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Abstract 

Power and Chip-area Aware Network-On-Chip Simulation 

 Masoud Oveis Gharan, 2011  

Master of Applied Science 

Electrical and Computer Engineering 

Ryerson University 

 

Among different communication architectures employed in Multi-Processor Systems-on-

Chip (MPSoC), Network-on-Chip (NoC) is recognized as a state of the art paradigm that can 

overcome on-chip communication challenges. In this thesis, we introduce the simulation of NoC 

systems. The structure of a new SystemC based NoC simulator (FANOOS) is presented in this 

thesis. We discuss various components of the simulator by presenting their SystemC code. We 

also provide an analytical methodology that employs the micro-architectural level of NoC routers 

and links by considering their power and chip area requirements. An evaluation flow for early 

stage design of NoC is introduced. Then different routing mechanisms are analyzed by trading 

throughput and latency. The ability of our simulator in terms of predicting NoC power and chip-

area is demonstrated by investigating the relation between throughput and transactional power 

consumption for various NoC application benchmarks. 
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Chapter 1 

Introduction 

In VLSI technology, we recently have had a revolutionary development namely System 

on Chip (SoC) and Network-on-chip (NoC). SoC is the integration of all the components of a 

computer system on a single integrated circuit (chip). It may contain digital, analog and often 

radio-frequency functions – all on a single chip substrate [1]. These many interesting systems are 

too complex to fit on a single chip. There are a lot of challenging overhead, and among them, the 

two challenges are communication and synchronization between modules [2]. As a solution to 

these and other problems such as performance, area and power consumption, NoC has emerged. 

NoC is an emerging paradigm for on chip data transfer of large VLSI systems implemented on a 

single chip. In an NoC system, modules such as processor cores, memory cores and specialized 

intellectual property (IP) blocks exchange data using an on-chip network [1]. NoC replaces 

dedicated, design-specific interconnection (buses, point-to-point ports, etc.) in SoC with scalable, 

general purpose network, and it establishes a communication between modules [3].  

At every stage of NoC design, there are various options such as topology, switching 

policy, routing mechanism, traffic pattern, etc. that have impact on the performance, power and 

area of NoC. Each of the above options has a large design space on its own. Many of these 
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options are important to the efficiency of over-all SoC systems, and for NoC simulation, all of 

these options need to be parameterized.  

For designers and architects of NoCs, obtaining an optimal NoC is a big challenge due to 

number of constraints and objectives. One of the best solutions to this challenge is to simulate 

NoC in a suitable environment. NoC simulators are dedicated testbed frameworks which serve a 

variety of NoC needs. They simulate relatively fast and inexpensive as compared to the cost and 

time involved in setting up a test system. NoC simulators allow designers to test NoCs that might 

be difficult or expensive to emulate using real hardware. For example, simulating the effects of a 

sudden burst in message flow will be difficult to investigate in hardware setup. Moreover, NoC 

simulators are particularly useful in allowing designers to test new techniques or amend existing 

technique. Our work is a modular and extensible SystemC based simulator (FAANOS) [4]. It 

allows experimenting with various options available at every stage of NoC design such as 

topology, switching technique, virtual channels and routing methods. FAANOS can be easily 

extended to include new topologies and routing algorithms. It also produces performance, area 

and power metrics for a given set of traffic choices.  

As the CMOS technology developed at sub-micron levels, the power consumption of an 

NoC will be a major concern and sometimes may affect the NoC design performance and area. 

Power dissipation in CMOS circuits is generally classified into two sources: static (or leakage) 

power dissipation and dynamic (or switching) power dissipation. The estimation of dynamic 

power dissipation of a chip is a challenging task. In this estimation, one should compute the 

power when the data transactions happen in the NoC. Two main power models ranging from 

RTL power estimation tools [5] to early stage architectural power models [6 and 7] have been 

proposed in the NoC area. In the RTL power estimation, the power models can be obtained from 
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synthesis and place / route of the RTL code using commercial tools. The generated library of the 

NoC components is then used during topology synthesis. The shortcomings of this model are the 

requirement of having complete RTL code and slow simulation (in the order of hours). However, 

the architectural power model takes only few seconds. This encourages us to choose the 

architectural power model to incorporate into our NoC simulation framework. This model allows 

NoC architects to estimate the power in transactional level or maximum condition (when NoC is 

applied by a full traffic pattern). This property of our NoC simulator is unique as compared with 

the past similar works.  

  

1.1 Motivation 

Two important reasons encourage us to do research on NoC. The first one is the rapid 

development of NoC that is going to be prevalent in the future of electronic technology. To 

support our claim, we can say that it is possible to imagine an NoC-based chip as a future field 

programmable gate array (FPGA). Such a field programmable resource array (FPRA) will use a 

big number of configurable computation resources by using a programmable NoC platform. 

Already there have been proposals for designing programmable NoC platforms [8 and 9]. One 

can easily imagine a scenario where a mesh topology NoC chip, populated with the application-

oriented cores, could be available as a mass-produced standard product. A future NoC 

architecture must be general enough to allow mass production and must have features for 

configuration to match and meet the applications constrain requirements. Therefore, NoC with 

such bright future and with many challenging research problems at all levels need further 

investigation, research and development. For example in terms of power, it is important to 

understand the different tradeoffs when we balance the energy of on-chip and off-chip 
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communication for a given energy budget. A better understanding of the area and power 

tradeoffs will enable the design of more energy and area efficient router architectures, as well as 

interconnection networks.  

The second reason that encourages us is the lack of a homogenous, general and accurate 

simulator in the NoC area. Most of today’s design optimization tools estimate power, 

performance or both based on architectural aspect of NoC systems. They do not have any facility 

to estimate the transactional metrics of NoC, or if they have then it is incomplete. This 

shortcoming leads to the inaccurate or deficient results of power, area and performance metrics. 

The inefficiency of the simulators that do not create transactional results is obvious. The 

transactional results give an accurate view of the behaviour of NoC in a real chip that is really 

important in making early design decisions of NoC. However, for the simulator that have 

incomplete link to the transactional aspect of NoC, we have noticed that they are not 

homogenous. In other words, the parts of simulator that estimate performance or power are not 

homogenously developed (i.e., the performance and power parts are not developed by a group). 

The users of heterogeneous simulator cannot establish a complete link between different parts of 

their tool. In this condition, they estimate transactional results from architectural results that is 

not enough accurate. The other important drawback in most of the today’s simulators is their 

development under software platform that do not have hardware description property (i.e., 

VHDL and Verilog). By considering the above mentioned points, we developed our simulator in 

a transaction-level modeling language (SystemC), which deliberately mimics the hardware 

description languages. This advantage of our simulator enables a designer to synthesize an NoC 

application like synthesizing a hardware platform, and simulate it using concurrent processes 

where each process is described using a plain C++ syntax.  

http://en.wikipedia.org/wiki/Verilog
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1.2 Objectives and Contributions 

As we mentioned earlier, the bright future of NoC technology and the lack of a general 

purpose NoC simulator has encouraged us to investigate NoC simulation. Our work starts with a 

research on almost all the important layers of NoC simulator. We first develop a homogenous, 

general and accurate NoC simulation framework. It is homogenous because the backbone of the 

tool is structured by SystemC language, and all of its parts are developed by our group. It is 

general because the simulator employs most of the previous approaches and techniques with 

some new approaches developed during our research. In terms of accuracy of the simulator, we 

can argue that in such a homogenous and general simulation environment the metric results tend 

to be accurate. This accomplishment is not achievable without introducing the recent NoC 

characteristics and issues as well as representing the ability of our simulator by experimental 

work.  

 

1.3 Thesis Structure 

The rest of this thesis is organized as follows. Chapter 2 provides a background on on-

chip networks. We introduce the concept, architecture and configuration of NoC as well as 

propose an analytical methodology for parameterized NoC router components. We conclude this 

chapter by definition of power, area and performance characteristics and briefly discussing the 

related work. In chapter 3, we pay attention to the structure of our simulator. The hardware 

modeling of every NoC module is described in detail, and the working of SystemC process of 

each module is depicted. This chapter delves into the micro-architecture and circuit-level design 

of a router synthesized in our simulation framework, and the technological and analytical 

parameters accompanied by the related formulas for every component are demonstrated. At the 
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end of this chapter, an evaluation flow is presented and based on that we start an experimental 

work in chapter 4. We implement two sorts of experiments. In the first experiment set, we 

configure the simulator and traffic generator to investigate the impact of three different routing 

algorithms, XY, odd-even (OE), and line-probe (LP) on different NoC applications. In the 

second experiment set, we first propose a methodology to estimate the maximum length of link 

in different topologies and based on that we experiment the area and power of some SoC 

applications. Finally, Chapter 5 concludes this thesis and presents directions for future work. 
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Chapter 2 

Overview 

The general structure of NoCs has been presented in the past works [3 and 10]. It consists 

of cores and switches that are directly connected such that the cores are able to communicate 

concurrently by sending messages asynchronously. Figure 1 illustrates a typical on-chip network, 

the on-chip components such as MEMORY, CPU, DSP, RISC, RF interface and I/O that 

communicate by using an interconnected group of switches.  

 

 

 

 

 

 

To illustrate the concept of NoC, we take a detailed look in Fig. 2, where the NoC 

architecture provides the communication infrastructure for the resources (cores or IPs). It has a 

bonded structure of elements such as routers or switches, network adapters, and links based on a 

particular topology [2]. The core can be a sender, a receiver or both and represents SoC modules 

Figure 1: NoC architecture 
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such as processor cores, memories or specialized IP blocks. The network adapters couple these 

cores to the network to create an environment, where the cores send or receive messages 

asynchronously. In other words, it allows communication from a core to the outside world via a 

channel. The router consists of different modules such as arbiter, crossbar, demultiplexer, and 

FIFO or virtual channels. The routers communicate among each other asynchronously to deliver 

a message to the destination. The link is the communication elements in NoC that connects two 

routers or a router and a core together. It can be either simple wires or complex communication 

mechanisms like FIFOs. In the following sections, we introduce the techniques, modules and 

metrics which are employed in NoC architecture. Section 2.1 describes the architecture of 

different topologies. The details of messages along with different packet switching methods are 

discussed in section 2.2. Different routing mechanisms and the architecture of router are 

presented in sections 2.3 and 2.4 respectively. In sections 2.5 and 2.6 we introduce the details of 

link, traffic generator, source, and sink modules. Different traffic patterns are discussed in 

section 2.7. In sections 2.8 and 2.9, we explain the micro-architectural structure of router and 

link to introduce the model and formulation of the basic electronic elements for estimating power 

and area. Lastly, we define the power, area and performance metrics in section 2.10 and the 

related work is discussed in section 2.11.    
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2.1    NoC Topology 

 An NoC topology is the layout pattern of interconnections of various elements such as 

links and routers [11]. Generally, NoC topology is classified into two main groups: regular and 

irregular [12]. The regular topologies are simpler than the irregular ones, and the local 

interconnections between resources and routers are independent of the network size. Besides, 

routing in regular topologies is easy that results in potentially small switches, more efficient, 

high bandwidth, faster clock cycle, and overall scalability [13]. Figure 2.1 depicts different 

topologies where a, b and c are regular, and d is an irregular topology. 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1  2D Mesh/Torus Topology 

 Mesh and/or torus topology is a regular topology which is most commonly used and 

studied topology so far [10]. In this topology, each node consists of a core connected to a router. 

          Figure 2.1: Different topologies 
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Each router is connected to four other neighbouring routers by using input and output channels. 

Each channel consists of two uni-directional point-to-point links between two routers or a core 

and a router. Routers may have internal queues to handle congestion.  Each node is identified by 

a unique integer called Node_ID. Moreover, each node can be identified by an x and y 

coordinates. Figure 2.2 depicts 3 × 4 mesh and torus topologies, where each square represents a 

node in the network. 

 

 

  

 

 

 

2.1.2  Application Specific Topology 

There is a wide variety of irregular topologies in the NoC domain that are also known as 

application specific topologies. Various researchers consider different layout pattern for it. In this 

thesis, we introduce application specific topology whose pattern is derived from the specification 

of an SoC application. Since every application has different specification, the topology derived 

from that does not have a predefined or well ordered shape, and this leads to limited use of 

various routing algorithms in application specific topologies. For instance, among various 

routing mechanisms that are described in section 2.3, only two deterministic routing mechanisms 

(VIRTUAL CIRCUIT and SOURCE routing) can serve such topologies. To demonstrate the 

architecture of this topology, we present Fig. 2.3, where an Audio-Video (AV) application is 

Figure 2.2: Mesh topology (left) and Torus topology (right) 
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drawn in the form of nodes and arrows, which is commonly known as core graph [14]. If we put 

a switch at every node of the core graph, we can have an application specific topology of the 

application that will be called a core switch graph in this thesis. The router in this topology is 

modeled to have dedicated output for each input channel. In this way, there is no contention 

within each router because of the pattern of the topology.  

 

 

 

 

 

 

 

 

2.2    Messages 

In the NoC area, a message is an arbitrary amount of information which is sent from a 

source to a destination. Transferring messages through an NoC can be achieved by two methods: 

circuit switching and packet switching. In the circuit switching, a limited number of dedicated 

connections are established between routers prior to transferring the message, and there is no 

need of buffering in this method. The packet switching is a newer digital communication 

method that splits messages into distinct packets that are transmitted independently and then put 

together into the original message at the destination [15]. The packet in this method is defined as 

a sequence of binary digits including data and control signals, which is transmitted and switched 

Figure 2.3: Core graph and the core switch graph of AV benchmarking application 
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as a composite entity [11]. The network in the packet switching can operate a synchronous 

message passing system. To have a synchronous message passing system between nodes, the 

nodes need to wait for transfer of message. In other words, the sender will not continue to 

transfer the message until the receiver absorbs the message. However, there is no need of 

buffering between the sender and receiver nodes. The message can always be stored at the 

receiving node, because the sender will not continue until the receiver is ready. 

 The other advantage of this method is that a channel is occupied during the transmission 

of the packet only, and upon completion of the transmission, the channel is made available for 

the transfer of other packets [11]. This leads to an optimized use of the channel capacity, 

minimize the transmission latency, and increase robustness of communication. Three forms of 

packet switching such as store-and-forward, virtual cut-through and wormhole are defined in the 

NoC area. 

 

2.2.1 Store-and-Forward Method  

In this method, the whole packet is received and stored at the router, and then forwarded 

to the next router or destination. In this method, a router needs the buffering capacity of at least 

one full packet [16]. 

 

2.2.2 Virtual cut-Through Method 

The router starts forwarding a packet before the whole packet has been received. 

Normally, as soon as the header information is processed, the packet is transmitted to the 

destination. This technique reduces latency through the router, but compromises the reliability as 

compared to store-and-forward method. In this method, a router needs buffering capacity for at 
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least one full packet. If there is contention in the network, then the packet is stored at the router 

level [17]. 

 

2.2.3 Wormhole Switching Method 

In this method, the routing is done as soon as possible similarly to cut-through routing. 

However, the cut-through flow control assigns buffers and channel bandwidth on a packet level, 

while wormhole flow control does this at the flit level [1]. The flit (flow control digits) is defined 

as a small piece of data which is created from splitting the network packet. It is also defined as 

the fundamental unit of data transferred in the communication network at the clock rate. The first 

flit of a packet is called the header flit that holds information about the packet's route (namely the 

destination address) and sets up the routing path for all subsequent flits of the packet. The header 

flit is followed by one or more body flits, containing the actual pay load of message as depicted 

in Fig. 2.4. 

 

 

 

 

 

 

 

 

Figure 2.4: Packet message in the NoC 
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The final body flit called the tail flit performs some tasks to close the connection between two 

routers. Since a packet is transmitted flit by flit, it may occupy several flit buffers along its path, 

creating a worm-like image. The wormhole switching is the most popular and well suited for on 

chip communication, and we have chosen this method for transferring message in our NoC 

simulation framework. Figure 2.4 provides a detailed description of a message format in this 

method. The size of messages can have great impact on the performance that is important request 

in the early design of an NoC [18]. To implement this method, NoC requires a small FIFO flit 

buffer at each intermediate node. The wormhole flow control also facilitates the implementation 

of virtual channels. The Virtual-Channel switching is an extension of worm-hole switching, 

where multiple virtual channels are provided for each input port. 

 

2.2.4 Buffer Implementation 

Buffers are a storage medium used to store the message content temporarily due to a 

difference in rate of flow of data, or time of occurrence of events, when data is transferred from 

one node to another [11]. The capacity of buffers can affect the network contention as well as 

cost. The higher buffer capacity leads to the reducing of network contention, thereby improving 

performance. However, buffers are area and power hungry, and their use should be carefully 

investigated. The buffers are implemented in a first-in first-out (FIFO) way. In a FIFO, what 

comes in first is handled first and what comes in next waits until the first is finished, etc. When 

the packet is small, a suggested optimized size of the FIFO buffer is to be equal to the size of a 

packet. If the size of the packet is larger than the size of FIFO, then the packet occupies more 

than a router’s buffer, and in the case of contention the situation get worse.  
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2.2.5 Virtual Channel (VC) 

A VC connection is an association established at the asynchronous transfer mode 

between two or more endpoints for the purpose of resource-switch or switch-switch information 

transfer [11]. A virtual channel virtually splits a single physical channel into two or more 

channels, providing two or more virtual paths for the packets to be routed. The VCs improve the 

performance at the expense of area and power consumption. However, there are several other 

advantages such as contention alleviation, latency and wire cost reduction. In an NoC 

environment, the virtual channel is modeled in FIFO buffers and characterized with the 

parameter “VC”.  

 

2.3 Routing Mechanisms 

The term routing mechanism refers to the mechanism used to implement any routing 

algorithm. It is the process of determining and prescribing the path so that a message data can 

reach the destination, or it is the method to be used for forwarding messages [11]. In an NoC 

system, routing directs packets from their source toward their destination through the NoC 

infrastructure. Routing schemes have been classified in several ways in literature. In one of the 

classifications, they are categorized in deterministic and adaptive groups [18]. The deterministic 

routing always follows a deterministic path of the network. The examples for such routing 

mechanisms are SOURCE, VIRTUAL CIRCUIT and XY routing. The adaptive routing 

mechanisms need more information about the network to avoid congested paths in the network. 

In adaptive routing implementation, the routing function is described by means of if-then-else 

statements that are synthesized into a combinatorial logic circuit. The examples are OE (odd-

even), LP (line-probe) and HOT POTATO.  These routing mechanisms are obviously more 
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complex to implement, and they are more expensive in area, cost and power consumption. The 

SOURCE, VIRTUAL CIRCUIT, XY, OE, HOT POTATO routing have been introduced and 

researched in the past works [19, 20 and 12]. The LP routing is a new routing method that is 

being presented in this thesis. It is being investigated here in the context of NoC simulation. 

 

2.3.1  VIRTUAL CIRCUIT Routing 

Virtual circuit routing is a connection oriented communication service that emulates 

circuit switching. In virtual circuit routing, the packets are delivered by means of packet 

switching where the connection is established before any packets are transferred and 

handshaking overhead produce during the connection establishment phase [21].  However, the 

bit rate and latency service are similar to circuit switching which might be different in a virtual 

circuit routing due to three main differences. First, the FIFO lengths in the routers vary in the 

virtual circuit. Secondly, the packet rates generated by the cores are not the same in the virtual 

circuit. Thirdly, the loads from different cores sharing the same links are different in the virtual 

circuit. Virtual circuit routing implementation uses a routing table that stores routing information 

in the form of a set of entries (an entry for each destination), each containing the information 

about the output port (or the set of output ports) through which the packet must be forwarded to 

reach its destination. This routing table is constructed and located at the router level in advance 

when the topology is generated. Therefore, the flit in this routing can be as small as possible and 

it leads to small channel width and small FIFO buffer. 
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2.3.2  SOURCE Routing 

In SOURSE routing, the sender sends the packet through a partially or completely 

specified routing path to the destination [12]. SOURCE routing permits comfortable 

troubleshooting, better trace route, and lets a router to have access to all the possible routes to 

destination. It also allows a source to have direct effect on performance by directing packets 

through the network to prevent congestion.  

The differences between SOURCE and VIRTUAL CIRCUIT routing is that in SOURCE 

routing, the routing path (routing table) is constructed by the source, and it is stored in the header 

flit during run-time. However, in VIRTUAL CIRCUIT routing, the routing path is constructed 

and located on the router. In this way, the SOURCE routing becomes the most flexible routing 

solution as it can be updated at run-time (re-configuration) to be adapted to particular scenarios 

such as the changes in traffic conditions (e.g., multi use-case applications) and the variation of 

NoC topology (e.g., due to transient or permanent faults) [22]. Although the power dissipation of 

the routing logic in the router is minimized, the increase in packet size can have negative impact 

on the performance, resulting in an increase in the energy consumption.  

 

2.3.3  XY Routing  

The XY routing is a deterministic routing method for mesh topologies, where the flits are 

first routed in the X direction until reaching the Y coordinate of the destination, and then it is 

routed in the Y direction to reach the destination. If a link at the route is in use by another packet, 

the flit remains blocked in the router until that link is released. The XY routing is simple and 

easy for mesh routing where a few routers participate in the path routing [20]. In other words, it 

cannot employ the network capacity fully that leads to increase in the system contention. To 
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benefit of the features of this routing, we use the XY routing algorithm as the basic routing 

algorithm for some other routing mechanisms such as OE, LP and HOT POTATO routing in 

FAANOS.   

