
OPTIMIZED SWITCH-LEVEL SOFT ERROR

DETECTION BASED ON ADVANCED SWITCH-LEVEL

MODELS

by

JaiaI Mohammad Chikhe

Maitrise de science de la modelisation, de l'information et des systemes

Mention Electronique, electro technique, automatique et systemes

University of Paul Sabatier, Toulouse, France, 2007

A project report

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010

©Ja\al Mohammad Chikhe 20 I 0

PRO?Gll"f CF .~
RYEF:&m~ :":~H~!313rrv U3RAm'

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this project or dissertation. I authorize Ryerson

University to lend this project or dissertation to other institutions or individuals for the purpose

of scholarly research.

~~.-..

I further authorize Ryerson University to reproduce this project or dissertation by photocopying

or by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

iii

ABSTRACT

Project Title:

Optimized switch-level soft error detection based on advanced switch-level models

Project submitted by:

Jalal Mohammad Chikhe

Optimization Problems Research and Applications Laboratory (OPR-AL)

Master of Engineering, Ryerson University, 2010

Project Directed by:

Dr. Reza Sedaghat

Due to the reduction of transistor size, modem circuits are becoming more sensitive to soft

errors. The development of new techniques and algorithms targeting soft error detection are

important as they allow designers to evaluate the weakness of the circuits at an early stage of the

design. This project presents an optimized implementation of soft error detection simulator

targeting combinational circuits. The developed simulator uses advanced switch level models

allowing the injection of soft errors caused by single event-transient pulses with magnitudes

lesser than the logic threshold. The ISCAS'85 benchmark circuits are used for the simulations.

The transients can be injected at drain, gate, or inputs of a logic gate. This gives clear indication

of the importance of transient injection location on the fault coverage. Furthermore, an algorithm

is designed and implemented in this work to increase the performance of the simulator. This

optimized version of the simulator achieved an average speed-up of 310 compared to the non

algorithm based version of the simulator.

iv

ACKNOWLEDGEMENT

At first I would like express my gratitude to Dr Sedaghat for his advice, guidance and

patience. I am grateful to have him as a mentor because his support helped me progress in my

research. Being part of Optimization Problems Research and Applications Laboratory (OPR-AL)

was one a most creative and energetic experience. I would like to thank the members of the

(OP-RAL) for making me very comfortable when joining the team and for offering their help

and support.

I dedicate this project to my parents. Their love and encouragement helped me through this

journey.

v

TABLE OF CONTENTS

i\llstract ... i"

Acknowledgement ... v

Table of Contents ... vi

List of Tables ... ix

List of Figures .. xii

N omenclatu re .. xiv

Chapter 1 Introduction .. 1

1.1. Background .. 1

1.2. Motivation ... 3

1.3. Summary of Contribution ... 3

1.4. Project Organization .. 4

Chapter 2 Main Functions of the Simulator .. 5

2.1. Verilog Strength and Logic Levels ... 6

2.2. Switch-Level Functions ... 9

2.2.1. funC Function ... 9

2.2.2. funN Function ... 10

2.2.3. funP Function ... 11

2.2.4. Capacitance Functionality 12

2.2.5. Example of Transient Injection at Drain of a Switch

Applied to NAND2 Gate ... 13

Chapter 3 Fundamental Architecture and Data Structure of the Simulator• 15

3.1. Programming Language .. 15

3.2. Simulation Environment .. 16

3.2.1. Data Input .. 17

3.2.2. Simulator Flow Diagram 18

3.2.3. Data Output. .. 20

vi

3.2.4. Processing Module .. 23

3.3. Data Structure of Netlist Gate-Level (netlist~) 24

3.4. Processing and Storing Arrays of Gate-LeveL 26

3.5. Data Structure of Netlist Switch-Level (netlist_s) 28

3.5.1. Coding Architecture of netlist_s 28

3.5.2. NOT Gate ... 29

3.5.3. BlTFFER Gate ... 32

3.5.4. NAND2 - AND2 Gates ... 33

3.5.5. NAND3 - AND3 Gates .. 36

3.4.6. NOR2 - OR2 Gates ... 38

3.4.7. NOR3 - OR3 Gates .. 40

3.5.8. Data Structure Switch-Level of C17 Circuit 43

3.6. Processing and Storing Arrays of Switch-LeveL 46

Chapter 4 Detailed Representation of Sim V I Simulator••••••.•.•..••...••••••... 48

4.1. Flow Diagram ofSimV .. 48

4.2. Flow Diagram of.Module 1. ... 52

Chapter 5 Detailed Representation of Sim V 2 Simulator •..........•.•••...•....•••.•• 57

5.1. Gate-Level Resolution Function .. 57

5.3. Switch-Level Data Input Organization 63

5.3. Concept ofthe Algorithm Used in SimVl Simulator 63

5.3.1. 1st Solution Based on C17 Circuit Example 67

5.3.2. 2nd Solution Based on C17 Circuit Example 69

5.3.3. 3rd Solution Based on C17 Circuit Example 70

5.3.4. 4th Solution Based on C17 Circuit Example 71

Chapter 6 Experimental Results .. 75

6.1. Overview of the Simulation Applied Data 75

6.1.1. Benchmarks ... 75

6.1.2. Information on the Applied Data 77

vii

6.2. Fault Coverage Due to Transient Injection at Different

Location types ... 77

6.2.1. Injection at Gate of a Switch 77

6.2.2. Injection at Drain of a Switch 81

6.6.3. Injection at Inputs of a Logic Gate 83

6.3. Fault Coverage Versus Applied Test Vectors 85

6.4. Timing Results ... 87

6.6.1. Matlab Profile of SimVt and SimV2 Simulators 87

6.6.2. Timing Results of Sim VI Simulator 88

6.6.3. Timing Results of Sim V 2 Simulator 90

6.6.4. Performance Study of the Developed the Simulators 93

Chapter 7 Conclusion ... 96

Publications ... 98

Bibliography ... a ... a 99

viii

LIST OF TABLES

Table 1: Verilog coding representation oflogic and strength levels and their decimal

Representation ... 7

Table 2: map_det ofC17 circuit .. 21

Table 3: map_detATV ofC17 circuit .. 23

Table 4: Coding of the gate types ... 25

Table 5: Data structure of C17 netlist gate-level (netlist_g) before and after net reorganisation

.. 26

Table 5(a): Data structure ofC17 netlis gate-level before net reorganisation 26

Table 5(b): Data structure of C 17 netlist gate-level after net reorganisation 26

Table 6: The main storing and indexing arrays needed to process C17 circuit gate-level 27

Table 7: Coding of the switch-level functions .. 29

Table 8: Coding and data structure of switch-level NOT gate .. 32

Table 9: Coding and data structure of switch-level BUFFER gate 33

Table 10: Data structure of switch-level NAND2 and AND2 gates 34

Table 11: Coded data of switch-level NAND2 and AND2 gates 35

Table 12: Data structure of switch-level NAND3 and AND3 gates 36

Table 13: Coded data of switch-level NAND3 and AND3 gates 37

Table 14: Data structure of switch-level NOR2 and OR2 gates 39

Table 15: Coded data of switch-level NOR2 and OR2 gates ... 40

Table 16: Data structure of switch-level NOR3 and OR3 gates 41

Table 17: Coded data of switch-level NOR3 and OR3 gates ... 41

Table 18: Data structure ofnetlist switch-level ofC17 circuit .. 45

ix

Table 19: Array of the storing processed data ofC17 circuit switch-level 47

Table 20: Architecture of ArraYinjD drain location array applied to NAND3 56

Table 21: Example of gate-level resolution function applied to NAND2 gate: Gate) of C 17

circuit covering the effect of the flipping bit of the output of the logic gate on the

circuit for a set of 12 test vectors .. 61

Table 22: Data structure of collected data gate-level based on the resolution function applied to

C17 circuit ... 63

Table 23: Structure of the collected data of NOT gate applied to SimV)* simulator 65

Table 24: Example of how the algorithm applied to SimV2 simulator builds the solution maps

map _ det and map _ detA TV for C 17 circuit .. 73

Table 25: map_det and map_detATV maps for C17 circuit .. 74

Table 26: Detailed logic gate information ofISCAS'85 benchmark circuits 76

Table 27: Information on ISCAS'85 benchmark circuits ... 77

Table 28: Simulation results for injection at gate ofa switch for C5315 circuit 80

Table 29: Simulation results ofFcov for transient injection at gate of a switch for ISCAS'85

benchmark circuits ... 81

Table 30: Simulation results for transient injection at drain of a switch for C5315 circuit 82

Table 31: Simulation results ofFcov for transient injection at drain of a switch for ISCAS'85

benchmark circuits ... 83

Table 32: Simulation results for transient injection at inputs of a logic for C5315 circuit 84

Table 33: Simulation results ofFcov for transient injection at inputs of a logic gate for ISCAS'85

benchmark circuits ... 84

x

Table 34: Timing results extracted from Sim V I simulator based on transient injection at drain

of a switch...... 89

Table 35: Timing results extracted from SimV2 simulator .. 91

Table 36: Performance and speedup ofSimV2 versus SimV1 based on all applied test vectors and

based on transient injection at drain of a switch .. 94

Table 37: Performance and speedup ofSimV2 versus SimV1 based on one test vector and based

on transient injection at drain of a switch ... 95

xi

LIST OF FIGURES

Figure 1: Strength levels versus Voltage levels adapted from [16] 8

Figure 2: Flow Diagram of funC Function .. 10

Figure 3: Flow Diagram offunN Function .. 11

Figure 4: Flow Diagram offunP Function ... 12

Figure 5: Example ofNAND2 gate in switch-level ... 13

Figure 6: Example ofNAND2 gate in switch-level where the transient "11111" is injected at the

drain of PI: PMOS ... 14

Figure 7: Flow diagram of the simulation environment ... 17

Figure 8: The simulator data input for C17 Circuit .. 18

Figure 9: Flow diagram of the Simulator .. 20

Figure 10: C 17 Circuit before and after net reorganisation .. 24

Figure lO(a): C17 Circuit - Before net reorganisation .. 24

Figure 1O(b): C17 Circuit - After net reorganisation ... 24

Figure 11: How the function code "4" processes the data ... 29

Figure 12: Switch-Level of BUFFER and NOT .. 31

Figure 13: Switch-Level ofNAND2 and AND2 .. 35

Figure 14: Switch-Level ofNAND3 and AND3 ... 38

Figure 15: Switch-Level ofNOR2 and OR2 .. 39

Figure 16: Switch-Level ofNOR3 and OR3 .. 43

Figure 17: Flow diagram of Sim V I simulator .. '" 51

Figure 18: Flow diagram of the transient injection and detection Module 1 55

xii

Figure 19: Structure of the 3D array of gate-level resolution function applied to C17 circuit ... 62

Figure 20: Data structure of some logic gates extracted from Sim V \ * simulator 66

Figure 21: Fcov for gate, drain ofa switch and inputs ofa logic gate for ISCAS'85 benchmarks

circuits ... 85

Figure 22: Plot of Fcov based on transient injection at drain of a switch versus applied test vectors

for C499, C2670, C3515 and C7552 benchmarks circuits 86

Figure 23: Matlab Profile Display showing the execution time ofSimV\ functions 88

Figure 24: Matlab Profile Display showing the execution time ofSimV2 functions 88

Figure 25: SimV\ Simulation time for ISCAS'85 benchmark circuits based on transient injection

at drain of a switch .. 90

Figure 26: SimV2 Simulation execution time for ISCAS'85 benchmark circuits 92

xiii

NOMENCLATURE

SET Single-Event Transient

SEE Single-Event Effects

CUT Circuit Under Test

SimVt Non-algorithm based soft error detection simulator

SimVl Algorithm based soft error detection simulator (Optimized

Simulator)

funC The function resolving the connection node

funN The function representing the NMOS switch

funP The function representing the PMOS switch

SignallL Logic code of incident signal 1 (Same topology for Signal 2)

Sign ails Strength code of incident signal 1 (Same topology for Signal 2)

OutC State code of output of funC

OutCs Strength code offunC output

OutCL Logic code of funC output

DraiuL Logic code of the signal at drain

Drains Strength code of the signal at drain

GateL Logic code of the signal at gate

Gates Strength code of the signal at gate of a switch

SourceL Logic code of the signal at source of a switch

Sources Strength code of the signal at source of a switch

xiv

I Orgm Reorganizing, coding and parsing program of data inputs I
SimV.* SimVI simulator applied to all the logic gate types independently

Profm Profiling maps generated by Sim V I or Sim V 2

Profm* The 3D profiling maps generated by Sim V 1*

map_det The 2D Profiling map of fault detection

map_detATV The 2D Profiling map of the record of test vectors achieving

transient detection

TLoc Transient location
I

TL Transient logic code
I

Ts Transient strength code

netlist~ Array based netlist gate-level
I

Data_in~ Array of the addresses of the primary inputs

Data_out_g Array of the addresses of the primary outputs

Data_inout~ Storage array of the values of the connection links of CUT

Statv Status of the content of the corresponding address (i.e. 0 or 1) -l
netlist_s Array based netlist switch-level

Capv Capacitance value at the node

Caps Updated capacitance value at the node -"

Addincl Incrementation start address of a logic gate of CUT (i.e. used to

determine the address ofVDD and GND).

Addinc2 The remainder address incrementation of a logic gate of CUT

without VDn and GND address

Outg Output of a gate -

xv

Inca The first incrementation address of the links of the switch-level

data structure

Addcg The last address of the last link corresponding to the previous logic

gate

Data_inout_s Storage array of the values of the connection links of CUT switch-

level

Cape The capacitance value exists for 1 and does not exist for 0 value

Ls Strength code of a link

LL Logic code of a link

var f Variable of injected transient types -
nF The maximum number of injected transient types

! var I Variable oflocations of transient injection
I

nL The maximum number locations of transient injection

var v Variable of index of the used test vector

nV The maximum number of applied test vectors

Inite Initializes var_fto 1.

Initl Initializes var_l to 1.

Initv Initializes var _v to 1.

initaJl Initialzes initr, initt and inity

det(var f,var I) - - Coefficients of map _ det
I

I detATV(var_f,var_l) Coefficients of map _ detA TV

, Comp The results of comparing faulty and non-faulty CUT

initns Initializes var _ ns, block Bland B2 of Module 1 of Sim V I

xvi

ArraYinjD The 2D array of transient injection locations of drain location array ,
I

var os Variable representing the row indexes of netlist_ s

oS The maximum number of rows in netlist s

Logicc Array of gate-level resolution function used in Sim V 2

lOG Decimal representation of logic combination + 1

OutG Logic value at the output of the logic gate

OutGF Flipped bit of logic value at the output of the logic gate

Statpo Status of the primary output due to OutGF

MultislnG Multiplication of !nG by Statpo

Og Number of logic gates in CUT

Npg Number of progressive logic gates in CUT

TVn The index of applied test vector similar to var _ v
I

map_det* The 3D Profiling map of fault detection for a switch-level logic

gates

map_detATV* The 3D Profiling map of the record of the output of a switch-level

logic gate

nT.d Total number of injected transients based on test vectors

elimination
~

nT.aU Total number of injected transients without test vectors elimination

Fcov The fault coverage or soft error coverage
I

corresponding to I OLd The number of transient injection locations

detection

T(Parameter) Execution time of the parameter number

xvii

Tcycle Execution time to run the simulator for one transient injection and

at one transient injection location and for one test vector

T(RF Gate-level) The simulation execution time of the resolution function gate-level

T(P Algorithm) The simulation execution time to apply the algorithm

xviii

Chapter 1

Introduction

1.1. Background

As the dimension of transistors are reduced to nanometre scale, modem integrated circuits

have the advantage of operating at low power and can achieve high speed characteristics, thus

they are becoming more sensitive to external radiation [1]. This work focuses on soft errors in

combinational circuits caused by single-event transients (SETs) which belong to Single-Event

Effects (SEEs) category. When a vulnerable node within a combinational logic is hit by a cosmic

particle, the produced disturbance might propagate to the primary output of the circuit [2]. This

can create a soft error if the faulty output data are latched. The developed simulator in this work

assumes that the faulty output data are always latched. Furthermore, this work does not apply to

sequential circuits; it is mainly developed for combinational circuits. Moreover, due to the

reduction of technology scaling, the internal electrical ~asking and latching-window masking

are diminishing as modem digital circuits operate at a higher clock frequency compared to their

predecessor. Due to the susceptibility of modem digital circuits to SETs, the research trend has

shifted toward SETs in combinational logic.

