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Abstract

Pre-retrieval Query Performance Prediction (QPP) methods are oblivious to the performance

of the retrieval model as they predict query difficulty prior to observing the set of documents

retrieved for the query. Among pre-retrieval query performance predictors, specificity-based

metrics investigate how corpus, query and corpus-query level statistics can be used to predict

the performance of the query. In this thesis, we explore how neural embeddings can be utilized

to define corpus-independent and semantics-aware specificity metrics. Our metrics are based

on the intuition that a term that is closely surrounded by other terms in the embedding space

is more likely to be specific while a term surrounded by less closely related terms is more

likely to be generic. On this basis, we leverage geometric properties between embedded terms

to define four groups of metrics: (1) neighborhood-based, (2) graph-based, (3) cluster-based

and (4) vector-based metrics. Moreover, we employ learning-to-rank techniques to analyze

the importance of individual specificity metrics. To evaluate the proposed metrics, we have

curated and publicly share a test collection of term specificity measurements defined based on

Wikipedia category hierarchy and DMOZ taxonomy. We report on our extensive experiments

on the effectiveness of our metrics through metric comparison, ablation study and comparison
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against the state-of-the-art baselines. We have shown that our proposed set of pre-retrieval

QPP metrics based on the properties of pre-trained neural embeddings are more effective for

performance prediction compared to the state-of-the-art methods. We report our findings based

on Robust04, ClueWeb09 and Gov2 corpora and their associated TREC topics.
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Chapter 1

Introduction

1.1 Background and Problem Statement

Information Retrieval (IR) is obtaining material relevant to an information need which is repre-

sented by a query within comprehensive collections [1]. In terms of text analytics, information

retrieval can be reworded to the science of searching for relevant text documents in a collection

of documents. In an information retrieval system, documents are usually unstructured, and

queries are formed by simple keywords. An information retrieval system performance is not

consistent across all the queries and all the corpora. A potential reason for explaining the

discrepancy in retrieval systems performance is that several variables are involved in an infor-

mation retrieval system, including the corpus, the query, and the retrieval system [2]. While

a retrieval system can perform well for query A on corpus C1, the same query might have

an extremely poor performance on corpus C2. Further, on corpus C1, query A might have

unsatisfactory performance whereas query B might be very easy to satisfy on the same cor-
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1.1. BACKGROUND AND PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

pus. Therefore, the need to predict information retrieval performance motivated. Predicting

an information retrieval system performance can be beneficial from several aspects, e.g., we

can find the proper retrieval system for a given query, or we can expand the query in order to

represent the information need in a more effectively. Consequently, we can enhance the overall

performance of the information retrieval system.

The problem of predicting an information retrieval system performance for a given query

is called Query Performance Prediction (QPP) [2]. Query performance prediction metrics are

categorized into two groups: (1) Pre-retrieval Query Performance Prediction and (2) Post-

retrieval Query Performance Prediction. The former predicts a retrieval performance for a

given query q, without knowing the retrieved documents while the latter predict the retrieval

performance after the retrieval is conducted by using the query and the retrieved documents.

In general, post-retrieval predictors are more expensive in terms of computation and time com-

plexity. However, they outperform pre-retrieval predictors. The post-retrieval QPP methods

are out of the scope of this thesis, and we only focus on pre-retrieval QPP methods.

According to the intuition behind the pre-retrieval query performance predictors, they can

be classified into (1) Similarity-based (2) Coherency-based (3) term relatedness-based and (4)

Specificity-based methods [3]. Similarity-based pre-retrieval QPP methods are based on the

similarity between the query and the corpus. The higher similarity among a query and a

corpus implies a higher probability for relevant documents existence. Coherency-based pre-

retrieval QPP methods measure the similarity among documents containing the query terms.

Term relatedness-based pre-retrieval QPP methods assess the co-occurrence of query terms in

the collection based on the idea that frequent co-occurrence of query terms can be interpreted

2



CHAPTER 1. INTRODUCTION 1.1. BACKGROUND AND PROBLEM STATEMENT

as the ability of the query to be easily satisfied. The last group of pre-retrieval methods, i.e.,

specificity-based query performance predictors, are the focus of this thesis. Specificity-based

QPP methods have been proposed based on the idea that more specific queries are easier to

answer. Therefore, there is a need to estimate the specificity of query terms.

Estimating term specificity not only is useful to solve the QPP problem but also is one of

the has several applications, especially in the web domain, e.g., personalized recommendation

and user interest modeling on social media. Specificity, often defined as inversely related to

ambiguity, has traditionally been estimated using corpus-specific frequency statistics [4]. For

example, the inverse document frequency (IDF) of a term in a given corpus can be considered

as an indicator of the term specificity [5]. Frequency-based specificity metrics suffer from losing

the semantic aspects of the terms and the dependency among them. On the other hand, neural

embeddings representation of terms, allow us to identify and measure inter-term associations

based on how the vector representations of terms are distributed within the embedding space.

However, corpus-level term frequency information is not explicitly maintained in the vector

representation of terms in neural embeddings. The objective of this thesis is to investigate the

possibility of estimating term specificity by utilizing neural embedding-based representation of

terms. Such specificity metrics can be utilized to predict query performance based on the idea

that the more a query is specific, the higher performance it has.

While existing work in pre-retrieval query performance has been predominantly focused on

defining various statistical measures based on term and corpus-level frequency, the information

retrieval community has embarked on exploring the impact and importance of neural informa-

tion retrieval techniques. More recently, the information retrieval community has embarked

3



1.1. BACKGROUND AND PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

on exploring the impact and importance of neural embeddings in different applications such

as query expansion, query classification, and ranking, just to name a few [6, 7]. By using

pre-trained neural embeddings, unlike existing pre-retrieval QPP methods, our work is not de-

pendent on collection-specific frequency statistics. Therefore, performance prediction can be

computed even for terms that are not frequent in the document collection. For instance, while

predicting the performance of queries containing less frequently observed terms in the document

collection is a major challenge for frequency-based metrics, such terms can be handled using

their relative position to other terms within the embedding space. In this thesis, we explore how

the geometric properties of embeddings can be exploited to define metrics to be used for QPP.

The benefit of this is that while traditional QPP metrics focus on various forms of query term

frequency, the consideration of the associations between term vectors in the neural embedding

space will allow us to derive other forms of query term metrics beyond frequency.

To the best of our knowledge, while there has been recent work that uses neural methods

to train query performance prediction models based on a host of signals [7], there is yet to

be work that explores the characteristics of pre-trained neural embeddings for effective query

performance prediction. Moreover, our proposed QPP metrics in this thesis distinguishes itself

from very recent related work [8], which proposes to cluster neural embeddings for difficulty

prediction, by suggesting an ego-network representation of neural embeddings for performing

QPP. More specifically, we propose to measure term specificity based on the distribution of

terms that are observed around the term of interest in the embedding space. In addition, while

Roy et al. [8] proposed metric, i.e, Pclarity has outstanding performance among post-retrieval

QPP metrics, it shows poor performance among pre-retrieval state-of-the-art baselines.
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CHAPTER 1. INTRODUCTION 1.1. BACKGROUND AND PROBLEM STATEMENT

Our work is driven by the intuition that more specific terms have a higher likelihood of

being surrounded by a higher number of specific terms compared to generic terms. In other

words, given the fact that highly specific terms express precise semantics, they are more likely

to be highly similar to other specific terms (and hence be surrounded by many specific terms)

whereas generic terms tend to have weaker relationships with other terms.

We employ the geometric properties of each term’s neural embeddings to define its degree

of specificity. More concretely, the more a term is surrounded by specific terms, the more

specific it will be. We benefit from term vector associations in the neural embedding space for

formalizing term specificity, which has shown to be correlated with query difficulty [9]. We base

our work on the intuition that a term that has been closely surrounded by other terms in the

embedding space is more likely to be specific while a term with less closely surrounded terms

is more likely to be generic.

Specific terms are expected to have a denser neighborhood in the embedding space because

they tend to have more semantically related terms than generic terms. Given a term t and its

pre-trained embedding vector Vt, ε − neighborhood of Vt consists of terms in the embedding

space that have higher similarity than a specific threshold to t. On this basis, we conceptualize

the space surrounding a term by using an ego network where the term of interest forms the

ego and is contextualized within a set of alter nodes, which are other terms that are closely

positioned around it in the embedding space. In the context of this ego network, we apply

various measures of node connectedness on the ego node to determine the specificity of the

term that is being represented by the ego, which would then indicate query difficulty.

We define four groups of unsupervised specificity metrics based on their characteristics

5



1.1. BACKGROUND AND PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

including (1) Neighborhood-based metrics, (2) Graph-based metrics, (3) Cluster-based metrics

and (4)Vector-based metrics. Neighborhood-based metrics only utilize the ε-neighborhood, and

they are based on the relationship among the neighbors to the ego term t. At the same time,

graph-based metrics consider the relationship among the neighbors to the ego term and rela-

tionship among the neighbors simultaneously. The other group of our proposed metrics, i.e.,

cluster-based metrics are founded on the number of potential clusters in the ε-neighborhood.

Finally, vector-based metrics analyze the characteristic of an embedding vector alone and dis-

regard other vectors in the embedding space. In total, we propose 25 different unsupervised

specificity metrics. Besides the four groups of unsupervised specificity metrics, we proposed

an unsupervised specificity metrics by applying learning to rank, which is fed by all the 25

proposed metrics as input features.

Before evaluating our proposed specificity metrics for the QPP task, we directly assessed

specificity metrics, neglecting the application. We introduce and publicly share two test collec-

tions, which are structured collections of terms with associated human-defined specificity values.

The test collections have been derived from the Wikipedia category hierarchy and DMOZ tax-

onomy with the understanding that categories higher up in the hierarchy are more generic, while

those further down in the hierarchy are more specific. Specifically, we have extracted sequences

of categories from the Wikipedia’s category hierarchy, where each sequence consists of semanti-

cally related categories with a progressively higher degree of specificity, reflecting the change in

specificity from the higher towards the lower levels in the hierarchy. These sequences are used

to measure the performance of the proposed neural embedding-based specificity metrics.

We examine the robustness of our proposed metrics to the gold standard hierarchy and
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the pre-trained embedding by conducting an experiment on two different test collections and

three different pre-trained embeddings. Our metrics show almost consistent performance among

different varieties of the experiments. This fact implies that our proposed metrics are robust

to the pre-trained embeddings. In other words, the characteristics of the corpus that the

embeddings were trained on, and also the word embeddings training methodology, do not affect

our proposed metrics.

In order to evaluate the final goal of this thesis, which is proposing novel QPP metrics,

we have performed experiments based on three widely used TREC corpora, namely Robust04,

ClueWeb09 and Gov2, and their corresponding topic sets [10, 11, 12]. Compared to existing

pre-retrieval query performance prediction metrics, our experiments show that the proposed

neural embedding-based specificity metrics are effective in predicting query performance when

using pre-trained neural embeddings.

1.2 Contributions

This thesis makes the following contributions:

1. We formally introduce the task of predicting corpus-independent term specificity based

on a collection of embeddings.

2. We propose a host of specificity metrics based on supervised and unsupervised methods for

predicting specificity based on neural embedding. We show that these specificity metrics

have outstanding performance in pre-retrieval QPP task.

3. We present two test collections consisting of term specificity measurements defined in

7



1.3. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

relation to Wikipedia and DMOZ categories. These collections are made publicly available

for replication studies.

1.3 Structure of the thesis

This thesis is structured as follow:

• Chapter 2 - Related Work: In this chapter, we elaborate more on the importance of QPP

problem, and we review the related works in this domain. We explain state-of-the-art

pre-retrieval methods in detail and especially specificity-based ones. We also cover details

about the pre-trained neural embedding that we have used in this thesis.

• Chapter 3 - The Proposed Approach: This chapter describes the proposed approaches

for the problem of proposing novel pre-retrieval query performance predictor using neural

embeddings. We have introduced several specificity metrics in four different categories

that have the potential to estimate term specificity. They can be used in order to predict

query performance in an information retrieval system.

• Chapter 4 - Experiments and Evaluation: This chapter focuses on the evaluations per-

formed on the proposed approaches. We have evaluated our proposed specificity metrics

directly and indirectly via QPP application. We have reported the results of our pre-

retrieval QPP metrics on TREC collections, including Robust04, ClueWeb09, and GOV2

topics.

• Chapter 5 - Conclusion: In this chapter, we summarize the proposed approaches and

discuss potential future work.
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Chapter 2

Related Work

In this chapter, we investigate the crucial role of query performance prediction and review the

most prestigious works in this area. Query performance can be predicted before the retrieval

happens known as pre-retrieval query performance prediction or after the retrieval happens

known as post-retrieval query performance prediction. The ultimate goal of this thesis is to

propose a novel pre-retrieval query performance prediction which unlike other existing works,

not only it is not based on the frequency of terms in the corpus, but also it can utilize the

semantic aspects of terms. In order to preserve the semantic aspects of terms while solving

query performance prediction problem, based on term specificity, we used pre-trained word

embeddings.

