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Abstract 

 
Signature Analyzer is an analyzer which is widely used for mixed-signal system testing. But its 

hardware has high complexity in implementation as the application technique is a system with rules 

of an arithmetic finite field with arbitrary radix. It’s a challenging task. To avoid this complexity here 

the project is made based on Algebraic Signature Analyzer that can be used for mixed signal testing 

and the analyzer doesn’t contain carry propagation circuitry. It improves performance and fault 

tolerance. This technique is simple and applicable to systems of any size or radix. The hardware 

complexity is very low compared to the conventional one and can be used in arithmetic/ algebraic 

cryptography as well as coding.
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Chapter 1 

INTRODUCTION 

Mixed signal system consists of both analog and digital circuit but the analysis method is only 

applicable to the subset of these systems that have digital outputs. Signature analysis can be 

employed to embedded into the system under test solution or can be used for the external test. 

Figure 1: Signature Analyzer 

In the case of implementation, a reference signature will be used which nothing but a fault-free 

circuit. On the other hand, a circuit under test (CUT) of mixed signal nature will be fed by test 

stimuli and output will be compacted by the algebraic signature analyzer (ASA). 

The signature analyzer formulates an ideal form of a test instrument for analyzing digital or logic 

patterns in a circuit in some conditions.  It is often ideal for field repair and applications where it 

can perceive logic patterns in a circuit under given or fix conditions, in so doing enabling detection 

of correct or incorrect operation of a circuit or board. 
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Figure 2: Built-in signature analysis of a circuit under test 

The signature analyzer which is algebraic is designed on the basic concept of a polynomial division 

circuit. It's which is shown in figure 3 This circuit divides the incoming sequence of non-binary 

symbols, am-1, ….,a1, a0 and this non-binary symbols are treated as a polynomial: 

                                          a(y)=am-1y
m-1+...…. +a1y+ a0      …………………………...………. (1) 

by the polynomial  

                                          p(y)= Pt y
t +……. +P1y+P0              t<<m ……………………………. (2) 

the reminder 

                                          s(y)=st-1y
t-1+ …. +s1y+s0 …………………………………………... (3) 

Normally A microprocessor board is use for  

 

Figure: 3 A t-Stage polynomial division Circuit 

checking data in signature analyzer on given nodes within a logic system testing. An operational 

scenario is set up, e.g. a test mode and the data on various nodes are monitored. The signature 

analyzer transforms the serial data into a hexadecimal data pattern - this is the equivalent signature. 

Typically, this signature has digits depending on different signature analyzer’s different lengths. 



3  

Chapter 2 

Conventional Signature Analyzer 

The basic signature analyzer takes in the input from the node under test and uses a clock from the 

system for synchronization. Start and stop pulses are seized to start and end the sample.  

Figure 4:  A Symbolic Presentation of a one-stage arithmetic. 

The pulses from the node under test are then passed into a shift register to provide the hexadecimal 

equivalent of the waveform. The multiple input signature register compression (MISR) is the prime 

technique used in the signature analysis. The outputs of the circuit under test (CUT) are connected 

to the inputs of the MISR while the test patterns are applied to the CUT. The final contents of the 

MISR are compared to that expected for a fault-free circuit to determine whether the CUT is faulty.  

Before starting the implementation and design, some theoretical knowledge should be Marge on 

the process to handle some typical factor. Aliasing Probability is one of it. More input to the 

analyzer is formulated an expression for estimating the aliasing probability. Multiple input use 

provides a more accurate error model by relating the analysis q- ary code where q= 2m ; m = 

number of output for the circuit under test (CUT). 

Let C be an n-tuple ( Cn-1 * Cn-2 * …C0 ) where Ci € GF( q ) . 

Let C(x) =  Cn-1 Xn-1 + … + . . + C1X +C0.  be the polynomial representation of the n-tuple. 
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The vector and polynomial representations shall be used interchangeably. All polynomial 

representations and operations will be assumed to be over GF(q) where q = 2m.  

Thus, all additions and multiplications in this piece will be assumed to be over GF(2m). The terms 

of the polynomials can be characterized as only positive terms. 

Definition I: The generator polynomial g(x) of a code C is that polynomial g(x) which divides 

every code word polynomial in C. The degree of g(x) is equal to n - k where n is the length of the 

code and k is the number of information symbols. [2] 

Two key observations should be made here. First, when g(x) divides xn - 1, only then does the 

code become a cyclic code of length n. On the other hand, when g(x) does not divide xn - 1, then 

the code is not cyclic. The results derived here are applicable to cyclic and noncyclic codes. [2] 

In the following, the Galois field elements 0 = (0, 0) and 1 = (0, 1) are denoted by boldface to 

distinguish from the binary 0, 1. 

 

The uniqueness of our formulation is that it not only allows a uniform model for analysis of both 

LFSR and MISR techniques but also provides for the development of new signature techniques. 

Using this a new compression scheme for multiple output circuits are developed. This new scheme, 

referred to here as multi-input LFSR (MLFSR), has the potential to achieve lower aliasing than 

other existing schemes with analogous hardware complexity.  

New error models are discussed for multioutput circuits. It is shown how these can utilize circuit-

specific information to obtain realistic error models. This paper presents several new aliasing 

probability results, using the coding theory framework. Specifically, exact closed-form 

expressions of aliasing probability for both LFSR and MISR are presented for certain test lengths. 

To the best of our knowledge, an exact closed-form countenance for MISR aliasing probability 
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under independent error model had not been previously reported. Also presented are algorithms to 

compute aliasing probabilities of LFSR’s and MISR’s for any arbitrary test length. 