1

The developed simulator for soft error detection in this work, operates by injecting a fault at

certain location of the circuit under test (CUT), applies a set of test vector at the primary inputs

of CUT and by comparing the faulty and non-faulty primary outputs of CUT, the simulator can

determine whether there is a fault detection or not. There are different levels of abstraction that

can be used for soft error detection including gate-level, electrical-level and switch-level. Gate

level soft error detection models are bit-flip based [3] [4] and the inputs of a logic gate are used

as transient injection location [4] [5]. These models can't mimic the complex analog behavior of

the transient propagation as the internal nodes of CUT can't be accessed [6]. As a result the

simulators based on these models can be very fast and less reliable in terms of accuracy. The

simulators for soft error detection based on electrical-level are reliable in terms of accuracy and

very time consuming in terms of simulation speed but not feasible for complex digital circuits.

There are examples of electrical-level simulators of soft error detection in the literature such as

[7]. Switch-level soft error simulation based models can be a tradeoff between gate-level

abstraction and electrical-level abstraction. Switch-level can model important characteristics in

MOS circuits such as charge sharing and variation in driven strengths [8] [9]. The switch-level

models used in this work are based on Verilog strength and logic levels and are provided by

Verilog Hardware Descriptor Language Reference Manual [10]. These models can imitate

important phenomena of electrical-level such as variations in driven strengths due to different

voltage levels induced by SETs and the effect of the storage strength of the node capacitance.

These switch-level models were previously used in different work such as in [11] where static

faults are injected at gate of a switch.

2

1.2. Motivation

Due to progress in technology, modem circuits are becoming more sensitive to soft errors.

The use of simulation based soft error detection is important as it allows detection of design

weakness at early stage of the design. The use of switch-level models for soft error detection

simulation is an alternative to electrical-level and gate-level models. Simulation soft error

detection based on switch-level models can overcome the speed limitation and feasibility of

complex digital circuits of electrical-level models and the accuracy limitation of gate-level

models. Several soft error simulators using various techniques are available in the literature such

as [12] [13]. The developed simulator in this work uses Verilog strength and logic levels models

to simulate transient injection in combinational circuits. The developed simulator is array based

and is programmed in Matlab scripting language. Furthermore, an algorithm is developed to

significantly speed up the simulation process when compared to the non-algorithm based

simulator based on the same switch-level models.

1.3. Summary of Contribution

The objective of this project is to present a soft error switch-level based simulator. This

simulator has the ability to inject SETs of different strengths at different locations of a

combinational circuit. The contribution to the project is summarized as following:

• Coding the main switch-level functions that allow modeling of CUT. These functions use

models based on Verilog strength and logic levels [10] allowing the injection of transients of

different logic levels and strength levels. These transients are classified in 23 types.

• Parsing the netlist gate-level of CUT expressed in Verilog into data structure gate-level.

• Parsing the data structure gate-level of CUT into switch-level data structure.

3

• The developed simulator can inject the transients at different location types such as drain,

gate or inputs of a logic gate. The soft error coverage (or fault coverage) can be determined

for any of these location types. This feature of the simulator shows the effect of the transient

injection location type on the soft error coverage.

• The results of the simulation are stored in arrays called the profiling maps. These maps allow

the determination of the status of the transient injection location versus the injected transient

type and the test vector used to detect the corresponding transient.

• The created profiling maps are used to build statistical results based on the used test vectors.

The progress of the fault coverage due to injected transients can be plotted against the order

of the applied test vectors allowing the evaluation of the efficiency of the applied test vectors.

• Development of an algorithm allowing the design of new soft error detection simulator

SimV2. This simulator achieved a significant speed-up compared to SimV j non-algorithm

based developed in this work as well

• Timing equations are determined based on run time of the developed simulators Sim V I and

SimVl

• Analytical study is conducted based on the experimental results of fault coverage and

simulation run time.

1.4. Project Organization

The remainder of the chapters is organized as follows: Chapter 2 discusses the main switch

level models implemented in this work. Chapter 3 explains the coding of CUT in gate-level and

switch-level data structures and provides a large view of the simulation environment. Chapter 4

describes the architecture of the non-algorithm based simulator SimVI. Chapter 5 explains how

4

the developed algorithm is applied to Sim V 2 simulator and describes its architecture. Chapter 6

presents the results of the experiments extracted from Sim V I and Sim V 2 simulators. Chapter 7

presents the conclusion of this work followed by a cited publication and references.

5

Chapter 2

Main Functions of the Simulator

2.1. Verilog Strength and Logic Levels

The switch-level soft error models in this work use the Verilog strength and logic levels [10].

Table 1 [14] shows how the logic levels and strength levels are structured and coded. There are 3

logic levels 0, 1, U, called respectively logic 0, logic 1, and unknown. These logic levels are

associated with 7 levels of strength varying from small to supply. The 2-bit logic code represents

the logic level and the 3-bit strength code represents the strength level. The state code combines

the logic level and strength level codes and they are coded in 5-bit. This represents the state of

the signals of the switch-level models. Logic levels Z and X have special significance. The logic

code xx means that the logic of the signal has no significance as the strength level is below small

strength level, thus the state codes associated to Z and X are respectively 00000 and 10000

representing "High Impedance" and the OFF state of CMOS switch. In addition, table 1 shows

the decimal representation of the logic and strength codes. This representation is used for the

simulation program.

6

Table 1: Veri log coding representation of logic and strength levels and their decimal
representation

Decimal Representation
Logic Verilog Logic Strength State
Level Strength Level Code Code code

Logic Strength
Code Code

0 Supply 00 111 00111
0 7

0 Strong 00 110 00110
0 6

0 Pull 00 101 00101
0 5

0 Large 00 100 00100
0 4

0 Weak 00 011 00011
0 3

0 Medium 00 010 00010
0 2

0 Small 00 001 00001
0 1

1 Supply 01 III 01111
1 7

1 Strong 01 110 01110
1 6

1 I Pull 01 101 01101
1 5

1 Large 01 100 01100
I 4

1 Weak 01 011 01011
1 3

1 Medium 01 010 01010
1 2

1 Small 01 001 01001
1 1

U Supply 11 III 11111
3 7

U Strong 11 110 11110
3 6

U Pull 11 101 11101
3 5

U Large 11 100 11100
3 4

U Weak 11 011 11011
3 3

U Medium 11 010 llOlO
3 2

U Small 11 001 11001
3 1

Z HighZ xx 000 00000
0 0

X Don't care xx 000 10000
2 0

Voltage levels and strength levels of signals are related as shown in figure 1. There is a direct

relationship between voltage levels and strength levels for 1.8 V supply voltage [16]. Switch-

level strength-based models using Verilog logic and strength levels were previously used in

7

different works such as [11] where static faults are injected at gate of a switch. Similar switch-

level models are used to study the delay introduced by resistive faults [14]. These switch-level

models were used for soft error detection for the first time in the cited publication [15].

Large 1
Log-it 1

Weakl

Medium 1

u Small 1
eli S ::: ~ "0 :Ai High-Z 1 ~ ;,;. Vi OS

Voltage threshold 5 ~ .~
VI oS! lUgh-Z 0 til
-0 <5 c::: = -cc ;...-
z

Medium 0

Logic 0

Strong 0

Supply 0

Figure 1: Strength levels versus Voltage levels adapted from [16].

8

2.2. Switch-Level Functions

The signals processed by the switch-level models are based on 5-bit coding representing the

state code which combines the logic and strength levels as shown in Table 1. In the absence of

transients, the strength code of all signals are assumed to be at Supply strength level "Ill" . The

switch-level models in this work are based on Verilog signal resolution rules described as

follows:

• When a switch is OFF, the signal at drain of a switch takes the state code "10000" and hence

this signal does not participate in resolving the output at the connection node.

• When a switch is ON, the signal at drain of a switch will take the state code of the signal at

the source of this switch.

• When the signal at gate of a switch has a logic code unknown (i.e. U) or state code of high

impedance, then the state code of the signal at drain of this switch will be "11111" which is

the unknown logic code and supply strength code.

2.2.1. funC Function

The flow diagram shown in Figure 2 describes the functionality of the connection node. This

function resolves the output of the connection node for two incident signals presented at this

node, Signall and Signal2. Signalh and Signal2L represent respectively the logic code of the

incident signals 1 and 2 at the node. Signall s and Signal2s represent respectively the strength

code of the incident signals 1 and 2 at the node. OutC represents the output of fune. OuteL and

OutCs represent respectively the logic and strength codes of fune output.

9

Yes I OutC = "10000" I

OutC = Signal2

OutC = Signall

No

Figure 2: Flow Diagram of funC Function

OutCL! Logic code of funC output; OutCs! Strength code of funC output;
Signalh, Signal2L : Logic code of the incident signals 1 and 2 at the node

Signalls , Signal2s : strength code of the incident signals 1 and 2 at the node

2.2.2. funN Function

This function is modeled based on Verilog rules described earlier. The flow diagram shown

in Figure 3 describes the functionality of funN which represents the NMOS switch. DrainL and

10

Drains represent respectively, the logic and strength code of the signal at drain. GateL and Gates

represent respectively the logic and strength code of the signal at gate. SourceL and Sources

represent respectively the logic and strength code of the signal at source

DrainL = "10"
Drains = ''000''

DrainL = SourceL
Drains = Sources

DniinL = "11"
Drains = Sources

Figure 3: Flow Diagram offunN Function

GateL, DrainL, SourceL: Logic code of signals at gate, drain and source respectively
Gates, Drains, Sources: Strength code of signals at gate, drain and source respectively

2.2.3. funP Function

Similarly, funP function is modeled based on Veri log rules described earlier. The flow

diagram shown in Figure 4 describes the functionality of funP which represents the PMOS

switch.

11

DrainL == "10'"
Drains = "000"

DrainL = SourceL
Drains = Sources

DrainL = "11"
Drains == Sources

Figure 4: Flow Diagram offunp Function

GateL, DrainL, SourceL: Logic code of signals at gate, drain and source respectively.
Gates, Drains,. Sources: Strength code of signals at gate, drain and source respectively.

2.2.4. Capacitance Functionality

Due to technology scaling and the shrinking size of transistors, the charge of capacitance

values are weak [10]. The modeled capacitance in this work takes the strength code "001" (i.e.

strength level "small"). The logic value of a capacitance takes the logic value of the output of the

resolved connection node.

12

2.2.5. Example of Transient Injection at Drain of a

Switch Applied to NAND2 gate

Figure 5 shows NAND2 gate translated in switch-level. The main functions used to resolve

the output Y of NAND2 gate are funP, funN and funC. The capacitance values C1 and C2 are

updated after applying funC at the node.

A ="01111"

"01111"

I>-------____ r--- "01111" == B

-"10000"

funC: "10000"- funC: "00111" funC: "00111"

~~=':=::::~~ -r-=='=~~ Y=="00111"

L--.----l Nt :fun~

t
_ funC: "00111"

"00111" _ t
Cj ="OOOOI"

...------1 N2: funN 1"

"00111"

Figure 5: Example ofNAND2 gate in switch-level

Figure 6 shows the same example ofNAND2 gate when a transient "11111" is injected at the

drain of PI : PMOS switch. This transient injection results in soft error as the resolved output Y

of the NAND2 gate changes to "11111". This example shows how the capacitance values are

updated. According to the capacitance functionality, the capacitance strength code is "001" and

its logic takes the logic of the resolved connection node. The "Before" transient injection and

13

"After" transient injection values of C1 and C2 show an example of how these capacitances

update their values.

"01111"

A = "OllII" --.-----HI

Injected transi~
"11111" V'V'"F

L=~----1r-~=-.I

funC : "11111"-

~
funC: "11111" funC: "11111"

~ ~
) ~ Y="lllll"

t C2 = "00001": Before
T C2 = "11001": After ~-------------~ Nl:funN

t
_ funC: "00111"

"00111" -t t C2 "00001": Before
.--------1 N2:funN T C2="00001":After

"00111"

"01111"=B

Figure 6: Example ofNAND2 gate in switch-level where the transient "11111" is injected at
the drain of PI: PMOS

14

Chapter 3

Fundanlental Architecture and Data Structure of the

Simulator

This chapter explains in details the architecture and the data structure of the simulation

environment. The simulator is array based and a coding structure is used to code CUT in gate

and switch-level. Examples are provided along this chapter to clarify the idea of how the data

structures are coded.

3.1. Programming Language

All the programs developed in this work are coded in Matlab using m-file format. A large

amount of data is processed through the simulation and the use of an optimized programming

language is important. Matlab scripting language is a combination of different languages offering

simple, efficient and optimized functions targeting array based applications and offers different

tools such as the Profile option .. This tool allows the user to optimize the code as it offers a

detailed execution time report for the full program line by line. This option along other tools,

help improve the speed of the developed program.

15

3.2. Simulation Environment

The flow diagram in Figure 7 presents a large view of the simulation environment. There are

three stages for the simulation and can be classified as follows:

• Data Input: Contains the files representing CUT, the test vectors and the injected

transient types. The test vectors in this work are based on compaction algorithm [18] and

are design for gate-level circuits. These test vectors are used for the first time on the

switch-level models used in this work for the purpose of soft error simulation. There are

different formats and are loaded into the simulator (i.e. Block Program). A detailed

explanation ofthe content of these files is provided in section 3.2.1.

• Program: Represents the processing part of the simulation environment and is coded

entirely in Matlab scripting language. Different sections are dedicated for this block.

• Statistical Results: Represents the different results extracted from the simulation. These

detailed results are used to conduct statistical study on the performance of the simulator,

test vectors and the effect of transient injection location type on the fault coverage.

Chapter 6 is based on these results.

16

I Orgm [*. mat] I
-C1

Data Input q
r--N-et-lis-t-G-at-e--L-e~Ve~I-[-*-.v--]~1

Injected Transients r *. txt 1 Simulator

Test Vectors r *. vee 1
SimV,1 SimV2

S -C1
d
$....e Data Output Of.
0 TilIUng,Profm [*.mat]
$....e

~ -C1

! Processing Module I
Figure 7: Flow diagram of the simulation environment

3.2.1. Data Input

Statistical

q Results
[*. txt)

'----------I

The different file formats shown in figure 8 target the C17 benchmark circuit. Any other

combinational circuit can be loaded into the simulator similarly as long as its format is expressed

in the same manner as the C17 sample. These files are as follows:

• C17 _TV. vec: Represents the test pattern for the C 17 circuit. Number 5 indicates the number

of inputs of the circuit. The notation END indicates the end of the test vectors. This data is

accessed line by line where the most significant bit is devoted to the first input of the circuit.

Every bit of the data input is expressed in decimal and represent the logic level. The strength

level is assumed to be "111" which is 7 in decimal. The inputs of CUT are then formatted in

a logic and strength level format.

• C17 _netlistJ.v: Represents the netlist gate-level of C17 circuit expressed in Verilog format.

Any circuit can be loaded into the simulator in the same format.

17

• Transients.txt: Represents the decimal format of the transient types injected into CUT. The

logic and strength levels are represented respectively by the column on the left and right.