The XY routing basically works for 2D network topologies like mesh or torus. The 

mechanism of this routing is simple and easy where the flit must be routed to the destination 

router address (Dx, Dy) and then to the core port of the router. In other words, in a 2D mesh 

topology, if each router is identified by its coordinate (x, y) (see Fig. 2.2), the current router 

address (Cx, Cy) is compared to the destination router address (Dx, Dy) which is stored in the 

header flit. If the Dx > Cx, flit will be routed to the East port and Dx < Cx, flit will be routed to 

the West port. For Cx=Dx, the header flit is reached horizontally, and then Dy (vertical) address 

is compared to the Cy address. If Dy<Cy, flit will be routed to the South port. If Dy>Cy, flit is 

routed to the North port. For Cy =Dy, the header flit is already in the destination router. When 

the chosen port is busy, the header flit and all the subsequence flits of the packet should wait in 

their routers, until the port gets free. Figure 2.5 demonstrates the pseudocode of XY routing 

algorithm. 
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2.3.4  Odd-Even Routing 

Odd-Even routing is an adaptive method in which some turning directions are not 

allowed in order to lower the contention of the NoC system. In a 2D mesh topology, each node is 

recognized by its coordinate (x, y). In this topology, if the x dimension of nodes of a column is 

even number, the column is called even, and if the x dimension of nodes of a column is an odd 

number, the column is called odd. A turn is a 90-degree change of traveling direction which is 

described as following. There are eight kinds of 90-degree turns that can be associated to each 

node in a 2D topology. If a turn consists of a change in direction from East to South we call it ES 

turn. Similarly, the EN, WS, WN, SE, SW, NE and NW turns are defined where E, W, S and N 

point to East, West, South and North respectively [19]. Generally, the Odd-Even routing is based 

on two rules. The first rule prevents of EN and ES turns for packets that are in nodes located at 

the even columns. The second role prevents SW and NW turns for packets that are in nodes 

/*Source router: (Sx, Sy); destination router: (Dx, Dy); current router: (Cx, Cy).*/ 

begin 

if (Dx>Cx) //eastbound messages 

return E; 

else 

if (Dx<Cx) //westbound messages 

return W; 

else 

if (Dx=Cx)  

{ //currently in the same column as destination 

if (Dy<Cy) //southbound messages 

return S; 

else 

if (Dy>Cy) //northbound messages 

return N; 

else 

if (Dy=Cy) //current router is the destination router 

return C; 

} 

end 

 

Figure 2.5: Pseudocode of XY routing algorithm 
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located on the odd columns. Figure 2.6 demonstrates the pseudocode of minimal Odd-Even 

routing algorithm in which out_dir contains the forwarding directions of the packet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/*Source router: (Sx, Sy); destination router: (Dx, Dy); current router: (Cx, Cy).*/ 

begin 

out_dir < 0; 

Ex< Dx-Cx; 

Ey< Dy-Cy; 

if (Ex=0 && Ey=0) return C;   //current router is destination 

if (Ex=0) 

{       //current router in same column as destination 

if (Ey<0)   add S to out_dir; 

else            add N to out_dir; 

} 

else 

{ 

if (Ex>0) 

{      //eastbound messages 

if (Ey=0)  add E to out_dir;   //current in same row as destination 

else 

{ 

if(Cx % 2 != 0 or Cx=Sx)  //NS turn allowed only in odd column. 

if(Ey < 0)  add S to out_dir; 

else    add N to out_dir; 

if(Dx% 2 != 0 or Ex != 1) add E to out_dir; 

//allow to go E only if destination is odd column  

// EN and ES turn not allowed in even column 

} 

} 

else  

{      // westbound messages 

add W to out_dir; 

if(Cx%2=0)    //allow to go N/S only in even column because 

// N->W and S->W not allowed in odd column 

if(Ey<0)  add S to out_dir; 

else   add N to out_dir; 

} 

} 

Select a dimension from out_dir to forward the packet. 

end 

 

Figure 2.6: Pseudocode of OE routing algorithm 
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2.3.5  Hot Potato Routing 

Hot Potato routing (known as deflecting routing) is a decentralized and adaptive routing 

mechanism, which decreases the need of buffering packets in the routers [23]. The prominent 

feature of Hot Potato routing is that does not require FIFO buffer in the routers. In wormhole 

routing, when multiple packets contend for a single outgoing channel, the packets wait at the 

FIFO buffer level to avoid congestion. However, in Hot Potato routing, when multiple packets 

want to pass through the same link (the contention link), only one of the packets pass through the 

link, while the others are routed to other available links, even though the other links do not yield 

the shortest paths. In a router, every packet has preferred output ports along which it wants to be 

routed, and when possible a packet is sent along one of these outputs. The implementation of this 

method creates an environment where the packets are bounced around like a "hot potato" 

sometimes moving further away from their destination because they have to keep moving 

through the network. They are constantly transferred until they reach their final destination as the 

input port cannot keep more than one packet at a time. This technique allows multiple packets to 

reach their destinations without being dropped. Since it has no FIFO buffer and flow 

management, a deflection router can be designed with higher speed and lower cost than a 

wormhole or virtual cut-through switch.  

 

2.3.6  Line Probe Routing 

The LP routing is normally used in VLSI technology to design the routing part of an IC 

(integrated circuit) layout [24]. Figure 2.7 shows the working of this algorithm for a 2D layout of 

an IC. The line moves from the source in X direction toward the sink. When it reaches to a 

blocking area it probes the neighbours and chooses one that is in Manhattan distance (the 
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shortest distance between two points). It turns to Y direction until it reaches to a blocking area. 

Again it probes the neighbour and chooses one that is Manhattan distance. As you can see it 

turns around the blocking area until it reaches the sink. 

 

 

 

 

 

 

Figure 2.8 and 2.9 show a LP-based routing in a 2D mesh topology. 

 

 

 

 

 

 

 

 

 Compare the LP-routing with the previous routing mechanisms we can say that it has a 

combined property of wormhole switching and hot potato routing. The switching in this routing 
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is wormhole as the router can have a FIFO buffer or even virtual channels, but the routing 

method is like hot potato mechanism. When multiple packets request for a single output, the 

packets with a lower priority are mis-routed to other output paths. Therefore, due to hot potato 

property it can choose shorter FIFO buffer without virtual channel. In this way, the router can be 

designed with higher speed and lower cost, and wormhole switching property prevents or 

alleviates some problems related to hot potato routing such as high rate of link utilization. In 

terms of implementation, only one bit extra is used in the header flit, and in the router also LP 

function can be described with a few if-then-else statements. The pseudocode in Fig.2.10 

describes the LP algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/*Source router: (Sx, Sy); destination router: (Dx, Dy); current router: (Cx, Cy); current entrance direction 

(ent_dir)*/ 

begin 

out_dir= CALL XY algorithm; // call XY algorithm and save the direction in out_dir 

temp=out_dir;  // save this direction to a temp memory 

if  out_dir is free  // check the requested output is free 

 return out_dir; // yes, so return this direction 

else //No 

{  

 out_dir = choose a direction out of out_dir , ent_dir, and local direction;  

 if  out_dir is free 

  return out_dir; 

 else 

 { 

  out_dir = choose the last direction; 

  if  out_dir is free 

   return out_dir; 

} 

} 

out_dir=temp; //if all directions are blocked, so stay in first direction for the next clock cycle in router 

end 

 

Figure 2.10: Pseudocode of LP routing algorithm 
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2.4    Router 

The heart of an NoC is a router or switch. We call it router in this thesis. Routers route 

and buffer messages between resources (IP core). The design model of router is the same as 

hardware design, and it is similar to the design presented in Orion NoC design [25]. The router 

design in Orion is based on the hardware of four real NoC routers: Alpha 21364 router [26], IBM 

InfiniBand 8-port 12 × switches [27], Intel 80-core Teraflops chip [28], and Intel Scalable 

Communications Core chip [29]. The other advantage of our router design is its model in terms 

of power and area parameters that will be introduced later. 

The router consists of different modules such as arbiter, virtual channel (VC) allocator, 

crossbar, demultiplexer, and FIFO or virtual channels. Incoming data (packet) is stored at the 

input buffers that the VC allocator selects. The arbiter decides to which output port, the input 

data will be routed. The crossbar gets the data from the input buffers and transfers to the output 

port which the arbiter assigns. The crossbar is usually implemented as a matrix crossbar. 

Two kinds of router models are investigated in this report: regular and irregular. The 

regular router has five input ports and five output ports as depicted in Fig. 2.11 that is used in 2D 

topologies such as Torus or Mesh topology. It employs all routing mechanisms that are described 

in section 2.3. The irregular router has flexible input and output channels and is more effective in 

irregular topology. Due to its irregular nature, it is limited to utilize every routing mechanism.  
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2.4.1 Arbitration Techniques 

In asynchronous circuits, arbitration selects the order of access to a shared resource 

among asynchronous requests. Its function is to prevent two operations from occurring 

concurrently when they should not. For example, in the router that has multiple input messages 

accessing an output channel, there is a possibility that the requests from two input messages can 

happen nearly at the same time. The arbiter module must decide that which request to be 

serviced first. Ivan Sutherland and Jo Ebergen describe arbiters as following [30]. “An arbiter is 

like a traffic officer at an intersection who decides which car may pass through next. When there 

are two cars to pass through an intersection at the same time, the traffic officer first stops the cars 

and decides which car should go first. Then he or she let only one car passes through the 

Figure 2.11: 5×5 regular router 
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intersection. When the first car passes through completely, the second cars is allowed to pass 

through. The same situation happens in an arbiter, i.e. when an arbiter gets two requests at once, 

it must decide which request to grant first. For example, when two packets request access to an 

output channel at approximately the same time, the arbiter puts the requests into a sequence and 

grants access to only a packet at a time.” 

There are various arbitration scheduling mechanisms such as Round Robin (RR), First 

Come First Serve (FCFS), Priority Based (PB), and Priority Based Round Robin (PRBB) in 

asynchronous circuits. Usually, RR and FCFS are used for best effort data flits and PB and 

PBRR are employed for guaranteed traffic.  

 

2.4.2 Round-Robin Scheduling 

Round-robin (RR) is one of the simplest scheduling algorithms for processes in a data 

packet scheduling in NoC, which allocates equal portion of time slices circularly to each process 

and manage all processes without any priority. RR scheduling is both simple and easy to 

implement, and it can be starvation-free. However, if the sizes of the jobs of the processes vary 

considerably, the RR scheduling may not be suitable. In other words, a process that does a big 

job will consume more time over other processes. In an NoC system, the processes in the arbiter 

of a router take the same task time, and there is no significant difference between them. 

Therefore, the round robin will be suitable in an NoC system.  

 

2.5 Link  

Links connect routers and cores, and they are implemented as parallel global wires on 

metal resources. In NoC, the number of links in each channel is set to be equal to the size of a 
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flit, and a larger flit size can increase link utilization and need more metal resources for power 

and ground interconnects. Buffered wires are modeled to fit link delay within a single cycle [31].          

 

2.6 Traffic Generator, Source and Sink 

We have introduced the architecture of NoC, and now it is time to introduce the modules 

embedded in our NoC simulation framework. These modules deal with the generation and 

sending different packet models to assess the effectiveness of an NoC system on three metrics: 

performance, power and area. In fact these modules imitate the communication behaviour of 

resources in an SoC system. In terms of sending packet, the resources are classified in two main 

groups i.e., sender and receiver. The sender is responsible to generate packet based on a given 

traffic pattern and injects them to the system. In this report, the dummy packets are generated 

and injected into the system by the source module, and the traffic generator is responsible to 

dictate the traffic pattern of source module. Therefore, both the source and traffic generator play 

a key role of sender in our NoC simulation framework. The sink plays the role of a 

destination/receiver which receives packet and records the number of incoming packets.  

 

2.7  Traffic Pattern 

In terms of traffic generation pattern, the traffic can be classified in two patterns: 

synthetic and application-oriented. In the case of synthetic traffic, the traffic generator generates 

pattern resembling a simplified packet data model.  The sources in the simplified packet data 

model are generally greedy sources. A greedy source is a traffic model that generates packets at 

the maximum possible rate and at the earliest opportunity [32]. There will always be packets to 

transfer, and the source will never be in the idle state due to congestion avoidance or other local 
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traffic type. When the transfer of a past packet is completed, a new data packet is produced. It 

means that the queue of the source is never congested.  

In terms of the distribution of traffic, synthetic pattern is categorized along three 

dimensions: spatial distribution, temporal flow distribution and message size distribution. The 

spatial distribution is associated to the locations of sources and destinations. The temporal flow 

distribution is related to the message generation probability over time. The message size 

distribution defines the length of messages to be routed in the NoC. 

In application-oriented traffic, the traffic generator generates packet in a pattern that 

matches with a real application model. It considers all the aspects of traffic such as the rate of 

packet flow, the burst time or pause time of packet flow, as well as the size of flit and packet. 

The source and traffic generators should be configured in advance by the users. The following 

sections discuss further about these patterns. 

  

 

2.7.1  Spatial Distribution 

 In spatial distribution, each source core sends packets to different destination cores at 

each simulation cycle. In other words, the distribution of destinations varies in each simulation 

cycle. All the sources share the same temporal and size parameters, and the traffic is classified 

into two categories: the uniform and locality patterns. With the uniform traffic, a network node 

sends packets to other nodes with the same probability [33]. With the locality traffic, a network 

node sends packets to its neighbouring nodes with higher probability. In order to build a unified 

expression for both types of traffic, we define communication distribution probability in terms of 

communication probability as follows: 
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 Communication probability P(i,j) is the probability of sending messages from node i to 

node j. Assume the probability Pc of sending messages to the network from every node is 

the same. Therefore, we define Equation 2.1 for any source node i with N destination. 

        
 
   = Pc         (2.1) 

 Communication distribution probability Dp(i,j) is the probability of distributing messages 

from node i to node j where node i sends messages to the network. For any source node i 

with its N destination nodes, we define Equation 2.2, meaning that all the messages from 

node i are aimed to all the N destination nodes in the network.  

         
 
   =1         (2.2) 

 The distribution coefficient α (d) is the coefficient of distribution of destination around 

node i where d is the distance between source i and its destination nodes. This array is 

constant for each NoC system during the simulation and the value of its elements is 

selected based on the locality of system. Assuming the maximum distance between nodes 

is D, the value of coefficients is defined in Equation 2.3.   

      
 
   =D  0< α i<D          (2.3) 

Now, we define communication distribution probability Dp as a relative probability to 

common probability factor Pc in Equation 2.4. 

    = coef . Pc          (2.4) 

where 

 coef = 
 

 
   

The coef is the coefficient probability and when all the elements of α has the same value of 

one, then the traffic is uniformly distributed due to the uniform distribution of destination for all 
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the sources. If the value of an element related to a distance has bigger value, the traffic has more 

tendencies to the nodes related to that distance. Therefore, for a maximum locality distribution 

(i.e., the sources send message to nearby nodes), the first element of α should have a maximum 

value of D. To better understand Equation 2.4 an example is given as follows. This example will 

demonstrate the spatial distribution of destinations in a 2D 4×4 NoC topology.  Table 2.1 shows 

the coefficient distribution (α) and coefficients probability (coef) which is based on the distance 

parameter, d, (i.e., the distance between two nodes). If we assume the distance between two 

nearby nodes is one, then the maximum distance between two nodes will be six.  When d is equal 

to zero, then it is the distance between a node and itself. When d is equal to one, it is the distance 

between a node and its first neighbouring nodes and so on. The coef is the probability coefficient 

of sending packets to other nodes. When the coef is equal to zero, then the probability of sending 

packet is also zero. As expected, each node should not send packet to itself. In other words, when 

d=0 the coef is also zero. 

Table 2.1 depicts some sample numbers for three traffic patterns of uniform, locality and 

non-locality. In a uniform traffic, the coef for a node to itself is zero and a node to other nodes is 

constant and equal to 0.16. In full locality traffic, the coef for a node to itself is zero, to the first 

neighbouring nodes is one, and to other nodes is zero. In a non-locality traffic, it is completely in 

reverse order. The coef for a node to itself is zero, to the sixth neighbouring nodes is one, and to 

other nodes is zero. The other locality conditions will be located between the non-locality and 

full locality cases.  
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Table 2.1 Traffic 

TRAFFIC d 0 1 2 3 4 5 6 

Uniform α 0 1 1 1 1 1 1 

 Coef 0 0.16 0.16 0.16 0.16 0.16 0.16 

Full Locality α 0 6 0 0 0 0 0 

 Coef 0 1 0 0 0 0 0 

Non- Locality α 0 0 0 0 0 0 6 

 Coef 0 0 0 0 0 0 1 

                      

                           

2.7.2  Temporal Distribution 

From the temporal distribution point of view, traffic can be classified into two categories 

of bursty pattern and continues pattern. In a continuous traffic pattern, the source module 

continuously sends packets on a regular interval as close as possible to the bit rate specified, 

where the source is a greedy source. The bursty traffic pattern sends a burst of data at the 

maximum specified burst rate, and then pauses for a specific amount of time. In other words, it 

can be represented by an alternating on and off time periods. During the on period, packet is 

generated in fixed intervals, and during off, no packet is generated.  

2.7.3  Message size distribution 

The message size specification defines the length of communicated messages. There are 

two variables for changing the size of message, the size of flit and packet. The size of a flit also 

determines the width of buffers in the router. Therefore, a small flit needs the small buffer size 

leading to a small size of the router and consequently lower amount of resources and links. The 

size of packet that is made of flits does not have effect on the structure of NoC.  
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2.7.4  Source-by-Source Distribution 

Source-by-source traffic is a combinational traffic pattern of two distribution patterns: the 

temporal flow and message size. In this traffic pattern, each source is configured depending on 

its own temporal and size parameters. In addition, it statically defines communication before the 

simulation starts, implying that the destination nodes are fixed for source node during the entire 

network simulation. The temporal characteristics and message size specification of each node 

can be approximated using communication traces. This type of traffic is used to construct 

application-oriented workloads.  

 

2.7.5  Poisson Traffic Distribution 

Another simplified traditional traffic generation model in the network technology is the 

Poisson process where the number of incoming messages follows a Poisson distribution.  

 

2.7.6 Application-Oriented Pattern 

This pattern is a subset of source-by-source distribution, where the packet flow mimics 

the communication characteristics of a given application. Therefore, each source is configured in 

accordance with its constraints at the application. The destination nodes are fixed for the source 

node during the entire network simulation. The temporal characteristics and the message size 

specification of each node are defined and they can be varied depending on the limitation in the 

application. Every source node should be defined in advance in terms of its destination, temporal 

characteristics and message size specification. This information can be derived and provided in 

form of a set of text entries from the application.  
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2.8 Power modeling 

As the CMOS technology developed under sub-micron levels, the power consumption of 

an NoC design has become a major concern and sometimes dominates the design performance 

and area. Power dissipation in CMOS circuits can be classified in two sources: static (or leakage) 

power dissipation and dynamic (or switching) power dissipation. Static power is mainly 

dependent on the required chip resources, whereas dynamic power is determined by the 

switching activity. Dynamic power is still the major component of the overall power 

consumption during active operations. An enormous power dissipation of the CMOS circuits is 

consumed only when the transistors are switching. In context of NoC design, we need to take 

care of static power, since it has already been consuming a considerable portion of the active 

power in recent process technologies. It will further increase while dynamic power becomes 

smaller when the technology is scaled down. Different types of energy models have been used 

for the calculation of energy requirements of NoC systems. These models are commonly based 

on static and dynamic power estimates from synthesized gate-level models of network 

components. The following sections introduce an analytical method which consider the micro 

architecture of basic components of an NoC system to estimate the overall power consumption.  

 

2.8.1 Static Power Modeling Methodology 

Static power dissipation is currently one of the main factors limiting the performance of a 

computer system. It is formulated as P =Istatic . Vdd where Istatic is the static current and Vdd is the 

supply voltage. Therefore, the static power dissipation in each clock cycle is formulated as:  

P =Istatic Vdd/Fclk where Fclk is the clock frequency. We can calculate Istatic for each component of 

the NoC system i.e., based on architectural and technological parameters of each component of 
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the system. However, Vdd and Fclk are the input parameters which should be specified by users in 

network simulation. Istatic or leakage current has five basic sources [34]:  

 sub-threshold leakage current 

 Gate tunnelling current 

 Reverse biased pn junction current 

 Punch through current 

 Gated induced drain leakage.  

The sub-threshold condition happens when a transistor is OFF. It is due to the gate–source 

threshold voltage of the transistors is below the supply voltage of CMOS design (Vdd might have 

been 5 V and Vth for both NMOS and PMOS might have been 700 mV). Tunnelling Current 

through SiO2 (Gate Oxide)is very small but at very small thickness levels, electrons can tunnel 

across the very thin insulation. Tunnelling current becomes very important for transistors below 

130nm technology. There is a small reverse leakage current, which is formed due to formation of 

reverse biased between pn junctions. It is very small as compared to sub threshold and tunnelling 

currents, however, it may be ignored during power calculations. Two last sources are also very 

small as compared to sub threshold and tunnelling currents, and they will be ignored.  

For estimating leakage power, an architectural approach is proposed by Chen and Peh 

[34] where the leakage current resources have an almost linear relation with the transistor width. 

For instance, sub threshold current Isub, which currently dominates leakage current is defined as 

follows: 

Isub=Io     
  

   
  

 
  

 
             

    
  

       (2.5) 

Io= µ
 

 
 

         

   
  

           (2.6) 
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To derive an architectural leakage power model, we can separate the technology-

independent variables such as transistor width from those that stay invariant for a specific 

process technology: 

Ileak(i, s) = 
            

 
 . I’leak(i,s)        (2.7) 

where 

 Ileak is total leakage current;  

 I'leak is leakage current per unit transistor width over length; 

 W(type(i; s)) refers to the transistor width of NMOS when NMOS determines the leakage 

current (i.e. type(i; s) is N), or PMOS (when type(i; s) is P).  

Orion 2.0 [25] follows the same approach as of Chen and Peh [34], however, it adjusts the 

approach as follows. Chen and Peh only considered sub-threshold leakage, whereas from 65nm 

and beyond, gate leakage gains importance and becomes a significant portion of the leakage 

power. This is even more visible for high-performance applications where gate oxides are much 

thinner (i.e., 1.5nm in 65nm high-performance library). We will follow the same methodology 

proposed in Orion 2.0, and our architectural leakage power model is formulated by Equation 2.8. 

Ileak(i, s) = W(i, s) . (Isub(i, s) + Igate(i, s))       (2.8) 

where 

 Ileak is total leakage current; 

 Isub and Igate are sub-threshold and gate leakage currents per unit transistor width for a 

specific technology, respectively; 

 W(i, s) refers to the effective transistor width of component i at state s.  

Isub and Igate are measured by using HSPICE simulation. Then we compose architectural 

leakage power model in a bottom-up fashion for each building block [34]. 
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2.8.2 Dynamic Power Dissipation 

The estimation of dynamic power dissipation of a chip is a challenging task in the design 

of chip. For the estimation of NoC power we should compute the power when the chip is doing 

transactions. The dynamic power dissipation has two basic elements: switching dissipation and 

short circuit dissipation. In switching power dissipation, the CMOS circuit dissipates power by 

charging the various load capacitances (mostly gate and wire capacitance as well as drain and 

some source capacitances) whenever they are switched. In one complete cycle of CMOS logic, 

current flows from VDD to the load capacitance to charge it and then flows from the charged load 

capacitance to GND during discharge. In short circuit power dissipation, as there is a finite 

rise/fall time for both pMOS and nMOS during transition (say from OFF to ON), the transistors 

will be ON for a small period of time in which current will find a path directly from VDD to GND 

i.e. short circuit. Short circuit dissipation can be minimized by matching the rise/fall times of the 

input and output signals and it is a small function of switching dissipation. This element of 

dynamic power is ignorable in estimation of power. In this thesis, dynamic power is estimated 

based on switching power dissipation and it is formulated by: 

P = 
 

 
 .C.   

