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Abstract 

Since their discovery, immense attention has been given to carbon nanotubes (CNTs), due to 

their exceptional thermal, electronic and mechanical properties and, therefore, the wide range of 

applications in which they are, or can be potentially, employed. Hence, it is important that all the 

properties of carbon nanotubes are studied extensively. 

This thesis studies the vibrational frequencies of double-walled and triple-walled CNTs, 

with and without an elastic medium surrounding them, by using Finite Element Method (FEM) 

and Dynamic Stiffness Matrix (DSM) formulations, considering them as Euler-Bernoulli beams 

coupled with van der Waals interaction forces. 

For FEM modelling, the linear eigenvalue problem is obtained using Galerkin weighted 

residual approach. The natural frequencies and mode shapes are derived from eigenvalues and 

eigenvectors, respectively. For DSM formulation of double-walled CNTs, a nonlinear eigenvalue 

problem is obtained by enforcing displacement and load end conditions to the exact solution of 

single equation achieved by combining the coupled governing equations. The natural frequencies 

are obtained using Wittrick-Williams algorithm. FEM formulation is also applied to both double 

and triple-walled CNTs modelled as nonlocal Euler-Bernoulli beam. The natural frequencies 

obtained for all the cases, are in agreement with the values provided in literature. 
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1. Introduction 

Carbon nanotubes have been under considerable observation and the subject of thousands of 

research publications every year, since their discovery. The global market for CNT primary 

grades is projected to reach $670.6 million market in 2019 [1]. This interest can be attributed to 

their exceptional properties as a result of their geometry, namely, the high aspect ratio i.e., the 

ratio of its length to its diameter, and its chirality. These properties enable the use of carbon 

nanotubes in a wide variety of applications, some of which are electronics, sensors, composite 

materials, biotechnology, environment, optical, chemical, and energy storage. Therefore, in order 

to effectively use carbon nanotubes in each of these fields, it is important that their properties 

and behavior are examined. 

In general, depending the property under observation, experimental or theoretical approaches 

are employed to study the properties and behavior of carbon nanotubes. Theoretical approaches 

are broadly categorised into atomistic modelling approach and continuum approach. The 

atomistic modelling approach, in turn, includes classical molecular dynamics approach, tight 

binding molecular approach and density functional approach [2]. Continuum approaches assume 

carbon nanotube to be continuous structures like bars, beams and shells. Though a great deal of 

research has been dedicated to finding the mechanical properties of carbon nanotubes using 

experimental and molecular dynamics methods, relatively less amount of research has been 

carried out on vibration and buckling of carbon nanotubes using these approaches, as the 

computational time and effort required is tremendous. Also, the results obtained would be valid 

for a very specific time period in the cycle of loading, thus limiting the exposure to their 

behavior. Therefore, continuum methods are used as they overcome these challenges. Yakobson 

et al. [3] mention that the application of continuum-elastic methods to carbon nanotubes predicts 

their behavior just as well and credits the laws of continuum mechanics of being applicable even 

at a scale so small. The current research is focussed on finding the natural frequencies and mode 

shapes of carbon nanotubes by considering them as local and non-local Euler-Bernoulli beams, 

exploiting the generality of finite elements method, a very often used approximate numerical 

method in analysis of dynamics of continuum structures, and dynamic stiffness method, an 

‘exact method’ which harnesses the exact member theory and provides better accuracies for 

higher natural frequencies. 
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1.1 Outline of Finite Element Method (FEM) 

Finite element method (FEM) is probably one of the most well-known numerical methods used 

for structural analysis, with a proven track record owing to its adaptability – both in terms of 

complexity of structures and boundary conditions. It uses subdivision of the entire structure into 

smaller ‘elements’ governed by the relevant partial differential equations. Shape or interpolation 

functions (like Hermite cubic interpolation functions – used quite often for their completeness) 

are used to express the approximate solutions. The use of these shape functions in the partial 

differential equations gives elemental, and ultimately global, mass and stiffness matrices. These 

matrices are then solved as a linear eigenvalue problem to obtain the system’s natural 

frequencies and modes. Finite element continuous to be used in different commercial packages 

directed towards structural analysis like ANSYS®. The generality of this method stems from 

freedom in terms of defining the shape, boundary conditions, material properties of the structure 

and flexibility in terms of analysing complex structures which can include structures with 

different properties and/or different boundary conditions. The accuracy of FEM models can be 

considerably increased by increasing the number of elements being used. However for the 

analysis of structures at higher frequencies, finite element method has limited versatility, as it 

uses numerical approximation and large number of elements are required to obtain accurate 

results. 

 

1.2 Outline of Dynamic Stiffness Matrix (DSM) Method 

Dynamic Stiffness Matrix (DSM) method uses a single frequency dependent matrix, instead of 

two stiffness and mass matrices used in finite element method. The formulation involves, where 

applicable, combining the coupled governing differential equations into one ordinary differential 

equation and a closed form solution is sought. Application of boundary conditions to this 

solution leads to the dynamic stiffness matrix (DSM) of the system. The natural frequencies are 

obtained by solving resulting the non-linear eigenvalue problem. One of the biggest strength, and 

weakness of this method is the use of closed form solution of the differential equation. The 

closed form solution gives better accuracy, using a single element, even for higher frequencies 

but arriving at the closed form solution might prove to be a challenge, especially if the structure 

is complex and uses multiple structures with different properties and boundary conditions. An 

2 
 



innovative technique, Dynamic Finite Element (DFE), combines the precision of this method 

with the generality of finite element method and has proven to give better results by using 

trigonometric shape functions, derived from the exact solution. Nonetheless, it is out of the scope 

of this thesis and hence is not presented in depth. 

 

1.3 Literature Review 

Vibration modelling and analysis of carbon nanotubes are important factors, eliciting extensive 

study, especially in applications such as oscillators and in non-destructive testing. The detection 

sensitivity of various nano-devices depends on their resonant frequency. Carbon nanotubes have 

considerably higher natural frequencies which could affect the system in which they are used and 

therefore it is required that their dynamic behavior is studied extensively. As mentioned earlier, 

continuum approach is preferred for studying the vibrational characteristics but a new hybrid 

technique, which links atomistic and continuum approaches, has also gained ground in the recent 

years. Odegard et al. [4] equated the molecular potential energy of nanomaterial with the strain 

energy of the continuum structure. Li and Chou christened this approach as ‘molecular structural 

mechanics approach’ and studied the buckling of carbon nanotubes [5], natural frequencies of 

single-walled carbon nanotube modeled as nano-mechanical resonator [6] and multi-walled 

carbon nanotubes based nanomechanical resonators [7]. They modeled carbon nanotube as 

frame-like structure with carbon-carbon bonds as nodes. A review of their work was presented in 

2006 [8]. Chandrasekhar et al. [9] and Hollerer and Celigoj [10] both employed mixed approach 

by forming the constitutive model using atomistic approach and parameterization of continuum 

elastic energy for proposing a Cosserat rod model and for buckling analysis of carbon nanotubes 

respectively. 

Continuum approach has seen the representation of carbon nanotubes as beams and shells 

for the most part. Very few studies like Hu et al. [11] and Budarapu et al. [12] studied vibrations 

of carbon nanotubes by considering them as continuum bars. Artan and Lehmann [13] used 

nonlocal bars to study the transverse vibrations of carbon nanotubes. On the other hand shells 

have gained comparatively more attention than bars. Ru [14] studied the infinitesimal buckling 

of a double-walled carbon nanotube and using simple elastic shell model for the same. Ru et al. 
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[15] further studied the application of simplified shell equations by taking Donnel model, a 

simplified Flugge model to observe its applicability and limitations. Ru et al. [16] used multiple-

elastic-shell model to study the vibrations of multiwall carbon nanotubes employing Flugge’s 

equations. Ansari et al. [17] used the shell elements in a hybrid approach to model single walled 

carbon nanotubes and compared it atomistic method. Ghorbanpour Arani et al. [18] used Donnel 

shell model to measure the transverse displacements of single and double-walled carbon 

nanotubes, the results of which are compared with Euler-Bernoulli and Timoshenko beam 

models. They observed that beam models predict the lowest frequency and shell models predict 

the highest. Pantano et al. [19] also used shell elements to effectively model and study the 

deformation of single and multiwall carbon nanotubes. Wang [20] studied the buckling and free 

vibration of multiwall carbon nanotubes using multiple-elastic-shell model. Natsuki et al. [21] 

studied the vibrational characteristics of fluid filled double-walled carbon nanotubes using 

simplified Flugge shell equations as the governing equations. Tylikowski [22] studied the 

thermally induced vibrations using layered-shell model also taking into account the van der 

Waals forces. 

Eringen and Edelen [23], and  Eringen [24,25] presented a theory, that takes into 

consideration the strain states at all points of the body for a particular stress state, called the 

nonlocal continuum mechanics theory, containing information about the long range forces in 

atoms, along which internal length scale is introduced as a material parameter. This theory was 

proven to be applicable to nanoscale by Peddieson et al. [26], where they applied it to nonlocal 

Euler-Bernoulli beam model. Zhang et al. [27] developed the multiple-shell model, based on the 

nonlocal continuum mechanics, to study the axial buckling of multiwall carbon nanotubes. Wang 

and Wang [28] presented the constitutive relation for small scale effects for Euler-Bernoulli and 

Timoshenko beams and for cylindrical shell problems. Hu et al. [29] investigated the transverse 

and torsional wave in single walled and double-walled carbon nanotubes modeled as nonlocal 

single and multiwall elastic shells. Wang and Varadan [30] used nonlocal elastic shell theory to 

study the wave propagation analysis of carbon nanotubes. Khademolhosseini et al. [31] studied 

the torsional buckling using nonlocal elasticity shell models. Khademolhosseini et al. [32] also 

studied the size effects in dynamic torsional response of single walled carbon nanotube by 

modelling it as a modified nonlocal continuum shell. Mikhasev [33] studied the vibrations of 
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single walled carbon nanotubes embedded in nonhomogeneous elastic matrix using nonlocal 

continuum shell model. Recently Ansari et al. [34] investigated the free vibration characteristics 

of single and double-walled carbon nanotubes using nonlocal elastic shell model. Deng and Yang 

[35] studied vibration of fluid filled multiwall carbon nanotubes using nonlocal Flugge shell 

model. A rare approach of three dimensional vibrational and bending analysis was performed by 

Shaban and Alibeigloo [36] by taking nonlocal shell model to account for the size effect. 

The continuum beam model has also been of considerable interest to study the dynamic 

properties of carbon nanotube. Ru [37] used the multiple column model to study its buckling and 

Ru et al. [38] used the classical Euler-Bernoulli beams for single wall and multiwall carbon 

nanotubes and studied their vibrations. Both these studies gave ample attention to interaction 

between the tubes which was represented using van der Waals forces. Yoon [39], in his doctoral 

thesis, did an extensive study on the use of beams for single wall and multiwall carbon 

nanotubes, using both Euler-Bernoulli and Timoshenko beams. He used analytical formulas to 

obtain the natural frequencies and to study wave propagation. Fu et al. [40] studied the nonlinear 

free vibration of multiwall carbon nanotubes embedded in an elastic medium using multiple 

elastic beam model. A similar study was performed by Yoon and Mioduchowski [41].  Natsuki 

et al. [42] studied the vibrational characteristics of a simply supported carbon nanotube based on 

Euler-Bernoulli beam. Natsuki et al. [43] also studied the vibration of double-walled carbon 

nanotubes, embedded in elastic medium and double-walled carbon nanotubes with different 

lengths for inner and outer nanotubes [44]. Wang et al. [45] used Timoshenko beam model to 

account for transverse shear and rotary inertia of multiwall carbon nanotubes. Wang et al. [46] 

and Shima [47] reviewed the buckling of carbon nanotubes.  Ansari and Hemmatnezhad [48] 

studied the nonlinear vibrations of multiwall carbon nanotubes embedded in an elastic medium 

using variational iteration method (VIM). A similar study was performed by Sadri et al. [49] 

with the surrounding medium being modeled as Winkler type model. Cigeroglu and Samandari 

[50] employed differential quadrature method to perform yet another similar study. Ambrosini 

and Borbon [51] studied the influence of van der Waals interaction coefficient on the vibrations 

of double-walled carbon nanotubes using higher order beam model. Ansari and Hemmatnezhad 

[52] studied the vibrations of double-walled carbon nanotubes using nonlinear finite element 

analysis, where Von-Kamran type nonlinear strain-displacement relationships were employed to 
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constraint the ends of carbon nanotubes to move axially. Baroudi and Razafimahery [53] studied 

the effects of an added mass on the natural frequency of clamped-clamped Euler-Bernoulli beam 

based carbon nanotube submerged in a fluid media. Vibrations of carbon nanotube-based 

composites were studied by Formica et al. [54] by employing a continuum model based on 

Eshelby–Mori–Tanaka approach. Adali [55] presented the variational principles for multiwall 

carbon nanotubes having nonlinear vibrations by considering the nonlinear geometric and 

physical effects arising due to large deflections and van der Waals forces between the tubes.  

Nonlocal beam models have also been studied extensively in the recent years.  Zhang et al. 

[56] studied the transverse vibrations of the double-walled carbon nanotubes using nonlocal 

Euler-Bernoulli beam model, for the first time. Tylikowski [57] studied instability of thermal 

vibrations of the single walled carbon nanotubes embedded in viscoelastic matrix under time-

dependent temperature field using nonlocal Euler-Bernoulli beam theory. Ansari and 

Hemmatnezhad [58] studied the vibration of embedded double-walled carbon nanotube modeled 

as nonlocal Timoshenko beam using energy equation approach and finite element method. A 

similar study was conducted by Shakouri et al. [59], considering nonlocal Euler-Bernoulli and 

using the Galerkin-type finite element methods. An early comparison between both these 

nonlocal approaches was performed by Wang [60].  Reddy [61] reformulated all the available 

beam theories using nonlocal relations and gave analytical solutions for bending, buckling and 

vibrations for each case. Ponnusamy and Amuthalakshmi [62] studied the vibrational 

characteristics of viscous fluid conveying double-walled carbon nanotube for clamped-clamped 

and clamped-free conditions. Wang and Wang [63] used nonlocal Timoshenko beam theory to 

study the vibration of carbon nanotubes embedded in elastic medium.  

The current study considers carbon nanotubes to be Euler-Bernoulli beams, as local or cross-

sectional deformations (better studied using shell models), are not observed. Also, the high 

aspect ratio of the CNTs allow them to be reasonably represented as beams. To the best of 

author’s knowledge, detailed Finite element formulations for double- and triple-walled carbon 

nanotubes, using Galerkin weighted residual approach, for local and nonlocal Euler-Bernoulli 

beam, has not been explicitly reported in the open literature. The use of this approach is 

important for the current study, as an extension of this thesis would aim to exploit the same 

principle to develop a Dynamic Finite Element (DFE) [64–73] which combines the generality of 
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finite element method with the accuracy of Dynamic Stiffness Method (DSM). Dynamic 

Stiffness Method (DSM), as mentioned in the earlier section, combines the coupled equations 

into a single equation, the closed form solution of which gives the displacement and force 

matrices, which are then exploited to achieve dynamic stiffness matrix, to which the system’s 

boundary conditions are applied. A brief yet simple explanation of the DSM formulation is given 

by Banerjee in reference [74]. This method has been used extensively due to the exactness it 

offers. Some of these studies include the free vibration of coupled bending-torsion Timoshenko 

beam element [75], coupled bending-torsion axially loaded Timoshenko beam element [76], 

twisted Timoshenko beam [77], composite Timoshenko beam [78], axially loaded composite 

Timoshenko beam [79], bending-torsion coupled beam with warping [80], twisted beam [81], 

sandwich beams [82], tapered beam [83], elastically connected three beam system [84] and 

axially loaded double beam system [85].  More recently, dynamic stiffness matrix for a general 

plate has also been formulated and presented by Banerjee et al. [86]. All these formulations use 

Wittrick-Williams (W-W) root counting algorithm [87] to find the number of roots below a 

chosen frequency and exploit a suitable (e.g., bisection) method to arrive at the system’s targeted 

natural frequency. This thesis presents a Dynamic Stiffness Matrix (DSM) formulation, 

developed and used to find the natural frequencies of carbon nanotubes, for the first time. 

 

1.4 Objective 

The objective of this research is to study the free vibration characteristics of double-walled and 

triple-walled carbon nanotubes using analytical and approximate methods, considering them to 

be continuum structures, thereby preparing a foundation for vibrational study of complex 

structures that employ carbon nanotubes. 

 

1.5 Scope of Research 

This research is intended to develop the FEM formulations for the free vibration analysis of 

double- and triple-walled carbon nanotubes (CNTs), considering them as Euler-Bernoulli beams, 

using Galerkin weighted residual approach. This is presented for two cases, with and without an 
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elastic medium surrounding the carbon nanotubes. This simple but important step prepares 

foundation for the development of dynamic stiffness matrix (DSM), which is formulated for 

double-walled carbon nanotubes for both the cases. Finite element formulation is also presented 

for double- and triple-walled carbon nanotubes based on nonlocal Euler-Bernoulli beam. This is 

also done for both cases, with and without an elastic medium surrounding them.  By comparing 

the results for different cases, the effect of van der Waals interaction coefficient is studied. Also, 

the natural frequencies obtained using different analytical and finite element methods are 

compared to study the convergence rate for carbon nanotubes.  The detailed Finite element 

formulations for double- and triple-walled carbon nanotubes, using Galerkin weighted residual 

approach, both for local and nonlocal Euler-Bernoulli beam, have been explicitly presented for 

the first time, and so has been the dynamic stiffness matrix (DSM) for double-walled CNTs.  

 

1.6 Organization of thesis 

The following chapters are arranged in such a way that a brief introduction to carbon nanotubes 

with history, properties, methods of synthesis, applications, in general, and for aerospace field in 

particular, are presented in Chapter 2. 

Chapters 3 and 5 present the conventional finite element method (FEM) formulation for 

double and triple-walled carbon nanotubes using local Euler-Bernoulli beams, respectively, for 

both the cases with and without a surrounding elastic medium. The natural frequencies for these 

cases are found by solving the linear eigenvalue problem. 

The dynamic stiffness matrix (DSM) formulation for double-walled carbon nanotubes is 

presented in Chapter 4.  Williams-Wittrick (W-W) root counting algorithm, used to solve the 

nonlinear eigenvalue problem, is also briefly discussed. 

Chapter 6 presents the Galerkin weighted residual approach based finite element method 

for double and triple-walled carbon nanotubes based on nonlocal Euler-Bernoulli beams. 

Finally conclusions and the path for future work is presented in Chapter 7. 
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2 Carbon Nanotubes – A Brief Introduction 

Carbon nanotubes (CNTs) continue to be a topic of considerable research in different areas of 

applications. The unique geometry of CNTs has been a key factor that gives them the rare 

properties they possess. A few of these properties and applications that benefit from those 

properties are discussed below. A brief historical outlook is provided and a section is dedicated 

to the CNTs’ applications in aerospace engineering.   

 

2.1 History 

Carbon, in the graphitic form, was discovered in 1779 and in the form of diamond about 10 years 

later [88], having 2sp  and 3sp  bonding, respectively i.e., each carbon atom covalently bonded 

with 3 carbon atoms for graphite and with 4 carbon atoms for diamond. The following two 

centuries saw intensive study and application of carbon and was thought of a mature field until a 

new form of carbon was discovered. Although a good number of literature credits Iijima [89] 

with the discovery of carbon nanotubes, Boehm [90] mentioned that carbon nanotubes were 

observed much earlier than 1991, but in different structural form (“usually bent or coiled” [90]). 