5 module c17 1 7
01111 (N1,N2,N3,N6,N7,N22,N23) ; 0 0
00001 0 1
01101 input N1,N2,N3,N6,N7; 0 2
10001 0 3
01110 output N22,N23; 0 4
10111 0 5
00101 wire N10,Nl1,NI6,N19; 0 6
10011 1 0
01101 nand NAND2_1 (NlO, N1, N3); 1 1
10000 nand NAND2_2 (Nll, N3, N6) ; 1 2
00011 nand NAND2_3 (N16, N2, NIl) ; 1 3
01000 nand NAND2_4 (N19, Nll, N7) ; 1 4
END nand NAND2_5 (N22, NlO, N16); 1 5

nand NAND2_6 (N23, N16, N19); 1 6
3 0

C17 TV.vec endmodule 3 1
3 2

C 17 _ netlist_g. v 3 3
3 4
3 5
3 6
3 7

Transients.txt

Figure 8: The simulator data input for C17 Circuit

3.2.2. Simulator Flo,v Diagram

The flow diagram in figure 9 shows a highlight of the simulation architecture. There are two

developed simulators in this work; SimVl and SimV2. Chapter 4 and 5 provide respectively,

18

detailed explanation on SimV. and SimV2• The various blocks of this flow diagram are as

follows:

• Data Input: Explained in section 3.2.1.

• Orgm: Reorganizes, parses and codes the data input. Sections 3.3, 3.4, 3.5 and 3.6 provide

detailed explanations of how these data structures are coded.

• Casel: Represents SimV\ non algorithm based version of the simulator.

• Case2: Represents SimV2 algorithm based version of the simulator. The block titled "Data

Storage RUN: ONCE" processes all the logic gate types (Le. AND2, NAND2, etc)

independently by running Sim VI * simulator on these gates. Exhaustive test vectors are

applied for the simulation and the results are stored in 3D profiling maps (i.e. Profm *) in a

* .mat format file. Detailed explanation of Profm *, Sim V 2 and Sim V \ * is provided in chapter

5. The block "Data Storage RUN: ONCE" will run only one time and generates a *.mat file

that is used for any circuit simulated by Sim V 2, thus its run time is not part of the simulation

time.

• Data Output: Provides the results of the simulation in profiling maps arrays Profm and the

simulation execution time (i.e. Timing). Section 3.2.3 is dedicated to the structure of the

profiling maps Profm•

19

: ... ~ Case 1 I ':;
• •

~ I SimV l I~
~ t} l

I Data Output I

Data Input

Orgm
Data Reorganization

and
Parsing

•••••••••••••••••••••

Data
Storage

RUN: ONCE

SimVl* • •

~ ~ .••.•...•.•... ;
• •
: SimV2 • •

Profm
*

L· ·~ I ease 2 I·""·"""""·"
I Data Output I

Figure 9: Flow diagram of the Simulator

3.2.3. Data Output

The data output of the simulators are stored in 2D arrays and are called profiling maps

"Profm" due to the way these arrays store the results of the simulation. The C 17 circuit profiling

maps are used as example of the data output. Table 2 shows the profiling map map _ det

representing the fault detection due to transient injection at a drain of a switch. This table is

organized as follows:

• TLoc: Represents the location of drain or gate as transient injection location for C17 circuit.

There are 24 drains or gates in C 1 7 circuit where the transient can be injected.

• T L! Represents the transient logic code expressed in decimal

20

• T s: Represents the transient strength code expressed in decimal

The values in table 2 are either 1 or 0 representing respectively, detection or non-detection of

the transient injection. For example:

[Transient location: "TLoc = 5", Transient value: "TL:Ts" = "1:7", Results = (1)]

Explanation: The corresponding injected transient is detected at location (5).

Table 2: map _ det of C 17 circuit

1 7 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 1 1 0 0 1 1 0 0 1 1 0 0
0 2 1 1 0 0 1 1 0 0 1 1 0 0

••••••••••
0 3 1 1 0 0 1 1 0 0 1 1 0 0

0 4 1 1 0 0 1 1 0 0 1 1 0 0

0 5 1 1 0 0 1 1 0 0 1 1 0 0
0 6 1 1 0 0 1 1 0 0 1 1 0 0

1 0 0 1 0 0 0 1 0 0 0 1 0 0

1 1 0 1 1 1 (I 1 1 1 0 1 1 1
1 2 0 0 1 1 0 0 1 1 0 0 1 1
1 3 0 0 1 1 0 0 1 1 0 0 1 1

1 4 0 0 1 1 0 0 1 1 0 0 1 1

1 5 0 0 1 1 0 0 1 1 0 0 1 1
1 6 0 0 1 1 0 0 1 1 0 0 1 1

3 0 0 1 0 0 0 1 0 0 0 1 0 0

3 1 1 1 1 1 1 1 1 1 1 1 1 1

3 2 1 1 1 1 1 1 1 1 1 1 1 1

3 3 1 1 1 1 1 1 1 1 1 1 1 1

3 4 1 1 1 1 1 1 1 1 •••••••••• 1 1 1 1

3 5 1 1 1 1 -.1 1 1 1 1 1 1 1
3 6 1 1 1 1 1 1 1 1 1 1 1 1

3 7 1 1 1 1 1 1 1 1 1 1 1 1

21

Table 3 shows map _ detATV profiling map. This array is organized similarly to map _ det

array. The results in this table represent the index of the test vector used to detect the injected

transient in case of detection. For example:

• [Transient location: "TLoc = 5", Transient value: "TL:Ts" = "0:1", Results = (8)]

Explanation: The 8th test vector detects the injected transient "0: 1 " at location (5).

• [Transient location: "T Loc = 1", Transient value: "T L:T s" "0:0", Results = (12)]

Explanation: All the 12 test vectors are used and the injected transient "0:0" at location (1) is

not detected. map _ det shows (0) as results indicating a non detection of transient injection at

this location.

The sum of all the values of map _ detA TV represents the number of times the circuit is

simulated in other terms; this is called the total number of transients.

The sum of all the values of map _ det represents the number of detected faults. The number

of coefficient of map _ det array is called the number of injected faults. The soft error coverage is

evaluated based on (EQ - 3 - 1) equation:

(OL) _ Number of detected faults • 100
Soft Error Coverage 70 - Numberofinjectedfaults

22

(EQ - 3 - 1)

Table 3: map_detATV ofe17 circuit

1 7 1 1 4 1 2 2 1 1 2 2 1 1
0 0 12 4 12 12 12 3 12 12 12 2 12 121

0 1 1 4 12 12 8 3 12 12 12 2 12 12
0 2 1 4 12 12 8 3 12 12 12 2 12 12

••••••••••
0 3 1 4 12 12 8 3 12 12 12 2 12 12
0 4 1 4 12 12 8 3 12 12 12 2 12 12
0 5 1 4 12 12 8 3 12 12 12 2 12 12
0 6 1 4 12 12 8 3 12 12 12 2 12 12
1 0 12 4 12 12 12 3 12 12 . 12 2 12 12
1 1 12 4 6 6 12 3 1 1 12 2 1 1
1 2 12 12 6 6 12 12 1 1 12 12 1 1
1 3 12 12 6 6 12 12 1 1 12 12 1 1
1 4 12 12 6 6 12 12 1 I 12 12 1 1
1 5 12 12 6 6 12 12 1 1 12 12 1 1
1 6 12 12 6 6 12 12 1 1 12 12 1 1
3 0 12 4 12 12 12 3 12 12 12 2 12 12
3 1 1 4 6 6 8 3 1 1 12 2 1 1
3 2 1 4 6 6 8 3 1 1 12 2 1 1
3 3 1 4 6 6 8 3 1 1 12 2 1 1
3 4 1 4 6 6 8 3 1 1 •••••••••• 12 2 1 1
3 5 1 4 6 6 8 3 1 1 12 2 1 1
3 6 1 4 6 6 8 3 1 1 12 2 1 1
3 7 1 1 4 1 1 1 1 1 1 1 1 1

3.2.4. Processing Module

This block processes the profiling maps; map _ det and map _ detA TV in order to calculate the

soft error coverage and other statistical results. This module provides the Statistical Results

mentioned in figure 7. All the results in chapter 6 are provided by this module.

23

3.3. Data Structure of Netlist Gate-Level (netlist_g)

This section explains the data structure and the coding architecture of gate-level netlist of

CUT. The schematic ofCl7 circuit shown in figure IO(a) translates the Verilog netlist gate-level

(i.e. input file of the simulator). Every logic gate is coded accordingly to table 4. Based on these

codes, the first column of table 5(a) is code (11) representing a NAND2 gate and the second

column represents the address of the output. Section 3.4 explains in detail how these addresses

are used. Columns ini to inlO, are the addresses of the inputs of the logic gates. An address "0",

indicates that the corresponding input does not exist. This structure is the main idea behind the

simulation. Any combinational circuit can be parsed into this structure. There are 10 possible

inputs indicating that this simulator can handle circuits built with up to 10 logic gates. Table 4

shows the different gate types and their corresponding codes.

N7 ~ N19

N6_~ 14~~23
rV-'Nll I

Nl-tu:P I N 10 -f:\... N22
N1 L r-t?r--
N2 &-!N16

Figure lO(a): Cl7 Circuit
Before net reorganisation

Figure lO(b): C17 Circuit
After net reorganisation

Figure lO: Cl7 Circuit before and after net reorganisation

Based on the information of Table 5(a), the maximum number of addresses in this 2D array

is 23. The block Orgm mentioned in section 3.2.2. reorganizes these addresses in a way that their

numbers will be minimized when there are gaps between these numbers. Figure 1 O(b) and Table

5(b) show the results of the addresses reorganization. The maximum number of addresses after

24

reorganization is 11. This operation is useful as it reduces the size of the storage array and

resulting in maximizing the speed of the simulation. The storage array Data_inout_g as shown in

table 6, its size depends on the number of nets in the circuit and as the index of the number of the

nets is reduced, the size of the storage array is reduced. Section 3.4. explains in detail the

structure of this storage array.

Table 4: Coding of the gate types

ANDIO 21

AND9 22

AND8 23

NANDI0 3 AND7 24

NAND9 4 AND6 25

NAND 8 5 AND5 26

NAND7 6 AND4 27

NAND6 7 AND3 28

NAND5 8 AND2 29

NAND4 9

NAND3 10 ORlO 30

NAND2 11 : OR9 31

OR8 32

NORI0 12 OR7 33

NOR9 13 OR6 34

NOR8 14 ORS 35

NOR7 15 OR4 36

NOR6 16 OR3 37

NOR5 17 OR2 38

NOR4 18

NOR3 19 XOR2 39

NOR2 20

25

Table 5: Data structure of C17 netlist gate-level (netlist~) before and after net reorganisation

Gate Type

11

11

11

11
11

11

Gate TYQe

11

11

11

11

11

11

Table 5(a): Data structure of C17 netlis gate-level
before net reorganisation

Output inl in2 in3 in4 in5 in6 in7
lO 1 3 0 0 0 0 0
11 3 6 0 0 0 0 0
16 2 11 0 0 0 0 0
19 11 7 0 0 0 0 0
22 lO 16 0 0 0 0 0
23 16 19 0 0 0 0 0

in8

0

0
0
0

0
0

Table 5(b): Data structure ofC!7 netlist gate-level
after net reorganisation

Output inl in2 in3 in4 in5 in6 in7 in8

6 I 3 0 0 0 0 0 0

7 3 4 0 0 0 0 0 0

8 2 7 0 0 0 0 0 0

9 7 5 0 0 0 0 0 0

lO 6 8 0 0 0 0 0 0

11 8 9 0 0 0 0 0 0

3.4. Processing and Storing Arrays of Gate-Level

in9 inlO

0 0

0 0
0 0
0 0

0 0
0 0

in9 inl0

0 0

0 0
0 0

0 0

0 0

0 0

This section explains how a circuit is processed and its primary output is resolved. Table 6

shows the following:

• Data Jn~: Contains the addresses of the primary inputs of C 17 circuit

• Data_out_g: Contains the addresses of the primary output ofCl7 circuit

• Data_inout~: Contains the resolved values of every net of the circuit. Address Index is the

address of input or output of any logic gate as shown in Table 5(b). LL and Ls represent

26

respectively the logic and strength codes of CUT connection links. Statv represents the status

of the content of the corresponding address. "Statv = 1 " indicates that the value

corresponding to this address is not resolved and similarly, when "Statv = 0", this indicates

that the value corresponding to this address is resolved. The values of the address index from

1 to 5 represents the addresses of the primary inputs as shown in Data_in ~ and the LL and

Ls corresponding to these values are the first applied test vectors "0111" as shown in

figure 8 and consequently the corresponding Statv values are filled by zeros.

This is the main idea of how the data is stored when processing the gate-level data structure.

When a CUT is entirely processed and the primary outputs of the circuit are resolved all the

values of Stat v become "0",

Table 6: The main storing and indexing arrays needed to process C17
circuit gate-level

Data inout g

Data in g I
1 10 1 0 0
2 11 2 0 1

3 3 0 1
4 4 0 1
5 5 0 1

6 1 0
7 1 0
8 1 0

9 1 0
10 1 0
11 1 0

27

7
7
7
7
7
0
0
0

0
0
0

3.5. Data Structure of NetIist Switch-Level (netlist_s)

3.5.1 Coding Architecture of netlist_s

The main idea of the coding structure of netlist switch-level is similar to the coding structure

of netlist gate-level. The switch-level of CUT is composed of funP, funN and funC representing

respectively the switches P, N and the function of the connection node. These functions were

previously explained in chapter 2. The capacitance is represented by Capv (i.e. Capacitance

value) and Caps represents the updated capacitance value at the node. Table 7 uses these

notations and is organized as follows:

• Function Code: Represents the codes of the functions in column two.

• Function: Represents the main functions of the switch level funN, funP, funC and

(funC + Caps). Function (funC + Caps) performs two operations as follows:

o 1 st operation: Resolves the connection node by applying funC on the input (in) and

the previous value of the capacitance Capv (i.e. Capacitance value). The resolved output

is represented by OutC.

o 2nd operation: Updates the capacitance value Capv by Caps (i.e. Capacitance store)

value. The functionality of Caps is based on the explanation provided on the capacitance

in section 2.2.4. Figure 11 shows a flow diagram of (funC + Caps) function where OutC

is resolved by funC and the Capv is updated by Caps

• Data 1: Represents the output of the function (i.e Drain for funP and funN)

• Data 2, 3: Represents the inputs of the functions (i.e. the inputs funP, funN and funC).

28

Table 7: Coding of the switch-level functions

Function Code I ! Function I I Data 1 I Data 2 I I Data3

1 funP Drain Gate Source

2 funN Drain Gate Source

3 funC OutC Inl I

4 funC + Caps OutC In Capv

In funC OutC

Capacitance

- 1 Capv J Caps ~r-I I

Figure 11: How the function code "4" processes the data

A structure based on this coding architecture is created for every single logic gate of table 4

(Le. Gates type). Orgm ~lock shown previously will build a switch-level netlist based on these

structures for any combinational circuit. The following sections of this chapter focus on

providing detailed information on the logic gates switch-level coding structure.

3.5.2. NOT Gate

Figure 12 shows the switch-level of NOT gate. Table 8 shows the coding and data structure

of switch-level NOT gate. The main concept is to affect addresses to the links created for the

switch-level (i.e. D(Drain), G(Gate), S(Source), OutC, Capv, VDD and GND). These links

represent the basic elements of the switch-level structure. The equation (EQ - 3 - 2) evaluates

the incrementation start address for a logic gate.