The aliasing probability of MLFSR, the new compression scheme proposed here, is studied. It is 

shown that the MLFSR achieves lower aliasing compared to other schemes of comparable 

hardware complexity such as multiple MISR. 

Finally, a theoretical question is that of significant importance is whether not zero aliasing 

compression is possible. We show that it is not only possible but there exist design techniques 

which achieve aliasing-free compression with compression efficiency (1 - the length of the 

signature length of test response) no less than half. Next, we present a result which states that any 

desired compression efficiency can also be attained, asymptotically. 

This result is of theoretical significance because previously, it was commonly believed that zero 

aliasing is impossible. 

There has been a significant volume of research on the problem of test data compaction for digital circuits 

using special hardware that is usually implemented in a built-in self-test (BIST) environment [6], [8]. 

Several compaction schemes have been developed which are based on transition counting [9], checksums 

[10], syndrome testing [11] and single- and multiple-input linear feedback shift registers (LFSR’s) [7]. 

Recently, Rajski and Tyszer [12] have analyzed the properties of digital integrators for test response 

compaction for digital circuits. 

 

As opposed to LFSR’s, the scheme using integrators introduces very small hardware overhead. Although 

there has been a considerable amount of progress in test response compaction for digital circuits, there has 

not been any past work in this direction for analog/mixed-signal circuits, to the best of our knowledge. 

The integrator for computing the signature is shown in Fig. 4. The input to the integrator consists 

of a sequence x of sampled data words of length N: An integral (summation) of x over N samples 
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is given by S(x) which consists of an integer part I(x); and a fractional part R(x) represented by m 

and n bits, respectively. 

 

For simplicity, we assume that the register in Fig. 4 represents numerical data normalized to lie 

between 0 and 1 (including 0 but not including 1). 

The data is represented as fixed-point  

 

Figure 5: Digital Integrator 

fractions. An overflow occurs if the value in the register exceeds its full-scale value (greater than 

or equal to 1). The remaining value in the register, R(x) constitutes the signature. If desired, the 

signature analyzer can be designed to handle numbers with integer and fractional parts, rather than 

just the latter as considered in this analysis. Let the WORDSIZE be given by n: As an example, 

the data word .111 000 00 representing the number 0.875 is specified by WORDSIZE = 8: The 

signature is given by the bit values stored in the register and consists of the decimal fraction of the 

integral. 

Let the maximum tolerance of the response signal at any given time-point be denoted by β and let 

N be the total number of samples over which the signal is integrated. Then the tolerance for the 

good signature (for the nominal response and those within tolerance) is bounded by € = N X β; As 

discussed in the previous section, β must lie within the range of values that can be represented by 

the register. This condition is equivalent to €<1: However, if the nominal signature is such that by 
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adding the tolerance margin €; the register overflows, the remaining signature would no longer be 

good. This will cause a response within tolerance to be incorrectly rejected as bad (false reject). 

On the other hand, if a faulty response maps to a signature within a tolerance of the nominal (good 

signature) it results in incorrectly passing a faulty response (aliasing). Both phenomena are 

undesirable and the signature analyzer should be designed such that it minimizes the probability 

of occurrence of these incorrect judgments. [5]   a new framework is presented for shift register-

based test response compressors.  

Next, consider the signature analyzer at the output of the CUT. Aliasing occurs when the error  

 

Figure 6: Aliasing in Signature Analysis 

vector, which is defined as the sum of the faulty circuit response and good circuit response, is 

divisible by the feedback polynomial, as shown in Fig. 5.  

 

Using the communication channel analogy, one can state that aliasing occurs precisely when the 

error vector corresponds to a code vector in the code generated by the feedback polynomial of the 

signature analyzer. 
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Hence, the probability of aliasing in GLFSR is precisely equal to the probability of undetected 

error in the following equivalent communication scheme. Let the good circuit response be 

transmitted over a noisy channel where the characteristics of this noisy channel are defined by the 

error model used for estimating the aliasing probability. (For example, the well-known 

independent error model [9], [10] will correspond to the binary symmetric channel model [12] 

used frequently in communication theory.) The receiver then divides this received vector by g(x), 

where g(x) = Ø(x), the feedback polynomial. If the resulting remainder (syndrome) equal to the 

remainder (syndrome) obtained by dividing the good circuit response with Ø(x) then no error is 

detected. This happens only when the added noise in the channel corresponds to a code vector in 

the code generated by g(x) = Ø(x). 

The following is a direct consequence of the above observations. 
 

Let AC (aliasing code) represent the code C generated by g(x) = Ø(x) (the feedback polynomial 

of the GLFSR) of length n = 1, where I is the length of the test response compressed by the GLFSR  

(β, m). 

An error polynomial E(z) causes aliasing in GLFSR (β, m) if E(x) belongs to the code AC defined 

above. The following examples motivate the results subsequently presented. 

Let the test response from a single output circuit be compressed into a 3-bit signature, using a 

GLFSR (1, 3) shown in Fig. 6, with primitive feedback polynomial over GF (2): 

                                                             g(x) = x3 + x + 1. 

This corresponds to a three-stage simple LFSR. 
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Figure 7: A Logic Level Presentation of the algebraic 3-input Signature Analyzer 

In this case, we assume there are L=7 tests applied to the CUT. Since m =3 one has the degree of 

Ø(x), L = (2m - 1). Thus, the code words in the code AC generated by Ø(x) of length 7 constitute 

the cyclic Hamming code from Corollary 3. These are given  

 

AC ={0, x3+ x+ l,  x4+ x2+x, x4+ x3+x2
 +1, x5+ x2+x+1,  x5+ x3+x2

, x5+ x4+1, x5+ x4+x3+x, x6+ x2+1, 

x6+ x3+x2+x, x6+ x4+x+1, x6+ x4+x3, x6+ x5+x, x6+ x5+x3+1, x6+ x5+x3+x2+ x+1}. 