In this chapter, first, to have a deeper understanding of specificity, we cover diverse def-

initions of specificity that were derived from different perspectives, including linguistic and

computational views. We also take a look at specificity from the biomedical aspect since the

ability of the human brain to distinguish specific and generic terms draw researchers’ atten-

9
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tion in recent years. Next, we discuss how specificity metrics have been evaluated directly, as

we want to propose a specificity metric. Further, we emphasize the applications of specificity,

especially in web applications such as user interest modeling. Finally, we cover the literature

using neural embeddings in the context of specificity and its applications.

2.1 Query Performance Prediction

In this section, we explore the query performance prediction problem in information retrieval.

First, we define the query performance problem and describe the predicted performance evalu-

ation method. In the performance evaluation process, we set which queries are defined as hard

queries and which are easy queries. Moreover, we investigate how predicting query performance

could be beneficial, and we explain why this problem is essential to solve. Later, we categorize

different methods for QPP. Finally, as the focus of this thesis is only on the pre-retrieval query

performance, we will explain almost all the different pre-retrieval methods in the literature.

Information retrieval (IR) is finding content (in our case documents) of an unstructured

nature (in our case text) that satisfies an information need which is represented by a query

within extensive collections known as corpora. Information retrieval systems always suffer

from performance discrepancy. No information retrieval system exists whose performance is

homogeneous for all the queries among all the corpora. There are several reasons to explain

this issue in the context of text mining;

1. Query term ambiguity: A query term ambiguity sometimes may cause failure in retrieving

the desired information need. In simple words, one may look for the query “subway”
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without any context. A search engine cannot identify whether the desired information

need is subway the restaurant or subway the transportation.

2. Query and document language inconsistency: Another possible reason for information

retrieval systems performance discrepancy could be the inconsistencies between the query

and the document languages.

3. Lack of relevant document: If there is no relevant document to the content of the query,

the system performance might be fairly poor.

2.1.1 Problem Definition

Different performance of retrieval systems for different queries and corpora leads to the definition

of a problem known as Query Performance Prediction (QPP) or Query Difficulty Estimation

(QDE). QPP is defined as follows:

Definition 1. Query Performance Prediction Problem Predicting the quality of retrieved

documents Dq in satisfying the information needs Iq behind the query q, the information needs

behind q. Given a collection D, a list of retrieved documents Dq and a query q, predictor µ has

to estimate ÂP (q), i.e., the average precision of query q is as follows:

ÂP (q)← µ(q,Dq, D) (2.1)

After estimating the quality of the retrieved document, the question of ”How good is this

predicted quality?” may arise. Eq. 2.2 shows how the quality of the prediction with the correla-
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tion between the actual precision and the predicted values can be measured.

Quality(µ) = correlation([AP (q1...AP (qn)], [ÂP (q1)...ÂP (qn)]) (2.2)

This correlation can be either a linear correlation or a ranked correlation. In this study, we

leverage Pearson correlation and Kendall’s Tau correlation [13].

A successful prediction of the query performance can lead to the effective selection of the

most suitable retrieval method and consequently to improve the systems’ effectiveness.

2.1.2 Hard Queries vs Easy Queries

Queries which have low performance, i.e., their average precision score is less than a threshold,

are called as difficult queries. On the other hand, easy queries are the ones which are easy to

satisfy. Deciding whether a query is a difficult one for a retrieval system is not an easy task

even for a human expert. Because a retrieval system performance depends on several attributes

such as the collection, query, and documents' features such as length and structure.

2.1.3 Advantages of QPP

Query Difficulty estimation can be beneficial from the following perspectives:

• Feedback to users: The user can rephrase the query.

• Feedback to a search engines: The search engine can use different strategies for a different

query. Further, it can help parameter tuning when there is no training data.

• Feedback to system administrator : When there is no relevant documents for the query,
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especially in commercial search engines, the need to expand the collection for difficult

queries is sensed.

• Information retrieval applications: It can help to merge result of a query over different

data sets.

2.1.4 Categorization of QPP

There is already a well-established body of work in the literature that explores query per-

formance prediction through either a post-retrieval or a pre-retrieval strategy (1) Pre-retrieval

query performance prediction methods and (2) Post-retrieval query performance prediction meth-

ods. The former methods can be applied before the search is conducted; therefore, they are

less expensive compared to the latter one. On the other hand, post-retrieval methods have a

better performance compared to pre-retrieval methods; however, they have a heavy process,

and they need more input data [2]. Methods in the post-retrieval strategy are focused on mea-

suring retrieval success and hence query difficulty, by analyzing the result set obtained from the

retrieval system as a response to the query. In contrast, pre-retrieval methods are interested

in the linguistic and statistical features of the query and document spaces. Our work in this

thesis falls within the scope of the latter.

2.1.5 Post-retrieval QPP Methods

While Post-retrieval methods analyze the query terms, corpus statistics, and the search result in

order to predict the performance of the query in a retrieval process, pre-retrieval methods only

utilize query terms. This can explain why pre-retrieval QPP methods are not time consuming,
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and they are computationally cheaper, but it should be noted that they have lower performance

compared to post-retrieval methods. Post-retrieval methods depend on a retrieval process; for

the same query, a different result may happen for different retrieval methods. Using only pre-

retrieval methods may lead to misjudging a query as an easy one. Post-retrieval methods are

categorized into clarity-based, robustness-based and score distribution-based[2]. Among all the

post-retrieval methods, the WIG predictor [14] and the NQC predictor [15] from the score

distribution-based category have shown outstanding performance. In this thesis, we focus on

pre-retrieval QPP methods, and the post-retrieval methods are out of the scope of this thesis.

2.1.6 Pre-retrieval QPP Methods

The two principal pre-retrieval prediction methods are linguistic and statistical predictors.

While linguistic predictors use natural language processing methods to analyze the queries

such as the number of morphs per query or the average number of synonyms per query, they

did not offer an acceptable performance in predicting the retrieval system performance. On the

other hand, statistical approaches which are based on the distribution of query terms in the

corpus, perform in a superior way. The only accessible data as an input of a pre-retrieval QPP

method is the query terms and its pre-computed statistics in the corpus. While it may seem

that query length could be effective in predicting the retrieval performance in a sense that the

longer the queries are the easier they are, however, He et al. [9] have shown that there is almost

no correlation between the unique number of query terms and the retrieval performance due to

the noise drawback of long queries.

Statistical pre-retrieval query performance can be predicted based on a variety of term
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features such as specificity, similarity, coherency, or term relatedness. We cover the first one

in Section 2.2 and the others in the rest of this section. Among all, specificity based query

performance prediction stands out; accordingly, we try to employ word embeddings in order to

come up with a novel metric to estimate the terms’ specificity to predict query performance.

Similarity-based pre-retrieval QPP methods

Similarity-based pre-retrieval QPP metrics measure the quality of retrieved documents based on

the similarity between the query and the corpus. If a query and a corpus are highly similar, then

most probably multiple documents exist in the corpus that corresponds to the query. In order

to determine the similarity score, the collection query similarity known as SCQ of each query

term is calculated by measuring the similarity between the query and collection as presented

in Eq 2.3 [16].

SCQ(t) = (1 + log(tf(t,D))).idf(t) (2.3)

where IDF of a query term t is defined as:

idf(t) = log(
N

Nt
) (2.4)

In Equation 2.4 N refers to the number of documents in the collection and Nt is the number

of documents which contain the query term t. Further, tf(t,D) refers to term frequency of term

t in the collection D.

Three variations of SCQ exist, namely, SumSCQ, MaxSCQ, and AvgSCQ. Here, sumSCQ

measures the sum of all the SCQ values for all the query terms, maxSCQ determines the
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maximum collection query similarity over all the query terms, and avgSCQ determines the

average over all the query terms as are given in Equation 2.5, 2.6 ,and 2.7 respectively.

sumSCQ(q) =
∑
t∈q

SCQ(t) (2.5)

maxSCQ(q) = maxt∈qSCQ(t) (2.6)

avgSCQ(q) =
1

|q|
∑
t∈q

SCQ(t) (2.7)

In general, SCQ metrics show competitive performance among pre-retrieval query perfor-

mance prediction methods over the TREC benchmarks [16].

Coherency-based pre-retrieval QPP methods

Coherency-based group of pre-retrieval metrics calculate the inter-similarity of documents Dt,

which contain the query terms. They are computationally expensive and time demanding due

to heavy analysis during index time. Coherency score of term t is calculated by the equation

2.8. [5].

CS(t) =

∑
(di,dj)∈Dt

sim(di, dj)

|Dt|(|Dt|−1)
(2.8)

where sim(di, dj) is the cosine similarity between the vector-space representation of the docu-

ments.
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In simple terms, CS calculates similarity among all the document pairs containing query

term t. Although this computation can be done at index time, a large amount of computation

is required to develop a point-wise similarity matrix for all the pairs of indexed documents.

Zhang et al.[16] reduce the computational load of this metric by proposing VAR(t) in order

to calculate the variance of term weights over Dt in the collection. Term weights could be

calculated in several ways such as tf-idf based methods as presented in equation 2.9 where |d|

is the number of terms in a document.

w(t, d) =
log(1 + tf(t, d)).idf(t)

|d|
(2.9)

VAR(t) is proposed based on the idea that if term weights over the documents are close

to each other, it is hard to differentiate among the documents. Whereas high variance among

term weights in Dt means distinguishing relevant and non-relevant documents is much easier

since their term weights are different from each other.

Term relatedness-based pre-retrieval QPP methods

Term relatedness predictors evaluate the co-occurrence of query terms in the collection. When

the query terms co-occur frequently, it indicates that the query is less difficult to answer. The

most common predictor for term relatedness is the Point-wise Mutual Information known as

PMI predictor. It is used to determine the co-occurrence statistics of two terms in the collection,

and is calculated by Eq 2.10 where Pr(t1, t2|D) denotes the probability of two terms co-occurring
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in the collection.

PMI(t1, t2) = log
Pr(t1, t2|D)

Pr(t1|D)Pr(t2|D)
(2.10)

The avgPMI(q) and maxPMI(q) calculate the average and maximum PMI for all pairs of

query terms. Queries that are best evaluated through retrieval methods which have taken into

account term, proximity will have higher average PMI values. It should be mentioned that PMI

does not work when the query consists of only one term.

Term specificity-based pre-retrieval QPP methods

One of the state-of-the-art statistical pre-retrieval query performance prediction methods relies

on the specificity of the query. Specificity is determined through the distribution of the query

terms over the corpus; the more specific the terms are in the query, the easier it will be to

answer. The focus of this thesis is on this category of pre-retrieval query performance prediction

methods. Therefore, we will elaborate more on the concept of specificity. Since our goal is

basically to introduce a new specificity estimator, we explain more details about specificity

metrics in section 2.2

2.2 Specificity and QPP

In this section, we cover specificity and its recent applications in Sections 2.2.1 and 2.2.4,

respectively. Moreover, we have conducted a study on other available evaluation methods on

specificity in Section 2.2.3. In the end, we present all specificity-based pre-retrieval query
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performance prediction metrics in Section 2.2.2. Recently, Kangassalo et al. [17] utilized

ElectroEncephaloGraphy (EEG) to explore the correlation between the specificity of terms and

human brain activities. They tried to investigate why humans are able to select specific terms

when they want to form their query with respect to their information need. Kangassalo et

al. [17] monitored 15 different people’s brain activities while they were reading specific and

non-specific terms that are chosen randomly from Wikipedia. Their experiments in [17] showed

that term specificity has a neural basis since the evoked brain activity is significantly different

while reading specific or non-specific terms.

2.2.1 The Definition of Specificity

Over the last 100 years, many researchers have attempted to define specificity from a variety

of aspects. While most of the studies determined a concept's specificity based on their related

application, a few of the works focused on linguistic aspects. In 1958, Brown [18] defined the

specificity or abstractness of a word or a concept by the number of known subordinate words

it embraces. Later, Zhang [19] focused on defining the opposite concept, which is generality.

Based on his work, a concept is general or unspecified if it does not specify certain details.

Zhang exemplified friend as a general concept since details of what exactly constitutes a friend

is not known. He also distinguished between the vagueness, generality, fuzziness, and ambiguity

from a linguistic perspective, which are out of the scope of this thesis. We can consider all of

those definitions as different generality measures because an expression that has more than one

semantically unrelated meaning can also be counted as an unspecific one. Likewise, Allen et al.

[20] described a document to be general when it addresses general things or concepts. Moreover,
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in [4] specificity is interpreted as the level of detail in which a given term is represented. In this

thesis, we agree to accept this definition since it matches our application. We interpret speci-

ficity as a statistical measure rather than a semantic property of terms, i.e., a term specificity

is highly related to the number of documents to which it pertains in a collection. Orlandi et.al

[21] defined an entities' specificity as the level of abstraction that an entity has in a common

conceptual schema shared withf humans.

2.2.2 Specificity Metrics

There are multiple predictors to measure specificity; They include the Query Scope predictor

(QS), predictors based on query term statistics, and the Simplified Clarity score (SCS(q)) [9].

Query Scope (QS). The Query Scope predictor determines the percentage of documents

in the collection that include at least one of the query terms. A higher query scope signifies that

there are multiple documents pertaining to the query, however it may be difficult to distinguish

between the relevant and non-relevant results.