29

Addincl = [Number ofinput(s) of the logic gate + 1] (EQ-3-2)

Addinc1 represents the incrementation start address. The NOT gate shown in table 8 represents the

organization of the data structure and the results of the coding of these structures. The numbers

of "Coded Data" represent the addresses for Datal, Data2 and Data3. The "Function" column is

similar to the structure created for gate·level and it is used to identify the operators. (Le. funN,

funP, fune and (funC + Caps». The "Coded Data" and "Data structure" are organized as

follows:

• (in) and (Outg) represent respectively the input and output of NOT gate. The addresses (1)

and (2) are respectively allocated to these elements.

• vnD and GND (i.e. Supply and ground) get respectively the addresses (3) and (4) as the

incrementation of the addresses starts from Addincl = 2. The remainder incrementation of the

addresses of the links of the switch-level of this logic gate will start from Addinc2 as shown in

(EQ - 3 - 3). Addinc2 represents the starting incermentation address for the remainder

elements of this logic gate.

Addinc2 = Addincl + 2 = 4 (EQ-3 -3)

• The remainder elements of this table are coded as follows:

o D[1], D[2]: Represents respectively the drains of P and N switches numbered by

order of priority access. The order is important because of the dependency of the

switches to resolve the output of the logic gate. As the program processes the

information in sequence, it is important to have these functions in certain order for

coherent results when resolving the output of the logic gate.

30

o OutC [1]: Represents the output of funC function and it resolves the incident signals

D[!] and D[2].

o Capv: The capacitance value at the node.

o The Asterix sign followed by a number (i.e. * number) has a particular meaning as it

helps construct the addresses order. For example the notation (*1 D[l]) indicates

that the corresponding elements are increasingly numbered at these locations. The

repeating elements in the table will simply keep their numbers. Once these numbers

are completed, they will be assigned to the coded data table (i.e. [(* number) +

Addinc2]) starting from top to bottom and left to right Based upon this data structure

table, the program will be able to build the "Coded Data" table.

BUFFER - Switch-level NOT - Switch-level

t--t--Outg

Figure 12: Switch-Level of BUFFER and NOT

31

Table 8: Coding and data structure of switch-level NOT gate

I

Index

1
2

3

4

1

2

3
4

Function
funP

funN
funC

funC + Caps

1
2

3
4

3.5.3. BUFFER Gate

NOT - Switch-level

Data 1 Data 2 Data3
*10[1] in VDD

*2 D[2] in (iND

*30utC[l] 1 D [1] 20 [2]

Outg 30utC[1] *4 Capv[1]

5 1 3

6 1 4

7 5 6

2 7 8

Figure 12 shows the switch-level of BUFFER gate. Table 9 shows the coding and data

structure of switch-level NOT gate. This gate is coded similarly to NOT gate.

32

Table 9: Coding and data structure of switch-level BUFFER gate

BUFFER - Switch-level

Index Function Data 1 Data 2 Data3

1 funP *1 D[l] in YDD

2 funN *2 D[2] in (;:\0

3 funC *30utC[l] 1 D [1] 2D [2]

4 funC + Caps *40utC[2] 30utC[l] *5 Capv[1]

5 funP *6 D[3] 40utC[2] "DB

6 funN *7 D[4] 40utC[2] G:\D

7 funC *80utC[3] 6 D [3] 7 D [4]

8 funC + Caps Outg 80utC[3] *9 Capv[2]

1 1 5 1 3

2 2 6 1 4

3 3 7 5 6

4 4 8 7 9

5 1 10 8 3

6 2 11 8 4

7 3 12 10 11

8 4 2 12 13

3.5.4. NAND2 - AND2

Table 10 shows the data structure of switch-level NAND2 - AND2 gates. Table 11 shows the

coded data of switch-level of NAND2 - AND2 gates. Figure 13 shows the switch-level of

NAND2 - AND2 gates. These gates are coded in the same manner as NOT except minor

changes. The reason these two gates are coded 'on the same table is because the only difference

between NAND2 and AND2 is a NOT gate. The notation on the table indicates that starting from

index 7, the two gates NAND2 and AND2 have different structures.

33

Furthermore, the notation S [1] is added to the data structure and it is used as input and

output depending on the used function. This notation is added for logic gates that have switches

in series (i.e. A drain of a switch close to the ground will become the source of the next switch).

Index

1
2

3

4

5

6

7

8
9
10

11

12

Table 10: Data structure of switch-level NAND2 and AND2 gates

(NAND2 - AND2] - Switch-level

Function Data 1 Data 2 Data3
funP *1 D[lJ in) VDO

funP *2 D[2] in2 VDO

funC *30utC[l] 1 D [1] 2 D [2J

funN *4 D[3] in2 G'\l)

funC + Caps *5 S[I] 4D [4] *6 Capv[IJ

funN *7 D[4] in) 5 S[I]

funC *80utC[2] 30utC[l] 7D[6]

funC + Caps *90utC[3] 80utC[2] *10 Capv[2]

funP *11 D[5] 90utC[3] vnu
funN *12 D[6] 90utC[3] G'\D

funC *13 OutC[4] 11 D [5] 12 D [6]

funC + Caps Outg 13 OutC[4] *14 Capv[3]

8 I I funC + Caps 8 OutC[2] *9 Capv[2] I I NAND2 I

34

Table 11: Coded data of switch-level NAND2 and AND2 gates

,--_A_N_D_2 _-_Sw_i_tc_h_-I_ev_e_l _---'I , __ N_AN_D_2_-_S_w_it_c_h-_Ie_v_el_----'

Function Function
Code Data Data Data Code Data Data Data

1 2 2 1 2 2

1 1 6 1 4 1 6 1 4
2 1 7 2 4 1 7 2 4
3 3 8 6 7 3 8 6 7
4 2 9 2 5 2 9 2 5
5 4 10 9 1l 4 10 9 1l

6 2 12 1 10 2 12 1 10

7 3 13 8 12 3 13 8 12
8 4 14 13 15 4 3 13 14
9 1 16 14 4
10 2 17 14 5
1l 3 18 16 17
12 4 3 18 19

NAND2 - Switch-level AND2 - Switch-level

inl-1 p-in2 inl-1 p-in2

Outg

~ Outll

inl-1 inl--1

in2-1
~

-. in2-1

Figure 13: Switch-Level ofNAND2 and AND2

35

3.5.5. NAND3 - AND3

Table 12 shows the data structure of switch-level NAND3 - AND3 gates. Table 13 shows the

coded data of switch-level of NAND3 - AND3 gates. Figure 14 shows the switch-level of

NAND3 - AND3 gates. These gates are coded in the same manner as NAND2 - AND2.

Table 12: Data structure of switch-level NAND3 and AND3 gates

[NAND3 - AND3] - Switch-level

Index
I

I Function Data 1 Data 2 Data3
1 funP *1 D[l] in. \'l)!J

I 2 funP *2 D[2] inz \'DD

3 funP *3 D[3] in3 \'IH)

4 funC *40utC[l] 1 D [1] 2 D [2]

5 funC *50utC[2] 3 D[3] 40utC[l]

6 funN *6 D[4] in) Gl\l)

7 funC+ Caps *7 S[I] 6D [4] *8 Capv[1]

8 I
funN *9 D[5] inz 7 S[I]

9 funC + Caps * 10 S[2] 9 D [5] * 11 Capv[2]

10 funN *12 D[6] in. 10 S[2]

11 funC *13 OutC[3] 50utC[2] 12 D[6]

12 funC + Caps *140utC[4] 13 OutC[3] *15 Capv[3]

13 funP *16 D[7] 140utC[4] von
14 funN *17 D[8] 140utC[4] G\D

15 ftmC *180utC[S] 16 D [7] 17 D [8]

16 funC + Caps Outg 180utC[5] *19 Capv[4]

12 I I funC + Caps Outg 13 OutC[3] *14 Capv[3] I I NAND3 I

36

Table 13: Coded data of switch-level NAND3 and AND3 gates

'---_A_N_D_3_-_S_w_it_ch_-_le_v_el_---.J1 1'---_N_A_N_D_3_-S_w_i_tc_h_-I_ev_e_1 _--'

Function Function

Code Data Data Data Code Data Data Data
1 2 2 1 2 2

1 1 7 1 5 1 7 1 5
2 I 1 8 2 5 1 8 2 5
3 1 9 3 5 1 9 3 5
4 3 10 7 8 3 10 7 8
5 3 11 9 10 3 11 9 10

6 2 12 3 6 2 12 3 6
7 4 13 12 14 4 13 12 14
8 2 15 2 13 I 2 15 2 13
9 4 16 15 17 4 16 15 17
10 2 18 1 16 2 18 1

,

16
11 3 19 11 18 3 19 11 18
12 4 20 19 21 4 4 19 20
13 1 22 20 5
14 2 23 20 6

15 3 24 22 23
16 4 4 24 25

37

NAND3 - Switch·level AND3 - Switch-level

inl-9
inl-9

,..-.------.~ Out,

~ ~t---'0ut"

Figure 14: Switch-Level of NAND 3 and AND3

3.5.6. NOR2 - OR2

Table 14 shows the data structure of switch-level NOR2 - OR2 gates. Table 15 shows the

coded data of switch-level ofNOR2 - OR2 gates. Figure 15 shows the switch-level ofNOR2 -

OR2 gates. These gates are coded in the same manner as NAND2 - AND2.

38

Table 14: Data structure of switch-level NOR2 and OR2 gates

[NOR2 - OR2] - Switch-level

Index Function Data 1 Data 2 Data3

1 I funN
I

*1 D[I] int G:\D

2 funN *2 D[2] in2 G'\D

3 funC *30utC[1] 1 D [1] 2 D [2]

I 4 funP *4 D[3] int \'DO

5 I funC+ Caps *5 S[l] 4D [4] *6 Capv[1]

6 funP *7 D[4] in2 5 S[I]

7 funC *80utC[2] 30utC[l] 7 D[6]

8 I funC + Caps *90utC[3] 80utC[2] *10 Capv[2]

9
10

11

i funP *11 D[5] 90utC[3] \"DD

funN *12 D[6] 90utC[3] C;'\O

funC *13 OutC[4] 11 D [5] 12 D [6] I

o
~

12 funC + Caps Outg 13 OutC[4] *14 Capv[3]

8 I I funC + Caps Outg 80utC[2] *9 Capv[2] I I NOR2

NOR2 - Switch-leyel OR2 - Switch-level

inl--4 inl-4

in2--4 in2-1
~------Out2

inl-1 inl-I

Figure 15: Switch-Level ofNOR2 and OR2

39

Table 15: Coded data of switch-level NOR2 and OR2 gates

ORl - Switch-level NORl - Switch-level

Function
Code Data Data Data

1 2 2

1 2 6 1 5 2 6 1 5
2
3

2 7 2 5
3 8 6 7

2 7 t 2 5
3 8 6 7

4 1 9 1 4 1 9 1 4
5 4 10 9 11 4 10 9 11

6 1 12 2 10 1 12 2 10

7 3 13 8 12 3 13 8 12

8 4 14 13 15 4 3 13 14

I 9 1 16 14 4

10 2 I 17 14 5

11 3 18 16 17

12 4 3 18 19

3.5.7. NOR3 - OR3

Table 16 shows data structure of switch-level NOR3 - OR3 gates. Table 17 shows the coded

data of switch-level ofNOR3 - OR3 gates. Figure 16 shows the switch-level ofNOR3 - OR3

gates. These gates are coded in the same manner as NAND2 - AND2.

40

Table 16: Data structure of switch-level NOR3 and OR3 gates

[NORJ - ORJ J - Switch-level

Index Function Data 1 Data 2 Data3

1 funN *1 D[I] int (;,\1}

2 funN *2 D[2] in2 G:\D

3 funN *3 D[3] in) G:\W

4 funC *40utC[I] I D [1] 2D [2]

5 funC *5 OutC[2] 3 D[3] 4 OutC[l]

6 funP *6 D[4] int yun
7 funC + Caps *7 SrI] 6 D [4] *8 Capv[1]

8 funP *9 D[5] in2 7 Sri]

9 funC + Caps * 10 S[2] 9 D [5] * 11 Capv[2]

10 funP *12 D[6] in3 10 S[2]

11 funC *13 OutC[3] 50utC[2] 12 D[6]

12 funC + Caps *140utC[4] 13 OutC[3] *15 Capv[3]

13
14

15

funP *16 D[7] 140utC[4] \DB

funN *17 D[8] 14 OutC[4] G]\I)

funC *180utC[5] 16 D [7] 17 D [8]

o
~

16 funC + Caps Outg 180utC[5] *19 Capv[4]

12 I I runC + Caps Outg 13 OutC[3] *14 Capv[3] I I NORJ

41

Table 17: Coded data of switch-level NOR3 and OR3 gates

~ __ ~O~R3~~~S~w~it~c~h-~le~v~el~~1 ~I __ ~N~O~R3~_~S~w_i_tc_h~-I~ev_e_l __ ~

Function Function
Code Data Data Data Code Data Data Data

1 2 2 I 1 2 2

1 2 7 1 6 2 7 1 6
2 2 8 2 6 2 8 2 6
3 2 9 3 6 l 2 9 3 6
4 3 10 7 8 I 3 10 7 8
5 3 11 9 10 ! 3 11 9 10
6 1 12 1 5 1 12 1 5
7 4 13 12 14 4 13 12 14

8 1 15 2 13 1 15 2 13

9 4 16 15 17 4 16 15 17

10 1 18 3 16 1 18 3 16

11 3 19 11 18 3 19 11 18

12 4 20 19 21 4 4 19 20

13 1 22 20 5
14 2 23 20 6

15 3 24 22 23
16 4 4 24 25

42

NORJ - Switch-level ORJ - Switch-level

inl--9 inl--9

in2--9 in2--9

t------...-Out
2

~
inl-1 inl-1

Figure 16: Switch-Level ofNOR3 and OR3

3.5.8 Data Structure Switch-Level of C17 Circuit

Table 18 shows how C17 circuit is coded in switch-level. This circuit has 6 NAND2 gates.

The coding of switch-level is based on incrementing the addresses of the gate level structure. The

coding of the gates is slightly different. The following shows how C 17 circuit is coded:

• Gate Type: Represents the logic gate types of the circuit (i.e. Number 11 indicates that the

corresponding coded logic gate is NAND2 gate starting from address index 1 to address

index 8). The zeros indicate simply that the corresponding switch-level codes are for the last

logic gate type number. The zeros are user default values to fill the Gate Type arrays. It is

simply for programming purposes.

• First NAND2 gate [Address Index = [1:8]]:

43

Addincl (C17)= [Total Number of Gates + Primary inputs] = 11

Addinc2 = A<LIinl + 2 = 13 [2: Added addresses for VDD and GND]

Inca = Addinc2 + 1 = 14

(EQ-3 -4)

(EQ-3 -5)

(EQ-3-6)

Inca: The first incrementation address of the links of the switch-level data structure

• Second NAND2 gate:

Addcg = 22 [The maximum address of the previous logic gate]

Inca Addinc2 + 1 23

Addcg: Represents the last address of the last link corresponding to the previous logic

gate.

• The coding of the remaining logic gates is similar to "Second NAND2 gate" until all the

logic gates are coded in switch-level.

The program can process any combinational circuit and build the netlist switch-level coded

data structure based on the same structure explained in this chapter.

