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Abstract 

Dual-Resource Constrained (DRC) systems consist of two resources: workers and machines 

(stations). DRCs have become common in manufacturing and service firms that emphasise 

flexibility, where workers perform different tasks. Although having a flexible workforce is 

beneficial, it comes at a cost. When workers alternate between different jobs the productivity of 

the system is affected. On one hand the system becomes more responsive to changes 

(internal/external), and on the other hand worker productivity and system throughput deteriorate 

because of the loss of knowledge and workers’ fatigue. This subjects workers to conflicting 

phenomena. When workers are performing a task they are learning but also accumulating 

fatigue, which may result in error or injury. When transferred to another task, or on a break, 

workers may forget what they have learnt but at the same time recover from fatigue, either fully 
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or partially. In particular, forgetting and fatigue are interesting to be considered as they directly 

affect the quality of products. 

This research investigates the effects of workers’ learning-forgetting and fatigue-recovery on 

DRC systems. First, it modifies a known learning-forgetting model by accounting for fatigue and 

recovery. Second, it assumes that the quality of a production process may deteriorate and 

generate defective items that require rework. Third, a human error model is developed that 

considers human learning-forgetting and fatigue-recovery in producing defective items. Fourth, a 

comprehensive model is developed that integrates learning, forgetting, fatigue, and recovery into 

a DRC system with quality consideration. This model is investigated for different transfer and 

flexibility policies. Numerical results provide insights and guidelines that may help operations 

managers with decisions on how to improve a system’s performance and throughput, while 

considering worker welfare. Results indicate that it is important to consider workers capabilities 

and limitations when designing manufacturing systems. They also suggest that ignoring human 

restrictions and abilities results in unrealistic production planning and erroneous cost estimation. 
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1. Introduction 

1.1 Overview 

Dual-Resource Constrained (DRC) systems are working environments where the number of 

workers are less than the number of machines or workstations (Zamiska et al., 2007). Workers in 

a DRC system are cross-trained to acquire several skills that increase their flexibility and allow 

them to perform a variety of tasks (Thannimalai et al., 2013). Cross-trained workers usually 

handle situations of unexpected orders and unbalanced workloads. A flexible workforce helps 

reduce lead times and improve customer service (Nembhard et al., 2002; Bokhorst & Gaalman, 

2009); however, having a fully cross-trained workforce is infeasible due to the cost of training 

and equipment (Gel et al., 2007; Robbins et al., 2007). In labour-intensive environments, 

workers accumulate experience (by learning through repetitions) which is partially lost (due to 

forgetting effects) when they are either on a break or transfer to perform a different task. Also, 

when performing a job, a worker accumulates fatigue, which is alleviated by rest breaks or 

moving to a physically less demanding job. The performance of a DRC system improves 

(impedes) through workers’ learning (fatigue) and impedes (improves) because of forgetting 

(recovery). So, intermittent production cycles of learning/fatigue and forgetting/recovery have 

adverse effects on the system performance. While the performance of DRC systems may 

improve with the flexibility of workers (Jaber et al., 2003; Azizi et al., 2010; Jahandideh, 2012), 

alternating between different jobs or going on a break causes forgetting that impedes the 

performance and affects the quality. Learning and forgetting, fatigue and recovery, and quality in 

DRC systems have been studied separately, but, to the best of the author’s knowledge, there is no 

study in the literature that captures the combined effect of these phenomena. The present thesis, 
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contributes to the DRC system literature by presenting a production planning model that captures 

the aspects of human involvement and creates production schedules that are more realistic and 

applicable to such work environments.  

1.2 Problem Statement 

The analytical works that investigated the effects of learning and forgetting of workers on DRC 

systems are limited in number. Also, other human factors have not been given much attention in 

DRC systems, like workers’ fatigue and recovery. Another human aspect that has not been 

considered in a DRC setting is human error.  

Addressing above limitations will have a significant impact on production environments that 

require a flexible workforce. It will provide production managers with some guidelines regarding 

which factors to consider when improving the process and how these factors interplay and affect 

the performance and throughput of the systems they are managing. 

The purpose of this research, therefore, is to develop an inclusive model for DRC systems that 

considers human abilities and limitations in terms of learning, forgetting, fatigue, and recovery. 

It also considers product quality that may be the result of the human behaviour indicated above.  

1.3 Objectives 

This research project is organised into four phases. In each phase, one or more research questions 

are posed and then addressed.  

Phase 1 incorporates fatigue and recovery models into an existing learning and forgetting model. 

It aims to answer the following research questions: 
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- How do fatigue and recovery constrain the performance of a system? 

- What is the effect of interactions of the learning, forgetting, fatigue, and recovery 

behaviour of a worker on the process outcome? 