Term Statistics (IDF and ICTF). Term statistics is believed to be an intrinsic feature

that reflects retrieval performance. Query terms metrics such as Inverse Document Frequency

(IDF) and Inverse Collection Term Frequency (ICTF) [22] are used to show the correlation to

the system performance. The higher the average value of these metrics over the query terms,

the easier it will be to satisfy the query. By higher average we mean the query is composed of

infrequent terms.

ICTF, the other query term measure, is measured by equation 2.11 where the total number
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of all terms in the collection D is represented by |D| .

ictf(t) = log(
|D|

tf(t.D)
) (2.11)

Simplified Clarity Score (SCS). The simplified clarity score determines the divergence

between the simplified query language model and the collection language model. The calculation

of SCS is given in equation 2.12 for query qwith the length of |q| when considering a query with

each term appearing once in its entirety.

SCS(q) = log(
1

|q|
) + avgICTF (q) (2.12)

Thus the SCS predictor considers the length of the query while determining the SCS score.

All of the mentioned pre-retrieval methods are based on specificity, and they showed promis-

ing performance over several TREC collections of documents including robust04, ClueWeb09,

ClueWeb12 and GOV2 [2]. We have compared some of the mentioned frequency-based speci-

ficity metrics as baselines in our work in Section 4.2.

2.2.3 Evaluation of Specificity

Specificity can be subjective and biased by personal experiences [21]. Therefore, we can not have

an exact value for specificity, and there is always an estimation measure of specificity, which is

accompanied by a certain percentage of error. Consequently, no absolute ground truth exists for

evaluating specificity. However, hierarchies have been used as one of the decent gold standards

in order to evaluate different levels of concepts specificity in both linguistic [23] and other
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applications [24, 21] because the level of each concept in a hierarchy can be a suitable indicator

of the concepts specificity. We will elaborate more on this intuition in Chapter 3. For example,

Benz et al. [24] studied different levels of generality by identifying the hierarchical relationships

between concepts. They leveraged several taxonomies and ontologies such as WordNet [25],

Yago [26], DMOZ [27], and WikiTaxonomy [28] as the ground truth level of specificity. They

aimed at using terms specificity to measure tag relatedness in social metadata and generality

of terms using their four proposed categories of metrics, including frequency-based measures,

entropy-based measures, centrality measures, and statistical subsumption. In addition, Orlandi

et al. [21] utilized DMOZ taxonomy as one of the baselines to assess their proposed method

of specificity estimation. Based on the same idea, we utilize the level of concepts in Wikipedia

Category Hierarchy [29] and DMOZ as the ground truth value for concepts specificity.

While hierarchies always show a fair agreement with human judgments [21, 24], some works

still prefer to employ human judgment as of the gold standard [21]. One of the common ways of

making the gold standard for evaluating specificity metrics is to set the ground truth as human

perception and ask different people to rate different concepts as a numeric value for example

from 1 (the most specific one) to 10 (the most generic one) or to classify the concepts into

specific and generic classes. However, generating the gold standard like this can be inefficient,

expensive, and impractical in some cases.

2.2.4 Applications of Specificity

Term specificity can be used in several applications, especially on the web, including user interest

modeling, social media personalization, query performance prediction, among others. Orlandi
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et al. [21] utilized specificity in order to recommend more relevant entities to users on the

social web. They claimed that while their proposed specificity methods can be calculated and

updated in real-time, it is also knowledge and domain independent. Benz et al. [24] employed a

Linked Data graph and analyzed the predicated connecting entities the graph. They considered

the relation between incoming and outgoing predicates as a gauge for specificity.

2.3 Neural Embeddings

The goal of this thesis is to propose a set of specificity metrics that preserve the semantic

aspect of the terms in order to enhance the quality of the query performance prediction task.

These are sufficient reasons to exploit embeddings in our proposed approach. In this section,

we elaborate on the pre-trained embeddings that are used in this thesis, including Hierarchy

Category Embedding (HCE) [29], FastText Pre-trained embedding [30], and Word2Vec [31].

Neural embeddings maintain interesting geometric properties between embedded terms [32]

where the direction and magnitude of the relationship between the vector representation of

terms derived from embeddings are meaningful. Such geometric relations are manifested by

how term vectors are distributed in the embedding space. It is demonstrated that semantic

relationships are commonly preserved in vector operations on word vectors [31]. For example,

applying these operations on the vector representation of terms Berlin, Germany, and France

will result in a vector very close to Paris’ vector as in equation 2.13.

[
−−−−→
Berlin]− [

−−−−−−→
Germany] + [

−−−−−→
France] ≈ [

−−−→
Paris] (2.13)
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This suggests that relations among embedded word vectors are almost semantically meaningful

[33].

A document can be represented in many different ways according to the applications. Among

all the document representations, word embedding is one of the most prevalent ones. Word

embeddings are valuable because this vector-based distributed representation of words can

conserve the semantic side of words in its representation unlike the vocabulary indexing of a

document. Also, word embedding distinguishes itself from other document representations by

its ability to preserve the dependencies among the words.

2.3.1 Neural Embeddings in Information Retrieval

The geometric relations among neural embeddings which leads to semantic of words vectors,

can also describe a fair correlation with term specificity . The concentration of this thesis is

to utilize the correlation among term specificity and embedded words in order to predict query

performance prediction.

Neural methods have been used in retrieval for purposes such as query expansion, query

classification, ranking, and text classification [6]. It has been empirically shown that while

neural embedding-based methods cannot solely outperform existing retrieval methods, their

systematic interpolation can lead to improved retrieval performance specifically on hard queries

[34].

Whereas some recent work proposed training query performance prediction models using

neural methods on a host of signals [7]. To the best of our knowledge, there is only one recent

work that utilizes the neural embedding-based representation of query terms for performing
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query performance prediction [8]. Their approach works the best for post-retrieval QPP, and

as it is shown in Chapter 4, however, it does not perform well in the pre-retrieval QPP task. We

define various specificity metrics based on pre-trained neural embeddings and systematically

explore their effectiveness on query performance prediction.

2.3.2 Pre-trained Embeddings

In order to compute word vectors, a larger text corpus is needed. Depending on the corpus, the

word vectors will capture different information. Every sequence of terms in the one-hot vector

representation will be fed in a neural network as input and the output of them will be the next

following term. The main idea behind it is that you train a model on the context of each word,

so similar words will have similar numerical representations. The architecture of the network

(hidden layers and softmax) is out of scope of this thesis since we are working with pre-trained

word embeddings.

In this thesis, we have used three different pre-trained embeddings in order to compare our

proposed metrics on them and also to investigate the robustness of our method to different

embeddings. In the following, we will explain all the pre-trained embeddings that we have used

in this study, including Hierarchy Category Embedding (HCE) [29], Fast Text embeddings [35],

and Word2Vec embeddings [36, 37].

Pre-trained Hierarchy Category Embedding (HCE)

The data set, which is collected from Wikipedia in 2015, has been used as training data for the

model in [29]. The advantage of this model compared to other available pre-trained embedding is
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that while other pre-trained embeddings are trained on the unstructured data, they incorporate

the hierarchical relationship between Wikipedia entities and categories in order to train their

400-dimension embedding model. The authors kindly provided their pre-trained embedding

vectors to us.

FastText Pre-trained Word Embedding

In [35], the authors represent words as a bag of n-gram characters in a large unlabeled corpus to

train vector representation of terms. While other pre-trained embedding models suffer from lack

of word representation for unknown words in the training data, fastText is the first model which

can compute word representation for words that did not appear in the training data. Facebook

has made 300-dimension word embedding pre-trained models available for 294 languages. Fast

text has different versions that been trained on either Wikipedia or Common Crawl [30]. In

this work, we used the 1 million word vectors trained on the Wikipedia 2017 dump 1.

Google News Pre-trained Word Embedding

This Pre-trained embedding, also known as Word2Vec[36, 37], has been trained on Google

News corpus which consists of roughly 100 billion words. More than 3 million words have been

embedded into vectors with the size of 300.

1https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip
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2.4 Summary

In this chapter, we reviewed the state-of-the-art works to predict query performance prediction

without having access to the retrieval result. Also, we over-viewed specificity term definitions

and its application in the web domain. Besides, we elaborated on word embeddings and its

applications in information retrieval. Further, we explained all the three pre-trained embeddings

that we utilized in the implementation step of this thesis.

In the following chapters, we are going to propose new specificity metrics based on the

geometric properties of neural embeddings. Later on, we are going to evaluate the proposed

specificity metrics for ebility to support the query performance prediction task.
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Chapter 3

Proposed Approach

It is now well understood that the performance of retrieval models is not always consistent across

different queries and corpora and there are often some queries that have lower performance, often

referred to as hard or difficult queries [38]. As such, the area of query performance prediction

(also known as, difficulty estimation) is concerned with estimating the performance of a retrieval

system for a given query. This is specifically useful because it will allow the adoption of alternate

retrieval strategies when such hard queries are identified. As previously stated in Section 2.1,

query performance can be predicted based on different attributes of queries. In this thesis, our

focus is on specificity-based pre-retrieval query performance prediction methods.

The objective of our work in this thesis is to investigate the possibility of estimating term

specificity by utilizing neural embedding-based representation of terms. We explore how the

geometric properties of neural embeddings can be exploited to define individual and collective

specificity metrics. This suggests that by considering the associations between term vectors

in the neural embedding space, we can go beyond frequency-based metrics and derive other
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measures of specificity which are not corpus dependent. More specifically, we propose to measure

term specificity based on the distribution of terms that form the neighborhood of a term of

interest in the embedding space. Our metrics are based on the intuition that a term that is

closely surrounded by other terms in the embedding space is more likely to be specific while a

term with less nearby terms is more likely to be generic. In the context of our intuition, we define

four groups of specificity metrics based on their characteristics including (1) Neighborhood-based

metrics, (2) Graph-based metrics, (3) Cluster-based metrics and (4)Vector-based metrics.

We propose and gather several metrics in each of the four class of specificity metrics. The

following contains the description of each of the proposed metrics with respect to the idea behind

them. In total, we have inspected 25 different metrics that we will assess and compare them

in Chapter 4. In addition, we will evaluate them based on their performance in pre-retrieval

query performance prediction on TREC collections [11, 10, 12, 39].

3.1 Preliminaries

This thesis focuses on how vector representations of terms within a given embedding space,

i.e., geometric properties of neural embeddings, could be used to define appropriate metrics for

estimating term specificity. Our intuition is that the local neighborhood of a term in a given

embedding space can be used to derive indicators of the terms specificity. Based on the fact

that, in an embedding space, two semantically related terms have similar embedding vectors (as

measured, e.g., by cosine similarity of their vectors). In order to organize the similarities among

embedding vectors, we define a local neighborhood for an embedding called ε-Neighborhood in

section 3.1.1 and a more complex neighborhood known as ego network in section 3.1.2.
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3.1.1 ε-Neighborhood

We select the local neighborhood surrounding an embedding vector of term ti, by retrieving

a set of highly similar terms to ti. Formally, let µ(ti) be the degree of similarity of the most

similar term to ti in the embedding space. We select the ε-Neighborhood of ti, denoted as

Nε(ti), as follows:

Nε(ti) = {tj :
υti .υtj
‖υti‖‖υtj‖

> ε× µ(ti)} (3.1)

Simply put, we first calculate the cosine similarity between the embedding vector of ti and

other terms embedding vectors in the embedding space and then the terms with a similarity

higher than ε× µ(ti), are selected as the ε-Neighborhood of term ti.

3.1.2 Ego Network

In order to examine the inter-term associations in the neighborhood of ti, we conceptualize the

embedding space surrounding a term by defining an ego network where the term of interest

forms the ego and is contextualized within a set of alter nodes, which are other terms that are

closely positioned around the term of interest in the embedding space. We formalize the notion

of an ego network, which is based on term similarities within the neural embedding space, as

follows:

Definition 2. (Ego Network) An ego network for term ti, denoted as ξ(ti) = (V,E, g), is a

weighted undirected graph where V = {ti} ∪Nε(ti), and E = {eti,tj : ∀ti, tj ∈ V}. The function

g : E→ [0, 1] is the cosine similarity between the embedding vectors of two incident terms of an
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edge eti,tj , i.e., vti and vtj . We refine ξ(ti) by pruning any edge with a weight below ε× µ(ti).

In the above definition, we propose to build an ego network for term ti such that ti is the

ego node and is connected directly to other terms only if the degree of similarity between the

ego and its neighbors is above a given threshold. For instance, assuming ‘Pizza Hut’ is the

ego and ε = 0.9, given the fact that ‘Subway (restaurant)’ is the most similar term to the ego

with a similarity of 0.82, the immediate neighbors of the ego node will consist of all the terms

in the embedding space that have a similarity above 0.738 to ‘Pizza Hut’. Figure 3.3 shows

the ego networks for the specific term ‘Pizza Hut’ and the generic term ‘Food and Drink’. As

shown in the figure, for example, the immediate neighbors of Pizza Hut include terms such as

‘Subway (restaurant)’, ‘KFC’, ‘7-Eleven’, ‘Krispy Kreme’, among others. In this ego network,

the neighbors are also connected to each other if their similarity is more than 0.738, which is

ε× µ(ti).