44

Table 18: Data structure of net list switch-level ofC17 circuit

Netlist 5 (C17)

Arrya Index I I Function Code I Data 1 I Data 2 I Data 3 I Gate Type

1 1 14 1 12 11
2 1 15 3 12 I 0

3 I 3 16 14 15 0
I

4 i 2 17 3 13 0
I 5 I 4 18 17 19 0

6 I 2 20 1 18 0
7 3 21 16 20 0

8 4 6 21 22 0

8 1 23 3 12 11
9 1 24 4 12 0

10 3 25 23 24 0

11 2 26 4 13 0
12 4 27 26 28 0

13 2 29 3 27 0

14 3 30 25 29 0

15 4 7 30 31 0

••••••••••• •••••••••••••••••••••••••••••••••••• • •••••••••

41 1 59 8 12 11
42 1 60 9 12

,

0

43 3 61 59 60 0
44 2 62 9 13 0

45 4 63 62 64 0

46 2 65 8 63 0

47 3 66 61 65 0

48 4 11 66 67 0

45

3.6. Processing and Storing Arrays of Switch-Level

The processing arrays used to store the values of the processed links of the switch-level

circuit are stored in an array called: Datajnout_s. This array structure is similar to gate-level

Datajnout_g. Table 19 shows Datajnput_s ofCl7 circuit. This array is in 3D and it is built as

follows:

• CaPe: Indicates that the value of the corresponding address index is a capacitance.

CaPe = I [This address index corresponds to a capacitance]

Cape = 0 [This address index does not correspond to a capacitance]

• Statv: Indicates that the corresponding value at this address index is resolved or calculated

and stored

• LL, Ls: As explained in section 3.4. These are respectively the logic and strength codes of a

link. This represents the value at the corresponding link.

• There are 12 arrays forming DatajnouCs. Every array corresponds to a test vector. There are

12 test vectors. The capacitance values are calculated and stored in Datajnout_s for every

test vector. When a transient is injected, the previous values of the capacitances is ready to

apply (funC + Caps) at the node.

46

Table 19: Array of the storing processed data of C 17 circuit switch-level

Data inout s (C17)

! Address Index I CaPe

I
Statv LL SLl--

I

1 0 1 0 0
2 0 1 0 0
3 0 1 0 0
4 0 1 0 0
5 0 1 0 0
6 0 1 0 0
7 0 1 0 0
8 0 1 0 0
9 0 1 0 0
10 0 1 0 0
11 0 1 0 0
12 0 1 0 0
13 0 1 0 0
14 0 1 0 0
15 0 1 0 0
16 0 1 0 0
17 0 1 0 0
18 0 1 0 0
19 1 0 0 1
20 0 1 0 0
21 0 1 0 0
22 1 0 1 1

•••••• ••••• al
59 0 1 0 0
60 0 1 0 0
61 0 1 0 0
62 0 1 0 0
63 0 1 0 0 I :::::> 12th test vector

64 1 o '. 0 1
65 0 1 0 0
66 0 1 0 0 I-

-
67 1 0 0 1

;> 1st test v ector

47

Chapter 4

Detailed Representation of Sim VI Simulator

4.1. Flo\v diagram of Sim V 1

Figure 17 shows the full flow diagram of Sim V I. The different parameters and blocks in this

flow diagram are as follows:

• var_f: Represents the variable of injected transient types, this number varies from 1 to nF

(i.e. nF = 23 is the maximum number of injected transient types)

• var _1: Represents the variable of the locations of transient injection, this number varies from

1 to nL (i.e. nL is the maximum number of locations of transient injection, for C17 circuit

"nL = 24").

• var _ v: Represents the variable of index of the used test vectors, this number varies from 1 to

n V (i.e. n V represents the maximum number of applied test vectors, for C 17 circuit "n V =

24")

• initr, init" initv: Initialize respectively var_ f, var _1 and var_ v to "1" when they are called.

• initau: Initialize the blocks initr, initl and initv when it is called.

48

• det(var_f,var_l), detATV(var_f,varJ): Represents the coefficients of the profiling mapping

arrays Profm (Le. map_det and map_detATV) explained in section 3.2.3. Their values are

updated based on the input information (i.e. var_f, varJ and var_v) as shown in their

corresponding blocks in the flow diagram.

• Modulel: Represents the heart of the simulator. This module receives at its inputs the

transient types, the transient injection locations and the test vector. The output of this module

is either 110 indicating detection or no detection based on the input parameters. The simulator

can use the drain, gate and the inputs of a logic gate as transient injection location type. This

chapter will focus on the drain only. A gate or inputs of a logic gate locations types are coded

in similar manner to a drain as transient location type. The next section is dedicated for this

module.

The program activates initall and the variables var_f, var_l and var_v are initialized then

Module 1 will process these values for CUT and the results of the simulation will be Comp=

110. There are two options:

• Comp = 1: Signifies that the injected transient is detected. The coefficient arrays take the

following values: det(l,l)=l and detATV(l,l)=l. This indicates that the first test vector

detected the first transient type at the first location. Profm (i.e. map _ det and map _ detA TV)

maps are updated by det and detATV values: The cycle is ended by initializing var_f, var_l

and var_v. This concept allows the simulation to run faster as the simulator will stop testing .
the circuit for the remaining test vectors when a transient injection is detected. Module 1 will

restart to process the next set of values of var f, var 1 and var v until all var f and var 1 - - - --
values are processed.

49

• Comp = 0: Signifies that the injected transient is not detected. The array coefficients are not

updated until detection of transient injection. When all the test vectors are applied and

"Comp = 0", the coefficient arrays will become: det(1,1)=0 and detA TV (1 ,1)=n V. This

indicates that none of the test vectors detected the first transient type at the first location. The

Profm (Le. map_det and map_detATV) maps are updated by det and detATV values. The

cycle is ended by initializing var_f, var_l and var_ v.

50

No

Module 1

Transient injection and detection
of the switch-level circuit

No

Yes

det(varJ,varJ) = 0

detATV(varJ,varJ) = var_ v

Profm

No

No

Figure 17: Flow diagram ofSimVI simulator

51

Yes

det(varj,varJ)= 1

detA TV(var j,var J) == var _v

4.2. Flow Diagram of Module!

This module is the main processing unit of the simulator Sim V I. Its inputs are var _ f, var J,

var _v and initall. These variables represent respectively the transient type variable, the transient

injection location variable, the index of the test vector variable and the initialization block of all

these variables at the start of the program. The output of this module is either 110 indicating

whether the injected transient is detected or not.

Figure 18 shows the flow diagram of this module and its different blocks and its functionality

are explained in detail as follows:

• At the start of the simulation, initall initializes initns. This block initializes var ns, block B 1

andB2:

o var_ns: Represents the index of a row of netlist_s array_ When this variable is

initialized, its value is set to 1.

o Block BI: Updates Data_inout_s array by storing the test vector indexed by var_v

and updates the capacitances values corresponding to the processed test vector.

Section 3.6 explains the structure ofDatajnout_s and shows an example of this array

for C 17 circuit. When this block is initialized, a new var _ v value is loaded and

Data_inout_s is updated.

o Block B2: Updates ArraYinjD based on the transient injection location var J.

ArraYinjD is shown in table 20. This table shows an example of NAND3 logic gate.

There are 6 locations for transient injection in this example as shown in ArraYloc

where this array shows the addresses of possible transient injection locations in

52

netlist_s. The program at every value of var_ns will check if at the specified array

location var_I, the corresponding array [ArrayinjD (varJ(var_ns» = 1] is true. Then

the transient can be injected at the corresponding address in Data_inout_s. The

remainder of the flow diagram will provide further explanation of this process of

transient injection and detection.

• Block B3, B4 and B5 Operate as follows: For the specified var_ns value, the corresponding

netlist_s(var_ns) row is selected to be processed. varys determines the row to be accessed

when B4 is called. The function of the selected row is then resolved and the output of this

row is stored in Data mout s.

• The remainder of the process is organized as follows: ArraYinjD(var_l(var_ns» determines

the transient injection location based on var _I location. The corresponding array of var _I as

shown in figure 20, has zeros except at one index address. There are two options:

o ArraYinjD(var_l(var_ns» = 1: Datajnout_s is updated by the transient value (var_f) at

the corresponding address location. There are 2 options based on this solution:

• var_ns f. nS: var_ns is incremented by 1. This indicates that the next row of

netlist_s is going to be resolved. This process will be in loop until all the rows

of netlist s are resolved.

•

nS: Represents the last row ofnetlist_s.

var _ ns = nS: The primary outputs of CUT are resolved. Block B7 is then

called to compare the 'results of the primary outputs with and without the

transient injection. Detection and no detection status are represented

53

respectively by the codes 1 and O. After this stage, initns is called to restart the

same process with a new set of var _ v, var _1 and var_f

o ArraYinjD(var_l(var_ns») = 0: Data_inout_s of block B6 is bypassed. The remainder of

the flow diagram is the same as the previous condition:

•

•

var_ns t- nS: netlis_s is incremented (loop)

ns= nS: B7 is called, initns is initialized and a new set ofvar_v, var_l and var_f

are processed.

The functionality of Sim VI explained in this chapter gives an idea of how this simulator is

implemented. The different results of execution time, fault coverage and other statistical results

based on the simulation are presented in Chapter 6.

54

Update: DataJnout_s
Cap, (var_ v)
Test Vector (var_ v)

Update:
ArraYinjD (var_1)

No

Module 1

Transient Injection
Detection

0: Transient Injection
not detected

1: Transient Injection
detected

Figure 18: Flow diagram of the transient injection and detection Module 1

55

Table 20: Architecture of ArraYinjD drain location array applied to NAND3

1 ~

2

3
6
8

10

~

,

I

I

1
2

3
4
5
6

7
8

9
10

11

12

Function
Code

funP

funP

funP

funC

funC

funN

funC + Caps

funN
i funC + Caps

funN
funC

funC + Caps

Index I var os]

1
2

3
4
5
6

7
8

9

10

11

12

1
0

0

0

0

0

0

0

0

0

0

0

56

NAND3 - Switch-level

Function

Code Data Data Data2 !
1 2 J

1 7 1 5

1 8 2 5

1 9 3 5

3 10 7 8

3 11 9 10

2 12 3 6

4 13 12 14
2 15 2 13

4 16 15 17

2 18 1 16

3 19 11 18

4 4 19 20

0 0

0 0

0 1 I 0

0 0 0

0 0 0

0 0 1
0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

Chapter 5

Detailed Representation of Sim V 2 Simulator

SimV2 is an optimized version of SimV) simulator. An algorithm is designed for SimV2 to

speed up its run time. This simulator is able to achieve a significant speedup in comparison to

SimV). This chapter explains in detail the different modules of this simulator and the concept of

the developed algorithm that allows the simulator to run faster than SimV l simulator. Section 5.1

and 5.2 gives detailed explanation of two types of data structures needed for the simulation.

Section 5.3 explains the concept of the developed algorithm by providing a step by step

simplified explanation based on C 17 circuit. Sim V I is part of Sim V 2 simulator and it is used only

one time in order to build the switch-level data for Sim V 2 simulator.

5.1. Gate-Level Resolution Function

This function is based on collecting detailed information on the logic gates of CUT. All the

data processed at this level are in gate-level. The collected information is the main key for the

applied algorithm. Table 20 shows the type of information collected through this stage. This

57

table shows an example of the first NAND2 logic gate of C17 circuit. The different parameters

and the data structure of this array are explained as follows:

• Logicc: Signifies that the corresponding array collects the logic combination at the inputs of

the corresponding logic gate. At every applied test vector at the primary inputs of C17

circuit, this array will store the logic combination of the inputs of the corresponding logic

gate.

• Gate1: Represents the first gate ofCl7 circuit.

• inl to inlO: Represents the possible inputs of a gate. For the NAND2 gate there are only 2

inputs, thus the first two inputs inl and in2 are used and the other inputs are left blank.

• int and in2: Stores the logic combination of the inputs ofNAND2 gate for the 12 applied test

vectors at the primary inputs of C 17 circuit.

• Array Row Index: Represents the index of the applied test vectors.

• InG: Represents: [Decimal representation of logic combination + 1]. This combination is

shown in inl and in2.

• Outo: Represents the logic value at the output of NAND2 gate based on the logic

combination at the input of this gate.

• OutoF: Represents NOT(Outo).

• Statpo: Represents the status of the primary output of C17 circuit for the corresponding test

vector when the output ofNAND2 gate is flipped for the same applied test vector. This value

can be 1 or 0 corresponding to detection or no detection due to the flipped bit at the output of

this NAND2 gate.

• MultisInG :Represents the multiplication of InG by Statpo•

58

Figure 19 shows C17 circuit and the structure of the 3D arrays based on table 20 arrays.

These arrays are generated by processing C17 circuit in gate-level and by applying the gate-level

resolution function. There are different features implemented into the program that helped build

these arrays faster. The use of gate level allows applying the test vectors as a set of bits. All the

test vectors are applied at the same time to the circuit. Another feature that helped speed this

process is called progressive gates. The following technique helped improve the speed of

resolving the primary outputs of the circuit and builds Logicc arrays. This technique is based on

reducing the number of processed gates by one every time a new Logicc array is built. For C17

circuit, the number of times these logic gates are processed is shown as follows:

• Reduction of number of processed logic gate is applied:

N - ng(ng+l) + - 6(6+1) + 6 - 27
PO - 2 no - 2 - (EQ-5 -1)

Npo = 6 + 6 + 5 + 4 + 3 + 2 + 1 = 27

Npg: Represents the number of progressive logic gates to be processed in order to

build all the Logicc arrays of CUT. The first "6" (i.e. ng = 6) logic gates are used as a

reference solution in the program. The remainder of the logic gates is processed in a

progressIve manner.

• Reduction of number of processed gate is not applied:

(EQ-5-2)

There is a significant difference between the two calculations and this difference

becomes more important for bigger circuits.

59

The main idea behind this process is based on how the resolved values of the outputs of the

logic gates are stored in DatajnoutJ array. When the first gate is resolved, its output is stored

in Datajnout_g and Logicc array of Gate 1 is created. For Gate 2, the only infonnation that has

to be changed is the flipping bit at the output of Gate 2 in order to resolve Logicc array of Gate 2.

This does not affect Gate 1, thus Gate 1 infonnation is pennanently stored in Data_inoutJ and it

is used to resolve the primary outputs of the circuit and build Logicc array of Gate 2. The same

concept is applied for the remainder of the logic gates and every time a new Logicc array is built,

the number of processed gates is reduced by one.

Table 22 shows the needed infonnation of Logicc arrays to be used for Sim V 2 simulator. This

table shows the data structure of collected data gate-level based on the resolution function

applied to C17 circuit.

60

Table 21: Example of gate-level resolution function applied to NAND2 gate: Gate) ofe17
circuit covering the effect of the flipping bit of the output of the logic gate on the circuit for

a set of 12 test vectors

I
I

I

Array

Column
Index

Array

Row

Index

1

2

3

4

5

6

7

8

9

10

11

12

I inl

0

0

0

1

0

I

0

1

I

I

0

0

Logicc - NAND2 gate: Gatel

in2 in3 il4 ins ill6 in? il1g

1

0

I

0

I

I

I

0

0

0

0

0

61

15

in9 inlO' lno
Outo OutoF StatPO Multis1nG

2 I 0 I 2

1 1 0 1 1

2 1 0 0 0

3 1 0 1 3

2 I 0 1 2

4 0 I I 4

2 1 0 1 2

3 I 0 1 3

3 I 0 1 3

3 1 0 1 3

1 1 0 1 1
1 1 0 0 0

N5

tHO

NAND2 gate: Gate)

I NAND2 gate: Gate,

I NAND2 gate: Gat.e2

I NAND2 gate: Gate3

I NAND2 gate: Gat.e4

I NAND2 gate: Gates

NAND2 gate: Gate(, -
t-

i--

....-

r--

Figure 19: Structure of the 3D array of gate-le\·eJ .resolution function applied to e17 ,circuit

NAND2 gate: Gate6

I NAND2 gate: Gates

I NAND2 gate: Gate4
,

NAND2 gate: Gate3

I NAND2 gate: Gate2

NAND2 gate: Gatej

Order of test
vectors 1110 Multis1nG

1 2 2
2 1 1
3 2 0
4 3 3
5 2 2

I 6 4 4
I 7 2 2

8 3 3
9 3 3
10 3 3
11 1 I
12 1 0

Table 22: Data structure of collected data gate-level based on the resolution function applied
to C17 circuit

5.2. Switch-Level Data Input Organization

This data is built based on SimVl* simulator. All the logic gate types are processed through

Sim V I simulator for transient injection and detection at switch-level. Every logic gate is

processed as an independent circuit. This simulator is slightly different from Sim Vias when a

fault is detected, the simulator will keep miming until all the test vectors are used. The test

vectors applied to these logic gates are_exhaustive test vectors and their numbers can be 2 test

vectors for NOT or BUFFER gates, and 1024 test vectors for NANDlO or ORlO gates. SimVl*

will mn all the test vectors and injects the transients at all locations at every logic gate. The

results of processing these gates are stored in 3D Profm'" arrays. These arrays are similar to Profm

63

arrays built through Sim V I simulator at the exception of little modification based on how the

data is stored. These arrays are 3D arrays as every array slice corresponds to the index of the

applied test vector TVn (i.e. similar notation as var_v). It is the same analogy for map_detATV*

and map_det*, the only difference with these maps and map_det and map_ATVdet are as

follows:

• map_detATV*: Stores the output value of the logic gate for every injected transient

and every transient injection location. There is an array created for every TV n.