- What effects do the learning, fatigue, and recovery parameters have on the production 

process? 

- What effect does the number of batches have on the production process? 

The results of this Phase of the research may help managers in addressing possible issues relating 

to workers’ capabilities and limitations in a production environment. They also provide a basis 

for further research on the workforce scheduling and process improvement.  

In Phase 2, a quality learning curve model is modified to account for the forgetting effect to 

answer the following research questions: 

- How do learning and forgetting in the production process affect the lot size and batch 

policies? 

- How do learning and forgetting in production and rework processes affect the lot size and 

batch policies? 

- How do maintenance restorations affect the lot size and batch policies, and subsequently, 

process performance?  

- How do maintenance restorations affect the standard time (learning plateau)? 

The results of this Phase are useful in setting strategies for quality improvements, waste 

reduction, and for improving the standard time. 
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In Phase 3, a Human Reliability Analysis model is developed that captures the interactions of 

learning, forgetting, fatigue, and recovery in generating human error and defective items. The 

following research questions are answered in this Phase: 

- How do the learning-forgetting and fatigue-recovery behaviour of a worker incorporate in 

generation of defective items? 

- How the learning, fatigue, and recovery parameters affect the human error rate? 

- What work-rest schedules yield the highest process throughput or the lowest worker 

fatigue in the absence or presence of breaks?  

The results of this Phase are useful to find the optimized schedules for increasing a system’s 

throughput or improving a worker’s welfare.  

In Phase 4, the previous models are integrated into a DRC system with worker flexibility and 

transfer policies. Phase 4 of this research is the final phase of this research and accounts for 

learning-forgetting, fatigue-recovery, and process and product quality. The following research 

questions are answered in this Phase: 

- How do accounting for learning-forgetting, fatigue-recovery, and product quality affect 

the performance of a DRC system? 

- Is there an optimal flexibility level? 

- Is there an optimal worker transfer policy?  

The results of this Phase indicate that considering the human aspects in DRC systems generates 

more realistic policies than what currently are presented in the literature.  
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1.4 Organization of the dissertation 

The rest of this thesis is organized as follows. In Section  2, a literature review of DRC systems is 

presented and the existing research gaps are identified. Section 3 provides the framework and 

methodology of the research and states the research objectives. Sections 4, 5, 6, and 7 are 

representing Phases 1, 2, 3, and 4 of this research respectively. Section 8 provides contributions, 

limitations, and future directions of the thesis and Section 9 represents a summary of the 

previous Phases and concludes the thesis.    
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2. Literature review 

2.1 Learning curves 

Learning is a phenomenon that has been studied in various industries from aircraft 

manufacturing (Wright, 1936; Benkard, 2000) to industrial processes (Argote & Epple, 1990; 

Gulledge et al., 1990; Mitchell, 2000; Chatzimichali & Tourassis, 2007) and service sectors 

(Reis, 1991; Vasdev et al., 2012). Waldman (2011) categorized the learning curve (LC) models 

into two groups: classical and inverted. In the classical learning curve, production cost (time) 

decreases with each repetition, while in the inverted LC, improvement is measured by the 

number of good quality outcomes. There is no consensus among researchers though whether 

improvement continues indefinitely (Wright, 1936), or it reaches a point beyond which no 

improvement occurs (see Jaber and Guiffrida, 2004 and 2008).  

Factors such as task complexity, structure of training programs (Serel et al., 2003), worker’s 

motivation (Azizi et al., 2010), and prior experience (Cherrington et al., 1987; Nembhard & 

Uzumeri, 2000b) affect the learning behaviour of subjects. According to Anzanello and Fogliatto 

(2011) the most commonly used learning curve models are the Log-linear model (Wright, 1936), 

the S-shape model (Carr, 1946; Jordan, 1958), the Exponential model (Mazur & Hastie, 1978), 

the Hyperbolic model (Gulliksen, 1934), and the Multivariate model (Gold, 1981). Among these 

models, the Log-linear model has been widely used because of its simplicity and ability to fit 

data well. For example, the Log-linear model has been used for modelling a worker’s learning 

behaviour (Gruber, 1992), to measure progress in aerospace industry (Garvin, 2000), for life 

cycle estimation (Kortge et al., 1994), to investigate the effect of production breaks on 
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production rates (Argote & Epple, 1990; Jaber & Bonney, 1996), and to investigate the effect of 

quality of a production process on performance (Jaber & Guiffrida, 2004, 2008).  