3.2 Specificity Metrics

Based on the developed ε-neighborhood and the ego network for a given term ti, we propose

to measure the specificity of the ego term. More concretely, based on our intuition that the

characteristics of the local neighborhood of a term are potential indicators of its specificity,

we measure term specificity as a function of the structure of the terms ego network. In the

following, first we propose four categories of unsupervised specificity metrics, including:

1. Neighborhood based, which are based on the idea that a specific term is likely to be

associated with a large number of specific terms in its neighborhood.
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2. Graph-based metrics, which consider the structure of the ego network to estimate the

specificity of the ego node.

3. Cluster-based metrics, which consider the term clusters around a term as potential indi-

cators for the specificity of the term.

4. Vector-based metrics, which consider the term embedding vector’s characteristics as of a

specificity measure.

We propose a supervised method that incorporates all these metrics, as features, in a learning

to rank model for estimating the specificity of a term based on neural embeddings.

3.2.1 Neighborhood-based

Neighborhood-based metrics only consider the connections between the ego node and its imme-

diate neighbors. Our intuition is that as highly specific terms express precise semantics, they

have a high likelihood of being surrounded, in the embedding space, by a higher number of

specific terms compared to generic terms. For example, as in shown in Figure 3.1 the specific

term ‘Pizza Hut’ which refers to a fast-food brand is highly similar to other terms referring to

other fast-food chains such as ‘KFC’ and ‘Burger King’. However, since a generic term, e.g.,

‘Food and Drink’, is often related to many different terms with diverse senses, it would end

up having weaker relationships with these diverse neighbors. In other words, generic terms

are likely to be related to other generic terms that originate from various domains, and while

the relation (i.e., semantic relatedness) between terms does exist, it is notably weaker than

in the case of specific terms that are highly semantically related to one another. Therefore,
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Figure 3.1: ε-neighborhood for: a) Food and Drink, b) Pizza Hut

by computing and considering the strength of the connection (edge weight) of a term with its

immediate neighbors, it is possible to differentiate between specific and generic terms. Based

on this idea, we define seven ego-node based metrics summarized in Table 3.1.

Neighborhood Size (NS). This metric measures specificity based on the idea that given

a constant similarity threshold, specific terms are surrounded by more similar terms compare

to generic terms. We support this notion by comparing the neighborhood of a generic concept

‘Food and Drink’, and a specific one ‘Pizza Hut’ in Figure 3.1.

Assuming ε is 0.9, Neighborhood Size of the generic concept “Food and Drink” is 5 while

there are 8 neighbors in the ‘Pizza Hut’ neighborhood. In general, we can conclude that the

size of the ε-neighborhood of term ti relates directly to the specificity of ti.

Weighted Degree Centrality (WDC). In network theory, the centrality of a node in a

33



3.2. SPECIFICITY METRICS CHAPTER 3. PROPOSED APPROACH

network is usually a hint to the importance of the vertex [40]. Having said that, centrality can

be mulled over as a degree of abstractness since more unique terms are more potent. Degree

centrality is the simplest of the node centralities, which is measured only by using the local

structure around nodes. In a weighted network, degree centrality has generally been extended to

the sum of weights. If we look at the ε-neighborhood as a network, calculating Weighted Degree

Centrality (WDC) of node ti in this network can lead to proper measurement of ti specificity.

For instance in Figure 3.1, the WDC of the specific term “Pizza Hut” is 6.19 whereas the ‘Food

and Drink’ weighted degree centrality in its ε-neighborhood is equal to 3.46. Hence, higher

WDC can be interpreted as higher specificity.

Median Absolute Deviation (MAD). Median Absolute Deviation (MAD) represents

how spread out a set of data is. MAD is more robust to outliers compared to other measures

of spread such as variance. We prefer to utilize median absolute deviation instead of mean

absolute deviation since median is more robust to outliers compared to mean. Eventually

MAD it calculates how far each data point is from its median.

Since our work is based on the intuition that specific concepts have more similar neighbors

compared to a generic one, we can present a hypothesis that the similarity in a neighborhood

of a more specific concept should be less dispersed than a generic one. Therefore, it should

have less MAD value. It might be a misunderstanding that MAD value in Figure 3.1 is higher

for the more specific concept of Pizza Hut but it should be mentioned that in Figure 3.1, ε has

been chosen at a very high-value rate; subsequently the number of neighbors are not too high.

However, if we optimize the hyper-parameter i.e., ε, there would be an appropriate number of

neighbors in the ε-neighborhood to make a proper judgment of the MAD metric for measuring
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specificity.

Neighborhood Variance (NV). The variance of similarity of neighbors of term t, to term

t could be an indicator of specificity. This is true if we assume that the dispersion of neighbors

in a neighborhood is a gauge for specificity. Consider the two neighborhood in Figure 3.1, the

variance in the neighborhood of the more generic term is 0.0012, while the variance for the

other specific term is 0.0007. This can be justified by the intuition that although the number

of neighbors in the more specific neighborhood is higher, the neighbors of the specific concept

are more similar to each other. Consequently, the variance of their similarity should be less.

Most Similar Neighbor (MSN). As stated before, the similarity in a neighborhood of

term ti is correlated with its abstractness. This can also be inferred that if we consider the

most similar neighbor Mti to term ti, the similarity between Mti and ti is highly related to how

specific ti is. This fact also is authenticated in Figure 3.1 as the most similar neighbor to ‘Pizza

Hut’ is ‘subway (restaurant)’ with similarity of 0.82 but the most similar neighbor to ‘Food and

Drink’ which is more general concept is “cuisine” with similarity of 0.74 . In general, we can

state that general concepts have lower MSN compared to specific concepts.

Neighborhood Vector Similarity (NVS). A different approach to measuring the sim-

ilarity of term ti to its neighborhood is to treat the neighborhood as one unified concept and

then calculate the cosine similarity of the neighborhood and the term ti. To do so, first, we

need to unify all the neighbors in the neighborhood. We propose to consider all the embedding

vectors in the neighborhood and add all of the neighbors’ vectors embeddings in the neighbor-

hood to make a vector VNε that is made of summing up all the neighbors in the neighborhood.

Then, we can calculate the similarity between VNε and ti. The more these two vectors are close
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together, the more specific the term ti is. This metric is impressive since it considers specificity

from the geometric aspects of embedding and their distribution of an embeddings’ most similar

vectors in the space.

Neighborhood Vector Magnitude (NVM).Similar to the background notion of NVS,

in this proposed specificity metric, we unify the neighbors by adding all the neighbors’ vectors to

each other to get VNε . However, to calculate specificity via the Neighborhood Vector Magnitude

(NVM) metric, we should measure the size of VNε vector. The idea behind this metric is

presented in a 2-D space (we reduced dimension for drawing purposes) in Figure 3.2. If ti is a

general concept, then the neighbors are less similar to each other compared to neighbors of tj

which is a less general concept as shown in the boxes (a) and (b) in 3.2. Therefore, if we add

all of the neighbors’ vectors (as shown in the box (c) and (d) in Figure 3.2), we would end up

having VNε (the red dotted vectors) whose size could be an indicator of specificity. Because,

if a concept is specific then the neighbors are more similar (They are in the same direction in

Figure 3.2) so we will end up having a VNε vector with a greater size. We should mention that

it is assumed that all the vectors are normalized.
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Table 3.1: The set of Neighborhood-based specificity metrics to estimate the specificity of the
term ti

ABV Metric Name Description

NS Neighborhood Size The number of terms in -neighborhood of term
ti

WDC Weighted Degree Centrality The average weight of edges directly connected
to ti

MAD Median Absolute Deviation The Median Absolute Deviation (MAD) of
weight of edges directly connected to ti

NV neighborhood Variance The variance of weight of edges directly con-
nected to ti

MSN Most Similar neighbor The maximum weight of edges directly con-
nected to ti

NVS Neighborhood Vector Similarity How similar a term is to the vector that is made
of all the terms neighbors.

NVM Neighborhood Vector Magnitude Size of neighbors vectors
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Figure 3.2: Neighborhood Vector Magnitude (NVM): Boxes (a) and (b) represent the neighbors

of two different concept. The former is more specific than the latter. Consequently, their

neighbors in the embedding space are also similar (here in the same direction). Adding all the

neighbors vectors would result in the red dotted vectors. We hypothesize that the magnitude

of the more specific concept neighborhood is greater than the generic one.
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3.2.2 Graph-based metrics

While neighborhood-based metrics only focus on the connections of neighborhood terms with

the ego node, in graph-based metrics, we take all the connections in the ego-network into

account. Our intuition for defining these metrics is that the denser an ego-network is, the

more specific the ego term would be. In other words, not only a specific term is surrounded

by a higher number of neighbors in the embedding space, but also its neighbors are also highly

similar to each other. Hence, we might want to consider the neighbors’ relationship together

as well as considering the neighbors’ relationship to term ti. We formalize these intuitions

by defining ego-network based metrics summarized in Table 3.2. Also, we represent the ego

network that the graph-based metrics are all working on in Figure 3.3.

We can categorize the graph-based metrics by their intuition into two categories:

1. Node importance metrics that measures the importance of a node in a graph and

2. Edge importance metrics that focus on the importance of edges and considers the rela-

tionships in the graph.

Node Importance Metrics

Based on [40], centrality measures the importance of each node in a graph. Therefore, we

consider three most common centrality measures, including Betweenness centrality, Degree

centrality, and Closeness centrality in our graph-based specificity metrics. Moreover, PageRank

[41], is one other way of measuring the importance of nodes in a graph. We utilize as well in

order to measure the importance of nodes in a graph.

39



3.2. SPECIFICITY METRICS CHAPTER 3. PROPOSED APPROACH

Figure 3.3: Ego-Network for: a) Food and Drink, b) Pizza Hut

Betweenness Centrality (BC). Given Π the set of all the shortest paths among every

pair of nodes in V in graph ζ(ti), for each vertex υ , the betweenness centrality of υ is defined

as the number of paths in Π that include υ. In simple words, betweenness centrality of a node υ

is the number of the shortest paths in the graph ζ(ti) that the node υ has participated in them.

If a node is engaged in more shortest paths, it means it is a more critical node or more central

node. Since we interpreted the importance of a node in a graph to its specificity, therefore we

can infer that the node is more specific if it has higher betweenness centrality.

Degree Centrality (DC).Previously we explained the notion of Degree centrality while

explaining Weighted Degree Centrality (WDC). This metric distinguishes itself from WDC as

we are measuring the node centrality in a more complex network, i.e, ego network, compared

to the ε-neighborhood. Degree centrality, or the number of links incident upon the node υ, can

be interpreted in terms of the importance of the node.
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Closeness Centrality (CC). Closeness centrality of node υ in a graph ζ(ti) is the average

length of all the shortest paths between υ and all the other nodes in V. If an ego node ζi in

graph ξ(ζi) has a lower closeness centrality that another ego node ζj in graph ξ(ζj), it is more

central. It can be construed that the role of ζi in ξ(ζi) is more important that the role of ζj in

ξ(ζj). Hence, ζi is a more specific concept.

Inverse Edge Frequency (IEF). In Section 2.1.6, we described how IDF has been con-

sidered to be an applicable indicator of specificity in the literature. Based on this perception,

we generalize the idea of IDF into a graph. Instead of Inverse Document frequency in a corpus,

we calculate Inverse Edge Frequency in a graph as follows :

IEF (ti) = log(
|E|
|Eti |

) (3.2)

As stated in Definition 2.2, E is the set of all edges in the graph ξ(ti) and Eti is set of all

edges in the graph ξ(ti) that include the node ti.

Page Rank (PR. Intuitively, PageRank is a link analysis method, and allocates a numerical

weighting to every component of a hyperlinked set of documents, for example, the World Wide

Web, to quantify its relative importance within the set. A PageRank results from the calculation

dependent on the webgraph which are made by pages as hubs and hyperlinks as edges. The rank

worth demonstrates a significance of a specific page. A hyperlink to a page is considered as a

vote towards importance of the page. The PageRank of a page is characterized recursively and

relies on the number and PageRank metric of all the incoming links. A page that is connected

to numerous pages with high PageRank values receives a high position itself. The PageRank for
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ti in the defined ego network can imply as to the importance of the ego node or the specificity

of ego node.

Edge Importance Metrics

This group of metrics is mainly focused on two important concerns: (1) the relationship among

neighbors and (2) the relationship among neighbors and the ego node. The relationship among

neighbors and the ego node is different from the neighborhood-based specificity metrics since

the network that we are working on for this study is a different one which can be explained by

comparing Figure 3.1 and Figure 3.3.

Edge Count (EC). The denser a graph is, the more number of edges it has. Accordingly,

|E| in graph ξ(ti) can measure specificity. This metric intuition is analogous to NSmetric but

instead of working on the neighborhood, we are calculating the same idea in a more complex

graph, ego-network, by considering the bonds within neighbors.

Edge Weight Sum (EWS). Specific concepts have stronger links with their neighbors.

As the neighbors are more similar to each other, we would achieve a higher total summation of

weights in the graph of more specificity concept compared to a less specific one.

Edge Weight Average ego (EWAe). The notion behind this metric is the same as

EWS. However, this metric is normalized meaning that we are calculating the average number

of weights in the ego network ζ(ti). Lower average weight in ζ(ti) implies more generality of

the term ti.

Edge Weight Average (EWA) . This variation of EWAe, which is EWA, neglect all the

edges that are connected to the ego node ti in order to focus on the neighbors’ relationship with
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each other. Because the more close to each other the neighbors are, the more specific the ego

node ti is.