• map_det*: Stores the status of the output of the logic gate as 110 corresponding to

detection or no detection. There is an array created for every TV n .. This map is similar

tomap_det

Table 23 shows 2 slices of Profm * arrays corresponding to 2 test vectors. These arrays are

based on applying 8 transient types. A NOT gate has only 2 transient injection locations,

therefore, TLQc = [1:2]. This table shows map_det of NOT gate as well. This array can be built

from map_det*: 1 and 2. map_det = [map_det*: 1] OR [map_det*: 2].

map _ det of the logic gate is stored as it is needed for Sim V 2 as well. Every logic gate will

generate 3 array types: map _ det, map _ det* and map _ det*. Figure 20 shows the structure of

Profm* arrays for different logic gate types. Based on NOT logic gate example, TLQc= [1:2].

There are two slices of arrays for map _ det* and map _ detATV* as TV n = 2. Every logic gate has

one array ofmap_det. For NAND3 logic gate example, TLQc = [1:6]. There are 8 slices of arrays

for map _ det* and map _ detA TV* as TV n = 8. These 3D arrays are all stored in a . *mat format

file and are used in Sim V 2 simulator.

64

I NOT-TVn:2 I

Tlo<: ~ --- I 2 1 2

I TI T~

I () r\ 0 0 0 0

I NOT-TVn: 1 I 0 0 0 0

0 3 0 t

I I
TLne TLo• 0 3 0 t

I I 2 I 2
0 1 0 I

T, T~
3 3 I I

0 0 I t 0 0
I 0 0 0 0

0 t 3 1 1 0 : 0 I 0 I
t 1 I I 0 0

map detA TV'" : 2 map det"': 2 I
3 1 3 1 I 0

1 7 0 3 I 1

3 7 3 3 I 1

0 6 0 1 1 0

I 6 I I 0 0 I NOT Gate I
map detATV'" : I map det"': t

TLoc

1 2
, .• ,-T T

0 0 0 0

0 t 0

t 0

3 I

7

3 7

0 6 0

6 0

rna det

Table 23: Structure of the collected data of NOT gate applied to SimVI* simulator

65

NOT (T Loc = 2)

map_det"': 1
map _ detA TV"': 1

BUFFER(TLoc=4)

map_det"': 1
map_detATV"': 1

I map_det map_det

I NAND2 (T Loc '" 4) I I NAND3 (T Loc = 6)

map_det"': 1
map_detATV"': 1

map_det"': 1
map_detATV"': 1

••••••••••••

•••••
map_det"': 1

map_detATV"': 1

Figure 20: Data structure of some logic gates extracted from Sim V t * simulator

5.3. Concept of the Algorithm Used in Sim V 2 Simulator

This simulator uses the data generated from the gate-level resolution function mentioned in

section 5.1 and the switch-level 3D array switch-level logic gates mentioned in section 5.2. This

algorithm is able to trace back the information of transient injection and detection and build the

same profiling maps (Le. map_det and map_detAT) generated by SimVt. The example of C17

circuit is used in this section showing how this concept is implemented in order to build map _ det

and map _ detATV.

Table 24 shows the different arrays used to resolve C17 circuit. This example shows how 4

different transients are injected into CUT and how they are detected in case of detection.

Sections 5.3.1 to 5.3.4 give detailed explanation of these 4 transients. The steps of how the

66

transient detection is tracked are marked by different contrasts in the table for each one of these 4

transients. This allows better solution traceability and provides a clear explanation on how these

map_det and map_detATV are built. C17 circuit has 6 NAND2 logic gates. This example traces

4 solutions for [NAND2 - Gate,] and it is the first logic gate of C17 circuit. The table

[NAND2 - Gate,] shows one of the arrays shown in table 22. [NAND2 Gate] table shows four

arrays of map _ det* and map _ detATV* and one array of map _ det. Each of these arrays has the

same information on TLoc (i.e. TLoc = [1:4] corresponding to 4 locations). [map_detATV C17]

table shows T Loc= [1 :24] and the contrasted positions on this table represent the solutions found

by applying Sim V 2. The transient locations type for this example is drain of a switch and only 8

transient types are used. The simulator can run all the transient types. Based on the experiment

results, some transients can be collapsed and be represented by one transient type, therefore these

8 transient types represents the 23 different transient types. The following sub-sections present

four sample of transient injection at four drain locations of C17 circuit. The steps explained in

these sub-sections provide detailed explanation on how the program resolves the profiling maps

Profm of C17 circuit.

5.3.1 1 sf Solution Based on C17 Circuit Example

TLoc: The location of the transient = 1.

Array address of the transient type is 2, corresponding to T L = 0, T s= 1.

For all the steps when referred to map_det, nap_detATV, map_det and map_detATV, all

-.
these arrays are accessed at the same T Loc and index of transient type.

• Step 1: Check map _ det of [NAND2] table

67

o If the corresponding value is 0, then go to step 4.

Solution: map_detATV = nY, map_det = O.

o If the corresponding value is 1, then go to Step 2.

• Step 2 :Check the first map _ det* of [NAND2 Gate] table that contains [1] as value

o 1 st [1] value is at map _ det*: 2. This means that TY n = 2.

o The corresponding array location for [map _ detA TY*: 2] array is value [3]

o Solutions are: map_det*: 2: [1] , map_detATY*: 2 : [3]

o Go to step 3.

• Step 3: Check [NAND2 - Gatel] table.

o Ifmap_detATY* solution is [3] then check the columns:

[Order of test vectors] and [InG]

• Find the first InG value where: InG = 2

• Record the value of [Order of test vectors] corresponding to the first

[InG 2] where 2 corresponds to TY n = 2. In this case:

Order of test vectors = 1

o Ifmap_detATY* solution is [0/1] then check the columns:

[Order of test vectors] and [MultisInG]

•. Step 4: Final solution

map _ det (Array address of the transient type, T Loc)

68

map_detATV (Array address of the transient type, TLoc)

Solution for C17: map_detATV (2,1) = 1

Solution for C 17: map _ det (2,1) = 1

These solutions are shown as well in table 25.

(AtTLoc= 1, TL=O, Ts= 1)

(AtTLoc=2, TL=O, Ts= 1)

5.3.2. 2nd solution of based on C17 circuit example

T Loc: The location of the transient = 2.

Array address of the transient type is 1, corresponding to T L = 0, T s= 0.

• Step 1: Check map_det of[NAND2] table

The corresponding value is 1. Go to Step 2.

• Step 2 :Check the first map _ det* of [NAND2 Gate] table that contains [1] as value

o 1st [1] value is at map_det*: 3. This means that TVn = 3.

o The corresponding array location for [map_detATV*: 3] array is value [3]

o Solutions are: map_det*: 3 : [1] , map_detATV*: 3 : [3]

o Go to step 3.

• Step 3: Check [NAND2 - Gate,] table.

o Ifmap_detATV* solution is [3] then check the columns:

[Order of test vectors] and [Ina]

• Find the first Ina value where: InG = 3

69

• Record the value of [Order of test vectors] corresponding to the flrst

[InG 3] where 3 corresponds to TVn = 3. In this case:

Order of test vectors = 4

o Go to step 4 for the flnal solution.

• Step 4: Final solution

map _ det (Array address of the transient type, T Loc)

map_detATV (Array address of the transient type, TLoc)

Solution for C17: map_detATV (1,2) = 4

Solution for C17: map_det (1,2) = 1

These solutions are shown as well in table 25.

(AtTLoc=2, TL=O, Ts=O)

(At TLoc = 2, TL = 0, Ts = 0)

5.3.3. 3rd Solution Based on C17 Circuit Example

TLoc: The location of the transient = 3.

Array address of the transient type is 2, corresponding to T L = 0, T s= 1.

• Step 1: Check map _ det of [NAND2] table

If the corresponding value is 0, then go to step 4.

Solution: map_detATV = nV = 12, map_det = 0.

• Step 2 : Not applicable: NI A

• Step 3: Not applicable: N/A

• Step 4: Final solution

70

map _ det (Array address of the transient type, T Loc)

map_detATV (Array address of the. transient type, TLoc)

Solution for C 17: map _ detATV (2,3) = 1

Solution for C17: map_det (2,3) = 1

These solutions are shown as well in table 25.

(At T Loc = 3 , T L = 0, Ts = 1)

(AtTLoc=3, TL=O, Ts= 1)

5.3.4. 4th Solution Based on C17 Circuit Example

T Loc: The location of the transient = 4.

Array address of the transient type is 8, corresponding to TL= 1, Ts= 6.

• Step 1: Check map _ det of [NAND2] table

If the corresponding value is 1, then go to Step 2.

• Step 2 :Check the first map _ det* of [NAND2 Gate] table that contains [1] as value

o 1st [1] value is at map_det*: 4. This means that TVn = 4.

o The corresponding array location for [map_detATV*: 4] array is value [1]

o Solutions are: map_det*: 4 : [1] , map_detATV*: 4 : [1J

o Go to step 3.

• Step 3: Check [NAND2 - Gate!] ,table.

Ifmap_detATV* solution is [011] then check the columns:

[Order of test vectors] and [MultislnG]

71

o Find the first MultislnG value where: MultislnG 4

o Record the 'value of [Order of test vectors] corresponding to the first

[MultislnG = 4] where 4 corresponds to TVn = 4. In this case:

Order of test vectors = 6

• Step 4: Final solution

map _ det (Array address of the transient type, T Loc)

map _ detATV (Array address of the transient type, T Loc)

Solution for C17: map_detATV (6,3) 6

Solution for C17: map_det (6,3) = 1

These solutions are shown as well in table 25.

72

(AtTLoc 3, TL = 1, Ts =6)

(At T Loc = 3 , T L = 1, T s 6)

Table 24: Example of how the algorithm applied to SimV2 simulator builds the solution maps
map _ det and map _ detA TV for C 17 circuit

NAND2Gate

Array

Address TL Ts

1 0 0 1 1 I 1 1 1 1 1 1 ~ 1 1 0 0 0 0

2 0 I 1 1 1 1 ~ 1 1 1 t 3 1 1 0 0 0 o I
3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 I 0 0 3 3

4 3 I 1 1 I 1 l 3 1 1 1 t 3 1 1
I

I 0 0 3 3
I 5 I 7 3 3 I 3 I 0 3 I 3 3 0 3 1 0 0 t 1

6 3 7 3 3 1 3 3 3 1 3 3 3 3 3 3 3 3 3

7 0 6 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0

8 1 6 1 1 1 1 1 1 1 I t 1 1 1 0 0 ~F I

map. detATV* : 1 map. detA TV* : 2 map. detA TV* : 3 map. detATV* : 4

I Array
• Address TL Ts

l--""'I-/.;;;.rll=~-'---4 -41 r-I -I '-2 T"-i'I=~-r'-4 -II I

1 0 0 I 0 0 0 0 0 0 0 0 0 ::r: 0 0 0 0 0 0

2 0 1 0 0 0 0 ~ 0 0 0 0 t 0 0 0 0 0 0
3 1 I 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 t
4 3 1 0 0 0 0 I 0 0 0 0 1 0 0 0 0 1 1
5 I 7 1 1 0 1 I t 0 1 I t 1 0 0 0 t 1
6 3 7 1 t 0 1 1 I 0 I 1 1 1 1 1 t t 1

7 0 6 0 0 0 0 I 0 0 0 0 1 0 0 0 0 0 0

8 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l' t
map det*: 1 map det*: 2 map det*: 3 map det*: 4

NAND2 - Gate.
1 Array
i Address
I

1

2
3

TL Ts

0 0

0 I

1 1

I
r--

..... r---
~ 12 m_ r---

..... r---

Order I
of test Ina MultislnG

vector i
~~ ~ 2

0 ::1: 0 0

~ 1 0 0
i 0 1 I 1

4 3 1 r--- 1 1) 1 2 t)

5
6

I 7

3 7
..... r--..... r---

3 2 0
.. " 3

1 t 1 1

1 1 1 1

7

8

0 6

I 6

..... r--
l6:'

5 2 2

;; '6'! I 4 II t4 U
1 1 0 0

0 0 ill 1

map_detATV map_det 7 2 2

e17 NAND2 8 3 3

9 3 3
10 3 3

) 1 1 1

12 1 0

73

Table 25: map_det and map_detATV maps for C17 circuit

Array I 1 1 2 1
TLOC ~

3141 24
Address TL TS

1 0 0 12 12
I

-. ... 12 0

2 0 t 12 12 ••••• ! 12 0

3 1 t 12 4 6 6
4 3 I 4 6 6
5 1 7 4
6 3 7 4 1

7 0 6 4 12 12 0

8 1 6 12 12 ~6

map_detATV map_detATV
C17 C17

Section 5.3.1 to section 5.3.4 gave detailed examples of 4 transient injections of different

transient types and at different drain locations. These examples reflect the concept of the

algorithm and how CUT is resolved to build the profiling maps Profm•

74

Chapter 6

Experimental Results

The results of the experiments are based on ISCAS'85 benchmark circuits. Different

experiments are presented in this chapter based on the simulation of transient injection at drain,

gate and inputs of a logic gates. A performance analysis based on simulation execution time of

Sim V I and Sim V 2 simulators is conducted.

6.1. Overview of the Simulation Applied Data

6.1.1. Benchmarks

Detailed information on ISCAS'85 benchmark circuits [17] is shown in table 26. The

parameters of this table are as follows:

Gate Types: Represents the different logic gates of these circuits.

Number of Gates: Represents the number of gates for each Gate Type.

75

I CI7

I C432

I C499

I C880

I C1908

I C2670

I C3540

I C5315

r C6288

Table 26: Detailed logic gate information ofISCAS'85 benchmark circuits

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

Gate Types
Number of

Gates

NAND2

6

NOT

40

XOR2

104

NAND4

13

BUFFER

26

NOT

277

AND4

2

BUFFER

272

NOR2

12

BUFFER

223

AND4

10

BUFFER

313

OR4

61

AND2

256

NAND2 NOR2

64 19

AND2 NOT

40 40

AND3 NAND2

12 60

NAND2 BUFFER

347 162

NAND5 AND5

24 16

AND2 NOT

203 321

ANDS OR3

7 2

NOT OR2

490 35

NAND4 OR3

7 56

AND2 NOT

319 581

NOR2 ANDS

19 11

NOT NOR2

32 2128

76

AND9 XOR2 NAND4 AND8 NAND3

3 18 14 1 1

AND4 OR4 AND5

8 2 8

NAND3 AND2 OR2 NOT NOR2

14 105 29 63 61

AND2 AND3 NAND4 NAND3 NAND8

30 12 2 I 3

AND8 NOR2

3 I

AND4 AND3 NAND2 OR2 OR4

11 112 254 51 22

OR5

2

AND2 NAND2 NAND3 AND3 NOR2

410 274 17 76 25

NOR3 AND5 NOR8 OR4

27 2 16 I

NAND2 AND4 OR2 AND3 OR3

454 27 95 359 50

OR5 NOR3 NOR4 AND9

8 6 2 2

6.1.2. Information on the Applied Data

Table 27 shows detailed infonnation of ISCAS'85 benchmark circuits. The infonnation

extracted from these circuits is provided by the simulator.