They were reportedly discovered in 1952 by Radushekevich and Lukyanovich [91] and reported 

in Journal of Physical Chemistry, according to Boehm [90]. It was due to the geopolitical 

situation of the time that this discovery wasn’t popular among researchers in the West. Later, in 

1955, Hofer et al. studied the carbon deposits on iron, nickel and cobalt, which were in form of 

“filaments from 0.01µ to 0.2µ in diameter” [92] (as action of carbon monoxide).  In the 

following year, 1956, Richard Feynman opened researchers to the idea of “manipulating and 

controlling things on a small scale” in his now famous talk “Plenty of Room at the Bottom” [93] 

to American Physical Society. The following years saw the formation of graphitic whiskers [94], 

rolling over of graphite sheets, in a form now known as multiwall-carbon nanotubes (MWCNTs) 

[95].  Growth of carbon filaments in tubular, twisted and balloon forms [96], led to the use of the 

term ‘nano-technology’ for the first time [97] and its popularization through the 1980s [98].  

Growth of hollow carbon fiber with large diameter in the direction of fiber axis was observed 

and reported by Oberlin et al. [99].  Research in carbon was invigorated with the discovery of 

fullerenes in 1985, which are closed cage-like structures of carbon with 60, 70 or 80 molecules 
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arranged in symmetry to form 𝐶𝐶60, 𝐶𝐶70 and 𝐶𝐶80 as polygons [100].  It was later in 1990 that 

Iijima [89], while studying 𝐶𝐶60 in transmission electron microscope (TEM), discovered 

unusually tubular geometry of carbon molecules in carbon soot, later christened as carbon 

nanotubes. Iijima reported that these tubes have multiple graphitic sheets, ranging from 2 to 50, 

arranged coaxially, like Russian dolls, thus indicating that these were MWCNTs. Subsequently, 

Ebbessen and Ajayan [101] found efficient methods to make MWCNTs in gram quantities, using 

a variation of arc-discharge technique. It was in 1993 that Iijima and Ichihashi [102], and 

Bethune et al. [103], independently, found an efficient way of synthesizing single walled carbon 

nanotubes (SWCNTs). The following decades saw a surge in the volume of research dedicated to 

this field of nanotechnology, studying their exceptional properties arising due to its high length 

to diameter ratio and exploring their applications in a variety of fields, including but not limited 

to, micro-electronics, energy, mechanical, and biological applications. 

 

2.2 Structure 

A carbon nanotube is simply a graphite sheet rolled into a cylinder having very small diameter, 

in nanometer range, even as low as 0.4 nm [104], and lengths ranging from 10 nanometers to few 

centimeters, hence giving it high aspect ratio (length vs diameter). In case of a MWCNT, these 

are several nested cylinders with an interlayer spacing. These tubes exhibit a spiral conformation, 

called chirality, whose vector is given as 1 2hC ma na= +  where 1a  and 2a  are unit vectors in 

two-dimensional hexagonal lattice and the integer pair ( , )m n  represents the translation indices. 

Taking these indices, the diameter of a single walled carbon nanotube (SWCNT) is given by: 

2 20.0783
hC

d n nm m
π

= = + +                                                (2.1)
 

and 

1

2 2

3sin
2

m
n nm m

θ −  
=  

+ + 
                                                     (2.2)
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where θ  is the angle of chirality i.e., the angle between hC  and 1a  as shown in Figure 1 [46]. 

There are three cases depending on the chirality: 

i) zig-zag configuration - 0θ =  and either m  or 0n = ; 

ii) chiral configuration - 0 30θ° < < °  and m n> ; 

iii) armchair configuration - 30θ = °  and m n= ; 

For a MWCNT, two or more graphite sheets are rolled with different chirality angles [89,3,105]. 

For example, if the innermost nanotube is of zig-zag configuration, the rest are usually not. The 

interlayer spacing in MWCNT is close to the spacing for graphitic layers of 0.335nm and is 

generally taken as 0.34nm [88,105,106]. The interaction between individual SWCNTs in a 

MWCNTs is via van der Waals (vdW) forces [106,108]. 

 

Figure 1a – Rolling of hexagonal graphite sheet to obtain carbon nanotubes [46] 

11 
 



 

Figure 1b – Armchair, zig-zag and chiral configuration of carbon nanotube (L-R) [46] 

2.3 Synthesis 

Carbon nanotubes are mostly synthesized using three methods: Arc-discharge [109,110], laser 

ablation [111,112], and chemical vapor deposition [113,114]. 

2.3.1 Arc Discharge Method: Iijima [89] was using this method when carbon nanotubes were 

discovered in the carbon soot. This method involves the vaporization of carbon, under an inert 

gas in presence of a catalyst, which then condenses on the walls of the vessel and on the cathode. 

SWCNTs and MWCNTs are formed by adjusting the catalyst and pressure and are found on the 

cathode. This method is the widely popular as it gives the best quality carbon nanotubes. 

2.3.2 Laser Ablation Method: Smalley et al. [111] used this method for the first time, in 

which the carbon nanotubes were in the soot on the cold end of the furnace which had a laser 

impinging on a graphite target. This method can only produce SWCNTs of controllable 

diameter. 
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2.3.3 Chemical Vapor Deposition: This method involves a substrate coated with catalyst 

particles. This step guides the diameter of the carbon nanotubes, as it is dependent on the size of 

the clusters of catalyst particles on the substrate. The next step would involve a carbon-

containing gas being carried in the reactor zone, which would decompose the carbon rich gas and 

carbon nanotubes are formed on the surface of the catalyst particle.  Although this method 

doesn’t give the best quality, it can be scaled up for production of large volumes of carbon 

nanotubes [115]. 

Schematic diagrams for above-mentioned methods can be found in Liu [116]. Apart from 

these, a few methods like spray pyrolysis [117-120] are also used. While the demand for carbon 

nanotubes is expected to rise to more than 153,000 tons by 2020 [121], the challenges faced by 

the industry for production include slow production rate, poor yield, inconsistency in material 

quality, no control over the production process and limited structural enhancements in bulk 

carbon nanotubes [122]. It is to be noted that manufacturing MWCNTs is much easier than 

SWCNTs, as indicated by the large quantities produced today [123]. 

 

2.4 Properties 

The small size, chirality, 2sp  bond between carbon-carbon atoms, high aspect ratios and large 

surface areas are some of the major reasons for carbon nanotubes to have exceptional properties. 

For instance, their mechanical strength is 100 times more than that of steel at 1/6th of weight. 

Some of the mechanical, electronic and thermal properties are briefly discussed below. 

2.4.1 Mechanical Properties: The 2sp  carbon-carbon bond, in a carbon nanotube, means that 

each carbon is bonded with three other carbons and this gives unmatchable mechanical 

properties of carbon nanotubes. Carbon nanotubes are considered as structural members to find 

the elastic properties of a carbon nanotubes, both as SWCNT and a MWCNT.  Treacy et al. 

[124] considered carbon nanotubes to be a clamped cylinder and found the average Young’s 

modulus of a MWCNT to be 1.8 TPa. They analyzed the thermal vibration by TEM.  Kazumaki 

et al. [125] performed an in-situ observation of the deformation of a CNT and report that it 

undergoes elastic deformation to a certain critical curvature point after which the atomic bonding 
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changes to a diamond like state. A similar in-situ TEM study was performed by Wang et al. 

[126] to study electrical, mechanical, and field emission properties of carbon nanotubes. Wong et 

al. [127] considered CNTs to be a cantilever nanobeam and found the Young’s modulus to be 

660 GPa for SWCNT, and 1.28±0.59 TPa for MWCNTs. Similar studies were conducted by 

Krishnan et al. [128], Salvetat et al. [129, 130], Poncharal et al. [131], Lourie et al. [132] and it 

was found that the Young’s modulus is always above 1 TPa. Salvetat et al. [130] reported that 

the elastic properties of the carbon nanotubes are rarely affected by the presence of point defects.  

Li et al. [133] extrapolated the tensile strength of SWCNTs bundles from the mini-composite 

and reported it to be in the range of 2.3±0.2 to 14.2±1.4 GPa. The tensile strength of individual 

carbon nanotube is reported to be as high as 22.2±0.2 GPa. Wei et al. [134] used molecular 

dynamics simulation and report the tensile strength of SWCNTs ropes and MWCNTs to be 

around 40-50 GPa. Yu et al. [132] recorded the tensile strengths of individual MWCNTs in the 

range of 11 to 63 GPa for 19 MWCNTs. They also reported the “sword in sheath” failure i.e., the 

outermost layer broke in MWCNTs exhibiting the given tensile strength. Buongiorno et al. [135] 

reported that for carbon nanotubes deformation larger than 5%, the system uses reversible 

formation of topological defects, releasing the excess strain. Belytschko et al. [136] reported the 

failure stress to be in the range of 93.5 to 112 GPa, and that carbon nanotubes undergo brittle 

failure and their chirality has a moderate effect on their strength. Yakobson et al. [137] studied 

the nanotube behavior at high tensile strain and reported extremely large breaking strain which 

reduces with the increase in temperature and has little influence of the carbon nanotube helicity.  

One of the in-depth reviews of the mechanical properties of carbon nanotubes, has been 

performed by Shokrieh and Rafiee [138] and aspects requiring further attention has been 

identified. 

2.4.2 Electronic Properties: Carbon nanotubes can be either metallic or semiconducting 

depending on a lot of geometric differences such as chirality factor and diameter [139,140].  

Ebbesen et al. [141] studied the electrical conductivity of MWCNTs by considering four probe 

measurements. They report that both metallic and non-metallic behavior are observed, in 

different tubes of the same MWCNT, along with sudden increase in the conductivity as 

temperature is increased. Tans et al. [142] reported that SWCNTs act as quantum wires based on 

the electrical transport measurements, whereas Delaney et al. [143] reported that MWCNTs have 
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diffusive properties due to the presence of intertube interaction. Li et al. [144] studied the 

transport properties of 0.4 cm long carbon nanotubes and reported that they can be used in 

circuits as the transport properties are extensible even on cm scale lengths for nanotubes. 

Plombon et al. [145] studied the kinetic inductance of individual single-walled carbon nanotubes 

and high-frequency impedance of carbon nanotubes bundles and report that inductance of the 

bundle is scaled with the number of individual nanotubes. Cha et al. [146] prepared a bulk of 

randomly oriented carbon nanotubes and crosslinked them with each other through chemical 

reactions. They reported that the electric conductivity is increased by at least one order due to 

presence of crosslinks acting as bridges with low activation energy. Nihei et al. [147] studied the 

electrical properties of carbon nanotubes as interconnects between copper wiring. They observed 

that the electrical resistance of the interconnect having about 1000 carbon nanotubes was at least 

three orders of magnitude less than that of one carbon nanotube. The electrical conductivity of 

SWCNT reinforced polyimide composites was studied, as a function of concentration of 

SWCNT, by Ounaies et al. [148]. They reported that concentration of SWCNT can be 

customized for the required conductivity of the magnitude. 

2.4.3 Thermal Properties: The rolling of a graphite sheet, as is done for carbon nanotubes, 

reduces the 2 dimensional phonon structure into 1 dimensional which gives it thermal properties 

that need attention. Ruoff et al. [149] had suggested that the thermal conductivity of carbon 

nanotubes would be higher than any known material. Che et al. [150] studied it using molecular 

dynamics approach for SWCNTs and made a similar observation.  Hone et al. [151] reported that 

thermal conductivity of carbon nanotubes in bulk, such as aligned SWCNTs, is greater than 200 

W/m K, which is much higher than that of diamond or graphite. A similar study for individual 

MWCNTs was performed by Kim et al. [152] who observed the thermal conductivity to be 3000 

W/K. Both these studies reported the values at room temperature. The thermal conductance of 

2.76 µm long, single-walled CNTs, suspended individually, was studied by Yu et al. [153]. They 

observed that free path for phonons is an important factor that decides the thermal conductivity. 

Chang et al. [154] proved that Fourier’s law of thermal conductance is violated for carbon 

nanotubes, which would mean that the phonons in the carbon nanotubes don’t scatter even when 

the length of the nanotube is exceeded considerably thereby giving “extraordinary” thermal 

transport properties. Pop et al. [155] presented a method of finding the thermal conductivity of 
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SWCNT from high-bias electrical measurements thus relating the temperature on thermal 

conductance. 

 

2.5 Applications 

The remarkable properties of carbon nanotubes provide considerable opportunities for their 

usage in multitude of applications. This might be attributed to the ever increasing demand of 

multifunctional, efficient materials at reasonable costs. De Volder et al. [156] reported that the 

current carbon nanotube production exceeded several thousand tons annually and pegged the 

number close to 4.6 kiloton/year. These production capacities indicate the commercial interest in 

carbon nanotubes to be used in various applications including, but are not limited to, composites 

[157,158] as fillers, as sensors in nanomechanical applications [159,160], as biosensors 

[161,162] to detect biomolecules, as gas sensors [163], as nanocarriers for drugs [164], in 

carbohydrate conjugation [165], to manipulate genes in genetic engineering [166], as nanofillers 

in dental applications [104], in tracking of cells and delivering transfection agents in tissue 

engineering [167-168], in repair of tissue after brain damage in neurogeneration [169], in 

diagnostic tools for biomedical applications [170,171], as conductive improver in Lithium-ion 

batteries [172], in production of new composite materials by nanocoating [173], as nanoprobes in 

electromechanical applications [123], as actuators [174], as interconnects [175,176], and as 

electron sources [177]. 

Aerospace industry has always been on the lookout for lighter and stronger materials that 

can bear extreme mechanical and thermal conditions. Carbon nanotubes, with their properties fit 

the description quite well. Nanocomposites are one area where the CNTs are mostly employed in 

aerospace industry. National Aeronautics and Space Administration (NASA) had released a 

roadmap for the application of nanotechnology in aerospace industry in the year 2010 [178].  It 

had detailed the areas of Materials, Energy Generation and Storage, Propulsion and Electronics, 

as the major fields where nanotechnology can make a difference. This comprehensive document 

had detailed the applications in each of these areas and presented challenges faced by each area 

with the possible solutions in a timeframe. Simonis et al. [179] in 2006, presented the 

lightweight materials, safety, intelligence-guidance, protection, low energy, high-speed and 
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adaptive structures, as major areas in aeronautics, where nanotechnology has a potential.  It has 

also listed the potential areas, where nanotechnology can be used in satellites. Gibson [180], in 

his review on the recent research of multifunctional materials, showed that the addition of CNTs 

to the composite materials increases their multifunctionality. Donnel et al. [181,182] studied the 

impact of CNTs on the commercial heavy aircraft.  Zhao et al. [183] studied the usage of carbon 

nanotubes in composite film for de-icing.  Self-sensing is an important factor from the point of 

view of morphing structures. Chung [184] reviewed the self-sensing of damage in carbon fiber 

polymer-matrix composites by measuring the electrical resistance.  The usage of CNTs has also 

been explored for space elevator, a system designed for space travel, a major component of 

which is a cable that extends from earth to space. Carbon nanotubes are considered to be the 

material which form the ribbon, as their light weight will not let it buckle under its own weight. 

Laubscher [185] stated that woven carbon nanotubes based composite fibers form an important 

sub-system in space elevator.  Cohen et al. [186] studied the oscillations of space elevator ribbon 

and gave mathematical formulations to find the static deformation and elastic oscillations. Pugno 

[187] studied the strength of carbon nanotube-based space elevator cable and concluded that the 

actual strength of the cable would be reduced by ~70% of theoretical estimation due to presence 

of defects.  Pugno et al. [188] studied the stability of the track of space elevator and concluded 

that the track in itself is orbitally unstable, but attaching an adequately heavy satellite can 

stabilize it. CNTs are also used in aircraft wiring [189], propulsion [190], lightening protection 

[191] and stealth aircraft designs [192].  It is believed that even after finding so many 

applications of carbon nanotubes, in aerospace and elsewhere, their true potential has not been 

realized yet.  
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3 Finite Element Formulation – Double-walled Carbon Nanotubes 

 

3.1 Introduction 

Double-walled carbon nanotubes are the most common multiwall-carbon nanotubes used. The 

present continuum approach uses local Euler-Bernoulli beam to represent individual carbon 

nanotube, which are coupled through the van der Waals forces. The following section gives the 

formulation using Galerkin weighted residual approach to form the mass and stiffness matrices. 

A schematic representation of DWCNTs is given in Figure 3.1. 

 

Figure 3.1 – Schematic representation of DWCNT 

 

3.2 Formulation 

As the elastic beam has been shown to represent the properties of a carbon nanotube efficiently, 

when the length of the tube is much larger than the diameter, the carbon nanotube is modeled as 

Euler-Bernoulli beam. If 𝑤𝑤 is the displacement, 𝜌𝜌 is the mass density, 𝐴𝐴 is the cross-sectional 

area and 𝐸𝐸𝐸𝐸 is the bending rigidity of the beam, the governing differential equation takes the 

form [193]: 

( )''''EIw Aw p xρ+ =                                                  (3.1) 

Prime (‘) and dot (.) represent derivatives with respect to the length of the beam and time, 

respectively. A double-walled carbon nanotube (DWCNT) is modeled as two single-walled 
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carbon nanotubes coupled by an interaction pressure represented by van der Waal’s coefficient, 

estimated as [193]: 
6 6
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                             (3.2) 

where 𝜎𝜎 and 𝜀𝜀 are the van der Waal’s radius and Lennard-Jones potential’s well depth, 

repectively, 𝑎𝑎 = 0.142 is the C-C bond length, and 𝑅𝑅1 and 𝑅𝑅2 are the inner and outer radius 
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The governing equations for a DWCNT are then written as [38]: 

''''
1 1 1 1 1 1 2 1E I w A w cw cwρ+ = −                                                (3.5)  

''''
2 2 2 2 2 2 2 1ˆE I w A w cw cwρ+ = − +                                             (3.6) 

where the subscripts 1, 2 for 𝐸𝐸, 𝐼𝐼, 𝑤𝑤, 𝜌𝜌, and 𝐴𝐴 represent the inner and outer tubes, respectively.  𝑐̂𝑐 

is used to denote two cases; DWCNT without any medium and DWCNT embedded in an elastic 

medium, respectively, as given in equations (3.7) and (3.8) below. 

    ĉ c=                                                                     (3.7) 

ĉ c k= +                                                                  (3.8) 

where Winkler like model is considered to denote the pressure acting on the outermost tube due 

to the presence of elastic model. 𝑘𝑘 in (3.8) is dependent on the material constants of the elastic 

medium, the outer diameter of the embedded tubes and wavelength of vibrational modes, and is 

defined in terms of the van der Waals forces, 𝑐𝑐.  The mathematical formulation to arrive at the 

corresponding equation is presented in Appendix A1. 
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The time dependency in (3.5) and (3.6) is eliminated by considering simple harmonic motion 

and using the following transformations. 

( )1 1, i tw x t W e ω=                                                       (3.9) 

  ( )2 2, i tw x t W e ω=                                                    (3.10) 

where 𝑊𝑊1and 𝑊𝑊2 are the amplitudes of transverse displacements of inner and outer carbon 

nanotube, respectively, and 𝜔𝜔 and 𝑡𝑡 represent the circular frequency and time, respectively. 