  .              (2.9) 

where 

 α is the switching activity; 

 C is the switch capacitance; 

     and       are the supply voltage and clock frequency respectively. 

The detailed parameterized equations for estimating switch capacitance C of each component 

of an interconnection network are derived from different resources like Cacti [35] and the 

switching activity α of these components are tracked through network simulation. 
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2.8.3 Analytical Methodology 

Our proposed analytical method is derived by decomposing the circuit into many 

equivalent RC circuits, and using simple RC equations to estimate the area and power of each 

stage [35]. In the following sections, we decompose the structure of smallest component of a 

CMOS circuit, a transistor and describe how resistances and capacitances are estimated as well 

as how they are combined and the power of a stage calculated. 

 

A Typical Transistor Layout 

 

Figure 2.12 and 2.13 show typical transistor layouts for small and large transistors 

respectively and Fig. 2.14 depicts two stacked transistors. It has assumed that if the transistor 

width is larger than 10 µm, the transistor is split as shown in Fig. 2.13. 
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2.8.4 Gate Capacitances 

The gate capacitance of a transistor consists of two parts: the capacitance of the gate, and 

the capacitance of the poly silicon line going into the gate. By considering Fig. 2.12, if Leff is the 

effective length of a transistor, Lpoly is the length of the poly line going into the gate, Cgate is the 

capacitance of the gate per unit area, and Cpolywire is the poly line capacitance per unit area, 

then a transistor of width W has a gate capacitance of: 

gatecap = W. Leff  .Cgate + Lpoly . Leff . Cpolywire       (2.9) 

The same formula holds for both NMOS and PMOS transistors. The value of Cgate depends 

on whether the transistor is being used as a pass transistor (i.e. the device may conduct current in 

either direction) or as a pull-up or pull-down transistor in a static gate. Thus, two equations for 

the gate capacitance are given below. 

gatecap (W,Lpoly ) = W. Leff .Cgate + Lpoly .Leff .Cpolywire     (2.10) 

gatecappass (W,Lpoly ) = W. Leff .Cgate,pass + Lpoly . Leff .Cpolywire   (2.11) 

The values for Cgate, Cgate,pass, Cpolywire, and Leff are derived from Cacti [35]. A different Lpoly 

was used in the model for each transistor. Lpoly was chosen based on typical poly wire lengths for 

the structure in which it is used. 

 

 

2.8.5 Drain Capacitances 

 

The drain capacitance is composed of both an area and perimeter component. Using the 

geometries in Fig. 2.12 and 2.13, the drain capacitance for a single transistor can be obtained. If 

the width is less than 10 µm, 

draincap(W) = 3 Leff . W . Cdiffarea + (6 Leff + W) . Cdiffside + W.Cdiffgate   (2.12) 

Where 
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 Cdiffarea, Cdiffside, and Cdiffgate are process dependent parameters (there are two values for 

each of these: one for NMOS and one for PMOS transistors).  

Cdiffgate includes the junction capacitance at the gate/diffusion edge as well as the oxide 

capacitance due to the gate/source or gate/drain overlap. Values for n-channel and p-channel 

Cdiffgate are also derived from Cacti [35]. If the width is larger than 10 µm, it is assumed that the 

transistor is folded (see Fig. 2.13) reducing the drain capacitance to: 

draincap(W) = 3 Leff . W/ 2 .Cdiffarea + 6 Leff .Cdiffside + W . Cdiffgate    (2.13) 

Consider two transistors (with widths less than 10 µm) connected in series, with only a single 

Leff.W wide region acting as both the source of the first transistor and the drain of the second. If 

the first transistor is on and the second transistor is off, the capacitance is seen by looking into 

the drain of the first one is: 

draincap(W) = 4 Leff . W . Cdiffarea + ( 8 Leff + W). Cdiffside + 3W . Cdiffgate  (2.14) 

Figure 2.14 shows the situation if the transistors are wider than 10 µm. In this case, the 

capacitance seen looking into the drain of the inner transistor (n in the figure) assuming it is on, 

but the outer transistor is off is: 

draincap(W) = 5 Leff .W/ 2 . Cdiffarea + 10 Leff . Cdiffside + 3W. Cdiffgate   (2.15) 

To summarize, the drain capacitance of n stacked transistors is: 

if W>= 10 µm 

draincap(W,n) =3 Leff .W/ 2 .Cdiffarea + 6 Leff .Cdiffside + W.Cdiffgate + 

( n - 1 ) . { Leff .W.Cdiffarea + 4 Leff .Cdiffside + 2W.Cdiffgate}    (2.16) 

if W<10µm  

draincap(W,n) =3 Leff .W.Cdiffarea + ( 6 Leff +W) .Cdiffside + W.Cdiffgate + 

( n - 1 ) . { Leff .W.Cdiffarea + 2 Leff .Cdiffside + 2W.Cdiffgate}    (2.17) 
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2.9 Area Modeling 

With the increasing cores on a single NoC design, the area occupied by the 

communication components such as links and routers will also increase. As area is an important 

economic incentive in IC (integrated circuit) design, it needs to be estimated early in the design 

flow to enable design space exploration. We employ a similar model and analysis as used in 

Orion 2.0 to estimate the areas of transistors and logic gates. Orion 2.0 also used a model 

described by Yoshida et al. [36] and the analysis put forward by Thoziyoor et al [35]. This is a 

fast technique to estimate standard cell characteristics before the cells are laid out. Figure 2.15 

shows the layout model that has been used by Yoshida et al [36]. Table 2.2 shows the process 

and technology-level input parameters required by this gate area model. When a transistor 

exceeds a certain maximum value, the transistor assumed to be folded. Given the width of an 

NMOS transistor as Wn, the number of folded transistors can be calculated as follows: 

Nfolder_transistor = 
  

       
         (2.18)  

The total diffusion width of Nstacked transistors when they are not folded is given by Equation 

(2.19). 

Wdiffusion-area = 2(Wcontact+2Spc)+Nstacked Wpoly + (Nstacked -1)Spp   (2.19)  

The Total diffusion width of Nstacked transistors when they are folded is given by Equation 

(2.20). 

Wdiffusion-area = Nfolder_transistor( 2(Wcontact+2Spc)+Nstacked Wpoly + (Nstacked -1)Spp ) (2.20) 

Finally the height of a gate is calculated using Equation (2.21). 

Hgate = Hn-diff +Hp-diff +Hgap-opp +2Hpower-rail      (2.21) 
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Table 2.2 Process and technology input parameters used in the gate area model [35] 

Parameter Description 

Hn_di f f Maximum height of n-diffusion 

Hp_di f f Maximum height of p-diffusion 

Hgap_same Minimum gap between diffusions of the same type 

Hgap_opp Minimum gap between n and p diffusions 

Hpower_rail Height of Vdd and Vss rails 

Wpoly Minimum width of poly 

Spp Minimum poly-to-poly spacing 

Wcontact Contact width 

Spc Minimum poly-to-contact spacing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.10 Power, Area and Performance Metrics 

NoC designers and researchers are often interested in knowing the expected performance, 

power and area of their system. From the user point of view, this is often said as either "which 

system will implement my data that is most effective for my needs?" or "which system will 

convey the most data per unit cost?” NoC designers are interested in choosing the most effective 

architecture or design constraints which implements its final constrains. In most cases, the 

benchmark of what an NoC system can do, or its “maximum performance” is what a user 

designer will be interested. In this section, we intent to describe the definition of some important 

metrics related to performance, power and area that are used in the NoC area and especially in 
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Figure 2.15: Layout model of gates [38] 
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our NoC simulation work to be a supportive of the trade-offs, while will be presented in this 

thesis.  

In terms of performance, there are four characteristics such as throughput, latency, packet 

drop and link utilization that have important role for choosing the most effective design. In terms 

of power, there are four characteristics such as static, dynamic, architectural and transactional 

power estimation that easily describe the power behaviour of NoC design. In terms of area, we 

do not propose extra metric. The followings are a short description of these metrics. 

 

2.10.1 Throughput 

The maximum data throughput rate of a system is the first important performance 

characteristic that designers are often keen to measure. When examining throughput, the term 

'Maximum Throughput' is frequently used. In NoC design, a typical method to measure the 

throughput is to deliver successfully a large number of packets and measure the time taken for 

delivery. The throughput is calculated by dividing the number of packets by the time in order to 

find the throughput in terms of packet per second. The throughput is also the average rate of 

successful packets transferred over a communication channel. This data may be transferred over 

a physical or logical link, or pass through a certain network router. The throughput is usually 

measured in data packets per second or data packets per time slot (the time slot is equal to 

simulation cycles in our work). The system throughput or the aggregate throughput is the sum of 

the data rates that are transferred to all routers in an NoC. In this thesis, we measure the 

throughput in percentage. In other words, the average rate of successful packets transferred 

divided by the maximum rate of packet flow in the network. 
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2.10.2 Latency 

The second important performance metric is latency. Latency refers to a short period of 

delay between the packet entry time and when its emergence from the system. A fundamental 

factor in latency is known as delay. Network delay is also an important design and performance 

characteristic of the NoC. The delay of a network specifies how long it takes for a packet to be 

transmitted across the network from one point to another. It is typically measured in multiples or 

fractions of seconds. Delay may differ slightly, depending on the location of the specific pair of 

communicating cores. Although users only care about the total delay of a network, for the sake 

of better understanding of function of our NoCsimulator, we divide the delay into several parts 

[37]: 

 Processing delay –  time which the routers take to process the packet header 

 Queuing delay –  time which the packet spends in FIFO 

 Transmission delay -  time which takes to push the packet's flits onto the link 

 Propagation delay -  time for a packet to reach its destination 

In our NoC simulator, the processing delay is ignored as insignificant in comparison with other 

forms of network delay. Due to which, our simulator does not perform complex algorithms and 

examining or modifying the packet content. The queuing delay is the time a packet waits in a 

FIFO until it can be transmitted. It is a key component of NoC delay. When packets arrive at a 

router, they have to be processed and transmitted. A router can only process one packet for each 

output channel at a time. If packets arrive faster than the router can process them, the router puts 

them into the FIFO until it gets time to transmit them. Transmission delay is the amount of time 

required to push all of the packet's flits into the link. In other words, transmission delay is a 

function of the packet's length and has no relation with the NoC architecture. Therefore, we 
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ignore it in our simulator. Propagation delay is the medium amount of time taking for the header 

flit to travel from the source core to the destination. The combination of propagation, 

transmission, queuing, and processing delays produces the latency of an NoC.  

In FAANOS, the measurement of delay is a little simpler. The routers are stimulated by 

flit event, and when a flit reaches the router, it starts delivering to local sink or nearby routers. In 

our simulator this deliverance does not have latency. Therefore, the latency a network creates for 

a packet is zero. If a flit reaches a router and the router cannot deliver it at that event, the latency 

will be created. Latency depends on how many clock cycles the flit is waited on the router to be 

delivered.  

   

2.10.3 Packet Drop 

The third performance metric is the packet drop. Dropping packets in computer networks 

is different with NoC technology. In computer networks, packets may be dropped when the 

network devices are overwhelmed. However, in NoC design, we cannot allow packet dropping in 

the router. We use this term to have a measure of packet generation in each source module. In a 

simplified packet data model, each source always has data to transmit and is never in an idle state 

due to congestion. A new data-packet is generated when the transmission of previous packet is 

completed, meaning that the sender is never congested. Therefore, in congestion condition, the 

source might drop some packets. This characteristic of NoC design helps designers to have a 

measure of the rate of generation of packets in the sources on different location of the topology. 

For this reason, each source has an individual record of dropped packets in output results 
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2.10.4 Link Utilization 

The fourth performance metric is the link utilization. It is the proportion of the NoC links 

which is used by the traffic that arrives at it. It should be strictly less than one for the system to 

function well. Lower link utilization leads to the more effective systems. This characteristic 

affects indirectly on two other important metrics such as delay and power consumption. On 

measuring a delay, we did not consider the delay related to passing the packet through the link. If 

it is considered, in this matter, then higher utilization link leads to more delay. Moreover, in 

terms of power metric, higher utilization link means more movement of packets in the network 

that leads to higher consumption of power in the system. The link utilization also can be used to 

calculate delay and power consumption to compensate their errors. For example, if the frequency 

of a system is high, then the delay time of links are considerable, and constant proportion of the 

link utilization can be added to the total delay to compensate. This methodology can also be used 

to compensate the error of power consumption.   

 

2.10.5 Static and Dynamic Power Consumption 

As mentioned earlier, static power consumption is a function of leakage current and 

leakage current is stagnant during transaction level of system. However, dynamic power 

consumption is different. In order to highlight this difference we define two metrics for power 

estimation namely architectural and transactional power estimation. The architectural power 

estimation is the estimation of power by considering the full transactional characteristic of a 

network. In this case, we estimate the full static and dynamic power consumption for all NoC 

components. The transactional power estimation is the power consumption when an NoC is 

operated by a specific traffic pattern. In this case, we estimate full static power for all the 
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components and dynamic power for only those components that switch during simulation time. 

For example, during simulation time if the commuting of flits is half of the maximum NoC 

capacity, then the dynamic power consumption will be half of the maximum capacity of NoC. 

 

2.10.6 Area 

We are using two metrics for area in this thesis: router area and link area. Router area is the chip 

space that all the routers of an NoC occupy. It is measurable in terms of parameters of an NoC 

system. However, link area is different. Link length varies depending on the location of routers 

in an SoC system. The location of routers is assigned during the process of floor planning of a 

chip, which is not accessible during simulation time. To solve this problem, we assume an area 

for each core, and then by measuring the area of routers, we can calculate the NoC area without 

link area. Now, by having this area we can estimate the total link length of NoC system (see 

section 3.5). 

 

2.11 NoC Simulation Systems Overview 

The routing mechanism is one of the most important parts of NoC design. Many 

researchers have worked on different routing algorithms in 2D topologies. Ge-Ming Chiu 

presented the odd-even turn model for designing partially adaptive wormhole routing algorithms 

without adding virtual channels [19]. They concluded that the communication performance of 2D 

meshes may be improved under non-uniform traffics by using their proposed model. Wang 

Zhang et al. compared XY routing algorithm and Odd-Even routing algorithm for a 2D 3x3 mesh 

using NIRGAM simulator [20]. They concluded that Odd-Even routing algorithm performs 

better than XY routing with Constant Bit Rate traffic. Jie Wu proposed a simple and efficient 

deterministic fault-tolerant and deadlock-free routing for 2D meshes without virtual channels 
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[38]. The novelty of their approach is the use of two boundary lines at the east and west of a 

faulty block. 

In terms of power modeling, two main power models ranging from RTL power 

estimation tools [5] to early stage architectural power models [6 and 7] have been proposed in 

NoC area. The first model requires complete RTL code and simulate slowly in the order of 

hours, while an architectural power model takes in the order of seconds. The shortcomings of the 

RTL power estimation models has led the development of early-stage architectural power models 

and simulators such as the widely-used ORION [6] used in academia and incorporated into 

industry tool chains for NoC power modeling.  

The main methodology of the RTL-level NoC power models can be described by two 

papers [5, 39]. Banerjee et al. have developed an RTL level power model for NoCs by first 

extracting the SPICE level net list from the layout and then integrating the characterized values 

into the VHDL based RTL design [39]. An accurate power characterization of a range of NoC 

routers was performed through RTL synthesis and place and route using standard ASIC tool flow 

by Synopsys [5]. Both studies has limitations of RTL-level power simulation such as slow 

simulation time, and they require detailed RTL modeling that make them unsuitable for early-

stage NoC design space explorations. Besides, power models cannot be targeted for future 

technology nodes. Patel et al. [40] first proposed an architecture level power model for 

interconnection networks, deriving its power estimates based on transistor count. As the model is 

not instantiated with architectural parameters, it cannot be used to explore tradeoffs in router 

micro architecture design. ORION is an early-stage architectural power model for NoCs that was 

originally proposed and released in 2002 [6]. It has since been widely used in academia and 

incorporated into industry tool chains (such as Intel, AMD, IBM, and Freescale)[6]. Bona et al. 
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also presented a methodology for automatically generating the energy models for on-chip 

communication infrastructure [40]. However, the focus is on bus based and crossbar based 

communication for SoC systems. Bhat et al. proposed an architecture level regression analysis 

model for different router components based on the energy volumes obtained from simulations 

using MAGMA tools [41].  

In terms of NoC simulator development, a lot of research has been done on developing a 

SystemC simulation platform for analyzing the different aspects of an NoC system. Among the 

current SystemC simulators, NIRGAM and NOSTRUM are the prominent one.  

NOSTRUM is a SystemC NoC simulator intending to develop NoC architecture [33]. It 

mainly concentrates on the communication issues from the general to the application level. 

NOSTRUM utilizes wormhole switching, regular topologies such as 2D mesh or torus, XY 

routing and deflecting routing. It employs a traffic flow generator that generates packets in 

spatial, temporal and size distributions.  

NIRGAM is a SystemC based discrete event, cycle accurate simulator for NoC design 

[42]. It provides considerable support to examine different NoC designs in terms of routing 

algorithms and various topologies. It is capable of simulation on 2D regular mesh or torus 

topologies using wormhole switching. The routing algorithms are XY, OE, and SOURCE 

routing. The traffic generator in NIRGAM generates packets in constant and bursty bit rate.  

FAANOS covers all the functions of NIRGAM and NOSTRUM works with some new 

approaches. It considers different bit rates in the application-oriented workloads and supports 

them by producing appropriate output results. FAANOS implements a complete and diverse 

routing mechanism in 2D topologies by using the mechanisms such as SOURCE, VIRTUAL-

CIRCUIT, Odd-Even and LP routing. These mechanisms lead to flexibility and simulation 
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accurate results, and it is more supportive for users to provide efficient NoC design environment. 

FAANOS employs an analytical method to estimate the power and area of NoCs that is a fast 

and accurate methodology in NoC area. It produces different power and area characteristics such 

as static, dynamic, architectural and transactional power estimation as well as link and router 

area that completely describe the power and area behaviour of  an NoC design.   

 

2.12 Chapter Summary 

We described the concept, architecture and configuration of an NoC as well as outlined 

and challenged the characteristic of NoC from the point of view of our simulator. In switching 

techniques, we introduced the most current switching methods for example the wormhole 

switching that is the most popular and well suited on chip [18] and employed it as the exclusive 

and prominent switching technique in our simulator. In terms of topology, we introduced regular 

and irregular topologies. The different kinds of traffic patterns have been introduced. In terms of 

power and area, we proposed an analytical method which dive in micro-architectural structure of 

NoC modules and extract the power models of each module using the structural characteristics of 

smallest component of a CMOS circuit (transistor). We broke down and defined the concept of 

performance to four characteristics such as throughput, latency, packet drop, and link utilization. 

The concept of power was also broke down to four characteristics such as static, dynamic, 

architectural and transactional power estimation, and then they were defined. At last, we briefly 

explained some previous works in terms of routing algorithm, power modeling and framework 

development. 
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Chapter 3 

Structure of NoC Simulator 

In NoC technology, there are a wide variety of NoC simulators, ranging from very simple 

to complex. Minimally, a network simulator may enable a user to define basic NoC elements 

such as network topology, router, link, and traffic pattern in the network. More complex 

simulator can allow users to specify everything like the current routing methods or power and 

area simulation for the NoC. Our NoC simulator, FAANOS, is a complex simulator coded in 

SystemC language representing a flexible and accurate NoC simulation framework [4]. It gets 

the configuration of a given NoC and provides accurate results related to power, area and 

performance of the NoC. We have used SystemC to create a cycle-accurate model of NoC 

hardware architecture, and NoC interfaces. The outline of this chapter is as follows. The 

infrastructure of NoC simulator is introduced in section 3.1. The hardware, power and area 

modeling of the NoC are described in sections 3.2, 3.3 and 3.4 respectively. An estimation 

methodology for the link length is proposed in section 3.5, and the performance, power and area 

estimations of NoC are provided in section 3.6.  Finally in section 3.7, we propose an evaluation 

flow model for NoC systems. 
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3.1 Infrastructure of NoC Simulator 

The block diagram of the structure of our simulator (FAANOS) is demonstrated in Fig. 

3.1. The blocks and arrows indicate the flow of data and information in the simulator. The first 

executive block in the figure is the User Interface. It gets NoC parameters in the form of various 

data numbers and text file related to NoC cores and their parameters. The User Interface converts 

the input data into core graph and core switch graph of NoC for visualization, and finally it 

generates a file which will be used for NoC simulation in the next block. The NoC Simulation 

block consists of all the hardware descriptions of NoC modules in the form of SystemC and 

some of the SystemC modules are utilized for producing output results.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1: NoC Simulator Structure 
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The main functions of NoC Simulation block is completely depicted in the figure as described 

next. The inputs to this program are the files, which are prepared by the user and the User 

Interface program, as well as libraries of power and area parameters. The NoC power and chip 

area details are embedded in the simulator. The NoC Simulation block uses these inputs to 

synthesize the final NoC structure and then start the simulation process. After the completion of 

simulation, it produces the area, power and performance results of NoC accompanied by a trace 

file. 

 

3.2 Hardware Modeling of NoC Simulator 

Our simulator is divided into a number of NoC component modules that represent various 

areas of functionality of an NoC design. These modules are the basic container object
*
 of 

SystemC. To better understand the structure of simulator, we start from a small NoC design that 

is depicted in Fig. 3.2. It consists of a source module, a traffic generator, a sink (receiver) module 

and a router module. These four modules are connected by communication links together. The 

source, sink and traffic generator modules play the role of SoC cores in the simulator. However, 

we use only one traffic generator. The source, sink and router module can be more than one and 

are identified by unique ID numbers. For the specific NoC of Fig. 3.2, the ID for the source, 

router and sink modules are the same and equal to zero.  

 

 

 

 

 

*A container is a class, a data structure, or an abstract data type . 
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Each module contains of two basic elements such as port and process [43]. Ports allow 

communication among the modules. Processes are the main computation elements which execute 

concurrently. In the following sections, we describe the port and process element for each 

module. 

   

3.2.1  Modeling the Source Module 

The source module and traffic generator play the role of a source core in our NoC 

simulator. The source module in is configured as a greedy source, which produces synthetic and 

random packets at the highest rate possible and at the earliest opportunity. The source module 

uses a particular message structure, which gives the design access to the packet definition and 

methods associated with the packet. A message consists of packets where a packet is formed by 

various number flits. A flit is the smallest element of data which travels inside NoC at a clock 

cycle. In FAANOS, a packet has at least two flits of header and payload. The header flits are 

needed to route data from the source node to the sink node. The header flit has various routing 

information as depicted in Fig. 3.3 and described as follows: 

 Source and sink address bits are used to identify the sender and receiver nodes. The 

size of them is defined by a parameter such as FW. The parameter FW is determined 

depending on the number of cores in NoC. For example, if the number of cores is sixteen 

meaning FW should be more than four. It also determines the size of the FIFO buffer 

such as 2.FW+5. 