 

In Table I(a), (b), and (c), we illustrate the states of the LFSR in Fig. 6, in response to input 

sequences 0101110, 0100101, and 0100100, respectively. Let the first sequence, 0101110, 

corresponding to the good circuit response, and the other two correspond to faulty circuit 

responses. It may be seen that the first faulty circuit response 0100101 will cause aliasing since it 

produces the same signature, 010, as the good circuit response. This is because 0001011, the bit 

by bit EXOR sum of the good circuit response and this faulty circuit response, is a code word in 

the code AC. 

Now consider the second faulty response 0100100. The signature in response to this sequence is 

110 which is different from 010, the good circuit signature. This is because 0001010, the bit-by-

bit EXOR sum of 0101110 and 0100100, is not a code word in the code AC. Thus, the faulty 

response (c) will be detectable, whereas the response (b) will cause aliasing. 
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Therefore, a fault f can cause aliasing if and only if the tests for f are such that the error polynomial 

is a code word in the above code. The number of 1's in the code words has important implications. 

For example, consider a test sequence T = { t5,t4,t3,t2,t1,t0}. It may be noted that if t; is a test for the 

fault f, then the error vector (error polynomial) corresponding to f will have a 1 in the i-th position 

(the term xi). 

 

For example, if a fault f is tested by three tests t3, t1, and to, then f will be aliased because the 

corresponding error vector x3+ x+ 1 is a code word in the above code. However, any fault that has 

either two or five test will not cause any aliasing, since there is no code word with two or five 1's 

in it. It may also be noted that all the nonzero codewords in the above code have at least three 1's. 

Therefore, any fault that is detected by only one or two tests will not cause aliasing. A fault to 

cause aliasing should be detectable by at least three tests. 

 

Table: 1 a) Good Circuit Response 

Test Shift R(X) Register value 

Stage 0                 Stage 1 

   0 = (0
0
) 0= (0

0
) 

t4 1 α = (1
0
) α = (1

0
) 0 = (0

0
) 

t3 2 β = (1
1
) β = (1

0
) α = (1

0
) 

t2 3 0 = (0
0
) β = (1

0
) 1 = (0

1
) 

t1 4 1 = (0
1
) β = (1

0
) α = (1

0
) 

t0 5 α = (1
0
) 1 = (1

0
) 1 = (0

1
) 
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Table: 1 b) Faulty Circuit Response 

Test Shift R(X) Register value 

Stage 0                 Stage 1 

   0 = (0
0
) 0= (0

0
) 

t4 1 α = (1
0
) α = (1

0
) 0 = (0

0
) 

t3 2 α = (1
0
) α = (1

0
) α = (1

0
) 

t2 3 1 = (0
1
) α = (1

0
) 0 = (0

0
) 

t1 4 β = (1
1
) β = (1

1
) α = (1

0
) 

t0 5 α = (1
0
) 1 = (0

1
) 1 = (0

1
) 

 

 

Table: 1 c) Faulty Circuit Response 

Test Shift R(X) Register value 

Stage 0                 Stage 1 

   0 = (0
0
) 0= (0

0
) 

t4 1 α = (1
0
) α = (1

0
) 1 = (0

1
) 

t3 2 α = (1
0
) α= (1

0
) α = (1

0
) 

t2 3 0 = (0
0
) β = (1

1
) 0 = (0

0
) 

t1 4 0 = (0
0
) 0 = (0

0
) β = (1

1
) 

t0 5 β = (1
1
) α = (1

0
) β = (1

1
) 
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A multiple-input signature analyzer normally contains only one stage. It is presented in Figure 8 

where α is a primitive element of the field GF(2n), i.e. a root of a primitive polynomial                              

                              g(x) = gn-1xn-1 +……+g1x+g0…………………………………………...… (4) 

All elements of the field can be represented by a power of α. Assume αi be the incoming digit and 

αj be the content of the analyzer. Then, each operational cycle of the analyzer is described by the 

following expression: 

                               αj α ⊕ αi = αk   ……………………………………………………………………………………………. (5) 

Without a loss of generality, we will consider a 3-bit signature register (n = 3), with α being a 

primitive element of GF (23), in particular, a root of a primitive polynomial is  

                               g(x) = x 3 + x + 1.  

Then, a symbolic scheme of Figure 4 will transfer to the logic level circuit of Figure 8, where 

                            αl=a2
(l)x2+a1

(l)x +a0
(l),      ai

(l)  ∈ {0,1},………………………………………...(6) 

                                     0≤i≤2 ,                        0≤l≤6 

 

The above expression indicates the relationship between the power and vector representations of 

a field element. 

For example, If the preliminary “cleared” analyzer receives, the following sequence of 3-bit output 

responses from a digital CUT, α5 , α6 ,α4 ,α4 ,α2 ,α1 ,α0 then after the 6-th shift its content will 

become:                       

                        (((((0.α + α5)α + α6) α+ α4)α +α2)α + α1)α + α0 =α……….……………………(7) 

If in the above sequence of output responses, the least significant bit in the first response changes 

from 1 to 0 (i.e. the vector 111 changes to 110, or power α5 changes to α4, then the actual 

signature will change from 010 to 101or from α to α6 in power form. 