These transformations are substituted in the governing equations, (3.5) and (3.6) to obtain: 

( )'''' 2
1 1 1 1 1 1 2 0E I W c A W cWρ ω+ − − =                                    (3.11) 

( )'''' 2
2 2 2 2 2 2 1ˆ 0E I W c A W cWρ ω+ − − =                                  (3.12) 

The coupling between both beams is represented by the last terms in (3.11) and (3.12), the first 

beam has the van der Waal’s interaction coefficient 𝑐𝑐 with the transverse displacement of the 

beam 2, shown in (3.11) by 𝑊𝑊2 and same can be observed in (3.12). Taking the amplitude of 

displacements as 1W  and 2W , the Galerkin weighted residual method is applied on both 

equations with 1Wδ and 2Wδ as the weighting function, the integral form of (3.11) and (3.12) is 

developed as shown below. 

( )( )'''' 2
1 1 1 1 1 1 1 1 2 1

0

0
L

W E I W W c A W W cW W dxδ ρ ω δ δ= + − − =∫                            (3.13) 

( )( )'''' 2
2 2 2 2 2 2 2 2 1 2

0

ˆ 0
L

W E I W W c A W W cW W dxδ ρ ω δ δ= + − − =∫                         (3.14) 

The weighting functions 𝛿𝛿𝑊𝑊1 and 𝛿𝛿𝑊𝑊2 represent the transverse displacements of inner and outer 

carbon nanotubes, respectively. The weak integral form of the governing equations is developed 

by integrating (3.13) and (3.14) by parts, as given below: 

 
( )( )'' '' 2 ''''

1 1 1 1 1 1 1 1 1 2 1 1 1 1 0
0

[( ) ]
L

LW E I W W c A W W cW W dx E I W Wδ ρ ω δ δ δ= + − − +∫
'' '

1 1 1 0
( )

L
E I W Wδ −   0=

         (3.15)  
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( )( )'' '' 2 '''
2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 0ˆ [( ) ]LW E I W W c A W W cW W dx E I W Wδ ρ ω δ δ δ= + − − +

0
'' '

2 2 2 0[( ) ]

L

LE I W Wδ−

∫
0=

  (3.16) 

The boundary terms in (3.15) and (3.16) vanish with the application of system boundary 

conditions, hence the strikethrough. The system is then discretized using a number (k) of 4-node 

and 2-DOF per node (one transverse displacement and one slope per node) such that 

( ) ( )
1

'' '' 2
1 1 1 1 1 1 1 1 1 2

0 0 0

k k kl l l
k

wW W E I W dx W c A W W cWδ δ ρ ω δ= + − −∫ ∫ ∫                 (3.17) 

( ) ( )
2

'' '' 2
2 2 2 2 2 2 2 2 2 1

0 0 0

ˆ
k k kl l l

k
wW W E I W dx W c A W W cWδ δ ρ ω δ= + − −∫ ∫ ∫             (3.18) 

Hermite type polynomial approximations are used, as done in classical Euler-Bernoulli beam 

finite element development, for each carbon nanotube in (3.17) and (3.18). For a two-node, 

two-DOF per node element, the non-nodal displacement function is written as: 

( ) { }2 31n nW x x x x c=  (𝑛𝑛 = 1,2)                                                (3.19) 

where {𝐶𝐶𝑛𝑛} (𝑛𝑛 = 1,2) represents a column of unknown constant coefficients for inner and outer 

carbon nanotubes, respectively. The vector of nodal displacements for bending are given by: 

{ } { } [ ]{ }

1
'

1
2 3

2
' 2

2

1 0 0 0
0 1 0 0
1
0 1 2 3

n n n n

W
W

W c P c
W L L L
W L L

   
   
   = = =                               

(3.20) 

Thus                                 ( ) [ ] { } ( ) { }12 31n n n i i nW x x x x P W N x W−= =                     (3.21) 

where 〈𝑁𝑁𝑖𝑖(𝑥𝑥𝑖𝑖)〉 is a row vector of cubic shape functions, of the beam elements given by: 

( )3 2 3
1 3

1 2 3N x x L L
L

= − +  

( )3 2
2 3

1 2N x L x L xL
L

= − +  
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( )3 2
3 3

1 2 3N x x L
L

= − +  

( )3 2 2
4 3

1N x L x L
L

= −                                                      (3.22) 

These shape functions are also used to approximate the virtual displacements: 

( ) ( ) { }n i i nW x N x Wδ δ=                                               (3.23) 

Using the equations (3.20) through (3.22), the stiffness, mass, semi-mass and coupling 

matrices, represented by k , m , sm , and cm  respectively, are given in equation (3.24). Also 

equations (3.17) and (3.18) are represented in form of uncoupled matrices as (3.25) and (3.26) 
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 (3.26) 

The element stiffness and mass matrices in the coupled form are represented as [k]k and [m]k, 

respectively. The assembly of the element matrices and application of system’s boundary 
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condition is carried out using a FEM code written in MATLAB®, leading to the system’s linear 

eigenvalue problem written as: 

( ){ }2 0n nW K M Wδ ω− =  

( )2det 0K Mω− =                                                     (3.27) 

where 𝐾𝐾 represents global stiffness matrix and 𝑀𝑀 stands for the global mass matrix, both of 

which are 8x8 in size. The global matrices are defined as the collection of all the element 

matrices, i.e., 

.

1 2
1

No ofelements
k k

k
W W W

=

= +∑     (3.28) 

 

3.3 Results and Discussion 

In this section, the application of the FEM formulation presented above is demonstrated through 

the free vibration analysis of illustrative CNT examples, where the following geometric and 

material properties and dimensions, reported by Xu et al. [195], are used: 

𝐿𝐿 = 14𝑒𝑒 − 9, 𝜌𝜌1 = 𝜌𝜌2 = 2.3
𝑔𝑔
𝑐𝑐𝑐𝑐3, 

𝐸𝐸1 = 𝐸𝐸2 = 1 𝑇𝑇𝑇𝑇𝑇𝑇, 𝑐𝑐 = 71.11𝐺𝐺𝐺𝐺𝐺𝐺 

𝑟𝑟1,𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.18𝑛𝑛𝑛𝑛,  𝑟𝑟1,𝑜𝑜(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.52𝑛𝑛𝑛𝑛, 

𝑟𝑟2,𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.53𝑛𝑛𝑛𝑛,  𝑟𝑟2,𝑜𝑜(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.87𝑛𝑛𝑛𝑛 

(3.29) 

3.3.1 DWCNT modeled as local Euler-Bernoulli beam 

The natural frequencies for DWCNT with three different boundary conditions, namely, 

clamped-clamped (CC), clamped free (CF) and simply supported (SS), modeled as local Euler-

Bernoulli beam, are tabulated in Tables 3.1.  The natural frequencies computed in the present 

study, i.e., using finite element method (FEM), are found to be in agreement with the so-called 

exact results provided by Xu et al. [195], which were found by solving the coupled equations. 
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The convergence of natural frequencies reported in this study, was verified and arrived at by 

changing the number of elements gradually from one to a point where the relative error becomes 

constant. 

Table 3.1 also shows the percentage error between the FEM natural frequencies, exact 

values reported by Xu et al. [195], and two other approximate methods; i.e., results reported by 

Elishakoff et al. [196], obtained using Bubnov-Galerkin or Petrov-Galerkin methods. In the 

table, 1ω  denotes the first natural frequency of the system whereas 2ω  denotes the first 

noncoaxial natural frequency of the system. 

In the present study, the FEM natural frequencies are obtained using a 50-element mesh, 

although some cases may converge using a less refined mesh. It can be seen that the error 

percentage between the present study and the exact values provided by Xu et al. [195] is at most 

in the order of 10-2, hence showing high rate of convergence. 

 

Table 3.1 - FEM natural frequencies of DWCNTs, modeled as local Euler-Bernoulli beam 

Boundary 
Conditions 

Xu et al. [195] 
(1012 rad/s) 

Elishakoff et al. [196] 
(1012 rad/s) 

FEM 
(1012 rad/s) 

Natural 
Frequencies 

Natural 
Frequencies Method 

Percentage 
Error 

Natural 
Frequencie

s 

Percentag
e Error 

Simply 
Supported 

𝜔𝜔1 0.467 0.467 Petrov 
Galerkin 

-0.11% 0.467 0.00% 

𝜔𝜔2 7.885 7.885 -0.00% 7.885 0.00% 

Clamped 
Clamped 

𝜔𝜔1 1.058 1.049 Petrov 
Galerkin 

0.80% 1.058 0.00% 

𝜔𝜔2 7.925 7.924 0.01% 7.925 0.00% 

Clamped 
Free 

𝜔𝜔1 0.166 0.167 
Bubnov 
Galerkin 

-0.41% 0.166 0.01% 

𝜔𝜔2 7.877 7.877 -0.00% 7.877 0.00% 

 

A comparison of nondimensionalized natural frequencies of individual tubes of a DWCNT, and 

of DWCNT by using a single beam model is presented in Table 3.2. The equivalent single beam 
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model uses the geometric properties obtained as a sum of properties of individual tubes, as 

explained below. Taking the Euler-Bernoulli beam equation: 

'''' 0EIw Awρ+ =                                                       (3.29) 

with 1 2I I I= + and 1 2A A A= + with 𝐼𝐼1, 𝐼𝐼2 and 𝐴𝐴1, 𝐴𝐴2 are moments of inertias and areas of each 

tube [41]. This method is particularly useful to understand the effect van der Waals interaction 

coefficient has on the natural frequency of a DWCNT, as shown by the difference in Table 3.2. 

The nondimentional natural frequency is given by 

2m L
EI

µ ω=                                      (3.30) 

Table 3.2 – Comparison of the nondimentionalized FEM natural frequencies of SWCNT with those of 

DWCNT, both modeled as local Euler-Bernoulli beam 

Boundary 
Conditions 

DWCNT 
(Inner Tube) 

DWCNT 
(Outer Tube) 

Single Beam 
Model 

11ω  12ω  ω  

Simply Supported 15.9646 145.5142 9.8698 

Clamped-Clamped 36.1391 146.2479 22.3752 

Clamped Free 5.6890 145.3596 3.5161 

 

It can be seen from Table 3.2 that the nondimentionalized frequency of the inner tube of a 

local Euler-Bernoulli based beam, obtained, using (3.30), is always lower than that of the outer 

beam, owing to smaller geometry. The natural frequency obtained by the single beam model 

gives the smallest value for all the three boundary conditions surveyed. It is to be noted that the 

nondimentional natural frequency of the multi-walled carbon nanotube system would require the 

equivalent Young’s modulus and moment of inertia and is not a part of this thesis. In finite 

element analysis (FEA), it is important that an optimum number of elements are considered for 
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obtaining a converged value. Any number of elements less than that particular number can 

undermine the natural frequency value and anything more could result in errors arising out of 

extensive mathematical manipulations. One way to check the convergence is by observing the 

error percentage. When the error percentage goes towards zero or stabilises, it is said that the 

value is converged, like the ones presented in Table 3.1. The graphs showing convergence are 

plotted below, Figures (3.2) – (3.4). The percentage error was computed with respect to the 

exact values as given by Xu et al. [195] and has been plotted versus number of elements, in the 

figures. The number of elements are increased to the point where the error percentage becomes 

stable signaling the convergence of natural frequency. 

 

 

Figure 3.2 – Percentage error vs. the number of elements – SS – Up to 50 FEM elements 

 

Figure 3.3 – Percentage error vs. the number of elements – CC – Up to 50 FEM elements 
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Figure 3.4 – Percentage error vs. the number of elements – CF – Up to 50 FEM elements 

It can be noticed on the vertical axis of Figures (3.2) - (3.4) that percentage of error is in the 

order of 10-4 even for 10 elements which shows high convergence rates but the study considers 

50 elements so as to more precise. High convergence rates, like these are found throughout the 

thesis. 
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                Mode 3            Mode 4 

 

Mode 5 

Figure 3.5 – First two mode shapes of DWCNT modeled as local Euler-Bernoulli beam – simply 

supported boundary condition – FEM 

Figures (3.5) show the mode shapes of the DWCNT for simply supported boundary conditions. 

It can be seen that the first few mode shapes are coaxial and tend to be non-coaxial when mode 

number increases. It can be seen that as the mode shapes tend to be non-coaxial, the concentric 

nature of the multi-walled carbon nanotube is distorted. This is not possible physically as that 

would mean the inner tube tears the outer tube in order to vibrate. Though the governing 

equations of a continuum structure gives n – number of mode shapes, not all of them might be 

physically possible. The resonant frequencies are governed by the amplitude ratio of inner tube 

to outer given by [195]: 
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4 2
2 2 1 21 E I mf

c c
λ ω

= + −                                                    (3.31) 

For the first frequency, 𝑓𝑓 is always close to unity and hence the vibrational modes are coaxial. 

As the value of 𝑓𝑓 varies in either direction, the vibrational modes tend to be non-coaxial. 

 
Mode 1                   Mode 2 

Figure 3.6 – First two mode shapes of DWCNT modeled as local Euler-Bernoulli beam – 

clamped-free boundary condition – FEM 

 
Mode 1                   Mode 2 

Figure 3.7 – First two mode shapes of DWCNT modeled as local Euler-Bernoulli beam – 

clamped-clamped boundary condition – FEM 
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3.3.2 DWCNTs, modeled as local Euler-Bernoulli beam embedded in an elastic medium 

Composite structures have been spearheading the use of carbon nanotubes as fillers or fibers, 

dispersed uniformly or as clusters, to improve the properties of resulting structure. Hence, 

studying the behavior of carbon nanotubes embedded in an elastic medium gains importance. 

The natural frequencies of DWCNTs embedded in an elastic medium are shown in Table 3.4, 

where four cases are taken to represent the pressure exerted by the external medium on the CNT. 

The results are compared to the values given by Yoon et al. [41] to verify the accuracy and 

robustness of the present study. Yoon et al. [41] solved the governing equations for CNTs 

embedded in an elastic medium to obtain the natural frequencies.  

The four values of the spring constant, k, are assumed such that the ratio k c  is much 

higher, much lower, comparatively close to unity and at unity itself. The results show that there 

is a close agreement with the values calculated by Yoon et al. [41] and the percentage error 

remains small, as shown in the Table 3.3. Finite element results considers 50 elements, except 

for the case of clamped free boundary condition which uses 40 elements, for sake of convergence 

i.e., the number of elements are increased to the point that the percentage error between them 

becomes zero or becomes stable. Figures (3.8)–(3.10) show the percentage error vs. number of 

elements, where the values given by Yoon et al. [41], for ratio k c = 0.0001, are used as 

benchmark using which the percentage error is calculated. 

It is observed from Table 3.3 that the stiffness of the material in which the carbon 

nanotube is embedded has an effect on the natural frequency of the carbon nanotube; i.e., if the 

elastic medium has the stiffness  1k   say, k c = 100, the natural frequency of the carbon 

nanotube increases at least by one order for all the boundary conditions, as can be observed from 

Table 3.3. It can also be seen that as the stiffness of the elastic medium reduces, the natural 

frequency decreases due to the fact that carbon nanotubes would then have a less stiff material to 

vibrate in.  These observations are meant for the outer tube of DWCNT, as the inner tube will 

have van der Waals forces around them, and so the coaxial frequency of DWCNT for the case 

when 1k  , i.e., say k c = 0.0001, remains comparable whether or not the carbon nanotube is 

embedded in the elastic matrix. 
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Table 3.3 – FEM natural frequencies of DWCNTs modeled as local Euler-Bernoulli beam, 

embedded in an elastic medium 

Boundary 

Conditions 
k c  ratio 

Exact Value [41] 

(1012rad/s) 

Present Study 

Natural 

Frequencies 

(1012rad/s) 

Percentage 

Error 

Simply Supported 

𝑘𝑘 𝑐𝑐⁄ = 100 
6.404 6.404 0.00% 

45.704 45.704 0.00% 

𝑘𝑘 𝑐𝑐⁄ = 1 
3.507 3.506 0.00% 

8.413 8.412 0.00% 

𝑘𝑘 𝑐𝑐⁄ = 0.1 
1.256 1.256 0.00% 

7.929 7.929 0.00% 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 
0.468 0.468 0.00% 

7.885 7.885 0.00% 

Clamped Clamped 

𝑘𝑘 𝑐𝑐⁄ = 100 
6.398 6.431 0.50% 

45.702 45.717 0.03% 

𝑘𝑘 𝑐𝑐⁄ = 1 
6.010 6.010 0.00% 

10.101 10.100 0.00% 

𝑘𝑘 𝑐𝑐⁄ = 0.1 
1.570 1.570 0.00% 

7.970 7.970 0.00% 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 
1.058 1.058 0.00% 

7.925 7.925 0.00% 

Clamped Free 

𝑘𝑘 𝑐𝑐⁄ = 100 
6.398 6.398 0.00% 

45.702 45.702 0.00% 

𝑘𝑘 𝑐𝑐⁄ = 1 
3.483 3.483 0.00% 

8.403 8.403 0.00% 

𝑘𝑘 𝑐𝑐⁄ = 0.1 
1.179 1.179 0.00% 

7.921 7.921 0.00% 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 
0.170 0.170 0.01% 

7.876 7.876 0.00% 
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The following figures show that the error percentage even for 10 elements is negligible i.e., in 

the order of 10-4 but more number of elements are considered for the sake of precision. 

 

Figure 3.8 – Percentage error vs. the number of elements – embedded SS – Up to 50 FEM 

elements 

 

Figure 3.9 – Percentage error vs. the number of elements – embedded CC – Up to 50 FEM 

elements 
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Figure 3.10 – Percentage error vs. the number of elements – embedded CF – Up to 40 FEM 

elements 

 

The mode shapes for local Euler-Bernoulli beam based DWCNT, embedded in an elastic 

medium are presented in Figures (3.11)– (3.13) for the case of k/c = 0.1. The mode shapes for 

other values of k/c are presented in Appendix A3. 

 
Mode 1             Mode 2 

Figure 3.11 – First two mode shapes of DWCNT, modeled as local Euler-Bernoulli beam, 

embedded in elastic medium (k/c= 0.1) – simply supported boundary condition - FEM 
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Mode 1              Mode 2 

Figure 3.12 – First two mode shapes of DWCNT, modeled as local Euler-Bernoulli beam, 

embedded in elastic medium (k/c= 0.1) – clamped-free boundary condition – FEM 

 

 
Mode 1             Mode 2 

Figure 3.13 – First two mode shapes of DWCNT, modeled as local Euler-Bernoulli beam, 

embedded in elastic medium (k/c = 0.1) – clamped-clamped boundary condition - FEM 

From Figures (3.11) to (3.13), it can be observed that as the mode number increases, vibration 

of DWCNT tends to be more non-coaxial than coaxial.  The modes of DWCNT embedded in an 

elastic medium are governed by [41]: 

                                                      
4 2

2 21 2

2

1 nE Ia A k
a c c c

λ ρω
= + − +              (3.32) 
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By comparing Figures (3.5) – (3.7) and Figures (3.11) – (3.13), it can be seen that mode shape 

of the DWCNT is not affected by it being embedded or not being embedded in an elastic 

medium.  

 

3.4 Conclusion 

In this chapter, based on local Euler-Bernoulli beam, a finite element model was formulated for 

two cases of a double-walled carbon nanotube, embedded and not embedded in elastic medium. 