 Virtual channel bits determine the number of virtual channels used in each channel of 

the router. The parameter vcid specifies the size of these bits. The default is 2 bits for 4 

virtual channels. 
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 Vertical/horizontal bit determines the movement of packet. It is obvious that switching 

this bit switch XY to YX routing. In the router this bit can be changed depending on the 

routing algorithm used in the simulator.  

 Imaginary clock bit flips between 0 and 1 in each new flit and plays the role of a clock 

in a packet. An NoC system is stimulated by events and an event is invoked for a new flit. 

If two flits have the same contents, then an event will not be created. In order to 

differentiate between two flits, this clock bit is employed in every flit.     

 Tail/Header bit determines the end of a packet and this bit is set high in the last flit. The 

payload can be more than a flit. Each payload flit carries data as well as tail/header and 

imaginary clock bits.  

 

 

 

 

 

 

The source module has four input ports traffic_id, source_id, ach_in and CLK as well as one 

output ports packet_out (see Fig. 3.2). The output port, packet_out is connected to the router, and 

the source module uses it to send packets to the router. The input port, source_id has the 

identification code that identifies the source module in the NoC. The input port, traffic_id is 

connected to traffic generator and at each clock cycle has a destination address related to that 

source. The input port, ach_in is connected to router and gets the acknowledgement for sending a 

new packet. The input port CLK is connected to the clock generator. The source module has a 
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process, which is sensitive to positive edge transitions on the input port CLK. The main duty of 

the source process is to make packets depending on the packet specification and to send packets 

inside NoC depending on the characteristics of traffic pattern. The source process is invoked by a 

clock event. It calls two subroutines depending on the chosen traffic pattern as follows.  

In the case of regular pattern (i.e. fixed, uniform and locality), the function regular_gen() 

will be executed. At the beginning of regular_gen() function, there are local variables to keep the 

frames and local data and the function continuously sends data packets to network and have a 

termination condition depending on how many packets has been sent. When the termination 

condition happens, the source module stops the simulation and starts the calculation of output 

results. The other condition is whether the router is ready to receive packets. In each clock, the 

acknowledgment port of router is read, and if the router is not ready, it increases the packet drop 

of the source and returns. When the router is ready, it goes into a loop to send packets. The 

function gets the destination ID from the input traffic_id and generates the header flit and sends 

it to the router. Then the function generates the flit consisting of data, h_d bit and flit_clk bit, and 

then sends it to the router. The pseudocode for the source process is illustrated in Fig. 3.4. 

In the case of irregular pattern or application-oriented traffic, the function irregular_gen() 

is executed. In this case, the source module does not use the traffic generator module, however it 

reads a core txt file that contains the core information of NoC application and then saves this 

information in an array buffer. Then it derives the destination addresses and rate of packet related 

to the sources. As each source is independent from the other sources, a source should 

independently calculate some parameters to operate under the same configuration with other 

sources. The source process then scales all the packet rates by dividing it with the minimum 

packet rate. This scaling is useful for large packet rates. Therefore, we have considered a variable 
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SCALE_P in the configuration parameters that activate this operation in the simulator. The 

source process then calculates the parameter PERIOD from the scaled packet rates and assigns as 

simulation time. PERIOD is the minimum guaranteed time in which every source sends at least a 

packet to its destination. The simulation time is the same in all the sources and all the sources 

operate under the same scaling factor. The source process then enters to a loop, while has a 

termination condition depending on the number of packets sent. When termination condition 

happens, that stops the simulation as well as starts calculating the output results. Another 

condition in the loop is whether the router is ready to receive packets. In each clock cycle, the 

source process reads the acknowledgment port of router. If the router is not ready, it increases the 

dropped packet variable and returns. When the router is ready, it goes into a loop to send packets. 

The function depending on the destination addresses derived from core txt file generates the 

header flit as well as sends it to the router. Moreover, the function generates the flit consisting of 

the data bits, and then sends them to the router. The pseudocode of the source process is 

illustrated in Fig. 3.4 that can be consulted for further details. 
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void source:: func() 

{ 

 if(IRREG_TRAFFIC==0)regular_gen(); //when traffic pattern is regular 

 if(IRREG_TRAFFIC==1)irregular_gen(); //when traffic pattern is irregular 

} 

 

void source ::regular_gen()  //the source function using regular traffic pattern  

{ 

  define the local variables; 

  Initial the local variables; 

 

  while( sim_count++ < SIM_NUM ) //continue till current time is less than SIM_NUM 

  { 

    wait(); 

    if( sim_count > (SIM_NUM*LOAD) ) goto exclude;  //when current time is higher than 

       //SIM_NUM*LOAD do nothing    

    ack = (bool)ach_in.read(); //read  the acknowledgment port of the router 

    if(ack) ++flt_drp;   //when  the router does not accept packet 

    else    //when  the router accepts packet 

    { 

       Handle the burst messages; 

 Read the input port which connected to traffic generator; 

 Save it as destination ID; 

       Generate packet related to destination ID; 

       Send packet; 

 Keep records of the total time and number of packets 

 Initial for next clock cycle  

  exclude:;  

    } 

  } 

    sc_stop(); 

} 

 

void source ::irregular_gen()//the source function using irregular traffic pattern 

{ 

Define the local variables; 

   Initial the local variables; 

 Read file, core.txt, and save in a array buffer; 

 Derive the associated destination Id; 

 Derive the associated rate of packet; 

 Derive the parameter PERIOD and assign to SIM_NUM; 

 Scale the rate by dividing it by the minimum rate; 

 New initiation of the local variables; 

 

 while(sim_count++ <(SIM_NUM*period)) //continue till current time is less than SIM_NUM 

 { 

  wait(); 

  ack = (bool)ach_in.read(); //read  the acknowledgment port of the router 

  if(ack) temp++;   //when  the router does not accept packet 

      else    //when  the router accepts packet 

  { 

   Handle the burst messages; 

         Generate packet related to destination ID; 

         Send packet; 

   Keep records of the total time and number of packets; 

   Initial for next clock cycle;  

    exclude:;  

      } 

   } 

    stop function  

} 

 

Figure 3.4: Pseudocode of source process 
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3.2.2  Traffic Generator  

 In FAANOS, the traffic generator is responsible for dictating the traffic pattern to the 

source modules. When the traffic is application-oriented, it is implemented as a separate function 

for each source module. We described it an irregular_gen()function as part of a source module in 

the previous section. But when the traffic is spatial (i.e. uniform or locality) and topology is 

regular (i.e. Mesh or Torus), it is synthesized as a single module.  

In this configuration, by considering the traffic generator as a single model, we can fully 

control on the generation of uniform or locality traffic. For example, in each clock cycle, a new 

traffic pattern is generated once for each destination address. In other words, each source sends 

packet to a sink and each sink receives the packet from a source. The traffic generator module 

has a number of output ports that are connected via an array of signals to every source in the 

NoC. In each clock cycle, the traffic generator sends the address of destination of each source via 

these signals. It contains one process which runs at each positive edge of clock cycle. The traffic 

pattern has three types: fixed, uniform and locality. The process first checks the traffic 

configuration, and then depending on the pattern it activates a particular pattern as follows. 

In the case of fixed traffic pattern, the traffic generator sends a fixed traffic pattern to the 

sources during simulation time. This fixed traffic pattern should be assigned in advance by the 

user. 

 In the case of uniform traffic pattern, the process randomly chooses a destination address 

from the current available destination addresses and sends to a source. In this pattern, each 

destination address is repeated one time and no source sends packet to itself. The pattern can be 

changed in each clock cycle.  
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In the case of locality traffic pattern, the locality coefficients are assigned in advance by 

the user and before starting the simulation. These coefficients determines with what probability a 

destination address can be chosen for a source. For example, if we assume that there are four 

coefficient probability in the system that they are intialized as LOC_ONE=8, LOC_TWO=4, 

LOC_THREE=3, LOC_FOUR=1, so for each source, the probability of choosing the destination 

among its neighbours is assigned for each source as follows. The probability of choosing a 

destination among the first neighbours far from the source is 8 out of 16. The probability of 

choosing a destination among the second neighbours far from the source is 4 out of 16. The 

probability of choosing a destination among the third neighbours far from the source is 3 out of 

16. Finally the probability of choosing a destination among the fourth neighbours far from the 

source is 1 out of 16. Therefore, the process first considers a source and randomly chooses a 

number between 1 and 16. If the number is between 1 and 8, the destination is randomly chosen 

among the first neighbours far from the source. If the number is between 9 and 12, the 

destination is randomly chosen among the second neighbours far from the source. If the number 

is between 13 and 15, the destination is randomly chosen among the third neighbours far from 

the source. Finally, if the number is 16, the destination is randomly chosen among the 4th 

neighbours far from the source. The other consideration of making the pattern is that each 

destination address should be repeated one time in the pattern and no source sends packet to 

itself. The pattern is changed in each clock cycle. At the end, the destination address of each 

source is sent to the output port connected to the source. The pseudocode in Fig. 3.5 shows the 

operation of the traffic generator process. 
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3.2.3  Modeling the Sink Module 

The sink module accepts packets from the router module and keeps record of the number 

and time of incoming packets. It plays the role of a receiver core in the NoC. When the sink 

module successfully receives a packet, it sends an acknowledgment bit back to the router 

module. The sink module has four ports consisting of three input ports, packet_in, sink_id and 

sclk, and an output port, ack_out (see Fig. 3.2). The input port, packet_in accepts packets from 

the router. The clock port, sclk is connected to the clock generator. The input port, sink_id has a 

fixed value that identifies the sink module in the network. The output port, ack_out is used to 

send acknowledgment bit to the router. The sink module contains a process receive_data that is 

invoked when a new packet arrives on packet_in port (packet event) and a positive edge 

transitions on the clock port (clock event). In the case of a packet event, the process first stops 

receiving of new packet from the router. Then it reads packet and keeps the records of time and 

// traffic_gen.cpp 

void traffic_gen:: func() 

{ 

   if(fixed) 

   {  

Send the destination address of each source  

to the related output port depending on the fixed pattern; 

   } 

   if(UNIFORM) 

   { 

 Randomly chooses a destination address from  

the current available destination address; 

Generate traffic pattern;  

Send the destination address of each source  

to the related output port based on uniform pattern; 

   } 

   if(LOCALITY) 

   { 

 Consider a source; 

 Randomly Choose a number among the sum of the locality coefficients;  

Determine the neighbours related to the chosen number; 

Randomly choose a destination address amonge the chosen neighboures;  

Generate traffic pattern;  

Send the destination address of each source  

to the related output port based on the locality pattern; 

 

   } 

} 

Figure 3.5: Pseudocode of function in the traffic generator module 
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number of incoming flits.  In the case of a clock event, the process lets the router send new 

packet. The clock adjusts the speed of sink by controlling the acknowledgment to the router. The 

pseudocode in Fig. 3.6 shows the operation structure of a sink process. 

 

 

 

 

 

 

 

 

 

 

 

3.2.4 Modeling the Router Module  

Two kinds of router namely the regular and irregular are used in our simulator. The 

regular router has five input ports and five output ports as shown in Fig. 3.7. It is used in the 

regular topologies such as Mesh or Torus. The regular router employs all the routing 

mechanisms described in chapter 2. However, the irregular router has flexible input and output 

ports depending on the application specific topology of the system. It is modeled to have 

maximum 16 input/output ports as well as it is used in irregular topologies. 

 

 

void sink::receive_data() 

{  

   if ( clock event )  

{  
let the router send new packet;  

}  

   if (packet event)  

      {  

  stop receiving new data;  

  read data;  

  keep records of the total time of received flits; 

  keep records of the total incoming flits; 

 } 

} 

 

Figure 3.6: Pseudocode of sink process 



62 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The router module accepts packets from the source (or other router modules) and passes them to 

the sink (or other router modules). When the router receives a packet, it puts the packet into a 

channel. The address of the channel is determined by the incoming packet. The router checks 

whether the channel is full or no. If the channel is full, the router sends back an acknowledgment 

bit to the source module to tell the module to hold any further packets for the channel. The router 

also waits for acknowledgment from the receiver module after it sends a packet to the receiver. 

The router consists of some lower level modules such as FIFO, crossbar, arbiter and demux 

which are connected by signals together as illustrated in Fig. 3.7. A regular router module of 5×5 

size contains 22 ports consisting of twelve input ports and ten output ports. The first input port, 

in [0] accepts packets from the source module and port inact0 accepts acknowledgment bit from 

the sink module. Port outact0 and out [0] send acknowledgment bit to the source module as well 

as data packets to the sink module respectively. The input port router_id has the constant value 
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of router ID. The clock input port rclk is used to get clock pulse from clock generator. Figure 3.7 

shows these ports. The router process contains a process called r_func (). This process is 

sensitive to the events on the four input ports: in [1], in [2], in [3] and in [4]. When a new 

packet is received, the router function r_func () is invoked to keep the records of the number of 

incoming packets. All the router tasks like incoming packets, acknowledgments, routing and 

transferring packets are done by the lower level modules of the router. The router only binds 

these modules and executes the router process.  To provide a better understanding of how they 

work, we describe the journey of a header flit inside the router. Assume a local source module 

injects a header flit into the input port of first FIFO module. The FIFO module writes the flit 

into the tail of its buffers. When the flit emerges at the header of FIFO module, a request 

containing the route information is sent to the request port of arbiter module (Req L) for the 

desired output port (assume the north output port). The arbiter module performs the required 

arbitration. When the request is granted, the arbitration result is sent to the configure port of 

crossbar module (config). A grant signal is also sent to the grant port of FIFO module. Then the 

FIFO module activates its read port resulting the injection of flit to the input port of crossbar 

module. The flit then traverses through the crossbar module from its input port In L to its north 

output port Out N. Finally, the flit will leave the router. The following sections describe these 

modules and their implementation in detail.  

 

a)   Arbiter Module  

When a router is the heart of NoC, the arbiter is the brain of router. The arbiter module 

handles all the methods in a router like the routing and switching algorithms. When the router 

has one virtual channel, the arbiter module has eight input ports and six output ports as shown in 
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Fig. 3.7. The request and grant ports are connected to FIFO buffers. Aselect port is connected to 

the crossbar module and when the arbitration is done, it will have the free requested output port. 

Free_out is connected to the in_act port of router and contains the acknowledgment from the 

receiver modules. Arbiter_id is connected to the router_id so that the arbiter has access to id of 

the router. Aclk is connected to rclk and by this means to the router clock generator. The arbiter 

module contains one process called a_func (). This process is sensitive to the events on the 

request ports and the positive edge of aclk. The arbiter process has one main function called 

a_func () and eleven sub functions.  

The arbiter process performs its jobs in two modes. In the first mode, it is invoked by a 

clock event and in the second mode by the request event. In other words, when a packet is 

injected into an input port of a router, it is directed by a demultiplexer into the first free virtual 

channel (FIFO buffer). The FIFO module sends the routing address of packet to the arbiter as a 

request event. When the arbiter detects that event, it reads the destination address and checks that 

whether the output address is free. If it is free, then the packet will be sent through that output 

port. The arbiter then disables a specific bit in the variable, free_output meaning that no data can 

be sent through the output port. This bit stays disable until the next clock event. When a clock 

event is invoked, the arbiter first checks that whether any output port gets free. If it is free, the 

arbiter enables the free_output bit related to that output port. Enabling this bit means that the 

related output port is ready to operate. The second duty of clock event is to pay attention to any 

unanswered requests. If there is any unanswered request, the arbiter checks its requested output 

port. If it is free, the data can go through that port. If the output port is not available, the request 

will stay until the next clock event. Figure 3.8 lists the pseudocode of arbiter process. 
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void arbiter :: a_func() 

{ 

  while( true )  {  

wait(); 

 initiate the local variable in each while loop; 

 if ( aclk.event()) { //Start of clock event  

  Start of whether any output port is free ; 

   End   of whether any output port is free; 

   Start of checking whether there is any remaining request for output port; 

   Start of condition when input is reseved and after a while output will be freed; 

   End of condition when input is reseved and after a while output will be opened; 

    Start of condition when a header flit is in VC and requested output port is freed; 

      Start line_probe algorithm; 

      End   line_probe algorithm; 

    End   of condition when a header flit is in VC and requested output is freed; 

    Start of condition when input is reseved and after a while output will be freed;  

    End   of condition when input is reseved and after a while output will be opened;  

   Start of condition when a header flit is in VC and requested output is freed; 

     Start line_probe algorithm; 

      End   line_probe algorithm; 

    End   of condition when a header flit is in VC and requested output port is freed; 

  End of checking whether there is any remaining request for output port; 

End of clock event; 

Start of request events; 

 else {    

 if (req0.event()) { 

Start of sending the body of packet; 

End   of sending the body of packet; 

  Start of reading the header and sending the packet; 

Start ODD_EVEN;  

   End   ODD_EVEN; 

Start line_probe algorithm; 

End   line_probe algorithm; 

End   of reading the header and sending the packet; 

Start for checking whether output port is free; 

End   for checking whether output port is free; 

Start of sending the body of packet; 

End   of sending the body of packet; 

  Start of reading the header and sending the packet;   

   Start ODD_EVEN; 

End   ODD_EVEN; 

Start line_probe algorithm;  

End   line_probe algorithm; 

End   of reading the header and sending the packet; 

}}}  //End of the request events, while and a_func() 

 
Figure 3.8: Pseudocode of arbiter process 
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b)   Demultiplexer Module  

The demultiplexer module receives packet from a sender module via the input port of the 

router. The module (demux) directs the packet to a FIFO module depending on the vcid value of 

header flit. When the router has four VCs, the demux module has one input port and four output 

port as illustrated in Fig. 3.9. It has one process called d_func(). The process d_func() is sensitive 

to event on the input port d_in. When an event happens, the function d_func() is provoked. First 

it read the data and if it is a header flit, the function stores its vcid value for a switch condition. In 

the switch condition, the process jumps to a case depending on the vcid value of the header flit. 

The case instructions write the flit to the input port of associated channel. Figure 3.10 depicts the 

pseudocode of the demux process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

void demux :: d_func() 

{ 

while( true ) 

 {  

  wait();   

  read input flit; 

  if the flit is header{ store its vcid to v_demux; }       

  switch (v_demux)  

{  

   case 0: write flit to the output port of associated channel; 

   case 1: write flit to the output port of associated channel; 

   case 2: write flit to the output port of associated channel; 

   case 3:  write flit to the output port of associated channel; 

}}} 

 
Figure 3.10: Pseudocode of demux process 
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Figure 3.9: demux module 
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c)   FIFO and Virtual Channel  

Each input port of a regular router has at least a FIFO buffer module or maximum four 

FIFO modules. When the demux module directs a flit to the input port of FIFO module, the 

FIFO module writes the flit into the tail of its buffers. When the flit emerges at the head of 

FIFO, a request containing the route information is sent to the request port of arbiter module for 

the desired output port. After the arbiter module performs the required arbitration, it sends a 

grant signal to the grant port of FIFO module that leads to the activation of the read port of 

FIFO. The flit is injected to the input port of crossbar module. The detailed description of the 

above mentioned operation fallows. 

The FIFO module has three input ports: wr, grant and bclk as well as three output ports: 

re, req and ack as illustrated in Fig. 3.11. It has a process called f_func(). The process f_func() is 

sensitive to the events on the three input ports. The process function is provoked when one or 

more events happen on the input ports. In the write event wr.event(), the packet is stored in the 

tail of FIFO buffer. In the grant event grant.event(), the packet is sent to the crossbar module. In 

the clock event bclk.event(), the FIFO module sends a request to the arbiter module. The FIFO 

struct object provides a first in first out property to the buffers of FIFO module. The module 

creates this property by two functions i.e. packet_out() and packet_in(). The packet_in function 

stores the flit in the tail of FIFO buffer and if the buffer is full, it causes the FIFO module to stop 

receiving new packets. The packet_out function shifts the contents of all registers once toward 

the head of FIFO module and if the module is full, it changes the condition in which FIFO starts 

receiving new packet. The pseudocode of Fig 3.12 depicts the functionality of this process. 

 

 

 

     ack              grant            req 
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Figure 3.11: FIFO module 
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void buf_fifo :: f_func(){ 

 while( true ){  

  wait();   

  if (wr.event()){ // start reading incoming packets      

   read flit from input port; 

   store in the FIFO module; 

   send back the new condition of FIFO; 

   send a request to arbiter module; 

  } 

  if (grant.event()){ // start sending the packets out     

   send flit to crossbar module; 

   send back the new condition of FIFO; 

  } 

  if (bclk.event()){ 

   send a request to arbiter module; 

  } 

}} 

/* define FIFO */ 

struct fifo { 

 define some registers (their number is equal to the size of FIFO); 

 define a vaiable for the condition that FIFO is full; 

define a vaiable for the condition that FIFO is empety; 

define a vaiable (regnum) that points to the number of tail register; 

define two function packet_in and packet_out; 

} 

/* store data in the tail register of FIFO */ 

void fifo::packet_in(data){   

 increament the variable regnum that points to the tail of FIFO; 

 store data in the register that regnum points to it 

 state the FIFO is not empty 

 if (regnum == the size of FIFO) state the FIFO is full     

} 

/* read data from the header register of FIFO and shift the FIFO one register to the right */ 

packet fifo::packet_out(){ 

 decreament the variable regnum that points to the tail of FIFO; 

 if (regnum == 0) state the FIFO is empty; 

 else shift the content of FIFO one register to the right; 

 state the FIFO is not full; 

       send out the content of the first register; 

} 

 
Figure 3.12: Pseudocode of FIFO process 
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d)     Crossbar Switch Module 

When a flit is injected to the input port of crossbar module, the crossbar module reads the 

address of output port associated to the packet from the input port config, and then sends the 

packet out of the router via that output port. The functionality of crossbar is provided in detail 

here. When the router is regular and has four VCs, the crossbar module has eighteen input ports 

and five output ports as illustrated in Fig. 3.7. It has a process called c_func (). The process 

c_func() is sensitive to the events on seventeen input ports (except config port). The process 

c_func () is provoked when one or more events happen on the input ports. In the event, it reads 

the configuration address from the config port and then sends the packet via its associated output 

ports. The pseudocode of Fig. 3.13 is an event condition for the input i0. The remainder event 

conditions in the crossbar process are the same as the codes in this figure.  