2.2 Forgetting models  

Although there is enough evidences that forgetting occurs in organizations (Argote & Epple, 

1990; Benkard, 2000; Nembhard, 2000; Kleiner et al., 2011), there is no consensus among 

scientists on the factors that cause forgetting; however, production breaks are thought to be the 

primary cause of forgetting (Anderlohr, 1969; Cochran, 1973). Attempts to mathematically 

model the effects of forgetting in the industrial engineering literature are as early as the works of 

Hoffman (1968) and Adler and Nanda (1974).  

Tight competence of professional firms and organizations, based on their knowledge and 

experience, makes forgetting and knowledge depreciation, a primary concern to many firms as it 

negatively affects the competitive advantage they have in a market (Karaoz & Albeni, 2005). 

Measuring and evaluating this depreciation in knowledge, provide managers with strategies to 

sustain the levels of desired knowledge in their firms.  

Modelling the forgetting behaviour falls in one of the three groups of mathematical, 

experimental, and empirical models. The works of Carlson and Rowe (1976), Globerson and 

Levin (1987), Elmaghraby (1990), and Jaber and Bonney (1996) fall in the first group with some 

of them were tested against experimental or empirical data. The works of Bailey (1989), 

Globerson et al. (1989), and Hewitt et al. (1992) are from the second group, where forgetting was 

modelled using data collected from laboratory experiments performed by students as surrogates 

of workers in manufacturing environments. Nembhard (2000) and Nembhard and Uzumeri 
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(2000a) cautioned against using these models as they use single rather than multiple breaks when 

modelling forgetting. Badiru (1995) and Nembhard and Uzumeri (2000a) form the third and final 

group who modelled forgetting using empirical data collected from industrial settings.  

The most common forms of forgetting curves are: Linear, Variable Regression Variable 

Forgetting (VRVF) or Power model (Carlson and Rowe, 1976), Hyperbolic (Mazur & Hastie, 

1978), Exponential (Globerson & Levin, 1987; Mensik & Raaijmakers, 1988), S-shape 

(Globerson & Levin, 1987), Logarithmic (Woodworth, 1938), Exp-power (Wickelgren, 1972), 

Variable Regression Invariable Forgetting (VRIF) model (Elmaghraby, 1990), Learn Forget 

Curve Model (LFCM) (Jaber & Bonney, 1996), Recency model (Nembhard & Uzumeri, 2000a), 

Power Integration Diffusion (PID) model (Sikström & Jaber, 2002), and Depletion Power 

Integration Latency (DPIL) model (Sikström & Jaber, 2012).   

2.3 Fatigue models 

Grandjean (1979) has defined fatigue as “a loss of efficiency and a disinclination for any kind of 

effort”. Fatigue was also defined as the difficulty in the initiation or sustainability of voluntary 

activities in clinical use (Chaudhuri & Behan, 2004). Fatigue can be classified into two 

categories: Psychological (mental) and Physiological (muscular) (Nozaki et al., 2009).  

Muscular fatigue is painful. It arises from overstressing muscles and reducing their tolerance to 

stress (Grandjean, 1979), which may indirectly lead to tissue damage or injury (Krajcarski & 

Wells, 2008). Mental fatigue has been described by Grandjean (1979) as “a diffuse sensation 

which is accompanied by feelings of indolence and disinclination for any kind of activity”.  
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Fatigue, in a general sense, results from the mental and physical activities performed by 

individuals. It is alleviated during rest breaks including sleep (Grandjean, 1979; Sikström, 2011). 

Krajcarski and Wells (2008) showed that in systems with short production cycle times, workers 

recover from fatigue faster than systems with long ones, where less or no fatigue build up occurs 

across work shifts. 

Rest breaks help alleviate body fatigue and recover a worker to his/her normal strength and 

capacity. In a flexible workforce such as DRC systems, workers alternate between different tasks 

that require various physical and mental workloads. When a worker performs a task, body 

fatigue is accumulated at a rate up to a threshold value (maximum endurance time). This fatigue 

is either alleviated by a rest break or by the worker moving to perform another task that has 

less/different physical demand allowing for some recovery. However, some of the learning 

acquired previously is lost when the worker is away from a task for some time (Kher et al., 1999; 

Kher, 2000).  

Fatigue can be measured either by “objective” or “subjective” methods. For instance, the 

situation of mental fatigue is measured based on the self-report techniques and they are assumed 

to be “subjective” (Perez, 2011). Physical fatigue on the other hand, has been measured by many 

different “objective techniques” such as heart rate, electromyography, maximum endurance time, 

levels of oxygenation, and blood perfusion.  