The natural frequencies obtained using this formulation are in excellent agreement with the so-

called exact and other values reported in literature. 
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4 Dynamic Stiffness Matrix Formulation: Double-Walled Carbon 

Nanotubes 

 

4.1 Introduction 

Dynamic stiffness matrix (DSM) is formulated as a single, frequency-dependant, stiffness matrix 

by transforming the coupled governing equations as a single equation and finding a closed form 

solution for it.  In this chapter, a DSM is formulated for double-walled carbon nanotubes, with 

and without surrounding elastic medium. 

 

4.2 Formulation 

The dynamic stiffness matrix for double-walled carbon nanotubes (DWCNTs) is derived using 

the same equations presented in Chapter 3 for finite element formulation (FEM), i.e., equations 

(3.5) and (3.6), duplicated here: 

''''
1 1 1 1 1 1 2 1E I w A w cw cwρ+ = −                                                 (4.1) 

''''
2 2 2 2 2 2 2 1E I w A w cw cwρ+ = − −

                                              (4.2) 

Considering simple harmonic motion and using the transformations (3.9) and (3.10), and 

eliminating the time dependency, the following equations are obtained: 

'''' 2
1 1 1 1 1 1 2 0E I W m W cW cWω− + − =                                        (4.3) 

'''' 2
2 2 2 2 2 2 1 0E I W m W cW cWω− + − =                                        (4.4) 

The c  term in (4.4) follows the rule set using (3.7) and (3.8), i.e., c  would mean c  for the case 

of a DWCNT without elastic medium and would represent ( )c k+  when the nanotubes are 

embedded in an elastic medium. Rewriting the above equations by introducing a differential 

operator, D d dx=  leads to: 

4 2
1 1 1 1 2( ) 0E I D m c W cWω− + − =                                          (4.5) 
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4 2
2 2 2 2 1( ) 0E I D m c W cWω− + − =                                         (4.6) 

Equations (4.5) and (4.6) are now combined to obtain an eighth order equation in terms of either 

𝑊𝑊1 or 𝑊𝑊2, written as: 

( )8 42 0D pD q Y+ + =                                                (4.7) 

where 𝑌𝑌 is either 𝑊𝑊1 or 𝑊𝑊2 and 

2
1 2

1 1 2 2 1 1 2 2

1
2 2

m mc cp
E I E I E I E I

ω   
   
   

= + − +  
                                  (4.8) 

4 2 2
1 2 1 2

1 1 2 2

( )
( )( )

m m cw m m c ccq
E I E I

ω − + − +=


                                      (4.9) 

It is worth noting that (4.9) reduces to (4.9.1), when c c= , i.e., carbon nanotubes not embedded 

in an elastic medium.             
4 2

1 2 1 2

1 1 2 2

( )
( )( )

m m cw m mq
E I E I

ω − +=                                             (4.9.1) 

The solution of equation (4.7) is sought in the form of 

( ) i t
j jw Y x e κ=                                                             (4.10) 

where 1, 2j = . Equation (4.7) is now written as: 

2( 2 ) 0p q Yκ κ+ + =                                                      (4.11) 

with 4Dκ = . This reduces the eighth order equation to a quadratic one, the roots of which are α
and β , defined below for two cases; 

Case 1: When 0q < : 

2p p qα = − + −  

2p p qβ = + −                                                              (4.12) 

Case 2: When 0q > : 
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2p p qα = − + −  

2p p qβ = − − −                                                            (4.13) 
 

The eight roots of the polynomial equation are 4 real and 4 imaginary roots, written as: 

, , ,i iα α α α− − ; , , ,i iβ β β β− −                                         (4.14) 

It is worth mentioning that in both cases of DWCNTs (i.e., with and without the surrounding 

elastic medium), the roots and hence the solution remains the same.  The solution of the 

governing equation is then expressed as: 

 

            (4.15) 

where Y is either 1W or 2W , and 1 8D −  are arbitrary constants.  Rewriting the solutions as: 

4 4 4 44 4 4 4
1 1 2 3 4 5 6 7 8cos( ) sin( ) cos( ) sin( )x xx xW A e A e A x A x A e A e A x A xβ βα α α α β β−−= + + + + + + +

(4.16) 

4 4 4 44 4 4 4
2 1 2 3 4 5 6 7 8cos( ) sin( ) cos( ) sin( )x xx xW B e B e B x B x B e B e B x B xβ βα α α α β β−−= + + + + + + +  

(4.17)  

where 1 8A − or 1 8B −  are two sets of constants and are related to each other through the following 

expressions, obtained by substituting (4.16) and (4.17) in either (4.3) or (4.4): 

1 1 1B Aλ=  2 1 2B Aλ=  3 1 3B Aλ=  4 1 4B Aλ=  

5 2 5B Aλ=  6 2 6B Aλ=  7 2 7B Aλ=  8 2 8B Aλ=                                  (4.18) 
 

where 1λ  and 2λ take different values for each case, as given below: 

2
1 1 1

1 1 E I m
c c
α ωλ = + −  and 

2
1 1 1

2
( )1 E I m
c c
β ωλ −

= + −                     (4.19) 

for case 1 and  

4 4 4 44 4 4 4
1 2 3 4 5 6 7 8cos( ) sin( ) os( ) sin( )x xx xY D e D e D x D x D e D e D c x D xβ βα α α α β β−−= + + + + + + +
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2
1 1 1

1 1 E I m
c c
α ωλ = + −  and 

2
1 1 1

2 1 E I m
c c
β ωλ = + −                        (4.20) 

for case 2. The modified equations (4.16) and (4.17) are re-written as: 

4 4 4 44 4 4 4
1 1 2 3 4 5 6 7 8cos( ) sin( ) os( ) sin( )x xx xW A e A e A x A x A e A e A c x A xβ βα α α α β β−−= + + + + + + +

4 4 4 44 4 4
2 1 1 2 1 3 1 4 1 5 2 6 2 7 2

4
8 2

cos( ) sin( ) os( )

sin( )

x xx xW A e A e A x A x A e A e A c x

A x

β βα αλ λ λ α λ α λ λ λ β

λ β

−−= + + + + + +

+
(4.21) 

The slopes (bending rotations of 1W  and 2W .) for each of the nanotubes are then written as: 

1
1

dW
dx

θ =  

1 1 1 1
4 4 4 41 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4
1 2 3 4 5 6

1 1 1 1
4 4 4 4

7 8

sin( ) cos( )

cos( ) sin( )

x x x xA e A e A x A x A e A e

A x A x

α α α βα α α α α α β β

β β β β

−= − − + + −

− +

  

2
2

dW
dx

θ =  

1 1 1
4 4 4

1
4

1 1 1 1 1 1 1
4 4 4 4 4 4 4

1 1 2 1 3 1 4 1 5 2

1 1 1 1 1
4 4 4 4 4

6 2 7 2 8 2

sin( ) cos( )

cos( ) sin( )

x x x

x

A e A e A x A x A e

A e A x A x

α α α

β

λα λα λα α λα α λ β

λ β λ β β λ β β

−= − − + +

− − +
         

(4.22) 

The expressions for bending moments (4.23) are written as:  

2
1

1 1 1 2

d WM E I
dx

= −  

1 1 1 1
4 4 4 41 1

4 4
1 1 1 2 3 4 5 6

1 1
4 4

7 8

( cos( ) sin( )

cos( ) sin( ))

x x x xE I A e A e A x A x A e A e

A x A x

α α β βα α α α α α β β

β β β β

− −= − + − + + +

− −

 

2
2

2 2 2 2

d WM E I
dx

= −  
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1 1 1
4 4 4

1
4

1 1
4 4

2 2 1 1 2 1 3 1 4 1 5 2

1 1
4 4

6 2 7 2 8 2

( cos( ) sin( )

cos( ) sin( ))

x x x

x

E I A e A e A x A x A e

A e A x A x

α α β

β

λ α λ α λ α α λ α α λ β

λ β λ β β λ β β

−

−

= − + − + +

+ − −
 

(4.23) 

The following expressions (4.24) represent the resulting (internal) shear forces for 1W  and 2W , 

3
1

1 1 1 3

d WS E I
dx

=  

1 1 1 1
4 4 4 43 3 3 3 3 31 1

4 4 4 4 4 4 4 4
1 1 1 2 3 4 5 6

3 31 1
4 4 4 4

7 8

( sin( ) cos( )

sin( ) cos( )

x x x xE I A e A e A x A x A e A e

A x A x

α α β βα α α α α α β β

β β β β

− −= − + − + −

+ −

 

3
2

2 2 2 3

d WS E I
dx

=  

1 1 1
4 4 4

1
4

3 3 3 3 31 1
4 4 4 4 4 4 4

2 2 1 1 2 1 3 1 4 1 5 2

3 3 31 1
4 4 4 4 4

6 2 7 2 8 2

( sin( ) cos( )

sin( ) cos( )

x x x

x

E I A e A e A x A x A e

A e A x A x

α α β

β

λα λα λα α λα α λ β

λ β λ β β λ β β

−

−

= − + − +

− + −
 

(4.24) 

These expressions are now used to generate the dynamic stiffness matrix (DSM), by enforcing 

end conditions to both the displacements, (4.21) and (4.22), and loads, (4.23) and (4.24). 

For displacements:  

At 𝑥𝑥 = 0: 

1 1Y W= ; 2 2Y W= ; 1 1T θ= ; 2 2T θ=  

At 𝑥𝑥 = 𝐿𝐿: 

3 1Y W= ; 4 2Y W= ; 3 1T θ= ; 4 2T θ=         (4.25) 

 

41 
 



For shear forces and bending moments: 

At 𝑥𝑥 = 0: 

1 1S S= ; 2 2S S= ; 1 1M M= ; 2 2M M=  

At 𝑥𝑥 = 𝐿𝐿: 

3 1S S= − ; 4 2S S= − ; 3 1M M= − ; 4 2M M= −        (4.26) 

Using (4.25) in (4.21) and (4.22), the following expressions are obtained: 

HAδ =                                                                 (4.27) 

where 

[ ]1 2 1 2 3 4 3 4
TY Y T T Y Y T Tδ = , [ ]1 2 3 4 5 6 7 8

TA A A A A A A A A= ;         

(4.28) 

1 1 1 1
4 4 4 4

1 1 1 1
4 4 4 4

1 1 1 1
4 4 4 4

1 1 1 2 2 2
1 1 1 1 1 1

4 4 4 4 4 4

1 1 1 1 1 1
4 4 4 4 4 4

1 1 1 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 1 1 1 1
4 4 4 4 4 4 4 4

1 1 1 0 1 1 1 0
0 0

0 0

0 0
H e e C S e e C S

e e C S e e C S

e e S C e e S

α α β β
α α β β

α α β β
α α β β

α α β β
α α β

λ λ λ λ λ λ

α α α β β β

λα λα λα λ β λ β λ β

λ λ λ λ λ λ λ λ

α α α α β β β β

− −

− −

− −

− −

− −
=

− − − −
1 1 1 1

4 4 4 41 1 1 1 1 1 1 1
4 4 4 4 4 4 4 4

1 1 1 1 2 2 2 2

C

e e S C e e S C

β

α α β β
α α β βλα λα λα λα λ β λ β λ β λ β− −

 
 
 
 
 
 
 
 
 
 
 
 
 
 

− − − −  
(4.29) 

where                    
1 1 1 1

4 4 4 4sin( ) cos( ) sin( ) cos( )S C S Cα α β βα α β β= = = =              (4.30) 

In a similar fashion, (4.25) is used in (4.23) and (4.24), to obtain: 

F QA=        (4.31) 

with  
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[ ]1 2 1 2 3 4 3 4
TF S S M M S S M M= ,     (4.32) 

and A already defined in (4.28) and 

1 1 1 1
4 4 4 4

1 1 1 1 1 1 1 2 1 2 1 2

2 1 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 2 1 2 1 2

2 1 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 2 1 2 1 2

0 0
0 0

0 0
0 0

Q e e S C e eα α β β
α α

τ ε τ ε τ ε τ ε τ ε τ ε
τ λ ε τ λ ε τ λ ε τ λ ε τ λ ε τ λ ε
τ η τ η τ η τ η τ η τ η
τ λη τ λη τ λη τ λ η τ λ η τ λ η

τ ε τ ε τ ε τ ε τ ε τ ε τ ε− −

− − − −
− − − −

− − − −
− − − −

= − − − −
1 1 1 1

4 4 4 4

1 1 1 1
4 4 4 4

1 1 1 1
4 4 4 4

1 2

2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2

2 1 1 2 1 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2

S C

e e S C e e S C

e e C S e e C S

e e C S e e C

β β

α α β β
α α β β

α α β β
α α β β

α α β β
α α

τ ε

τ ε τ ε τ ε τ ε τ ε τ ε τ ε τ ε

τ η τ η τ η τ η τ η τ η τ η τ η

τ λη τ λη τ λη τ λη τ λ η τ λ η τ λ η

− −

− −

− −

− − − −

− − − −

− − − 2 2 2Sβ βτ λ η

 
 
 
 
 
 
 
 
 
 
 
 
 

−  
(4.33) 

where Sα , Cα , Sβ , and Cβ  are used as defined in (4.30) and 

3 3
4 4

1 1 1 2 2 2 1 2 1 2E I E Iτ τ η α η β ε α ε β= = = = = =                       (4.34) 

In (4.28) and (4.32), the column vectors are shown in transposed form for the sake of brevity. 

The system’s dynamic stiffness matrix (DSM) is then obtained by relating the loads F with 

displacements δ , as represented in matrix form in (4.35) 

F Kδ=                                                               (4.35) 

where 
1K QH −=                                                             (4.36) 

is the required frequency-dependent, dynamic stiffness matrix for a system of double-walled 

carbon nanotubes (DWCNT), presented for the first time in this thesis.  
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4.3 Wittrick-Williams Method 

The developed dynamic stiffness matrix (DSM) can now be used to find the natural frequencies 

of the DWCNTs modeled as local Euler-Bernoulli beam by solving the system’s nonlinear 

eigenvalue problem written as: 

( ) { } 0nK wω =                                                                   (4.37)
 

where ( )K ω    is dynamic stiffness matrix derived earlier. It is to be noticed that the dynamic 

stiffness matrix is different from finite element method matrices, in the sense that the DSM 

represents both the stiffness and mass properties of the system embedded in a single frequency-

dependent one, and hence results in a nonlinear eigenvalue problem. The use of a frequency-

dependent stiffness matrix ensures that none of the natural frequencies are missed.  One of the 

most frequently used method to determine the natural frequencies, in this case, is the Wittrick-

Williams (W-W) algorithm [87,197], which uses a trial frequency and is based on Sturm 

sequence properties of a frequency-dependant stiffness matrix, is briefly explained here for 

completeness.  

The number of frequencies exceeded by the trial frequency is given by 

{ }0 sgnJ J K= +                                                                (4.38) 

where 0J represents the number of clamped-clamped natural frequency of all elements exceeded 

by the trial frequency and is given by 

0 mJ J=∑                                                                      (4.39) 

where 

( ) { }1 1 1
2

i
mJ i sg D = − − − 

                  (4.40) 

and 
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*

inti ω
π

 
=  

 
 ; { } 1sg D =  or { } 0sg D = , depending on sign of D ; i.e., { } 1sg D = , when D  is 

positive and negative when D  is negative.  D  is defined as: 

1 cosh cosD λ λ= −      (4.41) 

The { }sgn K  part in (4.38) represents the number of negative elements on the main diagonal of 

K ∆ ; i.e., ( )K ω  after upper triangulation is performed using Gauss elimination. It is to be noted 

that no row interchanges are to be performed in Gauss elimination. Bisection method is used to 

speed up the convergence of natural frequencies. 

4.4 Results and Discussion 

The ‘exact’ natural frequencies of DWCNTs modeled based on local Euler-Bernoulli beams are 

given below. The initial values are taken as given in equation (3.29) 

 

4.4.1 DWCNT modeled as local Euler-Bernoulli beams 

The natural frequencies of DWCNTs, modeled based on local Euler-Bernoulli beam, are 

presented in Table 4.1 and are compared with the exact values by Xu et al. [195] and with those 

obtained using FEM developed and reported earlier in Chapter 3 of this thesis document. It can 

be seen that the natural frequencies obtained using this method are in good agreement with the 

other methods. It is worth stating that DSM method is independent of number of elements and 

the resulting natural frequency is comparable to the natural frequency obtained using a 50-

element FEM model, hence justifying itself as ‘exact’ method.  It is to be noted that the ‘Error 1’ 

in Tables 4.1 gives the error percentage with respect to the exact values given by Xu et al. [195] 

and ‘Error 2’ is calculated with respect to the natural frequency obtained using finite element 

formulation. 
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Table 4.1 – DSM natural frequencies of DWCNTs, modeled as local Euler-Bernoulli beams 

End Conditions 
Xu et al. [195] 

1ω  

FEM 

1ω  
DSM 
ω  

Error1 (%) 
DSM vs. [195] 

Error2 (%)  
DSM vs. FEM 

Simply Supported 4.673E+11 4.67289E+11 4.6E+11 1.6% 1.6% 

Clamped-Clamped 1.058E+12 1.049E+12 1.04E+12 0.9% 1.7% 

Clamped-Free 1.66501E+11 1.67186E+11 1.6704E+11 0.1% -0.3% 

 

4.4.2 DWCNTs modeled as local Euler-Bernoulli beam, embedded in an elastic medium 

The natural frequencies for DWCNT modeled as local Euler-Bernoulli beam embedded in an 

elastic medium are tabulated in Table 4.2. The natural frequencies obtained using the Dynamic 

Stiffness Matrix (DSM) are compared with those obtained using exact and finite element 

formulations and the differences are calculated.  As can be seen from Table 4.2, the percentage 

error in this case is always less than 1%.  Once again, the results achieved using a single element 

DSM model are comparable with those obtained using a mesh of around 50 conventional FEM 

elements. 
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Table 4.2 – DSM natural frequencies of TWCNTs, modeled as local Euler-Bernoulli beam, 

embedded in an elastic medium 

End 

Conditions 
k  

Xu et al. [195] 

1ω  (1012rad/s) 
FEM 1ω  

(1012rad/s) 

DSMω  
(1012rad/s) 

Error 1 
DSM/[195] 

Error 2 
DSM/FEM 

Simply 

Supported 

𝑘𝑘 𝑐𝑐⁄ = 0.1 1.256 1.256 1.25 0.50% 0.50% 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 0.468 0.468 0.468 0.16% 0.16% 

𝑘𝑘 𝑐𝑐⁄ = 100 6.404 6.404 6.446 -0.66% -0.66% 

𝑘𝑘 𝑐𝑐⁄ = 1 3.507 3.506 3.481 0.73% 0.73% 

Clamped 

Clamped 

𝑘𝑘 𝑐𝑐⁄ = 0.1 1.570 1.570 1.570 0.02% 0.02% 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 1.058 1.058 1.058 0.04% 0.04% 

𝑘𝑘 𝑐𝑐⁄ = 100 6.398 6.431 6.397 0.52% 0.01% 

𝑘𝑘 𝑐𝑐⁄ = 100 6.010 6.010 6.010 -0.00% 0.00% 

Clamped 

Free 

𝑘𝑘 𝑐𝑐⁄ = 1 3.483 3.483 3.480 0.10% 0.10% 

𝑘𝑘 𝑐𝑐⁄ = 0.1 1.179 1.179 1.167 0.99% 0.99% 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 7.876 7.876 7.875 0.02% 0.02% 

𝑘𝑘 𝑐𝑐⁄ = 100 6.398 6.398 6.397 0.01% 0.01% 

 

4.5 Conclusion 

Dynamic Stiffness Matrix (DSM) formulation was developed and used to carry out the free 

vibration analysis of double-walled carbon nanotubes with and without surrounding elastic 

medium. The nonlinear eigenvalue problem obtained from the frequency-dependent stiffness 

matrix was solved using Wittrick-Williams (W-W) algorithm. The natural frequency results for 

different system’s boundary conditions matched those obtained from the conventional FEM and 

values presented in literature.  
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5 Finite Element Formulation – Triple-Walled Carbon Nanotubes 

 

5.1 Introduction 

Studying triple-walled carbon nanotubes offer a great insight into multiwall CNTs with number 

of walls greater than two. This case and relevant aspects have rarely been studied and most of the 

research works published in the open literature stops with the double-walled configurations. In 

this chapter, the conventional finite element formulation for the free vibration analysis of triple-

walled carbon nanotubes, using Galerkin weighted residual approach, is developed and the 

corresponding frequency results are studied. Schematic figure for a TWCNT is given in Figure 

5.1. 