Edge Weight Max ego (EWXe). EWXe attempt to find the most similarity or the edge

with the maximum weight in the ego network. This metric is comparable to MSN; however, the

networks are different. The higher the maximum weight of the ego network, the more specific

the ego term ti.

Table 3.2: The set of Graph-based specificity metrics considered to estimate the specificity of
the term ti

ABV Metric Name Description

BC Betweenness Centrality Betweenness centrality of node ti in the ego network

DC Degree Centrality Degree centrality of node ti in the ego network

CC Closeness centrality Closeness centrality of node ti in the ego network

IEF Inverse Edge Frequency The Number of edges in the ego network divided by the
number of edges connected to node t˙i in the ego network

PR PageRank The value of PageRank of term ti in the ego network

EC Edge Count The number of edges in the ego network

EWS Edge Weight Sum The sum of edge weights in the ego network

EWAe Edge Weight Avg˙ego The average of all edge weights in the ego network

EWA Edge Weight Avg The average of all edge weights in the ego network except
the ones connected to ego

EWXe Edge Weight Max˙ego The minimum edge weight in the ego network
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3.2.3 Cluster-based Metrics

These metrics are based on the idea that the characteristics of term clusters within the neigh-

borhood of a given term are potential indicators of its specificity. Therefore, to extract the

term clusters around ti, we apply a clustering algorithm, such as the K-means algorithm, to the

embedding vectors of terms in its -neighborhood, i.e., Nε(ti), which results in K clusters for ti,

i.e., C1
ti , ..., CK

ti . Then, we estimate the specificity of the term ti by calculating the variance

of the number of elements in the obtained clusters. As mentioned before, a generic term is

more likely to be related to many terms from different domains. If we cluster the neighborhood

terms of a given term, we may expect that each cluster will be associated with one domain.

Low variance of the number of elements in the clusters shows that there is no dominant cluster

in the neighborhood of the term. Consequently, it is probably a more generic term.

The association between the term clusters can also be considered to be an indicator of

specificity. Each cluster is defined with its centroid c, which is a vector in the embedding space

that indicates the center of the cluster. Therefore, for term ti, given its term clusters, i.e.,C1
ti ,

..., CK
ti , we define its centroid network, denoted ξ(ti), as follows:

Definition 3. (Centroid Network) A centroid network for term ti, denoted as ζ(ti) = (V,E, g),

is a weighted undirected graph in which V includes the centroid points of the term’s clusters

C1
ti , ..., C

K
ti , and E = {eci,cj : ∀ci, cj ∈ V}. The weight function g : E → [0, 1] is the cosine

similarity between the vectors of two centroid points of an edge eci,cj , i.e., vci and vcj .

Edge Weight Centriod (Avg, Min, Max). Based on the centroid network definition,

we can define specificity as follows: The more the term clusters of a given term are similar, the
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Figure 3.4: The term clusters and the centroid network for (a) the generic term ‘Food and
drink’ and (b) the specific term ‘Pizza Hut’. ⊕ represents centroid of each cluster. The edges
in the centroid network is based on the distance between two centroids.

more specific the terms would be. Therefore, edge weights in the centroid network play a crucial

role in estimating specificity because they show how clusters are distributed in the embedding

space. Thus, we define three metrics by aggregating edge weights in the centroid network using

min, max, and average functions. To compare the cluster-based metrics of a general term, e.g.,

‘Food and Drink’ to a more specific one, such as ‘Pizza Hut’, we illustrate their clusters and

centroid networks in Figure 3.4. Let K be 4, the variance of the number of elements of the

clusters of the generic term ‘Food and Drink’ is 0.5, which is far less than that of ‘Pizza Hut’,

which is 6. In addition, Figure 3.4 shows that clusters of a specific term are positioned close

to one another in the embedding space, which implies higher semantic relatedness. Thus, the

average edge weights of a centroid network of ‘Food and Drink’ is 0.73, which is less than that
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of the average edge weights of Pizza Hut at 0.87. The details of the proposed cluster-based

metrics are provided in Table 3.3.

Cluster Elements Variance (CEV). According to Figure 3.4 and the intuition behind

it,the number of members in each cluster has, the potential to be an indicator of specificity.

We elaborate on this idea by using following example: given that we have a constant number

of clusters, if a term is specific, it should have one dominant cluster in its neighborhood, such

as centroid network (b) in Figure 3.4. The blue cluster has more number of members compared

to the other clusters in (b) network. Whereas, if a term is a vague one, such as sample (a) in

Figure 3.4 can have multiple meanings; therefore, the number of elements in the clusters should

be more balanced. We can measure the distribution of members in the clusters by the variance.

Thus, low variance among several members in the clusters show that the word is an ambiguous

one while high variance represents the unbalanced distribution of members in the clusters and

therefore there exists a dominant cluster and a specific term.

In Figure 3.4, the CEV (‘Food and Drink’), (a) is variance of [3,4,3,3] which is 0.1875 and

the CEV(‘Pizza Hut’), (b), is variance of [10,3,2,2] which is 11.18. The more specific term,

‘Pizza Hut’, has the higher CEV. Thus, higher CEV is an indicator of higher specificity.

Non-Specific Clustering (NSC). So far, we have considered clustering in the neighbor-

hood of a term in an embedding space with a defined number of clusters. In the NSC metric,

unlike EWAc, EWNc, EWMc, and CEV, we apply clustering without pre-defining the number

of clusters. We use hierarchical clustering to cluster the neighbors, and then the number of

the generated clusters can be used as a specificity metric. Because a higher number of clusters

shows different concepts around the term t, which means term t is a more general concept.
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Table 3.3: The set of Cluster-based specificity metrics considered in our work. The metrics
estimate the specificity of the term ti

ABV Metric Name Description

EWAc EdgeWeight Avg˙centroid The average edge weight in the centroid network of
the term ti

EWNc Edge Weight Min˙centroid The minimum edge weight in the centroid network of
the term ti

EWXc Edge Weight Max˙centroid The maximum edge weight in the centroid network
of the term ti

CEV Clusters Elements Variance The variance of the number of elements in the ex-
tracted clusters of the ego network

NSC Non-Specific Clustering Number of clusters can we find among the neighbors

3.2.4 Vector-based metrics

If we consider the featurized vector representation of words, we can assume that high values in

each element of the vector means that this word is highly dependent on this feature. So, we

might conclude that if a vector contains lots of elements with high values or very low values,

this means that it is associated with those features (or not associated with those features at

all). Both of this information could be helpful as they can add information toward the word by

emphasizing or omitting a feature. There are existing work in the literature that support the

idea that the norm of word vectors can correlate with some statistical features such as word

frequency in the trained corpus [42]. We define Vector-based metrics to explore whether the

properties of the embedding vector can be an indicator of any statistical feature of the words.

Based on the explained intuition, we define three metrics Sum Embedding (SE), Sum Em-
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Table 3.4: The set of Vector-based specificity metrics considered in our work. The metrics
estimate the specificity of the term ti

ABV Metric Name Description

SE Sum Embedding Sum of an embedding vector elements

SEA Sum Embedding Absolute Absolute Sum of a vector elements

VE Var Embedding Variance among embedding vector

bedding Absolute (SEA), and Variance Embedding (VE in Table 3.4. The result of the proposed

metric will be discussed in the next chapter, and we will experiments whether the embedding

vector elements can mean anything independent or not.

3.3 Summary

In this chapter, we have proposed four different groups of specificity metrics for the neural

embedding representation of words, namely (1) Neighborhood-based metrics (2) Graph-based

metrics (3) Cluster-based metrics and (4) Vector-based metrics. We discussed the intuition

behind each group, and we propose more detailed metrics in each group. In total, we proposed

25 different metrics. In the next chapter, we will report the results of the experiments that

have been conducted on these metrics, and we will evaluate them in the application of query

performance prediction to see which of the proposed metrics perform well for this task.
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Chapter 4

Evaluation

Our work in this thesis is concerned with the design of efficient metrics for pre-retrieval QPP

based on pre-trained neural embeddings. Existing work in the literature [43, 9] have already

shown that measures of term specificity are suitable indicators of query difficulty, i.e., more

specific terms are more discriminative and are hence easier to handle as queries while more

generic terms are less distinct and as such form harder queries. For this reason, our objective

is to define QPP metrics based on our intuition for term specificity, which we define by relying

on geometric properties of neural embeddings.

Having said that, the first step in our work should be introducing specificity metrics (Chap-

ter 3). Using embeddings, we proposed four different categories of specificity-based metrics,

including neighborhood-based metrics, graph-based metrics, cluster-based metrics, and vector-

based metrics. We aim to use these proposed metrics to enhance the performance of query

difficulty estimation.

It should be noted that as mentioned in Section 2.2.4, specificity metrics can be used in
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other applications as well as query performance prediction. Therefore, it is beneficial to assess

specificity metrics directly before evaluating them in a special application such as QPP. We

define the specificity metrics evaluation problem as ranking different concepts with a variety

of specificity range. However, we need a gold standard with a proper specificity-based ranking

of different concepts. Similar to [24, 21], for evaluating the specificity metrics directly, we

employed hierarchies as the gold standard for specificity because the level of each concept in a

hierarchy could be a potential indicator of specificity.

Given a hierarchy of different concepts, the length of the shortest path from concept c to

the root of hierarchy, can be considered as the specificity of c. Therefore, in Section 4.1.1, we

introduce two different test collections from two comprehensive hierarchies, i.e, Wikipedia and

DMOZ [44, 27] for the purpose of assessing the specificity metrics. The results of evaluation

on all the 25 proposed metrics from Chapter 3 on the mentioned test collections, are presented

in Section 4.1.3. In addition, in order to investigate the robustness of our proposed specificity

metrics to different embeddings, we have conducted experiments on three different pre-trained

embeddings including Hierarchy Category Embedding (HCE), FastText Pre-trained embedding

and Word2Vec. Furthermore, we employ a learning to rank strategy, where we incorporate

all the proposed specificity metrics and find the most pertinent combination of metrics in a

supervised manner.

In the end, used in the literature; to use aggregation functions, such we evaluate all of the

unsupervised and supervised metrics by predicting the performance of all the following corpora

topics: Robust04, ClueWeb09, and GOV2. The proposed specificity metrics are defined for

individual terms. Given queries can be composed of more than one term, we adopt the approach
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that is widely as sum, maximum, minimum, and average [45], over the specificity of individual

query terms. More specifically, aggregation functions, including sum, maximum, minimum, and

average, are used to integrate individual term specificity values over the whole query. In Section

4.2, we compare our proposed metric with the state-of-the-art pre-retrieval QPP methods and

show how and when our method outperform the baselines.

4.1 Evaluation on Specificity Metrics

The goal of this section is to evaluate the specificity metrics proposed in Chapter 3, regardless

of their impact on QPP. To do so, first, we propose two test collections in Subsection 4.1.1. We

explain the pre-trained embeddings that we use for each of the test collections, and describe how

we can measure the performance of specificity metrics based on the suggested test collections.

Eventually, we report the results in Subsection 4.1.3.

4.1.1 Test Collections

In this section, we introduce two test collections to evaluate the proposed measures of term

specificity. In order to avoid the biases associated with manually curated gold standard data

sets, our test collection is based on the Wikipedia category hierarchy and DMOZ taxonomy,

which formally organize knowledge in degrees of specificity. The most generic category of the

hierarchy sits at the topmost level, and the most specific categories are located at the leaves of

the hierarchy. Since the level of each node in the hierarchy is an appropriate indicator of the

nodes specificity with regards to its parent and child nodes, it can also be used as ground truth

to evaluate specificity metrics.
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We consider the level of each category, i.e., its shortest path to the root, as an indicator for

the specificity of that category. We have randomly sampled unique paths, each with a length of

5, which form our test collection. We extracted 713 paths from Wikipedia and 171 paths from

DMOZ taxonomy. The reasons we opted to extract and include paths in our test collection, as

opposed to pairs of categories, were two fold:

• Paths generalize the concept of pairs as they are a collection of multiple pairs

• The consideration of paths ensures that the test collection only seeks to compare categories

that are semantically related to each other and avoids the comparison of two or more

categories that are not on at least one shared path from the root to a leaf

The objective of this experiment is to evaluate the ability of the proposed metrics to rank the

categories in each path the same as the actual order in the hierarchy. We assess this ranking

ability by Kendall Tau, which is a rank correlation metric. The more the ranking is similar to

the actual one in the hierarchy, the higher the performance of the proposed metric is.The test

collection and the results of our experiments are made available 1.

Wikipedia Category Hierarchy

Kapanipathi et al. [44] have empirically found that while hierarchical, the Wikipedia cate-

gory can potentially include cyclic references between categories. Therefore, to transform the

Wikipedia category structure into a strict hierarchy, we adopt the approach proposed by Ka-

panipathi et al. [44]. To do so, we first downloaded the freely available English version of

1https://github.com/WikipediaHierarchyPaths/WikiPedia_Hierarchy_Paths
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DBpedia 2, which is extracted from Wikipedia dumps dated April 2016. This dataset consists

of 1, 411, 022 categories with 2, 830, 740 subcategory relations between them. Then, we removed

the Wikipedia admin categories that are used only to manage Wikipedia. Next, we selected

Category: Main Topic Classifications, as the root node of the hierarchy and assigned the hi-

erarchical level of each category based on its shortest path length to the root node. As the

last step, we removed all directed edges from a category of lower hierarchical level (specific) to

categories at higher hierarchical levels. The outcome of this process is a hierarchy with a height

of 26 and 1, 016, 584 categories with 1, 486, 019 links among them. As such, and in order to

evaluate specificity metrics, we have randomly sampled 713 unique paths, each with a length

of 5, which form our test collection.