2.3.1 Mental Fatigue models 

Nervous (mental) fatigue has been described as a function of several parameters such as 

temperature and moisture, noise, light, management weakness, mental involvement,  
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forgetfulness, stress, job complexity, retraining, lack of team work, time constraints and 

vibration (Shahraki & Bin Abu Bakar, 2011). There is no mathematical or quantitative model to 

measure mental fatigue; however, some scientists have tried to measure mental fatigue in 

experimental studies such as Murata et al. (2005), Vitório et al. (2012), and Gangopadhyay and 

Das (2012).  Forgetting could be also considered as a result of mental fatigue.   

2.3.2 Physical Fatigue models 

Most existing physical fatigue models use either empirical or theoretical methods to approximate 

a worker’s fatigue buildup over time. Empirical models usually use regression tools to derive the 

relationship between muscle fatigue and a task’s quantifiable inquiries such as load and time 

(Xia & Frey Law, 2008). Theoretical fatigue models, on the other hand, are usually applicable to 

specific groups of muscles and movements. These models can be divided into static and dynamic 

models. Static models usually use Maximum Endurance Time (MET) and Maximum Voluntary 

Contraction (MVC) as the key parameters to measure fatigue. El ahrache et al. (2006) compared 

twenty four MET models and concluded that there are significant discrepancies between MET 

models of back/hip, upper limb, or general muscles and MVC limits that have been considered 

and reported by researchers. Dynamic models are used to determine the fatigue in dynamic work 

environments. For instance, Liu et al.(2002), Xia and Law (2008), and Law et al. (2012) have 

developed models for muscles’ activation, and fatigue and recovery in dynamic loading 

conditions. Ma et al. (2009) developed a simple dynamic fatigue model considering the exerting 

load, workload history, and individual differences. This model is based on the hypothesis that 

maximum exertable force of the body declines with time, which is not being considered by static 

models. They validated their model mathematically with twenty four existing MET from static 
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models (by considering the external load of the muscle constant) and three dynamic models 

(Freun’s model for forearm (2001), Wexler’s model for Ca
2+

 cross bridge mechanism (1997), 

and Liu et al. (2002). But this model has not been verified experimentally. The number of 

parameters to be determined, model complexity, and also restricted applications makes the 

existing muscle fatigue models either incomplete or unable to predict the general sense of fatigue 

in the body. In summary, fatigue measuring models are very different both in context and results 

and there is little agreement on the best approach. 

2.4 Recovery models 

Rest breaks are given to workers to have them recover from fatigue build-up. Determining the 

optimal length of the break time is one issue that has not been addressed correctly in the 

literature. As Mital et al. (1991) pointed out, the schedule and the length of break times are 

usually decided on through a management-union deliberations/agreements and are not based on 

any scientific or engineering rationale.     

Many of the fatigue-recovery models have parameters such as maximum endurance time (MET) 

and maximum voluntary contraction (MVC) levels, with percentages of them relative to the 

applied force or exposure time to be determined (Rohmert, 1973a, 1973b; Mital et al., 1991; 

Rose et al., 1992). Also, many of the models describe the rest allocations based on the fatigue of 

a specific part of the body (Iwanaga et al., 2000), which limits their applicability in more general 

cases such as entire body fatigue. The literature shows that there is no common consensus among 

researchers on how to schedule rest breaks and calculate their lengths (El ahrache et al., 2006).  
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2.5 DRC systems with learning and forgetting 

Learning, in an assembly job, can occur in the following steps: component identification, 

understanding the sequence of the assembly activities, and assembling of parts (Zamiska et al., 

2007). When transferring between (different) jobs, a worker has the opportunity to practice 

his/her skills to maintain or improve his/her learning. However, in a DRC system, flexible 

workforce may suffer from forgetting as a result of alternating among different jobs. Previous 

studies indicate that productivity loss is a side effect of flexible workforce in DRC systems 

because of forgetting (Zamiska et al., 2007; Jaber & Neumann, 2010). As the flexibility of a 

system increases, forgetting increases, which incur additional costs to the system since the 

worker, must re-learn the task that he/she revisits. Previous studies suggested that learning and 

forgetting must be modelled simultaneously in order to take advantage of the flexibility policies 

towards the organization’s benefit (Kher et al., 1999). Several studies investigated the effect of 

flexibility and worker transfer policies in DRC systems to maximize the effect of learning and 

minimize that of forgetting. These studies consider periodic retraining, controlling the length of 

interruptions in the learning process, and utilizing the optimal level of flexibility, i.e. the number 

of tasks that a worker should be trained to perform (Kher et al., 1999; McCreery & Krajewski, 

1999; Zamiska et al., 2007). McCreery and Krajewski (1999) developed a model for an assembly 

line with learning and forgetting effects to investigate the use of workforce flexibility as a mean 

to improve the performance of the line. They provided cross-training policies to assign workers 

to tasks, and investigated the effect of product variety and task complexity. Using simulation and 

experimental design, they found that as task complexity increases, deployment of workers should 

be restricted and only low level of cross-training is needed. As the product variety increases, 

cross-training should be increased and deployment should be flexible. When both task 
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complexity and product variety increase, cross-training should increase and deployment should 

be restricted. If task complexity and product variety are low, the authors found that a moderate 

amount of cross-training and flexible deployment is best.  