 

Figure 5.1 - Schematic representation of TWCNT 

 

5.2 Formulation 

In what follows, triple-walled carbon nanotubes (TWCNTs) are also modeled as local Euler-

Bernoulli beams with van der Waals forces providing the coupling between individual beams. 
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Using the equations (3.1) to (3.4) defined earlier, the governing equations for triple-walled 

carbon nanotubes are defined as [198]: 
''''

1 1 1 1 1 1 1 2 1 1E I w A w c w c wρ+ = −                                           (5.1) 

''''
2 2 2 2 2 2 2 3 2 2 1 2 1 1E I w A w c w c w c w c wρ+ = − − +                            (5.2) 

''''
3 3 3 3 3 3 2 3 2 2ˆE I w A w c w c wρ+ = − +                                      (5.3) 

where the derivatives with respect to length of the beam and time are denoted by prime (‘) and 

dot (.), respectively. The subscripts 1, 2, and 3 represent the inner, middle and outer carbon 

nanotubes, respectively. The term 𝑐̂𝑐 in equation (5.3) follows equations (3.7) and (3.8), and can 

be considered for TWCNTs with and without the surrounding elastic medium. Elimination of 

time dependency in (5.1), (5.2) and (5.3) is made by assuming simple harmonic motion and 

using the following transformations, similar to (3.9) and (3.10).  

( )1 1, i tw x t W e ω=                                                      (5.4) 

( )2 2, i tw x t W e ω=                                                     (5.5) 

( )3 3, i tw x t W e ω=                                                     (5.6) 

where the transverse displacements of inner, middle and outer tubes, respectively, are 

represented by 𝑊𝑊1, 𝑊𝑊2 and 𝑊𝑊3, whereas 𝜔𝜔 and 𝑡𝑡 stand for the circular frequency and time. Using 

these transformations in governing equations (5.1) – (5.3) leads to the following form of the 

governing equations: 

( )'''' 2
1 1 1 1 1 1 1 1 2 0E I W c A W c Wρ ω+ − − =                                  (5.7) 

( )'''' 2
2 2 1 2 2 2 2 2 3 1 2 0E I W c c A W c W c Wρ ω+ + − − − =                       (5.8) 

( )'''' 2
3 3 2 3 3 3 2 2ˆ 0E I W c A W c Wρ ω+ − − =                                 (5.9) 
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As can be seen from the above equations, both the inner and outer tubes are coupled with the 

middle one, as represented by the last terms in (5.7) and (5.9).  Further, the middle tube has two 

coupling terms as it is coupled with both the inner and outer tube, as seen in equation (5.8).  

Representing 𝑊𝑊𝑗𝑗 (j=1,2,3) as the amplitude of displacements, and δW1,2,3 as the weighting 

functions on the sets of equations, as Galerkin weighted residual method suggests, the integral 

form of (5.7) – (5.9) is developed as shown below. 

( )( )'''' 2
1 1 1 1 1 1 1 1 1 1 1 2 1

0

0
L

W E I W W c A W W c W W dxδ ρ ω δ δ= + − − =∫                 (5.10) 

( )( )'''' 2
2 2 2 2 2 1 2 2 2 2 2 2 3 2 1 2 2

0

0
L

W E I W W c c A W W c W W c W W dxδ ρ ω δ δ δ= + + − − − =∫  (5.11) 

( )( )'''' 2
3 3 3 3 2 3 3 3 3 2 2 3

0

ˆ 0
L

W E I W W c A W W c W W dxδ ρ ω δ δ= + − − =∫               (5.12) 

where the subscripts (1, 2, and 3) represent the inner, middle and outer carbon nanotubes, 

respectively, both for transverse displacements and weighting functions, as described earlier. The 

weak integral forms for (5.10) – (5.12) is obtained by integrating them by parts, as shown 

below. 

( )( )'' '' 2 '' '' '''
1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 0[( ) ]LW E I W W c A W W c W W dx E I W Wδ ρ ω δ δ δ= + − − + '' '

1 1 1 1 0[( ) ]LE I W Wδ−
0

0
L

=∫  

      (5.13) 

( )'' '' 2 '' '' '''
2 2 2 2 2 1 2 2 2 2 2 2 3 2 1 2 2 2 2 2 2 0

0

( ) [( ) ]
L

LW E I W W c c A W W c W W c W W dx E I W Wδ ρ ω δ δ δ δ= + + − − − +∫
'' '

2 2 2 2 0[( ) ]LE I W Wδ− 0=

 

(5.14) 

( )( )'' '' 2 '' '' '''
3 3 3 3 3 2 3 3 3 3 2 2 3 3 3 3 3 0[( ) ]LW E I W W c A W W c W W dx E I W Wδ ρ ω δ δ δ= + − − + '' '

3 3 3 1 0[( ) ]LE I W Wδ−
0

0
L

=∫
(5.15) 

The strikethrough terms in the above equations represent the boundary terms going to zero with 

the application of the system’s boundary conditions. The system is now discretized using a 
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number (k) of six-node line elements, with 2 degrees-of-freedom per node, as opposed to 4-node 

elements for double-walled CNT. The discretized, i.e., element integral equations are written as: 

1

'' '' '' 2
1 1 1 1 1 1 1 1 1 1 20 0 0

( ) ( )
k k kl l lk

wW W E I W dx W c A W W cWδ δ ρ ω δ= + − −∫ ∫ ∫                    (5.16)
 

2

'' '' '' 2
2 2 2 2 2 1 2 2 2 2 2 2 3 2 1 20 0 0 0
( ) ( )

k k k kl l l lk
wW W E I W dx W c c A W W c W W c Wδ δ ρ ω δ δ= + + − − −∫ ∫ ∫ ∫  (5.17)

 

3

'' '' '' 2
3 3 3 3 1 2 3 3 3 3 2 20 0 0

( ) ( )
k k kl l lk

wW W E I W dx W c A W W c Wδ δ ρ ω δ= + − −∫ ∫ ∫


                   (5.18)
 

 

For each carbon nanotube represented in equations (5.16) – (5.18), Hermite type polynomial 

approximations are used to express approximate lateral displacements in terms of nodal values. 

The stiffness, mass, semi-mass and coupling matrices are similar to ones represented in equation 

(3.24). For a 2 DOF per node element, one follows the expressions (3.19) – (3.23) to obtain the 

uncoupled matrices for triple-walled carbon nanotubes given by equations (5.19) - (5.21).  

1

2 2
1 1 1 1 1 1 1 1 1 1 1 1

3 3 3 3

2 2 3 2
111 1 1 1 1 1 1 1

3 3 3
11

121 1 1 1
3 3

12
2

1 1
3

12 6 12 6 156 22 54 13
420 420 420 420

4 6 2 4 13 3
420 420

12 6

4

k
w

E I lE I E I lE I m l l m m l l m
l l l l

wl E I lE I l E I l m l m
l l lW

wE I lE ISym
l l

l E I
l

θ

θ

− − 
 
 

 − − 
   = +  −  

    
  
 

3
111

11
2

121 1

12
3

1

2 2
11

11

12

12
2

420
156 22

420 420
4
420

156 22 54 13
420 420 420 420

4 13 3
420 420 420

156 22
420 420

4
420

wl m

wm l l mSym

l m

c lc c lc

wl c lc l c

wc lcSym

l c

θ

θ

θ

θ

 
 
 

  
     

−  
    
 
 
 

− 
 
 

− 
 

+ 
− 

 
 
  
 

2 2
2 2

21

21

22

22
2

156 22 54 13
420 420 420 420

4 13 3
420 420 420

156 22
420 420

4
420

c lc c lc

wl c lc l c

wc lcSym

l c

θ

θ

− 
 
 

  − 
       −     −    

        
  
 

 (5.19) 
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2

2 2
2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3

2 2 3 2
212 2 2 2 2 2 2 2

3 3 3
21

222 2 2 2
3 3

22
2

2 2
3

12 6 12 6 156 22 54 13
420 420 420 420

4 6 2 4 13 3
420 420

12 6

4

k
w

E I lE I E I lE I m l l m m l l m
l l l l

wl E I lE I l E I l m l m
l l lW

wE I lE ISym
l l

l E I
l

θ

θ

− − 
 
 

 − − 
   = +  −  

    
  
 

3
212

21
2
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22
3

2
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2 2
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2
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        
  
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     −   − −   

      
    
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 
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  (5.20) 
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          
    

 
             (5.21) 

 

The elemental stiffness and mass matrices of the TWCNT are represented as [𝑘𝑘𝑡𝑡𝑡𝑡] and [𝑚𝑚𝑡𝑡𝑡𝑡], 

respectively, and have been presented in Appendix II.  The linear eigenvalue problem, 

represented by (5.22) below, is obtained by assembling the element matrices and enforcing the 

system’s boundary conditions, and is solved using a MATLAB® code. 

( )2 0tw twdet K Mω =−                                                              (5.22)
 

where 𝐾𝐾𝑡𝑡𝑡𝑡 and 𝑀𝑀𝑡𝑡𝑡𝑡 are the system’s global (overall) stiffness and mass matrices, respectively. 

5.3 Results and Discussion 

In this section, the application of the FEM formulation presented above is demonstrated through 

the free vibration analysis of illustrative TWCNT examples, where the following geometric and 

material properties and dimensions, reported by Elishakoff et al. [198], are used: 
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𝐿𝐿 = 14𝑒𝑒 − 9, 𝜌𝜌1 = 𝜌𝜌2 = 𝜌𝜌3 = 2.3
𝑔𝑔
𝑐𝑐𝑐𝑐3, 

𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸3 = 1 𝑇𝑇𝑇𝑇𝑇𝑇, 𝑐𝑐1 = 69.43 𝐺𝐺𝐺𝐺𝐺𝐺;  𝑐𝑐2 = 138.86 𝐺𝐺𝐺𝐺𝐺𝐺 

𝑟𝑟1,𝑖𝑖 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.18𝑛𝑛𝑛𝑛, 𝑟𝑟1,𝑜𝑜 (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.52𝑛𝑛𝑛𝑛, 

𝑟𝑟2,𝑖𝑖 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.53𝑛𝑛𝑛𝑛, 𝑟𝑟2,𝑜𝑜 (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.87𝑛𝑛𝑛𝑛 

𝑟𝑟3,𝑖𝑖 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.88𝑛𝑛𝑛𝑛, 𝑟𝑟3,𝑜𝑜 (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 1.22𝑛𝑛𝑛𝑛 

(5.23) 

5.3.1 Triple-walled Carbon Nanotubes, modeled as local Euler-Bernoulli beam 

The natural frequencies of TWCNTs for three different boundary conditions are given in Table 

5.1. This study uses the Finite Element Method (FEM).  The convergence is studied by 

increasing the number of elements and plotting the error percentage either going to zero or 

becoming stable. As far as the author’s knowledge goes, there are no exact methods present for 

validation of the natural frequencies of TWCNTs and so this study compared the first natural 

frequency of the DWCNTs, found earlier in Chapter 3. The ratio of natural frequency of 

TWCNTs to that of DWCNTs was found to be constant for all boundary conditions, hence 

validating the formulation of TWCNTs. 

Even though the convergence is achieved for a courser mesh, this study considers the 

natural frequencies for 30-element model. The figures following the Table 5.1 graph the 

convergence plot between the number of elements and error percentage for the three beams of 

the TWCNTs, with all the boundary conditions. 

Table 5.2 compares the nondimentional natural frequencies of individual tubes of 

TWCNT, with those of TWCNT, obtained using the single beam model, as explained by 

Equation (3.29), which involves summing up of the geometric and material properties of 

individual tubes and representing them as ,I A  and E  respectively, as considered by Yoon et al. 

[41]. The nondimentional natural frequencies are obtained using (3.30) given in Chapter 3. 
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Table 5.1 – FEM natural Frequencies of TWCNTs, modeled as local Euler-Bernoulli beam 

Boundary Conditions 𝜔𝜔1 
(1012 rad/s) 

𝜔𝜔2 
(1012 rad/s) 

𝜔𝜔3 
(1012 rad/s) 

Simply Supported 0.647 2.531 5.038 

Clamped-Clamped 1.459 3.793 6.049 

Clamped-Free 0.231 1.438 3.795 

 

Table 5.2 – Comparison of the non-dimensionalized FEM natural frequencies of a SWCNT with 

those of TWCNT, both modeled as local Euler-Bernoulli beam 

Boundary 
Conditions 

TWCNT 
(Inner Tube) 

TWCNT 
(Middle Tube) 

TWCNT 
(Outer Tube) 

Single Beam 
Model 

11ω  12ω  13ω  ω  

Simply-Supported 22.1369 109.8748 120.5045 9.8696 

Clamped-Clamped 49.8699 111.6264 121.3185 22.3733 

Clamped-Free 7.8963 109.5073 120.3333 3.5160 

 
 

In Table 5.1, 𝜔𝜔1, 𝜔𝜔2, and 𝜔𝜔3 represent the first three natural frequencies of the system and 𝜔𝜔11, 

𝜔𝜔12 and 𝜔𝜔13 in Table 5.2 represent the nondimentionalized natural frequency of inner, middle 

and outer tube, respectively. The convergence plots are graphed in Figures (5.2) - (5.4), which 

plot the number of elements on x-axis and the error percentage on y-axis. 
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Figure 5.2 – Percentage error vs. the number of elements – SS – Up to 30 FEM elements 

 

Figure 5.3 – Percentage error vs. the number of elements – CC – Up to 30 FEM elements 

 

Figure 5.4 – Percentage error vs. the number of elements – CF – Up to 30 FEM elements 
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The mode shapes for the free vibration of a TWCNT are given in Figures (5.5) – (5.7). 

 
Mode 1       Mode 2 

Figure 5.5 – First two mode shapes of TWCNT modeled as local Euler-Bernoulli beam – simply 

supported boundary condition - FEM 

 
Mode 1         Mode 2 

Figure 5.6 – First two mode shapes of TWCNT modeled as local Euler-Bernoulli beam – 

clamped-free boundary condition - FEM 
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Mode 1                   Mode 2 

Figure 5.7 – First two mode shapes of TWCNT modeled as local Euler-Bernoulli beam – 

clamped-clamped boundary condition – FEM 

 

5.3.2 Triple-walled Carbon Nanotubes modeled as local Euler-Bernoulli beam, embedded 

in an elastic medium 

The natural frequencies of a TWCNT embedded in an elastic medium are presented in Table 5.3. 

In addition to 𝑘𝑘 𝑐𝑐⁄ = 1 ratio, three other values are taken to represent the effect of various 

stiffness values of surrounding medium on the vibration response of the TWCNT; i.e., the 𝑘𝑘 𝑐𝑐⁄  is 

either     ≫ 1, ≪ 1 or < 1.  The natural frequencies are evaluated using a 30-element FEM 

model and convergence plots are presented in Figures (5.8) – (5.10). The convergence plots are 

graphed by taking the error percentages on the y-axis and number of elements on the x-axis. 

The figures following Table 5.3 are plotted to show the convergence of the natural 

frequencies presented in it. The graphs plot the variation of error percentage when the number of 

elements are increased from 5 to 30 with a step of 5 elements each. It can be seen that the values 

converge for 30 elements for all the boundary conditions. 
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Table 5.3 – FEM natural frequencies of TWCNTs modeled as local Euler-Bernoulli beam 

embedded in an elastic medium: 

Boundary 
Conditions 𝑘𝑘 𝑐𝑐⁄  ratio 1ω  

(1012rad/s) 
2ω  

(1012rad/s) 
3ω  

(1012rad/s) 

Simply 
Supported 

𝑘𝑘 𝑐𝑐⁄ = 100 4.495 4.737 5.606 
𝑘𝑘 𝑐𝑐⁄ = 1 3.139 3.737 5.261 
𝑘𝑘 𝑐𝑐⁄ = 0.1 1.308 2.735 5.071 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 0.649 2.531 5.038 

Clamped-
Clamped 

𝑘𝑘 𝑐𝑐⁄ = 100 4.564 5.074 6.323 
𝑘𝑘 𝑐𝑐⁄ = 1 3.321 4.413 6.179 
𝑘𝑘 𝑐𝑐⁄ = 0.1 1.834 3.891 6.130 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 1.460 3.794 6.049 

Clamped-Free 

𝑘𝑘 𝑐𝑐⁄ = 100 4.480 4.561 5.075 
𝑘𝑘 𝑐𝑐⁄ = 1 3.098 3.315 4.414 
𝑘𝑘 𝑐𝑐⁄ = 0.1 1.165 1.817 3.892 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 0.234 1.438 3.794 

 

 

Figure 5.8 – Percentage error vs. the number of elements – embedded SS – 30 FEM elements 
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Figure 5.9 – Percentage error vs. the number of elements – embedded CC – 30 FEM elements 

 

Figure 5.10 – Percentage error vs. the number of elements – embedded CF – 30 FEM elements 

The mode shapes for all the boundary conditions for k/c = 0.1 are presented in Figures (5.11) - 

(5.13). Mode shapes for other cases are presented in Appendix A7. 
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Mode 1                    Mode 2 

Figure 5.11 – First two mode shapes of TWCNT, modeled as local Euler-Bernoulli beam, 

embedded in elastic medium (k/c = 0.1) – simply supported boundary condition - FEM 

 

 
Mode 1                   Mode 2 

Figure 5.12 – First two mode shapes of TWCNT, modeled as local Euler-Bernoulli beam, 

embedded in elastic medium (k/c = 0.1) – clamped-clamped boundary condition – FEM 
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Mode 1                    Mode 2 

Figure 5.13 – First two mode shapes of TWCNT, modeled as local Euler-Bernoulli beam, 

embedded in elastic medium (k/c = 0.1) – clamped-free boundary condition – FEM 

 

5.4 Conclusion 

Finite element formulation was applied to triple-walled carbon nanotubes (TWCNTs), both with 

and without various (k/c) surrounding elastic medium matrix. The resulting linear eigenvalue 

problem is solved using a program code developed in MATLAB®. In addition, an investigation 

into the mode shapes for all the boundary conditions showed that they do not change with the 

stiffness of surrounding elastic medium matrix. 
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6 Nonlocal Finite Element Formulation 
 

6.1 Introduction 

The nonlocal elasticity presented by Eringen [23] accounts for small scale effects by taking the 

stress at one point as a reference to be a function of strain at all points in the field. The small 

scale effect parameter for carbon nanotubes is presented in the terms of a constant value, which 

is a product of internal characteristic length represented as a , and a material specific constant 

value, 0e . Zhang et al. [56] used the ratio of theoretical local result and experimental molecular 

mechanics simulation to arrive at a certain value of 0 0.82e ≈ . The characteristic length, a , is 

taken to be 0.142nm  i.e., the value of C-C bond length. The nonlocal parameter or small scale 

effect parameter is given as: 

0e aµ =                                                                          (6.1) 

Hooke’s law is modified using the theory of nonlocal elasticity, written as [61]: 

2
2

2( ) E
x
σσ µ ε∂

− =
∂

                                                   (6.2) 

where σ is axial stress and ε is the axial strain, written for small deflections as [56] 

2

2

yy
x

ε ∂
= −

∂
                    (6.3) 

Using (6.2) and (6.3), along with shear and bending moment expressions for a beam, the 

governing equation for a nonlocal Euler-Bernoulli beam is derived, as briefly discussed in the 

following section. 