DMOZ Hierarchy

DMOZ which was also generally known as the Open Directory Project (ODP), was the largest,

most comprehensive human-edited directory of the Web. It was built and kept up by an

energetic, worldwide community of volunteer editors however it was owned by AOL. DMOZ

closed in 2017 since AOL did not wish to back the venture. DMOZ is free of charge, and it is the

foremost broadly dispersed information base of Web substance classified by humans. DMOZ is

organized as a tree-structured taxonomy with 16 top categories and over 1, 014, 849 categories

in-depth and more than 5.1 million sites categorized. We utilized DMOZ taxonomy to assess

the specificity of categories by looking at their position in the DMOZ hierarchical structure.

We assumed that categories in a hierarchy in a position close to the root are broader than ones

2http://wiki.dbpedia.org/Downloads2015-10
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Figure 4.1: A part of DMOZ hierarchy and a randomly selected unique path. The selected
path with the length of 5 is shown in yellow.

in positions close to the leaves.

In order to generate paths from DMOZ and assign embedding to them, first, We remove

the less meaningful categories such as ones that are categorized by alphabet or name of cities,

then we matched DMOZ categories to word2Vec embedding. We could only match almost 20%

of the categories. Finally, from the remaining categories whose embedding exist, we were able

to selected 171 paths with a length of 5. An example of a selected path from DMOZ taxonomy

is represented in Figure 4.1 by yellow blocks.

4.1.2 Experimental setup

For estimating the specificity of a term, based on the proposed metrics, we utilize a pre-trained

embedding model to identify the ε-neighborhood of that term. Given our test collections are

based on DMOZ and Wikipedia, to calculate the specificity of each category in the DMOZ, we

utilized Word2Vec embedding that had been trained on Google News since it is a general em-

bedding and it is not biased to any specific subject. On the other hand, for Wikipedia category

hierarchy, we needed an embedding model based on Wikipedia content and its categories. We

chose two pre-trained embeddings that were trained on Wikipedia content:
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1. HCE: Li et al. [29] have proposed a method that simultaneously learns entity and cate-

gory embedding vectors from Wikipedia. Therefore, we adopt their trained Hierarchical

Category Embedding (HCE) model to extract the required embedding vectors.

2. fastText: We used fastText pre-trained embedding [30] on Wikipedia content. Having

said that, we run the experiments on the same hierarchy with two different embeddings

in order to investigate the impact of embeddings on our metrics. This way we can find

how robust our metrics are to embedding perturbations.

Now based on the paths included in the test collection and given a set of categories, the

objective of an effective specificity metric would be to produce the correct specificity-based

ordering of these categories, the correct ordering of which exists in the test collection. It is then

possible to evaluate the performance of each specificity metric using rank correlation measures

such as Kendall’s Tau to determine the relationship between the actual order of categories

observed in the test collection and the list of categories ranked based on the specificity metric.

4.1.3 Comparative Analysis

In this subsection, we present the results of the experiments that compare the proposed un-

supervised specificity metrics based on the Kendall Tau rank correlation. We evaluate all the

proposed neighborhood-based, graph-based, cluster-based and vector-based specificity metrics

on two different hierarchies i.e, Wikipedia and DMOZ within three different embedding spaces

i.e, HCE, fastText and Word2Vec and we report the results in Tables 4.1, 4.2, 4.3 and 4.4. It

should be noted that to extract the ε-neighborhood of each term and build the ego network

in the embedding space, the value of ε is set based on five-fold cross-validation optimized for
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Kendall Tau. Almost all the results (except two) have P-value less than 0.05.

We investigate the consistency among the results in Table 4.1.3 by comparing the rank

of each metric in the three evaluation, which is DMOZ hierarchy with Word2Vec embeddings

and Wikipedia hierarchy with both fastText embedding and HCE embedding. We rank all

the proposed metrics by their performance to see if they have consistent results on all the

three experiments. Based on the results in Table 4.1.3, we can conclude that the metrics

are performing coherent among the three experiments. There is some deviation among their

performance that we elaborate on them in the following by analyzing each group of metrics.

1. Vector-based metrics: Vector-based metrics are the only metrics that are not perform-

ing consistently among different experiments. Previously, we discussed whether these

metrics could be sufficiently beneficial for estimating the specificity or not. Since this

group of specificity metrics is highly dependent on the embeddings, they are not reliable.

Table 4.1.3 demonstrates a deviation in vector-based metrics performance. This group

of metrics has the worst performance in all the three experiments except the HCE em-

beddings. This fact reveals that this group of metrics due to (1) their reliance on the

embedding vectors and (2) lack of considering the relationship among embedding vec-

tors in embedding space, performs poorly. On the other hand, the other three groups of

metrics, i.e., neighborhood-based metrics, graph-based metrics, and cluster-based metrics

perform consistently among the three experiments.

2. Cluster-based metrics: Among all the cluster-based metrics, EWAc, EWNc, and

EWXc, which are a different variation of the same idea on the centroid network, are per-
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forming well and the rest of them do not show acceptable performance. EWAc, EWNc,

and EWXc have a decent performance among all the three experiments. We can reach the

conclusion that these metrics are robust to both hierarchy and embeddings as they are

among the top-10 of each of the experiments. More specifically, EWAc has outstanding

performance and leads this group of metrics.

3. Graph-based metrics: There is a significant discrepancy among metrics in this groups.

Some metrics have satisfactory performance in this category whereas others have lower

performance. Ones that mostly are concerned with centrality measure, i.e., DC and CC

perform well among all the three experiments. IEF, which was constructed based on

the IDF idea, also performs among Top-3 in the Wikipedia hierarchy and has acceptable

performance on the DMOZ taxonomy as well. Other metrics in this category, do not show

adequate performance. Thus, among all the graph-based metrics, we can conclude that

DC, CC, and IEF work the best.

4. Neighborhood-based metrics: In general neighborhood-based metrics perform mod-

estly. Weighted Degree Centrality WDC works the best among this category.

By analyzing the left two-column of Table 4.1.3, i.e., the results on Wikipedia hierarchy with

two different embeddings, we can note that the TOP-5 metrics performance-wise are interest-

ingly from three different groups. In general, in this experiments, WDC from neighborhood-

based metrics, IEF, DC, and CC from Graph-based and EWAc from cluster-based metrics are

chosen as the best-performing metrics. These metrics are also robust to the embedding as well.

In simple words, by using these metrics, we can estimate the specificity of terms, no matter
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which embedding is used.

Another interesting finding is that the specificity computed from an ego-network works

better than when it is estimated by the corresponding neighborhood-based metric. A potential

explanation may be that while the number of neighbors computed in the neighborhood-based

metrics is intuitively an indicator for specificity, the connections between neighboring nodes

captured in the graph-based metrics can reinforce and strengthen specificity estimation. This

hypothesis is boosted when comparing EWAe and WDC. WDC that overlooks the connections

between neighboring nodes performs weaker than EWAe that considers such connections.

Table 4.1: The performance of the neighborhood-based specificity metrics in terms of Kendall

Tau rank correlation. All values are statistically significant at alpha=0.05 except the italic one.

Neighborhood-based Metrics

Hierarchy Embedding NS WDC MAD NV MSN NVS NVM

Wikipedia HCE 0.146 0.322 0.179 0.145 0.142 0.195 0.177

Wikipedia fastText 0.086 0.249 0.176 0.176 0.088 0.175 0.168

DMOZ Word2Vec 0.06 0.309 0.189 0.193 0.016 0.216 0.291

Table 4.2: The performance of the graph-based specificity metrics in terms of Kendall Tau rank

correlation. All values are statistically significant at alpha=0.05.

Graph-based Metrics

Hierarchy Embedding BC CC DC IEF EC EWS EWA EWAe EWXe PR

Wikipedia HCE 0.137 0.339 0.341 0.336 0.207 0.139 0.288 0.315 0.291 0.131

Wikipedia fastText 0.093 0.247 0.217 0.257 0.234 0.182 0.202 0.246 0.174 0.164

DMOZ Word2Vec 0.25 0.339 0.32 0.328 0.22 0.162 0.367 0.379 0.318 0.279
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Table 4.3: The performance of the cluster-based specificity metrics in terms of Kendall Tau

rank correlation. All values are statistically significant at alpha=0.05.

Cluster-based Metrics

Hierarchy Embedding CEV EWAc EWNc EWXc PC NSC

Wikipedia HCE 0.213 0.320 0.321 0.295 0.110 0.116

Wikipedia fastText 0.087 0.186 0.162 0.170 0.085 0.129

DMOZ Word2Vec 0.213 0.409 0.419 0.371 0.295 0.369

Table 4.4: The performance of the vector-based specificity metrics in terms of Kendall Tau rank

correlation. All values are statistically significant at alpha=0.05 except the italic one.

Vector-based

Hierarchy Embedding SE SEA VE

Wikipedia HCE 0.237 0.035 0.208

Wikipedia fastText 0.010 0.035 0.037

DMOZ Word2Vec 0.068 0.084 0.091
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Table 4.5: Ranking the result of specificity evaluations for investigating consistency among the

results. The rankings are colored by their performance from white (the lowest performance)

to the darkest color (highest performance).From Column left to right: Results on Wikipedia

hierarchy using fastText embedding, results on Wikipedia hierarchy using HCE embedding, and

results on DMOZ using word2Vec embedding
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4.1.4 Learning Specificity

All the metrics introduced above estimate the specificity of a term in an unsupervised manner.

We additionally apply a supervised strategy to collectively incorporate all the unsupervised

specificity metrics to predict the specificity of a term and find the most pertinent combination

of unsupervised specificity metrics in a supervised manner. Due to the advantage of learning-

to-rank strategy to combine a large number of features, it has attracted attention for different

applications [46, 47]. We also take advantage of the learning to rank strategy to predict the

specificity of terms by representing each term under investigation by a vector of features. In

our model, features are the same as the specificity metrics in Table 4.1.3.

To apply learning to rank algorithm, we used RankLib3, that includes the implementation

of different learning to rank methods. In this section, we first exploit two well-known and

frequently used learning-to-rank methods, including RankBoost and RandomForest to find

the best method for ranking the categories based on their specificity by optimizing ndcg@5.

Table 4.6 reports the performance of the models obtained by measuring the Kendall Tau rank

correlation between the actual order of categories observed in the test collection and the list of

categories ranked based on the output of each learning to rank model. Note that the results

reported in Table 4.6 are calculated by applying five-fold cross-validation for each learning-to-

rank method. For easier comparison, the table also includes the results of the Top-five specificity

metrics observed in Table 4.1.3. As the table shows, the application of learning-to-rank methods

that incorporate all of the proposed specificity metrics in a single model outperforms the Top-5

specificity metrics when used in isolation in ranking category paths.

3https://sourceforge.net/p/lemur/wiki/RankLib/

61

 https://sourceforge.net/p/lemur/wiki/RankLib/


4.1. EVALUATION ON SPECIFICITY METRICS CHAPTER 4. EVALUATION

To further analyze the relative effectiveness of each feature (i.e, specificity metric defined

in Table 4.1.3) in our supervised model, we rank all features based on their feature frequency

in the Random Forest model. We start with the basic model consisting of 4 most important

(i.e., most frequent) features and proceed to extend this model by incrementally introducing

additional features, based on their frequency. In Tables 4.7 and 4.8, the results of this ablation

study on Wikipedia hierarchy for both HCE embeddings and fastText embeddings are reported

respectively in terms of Kendall Tau rank correlation. In Table 4.7,when Edge Weight Max ego

(EWXe) is added as a feature to the basic model, we observe a significant improvement of about

7.5%. Other significant improvements are also observed by adding Weighted Degree Centrality

(WDC) (about 8% performance enhancement). Adding the rest of the features does not lead to

significant changes in performance. Therefore, we did not list all the features and we only report

the first 16 features out of all 25 features. In other words, using the top-8 most frequent features

in RandomForest model would be sufficient to have the same performance when using all the

25 features. In Table 4.8 , the significant improvements occur when adding EWXe,CC,DC and

SEA. Results in Table 4.8, shows that using the top-12 most frequent features is sufficient to

have the performance quality same as using all the features in RandomForest model. Because,

no significant improvement is observed when using more than top-12 features.
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Table 4.6: Comparison of the performance of learning-to-rank models in terms of Kendall Tau

rank correlation to the top-5 best performing metrics.The best model is indicated in bold. All

the results are statistically significant at alpha=0.5.

Supervised Methods Unsupervised Methods

RankBoost Random Forest WDC DC CC IEF EWAc

HCE 0.350 0.409 0.322 0.341 0.339 0.336 0.320

fastText 0.389 0.426 0.249 0.247 0.217 0.257 0.186

Table 4.7: The performance of Random Forest model after incrementally adding features on

HCE embedding. Basic model includes 4 most important features: SEA, SE, NSC and MSN.