Kher et al. (1999) and Kher (2000) studied worker training issues associated with learning and 

forgetting in DRC systems. They have used the learn-forget-learn model of Carlson and Row 

(1976) and found that in the presence of high forgetting rates, applying flexibility policies may 

not be feasible and if the forgetting rate is high (less than 85%), then flexibility reduces worker 

efficiency. These studies suggest that in the presence of learning and forgetting, the benefit of 

worker flexibility is situational. If the flexibility cost is low, incremental flexibility improves the 

shop performance; however, if the learning losses are high, flexibility may worsen inventory and 

customer service performance. Also, they concluded that in the presence of low forgetting rates 

(90-95%), upfront training does not impact the performance. Jaber et al. (2003) investigated the 

flexibility with the task similarity factor in the presence of learning and forgetting. They found 

that reducing the frequency of worker transfer to other tasks, reduces forgetting losses. They also 

observed that as task similarity increases, the importance of training and deployment decreases.    

Yue (2005) studied workers flexibility in parallel DRC systems with learning and forgetting 

effects. They found that in the case of fast learning/forgetting, flexibility may not improve the 

performance of the system since more flexibility requires more learning and incur more 

forgetting. However, to manage the workload, a certain amount of flexibility is desired (Kim & 

Nembhard, 2010). Jaber and Kher (2005) investigated workforce cross-training in DRC systems 

assuming that the production process may go out-of-control and produces defects that need 

rework. They have considered different patterns for learning in production and rework and 
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examined the cross-training policies that produce less defective items. Their results indicated that 

for highly motor tasks, no upfront training is recommended and batch sizes decrease with less 

defects, which allows for more flexibility. Also they concluded that in 50% of cases, no upfront 

training is recommended.  

In another study, Zamiska et al. (2007) applied a Dual-Phase Learning Forgetting Model 

(DPLFM) to consider the motor and cognitive contents of learning of a task. They have used the 

criteria defined by Dar-El et al. (1995) to include four different task types: purely motor, more 

motor than cognitive, more cognitive than motor, and purely cognitive. The authors compared 

their result with the previous study by Jaber et al. (2003), who utilized Learn Forget Curve 

Model (LFCM) to capture the learning and forgetting effects. Zamiska et al. (2007) indicated that 

the task’s learning rate and proportion of cognitive and motor contents affect the performance of 

training and deployment policies in a DRC system. For instance, upfront training reduces the 

forgetting losses more effectively in the LFCM than in the DPLFM. Also, reducing the 

frequency of worker transfer, by reducing the forgetting effect, is more effective in the LFCM 

than the DPLFM. This study corroborates the results of Jaber et al. (2003), that it is not necessary 

to increase both the transfers and upfront training in the presence of low forgetting rates, since 

only one of them, suffices to counter the forgetting losses. For high forgetting rates, both 

transferring the workers and providing upfront training is necessary to confront the forgetting 

effects. In general, these two studies, indicate that the lower the learning rate or the R-value of 

the task (R-value is defined as the ratio of the time for the first repetition under purely cognitive 

condition to the time for the first repetition under the purely motor condition), the greater is the 

need for a combination of reduced transfer policies or increased upfront training to confront the 

forgetting losses (Zamiska et al., 2007).  
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Kim and Nembhard (2010) investigated the minimum staffing levels in parallel DRC systems in 

the presence of heterogeneous and individual learning and forgetting with a fixed production 

horizon. They studied worker selection policy, task heterogeneity (the variance among tasks with 

respect to task complexity), cross-training, time- schedule granularity (i.e. longer rotations mean 

fewer rotation over a given time horizon where finer granularity means shorter periods), and the 

production requirement. They observed that: first, a best workforce subset (the collection of best 

performing workers) requires fewer workers than an average subset (a collection of average 

performing workers). Secondly, restricting the extent of cross-training requires more workers. 

Thirdly, the time granularity does not influence the minimum staffing level.  