6.2 Formulation 

The formulation of finite element model for nonlocal Euler-Bernoulli beam, along with that of a 

classical plate, have been presented by Phadikar and Pradhan [199].  This section will exploit the 
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same method to derive the mass and stiffness matrices for a single carbon nanotube modelled as 

a nonlocal Euler-Bernoulli beam.  The FEM formulations will then be extended to nonlocal 

double- and tripled-walled CNTs, which, to the best of author’s knowledge, have not been 

reported in the open literature.  It can be seen from previous local CNTs finite element 

formulations that the presence of coupling terms would not affect the mass matrix, but rather the 

stiffness.  However, as it will be seen later in this chapter, the small scale effect factor only 

influences the mass matrix. The governing equation of a nonlocal Euler-Bernoulli beam, as 

reported in [200], is written as:  

4 2
2 2 2

4 2 0w wEI m w m
x x

ω µ ω∂ ∂
− + =

∂ ∂
                                                      (6.4)

 

where E  is the Young’s modulus, I  is the cross-sectional 2nd area moment of inertia, m  is the 

mass per unit length (ρA), ω  is the natural frequency, and 0e aµ = , as defined earlier.  The 

moment and shear forces of a nonlocal Euler-Bernoulli beam are given by: 

2
2 2

2

wM m EI
x

µ ω ∂
= − −

∂
                                                                  (6.5)

 

2 3
2 2

2 3

w wV EI
x x

µ ω ∂ ∂
= − −

∂ ∂
                                                             (6.6)

 

After deriving the functional using calculus of variation, and applying integration by parts to the 

third term, following equation is obtained [199]: 

[ ]
2 2 2

2 2 2
2 2 2 00

0

0
l

l ld W d d W dEI m m W dx V M
dx dx dx dx

χ χµ ω χ ω χ χ
   + − − + =     

∫        (6.7)
 

where χ  is the weighting function and W is the transverse displacement, The nodal degrees of 

freedom are taken as iu and the corresponding shape functions, Hermite cubic interpolation 

functions, are represented by iN  thus 
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4

1
( ) i iW x N u=∑                                                                (6.8)

 

where iN ( i =1,2,3,4) are given by 

( )3 2 3
1 3

1 2 3N x x L L
L

= − +  

( )3 2
2 3

1 2N x L x L xL
L

= − +  

( )3 2
3 3

1 2 3N x x L
L

= − +  

( )3 2 2
4 3

1N x L x L
L

= −                                                     (6.9) 

and iu is given as 

( )2 1 2, ,n n
dWu u W
dx−

 = − 
 

                                                      (6.10)
 

Following the same FEM formulation as presented in earlier chapters of this thesis document, 

and taking into account the small scale effect factor he element mass and stiffness matrices, 

represented as k  and m , and are derived and are presented below: 

2 2

3

2 2

12 6 12 6
6 4 6 2
12 6 12 6
6 2 6 4

l l
l l l lEIk

l ll
l l l l

− 
 − =
 − − −
 − 

                                          (6.11) 

2 2 2 2

2 2 2 2

156 22 54 13 36 3 36 3
22 4 13 3 33 4 3
54 13 156 22 36 3 36 3420 30
13 3 22 4 3 33 4

l l l l
l l l l l l l lml mm

l l l ll
l l l l l l l l

µ
− − − −   

   − − −   = −
   − −
   − − − − −   

              (6.12) 
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It is to be noticed that equation (6.11) is similar to stiffness terms in equations (3.24) 

and (3.25), with the only difference of subscripts.  However, when compared to previous 

nonlocal mass matrices, expression (6.12) has been modified to incorporate the small scale 

effects, appearing as a second matrix. Therefore, replacement of mass terms in both equations 

(3.24) and (3.25) with (6.12) would permit the local Euler-Bernoulli beam double-walled 

carbon nanotubes formulation to take the small scale effect into consideration, hence 

transforming into nonlocal Euler-Bernoulli beam double-walled carbon nanotubes.  The element 

matrix equations, with the additional matrix terms representing the small scale factor, are then 

written as:  

1

2 2
1 1 1 1 1 1 1 1 1 1 1 1

3 3 3 3

2 2 3 2
111 1 1 1 1 1 1 1

3 3 3
11

121 1 1 1
3 3

12
2

1 1

12 6 12 6 156 22 54 13
420 420 420 420

4 6 2 4 13 3
420 420

12 6

4

k
w

E I lE I E I lE I m l l m m l l m
l l l l

wl E I lE I l E I l m l m l
l l lW

wE I lE ISym
l l

l E I
l

θ

θ

− − 
 
 

 − − 
   = +  −  

    
  
 

3
111

11
2

121 1

12
3

1

11
2 2

111

12
2 2

12

420
156 22

420 420
4
420

156 22 54
420 420 420

36 3 36 3
33 4 3
36 3 36 330
3 33 4

wm

wm l l mSym

l m

c lc c

wl l
l l l lm

wl ll
l l l l

θ

θ

θµ

θ

 
 
 

  
     

−  
    
 
 
 

− − −   
   −− −  − +  −  

  −− −  

2
2 2

11
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2 2
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4 13 3
420 420 420
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420 420

4
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156 22 54 13
420 420 420 420
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c lc c lc
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θ

θ
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 
 

 − 
   

  −  
    
  
 
− 

 
 
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 

−
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


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w
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θ

θ

 
 
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  
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            (6.13) 
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The same also stands valid for mass terms in equations (5.19) - (5.21) of triple-walled carbon 

nanotubes formulation, whose integral matrices are not presented here for brevity.  

2

2 2
2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3

2 2 3 2
212 2 2 2 2 2 2 2
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21
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

(6.14) 

Once again, assembly of element matrices and application of boundary conditions leads to the 

system’s linear eigenvalue problem (6.15), which is then solved to extract the system’s natural 

frequencies and mode.  

2det( ) 0K Mω− =                                                              (6.15) 
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6.3 Results and Discussion 

The nonlocal FEM model that is developed in this chapter is demonstrated by using the same 

geometric and material properties given in [198] with the value of nonlocal parameter 0 0.82e = , 

is given in equation (6.16) as: 

𝐿𝐿 = 14𝑒𝑒 − 9, 𝜌𝜌1 = 𝜌𝜌2 = 𝜌𝜌3 = 2.3
𝑔𝑔
𝑐𝑐𝑐𝑐3, 

𝐸𝐸1 = 𝐸𝐸2 = 𝐸𝐸3 = 1 𝑇𝑇𝑇𝑇𝑇𝑇, 𝑐𝑐1 = 69.43 𝐺𝐺𝐺𝐺𝐺𝐺;  𝑐𝑐2 = 138.86 𝐺𝐺𝐺𝐺𝐺𝐺 

𝑟𝑟1,𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.18𝑛𝑛𝑛𝑛, 𝑟𝑟1,𝑜𝑜(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.52𝑛𝑛𝑛𝑛, 

𝑟𝑟2,𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.53𝑛𝑛𝑛𝑛, 𝑟𝑟2,𝑜𝑜(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.87𝑛𝑛𝑛𝑛 

𝑟𝑟3,𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0.88𝑛𝑛𝑛𝑛, 𝑟𝑟3,𝑜𝑜(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 1.22𝑛𝑛𝑛𝑛 

 

(6.16) 

6.3.1 DWCNT modeled as nonlocal Euler-Bernoulli beam 

The natural frequencies of a double-walled CNT, modelled as nonlocal Euler-Bernoulli beam, 

for different end conditions are given in Table 6.1.  The frequency values are compared with the 

exact values reported by Zhang et al. [56].  It can be seen that the values from the present FEM 

study are in excellent agreement with the exact values. 

As it can be observed in the figures following Table 6.1, the frequency values’ 

convergence is practically achieved even using a course mesh of 10-20 elements, however, the 

convergence graphs shown in Figs. (6.1) - (6.3) have been produced for up to 50 FEM elements. 
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Table 6.1 – FEM natural Frequencies of DWCNTs modeled as nonlocal Euler-Bernoulli beam 

Boundary Conditions Zhang et al. [56] 
(1012 rad/s) 

Present Study 
(1012 rad/s) 

Error 
Percentage 

Simply Supported 

 

1ω  
0.467 0.467 0.03 

2ω  7.885 7.885 0.00 

Clamped-Clamped 
1ω  1.056 1.057 0.08 

2ω  7.924 7.924 0.00 

Clamped-Free 
1ω  0.166 0.166 0.02 

2ω  7.876 7.876 0.00 

 

 

Figure 6.1 – Percentage error vs. the number of elements – SS – Up to 50 FEM elements 

 

Figure 6.2 – Percentage error vs. the number of elements – CF – Up to 40 FEM elements 
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Figure 6.3 – Percentage error vs. the number of elements – CC – Up to 50 FEM elements 

The first two mode shapes of double-walled carbon nanotubes, modelled as nonlocal Euler-

Bernoulli beam, and for different boundary conditions, are given in Figures (6.4) - (6.6). 

 
      Mode 1            Mode 2 

Figure 6.4 - First two mode shapes of DWCNT modeled as nonlocal Euler-Bernoulli – clamped 

free boundary condition - FEM 
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      Mode 1            Mode 2 

Figure 6.5 - First two mode shapes of DWCNT modeled as nonlocal Euler-Bernoulli – clamped-

clamped boundary condition - FEM 

 
Mode 1                   Mode 2 

Figure 6.6 - First two mode shapes of DWCNT modeled as nonlocal Euler-Bernoulli – simply 

supported boundary condition – FEM 

 

6.3.2 DWCNT modeled as nonlocal Euler-Bernoulli beam embedded in an elastic medium 

For the case of double walled carbon nanotubes, modelled as nonlocal Euler-Bernoulli beam, and 

embedded in an elastic medium, to the best of author’s knowledge no exact values are reported 

in the open literature.  Therefore, the present study relies on convergence of the natural 

frequencies obtained using the finite element method (FEM) and tabulated in Table 6.2.   
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Considering equation (3.8), ĉ c k= + , where k  is the coefficient of the elastic medium 

surrounding the carbon nanotube, four cases are considered to represent the elastic medium 

surrounding the carbon nanotubes; i.e., ratio 𝑘𝑘 𝑐𝑐⁄ = 100, 1, 0.1, and 0.0001. 

 

Table 6.2 – FEM natural frequencies of DWCNTs modeled as nonlocal Euler-Bernoulli beam 

embedded in an elastic medium 

Boundary Conditions 𝑘𝑘 𝑐𝑐⁄  ratio 
11ω  

(1012rad/s) 
12ω  

(1012rad/s) 

Simply Supported 

𝑘𝑘 𝑐𝑐⁄ = 100 6.404 45.704 
𝑘𝑘 𝑐𝑐⁄ = 1 3.506 8.412 
𝑘𝑘 𝑐𝑐⁄ = 0.1 1.256 7.929 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 0.468 7.885 

Clamped-Clamped 

𝑘𝑘 𝑐𝑐⁄ = 100 6.431 45.717 
𝑘𝑘 𝑐𝑐⁄ = 1 3.613 8.458 
𝑘𝑘 𝑐𝑐⁄ = 0.1 1.57 7.97 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 1.058 7.925 

Clamped-Free 

𝑘𝑘 𝑐𝑐⁄ = 100 6.399 45.702 
𝑘𝑘 𝑐𝑐⁄ = 1 3.483 8.403 
𝑘𝑘 𝑐𝑐⁄ = 0.1 1.179 7.921 

𝑘𝑘 𝑐𝑐⁄ = 0.0001 0.17 7.877 
 

It can be noticed from Table 6.2 that the non-coaxial natural frequency for the 𝑘𝑘 𝑐𝑐⁄  = 100 is the 

highest, in the order of the 1013, owing to the stiffer medium around the carbon nanotube, as it 

approaches the non-coaxial behavior. It can also be observed that the natural frequency decreases 

with the decrease in the value of 𝑘𝑘 𝑐𝑐⁄ , for all boundary conditions. The convergence graphs for 

𝑘𝑘 𝑐𝑐⁄  = 1 have been plotted in Figures (6.7) - (6.9), to present the convergence obtained for the 

values tabulated above. Once again, as it can be observed, the convergence is practically 

achieved even using a course mesh of 20-30 elements, however, the convergence graphs have 

been produced for up to 50 FEM elements. 
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Figure 6.7 – Percentage error vs. the number of elements – embedded SS – Up to 50 FEM 

elements 

 

Figure 6.8 – Percentage error vs. the number of elements –embedded CC – Up to 50 FEM 

elements 

 

Figure 6.9 – Percentage error vs. the number of elements –embedded CF – Up to 50 FEM 

elements 
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The mode shapes of double-walled CNTs, modelled as nonlocal Euler-Bernoulli beam, and 

embedded in an elastic medium with 𝑘𝑘 𝑐𝑐⁄  = 1, are given below in Figures (6.10) and (6.11). 

 

Mode 1                               Mode 2 

Figure 6.10 - First two mode shapes of DWCNT modeled as nonlocal Euler-Bernoulli, embedded 

in elastic medium (k/c = 1) – simply supported boundary condition - FEM 

 
Mode 1                          Mode 2 

Figure 6.11 - First two mode shapes of DWCNT modeled as nonlocal Euler-Bernoulli, embedded 

in elastic medium (k/c = 1) – clamped-clamped boundary condition - FEM 
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Mode 1                    Mode 2 

Figure 6.12 - First two mode shapes of DWCNT modeled as nonlocal Euler-Bernoulli, embedded 

in elastic medium (k/c = 1) – clamped-free boundary condition - FEM 

6.3.3 TWCNT modeled as nonlocal Euler-Bernoulli beam 

The natural frequencies of the triple-walled CNTs modelled as nonlocal Euler-Bernoulli beam 

are shown in Table 6.3, where 1ω , 2ω  and 3ω  represent the first three natural frequencies of a 

TWCNT.  Once again, as it can be observed, the frequency values’ convergence has been 

practically achieved even using a course mesh of 20-30 elements, however, the convergence 

graphs shown in Figs. (6.13) to (6.15), for three different boundary conditions and each of 

TWCNT beams, have been produced for up to 50 FEM elements. 

Table 6.3 – FEM natural frequencies of TWCNTs modeled as nonlocal Euler-Bernoulli beam 

Boundary Conditions 1ω  
(1012rad/s) 

2ω  
(1012rad/s) 

3ω  
(1012rad/s) 

Simply Supported 0.648 2.531 5.038 
Clamped-Clamped 1.460 3.793 6.049 

Clamped-Free 0.231 1.438 3.795 
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Figure 6.13 – Percentage error vs. the number of elements – SS – Up to 50 FEM elements 

 
Figure 6.14 – Percentage error vs. the number of elements – CC – Up to 50 FEM elements 

 
Figure 6.15 – Percentage error vs. the number of elements – CF – Up to 40 FEM elements 

The mode shapes of a TWCNT modeled as nonlocal Euler-Bernoulli for different boundary 

conditions are presented in Figures (6.16) – (6.18) 
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Mode 1                    Mode 2 

Figure 6.16 - First two mode shapes of TWCNT modeled as nonlocal Euler-Bernoulli – simply 

supported boundary condition - FEM 

 
Mode 1                    Mode 2 

Figure 6.17 - First two mode shapes of TWCNT modeled as nonlocal Euler-Bernoulli – clamped-

clamped boundary condition - FEM 
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Mode 1                    Mode 2 

Figure 6.18 - First two mode shapes of TWCNT modeled as nonlocal Euler-Bernoulli – clamped-

free boundary condition 

6.3.4 TWCNT modeled as nonlocal Euler-Bernoulli beam embedded in an elastic medium 

As is done for the entire study, four cases will be considered to represent the coefficient of elastic 

medium surrounding the TWCNTs. Equation (3.8), i.e., ĉ c k= + , is taken and the converged 

natural frequencies for four k c  ratios are tabulated in Table 6.4. 

Table 6.4 – FEM natural frequencies of TWCNTs modeled as nonlocal Euler-Bernoulli beam 

embedded in an elastic medium 

Boundary 
Conditions k  1ω  

(1012rad/s) 
2ω  

(1012rad/s) 
3ω  

(1012rad/s) 

Simply 
Supported 

𝑘𝑘/𝑐𝑐 = 100 4.494 4.737 5.606 
𝑘𝑘/𝑐𝑐 = 1 3.138 3.736 5.260 
𝑘𝑘/𝑐𝑐 = 0.1 1.307 2.734 5.070 

𝑘𝑘/𝑐𝑐 = 0.0001 0.648 2.531 5.038 

Clamped-
Clamped 

𝑘𝑘/𝑐𝑐 = 100 4.563 5.074 6.323 
𝑘𝑘/𝑐𝑐 = 1 3.321 4.413 6.178 
𝑘𝑘/𝑐𝑐 = 0.1 1.833 3.890 6.129 

𝑘𝑘/𝑐𝑐 = 0.0001 1.460 3.793 6.048 

Clamped-Free 

𝑘𝑘/𝑐𝑐 = 100 4.480 4.561 5.074 
𝑘𝑘/𝑐𝑐 = 1 3.098 3.314 4.414 
𝑘𝑘/𝑐𝑐 = 0.1 1.164 1.817 3.891 

𝑘𝑘/𝑐𝑐 = 0.0001 0.234 1.438 3.794 
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The following Figures (6.19) - (6.21) have been plotted for the 𝑘𝑘/𝑐𝑐 = 1 to present the 

convergence of the natural frequencies reported. Once again, as it can be observed, the frequency 

values’ convergence has been practically achieved even using a course mesh of 20-30 elements, 

however, the convergence graphs shown in Figs. (6.19) to (6.21), for three different boundary 

conditions and each of TWCNT beams, have been produced for up to 50 FEM elements. 