The test vectors used for the simulations are based on compaction algorithm [18]. These test

vectors are designed for logic-level circuits and are used for the first time in this work.

Table 27: Infonnation on ISCAS'85 benchmark circuits

Number of Number of Number of

Benchmarks primary primary
Number

Number of test
of

! ISCAS'85 inputs outputs Gates switches vectors
C17 5 2 6 24 12
C432 36 7 160 896 27
C499 41 32 202 2180 52
C880 60 26 383 1802 16
C1908 33 25 880 3446 106
C2670 233 140 1269 5668 44
C3540 50 22 1669 7504 84
C5315 178 123 2307 11262 37
C6288 32 32 2416 14368 12
C7552 207 108 3513 15400 73

6.2. Fault Coverage Due to Transient Injection at Different

Location types

This work is pioneer in tenns of soft error detection based on switch-level models and there

is no available data in the literature for comparison. The results in this work are based on the

developed simulators. -.

6.2.1. Injection at Gate of a Switch

77

The results of simulation of transient injection at gate of a switch applied to C5315 circuit are

shown in table 28. The simulator processing unit has the ability to show detailed results for

different injected transient types. The various parameters of this table are explained as follows:

• nT.d: Represents the total number of injected transients for all transient locations and

based on test vectors elimination (Le. When an injected transient is detected, the

simulator stops, records the information of the injected transient and proceeds with the

next transient injection location). This method is applied to SimVI simulator. SimV2

simulator has the ability to build the same information as it provides the same profiling

maps as Sim VI. nT.d is determined by (EQ - 6 - 1). The parameters of this equation are

explained in previous sections at the exception ofvar_f. This parameter in this expression

is constant and based on the calculation of one transient type. var_f takes one value

between 1 and 23 which is the injected transient type used for the corresponding

calculation in this expression.

nL

nT.d = I map_det (var -I, var J)
var J= [1:23 J, var 3 =1

(EQ - 6 -1)

• nT.aU: Represents the total number of injected transients for all transient locations and

based on all applied test vectors without test vector elimination (i.e. When an injected

transient is detected, the simulator doesn't stop, and records the information of the

injected transient and when the last test vector is applied then the simulator proceeds with

the next transient injection location). nT.aU is determined by (EQ - 6 - 2) for one transient

type. The parameters of this expression are explained in previous sections.

nT.d = nV .nL (EQ - 6 - 2)

78

• F COy: Represents the fault coverage corresponding to every transient type, applied to all

transient injection locations and based on the applied test vectors.

• nL: Represents the number of transient injection locations. This number is the same as

the number of switches of CUT as shown in Table 27.

• nLd: Represents the number of transient injection locations corresponding to detection.

The F COy can be determined based on nL and nLd for every transient type.

• nT.dSeU: Represents the number of injected transients for all transient locations and based

on test vector elimination. This parameter is similar to nT.d. This number applies only to

the selected transient types. Table 28 shows that some transient types can be collapsed in

one type as their results are equivalent. The equivalent transient types are differentiated in

the table by different contrasts. Furthermore the 23 transient types based on the gate

transient location type can be collapsed in 4 transient types resulting in a significant

reduction of simulation execution time. The results of the remaining transient types are

rebuilt based on these four selected transient equivalent types.

• Total: Represents the results based on all the transient types or the selected transient types

such as for nT.dSell.

• T(Parameter): Represents the execution time needed to process the parameter variable.

(e.i. T(nT.d) represents the execution time to run nT.d). The simulation execution time is

expressed in seconds.

Table 29 shows the fault coverage Fco~ for all the ISCAS'85 benchmark circuits for injection

at a gate of a switch. Fcov is shown for every single fault type. The total shows the fault coverage

for all the applied fault types.

79

Table 28: Simulation results for injection at gate of a switch for C5315 circuit

Gate-C5315

! T, T" OT.d DT.an Fe"" DL OLd T(nI.J T(OT.all) OT.dSel T(OTdSe.)

I 7 28521 416694 0.9999\ 11262 11261 28327.53 413867,42 28521 28327.53

I 0 0 17280 416694 I 11262 11262 17162.78 413867.42 17280 17162.78

0 I 60186 416694 0.99592 11262 11216 59777.74 413867.42 60186 59777.74

0 2 60186 416694 0.99592 11262 11216 59777.74 413867,42 0 0.00

0 3 60186 416694 0.99592 11262 11216 59777.74 413867,42 0 0.00

0 4 60186 416694 0.99592 11262 11216 59777.74 413867.42 0 0.00

0 5 60186 416694 0.99592 11262 11216 59777.74 413867.42 0 0.00

0 6 60186 416694 0.99592 11262 11216 59777.74 413867,42 0 0.00

1 0 17280 416694 I 11262 11262 17162.78 413867.42 0 0.00

1 1 86652 416694 0.95294 11262 10732 86064.21 413867.42 86652 86064.21

1 2 86652 416694 0.95294 11262 10732 86064.21 413867.42 0 0.00

I 3 86652 416694 0.95294 11262 10732 86064.21 413867,42 0 0.00

1 4 86652 416694 0.95294 11262 10732 86064.21 413867.42 0 0.00

1 5 86652 416694 0.95294 11262 10732 86064.21 413867.42 0 0.00

I 6 86652 416694 0.95294 11262 I 10732 86064.21 413867.42 0 0.00

3 0 17280 416694 1 11262 11262 17162.78 413867.42 0 0.00

3 1 17280 416694 1 11262 11262 17162.78 413867.42 0 0.00

3 2 17280 416694 1 11262 11262 17162.78 413867,42 0 0.00

3 3 17280 416694 1 11262 11262 17162.78 413867.42 0 0.00

3 4 17280 416694 1 11262 11262 17162.78 413867.42 0 0.00

3 5 17280 416694 1 11262 11262 17162.78 413867.42 0 0.00

3 6 17280 416694 1 11262 11262 17162.78 413867.42 0 0.00

3 7 17280 416694 I 11262 11262 17162.78 413867.42 0 0.00

Total \1082349 \95839621 0.986651259026\255569\ 1075007.0619518950.74\192639\191332.261

80

i

Table 29: Simulation results of Fcov for transient injection at gate of a switch for
ISCAS'85 benchmark circuits

Gate - Frey

T .. Ts C17 C432 C499 C880 C1908 C2670 C3540 C5315 C6288 C7552

I 7 1 1 0.9885 I 1 0.9915 0.9997 0.9999 0.3351 0.9928

0 0 1 1 1 1 1 0.9979 0.9999 1 0.7415 0.9971

0 1 1 0.9888 0.9404 0.9878 0.9997 0.9287 0.9884 0.9959 0.1640 0.9719

0 2 I 0.9888 0.9404 0.9878 0.9997 0.9287 0.9884 0.9959 0.1640 0.9719
I 0 3 1 0.9888 0.9404 0.9878 0.9997 0.9287 0.9884 0.9959 0.1640 0.9719
I 0 4 1 0.9888 0.9404 0.9878 0.9997 0.9287 0.9884 0.9959 0.1640 0.9719

I 0 5 1 0.9888 0.9404 0.9878 0.9997 0.9287 0.9884 0.9959 0.1640 0.9719

0 6 1 0.9888 0.9404 0.9878 0.9997 0.9287 0.9884 0.9959 0.1640 0.9719

I 0 1 1 I 1 1 0.9979 0.9999 I 0.7415 0.9971

1 1 0.9167 0.8214 0.8528 0.9417 0.9689 0.8705 0.9428 0.9529 0.2233 0.9373

1 2 0.9167 0.8214 0.8528 0.9417 0.9689 0.8705 0.9428 0.9529 0.2233 0.9373

I 3 0.9167 0.8214 0.8528 0.9417 0.9689 0.8705 0.9428 0.9529 0.2233 0.9373

1 4 0.9167 0.8214 0.8528 0.9417 0.9689 0.8705 0.9428 0.9529 0.2233 0.9373

1 5 0.9167 0.8214 0.8528 0.9417 0.9689 0.8705 0.9428 0.9529 0.2233 0.9373

1 6 0.9167 0.8214 0.8528 0.9417 0.9689 0.8705 0.9428 0.9529 0.2233 0.9373

3 0 t 1 I 1 1 0.9979 0.9999 1 0.7415 0.9971

3 1 1 1 1 1 1 0.9979 0.9999 1 0.7415 0.9971

3 2 1 1 1 1 I 0.9979 0.9999 1 0.7415 0.9971

3 3 1 1 1 1 1 0.9979 0.9999 1 0.7415 0.9971

3 4 1 1 1 1 1 0.9979 0.9999 1 0.7415 0.9971

3 5 1 1 1 1 1 0.9979 0.9999 t 0.7415 0.9971

3 6 1 1 1 1 1 0.9979 0.9999 1 0.7415 0.9971

3 7 1 I 1 1 1 0.9979 0.9999 I 0.7415 0.9971

Total 0.9783 I 0.9505 I 0.9455 I 0.9816 I 0.9918 I 0.9463 I 0.9820 I 0.9867 I 0.4380 I 0.9747 I

6.2.2. Inj ection at Drain of a Switch

Similarly the data of transient injection at drain of a switch is organized in a similar manner

to transient injection at gate of a switch. Table 30 shows detailed results of C5315 for transient

injection at drain of a switch. Table 31 shows the fault coverage Fcov for ISCAS'85 benchmark

circuits for injection at drain of a switch

81

Table 30: Simulation results for transient injection at drain of a switch for C5315
circuit

Drain - C5315

T nL nL

11262 11261

0 11262 1625 151541.18 171691.18 367790 151541.18

0 236380 11262 5623 97396.08 171691.18 236380 97396.08

0 2 256505 11262 5573 105688.22 171691.18 256505 105688.22 i

0 3 256505 11262 5573 1 171691.18 0 0.00

0 416694 0.49 11262 5573 105688.22 171691.18 0 0.00

0.49 11262 5573 105688.22 171691.18 0 0.00

6694 0.49 11262 5573 105688.22 171691.18

0.14 11262 1625 151541.18 171691.18

0.64 11262 7253 76316.94 171691.18

416694 0.5 11262 5627 103547.71 171691.18

251310 416694 0.5 103547.71 171691.18

4 251310 416694 0.5 103547.71 171691.18 0 0.00

5 251310 416694 103547.71 171691.18 0 0.00

1 6 251310 416694 103547.71 171691.18 0 0.00

3 0 367790 416694 151541.18 171691.18 0 0.00

538tl 416694 22171.84 171691.18

53811 416694 22171.84 0.00

53811 416694 11262 11251 22171.84 171691. 0.00

53811 11262 11251 22171.84 171691. 0.00

53811 11262 11251 22171.84 0.00

53811 11262 11251 22171.84 0.00

13966 416694 11262 11262 5754.44 171691.18 5754.44

Total 4434321 1 9583962 1 0.63 1259026 1163780 11827081.32 1 3948897.24 113984261 576196.00 1

82

I

Table 31: Simulation results ofFcov for transient injection at drain of a switch for
ISCAS' 85 benchmark circuits

Drain - Fcov

TL Ts C17 C432 C499 C880 Cl908 C2670 C3540 C5315 C6288 C7552
1 7 1 1 0.98624 1 1 0.9435 0.9915 0.9999 0.5702 0.9915

0 0 0.25 0.1942 0.1633 0.1421 0.17847 0.1251 0.1349 0.1443 0.0178 0.1349

0 1 0.5 0.4587 0.46468 0.5 0.49942 0.4854 0.4899 0.4993 0.2037 0.4899

! 0 2 0.5 0.4554 0.44495 0.5 0.49739 0.3553 0.4603 0.4948 0.0035 0.4603

0 3 0.5 0.4554 0.44495 0.5 0.49739 0.3553 0.4603 0.4948 0.0035 0.4603

0 4 0.5 0.4554 0.44495 0.5 0.49739 0.3553 0.4603 0.4948 0.0035 0.4603

0 5 0.5 0.4554 0.44495 0.5 0.49739 0.3553 0.4603 0.4948 0.0035 0.4603

0 6 0.5 0.4554 0.44495 0.5 0.49739 0.3553 0.4603 0.4948 0.0035 0.4603

1 0 0.25 0.1942 0.1633 0.1421 0.17847 0.1251 0.1349 0.1443 0.0178 0.1349

1 1 0.75 0.6942 0.64037 0.6421 0.67847 0.6159 0.6264 0.644 0.1111 0.6264

1 2 0.5 0.4933 0.4578 0.5 0.49942 0.373 0.4706 0.4996 0.0003 0.4706

1 3 0.5 0.4933 0.4578 0.5 0.49942 0.373 0.4706 0.4996 0.0003 0.4706

1 4 0.5 0.4933 0.4578 0.5 0.49942 0.373 0.4706 0.4996 0.0003 0.4706

1 5 0.5 0.4933 0.4578 0.5 0.49942 0.373 0.4706 0.4996 0.0003 0.4706

1 6 0.5 0.4933 0.4578 0.5 0.49942 0.373 0.4706 0.4996 0.0003 0.4706

3 0 0.25 0.1942 0.1633 0.1421 0.17847 0.1251 0.1349 0.1443 0.0178 0.1349

3 t . 1 0.9587 0.94174 t 0.99942 0.9762 0.9814 0.999 0.297 0.9814

3 2 1 0.9587 0.94174 1 0.99942 0.9762 0.9814 0.999 0.297 0.9814

3 3 1 0.9587 0.94174 1 0.99942 0.9762 0.9814 0.999 0.297 0.9814

3 4 1 0.9587 0.94174 1 0.99942 0.9762 0.9814 0.999 0.297 0.9814

3 5 1 0.9587 0.94174 1 0.99942 0.9762 0.9814 0.999 0.297 0.9814

3 6 1 0.9587 0.94174 1 0.99942 0.9762 0.9814 0.999 0.297 0.9814

3 7 t 1 1 1 1 0.9989 0.999 1 0.8854 0.999

Total I 0.652 I 0.6187 I 0.59763 I 0.6334 I 0.63886 I 0.5616 I 0.6111 I 0.6323 I 0.1576 I 0.61H

6.2.3. Injection at Inputs of Logic Gate

The data for transient injection at inputs of a logic gate are based on a bit flip where the logic

level is flipped at the inputs of a gate. The signals considered for these experiments are of a logic

code 0 or 1 and strength code 7. The injected transient is T L = 1 and T s = 7 (Le. When this

transient is injected at an input of a logic gate and if the logic at this input is 0 then the logic will

become 1 (Flipped) and similarly for logic 1, it becomes logic 0). This experiment will allow

83

comparing the fault coverage with transient injection at drain and gate of a switch. Basically at

the location of the tested input of a logic gate, the logic level signal is flipped then the fault

detection is determined based on the non-faulty and faulty information of the primary outputs of

CUT. Table 32 shows detailed results of injection at inputs of a logic gate for C5315 circuit.

Table 33 shows Fcov results for ISCAS'85 benchmark circuits.