Guimarães et al. (2012) studied the effect of rotation between tasks of different complexities on a 

workers’ learning rate and performance. They have adopted two scenarios: the first scenario is 

when a worker transfers from an easy task to a difficult one. The second scenario describes the 

transfer of workers from a difficult task to an easy one. The level of task difficulty is determined 

by the task complexity according to an expert’s assessment. They have measured the 

performance of workers in two scenarios in a pilot line in a Brazilian shoe factory using a 3-

parameter hyperbolic LC model of Mazur and Hastie (1978). Their results showed that there is 

no major difference in the performance of workers in the two groups and they concluded that 

task complexity does not change the workers’ learning rate and performance. Following this 

result, they applied Macroergonomic Work Analysis (MA) analysis to a pilot line consisting of 

100 workers. The MA method consists of applying training procedures and ergonomic 

improvements. To apply training procedures, workers with a good background were chosen to 

teach the task and its shortcuts to less skilled colleagues. Consequently, most workers in the pilot 

line, were able to perform more than150 tasks in 3.5 years. Once workers were assumed to be 
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multifunctional, they used task rotation procedures when every worker was able to change the 

workstation after 1.5 or 2 hours. In the multifunctional system, workers became indispensable 

and they were not worry about the quality problems of the assembly line, since it was the team 

responsibility not the person. The pilot line along with the introduction of some ergonomic 

improvements such as using personal protective equipment and water based glues, demonstrated 

3% higher production, and reduction of 85% in rework. The rate of absenteeism reduced by 45%, 

and Work Related Musculoskeletal Disorders (WMSD) and turnovers no longer were observed.  

Azizi and Liang (2013) developed a model to assign working and training schedules and rotating 

workers between tasks while minimizing the total cost of training, flexibility, and productivity 

loss and solve the model by a two-phase heuristic. They have considered the workers’ level of 

skill by their learning and forgetting, and investigated the effect of rotation intervals on the skill 

variation which affects the training costs subsequently. Their model also includes the minimum 

residency time (the time that worker must spend on a task before being eligible to transfer to 

another task) and heterogeneous flexibility, i.e. different levels of task proficiency. Their 

findings indicated that the length of the rotation interval has a significant impact on the total cost 

and the shorter the interval, the higher is the total cost. Also, they observed that when the multi-

functionality is low and uniformly distributed among workers, better results are obtained. The 

results of Azizi and Liang (2013) indicated that longer residency time and rotation interval, 

enhance a worker’s skills by learning. Also, reducing the level of multi-functionality, by 

providing equal opportunities for workers to learn and enhance their skill level, incur to lower 

costs.   
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Previous studies, including the above mentioned, have largely contributed to understanding the 

behaviour of DRC systems in the presence of learning and forgetting. However, the literature 

suffers from a lack of attention towards human effects on DRC systems. Although, learning and 

forgetting, are important aspects of human involvement, other aspects such as fatigue and 

recovery, human error, and its influence on the quality of final products have not been 

considered by the above mentioned researches. In the following sections, a literature review 

considering human factors in production planning and DRC systems is presented.  

2.6 DRC systems with human factors 

The ratio of the number of workers to the number of machines expressed as a percentage 

between 0% and 100% is defined as the “staffing level” (Lobo et al., 2014). Since the staffing 

level in DRC systems is usually less than 100% (Jaber & Neumann, 2010), workers are 

transferred between tasks to fulfil the orders and share the workload. A flexible workforce 

reduces lead times and inventories, and also reduces fatigue, boredom, repetitive stress, and 

injuries (Hopp & Oyen, 2004; Jorgensen et al., 2005).  

Carnahan et al. (2000) developed an integer programming model for job scheduling to reduce the 

potential of back injury in the workers. The schedules consisted of lifting tasks whose potential 

for causing injury was assessed by a job severity index provided by Liles (1986). Using a genetic 

algorithm, they created job rotation schedules to maintain the productivity while controlling the 

exposure to musculoskeletal strain. Tharmmaphornphilas et al. (2003) developed a model to 

reduce the likelihood of worker hearing loss by rotating the workers through different jobs 

during the day. They performed a computer simulation based on the data collected from a real 

setting and used noise regulations of the National Safety Institute of Occupational Safety and 
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Health (NIOSH) concerning safe duration of noise exposure. They were able to reduce the 

maximum daily dose of time-weighted average sound level that any worker was exposed to by 

58.8% with improved schedules.  