13  

 

Figure 8: A symbolic presentation of a one-stage arithmetic excluding adder  

 

In the known methods, output responses of mixed-signal circuits are compacted by a circuit 

referred to as a modulo adder. It should be noted that a modulo adder is a special case of a residue 

computing circuit. A residue computing circuit is represented in Figure 9. Here aj is the current 

content of the register, ai is the incoming (arithmetic) symbol and b are the bases of the system. 

This circuit divides the incoming sequence of symbols, am-1 ……. a1, a0, treated as a number: 

                               a = am-1b
m-1 + …… + a1b + a0 …………………………………………..… (8) 

by the modulus 

 

                              p = pt-1 b
m-1 + …….. + p1b + p0     ; t << m ………………………………...  (9) 

  

we consider a single stage device, i.e. t = 1; p = p0 < b = 2n, where n is the number of bits occupied 

by the symbol. The residue, s0, constitutes a signature. 

An operational cycle of the circuit in Figure 9 can be described by the expression: 

                               ajb + ai = a+
j (mod p)…………………………………………………..…. (10) 

 

Although the circuits of Figures 4 and look similar, their implementation is quite different. In 

general case, the designing procedure for the arithmetic circuits is more complicated and their 

hardware complexity is greater. 

Figure 10 represents the circuit that computes a modulo 5 residues of the incoming sequence of 3-

bit symbols treated as an octal number. 
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Here ai is the incoming octal digit and C is a combinational circuit which generates the following 

next state signals: 

Figure 9: A 3-input arithmetic compactor 

The shift of this circuit implements the operation aj x
8+ai (mod 5).  For high hardware complexity, 

the arithmetic compactor contains carry propagating circuitry. It's shown in red color in Figure 9. 

This circuitry delays the operation and aggravates the effect of a single fault.  

In figure 9, it designed an algebraic circuit that can be employed for mixed-signal data compaction 

and it does not contain carry propagating circuitry. 
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Chapter 3 

NOVEL APPROACH 

When the polynomial connected with the reference signature then it can be considered as a code 

word of the code whose minimal distance is defined by the g(x). Here this distance is called the 

Hamming distance. This distance characterizes algebraic error-detecting properties of the code and 

It is not convenient for arithmetic errors that occur in mixed-signal systems.  

 

A small permissible deviation of the data to be compacted causes the reference signature to span 

the entire space.  The circuit which can be called decision making is in Figure 2. This circuit must 

be able to compare the actual signature with the entire set of possible reference signatures, under 

these conditions. Analyzer’s complexity increases for this. If try to decrease the complexity, an 

arithmetic SA treats the sequence of output responses from a mixed-signal circuit as a number. 

 

In conjunction with the reference residue, this is considered as a code word of an arithmetic error-

control code. The properties of this code depending on the arithmetic minimal distance. The 

arithmetic minimal distance depends on the modulus p. The arithmetic residue calculating analyzer 

does not search the entire space. For taking a decision, it employs a window comparator. This 

simplifies the circuitry but the hardware complexity of the arithmetic SA can still be quite high. 

The distance between two vectors will be calculated as the arithmetic difference between the 

corresponding exponents. The distance between the signatures 010 and 101 will be 5 because the 

exponents of powers α6 and α differ by 5. 
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                              Fig. 10. A symbolic form of an algebraic SA for a mixed-signal CUT 

 

 

                          
We can interpret these exponents as output responses of a mixed-signal CUT since they possess 

arithmetic properties and at the same time, the corresponding vectors or signatures possess 

algebraic properties so an arithmetic data is mapped into an algebraic data. Figure 10 shows the 

circuit which performs the mapping and computes an algebraic signature. 

 
The circuit of Figure 10 can be obtained from the circuit of Figure 4 if we do the following 

transform: 

                           ……………. (11) 

 
This mapping will not change the probability of undetected error since the finite field GF(2n) is 

closed and errors are independent. 

In Figure 10, the logic level implementation of the circuit is more complex compared to the circuit 

of Figure 4, but it is less complex than that of the circuit of Figure 9. Before designing the circuit, 

we have to make a few observations. 

The first observation is that 
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                         ………………………….…… (12) 

 

 
Assume an output response from a mixed-signal CUT as i. The second observation is that the 

response i can be considered as an exponent of the power, i.e. αi, it means that the arithmetic values 

i are mapped into algebraic values αi. 

 

we can design a signature analyzer in the way shown in Figure 11, based on these observations. 

Here α is a primitive element of a finite field GF(2n) and n is the bit length of the output responses.  

 

Figure 11: A more detailed symbolic form of the SA 

If we consider the case when the analyzer is fed by 3-bit data, its more detailed implementation 

will have the form of Figure 12. 

 

In figure12, the buses consist of 3 lines, as indicated by the appropriate number. The initial content 

of the SA before the shift is αj , or a2x
2 + a1x + a0 in the polynomial form. The notations ak and ak

+, 

where index k can be one of the 0, 1, 2, indicate the present and next states, respectively 
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Fig. 12. A register transfer level implementation of the SA 

 

A multiplier by α in GF (23) is realized bearing in mind that g(x) = x3 + x + 1, α corresponds to x, 

and 

 
This operation is shown by cross-lines in Figure 10. The multiplexer inputs “0” and “7” are tied 

together, because α7 =α0 in the field GF (23). 

 

To demonstrate how to use this analyzer, we will have to consider that it receives only two values 

from a CUT, j and i. Since the CUT is of a mixed-signal nature, there is an unavoidable deviation 
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of these values by ±1. The analyzer will map the received data into , αi+1, respectively. If 

the initial content of the SA is 001, then after the first shift the content becomes   α0 αj+1 = αj+1. 