The * symbol indicates statistical significance on a paired t-test p-value<0.05.
Basic Model +EWXeEWXe +NVS +EWXc +WDC +EWA +EWAe +MAD +EWNc +EWS +EWAc +NVM +EC

Kendall Tau 0.358 0.385 0.393 0.397 0.426 0.416 0.409 0.407 0.399 0.404 0.410 0.405 0.408

4 +7.54%* +2.07% +1.01% +8.31%* -2.34% -1.68% -0.48% -1.67% +1.25% +1.48% -1.21% +0.074%

Table 4.8: The performance of Random Forest model after incrementally adding features on

fastText embedding. Basic model includes 4 most important features: BC, PR, NV and NVS.

The * symbol indicates statistical significance on a paired t-test p-value<0.05.

Basic Model +CEV +EWXe +CC +VE +DC +NS +IEF +SEA +EC +NVM +MSN +EWXc

Kendall Tau 0.326 0.334 0.349 0.367 0.370 0.381 0.383 0.382 0.403 0.403 0.414 0.424 0.422

4 +2.4% +4.4%* +5.2%* +0.81% +3.0%* +0.52% -0.26% +5.2%* 0% +2.7% +1.9% -0.47%

4.1.5 Comparison with Baselines

In this section, we compare the performance of our model with two well-known frequency-based

specificity metrics, i.e., Average IDF and Simplified Clarity Score (SCS), as our baselines. As
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another baseline metric, we adopt the recently proposed approach by Roy et al. [8] that

utilizes embedded word vectors to predict query performance. Their specificity metric, known

as Pclarity, is based on the idea that the number of clusters around the neighborhood of a term

ti is a potential indicator of its specificity. To apply their approach to our embedding vectors,

we have used the implementation provided by the authors.

In order to apply the frequency-based metrics, i.e., SCS and IDF, to estimate the specificity

of a Wikipedia category, we consider Wikipedia as a collection of documents (each Wikipedia

article is a document) and compute Average IDF and Simplified Clarity Score (SCS). We only

compare our method with the baselines on Wikipedia hierarchy and we left the experiments on

DMOZ for future works.

The results of the baselines are compared to the best variations of our supervised and

unsupervised models. As shown, both of our supervised and unsupervised methods outperform

the baselines despite the fact that the baseline methods have access to corpus-specific frequency

information whereas our methods do not and are solely based on pre-trained neural embeddings.

Table 4.9: Comparison with Baselines on Wikipedia Hierarchy using HCE embedding. ( P-

values are less than 0.05)

Baselines Our method (best variation)

IDFmax SCS PClarity Supervised Unsupervised

0.304 0.144 0.121 0.409 0.341
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4.2 Evaluation on Pre-retrieval QPP

In this section, we evaluate all the proposed specificity estimation metrics to predict TREC

topics performance. First, we describe how we evaluate specificity metric in the context of query

performance prediction. Then, we explain the employed corpora and topics in Subsection 4.2.1.

In Subsection 4.2.3, we compare the proposed metrics with the baselines on three different

TREC collections, including Robust04, ClueWeb09, and GOV2.

A common approach for measuring the performance of a QPP metric is to use rank correla-

tion metrics to measure the correlation between the list of queries (1) ordered by their difficulty

for the retrieval method (ascending order of AP, and (2) ordered by the QPP metric. Kendall’s

tau, which is a non-parametric measure of the relationship between two ranked lists and Pear-

son’s rho coefficient, which is a measure of the linear correlation between two variables, are

common correlation metrics in this space. To be able to rank the different metrics over a range

of topics, and given the fact that no individual or a subset of metrics outperform the others

overall topic sets and document collections, we compute the rank of each metric in each topic

set and report the rank of the median of each metric overall topics of each document collection.

This is specified as rank and is reported separately for Kendall’s tau and Pearson’s rho in the

tables. It should be noted that our metrics are dependent on some hyper-parameters, which

were set using five-fold cross-validation optimized for Pearson correlation.

4.2.1 Dataset

We employed three widely used corpora, namely Robust04, ClueWeb09, and GOV2. For Ro-

bust04, TREC topics 301− 450 and 601− 650, for GOV2, topics 701− 850 and for ClueWeb09,
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topics 1− 200 are used. The topic difficulty was based on Average Precision (AP of each topic

computed using Query Likelihood (QL) implemented in Anserini for the three collections. The

three widely used corpora, Robust04, which consists of 528, 155 documents, ClueWeb09, which

consists of 50 million English web pages, and Gov2, which consists of over 25 million documents

have been extensively used in the literature for performing pre-retrieval query performance pre-

diction experiments.

4.2.2 Baselines

For comparative analytics, we adopt the most widely used specificity metrics reported in the

literature [2]. Previously we explained all of them in section 2.2.2. The formulation of these

metrics is provided in chapter 2. We use aggregation functions (e.g., sum, avg, min, and max)

to apply the term-based metrics to the whole query and we report the best result among all

the different varieties of aggregation functions.

As another baseline, we used the recent work of Roy et al. [8] who proposed a novel

query performance prediction predictor which similar to our work, utilize neural embedding

representation of terms. While their work outperforms all the state-of-the-art post-retrieval

query performance prediction metrics, it does not show acceptable performance in pre-retrieval

QPP metrics. They also compared aggregation functions versus query term composition for

applying term-based metrics to the whole query. Their experiments showed their approach

worked better with the latter, which represents the query by summing up the query terms

embedding vectors. Therefore, all the reported result for Pclarity are based on query term

composition.
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4.2.3 Results and Discussion

Empirical studies on pre-retrieval QPP metrics have shown that while some metrics show better

performance on some corpora and topic sets, there is no single metric or a set of metrics that

outperforms the others on all topics and corpora [2]. Our empirical experiments confirm this.

That is why we investigate the QPP results on different topics and corpora.

Table 4.10 , 4.11 and 4.12 illustrate the results on Robust04, ClueWeb09 and GOV2 re-

spectively. In Tables 4.10,4.11, and 4.12, the top-3 best-performing metrics on Kendall tau and

Pearson rho have been indicated using *. In the following, we will discuss the results on each

of the collections. Later, we reach to a conclusion for the top performed metrics.

• Robust04 : As shown in Table 4.10, our proposed QPP metrics are among the top-3

metrics (performance-wise) on both Person correlation and Kendal Tau correlation on. If

we consider a balance between Kendall tau and Pearson rho and look for those metrics that

perform relatively well on both, ,CC, IEF and DC seem to have a moderate consistent

high performance. While VAR is among top-3 in 5 out of 8 experiments, it has poor

performance on the other three, i.e, Pearson and Kendal Tau correlation on topic 300-

350 and Pearson correlation on topic 401-450. On the other hand, our best performed

proposed metrics i.e., IEF, CC, and DC have more consistent performance among all the

topics. In general, CC, DC and IEF show satisfactory performance among all the topics

on Robust 04.

• ClueWeb09 :On ClueWeb09 neighborhood based metrics are performing poorly. On the

other hand, graph-based metrics are showing noticeable performance. From baselines,
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VAR, and from our proposed metrics, BC, CC, and DC which measure centralities in a

graph, are among the best-performed metrics on this collection.

• GOV2 : Unlike ClueWeb09 and Robust04, our proposed metrics perform a little incon-

sistent on GOV2. For instance, most of the graph-based metrics including BC, DC, CC,

EC and IEF do not have excellent performance on topic 701-750. Whereas they are

among top-3 metrics on the rest of the topics, i.e., 751-850. From the baselines, SCQ has

outstanding performance on GOV2 collection. Since there are no metrics that have an

acceptable performance on all of the topics on this collection, by considering a balance

among all the topics and evaluation metrics, we conclude PR, CC and DC to be among

the top performing metrics.

Overall, when considering a balance between the two evaluation measures and the per-

formance of the metrics on all topics and corpora, we find our CC and DC metric to be a

well-performing metric across the board. It is among the best metrics on Gov2 and ClueWeb09

and has a reasonably balanced performance on Robust04. However, CC tends to have a high

time complexity of O(V 3). On the other hand, the DC metric performs quite well on both

ClueWeb09 and Gov2 but less effectively on Robust04. The added benefit of the DC metric is

that it is inexpensive to compute with O(1). As such, while CC is the preferred metric given

most metric computations are performed offline for QPP, DC can serve as an alternative if

computation limitations exist.
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Table 4.10: Results of QPP on Robust04 . Gray rows are baselines. Bold numbers indicate

statistical significance at alpha=0.05. Top-3 metrics in each column are selected by *.

Pearson
Kendal

Tau
Pearson

Kendal

Tau
Pearson

Kendal

Tau
Pearson

Kendal

Tau
agg Method name

300-350 351-400 401-450 600-650

avg VAR 0.08 0.17 0.46* 0.36* 0.23 0.35* 0.55* 0.34*

max SCQ 0.01 0.13 0.5 0.42* 0.66* 0.5 0.35 0.26

avg IDF 0.52* 0.22 0.42 0.29 0.43* 0.28 0.36 0.32

- SCS 0.43 0.21 0.35 0.24 0.34 0.23 0.42 0.3

max PMI 0.06 0.04 0.12 0.18 0.28 0.18 0.08 0.2

comp PC 0.34 0.28 0.24 0.20 0.36 0.25 0.38 0.26

avg NS 0.02 0.07 0.4 0.25 0.05 0.02 0.39 0.22

sum WDC 0.47 0.22 0.00 0.02 0.40 0.12 0.13 0.02

max MAD 0.09 0.10 0.19 0.10 0.35 0.21 0.28 0.16

sum NV 0.40 0.25 0.24 0.13 0.18 0.18 0.31 0.26

sum MSN 0.48 0.24 0.04 0.01 0.42 0.19 0.18 0.07

sum NVS 0.42 0.23 0.06 0.03 0.36 0.18 0.14 0.04

max NVM 0.10 0.02 0.31 0.20 0.39 0.08 0.06 0.20

max BC 0.35 0.31 0.17 0.20 0.39 0.30* 0.40 0.42*

avg CC 0.26 0.24 0.41 0.29 0.42 0.27 0.45* 0.37*

max DC 0.28 0.20 0.42 0.29 0.44* 0.30* 0.44 0.33

min EC 0.37 0.17 0.41 0.15 0.26 0.27 0.40 0.19

min EWS 0.34 0.17 0.49* 0.24 0.26 0.29 0.46* 0.22

avg IEF 0.41 0.47* 0.44 0.36* 0.40 0.30 0.43 0.33

max PR 0.33 0.25 0.47* 0.40* 0.31 0.24 0.31 0.16

avg EWA 0.30 0.15 0.42 0.23 0.18 0.09 0.27 0.18

avg EWAe 0.33 0.19 0.45 0.18 0.18 0.29 0.33 0.17

avg EWXe 0.29 0.12 0.30 0.14 0.21 0.22 0.34 0.15

avg CEV 0.15 0.01 0.38 0.21 0.09 0.01 0.36 0.18

sum EWAc 0.54* 0.35* 0.19 0.12 0.32 0.17 0.29 0.17

sum EWNc 0.54* 0.37* 0.28 0.17 0.34 0.22 0.38 0.23

sum EWXc 0.52* 0.32 0.15 0.09 0.29 0.16 0.26 0.15

sum NSC 0.50 0.29 0.07 0.04 0.43* 0.25 0.18 0.11

max SE 0.07 0.06 0.10 0.04 0.19 0.14 0.09 0.03

sum SEA 0.50 0.28 0.07 0.02 0.35 0.24 0.18 0.10

sum VE 0.50 0.27 0.07 0.04 0.34 0.18 0.18 0.06
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Table 4.11: Results of QPP on ClueWeb09 . Gray rows are baselines. Bold numbers indicate

statistical significance at alpha=0.05. Top-3 metrics in each column are selected by *.