In another study, Aryanezhad et al. (2009) investigated safe skill-based job rotation scheduling 

by integer programming to simultaneously minimize the maximum occupational noise exposure 

injuries and the potential of worker’s low back pain. They assessed the noise exposure level of 

each job by daily noise dosage and the potential for low back injury by job severity index 

provided by NIOSH regulations. They found that considering only one objective (noise dosage 

or back injury), may sacrifice the other one. The model was able to provide a trade-off between 

both objectives; however, in some cases, finding the feasible solution was not possible and 

allowed noise exposure or job severity level exceeded. They concluded that in real cases, it may 

be impossible to take predefined thresholds for noise exposure or job severity into consideration 

because of the nature of the job and types of machines. Lodree Jr et al. (2009) conducted a job 

scheduling accounting for physical and/or cognitive human characteristics. They identified 

human characteristics related to task sequencing that could establish a framework for that 

purpose for any working environment with productivity and safety objectives that is 

characterized by demanding and various tasks. They argued that learning-forgetting, 

performance measurement related to accuracy (quality), fatigue and cumulative workload, as 

well as individual differences and limits, play an important role in task sequencing. Therefore 

many of the traditional scheduling methods are not applicable when tasks performed by human 

resources. Authors asserted that the integration of elements of classical scheduling models with 

human performance modeling leads to the better characterization of the task outcome.  
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While the work of Lodree Jr et al. (2009) provides an important milestone in job scheduling 

involving human, the effect of the excessive flexibility and visiting several work stations with 

different physical demands in increasing the exposure of the workers to fatigue, injuries, or error 

committing is not clear. There are very few studies that investigated the risk of fatigue or injury 

as a result of job rotation or considered them in solving job rotation problems. The next section 

provides a literature review of DRC studies that considered human fatigue and recovery.  

2.7 DRC systems with fatigue and recovery 

High loads and recurrent or prolonged loading generate fatigue that is a source of error, 

accidents, and quality issues at any involvement level such as operation, maintenance, 

engineering, and management (Dinges, 1995; Sherman, 2003; Dionisio, 2010; Bevilacqua et al., 

2012). Fatigue is usually alleviated by transferring a worker to a physically less demanding task 

or by giving the worker a rest break (Jaber & Neumann, 2010; Horton et al., 2012). Although 

fatigue has been identified as a potential research area in many recent studies, fatigue and 

recovery have not received much attention in the Operations Research literature and the studies 

that captured the effects of worker fatigue on the production output and the quality of work are 

scarce. Fatigue is more concerned in DRC systems where workers transfer between tasks with 

different workload. In these systems, the production planning schedule should provide the 

workers with the required recovery, which is accomplished by either rest breaks or transferring 

workers from jobs with higher to the ones with lower workloads. Therefore, the traditional 

production planning might be revised in this context to avoid overloading workers and fulfilling 

the demand at the same time.  
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There are very few studies that have utilized workers fatigue and recovery as a constraint for 

obtaining transferring schedules. The study by Jaber and Neumann (2010) is believed to be the 

first to model worker fatigue and recovery in a DRC job shop system to address the flexibility 

issues associated with the workload. Considering a linear model for physical fatigue, i.e. fatigue 

increases linearly with time, Jaber and Neumann (2010) developed a Mixed-Integer Linear 

Programming (MILP) model in which the objective function is a combination of productivity 

and physical loading where their importance or weights is determined by a manager, union, or 

analyst. In this model, as productivity increases, with the number of workers constant, the work 

load on the workers and accordingly their fatigue increases. Minimizing the above objective 

function with respect to the time and fatigue constraints will yield the optimum schedule. To 

simplify the MILP model, the authors considered four practical cases with combinations of two 

tasks with breaks. The results suggested that if productivity is preferred over fatigue, full 

recovery after the second task is recommended. On the other hand, if minimum fatigue is 

preferred over productivity, full recovery after each task is recommended. Their results also 

suggested that having a shorter residence time (minimum time to spend on each task before the 

worker transfers to another task) improves the overall performance of the system by shortening 

the cycles that generate fatigue which can be recovered in shorter breaks. The recovery rate and 

the load level also showed to affect the system performance, i.e. faster recovery and an unequal 

load level for the two tasks (fraction of maximum load) improve the system performance.  

Following Jaber and Neumann (2010), Othman et al. (2012) developed a workforce scheduling 

model including human aspects such as skill level, training, personalities, and worker fatigue and 

recovery. Considering four different objective functions to minimize the cost, firing the high 

performance workers, fatigue, and idle time, they have created a multi-objective integer 
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programming model for staffing decisions in a heterogeneous workforce in which workers have 

different personality and skill levels. They observed that fatigue is not significantly important for 

day scheduling purposes from an economic perspective but it may be utilized to determine the 

required break time for the worker. Azizi et al. (2010) modelled job rotation in cycles of 

motivation and boredom of the worker while considered the effects of learning and forgetting on 

skill variation. They attempted to balance the positive aspects of the job rotation with the 

associated costs of skill deterioration as a result of forgetting. They minimized the total delay 

during a production horizon caused by worker’s boredom and/or skill deterioration. The results 

of their study show that the total delay significantly decreases when a partial or complete rotation 

plan applies. However, if the skill improvement is prioritized over the worker motivation (i.e. the 

primary objective is to improve the skills), then the job rotation plan may even increase the total 

tardiness. This result is interesting since by transferring between different jobs, the worker has 

less time for skill improvement and may make more errors that generate items that require 

rework. This suggests that the effect of transfer policies on product quality should be considered 

when modelling DRC systems (Pinker & Shumsky, 2000). 