 

 

 

 

 

 

 

 

 

 

 

 

Read the output addresses from the config port 

if (i0.event()) 

{   

 Read the flit from the input i0; 

 switch (associated output address)  

{ 

  case 2: send the flit of input port to the north output port; 

  case 3: send the flit of input port to the east output port;  

  case 4: send the flit of input port to the south output port; 

  case 5: send the flit of input port to the west output port; 

   break ; 

 } 

} 

 

Figure 3.13: Pseudocode of a condition in crossbar process 
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3.2.5 Main Simulator Module  

The main function is the top-level entity that ties all the NoC modules together and 

provides the clock generation and tracing capabilities. The pseudocode of main simulator module 

is shown in Fig 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

// main_noc.cpp 

# include "files" 

int sc_main(int argc, char *argv[]) 

{ 

 Define local signals; 

 Define local variables; 

 Declare clocks; 

 

 Instantiate the traffic generatore; 

 Connect its ports to lacal signals; 

 

 Instantiate the sources; 

 Connect its ports to lacal signals; 

 

 Instantiate the sinks; 

 Connect its ports to lacal signals; 

 

 Instantiate the routers; 

 Connect its ports to lacal signals; 

 

 Trace instractions; 

 

 sc_start();  // start simulation 

 

Close trace files; // stop simulaton 

  

if(REG_TRAFFIC) // regular traffic 

{ 

Calculate the performance, power and area metrics; 

} 

if(IRREG_TRAFFIC) // irregular traffic 

{ 

Calculate the performance, power and area metrics; 

 } 

} 

 

Figure 3.14: Pseudocode of main function 



71 
 

The main SystemC function includes all of the modules in the NoC design. We 

instantiate each of the lower level modules as well as connect their ports with signals to create 

our NoC design. To instantiate a lower level module, the interface of the module must be visible. 

The local signals are declared to connect the module ports together. Three types of signals with 

different sizes such as packet, Boolean and FW (e.g. eight) are needed to cross connect the 

source, sink, traffic generator and router modules. After declaration of signals, there are three 

clock generation declarations: clock1, clock2 and clock3. The number of clock generator is 

optional and can be equal to the number of modules in the design. However, we design the 

simulator to have three clock generators. Clock1 generates clock cycle for the source modules. 

Clock2 generates clock cycle for the router modules while Clock3 generates clock cycle for the 

sink modules.  

The modules in the simulator design are instantiated after the declaration statements. The 

traffic generator, source, sink and router module are instantiated as well as connected together 

with the locally declared signals. This completes the implementation of NoC simulator design. 

The SystemC program can now be built and run. To make it easier to determine if the design 

works as intended, we create a trace file with the built-in signal tracing methods in SystemC. 

After simulation is executed, we can examine the results stored in the trace file with a number of 

visualization tools that generate waveforms and tables of results. After the simulation is 

completed, the instructions related to the calculation of output results are executed. We explain 

the definition and calculation of these results in section 3.6. After the example is completely 

described in SystemC, the commands to build the simulator need to be specified.  
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3.3 Power Modeling of NoC Simulator 

In this section, we propose an analytical method for estimating the power and area of 

NoC routers and interconnection links by varying the router architecture, ports, and 

interconnection link widths. We use the architectural models of different NoC components as 

well as the parameters and equations which are established inside these models to obtain the area 

and power consumption estimates. The results, which we obtain in this section, will be used not 

only to develop better energy/area models of NoC components, but also to understand the 

bottlenecks as well as suggest directions for the improvement of router architecture. 

 

3.3.1  Derivation of Leakage Current (Ileak) 

As we mentioned in section 2.8.1, we need two characteristics Isub and Igate for each basic 

circuit components to estimate the static power. Isub and Igate for each component are listed in 

Table 3.1. They are derived from HSPICE and 65nm foundry SPICE model with corresponding 

technology parameters. Therefore, as the structure of each NoC module is hierarchically 

composed from these basic circuit components, FAANOS can calculate the Ileak for each based 

on the Equation 2.8 in section 2.8. 

Table 3.1 Isub and Igate (per-micron of gate width) for each basic circuit component i at 

different input state s, 25
◦
C and for high Vth. 

i s Isub (A) Igate (A) 

NMOS 0 1.097e-07 4.622e-09 

PMOS 1 3.172e-07 3.291e-09 

INV 0 

1 

1.097e-07 

3.172e-07 

4.622e-09 

3.291e-09 

NAND2 00 

01 

10 

11 

7.098e-08 

1.134e-07 

1.342e-07 

1.766e-07 

3.549e-09 

5.103e-09 

1.194e-08 

1.625e-08 

NOR2 00 

01 

10 

11 

1.971e-07 

1.034e-07 

1.412e-07 

7.245e-08 

6.701e-09 

4.343e-09 

8.048e-09 

6.448e-09 

 



73 
 

3.3.2  Arbiter Leakage Modeling 

In spite of different routing strategies in the arbiter, three types of arbiters namely matrix, 

round robin, and queuing are modeled in FAANOS. Here, we just explain the matrix arbiter, 

which is introduced in Orion [6]. For an arbiter with R requesting entities, one can represent its 

priorities by an R×R matrix. With one in row i and column j, if requester i has higher priority 

than another requester j, and zero otherwise. This method requires just R(R −1)/2 matrix 

elements in flip-flops. Equation 3.1 represents the relation between the nth grant and the 

requests.  

grantn= reqn ×      
 

                         
 

                       (3.1) 

where 

 reqi is the ith request;  

 grantn is the nth grant;  

 mij is the ith row and jth column element in the matrix. 

Figure 3.15 shows the combinational logic of matrix arbiter. By considering Equation 3.1 and 

Fig. 3.15, the power static of matrix arbiter can be estimated by Equation 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.15: Gate level design of matrix arbiter 
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Pleak (arbiter) = Ileak (arbiter). Vdd       (3.2) 

where 

 Ileak (arbiter) = Ileak (NOR2). ((2R-1)R) + Ileak(INV). R + Ileak (DFF). R(R-1)/2  

 R= number of request 

 

3.3.3 Matrix Crossbar Leakage Modeling 

FAANOS models the crossbar in two kinds: matrix and multi-tree. Here, we explain the 

matrix model of Crossbar.  Figure 3.16 shows the gate level structure of normal matrix crossbar. 

The matrix crossbar consists of several horizontal input wires over vertical output wires, plus 

trans-gate or tri-state buffers at the cross-points. These tri-state buffers allow each input port to 

be electrically connected to any output port [44]. Table 3.2 shows the parameters and equations 

related to the static power of matrix crossbar. 
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Figure 3.16: Matrix crossbar with I input ports, O output ports and W port width in bit. The connectors are 

transmission gate. 
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Table 3.2 Leak parameters of Matrix crossbar model 

I  No. of crossbar input ports (default 5) 

O  No. of crossbar output ports (default 5) 

W  Port width in bits (default 21) 

Ileak (transmission gate)   Ileak(NMOS). I .O. W                                                                                                  (3.3) 

Ileak (input driver)   Ileak(INV). I . W                                                                                                           (3.4) 

Ileak (output driver)  Ileak(INV). O. W                                                                                                          (3.5) 

Ileak (control signal)   Ileak(INV). I .O                                                                                                             (3.6) 

Ileak (crossbar)  Ileak (transmission gate)+ Ileak (input driver)+ 

 Ileak (output driver)+ Ileak (control signal)                                                                    (3.7) 

Pleak (crossbar)   Ileak (crossbar). Vdd                                                                                                      (3.8) 

 

3.3.4 FIFO Buffer Leakage Modeling 

The FIFO buffer is modeled in two types of SRAM and Register in FAANOS. Here, we 

explain the SRAM model of FIFO buffer. Figure 3.17 shows the gate level structure of normal 

SRAM. By considering this figure and the parameters and equations in Table 3.3, the static 

power of SRAM FIFO buffer model is estimated by Equation 3.16. 
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Figure 3.17: FIFO buffer with one read and one write port. 
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Table 3.3 Leak parameters of SRAM FIFO buffer model 

F  Flit width in bits (default 21) 

B  Buffer size in flits (default 2) 

Pr  No. of buffer read ports (default 1) 

Pw  No. of buffer write ports (default 1) 

V_CH  The number of virtual channel (default is 1) 

Ileak (bitline)   2. Pw .F.Ileak(INV)                                                                                                    (3.9) 

Ileak (pre-bitline)   2. Pr .F.Ileak(PMOS)                                                                                                 (3.10) 

Ileak (wordline)  (Pr+Pw).B. Ileak(INV)                                                                                                (3.11) 

Ileak (memory cell)   2.B.F. Ileak(INV)                                                                                                      (3.12) 

Ileak (read port pass)   2. Pr .F.B.Ileak(NMOS)                                                                                             (3.13) 

Ileak (write port pass)   2. Pw .F.B.Ileak(NMOS)                                                                                            (3.14) 

Ileak (in FIFO buffer)   Ileak (bitline)+ Ileak (pre-bitline)+ Ileak (wordline)+ Ileak (memory cell)+ Ileak (read port pass) 

+ Ileak (write port pass)                                                                                              (3.15) 

Ileak (FIFO buffer)   I. V_CH . Ileak (in FIFO buffer) 

Pleak (FIFO buffer)   Ileak (FIFO buffer).Vdd                                                                                             (3.16) 

 

3.3.5  Physical Link Leakage Modeling 

The static power of links is due to the repeaters inserted in them. For repeaters, the 

leakage occurs in both output states. NMOS devices produce leakage current when the output 

state is high while PMOS devices leak when the output state is low. This is applicable to buffers 

also as the second stage devices are the primary contributors due to their large sizes. As 

mentioned, leakage power has two main components: sub-threshold leakage and gate-tunnelling 

current. Both components depend linearly on device size. Therefore, leakage power can be 

calculated using the equations given below [25]: 

Ps=(pns+pps)/2          (3.17) 

pns=kn0+kn1.Wn         (3.18) 

pps=kp0+kp1.Wp         (3.19) 

Where  

 pns and pps are the leakage power for NMOS and PMOS devices respectively; 

 kn0 = -6.034, kn1= 26.561, kp0 = 1.238 and kp1 = 27.082 are coefficients determined using 

linear regression against 65nm low-power library.  
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State-dependent leakage modeling can also be performed using Equations 3.18 and 3.19 

separately. 

3.3.6 Component Modeling in Dynamic Power 

This section explains the methodology of dynamic power modeling which we use in FAANOS. 

As we mentioned in section 2.8.2, the switching energy is calculated by Equation 3.20. 

E = 0.5αCVdd 
2
          (3.20) 

Where  

 α is the switching activity;  

 C is the switching capacitance;  

 Vdd is the supply voltage.
 

To model an NoC module, we divide the module into several atomic components, whose 

switching activities and capacitance can be independently calculated. A component is atomic if it 

only consists of one capacitor, or multiple capacitors that have identical switching behaviour. 

This property ensures that an atomic component can be represented by one capacitance. Usually 

an atomic component consists of several physically connected capacitors. For example, a 

wordline is physically connected to the gate ends of pass transistors connecting the wordline and 

memory cells. In this way, the wordline and the gate ends of pass transistors belong to one 

atomic component. There are cases where an atomic component consists of capacitors that are 

not physically connected. For example, the gate ends of NMOS and PMOS transistors of an 

inverter and their drain ends belong to one atomic component because they always switch 

together. The dynamic power modeling of an NoC module is thus developed as described here. 

First of all, we divide the NoC module into atomic components. Secondly, we derive capacitance 

equations for each atomic component. Thirdly, the possible operations (functions) of NoC 
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module is identified (e.g. read, write, update, and their arguments). These operations and their 

arguments are supposed to be accurately reported by the simulator. At the end, the equations that 

compute switching activities (i.e. energy) of each atomic component are derived from the 

operation arguments. 

 

Component Power Modeling 

Table 3.4 gives the capacitance notations used throughout the following sections. We use CACTI 

to compute the actual values of Cg, Cd and Cw [35]. Transistor sizes can be user-input parameters 

or automatically determined by Orion 2.0 [44] with a set of default values from CACTI and 

applied with scaling factors from WATTCH [7]. Sizes of the driver transistors, e.g. crossbar 

input drivers are computed according to their load capacitance. Ex denotes the energy dissipation 

per switch of component x and is implicitly defined when component capacitance Cx is defined. 

For each component, we first describe its regular structure in terms of architectural and 

technological parameters. We then proceed with a detailed analysis and derive parameterized 

capacitance equations by taking into account both the gate and wire capacitances. The 

capacitance equations are then combined to estimate switching activity to determine energy 

consumption per component operation.  

 
Table 3.4 Capacitance notations 

Notation  Description 

Cg(T)  Gate capacitance of transistor/gate  T 

Cd(T)  Drain capacitance of transistor/gate T 

Ca(T)  only applicable if T is an inverter. Ca(T)=Cg(T) + Cd(T) 

Cw(L)  Capacitance of metal wire of length L 

Cin_cnt  Input node capacitance of a crossbar connector 

Cout_cnt  Output node capacitance of a crossbar connector 

Cctr_cnt  Control node capacitance of a crossbar connector 

CFF  Switch capacitance of a flip-flop 

CFC  Clock capacitance of a flip-flop 

Ex 1/2Cx   
  or Cx    

  depending on how to count switches, provided Cx is defined 
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Metal Wire Capacitance 

 

The metal wiring is modeled using the values for bitmetal and Cwordmetal derived from 

CACTI 5.1 [35]. These values include an expected value for the area and sidewall capacitances 

to the substrate and other layers. We use these values for the capacitance estimation of bitlines 

and wordlines in the FIFO module. Moreover, they are used to model the capacitance of pre-

decode lines, data / address bus, and other signals in the memory. Although the capacitance per 

unit length would be probably lower for many of these busses than for the bit lines and word 

lines, we have used the same value for the sake of simplicity.  

 

 

Drain Cap of Transmission and Tri-state Gates 

Figure 3.18 depicts the structure of transmission and tri-state gate respectively. The 

transmission gate is made by a single nMOS or pMOS transistor, or by the parallel combination 

of both.  
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Figure 3.18: structure of transmission and tri-state gate 
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3.3.7 FIFO Dynamic Modeling 

Most of the FIFO power is consumed when NoC is in the transaction condition. For 

NoCs, a FIFO buffer can be implemented by either static RAM (SRAM) or shift registers [25]. 

Designers typically implement FIFO buffers as SRAM arrays. Y. Hoskote et al. have concluded 

that the FIFO buffers consume up to 22% of the total router power [45]. An explanation of both 

the SRAM array-based model and shift register-based model is provided as following.  

 

SRAM-Based FIFO Buffers 

Several architectural- level SRAM array power models have been proposed [25]. These 

models are adopted and made more fine grained and also modified to take into account the 

specific router micro architecture. For instance, a FIFO buffer does not need a decoder. Figure 

3.19 shows the structure of an SRAM-based FIFO buffer and Table 3.5 lists the model 

parameters and equations [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: SRAM-based FIFO buffer with one read and one write port 
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Table 3.5 FIFO buffer model 

Characteristic Description 

Architectural parameters 
B  Buffer size in flits 

F  Flit size in bits 

Pr  No. of buffer read ports 

Pw  No. of buffer write ports 

Technology parameters 
Hcell  Memory cell height 

Wcell  Memory cell width 

dw  Wire spacing 

Model equations 
Word line length  Lwl = F[wcell+2(Pr + Pw)dw]                               (3.21) 

Bit line length  Lbl = B[hcell + (Pr +Pw)dw]                                (3.22) 

Read Word line capacitance  Cwl = 2FCg(Tp) + Ca(Twd) + Cw(Lwl)**           (3.23) 

Write Word line capacitance  Cwl = 2FCg(Tp) + Ca(Twd) + Cw(Lwl)               (3.24) 

Read bit line capacitance  Cbr = BCd(Tp) + Cd(Tc) + Cw(Lbl) +2Cg(Ts)     (3.25) 

Write bit line capacitance Cbw = BCd(Tp) + Ca(Tbd) + Cw(Lbl)                  (3.26) 

Pre charge capacitance  Cchg = Cg(Tc)                                                        (3.27) 

Memory cell capacitance  Ccell = 2(Pr + Pw)Cd(Tp) +2Ca(Tm)                    (3.28) 

Sense amplifier energy  Eamp from empirical model*** 

**Tp is the pass transistor connecting bit lines and memory cells; Twd, the word 

line driver; Tbd, the write bit line driver; Tc, the read bit line precharge transistor; and Tm, the 

memory cell inverter. 

*** V. Zyuban and P. Kogge, The Energy Complexity of Register Files, Proc. 

Int’l Symp. on Low Power Electronics and Design, 1998. 

 

 

Register-Based FIFO Buffers 

Some on-chip networks, such as the RAW microprocessor that evaluated by M. B. Taylor 

et al, use shift registers to form the FIFO buffer [46]. The flip-flops are used as the building 

block of shift registers [25]. Figure 3.20 shows the circuit schematic for a negative edge-

triggered D flip-flop. It can be changed to a positive edge-triggered device by using the clock's 

complement. Hence, a FIFO buffer with size n can be implemented as a series of n flip-flops. 
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Write Operation 

The write operation occurs at the tail of shift register. Assuming the new flit is   and the 

old flit is  , the number of switched flip-flops is the Hamming distance between them. 

Therefore, the write energy is calculated by Equation 3.29. 

        =                 
  

        (3.29)  

Where 

        
  

is the energy to switch one bit.  

To simplify the analysis, let    denote the average switching activity (0.5 in the case of our 

simulator); then the average write energy can be defined by Equation 3.30. 

        =    .        
  

         (3.30) 

Read operation 

The read operation has two steps. 

 The flit stored at the header of buffer is read into the crossbar. This step does not 

consume any energy in the buffer. Since the header of buffer is directly connected to the 

input port of crossbar. 

Q 

Q 

Clk 

D 

Figure 3.20: The schematic for a negative edge-triggered D flip-flop 
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 Subsequent flits in the buffer are shifted one position towards the header. If the buffer 

holds n flits before the read operation then (n-1) flip-flop writes are performed to shift the 

data. Hence, the average read energy is calculated by Equation 3.31. 

   read = (n-1)   write          (3.31) 

 

The capacitance value across different drive strengths is obtained from TSMC 65nm G and 

low-power standard cell library data sheets [25].  

3.3.8 Crossbar Dynamic Modeling 

 

We consider two ordinary crossbar implementations: multiplexer tree and matrix. Here, 

we explain just the matrix crossbar model. Figure 3.21 shows the model of a matrix crossbar. 

The data from an input port propagates to the input ends of connectors belonging to the same 

row. The open/close states of the connectors determine which output ports receive the input data. 

The components that can switch during data transfer are input, output, and control lines. Table 

3.6 lists the model parameters and equations for the matrix crossbar. 
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Figure 3.21: Matrix crossbar with I input ports, O output ports and W port width per bit. The connectors are   

tri-state buffers 
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Table 3.6 Matrix crossbar parameters and equations 

Characteristic  Description 

Architectural 

parameters 

 

I  No. of crossbar input ports 

O  No. of crossbar output ports 

W  Port width in bits 

Technology parameters  

ht  Track height 

wt  Track width 

Model equations  

Input line length  Lin = O.W. wt                                                                     (3.32) 

Output line length  Lout = I. W. ht                                                                    (3.33) 

Input line capacitance  Cxb_in = O.Cin_cnt + Ca(Tid) + Cw(Lin)*                              (3.34) 

Output line capacitance  Cxb_out = I.Cout_ cnt + Ca(Tod) + Cw(Lout)                           (3.35) 

Control line capacitance  Cxb_ctr = W.Cctr_cnt + Cw(Lin/2)**                                      (3.36) 

*Tid is the input driver, Tod is the output driver. 

**We use average length for control lines and assume control lines are along the same 

direction as input lines. 

 

 

 

3.3.9 Arbiter Dynamic Modeling 

 

As mentioned earlier, there are three types of arbiters such as matrix, round robin, and 

queuing that are modeled in FAANOS. We will describe the matrix arbiter in this section. For an 

arbiter with R requesters, R(R −1)/2 flip-flops are required. The relation between the nth grant 

and the requests is given by Equation 3.1. Figure 3.22 shows the combinational logic of matrix 

arbiter. One can derive the capacitance equations of request, grant, and priority signals; internal 

nodes between the two levels of NOR gates; and the clock signal driving all the priority flip flops 

by using Equation 3.1 and Fig. 3.22 which are shown in Table 3.7. 
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Table 3.7 Matrix arbiter model 

Characteristic  Description 

Architectural parameter  

R  No. of requesters 

req_len request wire length estimation is ad hoc 

Model equations  

Request capacitance  Creq = Ca(Ti) + (R-1)Cg(Tn1) + Cw(req_len)+ Cg(Tn2)*     (3.37) 

Grant capacitance  Cgnt = Cd(Tn2)                                                                     (3.38) 

Priority capacitance  Cpri = CFF + 2Cg(Tn1)                                                          (3.39) 

Internal capacitance  Cint = Cd(Tn1) + Cg(Tn2)                                                     (3.40) 

Clock capacitance  Cclk = CFC 

* Tn1 is the first-level NOR gate; Tn2, the second-level NOR gate; and Ti, the inverter. 

 

3.3.10 Clock Dynamic Modeling 

Clock distribution and generation include a major portion of power consumption in 

synchronous designs [47]. They represent a maximum of 33% of the power consumption in a 

high-performance router [45]. We estimate the term Cclk as shown in Equation 3.41. 

Cclk =Csram-fifo +Cpipeline-registers+Cregister-fifo +Cwiring      (3.41) 

Where 

Figure 3.22: The gate level design of matrix arbiter 
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 Csram-fifo, Cpipeline-registers, Cregister-fifo, and Cwiring are capacitive loads due to SRAM-based 

FIFO structure, pipeline registers, shift register-based FIFO, and clock distribution wiring 

respectively.  

 

We assume that all components are built by using static CMOS gates. Moreover, we assume 

an H-tree distribution style in the NoC design. 

 

Clock in Memory Structures 

We use the SRAM model of section 3.3.7 to determine the pre-charge circuitry capacitive 

load on the clock network. The circuit is just the pre-charging transistor (Tc), which is just a 

single ordinary PMOS transistor. Hence, its capacitance (Cchg) is due to its gate and drain end 

capacitances, Cg (of Tc) and Cd (of Tc) respectively as shown in Equation 3.42. In an SRAM 

FIFO with B buffers and flit size F, the total capacitance due to pre-charging circuitry can be 

derived using Equation 3.43, where Pr and Pw are the number of read and write ports 

respectively.  

Cchg =Cg +Cd                     (3.42) 

Csram_f i f o = (Pr +Pw) .F .B.Cchg        (3.43) 

 

Clock in Pipeline Registers 

Typical interconnection network routers have different pipeline stages. To advance, each 

flit must proceed through the steps such as routing computation, VC allocation, switch 

allocation, and switch traversal. We assume D flip-flop as the building block of pipeline 

registers. In a router with flit size of F bits and pipeline stages Npipeline, the capacitive load on the 

clock due to pipeline registers is demonstrated as following formula. 
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Cpipeline_registers = Npipeline. F. Cff        (3.44) 

Where  

 Cff is the flip-flop capacitance and it is extracted from 65nm high-performance and low-

power libraries.  