 

 

Figure 6.19 – Percentage error vs. the number of elements –embedded SS TWCNT – 50 FEM 

elements 

 

Figure 6.20 – Percentage error vs. the number of elements –embedded CC TWCNT – 50 FEM 

elements 
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Figure 6.21 – Percentage error vs. the number of elements –embedded CF TWCNT – 50 FEM 

elements 

 
Mode 1                    Mode 2 

Figure 6.22 – First two mode shapes of TWCNT modeled as nonlocal Euler-Bernoulli, embedded 

in an elastic medium – clamped-free boundary condition - FEM 
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Mode 1                   Mode 2 

Figure 6.23 - First two mode shapes of TWCNT modeled as nonlocal Euler-Bernoulli, embedded 

in an elastic medium – clamped-clamped boundary condition - FEM 

 
 Mode 1                    Mode 2 

Figure 6.24 - First two mode shapes of TWCNT modeled as nonlocal Euler-Bernoulli, embedded 

in an elastic medium – simply supported boundary condition – FEM 

 

6.4 Conclusion 

In this chapter, finite element method (FEM) formulation was developed for the vibration 

analysis of double- and triple-walled carbon nanotubes, with and without surrounding elastic 

medium of different stiffness values, modelled as nonlocal Euler-Bernoulli beam.  The developed 

FEM was then applied illustrative DWCNT and TWCNT examples and the systems’ natural 
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frequencies are found.  The frequency data were then compared with the values available in the 

open literature, where applicable, and are found to be in agreement. It is worth noting that the 

error percentage between natural frequencies of local and nonlocal Euler-Bernoulli beams is 

negligible, which can be attributed to the fact that this study considers the 𝐿𝐿 𝑑𝑑⁄  ratio equal to 10 

and is possible that the effect of nonlocal parameter on the natural frequency becomes more 

prominent for higher 𝐿𝐿 𝑑𝑑⁄  ratios, but would require further investigation. Due to the lack of 

published data in some cases, the convergence of frequency values have been established as a 

means of verification of correctness of formulation and results. 
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7 Conclusions and Future Work 

Since their discovery, immense attention has been given to carbon nanotubes, due to their 

exceptional thermal, electronic and mechanical properties. The presented study in this thesis 

employs finite element method (FEM) formulation to study the free vibrations of double and 

triple walled carbon nanotubes, modelled as Euler-Bernoulli beams. The multiple-beam model 

employed assumes van der Waals forces acting as the coupling factor between the tubes. 

Galerkin weighted residual approach is used to derive the mass and stiffness matrices and the 

resulting linear eigenvalue problem is solved to extract the system’s natural frequencies and 

mode shapes. The frequency results are compared to, and are found to be in agreement with, 

values reported in the open literature.  An analytical formulation, known as the Dynamic 

Stiffness Matrix (DSM), for the free vibration analysis of double-walled carbon nanotubes 

(DWCNTs) is also developed and presented for the first time.  The DSM formulation revolves 

around the use of extensive mathematical and matrix operations carried out on the closed form 

solutions to a single higher- (eighth, in this case) order differential equation derived by 

combining the coupled (two fourth order, in this case) governing equations.  The resulting 

Dynamic (frequency-dependent) stiffness matrix leads to a nonlinear eigenvalue problem, which 

is then solved using Wittrick-Williams (W-W) root counting algorithm to find the system’s 

natural frequencies and modes.  

Finite element formulation is also applied to the dynamic analysis of flexible carbon 

nanotubes (CNTs) modelled as nonlocal Euler-Bernoulli beams, which takes into account the C-

C bond length to bridge the gap between theoretical and experimental field of carbon nanotubes. 

All the cases studied in the thesis also considered the case where carbon nanotubes are embedded 

in elastic medium, thereby paving way for the development of analytical and/or better numerical 

methods to study of CNT-based nanocomposites.  The study confirms that both the numerical 

(FEM) and exact/analytical (DSM) methods, generally used for continuum structures, perform 

well and could also be exploited to further investigate and understand the vibrational behavior of 

CNTs. 
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Contributions of this thesis would include explicit FEM formulation of DWCNTs and 

TWCNTs using local and nonlocal Euler-Bernoulli beams and DSM formulation of DWCNT 

using local Euler-Bernoulli beam. 

For future research, the exactness of the Dynamic Stiffness Matrix (DSM) can be 

combined with the generality of the finite element formulation using trigonometric shape 

functions, as suggested by Dynamic Finite Element (DFE) approach. Similar methods could also 

be employed to study the buckling loads for carbon nanotubes.  Further, ropes and wires of 

carbon nanotubes can be studied by assuming the van der Waals forces acting uniformly between 

all the carbon nanotubes in the rope. Similar studies can be carried out using other continuum 

structures, with the aim of arriving at a model that could robustly account for all the parameters 

of the carbon nanotubes vibration, taking into account the chirality and other small scale effects. 

These studies could be further extended to two-dimensions so as to study graphene sheets. A 

comprehensive program could be developed that would snapshot the vibrational behavior of the 

carbon nanotube by assuming it as any continuum structure, based on the application it is to be 

used in, and the forces that would come into play. 
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Appendices 

A1 - Governing Equation for DWCNTs embedded in an elastic medium 

( )''''
1 1 1 1 1 1 2 1E I w A w c w wρ+ = −                                           (A1.1) 

 ( )''''
2 2 2 2 2 2 2 1 2E I w A w c w w kwρ+ = − − −    (𝐴𝐴1.2) 

Equation (𝐴𝐴1.1) remains essentially the same but Equation (𝐴𝐴1.2) is modified as follows: 

( )''''
2 2 2 2 2 2 2 1E I w A w w c k cwρ+ = − + −                                      (𝐴𝐴1.3) 

Further 

''''
2 2 2 2 2 2 2 1E I w A w w c cwρ+ = − −                                          (𝐴𝐴1.4) 

with c c k= + . 
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A2 - Stiffness and Mass matrices of DWCNTs 

The elemental stiffness and mass matrices are symmetric 8𝑥𝑥8 matrices with each term given 

below. Mass matrix terms are represented by ijm and stiffness matrix terms use ijk . 

𝑚𝑚11 = 156𝐴𝐴1𝜌𝜌1𝐿𝐿
420

; 𝑚𝑚12 = 𝑚𝑚21 =  22𝐿𝐿
2𝐴𝐴1𝜌𝜌1
420

; 𝑚𝑚15 = 𝑚𝑚51 = 54𝐴𝐴1𝜌𝜌1𝐿𝐿
420

;𝑚𝑚16 = 𝑚𝑚61 = −13𝐿𝐿2𝐴𝐴1𝜌𝜌1
420

; 

𝑚𝑚22 = 4𝐿𝐿3𝐴𝐴1𝜌𝜌1
420

; 𝑚𝑚25 = 𝑚𝑚52 = 13𝐿𝐿2𝐴𝐴1𝜌𝜌1
420

; 𝑚𝑚26 = 𝑚𝑚62 = −3𝐿𝐿3𝐴𝐴1𝜌𝜌1
420

; 𝑚𝑚33 = 156𝐴𝐴2𝜌𝜌2𝐿𝐿
420

; 

𝑚𝑚34 = 𝑚𝑚43 = 22𝐿𝐿2𝐴𝐴2𝜌𝜌2
420

; 𝑚𝑚37 = 𝑚𝑚73 = 54𝐴𝐴2𝜌𝜌2𝐿𝐿
420

; 𝑚𝑚38 = 𝑚𝑚83 = −13𝐿𝐿2𝐴𝐴2𝜌𝜌2
420

; 𝑚𝑚44 = 4𝐿𝐿3𝐴𝐴2𝜌𝜌2
420

; 

𝑚𝑚47 = 𝑚𝑚74 = 13𝐿𝐿2𝐴𝐴2𝜌𝜌2
420

; 𝑚𝑚48 = 𝑚𝑚84 = −3𝐿𝐿3𝐴𝐴2𝜌𝜌2
420

; 𝑚𝑚55 = 156𝐴𝐴1𝜌𝜌1𝐿𝐿
420

; 𝑚𝑚56 = 𝑚𝑚65 = −22𝐿𝐿2𝐴𝐴1𝜌𝜌1
420

; 

𝑚𝑚66 = 4𝐿𝐿3𝐴𝐴1𝜌𝜌1
420

; 𝑚𝑚77 = 156𝐴𝐴2𝜌𝜌2𝐿𝐿
420

; 𝑚𝑚78 = 𝑚𝑚87 = −22𝐿𝐿2𝐴𝐴2𝜌𝜌2
420

; 𝑚𝑚88 = 4𝐿𝐿3𝐴𝐴2𝜌𝜌2
420

; 

𝑚𝑚13 = 𝑚𝑚31 = 𝑚𝑚14 = 𝑚𝑚41 = 𝑚𝑚17 = 𝑚𝑚71 = 𝑚𝑚23 = 𝑚𝑚32 = 𝑚𝑚18 = 𝑚𝑚81 = 𝑚𝑚24 = 𝑚𝑚42 = 𝑚𝑚45 =

𝑚𝑚54 = 𝑚𝑚27 = 𝑚𝑚72 = 𝑚𝑚28 = 𝑚𝑚82 = 𝑚𝑚35 = 𝑚𝑚53 = 𝑚𝑚36 = 𝑚𝑚63 = 𝑚𝑚46 = 𝑚𝑚64 = 𝑚𝑚58 = 𝑚𝑚85 =

𝑚𝑚67 = 𝑚𝑚76 = 𝑚𝑚68 = 𝑚𝑚86 = 0; 

𝑘𝑘11 =  12𝐸𝐸1𝐼𝐼1
𝐿𝐿3 +

156𝐿𝐿𝐿𝐿

420
; 𝑘𝑘12 = 𝑘𝑘21 = 6𝐿𝐿𝐸𝐸1𝐼𝐼1

𝐿𝐿3 +
22𝐿𝐿2𝑐𝑐

420
; 𝑘𝑘13 = 𝑘𝑘31 = −

156𝐿𝐿𝐿𝐿

420
; 𝑘𝑘14 = 𝑘𝑘41 = −

22𝐿𝐿2𝑐𝑐

420
; 

𝑘𝑘15 = 𝑘𝑘51 = −
12𝐸𝐸1𝐼𝐼1
𝐿𝐿3 +

54𝐿𝐿𝐿𝐿

420
; 𝑘𝑘16 = 𝑘𝑘61 = 6𝐿𝐿𝐸𝐸1𝐼𝐼1

𝐿𝐿3 −
13𝐿𝐿2𝑐𝑐

420
; 𝑘𝑘17 = 𝑘𝑘71 = −

54𝐿𝐿𝐿𝐿

420
; 𝑘𝑘18 = 𝑘𝑘81 = 13𝐿𝐿2𝑐𝑐

420
; 

𝑘𝑘22 =  4𝐿𝐿2𝐸𝐸1𝐼𝐼1
𝐿𝐿3 +

4𝐿𝐿3𝑐𝑐

420
; 𝑘𝑘23 = 𝑘𝑘32 = −

22𝐿𝐿2𝑐𝑐

420
; 𝑘𝑘24 = 𝑘𝑘42 = −

4𝐿𝐿3𝑐𝑐

420
; 𝑘𝑘25 = 𝑘𝑘52 = −

6𝐿𝐿𝐸𝐸1𝐼𝐼1
𝐿𝐿3 +

13𝐿𝐿2𝑐𝑐

420
; 

𝑘𝑘26 = 𝑘𝑘62 = 2𝐿𝐿2𝐸𝐸1𝐼𝐼1
𝐿𝐿3 −

3𝐿𝐿3𝑐𝑐

420
; 𝑘𝑘27 = 𝑘𝑘72 = −

13𝐿𝐿2𝑐𝑐

420
; 𝑘𝑘28 = 𝑘𝑘82 = 3𝐿𝐿3𝑐𝑐

420
; 

𝑘𝑘33 =  12𝐸𝐸2𝐼𝐼2
𝐿𝐿3 +

156𝐿𝐿𝑐𝑐̂
420

; 𝑘𝑘34 = 𝑘𝑘43 = 6𝐿𝐿𝐸𝐸2𝐼𝐼2
𝐿𝐿3 +

22𝐿𝐿2𝑐𝑐̂
420

; 𝑘𝑘35 = 𝑘𝑘53 = −
54𝐿𝐿𝐿𝐿

420
; 𝑘𝑘36 = 𝑘𝑘63 =  13𝐿𝐿2𝑐𝑐

420
; 

𝑘𝑘37 = 𝑘𝑘73 = −
12𝐸𝐸2𝐼𝐼2
𝐿𝐿3 +

54𝐿𝐿𝑐𝑐̂
420

; 𝑘𝑘38 = 𝑘𝑘83 = 6𝐿𝐿𝐸𝐸2𝐼𝐼2
𝐿𝐿3 −

13𝐿𝐿2𝑐𝑐̂
420

; 

𝑘𝑘44 =  4𝐿𝐿2𝐸𝐸1𝐼𝐼1
𝐿𝐿3 +

4𝐿𝐿3𝑐𝑐

420
; 𝑘𝑘45 = 𝑘𝑘54 = −

13𝐿𝐿2𝑐𝑐

420
; 𝑘𝑘46 = 𝑘𝑘64 =  3𝐿𝐿3𝑐𝑐

420
; 𝑘𝑘47 = 𝑘𝑘74 = −

6𝐿𝐿𝐸𝐸2𝐼𝐼2
𝐿𝐿3 +

13𝐿𝐿2𝑐𝑐̂
420

; 

𝑘𝑘48 = 𝑘𝑘84 = 2𝐿𝐿2𝐸𝐸2𝐼𝐼2
𝐿𝐿3 −

3𝐿𝐿3𝑐𝑐̂
420

;  
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𝑘𝑘55 =  12𝐸𝐸1𝐼𝐼1
𝐿𝐿3 +

156𝐿𝐿𝐿𝐿

420
; 𝑘𝑘56 = 𝑘𝑘65 = −

6𝐿𝐿𝐸𝐸2𝐼𝐼2
𝐿𝐿3 −

22𝐿𝐿2𝑐𝑐̂
420

; 𝑘𝑘57 = 𝑘𝑘75 = −
156𝐿𝐿𝐿𝐿

420
; 𝑘𝑘58 = 𝑘𝑘85 = 22𝐿𝐿2𝑐𝑐

420
; 

𝑘𝑘66 =  4𝐿𝐿2𝐸𝐸1𝐼𝐼1
𝐿𝐿3 +

4𝐿𝐿3𝑐𝑐

420
; 𝑘𝑘67 = 𝑘𝑘76 = 22𝐿𝐿2𝑐𝑐

420
; 𝑘𝑘68 = 𝑘𝑘86 = −

4𝐿𝐿3𝑐𝑐

420
; 

𝑘𝑘77 =  12𝐸𝐸2𝐼𝐼2
𝐿𝐿3 +

156𝐿𝐿𝑐𝑐̂
420

; 𝑘𝑘78 = 𝑘𝑘87 =  − 6𝐿𝐿𝐸𝐸2𝐼𝐼2
𝐿𝐿3 −

22𝐿𝐿2𝑐𝑐̂
420

; 𝑘𝑘88 =  4𝐿𝐿2𝐸𝐸1𝐼𝐼1
𝐿𝐿3 +

4𝐿𝐿3𝑐𝑐

420
; 
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A3 - Mode shapes of DWCNTs embedded in elastic matrix 

 
Figure A3.1 – Percentage error vs number of elements – embedded SSB – 50 FEM elements - 

(𝑘𝑘 𝑐𝑐⁄  = 100) 

 
Figure A3.2 – Percentage error vs number of elements – embedded CC – 50 FEM elements - 

(𝑘𝑘 𝑐𝑐⁄  = 100) 

 
Figure A3.3 – Percentage error vs number of elements – embedded CF – 40 FEM elements – 

(𝑘𝑘 𝑐𝑐⁄  = 100) 
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Figure A3.4 – Percentage error vs number of elements – embedded SSB – 50 FEM elements - 

(𝑘𝑘 𝑐𝑐⁄  = 0.1) 

 
Figure A3.5 – Percentage error vs number of elements – embedded CC – 50 FEM elements - 

(𝑘𝑘 𝑐𝑐⁄  = 0.1) 

 
Figure A3. 6 – Percentage error vs number of elements – embedded CF – 40 FEM elements - 

(𝑘𝑘 𝑐𝑐⁄  = 0.1) 
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A4 – Expression for clamped clamped natural frequency of DWCNTs 

The determinant of the K  matrix obtained in (4.36) is found to be 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 44 4 cos cosh 4cos cosh 4cos cosh cos cosh 4D α β α α β β α α β β= − + − −  

            (𝐴𝐴4.1) 

For the roots to be found, determinant of the matrix has to go to zero. (𝐴𝐴4.1) then is equated to 

zero and either 

( ) ( )1 4 1 4cos cosh 1 0α α − =          (𝐴𝐴4.2) 

or 

( ) ( )1 4 1 4cos cosh 1 0β β − =          (𝐴𝐴4.3) 

0α =  or 0β =  satisfies (𝐴𝐴4.2) and (𝐴𝐴4.3) 

Substituting α , β  in (4.12) and (4.13) and using (4.8) and (4.9)/(4.9.1) gives  

( )1 22

1 2

c m m
m m

ω
+

=           (𝐴𝐴4.4) 

 which is the natural frequency for clamped clamped case of DWCNTs. 
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A5 - Governing equations for TWCNT embedded in an elastic matrix 

''''
1 1 1 1 1 1 1 2 1 1E I w A w c w c wρ+ = −                                            (𝐴𝐴5.1) 

''''
2 2 2 2 2 2 2 3 2 2 1 2 1 1E I w A w c w c w c w c wρ+ = − − +                                    (𝐴𝐴5.2) 

''''
3 3 3 3 3 3 2 3 2 2E I w A w c w c wρ+ = − +

                                       (A5.3) 

For an embedded case, equation (𝐴𝐴5.3) changes as 

( )''''
3 3 3 3 3 3 2 3 2 2E I w A w c k kw c wρ+ = − + +                                       (A5.4) 

and  

''''
3 3 3 3 3 3 2 3 2 2E I w A w c w c wρ+ = − +

                                             (A5.5) 

with 2 2c c k= +
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A6 - Stiffness and mass matrices of TWCNTs 

The form of the elemental mass and stiffness matrix is of the form given below. Further the mass 

and stiffness elements are defined as 𝑚𝑚𝑖𝑖𝑖𝑖and 𝑘𝑘𝑖𝑖𝑖𝑖 respectively. 