Table 32: Simulation results for transient injection at inputs of a logic for C5315 circuit

I T1" I Ts I Dr.d Dr.aU Fcov nL I nLd I T(nTd) I T(nr .• u) T(nT.dSeI)
I 1 I 7 I 20564 162282 0.99977 4386 I 4385 I 20553 I 162191 20552.5

Table 33: Simulation results ofFcov for transient injection at inputs ofa logic gate for
ISCAS'85 benchmark circuits

I Inputs - Fcov - Bit Flip I
C499 C880 C2670 C3540 C6288 C7552

1 1 0.7997 0.98226 0.000833 0.9823

Figure 21 shows the results of Fcov for transient injection at drain, gate and inputs of a logic

gate. The plot shows that for injection at gate of a switch and inputs of a logic gate, the fault

coverage is very close, on the other hand, Fcov for injection at drain shows a significant

difference compared to injection at drain of a switch and inputs of a logic gate. C6288 represents

an exception in terms of fault coverage and does not follow the same trend as the remaining

CUTs in this table. This circuit is a 240 full and half adder cells arranged in a 15x16 matrix. The

number of fanouts in this circuit is very large and this makes the circuit redundant and less prone

to transients as the results show in this table.

84

1

0.9

0.8

I> 0.7
0

" I:.I..
0.6 cu

~J
6 0.5

0
,!::i 0.4
= ~

I:.I.. 0.3

0.2

0.1

0
--"-

<."V ,:,:>'"
~

~O)
<J

9:J~ r,)'b ~~ t;;..~ ~<-, ~'b ~'"
<."CO <." 01 oeo ()" 0'" (j;V o<?

ISCAS'85 Benchmark Circuits

[]Gate

-Inputs

o Drain

Figure 21: Fcov for gate, drain ofa switch and inputs ofa logic gate for ISCAS'85
benchmarks circuits

6.3. Fault Coverage Versus Applied Test Vectors

Figure 22 shows the efficiency of the applied test vectors on the fault coverage based on

injection at drain of a switch for C499, C2670, C3540 and C7552. This feature of the simulator

can be used to evaluate the performance of any applied test vectors.

85

65

60

55

50

45

"""'
40

d=>
0'
'-' ..

0

" 35 tJ;.

;U
OL c;:;

~ 30 0
u

~ c;:;
I.x.o

o 10 20 30 40 50 60 70 80 90

Index of the applied test vector

. Figure 22: Plot of F cov based on transient injection at drain of a switch versus applied test
vectors for C499, C2670, C3515 and C7552 benchmarks circuits

86

6.4. Timing Results

6.6.1. Matlab Profile of Sim VIand Sim V 2 Simulators

Figure 23 shows the main functions of Sim V). This image is extracted from Matlab Profile

Display showing the execution time for the main functions of this simulator. The parameter

"calls" represents the number of times funC, funp and funN are called to run Sim V I simulator.

The number of calls offunC can be determined as shown in CEQ - 6 - 3).

tunC Number of Calls = nr.d * nL = 139846 * 11262 = 1574945652 (EQ - 6 - 3)

nL = 11262 nr.d = 139846

Figure 24 shows the main functions of Sim V 2. This image is extracted from Matlab Profile

Display showing the execution time for the main functions of this simulator. This image shows

that the main functions of Sim V 2 are very different of Sim V I and there are no more switch-level

functions. The parameter "calls" represent the number of times the corresponding functions are

called in the program. The different functions of Sim V 2 are as follows:

• Cgate Jes: Represents the gate-level resolution function. This number is built based on

the number of progressive gates: Npg

• Cres_solution_out: Represents the number of ones of map_det based on all the

independent switch-level logic gates.

• The remainder of the functions is reserved for programming purpose.

87

Function Name Calls Total Time

funC 1.574907e+l0 157711.891 s

funP i.874537e+09 61772.127 s

fun.~ 7.874S37e+09 61640.323 s

mean 1 0.010 s

Figure 23: Matlab Profile Display showing the execution time of Sim V I functions

Function Kame Calls Total Time

Circuit gate LeYel 1 3857.081 s

f gate res 2664585 1395.605 s

f nb In Gates 2664585 34.947 s

f res solution out 595i4 6.269 s

f bin.:!int 2307 2A20 s

!liQ!t 85359 1.150 s

Figure 24: Matlab Profile Display showing the execution time ofSimV2 functions

6.6.2. Timing Results of Sint VI Simulator

Table 34 shows the execution time for ISCAS'85 benchmark circuits based on transient

injection at drain of a switch for "of = 8" and "of 23". The speedup column shows an average

speedup of 3.2 of"nF = 8" versus "of = 23". The execution time corresponding to "nV = I"

(Le. One test vector) is used to plot the number of switches versus the simulation execution time

88

for one test vector as shown in Figure 25. The data of this plot are quadratic.

(EQ - 6 - 4) shows the fitting equation extracted from Matlab ofthe quadratic curve.

TSimV1 = 3.1 * 10-4 * X2
- 7.6 * 10-2 * X + 1.3 * 102 (EQ-6-4)

TsimVl: Represents the execution time

X: Represents the number of switches in CUT

Table 34: Timing results extracted from Sim V I simulator based on transient injection at
drain of switch

nT.d nT.d T(nF= 8) SpeedupnF

Benchmarks nF=8 nF=23 Tcycle T(nF= 8) T(nF=23) nV= 1 8 vs 23

C17 1074 3433 0.00205 2.206688525 7.05359563 0.3944918 3.196461825

C432 89226 289969 0.03301 2945 9570.73841 236.58754 3.249826284

C499 399840 1286082 0.08312 33235.24 106900.87 1449.6363 3.216491597

C880 108883 344287 0.06761 7361.11 23275.7591 974.60358 3.161990393

C1908 1148576 3651811 0.1342 154142.04 490083.022 3699.701 3.179424783

C2670 901650 2907137 0.21302 192071.61 619285.182 9659.2858 3.224241114

C3540 2063684 6563123 0.28719 592667.5 1884857.23 17240.535 3.180294561

C5315 1398426 4434321 0.41203 576196 1827081.32 37122.418 3.170937182

C6288 1058249 3414302 0.54873 580689.64 1873519.18 63072.859 3.226369219

C7552 3605618 11456616 0.58 2091258.44 6644837.28 71456 3.17743477

89

: / i

I
i 'I r~t~r-1---i--t--t-+--t-+--+-+I- f--jr--11

f---j····--.+-+---.f.- -

o 5000 10000 15000 20000

nL: Humber of switches

Figure 25: SimVI Simulation time for ISCAS'85 benchmark circuits based on transient
injection at drain of a switch

6.6.3. Timing Results of Sim V 2 Simulator

Table 35 shows the execution time for ISCAS'85 benchmark circuits based on transient

injection at drain of a switch. The different parameters in this table are as follows:

T(RFGate-leve1): Represents the simulation execution time of the resolution function gate-level

T(P Algorithm): Represents the simulation execution time needed apply the algorithm in order to

build the profiling maps ofSimV2 simulator.

90

T(SimV2): The execution time to run SimV2 simulator for all test vectors.

T(SimV2), nV=l: The execution time to runSimV2 simulator for one test vector.

The execution time of T(P Algorithm) is insignificant in comparison to T(RFOate-level) as shown

in Table 35. Figure 26 shows the plot of T(SimV2) versus Npg (i.e. the number of progressive

logic gates). This plot is not a good quadratic approximation due to different reasons. One of the

reasons can be caused by accessing the arrays of the gates as the different processed gates have

different sizes in terms of inputs and this can result in a large amount of data to access creating

an irregularity of used gate types due to the type of CUT. Equation (EQ - 6 5) shows the

fitting equation extracted from Matlab.

TSimV2 = 8.7 * 10-12 * X2 + 2.4 * 10-5 * X + 0.99 (EQ-6-5)

TsimV2: Represents the execution time of Sim V 2

X: Represents Npg

Table 35: Timing results extracted from SimV2 simulator

Benchmarks I T(RFOale.lcveI) I T(P AlgQrithm) I T(Sim V 2) I n V I T(Sim V 2), n V = I

C17 0.1 0.16 0.26 12 0.021666667 27

C432 13.43 1.06 14.49 27 0.536666667 27260

C499 227.8 2.12 229.92 52 4.421538462 191889

C880 36.64 1.47 38.11 16 2.381875 73919

C1908 927.35 3.91 931.26 106 8.785471698 388520

C2670 1721.74 . 4.3 1726.04 44 39.22818182 807084

C3540 4116.64 6.79 4123.43 84 49.08845238 1395284

C5315 3857.41 7.98 3865.39 37 104.47 2664585

C6288 1968.34 7.21 1975.55 12 164.6291667 2922152

C7552 35222.64 lU5 35233.79 73 482.6546575 6175854

91

600
Ii! iiLll I ; I i t L~-< I i I !

i

500

400

300

200

100

o 10 20 30 40 so 60 70 80

Npg+ Circuit: Number of progresive gates + number of gates of CUT

Figure 26: SimV2 Simulation execution time for ISCAS'85 benchmark circuits.

92

6.6.4. Performance Study of the developed Simulators

Table 36 shows the execution time for Sim V I and Sim V 2 simulators based on all the applied

test vectors and for transient injection at drain of a switch. The table shows an average speedup

of 147 ofSimV2 versus SimVI .

Table 37 shows the execution time for SimV. and SimV2 simulators based on one test vector

and for transient injection at drain of a switch. The table shows an average speedup of 320 of

SimV2 versus SimVI.

The speedup of SimV2 versus SimVI seems to reduce when a larger set of test vectors is

used. Even with a large number of test vectors, Sim V 2 achieves a significant speedup in

comparison to Sin V I simulator.

93

Table 36: Perfonnance and speedup ofSimV2 versus SimV\ based on all applied test
vectors and based on transient injection at drain of a switch

Benchmarks T (SimV)) T (SimV2) Speed Up
C17 2.20668853 0.26 8.487263558

C432 2945 14.49 203.2436163

C499 33235.24 229.92 144.5513222

C880 7361.11 38.11 193.1542902

C1908 154142.04 931.26 165.5198763

C2670 192071.61 1726.04 111.2787711

C3540 592667.5 4123.43 143.7316748

C5315 576196 3865.39 149.0654242

C6288 580689.64 1975.55 293.9382147

C7552 2091258.44 35233.79 59.35377488

Average Speed Up 147.232423

94

Table 37: Perfonnance and speedup ofSimV2 versus SimVt based on one test vector
and based on transient injection at drain of a switch

Timing comparison based on one test vector

i Benchmarks T (SimVt) T (SimV2) Speed Up
i

C17 0.3944918 0.021666667 18.2073137

i C432 236.587542 0.536666667 440.8463507
I C499 1449.63632 4.421538462 327.8579009

C880 974.603582 2.381875 409.1749489

C1908 3699.70099 8.785471698 421.1158048

C2670 9659.28585 39.22818182 246.2333302

C3540 17240.5346 49.08845238 351.213651

C5315 37122.4182 104.47 355.3404635

C6288 63072.859 164.6291667 383.1208059

C7552 71456 482.6546575 148.0478825

Average Speed Up 310.115845

95

Chapter 7

Conclusion

The advanced switch-level models used in this work are implemented for soft error detection

and can inject transients of different strength and logic levels at any location type in a

combinational circuit. An algorithm is developed in this work to speed up the simulation

execution time. The experiments conducted on ISCAS'85 benchmarks circuits led to the

following conclusions:

• The soft error coverage based on gate of a switch and Inputs of a logic gate are in the same

range and achieved an average of 0.9. On the other hand and for transient injection at drain of

a switch the average fault coverage is 0.6.

• The developed algorithm based simulator in this work achieved a speedup of 310 for all the

test vectors and 147 for one test pattern versus the developed non-algorithm based simulator

in this work

• The algorithm based simulator is divided into two modules, gate-level resolution function

and the algorithm module. The execution time of the algorithm module is insignificant in

comparison to the gate-level resolution function, thus the bottle-neck of this simulator is the

96

gate-level module. The execution time of the simulator can be improved as the literature is

filled with various optimized gate-level based simulators and the combination of this

algorithm with an optimized gate-level simulator can add a significant speedup to the

simulation.

97

PlTBLICATIONS

1. Kalkat, P.K.; Sedaghat, R.; Chikhe, J.M.; Javaheri, R.; , I1Soft error injection using

advanced switch-level models for combinational logic in nanometer technologies,"

Microelectronics (ICM), 2009 International Conference on , vol., no., pp.332-335, 19-22

Dec. 2009

98

BIBLIOGRAPHY

[1] R. C. Baumann, "Single event effects in advanced CMOS Technology," in Proc. IEEE

Nuclear and Space Radiation Effects Conf. Short Course Text, 2005.

[2] M. P. Baze, S. P. Buchner, "Attenuation of single event induced pulses in CMOS

combinational logic," IEEE Transactions on Nuclear Science, vol. 44, pp. 2217-2223,

December 1997.

[3] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger, Lorenzo

Alvisi, "Modeling the Effect of Technology Trends on the Soft Error Rate of

Combinational Logic", Proceedings of the 2002 International Conference on

Dependable Systems and Networks, p.389-398, June 2002.

[4] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante," Exploiting

Circuit Emulation for Fast Hardness Evaluation", IEEE Transactions on Nuclear

Science, Volume 48, Issue 6, pp. 2210-2216, December 2001.

[5] S. Kundu, M.D.T. Lewis, 1. Polian, B. Becker." A soft error emulation system for logic

circuits," Conference on Design of Circuits and Integrated Systems, page 137,2005.

[6] Kim, S., Iyer, R. K., "Impact of Device Level Faults in a Digital Avionic Processor",

Proc. AIAAlIEEE 8th Digital Avionics Systems Conference (DASC), Oct 17-20, 1988,

pp. 428-436.

[7] V. Degalahal et aI., "SESEE: soft error simulation and estimation engine," Proceedings

of MAPLD International Conference, 2004.

99

[8] J.P. Hayes, "Pseudo-Boolean Logic Circuits," IEEE Transactions on Computers, vol.

35, no. 7, pp. 602-612, July 1986.

[9] Dahlgren P, Liden P, "Efficient Modeling of Switch-Level Networks Containing

Undetennined Logic Node States", Proeedings of IEEEIACM Int. Conf. on CAD, pp.

746-752, November 1993.

[10] Veri log Hardware Descriptor Language Reference Manual (LRM) DRAFT, IEEE-STD

1364, 1995.

[11] Ejlali A, Miremadi SG, "FPGA-based fault injection into switch-level models", Journal

of microprocessors and microsystem, Elsevier Science, 28(5-6): pp.317-27, April

2004.

[12] I.A. Delong, B.W. Johnson, lA. Profeta Iii, A fault injection technique for VHDL

behavioral-level models, IEEE Design and Test of Computers 13 (4) (1996) 24-33.

[13] E. lenn, J. ArIat, M. Rimen, 1 Ohlsson, 1. Karlsson, "Fault injection into VHDL

models: the MEFISIO tool," Proceedings of 24th International Symposium on Fault

Tolerant Computing, 1994, pp. 336-344.

[14] Reza Javaheri, Reza Sedaghat," Dynamic Strength Scaling for Delay Fault Propagation

in Nanometer Technologies", 14th International CSI conference, 2009.

[15] Kalkat, P.K.; Sedaghat, R.; Chikhe, I.M.; lavaheri, R.; , "Soft error injection using

advanced switch-level models for combinational logic in nanometer technologies,"

Microelectronics (ICM), 2009 International Conference on, vol., no., pp.332-335, 19-

22 Dec. 2009

100

[16] http://www.asicnorth.com/images/asicNorth automated analog verification. pdf

Relationship between strength levels and voltage levels for 1.8 supply voltage.

[17] http://www.eecs.umich.edu/~jhayes/iscas/

{SeAS' 85 benchmark circuits.

[18] Hamzaoglu I, Patel J.H, "Test set compaction algorithms for combinational circuits",

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

Volume 19, Issue 8, Page(s):957 - 963, August 2000.

101