 

Clock in Register-Based FIFOs 

FIFO buffers can be implemented as a series of flip-flops. We assume simple D flip-flop 

to construct the FIFO. In a register-based FIFO with size B and flit size of F bits, the capacitive 

load on the clock can be computed by Equation 3.45 as given below. 

Cregister_f i f o = F .B. Cf f         (3.45) 

Where 

 Cf f is the flip-flop capacitance and is obtained from TSMC 65nm G and low-power 

standard cell library data sheets [40].  

Architectural parameters change the effective loading of each gate in the design. Therefore, 

to employ appropriate drive strength for the registers, we use their load capacitance and timing 

requirements. In this work, we assume minimum-size D flip-flops for all the registers. 

 

Clock in Wiring Load 

For a 5-level H-tree clock distribution, total wire capacitance is given in Equation 3.46.  

Cwiring = (16/2 ×D+1×8/2×D+2×4/2×D+4×2/2×D+8×1/2×D) ×Cint   (3.46) 

where  

 Cint is the per-unit-length wire capacitance; 

 D is the chip dimension. 
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3.3.11 Physical Link Dynamic Modeling 

The main source of dynamic power of links is due to charging and discharging of 

capacitive loads (wire and input capacitance of next stage repeater). Internal power dissipation, 

due to charging/discharging of internal capacitors and short-circuit power, is only significant for 

repeaters when the input slew times are extremely large. Link power is a major component of the 

router total power (around 17%) [45]. Previous works, such as Heo and Asanovic, only use delay 

as the objective for buffer insertion [48]. These results in large repeaters increase the power 

consumption significantly. In this work, we use a hybrid buffering solution that minimizes the 

linear combination of delay and power. We evaluate the objective function exhaustively for 

given number and size of repeaters, while searching for the optimal (number, size) values. Link 

dynamic power is given by the equations as below. 

Plink = α.Cl .    
 . fclk          (3.47) 

Cl =Cin +Cgnd +Ccc          (3.48) 

Where 

 Plink, α, Cl , Vdd and fclk denote the link dynamic power, activity factor, load capacitance, 

supply voltage, and frequency, respectively.  

The load capacitance is the sum of input capacitance of next repeater Cin, and the ground 

(Cgnd) and coupling (Ccc) capacitances of wire being driven. Cin can be reliably obtained from 

the industry library files. The unit Cgnd and Ccc are also extracted from industry LEF files [25].  

 

3.3.12 Approaches to Obtain Parameters 

 

Detailed technology parameters are not always available for a given device. When these 

are unavailable, we propose to obtain them by using three approaches as follows. 

 Measure the parameters from the floor plan or its photo if available.  
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 Determine the size of some transistors by using their load capacitance and timing 

requirements. 

 Use default values, many of which come from the WATTCH framework [7]. 

 

Therefore, an NoC designer can use our model before determining all the low-level details. 

But knowing these technology parameters can greatly improve the model’s accuracy. 

 

3.4 Area Modeling of NoC Simulator 

 

To estimate the router area we basically compute the area of each NoC module and sum 

them up with an additional of 10% (rule of thumb) of area to account for global whitespace. For 

each NoC module we first identify the implementation style of module and then decompose the 

module into its basic logical elements (e.g., gate-level netlist). Then, we use the gate area model 

described in section 2.9 to estimate the area of entire block. 

 

3.4.1 Router Area 

Designers typically implement buffers as SRAM arrays. Some NoC networks used shift 

registers due to less demanding buffer space. We have modeled the area of both 

implementations, but explain only the SRAM-based model here. We use the same SRAM-based 

FIFO buffer as in ORION [6]. Equation 3.49 and 3.50 compute the word line and bit line lengths 

of FIFO, respectively. 

Lword-line=F.(Wcell+2(Pr+Pw)dw)       (3.49) 

Lbit-line=B.(Hcell+(Pr+Pw)dw)        (3.50) 

Where  

 F, B, Wcell, Hcell, dw, Pr, and Pw are flit size in bits, FIFO size in flits, memory cell width, 

memory cell height, wire spacing, number of read ports and number of write ports 

respectively.  
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Therefore, the total area for a FIFO with B buffers and flit size of F is calculated by Equation 

3.51. In this model, Hcell and Wcell are computed using the gate area model described earlier in 

section 2.9. 

AreaFIFO = Lword-line . Lbit-line        (3.51) 

For other router components, namely, crossbar and arbiter we first decompose them into 

their circuit building block (i.e., gate level netlist). Then, using the gate area model we estimate 

the area of individual circuit components and compute the area of entire module.  

 

3.4.2  Link Area 

 

The area occupied by NoC links is due to wires and repeaters as illustrated in Fig. 3.23. 

We use the earlier gate area model described to estimate the area of repeaters. The area of global 

wiring can be calculated as given in Equation 3.52. 

Arealink = F .(Ww +Ws)+sw         (3.52) 

Where  

• Arealink denotes the wire area; 

• F is the flit size in bits; 

• sw is the repeater area; 

• Ww and Ws are the wire width and spacing computed from the width and spacing of layer 

(global or intermediate) on which the wire is routed, and from the design style.  

 

 

 

 

 

 

Wire width 

Wire space 

Flit size 

repeaters 

Figure 3.23: Layout model of wires and repeaters 
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3.5 Link Length Estimation 

 
In order to estimate area and power dissipation of an NoC, we need to know the exact 

size and position of each core and the length of every link. These parameters are determined in 

the process of making chip specifically during the floor planning of system. We propose an 

estimation method which only needs the core areas of an SoC application to guess the maximum 

length of links on an NoC to reduce the complexity of NoC simulator and to avoid floor planning 

tools. We describe our method for 2D as well as application specific topologies, covering all the 

topologies used in FAANOS.  

 

3.5.1 Maximum Link Length in 2D Topologies  

An example of an SoC which is mapped on 2D topology, Mesh or Torus is illustrated in 

Fig. 3.24. The SoC is floor planned on an area with size AREA with N_CLM ×N_ROW cores. 

We assume all routers are located on the area as is shown in Fig. 3.24. In this condition, we need 

maximum length link equal to 2*(N_CLM + N_ROW)*        to route all the cores 

bidirectionally inside the chip for Mesh topology and two times of that of Torus topology. 

Equation 3.53 and 3.54 shows the average link length (Ave_Link) in Mesh and Torus topology 

respectively.  

Ave-Link=2*(N_CLM+N_ROW)*sqrt(AREA)/(4*(N_CLM-2)*(N_ROW-2)+ 

                   3*2*((N_CLM-2)+ (N_ROW-2))+ 4*2)      (3.53) 

Ave-Link=2*2*(N_CLM + N_ROW)*sqrt(AREA) /(2*2*N_CLM * N_ROW) (3.54) 
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3.5.2 Maximum Link Length for Application Specific Topologies  

Figure 3.25 shows an SoC consisting of N cores, which are floor planned in an area with 

size AREA. We assume the SoC is of square shape and its NoC is mapped to an irregular 

topology. The condition which needs the longest link to floor plan the system happens when the 

NoC is placed in the corner of chip and each core is connected directly to it (Fig. 3.25). In this 

case, the maximum link is equal to the diameter of chip (2×      in a 2D layout). As the cores 

are uniformly spread in the chip, the average of a link is half of the diameter of area (      . 

Therefore, we need maximum length link equal to N×       to route all the cores bi-

directionally inside the chip. Equation 3.55 shows average of link length in an application 

specific topology. 

Ave-Link =               (3.55) 

 

 

 

 

 

  

Figure 3.24: An example of 2D NoC floorplanning 

topology NoC and its links 

      

Figure 3.25: An example of application specific NoC floorplanning 
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3.6 Performance, Power and Area Estimation of NoC 
 

We have described the performance, power and area metrics of each NoC module separately. In 

this section, we explain how these metrics are integrated and create the performance, power and 

area metrics of the NoC system. 

 

3.6.1 Performance Estimation  

The definition of performance characteristics have been presented in section 2.10. Now it 

is time to have an exact view of how these characteristics are measured and create the 

performance results in our NoC simulator. Figure 3.26 depicts the packet injection model in 

FAANOS.  When data packets commute between the NoC modules, each module stores the NoC 

transaction characteristics in different variable memories. These variables facilitate the collection 

of transaction statistics and assist the integration of performance metrics in FAANOS. The 

following variables assist the integration of performance results in FAANOS    

M   the number of network nodes 

C     the number of link in the network 

T   the number of simulation cycles 

LOAD   a proportion of SIM_NUM in which the traffic generator produces packets 

BURST  the number of packet generated in the burst time 

PAUSE  the pause per flit between two burst messages 

FF   the number of flits in each packet 

Nin   the number of flits injected into the network 

Nof    the number of flits offered into the network 

Nout       the number of flits ejected from the network  

Ni         the number of flits ejected from the source i 

Di   the links a flit i travels 

Tof   the time a flit i offered into the network 

Tout   the time a flit i ejected from the network 
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Dof or    
   

   
  the total link traveled by all offered flits 

Tof or      
   

   
 the total time of flit offered into the network 

Tout or      
   

   
 the total time of flit ejected from the network 

 

    The following formulas represent the general relationship between above terms and calculate 

the integration of performance results in FAANOS. 

Nin= M × (LOAD×T) ×
        

                
      (3.56) 

Total Packet drop= 
       

  
        (3.57) 

Packet drop in source i= 
    

  
        (3.58) 

Link_utilization= 
   

   
         (3.59) 

Flit_injection_rate=  
   

   
        (3.60) 

Throughput =  
    

   
          (3.61) 

Latency = Tout - Tof + (Nof-Nout) ×T       (3.62) 

Where 

 M =     and C = 4K (K -1) For a K× K mesh;  

 M =   and C = 4   For a K×K torus. 

 

In the latency calculation, we assume the flits that are injected but still not ejected the same 

as the flits that are ejected.  
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3.6.2 Architectural Power Estimation 

Static power consumption is a function of leakage current and leakage current is constant 

during transaction level of NoC system as explained in section 2.10.5. However, dynamic power 

consumption is different. For architectural power estimation, the estimating of power by 

considering the maximum transactional characteristic of network is considered. In other words, 

the maximum static and dynamic power consumption of all NoC components is estimated. In 

this section, we demonstrate the estimation of maximum dynamic power consumption by using a 

probabilistic approach. Maximum power, Pmax is the power consumed with maximum achievable 

switching activity at a certain network load. To simplify the illustration, we assume a simple 

wormhole router as shown in Fig. 3.27. It has five input/output ports, where each input port has a 

buffer space for four 32-bit flits (B = 4, F = 32, Pr = 1 and Pw = 1). The router has a 32-bit wide, 

5×5 crossbar (I = 5, O= 5 and W= 32) and a 4:1 arbiter at each output port. Assuming flits do not 

make u-turns (R = 4). The maximum power, Pmax is calculated by Equation 3.63. 

Pmax = fclk(5Ebuffer + Ecrossbar + 5Earbiter + 5Evc_al)     (3.63) 

where 

 Ebuffer, Ecrossbar, Evc_al and Earbiter are the energy of each input buffer, crossbar, VC allocator 

and arbiter consumes in one cycle. 

 

                       Figure 3.26: Packet injection model 
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We assume network traffic is uniformly distributed across all the router ports and define 

flit arriving rate, Pf as the probability that each input port receives a flit in every cycle. We also 

assume input traffic equals output traffic. Therefore, in one cycle, Pf flits are written into each 

input buffer and Pf flits are read out from each input buffer. The maximum switching activity is 

achieved when all 32-bit lines and memory cells switch during read/write. 

Ebuffer = Pf (Ewrite + Eread)        (3.64) 

Ewrite = Ewl + 32(Ebw + Ecell)        (3.65) 

Eread = Ewl + 32(Ebr + 2Echg + Eamp)       (3.66)  

 

Assuming 5 × Pf flits enter the crossbar in each cycle. A maximum switching activity 

happens when all 5 × Pf flits travel to different ports. For example, there is no contention, and for 

each input/output port, all 32 lines will switch. 

 

Ecrossbar = 5.Pf .32(Exb_in + Exb_out)       (3.67) 
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Figure 3.27: 5×5 wormhole router or regular router 
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The arbiter energy consists of the energy consumed by the arbitration action, and the energy 

consumed during clocking of flip-flops. Assume L is the number of flits in each packet. Since the 

contention and arbitration is only necessary for header flits therefore each arbiter receives one 

request in every L/Pf cycle. Upper bound of maximum switching activity comes from the 

situation when all the relevant priorities and all the internal nodes switch. Although in practice, 

this is not achievable. Clocking energy is summed for all the flip-flops and it is a constant. 

Earbiter = Pf /L Earbitration + Eclock       (3.68) 

Earbitration = (4 -1)Epri + 4(4 -1)Eint + Ereq + (Egnt + Exb_ctr)    (3.69) 

Eclock = 1/2 .4(4 -1)Eclk        (3.70) 

 

We add Exb_ctr to Egnt because grant signals load crossbar control signals. Similarly, we can 

derive the switching activity for average power. Since our power model is activity sensitive, it is 

also capable of computing average power, or more realistic power estimation based on the real 

data trace.  

 

3.6.3 Transactional Power Estimation 

The transactional power estimation is the power consumption when an NoC is operated 

by a specific traffic pattern as discussed in section 2.10.5. In this case, we estimate maximum 

static power for all the components and dynamic power for only those components that switch 

during simulation. When data travel between NoC modules, each module keeps records of its 

transactional characteristics. These records facilitate the collection of transaction statistics and 

assist the integration of power results in FAANOS. When a simulation is stopped, the traversal 

energy (the energy consumed at each transaction in a module) related to each module is 
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multiplied by the transactional record of that module and then accumulated and result in the 

energy consumption of NoC design.  

Here, we describe the journey of a flit from one router to another to show how the 

transactional power consumption is estimated. Consider a router that has five input/output ports, 

a 5×5 crossbar and an arbiter as shown in Fig. 3.28. Each input port has two FIFO buffer module 

containing four registers (VC=2, FIFO=4), and each register has 32-bit. We also assume XY 

routing for simplicity. In the figure, we have added a virtual channel allocator (VC_allocator) 

module to separate the duty of demux module to a switch module (i.e. demux) and an allocator 

module (i.e. VC_allocator). The local source module injects a header flit into the local link. The 

header flit passes the local link and will be entered into the input port of router. The router 

module keeps a record of incoming flit in a variable called v_link. Then the flit will enter to 

demux module. The demux module keeps a record of incoming flit in a variable called vc_al. The 

demux module sends it to a FIFO module depending on the vcid value of header flit. The FIFO 

module writes the flit into the tail of its buffers and keeps a record of incoming flit in a variable 

called v_wr. When the flit emerges at the header of FIFO module, a request containing the route 

information is sent to the request port of arbiter module (Req L) for the desired output port, the 

north output port is assumed here. The arbiter module performs the required arbitration and 

keeps a record of request in a variable called v_arb. If the request is granted, the arbitration result 

is sent to the configure port of crossbar module (config). A grant signal is also sent to the grant 

port of FIFO module, leading to the FIFO read port be activated. At this stage, a record of grant 

signal is kept in a variable called v_ read. The flit is injected to the input port of crossbar 

module. The crossbar module keeps a record of incoming flit in a variable called v_crossbar. 
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The flit next traverses through the crossbar, from its input port (In L), to its north output port 

(Out N). Finally, the flit leaves the router and enters to link N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By entrance of each flit to a router, the router keeps a record of incoming flit in v_link. In this 

way, a router covers all the links events except the links connected to the local sinks. Therefore, 

a router should also keep a record of incoming flit only for the exit link connected to a sink. 

Now, the dynamic energy for passing header flits inside a router during simulation can have the 

following equation. 

Edyn_router = v_link . Elink +vc_al . Evc_al + v_wr . Ewrite + v_read . Eread +  

         v_arb . Earbiter + v_crossbar . Ecrossbar     (3.71) 

Where  

 Elink, Evc_al, Earbiter and Ecrossbar are the traversal energy of link, VC_allocator, arbiter and 

crossbar modules respectively when a transaction happens in a module.  
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Figure 3.28: 5×5 wormhole router or regular router 
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 Ewrite and Eread are the traversal energies when a write and read transaction happens in a 

FIFO module.  

 

As the arbitration and VC allocation happen only for header flits, so the dynamic energy for 

passing body flits inside a router during simulation is calculated by Equation 3.72. 

Edyn_router= v_link . Elink  + v_wr . Ewrite +  v_read . Eread + v_crossbar . Ecrossbar (3.72) 

Each router in the NoC accumulates the dynamic energy for the flits, which has passed 

through it. The following equations show the process of calculating the total power of NoC 

network, Pnetwork. 

                    

   

   

 

Pdyn    
    

 
       

Pstatic = (Pleak (VC allocator) +Pleak (FIFO) +Pleak (arbiter)+ Pleak (crossbar) + Pleak (Link)) ×m×n 

Pnetwork = Pdyn + Pstatic         (3.73) 

where 

 m×n, N, fclk and Edyn are the number of routers, the number of simulation cycle, the NoC 

frequency, the total dynamic energy of network during simulation time respectively; 

 Pdyn and Pstatic are the total dynamic and static power of NoC network; 

 Pleak (VC allocator), Pleak (FIFO), Pleak (arbiter), Pleak (crossbar)and  Pleak (Link) are the 

static power of VC_allocator, arbiter and crossbar modules respectively. 

 

3.7 An Evaluation Flow Model  

We propose an evaluation flow model by which the effectiveness of an NoC system is 

evaluated in terms of performance, power and area metrics by using NoC simulator. In another 

aspect, the evaluation flow model is the process of configuring, implementing, recording, 
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analyzing, and iterating tasks by using FAANOS to gain the best effective results of an NoC 

system.  

One should first configure the network and traffic pattern and then apply different traffic 

patterns to evaluate an NoC where Figure 3.29 shows this flowchart. The NoC evaluation flow 

may be iterative until a user is satisfied. There are two loop processes in the flowchart. The first 

one is partially implemented in the User Interface program and the rest in the NoC Simulator. In 

this step, users should specify the configuration of NoC system in terms of size and kind of 

message, topology, switching and routing mechanism, FIFO buffer and virtual channel. These 

configurations are specified in terms of NoC parameters and a core txt file. The parameters are 

requested via the console screen by the User Interface program that a user should include into the 

program. The core txt file is a file produced from the core graph of NoC application. The output 

of User Interface is a file that is used as the main file of NoC Simulation program (Fig. 3.1). The 

NoC Simulation program implements the hardware simulation part of FAANOS. It generates the 

performance, area and power results of NoC. In the second loop, the user cannot change the 

topology of NoC, but other configurations can be changed. These configurations are saved in the 

SystemC file, main_noc.cpp. The user can change them and run the NoC Simulation program 

iteratively to gain the best results of NoC. This evaluation flow method typically is called try and 

error method.  

 

3.8 Conclusion 

The structure of FAANOS has been analyzed in this chapter. We used SystemC, which is a C++ 

class library and dedicated language, to create the cycle-accurate models of the hardware part of 

simulator and a user interface program. The hardware modeling of every NoC module was 
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described in detail. We demonstrated the developing of our NoC simulator from a simple 

network to a more complex and automatic NoC simulator. In terms of power and area, we have 

presented an analytical model for the power and area of different modules of an NoC such as 

FIFO buffer, arbiter, crossbar, and link. We have introduced the different architectural model of 

each NoC module and then decomposed them into gate level and presented the technological and 

analytical parameters accompanied by the related formula. We proposed an estimation method 

for the average link length of NoC. We also described how the performance, power and area 

results of an NoC calculated in FAANOS. At the end, an evaluation flow model for early design 

of NoC has been presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29: NoC evaluation flow 
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Chapter 4 

Experimental Work 

The routing mechanism refers as a deterministic or adaptive routing algorithm for the 

NoC. It is one of the most important network components of NoC design. The adaptive routing 

mechanisms are effective for regular topologies such as Mesh or Torus. A regular topology has a 

predictable and well-ordered shape where the routing paths can be addressed by well defined 

functions. These routing mechanism has become a good research subject for additional 

investigation and development. This has encouraged us to configure the simulator and implement 

the first set of experiment for different NoC routing mechanisms to investigate their performance 

trade-off. We show how an adaptive routing mechanism has some advantages over the 

deterministic one, and present a comparative analysis among LP routing and other routing 

techniques. For the second set of experiments, we investigate different SoC applications by 

trading power and area characteristics with the performance of NoCs. We illustrate different 

aspects of our simulator in the following sections. The configuration and installation of 

FAANOS is described in section 4.1. In section 4.2, a special type of contention is proposed for 

NoCs. The configuration for the first set of experiment is presented in section 4.3. Different 

experiments in uniform as well as locality traffic patterns are presented in sections 4.4 and 4.5. 
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The Mesh topology and application-oriented traffic have been experimented and their results are 

presented in sections 4.6 and 4.7. We present the second set of experiment by also taking into 

account the power consumption and chip area of NoC in sections 4.8. A summary of the chapter 

is given in section 4.9.  

 

4.1 Configuration and Installation 

FAANOS is a Windows base executable NoC CAD tool, which needs an (input) file, 

core.txt that is provided by the user from the specification of NoC application. The execution of 

FAANOS generates the User Interface program. After generating the User Interface program, a 

main_noc.cpp file is created. This file and core.txt construct the NoC Simulation program.  A 

user can create a SystemC project in Microsoft Visual C++ and add these two files to it then 

build the project and execute it. After the completion of execution, the results of NoC 

performance, power and area are displayed on the console. 

  

4.1.1  NoC Core Graph to Core Text File Conversion 

A core graph is a special type of block diagram of an NoC application where the core 

blocks are connected by arrows indicating the data flow relationships among the core blocks. 