𝑋𝑋 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥11 𝑥𝑥12 𝑥𝑥13 𝑥𝑥14 𝑥𝑥15 𝑥𝑥16 𝑥𝑥17 𝑥𝑥18 𝑥𝑥19 𝑥𝑥110 𝑥𝑥111 𝑥𝑥112

𝑥𝑥22 𝑥𝑥23 𝑥𝑥24 𝑥𝑥25 𝑥𝑥26 𝑥𝑥27 𝑥𝑥28 𝑥𝑥29 𝑥𝑥210 𝑥𝑥211 𝑥𝑥212
𝑥𝑥33 𝑥𝑥34 𝑥𝑥35 𝑥𝑥36 𝑥𝑥37 𝑥𝑥38 𝑥𝑥39 𝑥𝑥310 𝑥𝑥311 𝑥𝑥312

𝑥𝑥44 𝑥𝑥45 𝑥𝑥46 𝑥𝑥47 𝑥𝑥48 𝑥𝑥49 𝑥𝑥410 𝑥𝑥411 𝑥𝑥412
𝑥𝑥55 𝑥𝑥56 𝑥𝑥57 𝑥𝑥58 𝑥𝑥59 𝑥𝑥510 𝑥𝑥511 𝑥𝑥512

𝑥𝑥66 𝑥𝑥67 𝑥𝑥68 𝑥𝑥69 𝑥𝑥610 𝑥𝑥611 𝑥𝑥612
𝑥𝑥77 𝑥𝑥78 𝑥𝑥79 𝑥𝑥710 𝑥𝑥711 𝑥𝑥712

𝑥𝑥88 𝑥𝑥89 𝑥𝑥810 𝑥𝑥811 𝑥𝑥812
𝑥𝑥99 𝑥𝑥910 𝑥𝑥911 𝑥𝑥912

𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥1010 𝑥𝑥1011 𝑥𝑥1012
𝑥𝑥1111 𝑥𝑥1112

𝑥𝑥1212⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑚𝑚11 = 156𝑚𝑚1𝑙𝑙
420

; 𝑚𝑚12 = 𝑚𝑚21 = 22𝑙𝑙2𝑚𝑚1
420

; 𝑚𝑚17 = 𝑚𝑚71 = 54𝑚𝑚1𝑙𝑙
420

; 𝑚𝑚18 = 𝑚𝑚81 = −13𝑙𝑙2𝑚𝑚1
420

; 

𝑚𝑚22 =  4𝑙𝑙
3𝑚𝑚1
420

; 𝑚𝑚27 = 𝑚𝑚72 = 13𝑙𝑙2𝑚𝑚1
420

; 𝑚𝑚28 = 𝑚𝑚82 = −3𝑙𝑙3𝑚𝑚1
420

; 

𝑚𝑚33 =  156𝑙𝑙𝑚𝑚2
420

; 𝑚𝑚34 = 𝑚𝑚43 = 22𝑙𝑙2𝑚𝑚1
420

; 𝑚𝑚39 = 𝑚𝑚93 = 54𝑚𝑚2𝑙𝑙
420

; 𝑚𝑚310 = 𝑚𝑚103 = −13𝑙𝑙2𝑚𝑚2
420

;  

𝑚𝑚44 =  4𝑙𝑙
3𝑚𝑚2
420

; 𝑚𝑚49 = 𝑚𝑚94 = 13𝑙𝑙2𝑚𝑚2
420

; 𝑚𝑚410 = 𝑚𝑚104 = −3𝑙𝑙3𝑚𝑚2
420

; 

𝑚𝑚55 =  156𝑚𝑚3𝑙𝑙
420

; 𝑚𝑚56 = 𝑚𝑚65 = 22𝑙𝑙2𝑚𝑚3
420

; 𝑚𝑚511 = 𝑚𝑚1105 = 54𝑚𝑚3𝑙𝑙
420

; 𝑚𝑚512 = 𝑚𝑚1205 = −13𝑙𝑙2𝑚𝑚3
420

; 

𝑚𝑚66 =  4𝑙𝑙
3𝑚𝑚2
420

; 𝑚𝑚611 = 𝑚𝑚1106 = 13𝑙𝑙2𝑚𝑚2
420

; 𝑚𝑚612 = 𝑚𝑚1206 = −3𝑙𝑙3𝑚𝑚3
420

;𝑚𝑚77 = 156𝑚𝑚1𝑙𝑙
420

; 

𝑚𝑚78 = 𝑚𝑚87 = −22𝑚𝑚1𝑙𝑙2

420
;𝑚𝑚88 =   4𝑙𝑙

3𝑚𝑚1
420

; 𝑚𝑚99 =  156𝑙𝑙𝑚𝑚2
420

; 𝑚𝑚910 = 𝑚𝑚109 = −22𝑚𝑚2𝑙𝑙2

420
; 

𝑚𝑚1010 = 4𝑙𝑙3𝑚𝑚2
420

; 𝑚𝑚1111 = 156𝑚𝑚3𝑙𝑙
420

; 𝑚𝑚1112 = 𝑚𝑚1211 = −22𝑚𝑚3𝑙𝑙2

420
; 𝑚𝑚1212 = 4𝑙𝑙3𝑚𝑚3

420
; 

𝑘𝑘11 = 12𝐸𝐸1𝐼𝐼1
𝑙𝑙3

+ 156𝑙𝑙𝑐𝑐1
420

; 𝑘𝑘12 = 𝑘𝑘21 = 6𝑙𝑙𝐸𝐸1𝐼𝐼1
𝑙𝑙3

+ 22𝑙𝑙2𝑐𝑐1
420

; 𝑘𝑘13 = 𝑘𝑘31 = −156𝑙𝑙𝑐𝑐1
420

; 𝑘𝑘14 = 𝑘𝑘41 = −22𝑙𝑙2𝑐𝑐1
420

; 

𝑘𝑘17 = 𝑘𝑘71 = −12𝐸𝐸1𝐼𝐼1
𝑙𝑙3

+ 54𝑙𝑙𝑐𝑐1
420

; 𝑘𝑘18 = 𝑘𝑘81 = 6𝑙𝑙𝐸𝐸1𝐼𝐼1
𝑙𝑙3

− 13𝑙𝑙3𝑐𝑐1
420

 𝑘𝑘19 = 𝑘𝑘91 =  −54𝑙𝑙𝑐𝑐1
420

; 

108 
 



𝑘𝑘110 = 𝑘𝑘101 = 13𝑙𝑙2𝑐𝑐1
420

; 𝑘𝑘22 =  4𝑙𝑙
2𝐸𝐸1𝐼𝐼1
𝑙𝑙3

+ 4𝑙𝑙3𝑐𝑐1
420

; 𝑘𝑘23 = 𝑘𝑘32 = −22𝑙𝑙2𝑐𝑐1
420

; 𝑘𝑘24 = 𝑘𝑘42 = −4𝑙𝑙3𝑐𝑐1
420

; 

𝑘𝑘27 = 𝑘𝑘72 = −6𝑙𝑙𝐸𝐸1𝐼𝐼1
𝑙𝑙3

+ 13𝑙𝑙3𝑐𝑐1
420

; 𝑘𝑘28 = 𝑘𝑘82 = 2𝑙𝑙2𝐸𝐸1𝐼𝐼1
𝑙𝑙3

− 3𝑙𝑙3𝑐𝑐1
420

; 𝑘𝑘29 = 𝑘𝑘92 = −13𝑙𝑙2𝑐𝑐1
420

; 

𝑘𝑘210 = 𝑘𝑘102 = 3𝑙𝑙3𝑐𝑐1
420

; 𝑘𝑘33 = 12𝐸𝐸1𝐼𝐼1
𝑙𝑙3

+ 156𝑙𝑙(𝑐𝑐1+𝑐𝑐2)
420

; 𝑘𝑘34 = 𝑘𝑘43 = 6𝑙𝑙𝐸𝐸1𝐼𝐼1
𝑙𝑙3

+ 22𝑙𝑙2(𝑐𝑐1+𝑐𝑐2)
420

; 

𝑘𝑘35 = 𝑘𝑘53 = −156𝑙𝑙𝑐𝑐2
420

; 𝑘𝑘36 = 𝑘𝑘63 = −22𝑙𝑙2𝑐𝑐2
420

; 𝑘𝑘37 = 𝑘𝑘73 = −54𝑙𝑙𝑐𝑐1
420

; 𝑘𝑘38 = 𝑘𝑘83 = 13𝑙𝑙2𝑐𝑐1
420

; 

𝑘𝑘39 = 𝑘𝑘93 = −12𝐸𝐸2𝐼𝐼2
𝑙𝑙3

+ 54𝑙𝑙(𝑐𝑐1+𝑐𝑐2)
420

; 𝑘𝑘310 = 𝑘𝑘103 = 6𝑙𝑙𝐸𝐸1𝐼𝐼1
𝑙𝑙3

− 13𝑙𝑙2(𝑐𝑐1+𝑐𝑐2)
420

; 𝑘𝑘311 = 𝑘𝑘1103 = −54𝑐𝑐2𝑙𝑙
420

; 

𝑘𝑘312 = 𝑘𝑘1203 = 13𝑙𝑙2𝑐𝑐2
420

; 𝑘𝑘44 = 4𝑙𝑙3𝐸𝐸2𝐼𝐼2
𝑙𝑙3

+ 4𝑙𝑙3(𝑐𝑐1+𝑐𝑐2)
420

; 𝑘𝑘45 = 𝑘𝑘54 = −22𝑙𝑙2𝑐𝑐2
420

; 𝑘𝑘46 = 𝑘𝑘64 = −4𝑙𝑙3𝑐𝑐2
420

; 

𝑘𝑘47 = 𝑘𝑘74 = −13𝑙𝑙2𝑐𝑐1
420

; 𝑘𝑘48 = 𝑘𝑘84 = 3𝑙𝑙3𝑐𝑐1
420

; 𝑘𝑘49 = 𝑘𝑘94 = −6𝑙𝑙𝐸𝐸2𝐼𝐼2
𝑙𝑙3

+ 13𝑙𝑙2(𝑐𝑐1+𝑐𝑐2)
420

; 

𝑘𝑘410 = 𝑘𝑘104 = 2𝑙𝑙2𝐸𝐸2𝐼𝐼2
𝑙𝑙3

− 3𝑙𝑙3(𝑐𝑐1+𝑐𝑐2)
420

; 𝑘𝑘411 = 𝑘𝑘1104 = −13𝑙𝑙2𝑐𝑐2
420

; 𝑘𝑘412 = 𝑘𝑘1204 = 3𝑙𝑙3𝑐𝑐2
420

; 

𝑘𝑘55 = 12𝐸𝐸3𝐼𝐼3
𝑙𝑙3

+ 156𝑙𝑙𝑐𝑐2
420

; 𝑘𝑘56 = 𝑘𝑘65 = 6𝑙𝑙𝐸𝐸3𝐼𝐼3
𝑙𝑙3

+ 22𝑙𝑙2𝑐𝑐2
420

; 𝑘𝑘59 = 𝑘𝑘95 = −54𝑐𝑐2𝑙𝑙
420

; 𝑘𝑘510 = 𝑘𝑘105 = 13𝑙𝑙2𝑐𝑐2
420

; 

𝑘𝑘511 = 𝑘𝑘1105 = −12𝐸𝐸3𝐼𝐼3
𝑙𝑙3

+ 54𝑙𝑙𝑐𝑐2
420

; 𝑘𝑘512 = 𝑘𝑘1205 = 6𝑙𝑙𝐸𝐸3𝐼𝐼3
𝑙𝑙3

− 13𝑙𝑙2𝑐𝑐2
420

; 𝑘𝑘66 = 4𝑙𝑙2𝐸𝐸3𝐼𝐼3
𝑙𝑙3

+ 4𝑙𝑙3𝑐𝑐2
420

; 

𝑘𝑘69 = 𝑘𝑘96 = −13𝑙𝑙2𝑐𝑐2
420

; 𝑘𝑘610 = 𝑘𝑘106 = 3𝑙𝑙3𝑐𝑐2
420

; 𝑘𝑘611 = 𝑘𝑘1106 = −6𝑙𝑙𝐸𝐸3𝐼𝐼3
𝑙𝑙3

+ 13𝑙𝑙3𝑐𝑐2
420

; 

𝑘𝑘612 = 𝑘𝑘1206 = 2𝑙𝑙2𝐸𝐸3𝐼𝐼3
𝑙𝑙3

− 3𝑙𝑙3𝑐𝑐2
420

 𝑘𝑘77 = 12𝐸𝐸1𝐼𝐼1
𝑙𝑙3

+ 156𝑙𝑙𝑐𝑐1
420

; 𝑘𝑘78 = 𝑘𝑘87 = − 6𝑙𝑙𝐸𝐸1𝐼𝐼1
𝑙𝑙3

− 22𝑙𝑙2𝑐𝑐1
420

; 

𝑘𝑘79 = 𝑘𝑘97 = −156𝑙𝑙𝑐𝑐1
420

; 𝑘𝑘710 = 𝑘𝑘107 = 22𝑙𝑙2𝑐𝑐1
420

; 𝑘𝑘88 = 4𝑙𝑙2𝐸𝐸1𝐼𝐼1
𝑙𝑙3

+ 4𝑙𝑙3𝑐𝑐1
420

; 𝑘𝑘89 = 𝑘𝑘98 = 22𝑙𝑙2𝑐𝑐1
420

; 

𝑘𝑘810 = 𝑘𝑘108 = −4𝑙𝑙3𝑐𝑐1
420

; 𝑘𝑘99 = 12𝐸𝐸2𝐼𝐼2
𝑙𝑙3

+ 156𝑙𝑙(𝑐𝑐1+𝑐𝑐2)
420

; 𝑘𝑘910 = 𝑘𝑘109 = − 6𝑙𝑙𝐸𝐸2𝐼𝐼2
𝑙𝑙3

− 22𝑙𝑙2(𝑐𝑐1+𝑐𝑐2)
420

; 

𝑘𝑘911 = 𝑘𝑘1109 = −156𝑐𝑐2𝑙𝑙
420

; 𝑘𝑘912 = 𝑘𝑘1209 = 22𝑙𝑙2𝑐𝑐2
420

; 𝑘𝑘1010 = 4𝑙𝑙3𝐸𝐸2𝐼𝐼2
𝑙𝑙3

+ 4𝑙𝑙3(𝑐𝑐1+𝑐𝑐2)
420

; 

𝑘𝑘1011 = 𝑘𝑘1110 = 22𝑙𝑙2𝑐𝑐2
420

; 𝑘𝑘1012 = 𝑘𝑘1012 = −4𝑙𝑙3𝑐𝑐2
420

; 𝑘𝑘1111 = 12𝐸𝐸3𝐼𝐼3
𝑙𝑙3

+ 156𝑙𝑙𝑐𝑐2
420

; 

𝑘𝑘1112 = 𝑘𝑘1211 = − 6𝑙𝑙𝐸𝐸3𝐼𝐼3
𝑙𝑙3

− 22𝑙𝑙2𝑐𝑐2
420

 𝑘𝑘1212 = 4𝑙𝑙2𝐸𝐸3𝐼𝐼3
𝑙𝑙3

+ 4𝑙𝑙3𝑐𝑐2
420

; 
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A7 - Mode shapes of TWCNTs embedded in elastic matrix 

 
Figure A7.1 – Percentage error vs number of elements – embedded SSB – 30 FEM elements - 

(𝑘𝑘 𝑐𝑐⁄  = 0.1) 

 
Figure A7.2 – Percentage error vs number of elements – embedded CC – 30 FEM  elements - 

(𝑘𝑘 𝑐𝑐⁄  = 0.1) 

 
Figure A7.3 – Percentage error vs number of elements – embedded CF – 30 FEM elements - 

(𝑘𝑘 𝑐𝑐⁄  = 0.1) 
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Figure A7.4 – Percentage error vs number of elements – embedded SSB – 30 FEM elements - 

(𝑘𝑘 𝑐𝑐⁄  = 0.0001) 

 
Figure A7-5 – Percentage error vs number of elements – embedded CC – 30 FEM elements - 

(𝑘𝑘 𝑐𝑐⁄  = 0.0001) 

 
Figure A7.6 – Percentage error vs number of elements – embedded CF – 30 FEM elements - 

(𝑘𝑘 𝑐𝑐⁄  = 0.0001) 
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A8 – Dynamic Stiffness Matrix (DSM) for TWCNTs 

The governing equations for a triple-walled carbon nanotube, assuming simple harmonic motion 

is given as 

( )'''' 2
1 1 1 1 1 1 1 1 2 0E I W c A W c Wρ ω+ − − =                                  (𝐴𝐴8.1) 

( )'''' 2
2 2 1 2 2 2 2 2 3 1 2 0E I W c c A W c W c Wρ ω+ + − − − =                       (𝐴𝐴8.2) 

( )'''' 2
3 3 2 3 3 3 2 2ˆ 0E I W c A W c Wρ ω+ − − =                                 (𝐴𝐴8.3) 

Assuming D d dx=  and rewriting (𝐴𝐴8.1) - (𝐴𝐴8.3) as 

( )( )4 2
1 1 1 1 1 1 1 2 0E I D c A W c Wρ ω+ − − =                              (𝐴𝐴8.4) 

( )( )4 2
2 2 1 2 2 2 2 2 3 1 2 0E I D c c A W c W c Wρ ω+ + − − − =                       (𝐴𝐴8.5) 

( )( )4 2
3 3 2 3 3 3 2 2 0E I D c A W c Wρ ω+ − − =                             (𝐴𝐴8.6) 

Combining (𝐴𝐴8.4) - (𝐴𝐴8.6) into a single equation as 

( )12 8 0D pD q Y+ + =                                           (𝐴𝐴8.7) 

The equation can be reduced to a cubic equation by taking 4D κ=  

( )3 2 0p q Yκ κ+ + =                                            (𝐴𝐴8.8) 

The roots of the cubic equation can be found by following the usual procedure. It is to be noted 

that the roots are to be of the form [real & imaginary], [real & complex] and [complex]. Any 

combination involving [real, imaginary & complex] can’t deduce the dynamic stiffness matrix, to 

the best of author’s knowledge. These roots seem to be elusive at the moment and would form 

the future research priorities for the author. 
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A9 – Dynamic Stiffness Matrix (DSM) for nonlocal DWCNTs 

The governing equations of nonlocal DWCNTs are given by 

( )
4 2 4 2 2

2 21 1 1 2 1
1 1 1 1 1 1 2 14 2 2 2 2 2 0w w w w wE I A A c w w c

x t x t x x
ρ µ ρ µ

 ∂ ∂ ∂ ∂ ∂
+ − − − + − = ∂ ∂ ∂ ∂ ∂ ∂ 

 

( )
4 2 4 2 2

2 22 2 2 1 2
2 2 2 2 2 2 1 24 2 2 2 2 2 0w w w w wE I A A c w w c

x t x t x x
ρ µ ρ µ

 ∂ ∂ ∂ ∂ ∂
+ − − − + − = ∂ ∂ ∂ ∂ ∂ ∂ 

 

              (𝐴𝐴9.1) 

By removing time dependency and assuming simple harmonic motion 

( ) ( )'''' 2 2 '' 2 '' ''
1 1 1 1 1 1 1 2 1 2 1 0E I W m W mW c W W c W Wω µ µ− + − − + − =  

( ) ( )'''' 2 2 '' 2 '' ''
2 2 2 2 2 2 2 2 1 1 2 0E I W m W m W c W W c W Wω µ µ− + − − + − =  

            (𝐴𝐴9.2) 

Equations (𝐴𝐴9.2) can be combined as a single equation as 

8 6 4 2
1 2 3 4 0D a D a D a D a+ + + + =                                     (𝐴𝐴9.3) 

with  

2 2 2 2
2 2 1 1 1 2 2

1
1 1 2 2

E I m E I c E I ca
E I E I

µ ω µ µ− −
=

4 2 2 2 2 2
1 1 1 2 1 1 2 2 2 1 1 1 2 2

2
1 1 2 2

cm E I m E I m E I m E I c E I ca
E I E I

µ ω µ ω ω ω− + − − + +
=  

4 4 4 2 2 4 2 2 2 2
1 2 2 1 2 1 2

3
1 1 2 2

2m m cm m m cm cma
E I E I

µ ω µ ω µ ω µ ω µ ω− − + +
=  

2 4 2 2 4 2 2
1 2 2 1 2 1 2

4
1 1 2 2

m m cm m m cm cma
E I E I

µ ω µ ω ω ω ω− + + − −
=  
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It is required that the roots of (𝐴𝐴5.3) be either [complex & real] or [complex] for dynamic 

stiffness matrix to be formulated but seem to be elusive at this stage and would be considered in 

future. 
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