Pearson
Kendal

Tau
Pearson

Kendal

Tau
Pearson

Kendal

Tau
Pearson

Kendal

Tau
agg Method name

1-50 51-100 101-150 151-200

max VAR 0.14 0.28* 0.04 0.23 0.42* 0.27* 0.08 0.01

max SCQ 0.22 0.19 0.24 0.25 0.33 0.30* 0.09 0.03

avg IDF 0.18 0.24* 0.21 0.25 0.27 0.16 0.01 0.05

- SCS 0.18 0.23* 0.19 0.24 0.16 0.10 0.05 0.07

comp PC 0.29* 0.3 0.27 0.15 0.18 0.1 0.24 0.24

max PMI 0.2 0.15 0.12 0.16 0.04 0.07 0.04 0.03

avg NS 0.08 0.08 0.13 0.09 0.11 0.14 0.08 0.03

avg WDC 0.188 0.175 0.131 0.002 0.154 0.037 0.0302 0.055

sum MAD 0.082 0.025 0.087 0.073 0.138 0.07 0.135 0.12

sum NV 0.044 0.054 0.136 0.167 0.27 0.209 0.65 0.013

avg MSN 0.177 0.144 0.115 0.022 0.135 0.214 0.01 0.006

max NVS 0.124 0.05 0.171 0.145 0.109 0.045 0.037 0.027

mean NVM 0.06 0.07 0.00 0.03 0.22 0.12 0.13 0.04

avg BC 0.28 0.22 0.29* 0.28* 0.37 0.26 0.28 0.22

min CC 0.31* 0.22 0.17 0.2 0.47* 0.28* 0.33* 0.36*

avg DC 0.25 0.22 0.31* 0.27* 0.39* 0.15 0.34* 0.38*

max EC 0.06 0.14 0.27 0.16 0.29 0.27* 0.14 0.05

max EWS 0.07 0.13 0.27 0.18 0.27 0.26 0.14 0.06

avg IEF 0.29* 0.17 0.26 0.2 0.17 0.17 0.36* 0.39*

max PR 0.36* 0.13 0.31* 0.29* 0.37 0.18 0.31 0.25

avg EWA 0.22 0.21 0.13 0.01 0.13 0.02 0.00 0.02

avg EWAe 0.19 0.22 0.08 0.03 0.17 0.03 0.08 0.07

mean EWXe 0.25 0.15 0.01 0.07 0.21 0.03 0.03 0.04

avg CEV 0.02 0.7 0.02 0.01 0.30 0.16 0.03 0.01

avg EWAc 0.03 0.03 0.18 0.20 0.22 0.02 0.13 0.03

sum EWNc 0.18 0.09 0.12 0.08 0.24 0.14 0.06 0.08

sum EWXc 0.08 0.04 0.16 0.13 0.19 0.06 0.00 0.16

avg NSC 0.14 0.13 0.15 0.04 0.31 0.07 0.06 0.2

sum SE 0.13 0.05 0.04 0.00 0.24 0.13 0.13 0.07

sum SEA 0.13 0.06 0.09 0.08 0.19 0.11 0.11 0.17

sum VE 0.13 0.03 0.08 0.10 0.19 0.13 0.10 0.10
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Table 4.12: Results of QPP on GOV2 . Gray rows are baselines. Bold numbers indicate

statistical significance at alpha=0.05. Top-3 metrics in each column are selected by *.

Pearson
Kendal

Tau
Pearson

Kendal

Tau
Pearson

Kendal

Tau
agg Method name

701-750 751-800 801-850

max VAR 0.27 0.2 0.06 0.02 0.1 0.05

max SCQ 0.53* 0.36* 0.32 0.29* 0.35 0.23

avg IDF 0.4 0.27 0.25 0.22 0.17 0.14

- SCS 0.34 0.23 0.19 0.19 0.12 0.11

max PMI 0.44* 0.28* 0.26 0.22 0.22 0.16

- PC 0.33 0.25 0.33* 0.24 0.38 0.25

NS 0.11 0.11 0.08 0.11 0.09 0.01

max WDC 0.11 0.13 0.01 0.01 0.24 0.20

mean MAD 0.21 0.11 0.01 0.03 0.15 0.05

avg NV 0.01 0.02 0.12 0.07 0.28 0.11

max MSN 0.16 0.12 0.04 0.03 0.26 0.22

sum NVS 0.08 0.06 0.04 0.08 0.24 0.06

avg NVM 0.17 0.12 0.13 0.09 0.02 0.06

min BC 0.18 0.18 0.28 0.11 0.5* 0.3

max CC 0.14 0.11 0.42* 0.36* 0.51* 0.41*

max DC 0.15 0.12 0.41* 0.36* 0.52* 0.41*

min EC 0.11 0.12 0.24 0.26 0.38 0.3

min EWS 0.12 0.2 0.33* 0.2 0.44 0.31

max IEF 0.18 0.09 0.33* 0.25 0.47 0.34*

avg PR 0.38* 0.28* 0.32 0.19 0.32 0.15

avg EWA 0.15 0.11 0.16 0.15 0.11 0.10

avg EWAe 0.09 0.10 0.17 0.14 0.16 0.17

avg EWXe 0.06 0.09 0.15 0.15 0.17 0.13

max CEV 0.06 0.21 0.10 0.01 0.09 0.07

sum EWAc 0.19 0.13 0.18 0.12 0.21 0.10

sum EWNc 0.16 0.10 0.23 0.16 0.18 0.12

sum EWXc 0.13 0.10 0.15 0.11 0.19 0.09

sum NSC 0.10 0.10 0.14 0.08 0.17 0.07

max SE 0.08 0.03 0.10 0.10 0.37 0.22

max SEA 0.24 0.15 0.07 0.03 0.05 0.02

sum VE 0.10 0.09 0.14 0.11 0.17 0.13
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4.3 Summary

To sum up this chapter, we introduced two test collections on Wikipedia and DMOZ hierarchy

in order to evaluate specificity metrics directly. We generated 713 paths from Wikipedia and

171 Paths from DMOZ with the length of 5. The paths consists of concepts from distinct level

of the hierarchy, which indicate different range of specificity. We utilized the extracted paths

as a gold standard to evaluate specificity metrics. Specificity metrics evaluation task is defined

as ranking the concepts in a path based on the specificity metrics. The more the ranking of

concepts is similar to the actual ranking in the extracted path, the higher the performance of

specificity metric is. We report the result of this experiment among all the proposed metrics

in Chapter 3. We discussed the performance of different groups of metrics and compared

their performance individually. In the direct specificity metrics evaluation, the set of top-5

performing metrics is consisted of the following metrics: Weighted Degree Centrality (WDC),

Inverse Edge Frequency (IEF), Closeness Centrality (CC), Degree Centrality (DC) and Edge

Weight Average centroid (EWAc).

We also proposed a supervised algorithm to estimate specificity. We used all the proposed

metrics as features in order to apply the learning to the rank algorithm to measure the specificity

of terms. Our results show that using all the proposed metrics can lead to a more accurate

estimation of specificity.

Finally, we used specificity metrics in order to predict query performance before retrieval

happens. We run the experiments on three different TREC corpus, including robust04, ClueWeb09,

and GOV2. We investigate the consistency among the performance of specificity metrics on
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different corpora and topics. We conclude that DC, CC and IEF from graph-based specificity

metrics are having the best performance. They even outperform the state-of-the-art baselines

on the pre-retrieval QPP. Considering the two evaluation tasks, i.e, direct specificity evaluation

and QPP task, we can reach the conclusion that DC and CC, which are centrality measures

have most satisfactory performance in both tasks.
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Chapter 5

Conclusions and Future Work

5.1 Concluding Remarks

In this thesis, we explored how the geometric properties of neural embeddings can be used to

estimate the term specificity metrics in order to predict query performance. The motivation is

that while corpus-level frequency information is not accessible from neural embeddings, other

forms of inter-term associations could be identified and measured based on neural embeddings

for determining characteristics such as term specificity, which have shown to be correlated with

query difficulty [9]. While it is not possible to measure frequency information from neural

embeddings, they are convenient for identifying the set of highly similar terms to a term based

on vector similarity. We formalize our recursive definition of specificity, i.e., the extent to which

a term is specific can be determined from the context created by the surrounding highly similar

terms within the neural embedding space. In order to formalize specificity, we first define the

notion of an ego network built based on term similarities within the embedding space. Such a
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network provides a context for defining specificity-based QPP metrics.

Based on the ego network and similar term in the neighborhood of the ego concept, we pro-

posed four different categories of specificity metrics including neighborhood-based, graph-based,

cluster-based and vector-based. We evaluated the proposed metrics directly and indirectly.

In order to evaluate the proposed metrics directly, we provided two test collections based on

two legit hierarchies i.e, Wikipedia and DMOZ. The two test collections are consisted of paths

with the length of 5 that are ordered from the most generic to the most specific concept. By

ranking the concepts on each path base on the proposed specificity metric and compare it to

the actual ranking of the concepts, we can assess the performance of the specificity metrics.

We conclude that among all the proposed specificity metrics, Weighted degree centrality

(WDC) from neighborhood-based , Inverse Edge Frequency (IEF) metric, Degree Centrality

(DC) metric , Closeness Centrality (CC) metric from graph-based and Edge Weight Aver-

age centroid (EWAc) metric from cluster-based category performed the best.

We have shown that it is possible to devise metrics based on the neural embedding-based

representation of terms to perform pre-retrieval QPP. More specifically, we have shown that

specificity of a query term, estimated based on its ego network, can lead to stronger perfor-

mance on QPP compared to the state of the art that considers term clusters based on neural

embeddings [8]. Closeness Centrality showed a balanced performance over different topics sets

and corpora, although with high time complexity. The alternative, computationally inexpen-

sive, Degree Centrality had a competitive performance on ClueWeb09 and Gov2 but weaker

performance on Robust04.

In this thesis, we have introduced four types of unsupervised metrics, as well as a supervised,
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learn to rank strategy for measuring term specificity based on a collection of neural embeddings.

We have also created and publicly shared a test collection derived from the Wikipedia category

hierarchy to serve as the gold standard for this task.

In summary, our key findings include:

1. Pre-trained, corpus-independent neural embedding representations of terms enable accu-

rate estimates of term specificity

2. Graph-based specificity metrics that consider term neighborhood, as well as term associ-

ations, have the best performance

3. The four proposed types of metrics have synergistic impact on specificity estimation, as

demonstrated through the ablation study

4. The corpus-independent metrics perform better than traditional frequency-based corpus-

dependent specificity metrics to predict query performance.

5.2 Future Work

To further this research, we intend to pursue the following tasks:

1. Post-retrieval QPP: We aim to expand our work by proposing post-retrieval QPP methods

based on neural embeddings.

2. Collection difficulty: Instead of estimating query difficulty, we can incorporate neural em-

beddings in order to measure the collection difficulty. Same as query difficulty estimation,

this can be beneficial to predict a retrieval performance.
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3. Accounting for the information need : Recently, some works [48] have defined a retrieval

system quality as the ability to satisfy the information need behind the query. Therefore,

instead of focusing on query difficulties, they propose to concentrate on the information

need behind the query. In the future, we can explore estimating information need difficulty

using neural embeddings.

4. Parameter tuning: As a next step to our work, we can look into the impact of parameter

tuning on the proposed specificity metrics. We can investigate which of the metrics are

robust to the parameter tuning and which ones can drift by changing the hyper-parameters

such as ε in ε-neighborhood.

5. Complexity analysis: A complexity analysis can be conducted on the proposed specificity

metrics to compare them by their computation expenses. This could be beneficial to chose

the optimal specificity metric in different applications.

6. Specificity metrics applications: As the next step of our work, we can leverage the pro-

posed specificity metrics in different applications. For instance, to expand the query by

more specific terms in order to enhance the retrieval performance or to recommend more

specific entities to users on social media in order to improve the personalized recommen-

dation.
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Acronyms

AP Average Precision. 65, 66

BC Betweenness Centrality. x, 40, 43, 58, 63, 68–71

CC Closeness Centrality. 41, 43, 57, 58, 62, 63, 67–73

CEV Cluster Elements Variance. 46, 47, 59, 69–71

DC Degree Centrality. 40, 43, 57, 58, 62, 63, 67–73

EC Edge Count. 42, 43, 58, 63, 68–71

EEG Electro Encephalo Graphy. 19

EWA Edge Weight Average. 42, 43, 58, 63, 69–71

EWAc Edge Weight Average Centroid. 46, 47, 56, 57, 59, 63, 69–72

EWAe Edge Weight Average-ego. 42, 43, 58, 63, 69–71

EWNc Edge Weight Min Centroid. 46, 47, 56, 57, 59, 63, 69–71
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EWS Edge Weight Sum. 42, 43, 58, 63, 69–71

EWXc Edge Weight Max Centroid. 47, 56, 57, 59, 63, 69–71

EWXe Edge Weight Max-ego. 43, 58, 62, 63, 69–71

HCE Hierarchy Category Embedding. x, 23, 25, 50, 55, 56, 58–60, 64

ICTF Inverse Collection Term Frequency. 20, 21

IDF Inverse Document Frequency. 3, 15, 20, 41, 57, 63, 64, 69–71

IEF Inverse Edge Frequency. 41, 43, 57, 58, 63, 67–73

IR Information Retrieval. 1, 10

MAD Median Absolute Deviation. 34, 37, 58, 63, 69–71

MSN Most Similar Neighbor. x, 35, 37, 43, 58, 63, 69–71

NS Neighborhood Size. 33, 37, 42, 58, 63

NSC Non-Specific Clustering. x, 46, 59, 63, 69–71

NV Neighborhood Variance. x, 35, 37, 58, 63, 69–71

NVM Neighborhood Vector Magnitude. xii, 36–38, 58, 63, 69–71

NVS Neighborhood Vector Similarity. x, 35–37, 58, 63, 69–71

ODP Open Directory Project. 53
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PC P-Clarity. 59, 69–71

PMI Point-wise Mutual Information. 17, 18, 69–71

PR Page Rank. x, 41, 43, 58, 63, 68–71

QL Query Likelihood. 66

QPP Query Performance Prediction. vii, viii, xi, 2–4, 6–8, 11, 13–22, 25, 49–51, 65–71, 73,

75, 76

QS Query Scope. 20

SCQ Collection Query Similarity. 15, 16, 68–71

SCS Simplified Clarity Score. 21, 63, 64, 69–71

SE Sum Embedding. x, 47, 48, 59, 63, 69–71

SEA Sum Embedding Absolute. x, 48, 59, 62, 63, 69–71

VE Var Embedding. 48, 59, 63, 69–71

WDC Weighted Degree Centrality. 33, 34, 37, 57, 58, 62, 63, 69–72
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