 
After the second shift, it changes to αj+1 αi+1 = αj+i+2.  

It states that for the fault-free CUT the actual result must match one of the values from the interval 

αj+i-2 , αj+i+2.  that is one of the following: 

                                                    αj+i-2 , αj+i-1 αj+i, αj+i+1 , αj+i+2………………………………... (13) 

 

In order to simplify the SA operation, we will assume that instead of α0 the initial SA content is α-

(j+i). We will refer to this value as the seed value. Then, by the same reasoning, the SA content after 

two shifts will match one of the following powers: 

 

                                                     α-2 , α-1 ,α0 ,α1 α2.................................................................... (14) 

 

For the closure property of the field GF (23), this power set is equivalent to: 

 

                                                     α5 , α6 ,α0 ,α1 α2..................................................................... (15) 

  

Since these values are ordered in the decision-making circuit can employ a comparator, reducing 

the hardware complexity of the SA. 

As in any signature analyzer, some errors in the CUT output responses may escape detection. The 

aliasing rate can be estimated and will coincide with the aliasing rate of the conventional analyzer. 
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Example: Here we consider a 3-bit CUT, which is fed by two input stimuli. Under the fault-free 

operation, the CUT produces the output responses     j = 101±1 and i = 110 ±1. The seed value 

will be 

α-(j+i) = α-(5+6) = α -11 = α3, 

 

 or 011 in the vector form. If the CUT is fault-free, then after 2 shifts the SA content must match 

one of the elements in the set (6). If the actual responses are 101+1=110 (or α6) and 110+1=111 

(or α7), the signature will be α3α6α7=α2 which belong to the set (6). And the decision-making circuit 

will generate a pass signal. The validity of such a decision is determined by the aliasing rate. 

Now assume that a fault in the CUT has made the following changes in the output responses: 110 

⤇ 011 (α6 ⤇α3) and 111 ⤇ 100 (α7⤇α4). Then the actual signature will become α3 α3 α4 =  α3. This 

element does not belong to the set (6), so the fault is detected. There are two distinct ways of 

designing the decision-making circuit depending on the optimization criteria.  

 

Hardware overhead: The following approach can be employed if performance is paramount and 

time overhead is not desirable. Let m be the number of output responses. All of the 2m+1 α-

multiplier outputs that belong to the set (6), are connected to the first inputs of the 

2m+1comparators of a similar type. The second inputs of these comparators are shared and fed by 

the vector 0…01. If the CUT is fault-free, one of the comparators will produce a logic “1” signal. 

The logic OR of the comparator outputs will constitute a pass / fail signal. 
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Fig 13: An n-bit comparator 

 
The logic diagram of the n-bit comparator is shown in Figure 11. 

This procedure is based on the fact that the fault-free CUT produces one of the signatures from the 

set (6). If the actual signature is α0, the comparator connected directly to the signature register 

produces a logic “1”, thus indicating that the CUT is fault free. If the actual signature is α6, then 

the product α6α generated at the output of the first α-multiplier equals to 1, which is detected by 

the next comparator. The same n reasoning applies to the rest of signatures from the set (6).  

Time overhead: The hardware complexity can be further reduced if time overhead is allowed,  for 

implementation use the following seed value: 

                 α-(j+i+m+1), where m is the number of output responses. 

For the above example, α-(11+3) = α0, and the set (6) will transform to: 

                                                                 α2, α3, α4 ,α5 ,α6 

After the last output response has been shifted in, the SA continues to shift its content 2m+1 more 

times, while the input i is forced to 1. This ensures that the SA content is multiplied by α with each 

shift. For the above example, 2m+1=5. If within this time, the match with an element of the set (7) 

has been determined, the CUT is considered to be fault-free. Otherwise, it is faulty. 

If the CUT is fault free and its output responses have not exceeded their tolerances, then while 

cycling through the states during the extra 2m+1 shifts, the output of the multiplexer in Figure 9 

will go through the power α0 or vector 0… 01. The match with the vector 0… 01 is detected by 
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the comparator of Figure 13 connected to the multiplexor’s output. The comparator output is 

producing a pass / fail signal. 

 

In figure 11, the implementation complexity increases significantly with the growth of n. This 

circuit can only be implemented for the output responses with relatively low values of n. For 

greater values of n, we will modify the circuit of Figure 11 to the one shown in Figure 14.  

              
Fig. 14. A binary-weighted version of the SA 

 

 
The modified circuit contains binary-weighted stages and is more economical in terms of 

hardware. The complexity of the multiplier xαi is comparable with that of the multiplier xα, 

whereas the number of multipliers drops from 2n to n. The economy increases with the growth of 

n. 

For the case of 3-bit data, the circuit of Figure 14 transfers to the one shown in Figure 15. This 

circuit operates much in the same way. The αi-multipliers structure is determined from the 

following expressions: 

                  x(a2x
2 + a1x + a0) mod g(x) = a1x

2 + (a2 + a0)x + a2, 

                  x2(a2x
2 + a1x + a0) mod g(x) = (a2 + a0)x

2 + (a2+ a1)x + a1 

                  x4(a2x
2 + a1x + a0) mod g(x) = (a2 +a1+ a0)x

2 + (a1+ a0)x+ (a2+ a1) 
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Fig. 15. A register transfer level implementation of the 3-bit SA 
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Conclusion to Chapter 3 

The main idea is to remove the adder from the arithmetic signature analyzer and it becomes just a 

multiplying device. we supply I to the analyzer, but it interprets it as αi{α}^{i} and multiplies the 

current content, αj{α}^{j}, by αi{α}^{i}. The operation of this analyzer is equivalent to the normal 

analyzer, whose input data are shuffled (i.e., what is important, the probability of error detection 

is not changing). An outcome from the main idea is that the reference signatures (5 signatures that 

are discussed in the paper) are contagious. So, if we go through them, it will always include 001. 