The core graph is a visual representation therefore we need to convert a core graph into a text file 

readable by the NoC simulator. We convert the core graph into a text file (core.txt) and utilize it 

as an input to our simulator. Figure 4.1 depicts an example of relation between the contexts of 

core.txt file with the core graph of an AV application. Each line of the core.txt file corresponds 

to an arrow between two cores of the core graph. Each line represents the direction of packet 

flow from source to destination. If the link between two cores has two arrows then two lines (in 
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the core text file) represent it. The first part of each line of the core.txt file represents the 

character “S” followed by and the source ID. The second part represents the character “D” 

followed by the destination ID. The third part is the character “R” followed by the rate of packet 

flow from the source to destination. For simplicity, the rate less than one should be rounded to 

one and the floating point numbers should be rounded to first natural number greater than or 

equal to them. When the rates of packet flow are close together, the floating part of numbers has 

prominent effect on the system. In this case, the user should scale up all the bit rates by 

multiplying each rate to 10, 100, etc to enable an accurate measurement. The simulator can also 

allow the core.txt file without the rate part where the rates are same and equal to the clock cycle 

of sources. For source by source distribution where each source has different temporal and 

message size packet flow, the core.txt file (data format) is extended. Each line gets longer by 

adding four more parts. The fourth part is the Burst information character “B” followed by the 

number of packets being generated continuously in the burst message. The fifth part is the pause 

in burst messages character “P” followed by the pause per flit between two burst messages. The 

sixth part is the flits character “F” followed by the number of flits in each packet. The seventh 

part is the number of bits character “N” followed by the number of bits in each flit. For example, 

the line S2D5R150B5P2F4N8 indicates that source 2 sends packet to sink 5 at the rate of 150 

packets per second. The source continuously sends five packets then pauses for two flits and 

does it consecutively. Each packet consists of four flits, and each flit is made of eight bits.  
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4.1.2  User Interface 

To lower the complexity of our simulator and to create a visual environment to 

communicate with the application, a User Interface program is provided in addition to the NoC 

Simulation program. The graphical User Interface allows the user to easily visualize the 

simulation environment. The text-based characteristic of User Interface may provide a less 

intuitive interface, but it permits various advanced forms of customization. User Interface is 

separated from NoC Simulation program because it makes a file that forms the main body of 

NoC Simulation program. We have created the NoC simulator program as an executable file that 

can be easily executed in Windows environment. The program starts by asking for the type of 

topology. One of the irregular or regular topologies should be selected. Then it asks different 

parameter values related to regular or irregular topologies. In the case of regular topology, the 

parameters are listed in the Table 4.1 as given below. 
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Figure 4.1: core graph and core text file 
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Table 4.1 Parameters and their descriptions in regular topology 

Parameter value Description 

Regular/Irregular 1 

0 

Regular topology. (default is 1) 

Irregular topology. 

Area R The area of SoC chip in mm^2. (default is 7) 

N_COL 1≤N≤80 The number of columns in mesh or torus topology. (default is 4) 

N_ROW  1≤N≤80 The number of rows in mesh or torus topology. (default is 4) 

SIM_NUM  1≤N The total clock cycle that simulator runs. In the case of irregular traffic this 

number is a coefficient of PERIOD, so it is better to be chosen less than 10. 

(default is 100)  

LOAD  0<R≤1 A proportion of SIM_NUM which the traffic generator produces packets. This 

parameter is used only in uniform or locality traffic. (default is 1) 

FW   2≤N It is related to the address of source or destination. The flit width is equal to 

(2×FW+5) bits.  Increasing it will extend the size of register and therefore will 

raise the resource cost. (default is 8) 

NUM_FLIT   1≤N≤256 The number of flits per packet. (default is 5) 

FIFO   1≤N≤256 The number of registers in FIFO. Increasing will extend the depth of FIFO and 

therefore raises resource cost. (default is 2) 

TORUS   B Torus topology. (default is 1) 

MESH   B Mesh topology. (default is 0) 

XY   B XY routing. (default is 1) 

YX   B YX routing. (default is 0) 

ODD_EVEN   B Odd_even routing, this routing is used only in mesh topology. (default is 0) 

L_PROBE   B L_probe routing, this routing normally employ one VC. In default L_probe uses 

XY. It also can use YX. (default is 0) 

V_CH   1≤N≤4 The number of virtual channel. (default is 1) 

IRREG_TRAFFIC B Implementing irregular topology as part of a regular topology. In this case users 

should provide a core text file. (default is 0)  

FIXED   B Fixed traffic. (default is 0) 

UNIFORM   B Uniform traffic. (default is 1) 

LOCALITY   B Locality traffic, in this case following LOC parameters should be specified. 

(default is 0) 

LOC_ONE   N Probability of sending packet to first place close to source. (default is 12) 

LOC_TWO   N Probability of sending packet to second place close to source. (default is 2) 

LOC_THREE   N Probability of sending packet to third place close to source. (default is 2) 

LOC_FOUR   N Probability of sending packet to fourth place close to source. (default is 0) 
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LOC_FIVE  N Probability of sending packet to fifth place close to source. (default is 0) 

LOC_SIX   N Probability of sending packet to sixth place close to source. (default is 0) 

BURST 1≤N  The number of packets generated continuously during the burst time. (default is 1) 

PAUSE N The pause per clock cycle between two burst messages. (default is 0) 

GAP_P 0<R≤1 A proportion of PERIOD added to itself and makes new PERIOD. (default is 0)       

PRN_OUT   B Show sending and receiving flits on the console screen. (default is 0) 

R_ROBIN    B Implementing the round robin technique in the routers. (default is 0) 

SCALE_P   0<R≤1 The coefficient to scale PERIOD (0= maximum scale meaning calculating 

PERIOD based on the current rating packets, 1= no scale meaning calculating 

PERIOD based on the current rating packet divided by minimum rating packet in 

the system). (default is 1) 

 

In the case of irregular (application specific) topology, the parameters are listed in the Table 4.2. 

 

Table 4.2 Parameters and their descriptions for irregular topology 

Parameter Value Description 

Regular/Irregular 1 

0 

Regular topology. (default is 1) 

Irregular topology. 

Area R The area of SoC chip in mm^2. (default is 7) 

SIM_NUM  0<N The total clock cycle that simulator runs. It is better to be chosen less than 10. The 

default is 1. (default is 1) 

FW   0<N It is related to address of source or destination. The flit width is equal to 

(2*FW+5) per bit.  Increasing it extends the size of registers, and so raises 

resource cost. (default is 8) 

NUM_FLIT   1≤N≤256 The number of flits per packet. (default is 5) 

FIFO   1≤N≤256 The number of registers in FIFO. Increasing it extends the size of registers and 

therefore raises resource cost. (default is 2) 

BURST 1≤N  The number of packets generated continuously in the burst time. (default is 1) 

PAUSE N The pause per clock cycle between two burst messages. (default is 0) 

GAP_P 0<R≤1 The proportion of PEROD added to itself and makes new PERIOD. (default is 0)     

PRN_OUT   B Show sending and receiving flits on the console screen. (default is 0)  

SCALE_P   0<R≤1 The coefficient to scale PERIOD (0= maximum scale meaning calculating 
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PERIOD based on the current rating packets, 1= no scale meaning calculating 

PERIOD based on the current rating packet divided by minimum rating packet in 

the system). (default is 1) 

 

Following points have to be considered: 

 N= natural number {0, 1, 2 ...}. 

 R= real number. 

 B= {1 Active, 0 Inactive}. 

 Either Torus or Mesh should be activated in a time. 

 LOAD parameter is only used in locality or uniform traffic. 

 Only one of XY, YX, L_PROBE and ODD_EVEN routings should be activated at a time. 

 ODD_EVEN routing works only in the case of Mesh topology. 

 Only one of the IRREG_TRAFFIC, UNIFORM, FIXED and LOCALITY traffic 

generators should be activated at a time. 

 LOC_ONE, LOC_TWO, LOC_THREE, LOC_FOUR, LOC_FIVE and LOC_SIX are 

only used in locality traffic and the probability of each one is equal to its number divided 

by the total of all numbers. For example, If the numbers (9, 5, 4, 3, 2, 1) represent the 

values of these parameters respectively, the probability of LOC_FOUR is 3/24= 0.125 or 

12.5 %. 

 SCALE_P and GAP_P are used for irregular traffic only. 

 The above parameters are included in at the top file main_noc.cpp. All of the parameters 

can be changed in the file to have new configurations of NoC except the kind of topology 

and the two parameters N_COL and N_ROW. Users can change these parameters and 

apply to the simulator as a new configuration without running the User Interface 

program. 

 

After typing the values of these parameters, User Interface will show the core graph and the 

core switch graph of NoC on the console, and then it makes the file, main_noc.cpp.  
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 4.1.3 Implementation of NoC Simulation program  

The NoC Simulator program consists of several modules such as arbiter, crossbar, 

demux and FIFO that construct the hardware, power and area modeling of NoC. These modules 

are coded on the file main_noc.cpp. This file and core.txt construct the NoC Simulation program. 

The execution of NoC Simulator generates a trace file (graph.vcd). Users can use tools to view 

the waveforms from the trace file and determine whether or not the simulation has succeeded. 

The program also displays the power, area and performance results on the console screen as 

given below. 

 

In the case of uniform and locality traffic patterns, following results can be generated.  

i. Total number of packets dropped 

ii. Flit injection rate 

iii. Throughput 

iv. Average latency of a packet 

v. Offered load 

vi. Link utilization 

vii. Dynamic architectural power dissipation of routers  

viii. Static architectural power dissipation of routers 

ix. Total areas of routers and links 

x. Dynamic transactional power dissipation of routers 

xi. Static transactional power dissipation of routers 

xii. Architectural power dissipation of links  

xiii. Transactional power dissipation of links 

 

 In the case of irregular traffic, following simulation results can be obtained.  

i. Total number of outgoing flits 

ii. Total number of incoming flits 
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iii. Throughput 

iv. Minimum PERIOD 

v. Total latency of a packet  

vi. Throughput per clock cycle 

vii. Average latency of a packet 

viii. Dynamic architectural power dissipation of routers  

ix. Static architectural power dissipation of routers 

x. Total area of routers 

xi. Dynamic transactional power dissipation of routers 

xii. Static transactional power dissipation of routers 

xiii. Architectural power dissipation of links  

xiv. Transactional power dissipation of links 

xv. Total area of links 

 

4.2  Contention Due to Multi Points 

Before starting the simulation experiment, we first discuss about the source of contention in 

NoC. This contention is created due to spatial distribution of the source and sink cores and we 

call it point-to-multipoint (PTMP) contention. The PTMP contention is created when the instant 

rate of packet production is more than the instant rate of packet acceptance. It may happen when 

a source sends packets to multiple sinks or a sink receives packets from multiple sources. In 

other words, if each source sends packet to only one sink and each sink receives packet from 

only one source, NoC will not have PTMP contention. There are large numbers of solutions to 

solve the contention in NoC such as by adding virtual channel, using routing mechanism, 

changing buffer size, etc. However, these solutions do not solve the PTMP contention problem. 

For example, changing the configuration of NoC structure might only alleviate the PTMP 

contention but will not eliminate it completely even when we add more virtual channels. The 
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only solution to this problem is the temporal changing in the traffic where the sources can pause 

the traffic to let the waiting packets reach their destinations. 

 

4.3 Configuration for the First Set of Simulation Experiment 

As mentioned in section 3.8, the user should first initialize the NoC and its traffic pattern. 

The following configuration is an example based on some typical resources to conduct an 

experimental simulation.  

We use a 4×4 regular topology (Mesh or Torus) and application specific topology (related to 

MPEG4 and AV benchmark applications). 

We use routing mechanisms of XY with one channel, YX with one channel, XY with four virtual 

channels, LP with one channel, and Odd-Even with one channel. For simplicity we name them 

XY, YX, VC4, LP, Odd-Even respectively.  

For traffic generation, we employ three traffic patterns such as uniform, locality, and application-

oriented. In application-oriented traffic, the simulation time is chosen a particular value of time 

which is parameterized to PERIOD. PERIOD is the minimum guaranteed time in which every 

source sends at least one packet to its destination (for more detail see section 4.7.1). In uniform 

and locality traffic, the simulation time is chosen to be 100 (or any other suitable value), and the 

traffic generator dictates synthetic traffic to the sources. In other words, the sources inject 

packets into the network with a constant rate. In uniform and locality traffic, each node sends 

packets to only one destination node at a time, and on the contrary, each node receives packet 

from only one destination node at a time i.e. no PTMP contention in the NoC. In the case of 

uniform traffic, a network node sends packets to other nodes with the same probability. In the 

case of locality traffic, a network node sends packets to its neighbouring nodes with a higher 
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probability. The number of VCs per physical channel is maximum four and the depth of a VC is 

selected as two. One message contains only one packet and each packet is split into five flits. 

The network is asynchronous, and there is no relation between the clocks of source, sink or 

router modules. 

 

4.4 NoC Simulation for Uniform Traffic 

In this section, different routing mechanisms are evaluated and the advantage of adaptive 

routing mechanism such as LP routing is demonstrated by using uniform traffic pattern. As 

mentioned earlier, the uniform traffic is a packet flow pattern in which a source node sends 

packets to other nodes with the same probability [33]. The source in this pattern is a greedy 

source as it produces packets at the highest rate possible and at the earliest opportunity possible 

[32]. Figure 4.2 shows four graphs of performance metrics (i.e., packet drop, throughput, average 

latency, and link utilization) vs. flit injection rate. These graphs demonstrate three routing 

mechanisms of XY, LP and VC4 by using uniform traffic in a 4×4 torus topology. For better 

understanding of these graphs, the following points determine which values in each graph are 

optimums. In the packets dropped graph, the optimum value is zero i.e. no packet should drop in 

the NoC. For throughput graph, the optimum throughput happens when it is equal to the injection 

rate. For latency graph, the optimum value happens when latency is equal to five clock cycles 

that is equal to the size of a packet. 
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In the case of link utilization graph, lower link utilization indicates the more effective system, 

however, the throughput should also be considered.  

 As it can be easily envisaged in the figures of 4.2, VC4 is contention free that means the 

traffic does not have latency, packet drop is zero, and throughput is the highest. This claim can 

be verified by two methods. In the first method, each node sends packets to only another node at 

a time so that the instant rate of incoming packets are equal to the instant rate of outgoing 

packets (i.e., there is no   PTMP contention). Secondly, in small NoCs (e.g. 4×4), we have 

figured out that no more than four messages pass through a link at a time.  Therefore, four virtual 

channels are enough to handle all the messages without contention. This capability of VC4 helps 

Figure 4.2: Graphs in Uniform traffic, Torus topology 
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us to consider it as a base to compare two other routing mechanisms. Therefore, between two 

graphs for LP (line probe) and XY, the graph that is closer to VC4 has better performance. When 

we consider the three graphs related to throughput, packet drop and latency of Fig. 4.2, it can be 

concluded that LP routing has advantage over XY up to 25% of the injection rate. However, the 

results are opposite for link utilization. It is logical conclusion that to acquire a better 

performance, the system should spend more resources or sacrifice for one performance factor in 

place of the other. The LP routing improves the delay and throughput of system at the expense of 

increasing link utilization. It can also indirectly affect the other two important metrics such as 

delay and power consumption. Finally, we can conclude that the network shows significant 

performance improvement for LP routing as compared to XY at 25% of cases in a uniform 

traffic. 

 

 

 

4.5  Locality Traffic Base Simulation 

The on-chip network shows significant performance improvement if the traffic is more 

locally distributed [33]. Moreover, locality traffic is more realistic than uniform traffic because a 

designer tries to put the source and destination at the minimum distance. The best NoC design 

will be where each node sends packet to near neighbour as shown in Figure 4.3. These two 

figures depict throughput and delay related to the injection rate for three type of traffic: locality, 

non-locality and uniform. Figure 4.3 indicates the advantage of locality traffic over the two other 

traffics. 
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4.5.1 Contention Free in LP Routing 

In the case of  a 4×4 torus topology, the maximum distance between two nodes is four. 

Thus, there can be four coefficient probability in the NoC. For maximum locality in the system 

(i.e. each source sends packet to its neighbour), we expect a contention free system. Maximum 

locality is initialized as LOC_ONE=16, LOC_TWO=0, LOC_THREE=0, LOC_FOUR=0 (see 

section 2.7.1) and shown as 16_0_0_0 in Table 4.3. We start decreasing the locality and at each 

step execute the simulator and measure the packet drop. If a packet is dropped, it means that 

there has been a contention in the NoC. Table 4.3 demonstrates these results. For obtaining these 

results, we first decrease the probability of first neighbour and increase the probability of second 

neighbour. We reach border 8_8_0_0 without contention. The setup coefficient 8_8_0_0 

indicates the probability of sending packet to the first and second neighbours as eight and 

probability of sending packet to third and forth neighbours is zero. We try to increase the 

probability of third and forth neighbours where we reach the results given in Table 4.3.  

 

 

Figure 4.3: Graphs in uniform and locality traffic 
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The following simulation results show 33% of the cases without contention in LP routing. 

Total number of cases that each node sends packet to its first neighbours = 48 

Total number of cases that each node sends packet to its second neighbours = 68 

Total number of cases that each node sends packet to its third neighbours = 48 

Total number of cases that each node sends packet to its forth neighbours = 16 

The total number of cases= 48+68+48+16= 180 

Table 4.3 coef 16_0_0_0, the number of cases without contention = 48 

Table 4.3 coef 8_8_0_0, the number of cases without contention= 9 

Table 4.3 coef 8_7_1_0, the number of cases without contention= 2 

Table 4.3 coef 12_2_1_1, the number of cases without contention= 1 

The total number without contention= 48+9+2+1= 60 

The percent of contention free ability= 60÷180 × 100= 33% 

Table 4.4 has the same coef like table 4.3 but for XY routing. Comparing these two tables 

shows the significant improvement of LP routing. 

Table 4.3  Border of contention free in LP routing with Specification: Sum_num=100, Torus topology 4×4, Virtual 

channel=1, FIFO = 2, locality traffic, NUM_FLIT 5, XY and LOAD=0.9  

Coef Packet drop Flit  injection rate Throughput Average latency of a packet Offered load Link utilization 

16_0_0_0 0 0.9 0.9 5 0.25 0.25 

15_1_0_0 0 0.9 0.9 5 0.28125 0.28125 

10_6_0_0 0 0.9 0.9 5 0.375 0.375 

8_8_0_0 0 0.9 0.9 5 0.4 0.4 

8_7_1_0 0 0.9 0.9 5 0.426562 0.426562 

12_2_2_0 1 0.9 0.896875 5.09059 0.397969 0.397969 

12_2_1_1 0 0.9 0.9 5 0.332812 0.332812 
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4.5.2   Advantages of Locality Traffic 

 Figure 4.4 shows the graphs of performance metrics for three routing mechanisms XY, 

VC4, and LP using locality traffic with coefficient 8-7-1-0. For packet drop, throughput and 

latency figures of 4.4, it can be concluded that the LP and VC4 graphs are completely 

overlapped. We already mentioned that VC4 routing is contention free and LP routing is also 

contention free when it only uses one FIFO buffer. However, the LP routing utilizes more links. 

In previous sections, it was discussed that contention among packets, two or more packets may 

need to pass along the same link. The XY routing only let one packet pass and others should stay 

in the queue.  

 

 

 

 

 

 

Table 4.4 XY routing in locality traffic with Specification: Sum_num=100, Torus topology 4×4, Virtual channel=1, 

FIFO = 2, locality traffic, NUM_FLIT 5, XY and LOAD=0.9 

  

coef Packet drop Flit  injection 

rate 

Throughput Average latency of a 

packet 

Offered load Link utilization 

16_0_0_0 

 

6.2 0.9 0.8775 5.87296 0.239844 0.238704 

15_1_0_0 
 

14.6 0.9 0.851875 6.21214 0.253594 0.252706 

10_6_0_0 39 0.9 0.774375 6.87149 0.287969 0.286715 

8_8_0_0 32.2 0.9 0.794375 6.54496 0.32125 0.319611 

8_7_1_0 43.6 0.9 0.75875 6.88462 0.314375 0.312745 

12_2_2_0 28.6 0.9 0.808125 6.52506 0.309375 0.308545 

12_2_1_1 

 

21 0.9 0.834375 6.42397 0.300469 0.300469 

Figure 4.4: Graphs in locality traffic, Torus topology, coef 8-7-1-0 
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The VC4 routing allows four packets pass simultaneously while LP routing allows one of the 

packets pass via the link and rest are sent via other available links that may not yield shortest 

paths. This causes the link utilization is increased in the system. In other words, LP routing takes 

advantage of extra resources in torus topology and improves the performance of NoC. 

 

4.6 Mesh Topology Simulation 

 So far we have not discussed Odd-Even routing because its original mechanism works for 

a mesh topology. We implemented it in a torus topology, but it encountered the looping process 

in some cases. Wang Zhang et al. concluded that Odd-Even routing mechanism fits well with 2D 

3×3 mesh topology even better than XY routing mechanism for constant bit rate traffic condition 

[20]. Our results of Fig. 4.5 that consists of the throughput and latency graphs confirm their 

conclusions. Figure 4.5 shows output results of XY, VC4, LP, and Odd-Even routing in mesh 

topology by using locality traffic with coef 16-0-0-0-0-0. In this experiment, we found that VC4 

and Odd-Even routings are faster than XY and LP routing. LP routing is slower than others 

because the dimension of network is small (4×4) to efficiently implement the LP routing. In 

other words, the four nodes in the corners do not have any cooperation in the LP routing, and 

eight side nodes have semi-cooperation in the LP routing. Only four nodes out of sixteen nodes 

are fully involved in LP routing that increases link utilization. LP routing performs better when 

link utilization is low, or in other words when the network has more free resources.  
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4.7 Simulation for Application-Oriented Traffic 

The ultimate goal of an NoC designer is to design the NoC system based on application. 

The application can be mapped on regular or irregular topologies. For regular topology, the cores 

of an application are numbered based on either a specific methodology or randomly. Then the 

application cores are mapped on the nodes of a 2D topology. Figures 4.6.a and 4.6.b demonstrate 

this methodology for an application. The traffic generator should generate the packet flow based 

on the application (as it is called application-oriented traffic). The only consideration is that the 

number of nodes in 2D topology should be more than the number of cores of the application. The 

simulator automatically constructs the 2D topology of application and generates packet flow in 

accordance with the core.txt file of the application. For irregular topology, if we put a switch at 

every node of the core graph of the application, we have mapped the application on the 

application specific topology that has an irregular pattern. Figure 4.6 depicts this methodology 

for an application. The router in an irregular topology is modeled to have dedicated output for 

each input channel. The simulator automatically builds the application specific topology and 

generating packet flow in accordance with the application core.txt file. Some SoC applications 

Figure 4.5: Graphs in locality traffic, Mesh topology, coef 16-0-0-0 
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have been used in the past and due to their repeated usages, they have become benchmark 

applications for current and future research. In the next section, we investigate two applications 

such as MPEG-4 decoder [49] and AV Benchmark applications [14]. The MPEG-4 application 

can be mapped to a 3×4 2D topology and an AV application to a 4×4 2D topology. In section 

4.11, we experiment the SoC applications as followings: a MPEG4 decoder (MPEG4), a Multi-

Window Display (MWD), a Video Object Plane Decoder (VOPD) and an enhanced VOPD 

application, called DVOPD with the capability to decode two streams in parallel. 

