Sakallah,” Congestion driven quadratic placement,”

Proceedings of Design Automation Conference, San Francisco, CA, pp. 275 – 278, 1998.

[25] A.B. Kahng, Bin Li, Li-Shiuan Peh, and K. Samadi, “ORION 2.0: A fast and accurate NoC

power and area model for early-stage design space exploration,” Proceedings of the

Design, Automation & Test in Europe Conference & Exhibition, Nice, France, pp. 423 –

428, 2009.

[26] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb, “The Alpha 21364 network

architecture,” IEEE Micro, vol. 22, No. 1, pp. 26 – 35, 2002.

[27] IBM. IBM InfiniBand 8-port 12x switch. http://www3.ibm.com/chips/products/infiniband/.

[28] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz Mesh Interconnect

for a Teraflops Processor,” IEEE Micro, vol. 27, No. 5, pp. 51-61, 2007.

[29] D. A. IIitzky, J. D. Hoffman, A. Chun, and B. P. Esparza, “Architecture of the Scalable

Communications Core’s Network on Chip,”IEEE Micro, vol. 27, No. 5, pp. 62-74, 2007.

http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/mostRecentIssue.jsp?punumber=5854

150

[30] Ivan E. Sutherland and Jo Ebergen, “Computers without Clocks,” Scientific American

Magazine, pp. 62-69, August 2002.

[31] R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” Proceedings IEEE, vol. 89, No.

4, pp. 490-504, Apr. 2001.

[32] A. Banerjea and S. Keshav, “Queueing delays in rate controlled ATM Networks,” IEEE

INFOCOM, San Francisco, CA , pp. 547 - 556, 1993.

[33] Lu Zhonghai and A. Jantsch, “Traffic configuration for evaluating networks on chips,”

Proceedings of the Fifth International Workshop on System-on-Chip for Real-Time

Applications, Banff, Alberta, Canada, pp. 535 – 540, 2005.

[34] X. Chen and L.-S. Peh, “Leakage power modeling and optimization in interconnection

networks ,” Proceedings of the International Symposium on Low Power Electronics and

Design, Seoul, Korea, pp. 90-95, 2003.

[35] S. Thoziyoor, N. Muralimanohar, J. H. Ahn and N. P. Jouppi, “CACTI 5.1,” Technical

Report HPL-2008-20, HP Laboratories, 2008.

[36] H. Yoshida, D. Kaushik and V. Boppana, “Accurate Pre-Layout Estimation of Standard

Cell Characteristics,” Proceedings of the 41st Design Automation Conference, San Diego,

CA, pp. 208-211, 2004.

[37] Bo Zhang, T.S.E. Ng, A. Nandi, R.H. Riedi, P. Druschel, and Guohui Wang,”

Measurement-Based Analysis, Modeling, and Synthesis of the Internet Delay Space,”

IEEE/ACM Transactions on Networking, vol. 18 , No. 1, pp. 229 – 242, 2010.

151

[38] Jie Wu, “A deterministic fault-tolerant and deadlock-free routing protocol in 2D meshes

based on odd-even turn model,” ACM Proceedings of the 16th international conference on

Supercomputing, New York, NY, USA, June 2002.

[39] A. Banerjee, R. Mullins and S. Moore, “A Power and Energy Exploration of Network-on-

Chip Architectures,” Proceedings of the First International Symposium on Networks-on-

Chip, Princeton, New Jersey, pp. 163-172, 2007.

[40] A. Bona, V. Zaccaria, and R. Zafalon, “System Level Power Modeling and Simulation of

High-End Industrial Network-on-Chip,” Proceedings of the Design, Automation and Test

in Europe Conference and Exhibition, Paris, France, pp. 318-323, 2004.

[41] S. Bhat, ”Energy Models for Network-on-Chip Components,” M.S. Thesis, Dept. of

Mathematics and Computer Science, Royal Institute of Technology, Eindhoven, 2005.

[42] Wang Zhang, Wuchen Wu, Lei Zuo, and Xiaohong Peng, “The buffer depth analysis of 2-

Dimension mesh topology Network-on-Chip with Odd-Even routing algorithm,”

International Conference on Digital Object Identifier, Wuhan, China, pp. 1 - 4, 2009

[43] http://www.systemc.org , accessed 1 September 2011.

[44] H. Wang, L. Peh, and S. Malik, “ A Power Model for Routers: Modeling Alpha 21364 and

Infiniband Routers,” IEEE Micro, vol. 23, No. 1, pp. 27-35, 2003.

[45] Y. Hoskote, S. Vangal, A. Singh, N. Borkar and S. Borkar, “A 5-GHz Mesh Interconnect

for a Teraflops Processor,” IEEE Micro, vol. 27, No. 5, pp. 51-61, 2007.

http://www.systemc.org/

152

[46] M. B. Taylor et al., “Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay

Architecture for ILP and Streams,” Proceedings of the 31st International Symposium on

Computer Architecture, München, Germany, pp. 2-13, 2004.

[47] D. E. Duarte, N. Vijaykrishnan and M. J. Irwin, “A Clock Power Model to Evaluate Impact

of Architectural and Technology Optimization,” IEEE Transactions on VLSI Systems, vol.

10, No. 6, pp. 844-855, 2002.

[48] S.Heo and K. Asanovic, “Replacing Global Wires with an On-Chip Network: A Power

Analysis,” Proceedings of the International Symposium on Low Power Electronics and

Design, San Diego, California, pp. 369-374, 2005.

[49] S. Murali and G. De Micheli, “Sunmap: A tool for automatic topology selection and

generation for NoCs,” Proceeding Design Automation Conf, San Diego, Ca, pp. 914-919,

2004.

[50] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. D.

Micheli, “NoC synthesis flow for customized domain specific multiprocessor systems-on-

chip,” IEEE Trans. on Parallel and Distributed Systems, vol. 16, No. 2, pp. 113–129, Feb.

2005.

[51] A. Pullini, F. Angiolini, P. Meloni, D. Atienza, S. Murali, L. Raffo, G. D. Micheli, and L.

Benini, “NoC Design and Implementation in 65nm Technology,” Proceedings of the First

International Symposium on Networks-on-Chip, Princeton, New Jersey, pp. 273 – 282,

2007.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2011

	Power and chip-area aware network-on-chip simulation
	Masoud Oveis Gharan
	Recommended Citation