If this code is not found, the circuit is faulty. 

For a fault-free ADC, your actual signature drops into the range 

α3{α}^{i+1}, α4{α}^{i+1}, α5{α}^{i+1},..., α12{α}^{i+1}, α13{α}^{i+1},α14{α}^{i+1}, ... 

, α21{α}^{i+1}, α22{α}^{i+1}, α23{α}^{i+1}. So, you take α23{α}^{i+1} and compare the 

actual signature with it. If they match, then the ADC is fault-free. If not, then you multiply this 

actual signature by α and see if the result of multiplication now matches α23{α}^ {i+1, etc. If we 

clock it 20 times and it never matches α23{α}^{i+1}, then the ADC is faulty. Multiplication of 

the register content by α can be easily done by the same circuit; you just keep i=1 and apply one 

clock (shift). For avoid the carry propagation to the main circuit, it is one of the most favorable 

conceptions for the future Signature analyzer. It’s easy to use, operate and implementation.  
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Chapter 4 

Experimental Results and Tests 

 

In Figure 16, the experimental setup to test the proposed method of signature analysis is shown. 

 

 

  
                                                       Fig. 16. The experimental setup 

 
From the figure 16, we can see, the setup includes the microcontroller system board Adapt9S12D 

which is based on the Freescale’s 9S12DG128 microcontroller and the Altera DE2 Development 

Board based on the Cyclone II EP2C35F672C6 FPGA device. 16 input test stimuli (voltages Vin,) 

equally distributed over the range (0 ~5.12) V and applied them to the analog-to-digital converter 

(ADC) of the 9S12 microcontroller which served as a mixed-signal system [1]. Input voltage was 

measured by a high-precision voltmeter and regarded as a nominal test input value.  
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The circuit in Figure 16 operates as follows. Every time the switch Sw is closed, the system 

performs 8 measurements of the same test signal and averages the result by accumulating the sum 

of the eight 8-bit measurements and shifting it right three times, which eliminates noise. Each 

conversion result for a properly operating device can deviate from the nominal value by ±1, For 

example, if Vin = 40mV, the conversion result can as the TABLE A. 

 
Table: Input stimuli generation using different voltage level 

 

 
Input voltage output code 

 mv Min Nom Max No fault Fault 

80 3 4 5 3 3 

400 19 20 21 21 21 

720 35 36 37 37 37 

1040 51 52 53 53 53 

1360 67 68 69 68 70 

1680 83 84 85 85 85 

2000 99 100 101 99 99 

2320 115 116 117 117 117 

2640 131 132 133 133 133 

2960 147 148 149 148 150 

3280 163 164 165 165 165 

3600 179 180 181 179 179 

3920 195 196 197 197 197 

4240 211 212 213 212 240 

4560 227 228 229 229 230 

4880 243 244 245 244 244 

 

 

Therefore, each of the thirty-two 8-bit average results contains an error of at most ±1 count. The 

test stimuli have been selected equal to the midpoints of the quantization bins, thereby increasing 

the uncertainty and worsening the probability of undetected error. If the test stimuli would have 

been selected at the transition points of the characteristic, the probability of undetected error 

(aliasing rate) would improve. This follows from the observation that each conversion would result 

in 2 possible values as opposed to 3 possible values in the previous case. 
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As soon as average values of the conversion results are computed by the microcontroller, they are 

transferred to the DE2 board. The transfer of each data is accompanied by a high-to-low transition 

of the strobe signal Str. The Str signal serves as a clock for the state machine that implements the 

signature analyzer (in its 8-bit configuration). The signature, D, is displayed on a two-digit 7-

segment display in the hexadecimal form. 

The first experiment was performed on the properly operating device. In the second experiment, 

the average results were corrupted digitally in the microcontroller (thereby simulating random 

faults in the ADC) and sent to the analyzer. The analyzer has correctly identified the faulty device. 

The relationship between input voltages and output codes is presented in Table II. Based on this 

Table and taking into consideration that g(x) = x8 + x4 + x3 + x2 + 1, the seed value is calculated 

as follows. 

 

4 + 20 + …. + 244 = 1984 = 199 mod (28 -1) = 199 mod; 

α-199
 =α56 =01011101 

Seed Value = α56 α-16 = α40 = 01101010 = 106. 

 

 

In addition to test experiments, the operation of the analyzer (the DE2 part of the test setup) was 

simulated using Altera Quartus II software. Based on the two experiments represented in Table II, 

the signatures that correspond to fault-free and faulty ADCs are respectively 233 and 201 (in 

decimal form). The process of calculation of these signatures is demonstrated in Figures 15 and 

16. Figures 22 and 23 represent the fault detection process. The actual final signatures are shifted 

additionally 32 times. If the value 1 appears in the analyzer during these shifts, the system is fault 

free. Otherwise, it is faulty. 

The simulation results matched the experimental results. 
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But in this project, I used Altera board switches as an input of stimuli in lieu of Microcontroller 

output. That’s why it was changed manually for putting input to the FPGA Altera board. The Altera 

Board DE2 115 has 18 input PINs.  