 

 

 

 

 

 

 

 

 

 

4.7.1 Simulation Time for Irregular Traffic 

 To determine optimal condition for which the system can reach maximum throughput 

(100%) for an irregular traffic, the simulation time of simulator should be initialized properly as 

following. Consider Fig. 4.7.a showing a branch of nodes for an application implemented in the 

simulator, and the simulation time is selected equal to the maximum rate of packets in the branch 

i.e. one hundred. Moreover, assume that each packet is sent at one clock cycle, and each source 

in 
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Figure 4.6: Application mapping on regular or irregular topologies 
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sends all of its rating packets once during simulation time. During simulation time, when core 6 

sends packets to core 9, it does not have time to send packet to core 11. When core 11 finishes 

receiving packet from core 0, it only can receive fifteen packets from core 6. To prevent such a 

problem, we define a term PERIOD which is the minimum guaranteed time for which every 

source sends at least a packet to its destination. To calculate this time, we should scale the flow 

to one packet for minimum rate. Figure 4.7.b depicts this case.  

 

 

 

 

 

 

In Fig. 4.7b, core 6 needs six clock cycles to send all its packets, and core 11 needs 5.5 

clock cycles to receive all its packets. As we do not have decimal point in clock cycle, the 

number 5.5 is rounded to six. Therefore, to guarantee at least one packet for every source, 

PERIOD is chosen equal to six. If we multiply PERIOD to minimum rate of twenty we get 120 

clock cycles. This amount of time is the minimum guaranteed time during which every source 

sends the total of its dedicated packets to its destinations once. When the traffic is irregular, 

FAANOS automatically calculates PERIOD and stores it as the minimum simulation time. The 

parameter, SCALE_P lets users choose the simulation time equal to PERIOD when 

SCALE_P=1, or the simulation time equal to multiplication of minimum rate and PERIOD when 

SCALE_P=0. In the above example, when SCALE_P=0, then the simulation time is equal to 120 

and when SCALE_P=1, then the simulation time is equal to six. 
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Figure 4.7: Source of contention and scaling flow 



123 
 

4.7.2 NoC Simulation for MPEG-4 Decoder 

Figure 4.8.a shows the core graph of MPEG-4 decoder with communication (in MB/s). 

The mapping of MPEG-4 on the mesh topology is given in Fig. 4.8.b. The context of core.txt file 

is given in Fig. 4.8.c which is based on the methodology presented in section 4.1.1. In this 

application, each source sends packet with different rate and the spatial distribution of traffic is 

fixed and based on the MPEG-4 decoder application. Figure 4.9 shows the results of throughput 

for five routing mechanisms, XY, YX, LP with 1 channel (LP), XY with 4 virtual channels 

(VC4), and ODD-EVEN with 1 channel (OE) in different configurations as following.  

 “Torus” means the default configuration of a regular topology with  

  ROW=3, COLUMN=4, SIM_NUM=1, IRREG_TRAFFIC =1 and UNIFORM=0.  

 “Torus, SIM=2” means “Torus” with SIM_NUM=2. 

 “Torus, r_robin” means “Torus” with R_ROBIN =1. 

 “Mesh” means the same configuration as “Torus” with MESH=1 and TORUS=0. 

 “Torus, 4×3” means the same configuration as “Torus” with ROW=4 and 

COLUMN=3. 

 

The graphs of Fig. 4.9 show that LP routing has the worst performance among all these 

routing mechanisms. As mentioned earlier, this is due to the fact that LP routing is not suitable 

for NoC systems with PTMP contention. Figure 4.8.a easily shows this problem for MPEG-4 

where seven sources send packets to sink 9 concurrently. Sink 9 can receive the packets from 

one source and the remaining packets travel in the network that will increase the link utilization 

leading to lock a network (for example in “torus, r_robin” configuration). The following section 

verifies our claim. We will verify this claim in the next paragraph. 
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 To verify the claim, we invert the direction of packet flow in the core graph of MPEG-4. 

Figure 4.10 shows the reversed core graph and the throughput results of MPEG-4 that verifies 

our claim. The LP routing is faster and has second place after VC4. In this system as there is no 

PTMP contention, the instant rate of incoming packets is less than the instant rate of outgoing 

packets. It provides the best condition for LP routing mechanism. 
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Figure 4.9: Throughput results of MPEG-4 Decoder application 
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4.7.3 NoC Simulation for AV Benchmark  

AV Benchmark application core graph is given in Figure 4.11.a where Fig. 4.11.b shows 

the mapping of this application on to a 4×4 torus topology. Figure 4.11.c is the context of 

core.txt file which is created as an input to the simulator. In this NoC system, each source sends 

packet with different rate, and the spatial distribution of traffic is based on the AV Benchmark 

application. Figure 4.12 depicts the simulation results of throughput for various routing 

mechanisms of XY, LP, VC4 and ODD-EVEN (one channel) in different configurations as 

following.  

 “Torus” means the default configuration (see section 4.1.2) of a regular topology with  

      SIM_NUM=1, IRREG_TRAFFIC =1 and UNIFORM=0.  

 “Torus, reverse” means the same configuration as “Torus” for reverse core graph 

(inverting the direction of packet flow in the core graph of application). 

 “Mesh” means the same configuration as “Torus” except on torus topology. 
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 “Mesh, reverse” means the same configuration as “Mesh” for reverse core graph. 

The bar graphs of Fig. 4.12 show that the LP routing has the worst performance among these 

four routing mechanisms. Again the same issue as in MPEG-4 application has happened. LP 

routing is not suitable where there is PTMP contention. Even by inversing packet flow in the 

core graph of application again the LP routing has the worst performance in the system. This is 

because in reversing core graph again there is PTMP contention.  
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Figure 4.12: Throughput results of AV Benchmark 

Figure 4.11: The core graph, torus mapping and core txt of AV Benchmark application 
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Figure 4.11a indicates this problem. Core 0 sends packet to three other cores at the same time 

and it also receives packets from two other cores at the same time. Core 0 can receive the packets 

from one source and the remaining packets will wonder around in the NoC that will increase link 

utilization. 

 

4.7.4 NoC Simulation for Irregular Topologies 

Figures 4.13a and 4.13b show the mapping of MPEG-4 and AV application to regular 

topology.  Figure 4.14 is the throughput results of MPEG-4 and AV application in regular or 

irregular topology. The configuration of the simulator is selected as follows. 

 “Torus” means the default configuration of Table 4.1 (see section 4.1.2).  

 “Mesh” means the default configuration of Table 4.1 with Mesh=1 and Torus=0. 

 “Irregular” means the default configuration of an irregular topology (see Table 4.2). 

The advantage of regular topology over the irregular topology for MPEG-4 application and 

the equal is shown in Fig. 4.14. However, in the case of AV application, there is no improvement 

in throughput as depicted in Fig. 4.14. This is obvious as in the regular topology more resources 

such as links and channels are employed. These extra sharing resources improve the performance 

of network system. As in MPEG-4 application, the implementation in Torus topology has the 

largest throughput.  
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(a) Mapping of MPEG-4 on regular topology (b) Mapping of AV on irregular topology 

Figure 4.13: Mapping of the MPEG-4 and AV application on irregular topology 

Figure 4.14: Throughput results of MPEG-4 and AV application in regular and irregular topology 
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4.8 Power and Area Chip 

In this section, we present the second set of experiment by also considering the power 

consumption and chip area of NoC. We are not seeking any claim to prove only the behaviour of 

some characteristics of NoCs will be investigated. These analytical investigations demonstrate 

not only the capability of our simulator but also the challenges in response to satisfaction of NoC 

constrains. We present the investigation on 2D topology in section 4.8.1 and on application 

specific topology in section 4.8.2. 

 

4.8.1 Simulation for 2D topologies 

We have selected the test cases based on several criteria such as the number of routers 

ranging from 9 to 36 and the number of virtual channels (one and four). The goal is to study the 

impact of NoC size and number of virtual channels on the power and area of NoC for torus 

topologies. Specifically, we are interested in the architectural and transactional power and area 

breakdown. We assumed a 90nm technology and a clock frequency of 1GHz. The area occupied 

by cores is fixed and assumed to be 9 mm
2
. The other specifications of NoC are as follows. 

 Number of simulation=1000 cycle. 

 Depth of FIFO = 2. 

 Traffic pattern = Uniform. 

 Size of each packet = 5 flits. 

 Routing strategy = XY mechanism. 

 Size of each flit =31 bits. 
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The simulation results of synthesizing different torus NoCs are reported in Fig. 4.15. Each 

histogram is divided into two zones: one virtual channel (VC=1) and four virtual channels 

(VC=4). Each zone contains four bars and each bar for different NoC sizes such as 3×3, 4×4, 

5×5 and 6×6. We choose different NoCs to show the effect of NoC sizes on the NoC metrics. 

Since the NoC size determines the number of routers in 2D topology, NoC with size 3×3 has 9 

routers and so on for other mentioned NoCs. Therefore, we expect a variation with slope of 9, 

16, 25, 36 (or 1, 1.8, 2.8, 4) between the metric results of these NoCs. In Fig. 4.15b, it can be 

easily grasped that the router area is a function of NoC size in both VC=1 and VC=4 zones. It is 

logical because routers have fixed size (5×5) in torus topology, and the NoC size has a linear 

relation with the number of routers. Therefore, the slope of increasing in the router area is like 

the NoC size in both zones of Fig. 4.15b. However, the slope of increasing in the link area is not 

the same as router area. This is because the area of link is a function of the total link length that 

is estimated based on SoC area, and the SoC area consists of the area occupied by the cores and 

the routers; the area occupied by the routers is a function of the NoC size, but the area occupied 

by cores is assumed to be fixed and 9 mm
2
; this fixed number causes the slope of increasing in 

link area not to be the same as router area in both VC=1 and VC=4 zones. We also see this issue 

in the architectural power graph. In Fig. 4.15c, the router architectural power is a function of 

NoC size in both VC=1 and VC=4 zones. It is logical because the router size (5×5) is fixed, and 

the NoC size has a linear relation with the number of routers. Therefore, the slope of increasing 

in the router architectural power is like the NoC size in both zones. However, the slope of 

increasing in link architectural power is not the same as router area. As mentioned before, this is 

because the cores area is fixed and is not a function of the NoC size; this fixed number causes the 

slope of increasing in link architectural power not to be the same as NoC size in both VC=1 and 
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VC=4 zones. In transactional power graph, the behaviour of bars are different in the VC=1 and 

VC=4 zones. In the VC=4 zone of Fig.4.15d, which the routers have 4 virtual channels, there is 

not contention in the NoCs and the throughputs are almost 100% as depicted in Fig. 4.15a. The 

transactional power is a function of the rate of router and link transactions in NoC. The rate of 

router transaction when throughput is 100% is a function of NoC size. In other word, when NoC 

size increases, the number of cores will increase and more transactions occur in NoC, so when 

throughput is 100%, the router transactional power will be a function of the NoC size. However, 

the same issue as mentioned before is happen for link transactional power. The constant value of 

core size changes the corresponding relation between the link transactional power and the NoC 

size. In this case, the slope of increasing in transactional power bars resembles the architectural 

power in VC=4 zone of Fig. 4.15c and Fig. 4.15d. 

In the VC=1 zone of Fig. 4.15d, there is no relation between transactional power and NoC 

size. We can find the reason of this difference in throughput graph as depicted in Fig. 4.15a 

where the average of throughput is less than100%. In this case, we cannot estimate the behaviour 

of NoC transactional power. In other words, in a deterministic (XY) routing strategy, the higher 

throughput represents the higher rate of transaction that leads to the larger amount of 

transactional power occurs in NoC. For example, the bar 6×6 is less than other bars because the 

corresponding bar in Fig. 4.15a is the least. 

Two other points that are highlighted in Fig. 4.15 are the inconsiderable static power and 

considerable link power and area. The static power in architectural power is very small that we 

can ignore it in our design. However, in transactional power especially in the VC=1 zone, it can 

be a considerable amount in compared to dynamic power. Therefore, it needs to be available in 

NoC design. The link characteristic is important because sometimes it includes a significant 
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amount of NoC power. For example, in Fig. 4.15c, the link architectural power includes over 

one-third of each bar.   

By considering the above mentioned points, we can conclude that the architectural power 

consumption and the area occupied by the network are the increasing functions of the structural 

specification of NoC such as size and number of virtual channel in 2D topologies. However, The 

NoC transactional power is the increasing functions of the structural and transactional 

specifications of NoC such as size, number of virtual channels, and throughput. The transactional 

power is close to realistic power of NoC that can be helpful to determine the bottle neck of NoC 

power, and the architectural power determines the maximum power that is consumed in the NoC. 

This will be very helpful for the earliest step of pre-design of an NoC. For example, in the VC=4 

zone which represents a guaranteed contention free NoC, the average area occupied by the 

routers is 9.1 times more than the average area in the VC=1 zone.  However, the variation in 

architectural power are less i.e. the average power in the VC=4 zone is 1.7 times more than the 

average power in the VC=1 zone. This gives an idea to designer which increasing virtual channel 

from one to four imposes more cost on area than power. 
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4.8.2 Simulation for NoC Applications 

Table 4.5 lists the SoC applications that we have synthesized in our simulator. The 

second column of this table presents the chip area that each application occupies. Because the 

area size of NoC is a characteristic that we measures during our experiment and is a function of 

other NoC characteristic, we consider the values in the second column of Table 4.5 as the chip 

area that the cores occupy in each application. The intent of our experiments is to study the 

impact of features of these applications on the synthesized NoC. We are specifically interested in 

the architectural and transactional power and area breakdown. We have selected the test cases 

based on several criteria. 

 The number of IP cores, ranging from 12 to 26, and the size of IP cores, as large as 12 mm
2
; 

 The topologies which the applications are mapped namely Mesh, Torus, and application 

specific topology [4]. 
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Figure 4.15: NoC synthesized results for the 3×3, 4×4, 5×5 and 6×6 Torus topologies. Power is expressed in 

Watts, area in mm
2
 and throughput in percent. We used the following notation: VC for virtual channel, 3×3 for 

3×3 torus topology,... and 6×6 for 6×6 torus topology. 
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Table 4.5 Characteristics of selected SOC applications 

Name  Area (mm2)  Ref. 

MPEG4 3 ×2.35 [50] 

MWD  3 × 4  [50] 

VOPD  1.53×1.18 [51] 

DVOPD 2×2.23 [51] 

 

 

Figures 4.16, 4.17, 4.18 and 4.19 illustrate the block diagram and mapping topologies of 

four NoC applications: MPEG4 decoder (MPEG4), a Multi-Window Displayer (MWD), a Video 

Object Plane Decoder (VOPD), and an enhanced VOPD application, called DVOPD. We have 

explained how to make the core txt file in section 4.1.1 as well as the 2D and irregular mapping 

in section 4.7. We assumed a 90nm technology and a clock frequency of 1GHz. The other 

specifications of NoC are as follows: 

 The size of each flit =31 bits. 

 The number of virtual channel =1.  

 The depth of FIFO buffer = 2.  

 The size of each packet = 5 flits. 

 The traffic pattern = application oriented. 

 The routing strategy = XY mechanism. 
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Figure 4.18:  MWD signal flow graph, core graph with communication (in MB/s), MWD txt core 

table and MWD application mapping onto Mesh and application specific topology. 
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Figure 4.19: DVOPD core graph with communication BW annotated (in MB/s), core txt 

table and DVOPD mapping onto mesh and application specific topologies 
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The results are reported in Fig. 4.20 where each histogram is divided into four zones: 

MPEG4, MWD, VOPD and DVOPD. Each zone contains 3 bars that each bar related to one of 

mesh, torus and application specific mapping topologies. Each zone contains 3 bars that each bar 

related to one of mesh, torus and application specific mapping topologies. 

Figure 4.20a demonstrates the throughput results of the above mentioned NoC 

applications in Mesh, Torus and application specific topologies. It is obvious that we cannot 

predict a specified behaviour for the throughput because the topologies are not the same in each 

application. In the case of MPEG4 decoder, torus topology is faster and for MWD and VOPD 

application benchmarks, all three topologies have the same throughput and in the case of VOPD, 

the application specific topology is faster.  

The NoC area results are depicted in Fig. 4.20b. The router areas related to the mesh and 

torus bars are a function of NoC size. For example, for the MPEG4, MWD and VOPD mapping 

on torus and mesh, the size of NoC is 3×4. Therefore, the router areas are the same for these 

applications. However, the router areas of application specific bars are different and depending 

on the irregular mapping of the application. The area of link is a function of SoC area that 

consists of the area occupied by the cores and the routers. For example, in torus bars related to 

MPEG4 and MWD, the link area of MWD bar is bigger than MPEG4 bar because the cores area 

of MWD application (12) is bigger than MPEG4 application (7.05). Another important point in 

Fig. 4.20.b is the small amount of application specific bar (i.e. less than 0.2 mm) in compared to 

mesh and torus bars. By considering of the SoC areas of Table 4.5, the NoC areas of torus 

mapping for VOPD and DVOPD applications are bigger than their application area. However, 

the application specific chip-area is a good candidate for each area constraints of the design.  
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The architectural power consumption results of the NoCs are depicted in Fig. 4.20c. 

These results are an increasing function of changing topologies from application specific to 

Mesh and then to Torus. This confirms the advantage of application specific over Mesh and 

Torus topology in terms of minimum resources [4]. The reason for this increase is obvious. The 

architectural power is a function of structure of NoC, and Torus topology uses more resources 

than other two topologies. The router architectural power related to the mesh and torus bars are a 

function of NoC size. For example, for the MPEG4, MWD and VOPD mapping on torus and 

mesh, the size of NoC is 3×4 therefore the router architectural power are the same for these 

applications. However, the router architectural powers of application specific bars are different 

and depending on the irregular mapping of the application. The architectural power of link is a 

function of the total length of link that estimated by the SoC or NoC system area. The SoC area 

consists of the area occupied by the cores and the routers. For example, in torus bars related to 

MPEG4 and MWD, the link architectural power of MWD bar is bigger than the MPEG4 bar 

because the cores area of MWD application is bigger than the MPEG4 decoder application.  

The histogram, which is very important in terms of power for the NoC designer is 

transactional power consumption. The transactional power consumption is a function of 

structural and transactional behaviour of NoC. The throughput is a performance metric, which 

can explain the variation of transaction in NoC, but not in a network with adaptive routing 

strategy. In other words, when we have deterministic routing strategy, every flit should pass 

through a specific route. Moreover, in the case of contention the flit has to wait, in spite of 

adaptive routing where the flit could move to some other routes. Therefore, in the case of mesh, 

torus and application specific topologies when the routing strategy is deterministic, the higher 

throughput represents the additional packets (message) passing or more transactions that leads to 
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additional transactional power consumption. However, the throughput results in Fig. 4.20a are 

not helpful to explain the transactional power behaviour in Fig. 4.20d as the structural behaviour 

of each application in Fig. 4.20a is different.  
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Figure 4.20: NoC synthesized results for the MPEG4, MWD, VOPD and DVOPD applications. Power 

is expressed in Watts, area in     and throughput in percent. We used the following notation: M for 

Mesh, T for Torus, and A for application specific topology. 
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4.9 Chapter Summary 

NoC simulation experiments have been conducted for some well-known routing 

mechanisms as well as a new LP-routing mechanism. We investigated the locality traffic 

performance improvement for Network-on-Chip. Moreover, the effect of deterministic and 

adaptive routing mechanisms in mesh and torus topology has been investigated. It is concluded 

that the LP-routing mechanism has contention free ability in almost one third of the cases for 

locality traffic. We also did investigate for application specific topologies such as MPEG-4 

Decoder and AV Benchmark applications.  It is observed that LP routing is more effective when 

the network system has extra sharing resources such as links, channels and techniques and when 

there is no PTMP contention. For the second set of experiments, we selected a number of SoC 

applications and traded off their results by considering further on power and area metrics.  We 

explained the relation of throughput with transactional power consumption and observed that the 

throughput can explain the behaviour of transactional power for deterministic routing strategy.  
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Chapter 5 

Conclusions 

In this work, we have presented the development of a SystemC base NoC simulator, 

FAANOS, and conducted experiments on various metrics of NoC design such as performance, 

power and chip-area. We described the concept, architecture and configuration of NoC as well as 

introduced the detailed structure and parameters of our simulator. Different kinds of traffic 

patterns have been employed in the simulation of NoC. We broke down the concept of 

performance to four characteristics such as throughput, latency, packet drop and link utilization 

that play an important role to choose an effective design. We did a brief survey on some previous 

works and found that they only output architectural power estimation of NoCs. Instead, our work 

produces both transactional power estimation and architectural power estimation, where the first 

one is very important parameter as compared to the second one in designing an NoC system. We 

have presented a comparison analysis between the capability of our simulator and two 

contemporary NoC simulators: NIRGAM and NOSTRUM. We highlighted the capability of our 

simulator on different aspects and demonstrated its superior features. The structure of FAANOS 

was analyzed, and the cycle-accurate models of the hardware part of simulator were described. 
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We demonstrated the development of our NoC simulator from a simple on-chip network 

to a more complex and automatic NoC simulator. Then we proposed an analytical model for the 

power and area of different modules of an NoC such as FIFO buffer, arbiter, crossbar, and link. 

We have presented different architectural models of each module. Then we have decomposed 

them into gate level models and presented the technological and analytical parameters 

accompanied by the related formula. A test methodology for early design of NoC was presented, 

and based on it two sets of experiments has been conducted for some characteristics of the NoC. 

In the first set of experiment, it is argued that locality traffic has great performance improvement 

in network on chip. Moreover, the effect of deterministic and adaptive routing mechanism in 

mesh and torus topology has been investigated. We concluded that the LP routing mechanism 

has contention free ability in about one third of the cases of locality traffic when there is 

communication between one node to another node. We also did perform simulation experiments 

for application specific topologies for MPEG-4 Decoder and AV Benchmark application.  We 

concluded that the LP routing is more effective when the network has more extra resources such 

as links, channels and techniques (being regular than being irregular), and when there is no 

PTMP contention in NoC (the instant rate of generation of flits is less than or equal to the instant 

capacity of incoming flits).  

In the second set of experiments, we conducted experiments on some NoCs by applying 

two kinds of traffic patterns: dummy and application oriented pattern. The relationship between 

the throughput and transactional power consumption is explored and it is concluded that the 

throughput can explain the behaviour of transactional power when the routing strategy is 

deterministic. The SoC technology is expanding very fast with new applications in consumer 

electronics. So far the number of IP used in SoC is in the range of tens, and without a doubt it is 
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going to increase and sometime in the future reach millions IP. This vast development in SoC 

needs more research especially in the NoC area. One layer of NoC that has not been researched 

fully in the past is the topology generation. Topology generation is mapping an SoC application 

on the different topologies including regular or irregular to reach an optimized system. It is 

obvious that our work in this thesis can be a small part of topology generation. Therefore, the 

future work is going to research this part of NoC technology.  
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