Figure 17: Circuit design for 3 bit SA for a resister transfer level 

Figure 18: Altera DE2 115 FPGA Board 
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Coding Compilation result in Altera. 

 

  
 

Figure20: Compilation result of coding in Altera DE2 115 

 

 

Block Diagram of designed algorithm 

 

 

 
Figure 21: Designed Block diagram from Altera DE2 115 
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Figure 22: Experiment for nominal Value in input stimuli of the Designed device 

Figure 22 & 23 is a graphical representation of input stimulus in CUT for Nominal and 

Maximum value. Figure 24 is the minimum value of input stimulus. In this case, seed value was 

always 106. 
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Figure 23: Experiment for Maximum Value in input stimuli of the Designed device 

 

Figure 24: Experiment for Minimum Value in input stimuli of the Designed device 

In Figure 25, we are getting combination “1” is detected in “sout” as input stimuli in CUT are 1. 

So the CUT/ ADC is ok. This time seed value was 233. But in Figure 26, the input “1” is not 

detected 

For seed value 201. Here ADC should be Faulty. 
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Figure 25: The combination “1” is detected: ADC is operating Properly 

 

 

Figure 26: The combination “1” is not detected: ADC should be faulty 

Again, when seed value is 251in Figure 27, we are getting the input in output. So, for the seed 

value 251, the operation is ok and we are getting the perfect output. So we can see that actual 

seed value is important for getting a perfect result.  
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Figure 27: The combination “1” detected, so ADC properly operating 

 

 

 

Figure 28: The combination “1” not detected, so ADC faulty. 

Another example for wrong seed value ADC showing as a faulty. On the contrary, Figure 29 with 

seed value 250, showing the CUT/ ADC as a good device. Input stimuli’s decimal is in output as 
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an unsigned Decimal form. We can get those value as a Binary also just changing the setting in 

Altera software. 

 

Figure 29: The combination “1” detected, so ADC properly operating 

 

Figure 30: The combination “1” not detected, so ADC faulty 
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Conclusion:  

So, we examined and testing an algebraic signature Analyzer (ASA) technique that can be 

employed for mixed-signal circuit testing. Here we just tried to demonstrate the strategy of 

appropriate device design.  This device is not carrying arithmetic carry and here is less susceptible 

to errors. This obstacle of carry propagation providing a better performance to the device. 

In future, this schemed can be used as an arithmetic and algebraic error-control coding. So it can 

be suggested as a future work on arithmetic compactor design. 

For this test, we found seed value in 250, 251 and 233. Rest of the value are not seed value and 

that’s why our simulation showing ADC is faulty. So there factor here Proper seed value, the range 

of seed and productive value of ADC. 
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APPENDIX 

Part of the VHDL code that generated the combinational unit 

VHDL Coding: 

 
library ieee; 

use ieee.std_logic_1164.all; 

 

ENTITY ASigAnalyzer IS 

 PORT (sin  : IN  STD_LOGIC_VECTOR(7 DOWNTO 0); 

   res, clk : IN  STD_LOGIC ; 

   seed  : IN  STD_LOGIC_VECTOR(7 DOWNTO 0); 

   sout  : BUFFER STD_LOGIC_VECTOR(7 DOWNTO 0)); 

END ASigAnalyzer; 

 
ARCHITECTURE Behavior OF ASigAnalyzer IS 

 

 SIGNAL w128, w64, w32, w16, w8, w4, w2, w1 : STD_LOGIC_VECTOR(7 

DOWNTO 0); 

 SIGNAL f128, f64, f32, f16, f8, f4, f2, f1 : STD_LOGIC_VECTOR(7 DOWNTO 0); 

 COMPONENT mux2to1 

 PORT (w0,w1 : IN STD_LOGIC_VECTOR(7 DOWNTO 0); 

   s  : IN STD_LOGIC; 

   f  : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); 

 END COMPONENT; 

BEGIN 

 PROCESS (res, clk) 

 BEGIN 

  IF res = '0' THEN 

   sout <= seed; 

  ELSIF Clk'EVENT AND Clk = '0' THEN 

   sout <= f128; 

  END IF; 

 END PROCESS; 

 

 stage128: mux2to1 PORT MAP (f64,  w128, sin(7), f128); 

 stage64:  mux2to1 PORT MAP (f32,  w64,  sin(6), f64); 

 stage32:  mux2to1 PORT MAP (f16,  w32,  sin(5), f32); 

 stage16:  mux2to1 PORT MAP (f8,   w16,  sin(4), f16); 

 stage8:  mux2to1 PORT MAP (f4,   w8,   sin(3), f8); 

 stage4:  mux2to1 PORT MAP (f2,   w4,   sin(2), f4); 

 stage2:  mux2to1 PORT MAP (f1,   w2,   sin(1), f2); 

 stage1:  mux2to1 PORT MAP (sout, w1,   sin(0), f1); 
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-- 

 w128(7) <= f64(7) XOR f64(6) XOR f64(4) XOR f64(0); 

 w128(6) <= f64(6) XOR f64(5) XOR f64(3); 

 w128(5) <= f64(7) XOR f64(5) XOR f64(4) XOR f64(2); 

 w128(4) <= f64(6) XOR f64(4) XOR f64(3) XOR f64(1); 

 w128(3) <= f64(7) XOR f64(6) XOR f64(5) XOR f64(4) XOR f64(3) XOR f64(2); 

 w128(2) <= f64(5) XOR f64(3) XOR f64(2) XOR f64(1) XOR f64(0); 

 w128(1) <= f64(6) XOR f64(2) XOR f64(1); 

 w128(0) <= f64(7) XOR f64(5) XOR f64(1) XOR f64(0); 

 

-- 
 w64(7)  <= f32(7) XOR f32(4) XOR f32(3) XOR f32(1); 

 w64(6)  <= f32(6) XOR f32(3) XOR f32(2) XOR f32(0); 

 w64(5)  <= f32(7) XOR f32(5) XOR f32(2) XOR f32(1); 

 w64(4)  <= f32(7) XOR f32(6) XOR f32(4) XOR f32(1) XOR f32(0); 

 w64(3)  <= f32(7) XOR f32(6) XOR f32(5) XOR f32(4) XOR f32(1) XOR f32(0); 

 w64(2)  <= f32(7) XOR f32(6) XOR f32(5) XOR f32(1) XOR f32(0); 

 w64(1)  <= f32(6) XOR f32(5) XOR f32(3) XOR f32(1) XOR f32(0); 

 w64(0)  <= f32(5) XOR f32(4) XOR f32(2) XOR f32(0); 

 

-- 

 w32(7)  <= f16(6) XOR f16(3) XOR f16(0); 

 w32(6)  <= f16(5) XOR f16(2); 

 w32(5)  <= f16(7) XOR f16(4) XOR f16(1); 

 w32(4)  <= f16(7) XOR f16(6) XOR f16(3) XOR f16(0); 

 w32(3)  <= f16(5) XOR f16(3) XOR f16(2) XOR f16(0); 

 w32(2)  <= f16(7) XOR f16(6) XOR f16(4) XOR f16(3) XOR f16(2) XOR f16(1) XOR 

f16(0); 

 

 w32(1)  <= f16(5) XOR f16(2) XOR f16(1); 

 w32(0)  <= f16(7) XOR f16(4) XOR f16(1) XOR f16(0); 

 

-- 
 w16(7)  <= f8(7)  XOR f8(6)  XOR f8(4)  XOR f8(1); 

 w16(6)  <= f8(7)  XOR f8(6)  XOR f8(5)  XOR f8(3)  XOR f8(0); 

 w16(5)  <= f8(6)  XOR f8(5)  XOR f8(4)  XOR f8(2); 

 w16(4)  <= f8(5)  XOR f8(4)  XOR f8(3)  XOR f8(1); 

 w16(3)  <= f8(7)  XOR f8(6)  XOR f8(3)  XOR f8(2)  XOR f8(1)  XOR f8(0); 

 w16(2)  <= f8(5)  XOR f8(4)  XOR f8(2)  XOR f8(0); 

 w16(1)  <= f8(6)  XOR f8(3); 

 w16(0)  <= f8(7)  XOR f8(5)  XOR f8(2); 

 

-- 
 w8(7)   <= f4(5)  XOR f4(4)  XOR f4(3); 

 w8(6)   <= f4(4)  XOR f4(3)  XOR f4(2); 

 w8(5)   <= f4(7)  XOR f4(3)  XOR f4(2)  XOR f4(1); 
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 w8(4)   <= f4(6)  XOR f4(2)  XOR f4(1)  XOR f4(0); 

 w8(3)   <= f4(4)  XOR f4(3)  XOR f4(1)  XOR f4(0); 

 w8(2)   <= f4(7)  XOR f4(5)  XOR f4(4)  XOR f4(2)  XOR f4(0); 

 w8(1)   <= f4(7)  XOR f4(6)  XOR f4(5)  XOR f4(1); 

 w8(0)   <= f4(6)  XOR f4(5)  XOR f4(4)  XOR f4(0); 

 

-- 

 
 w4(7)   <= f2(7)  XOR f2(3); 

 w4(6)   <= f2(7)  XOR f2(6)  XOR f2(2); 

 w4(5)   <= f2(7)  XOR f2(6)  XOR f2(5)  XOR f2(1); 

 w4(4)   <= f2(6)  XOR f2(5)  XOR f2(4)  XOR f2(0); 

 w4(3)   <= f2(7)  XOR f2(5)  XOR f2(4); 

 w4(2)   <= f2(6)  XOR f2(4); 

 w4(1)   <= f2(5); 

 w4(0)   <= f2(4); 

 

-- 
 w2(7)   <= f1(5); 

 w2(6)   <= f1(4); 

 w2(5)   <= f1(7)  XOR f1(3); 

 w2(4)   <= f1(7)  XOR f1(6)  XOR f1(2); 

 w2(3)   <= f1(7)  XOR f1(6)  XOR f1(1); 

 w2(2)   <= f1(6)  XOR f1(0); 

 w2(1)   <= f1(7); 

 w2(0)   <= f1(6); 

 

-- 

 
 w1(7)   <= sout(6); 

 w1(6)   <= sout(5); 

 w1(5)   <= sout(4); 

 w1(4)   <= sout(7)  XOR sout(3); 

 w1(3)   <= sout(7)  XOR sout(2); 

 w1(2)   <= sout(7)  XOR sout(1); 

 w1(1)   <= sout(0); 

 w1(0)   <= sout(7); 

 

 

END Behavior; 

 

--8-bit mux2to1 component 

 

 

library ieee; 
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use ieee.std_logic_1164.all; 

 
ENTITY mux2to1 IS 

 PORT (w0,w1 : IN STD_LOGIC_VECTOR(7 DOWNTO 0); 

   s  : IN STD_LOGIC; 

   f  : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); 

END mux2to1; 

 

 
ARCHITECTURE Behavior OF mux2to1 IS 

BEGIN 

   f <= w0 WHEN s='0' ELSE w1; 

END Behavior; 
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