2.8 DRC systems and quality of the products 

Most of the DRC system studies consider the output (products) to have a perfect quality. 

However, this is not the case in real industrial environments where defective items are generated 

by machine malfunction or human error. The author found two studies that considered product 

quality with cross-training and rotation policies in DRC systems. The first study is the one by 

Jaber and Kher (2005) who investigated quality issues resulting from machine malfunction. They 

investigated cross-training policies in a DRC system with an imperfect production process where 
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the generated defective items are reworked. They adopted the Porteus (1986) model to simulate 

the situation where production process deteriorates from an ‘in-control’ state to an ‘out-of-

control’ state with defective items produced as a result. The result of this study was presented in 

sub-section ‎2.5. The second study is that of Michalos et al. (2013) who considered human error 

in producing quality deficits by investigating the effect of job rotation on the quality of the final 

product in a human-based assembly environment. They have modelled human error with task 

repetitiveness, competency level, and physical fatigue. The result of their study demonstrated 

that the quality of the final product is affected by human fatigue, which causes errors. The 

findings also indicated that applying job rotation significantly enhances product quality and 

reduces errors.  

2.9 Research Gaps  

The above literature review shows that there is no study that investigates a DRC system in the 

presence of learning, forgetting, fatigue, recovery, quality, and human error. Table 2-1 identifies 

the research gaps in the literature by identifying human aspects each study considered and 

whether they were considered in a DRC setting. The table clearly depicts the research gaps 

(empty cells) and the contribution of this thesis to the literature. 

 

 

 



23 

 

Table  2.1. The contribution of the proposed research to the industrial engineering literature. 
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Porteus (1986)           

Jaber and Bonney (1996)         

Konz (1998)         

Kher et al. (1999)         

Jaber et al. (2003)         

Jaber and Guiffrida (2004)         

Khouja (2005)         

Jaber and Kher (2005)         

Jaber and Guiffrida (2008)         

ElMaraghy et al. (2008) 
  

   
 

  

Ma et al. (2009)
1
 

  
   

 
  

Jaber and Neumann (2010)         

Myszewski (2010)     
 

  
 

Myszewski (2012)     
 

  
 

Guimarães et al. (2012)         

Glock and Jaber (2013b)        
 

Michalos et al. (2013)
 2
         

This thesis         

  

                                                 
1
 Ma et al. (2009) only considered fatigue and not recovery. 

2
 Michalos et al. (2013) only considered fatigue and not recovery. 
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3. Framework and Methodology 

This section provides the framework and methodology for this research. The research is 

performed in four Phases, each with distinct objectives. Each Phase is intended to respond to 

some research questions while it contributes to the entire body of the thesis by completing the 

previous Phases. 

3.1 Phase 1: Incorporating fatigue-recovery into the learning-forgetting model 

The available learning and forgetting models do not consider the physical loading that 

performing a task requires. In some situations, physical loading results in workers’ fatigue on the 

job that is followed by rest breaks to alleviate it. The aim of this Phase of the thesis is to present 

the "Learning Forgetting Fatigue Recovery Model" (LFFRM) that addresses possible issues 

relating to workers’ capabilities and restrictions in manufacturing environments. Numerical 

examples are solved to address some research questions regarding the model optimization and its 

constraints. The main results show that incorporating learning into a production process 

decreases fatigue and improves the performance of the system. Worker’s fatigue, on the other 

hand, increases the production time and decreases production outputs. A recovery break must be 

of enough length to alleviate some of the accumulated fatigue; however, longer recovery times 

extend the lead-time and deteriorate the production performance due to forgetting. 

This Phase of the thesis investigates how system throughput is influenced by human behaviour. 

It also provides solutions to improve the system performance as well as workers' wellbeing. The 

results of this Phase have been published in the following paper: 
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Jaber, M. Y., Givi, Z. S., Neumann, W. P. (2013), Incorporating human fatigue and 

recovery into the learning–forgetting process. Applied Mathematical Modelling, 37 

(12-13), 7287–7299. 

3.2 Phase 2: Incorporating forgetting into the quality learning curve  

Industries spend significant amounts of money to counter the effects of forgetting by training and 

retraining workers. Forgetting increases the process cost and hinders improvements in the 

performance. This Phase of the thesis provides insights into the effect of forgetting on the 

production process in which some produced items are not considered to have perfect quality and 

therefore must be reworked. This also has important implications in reverse logistics where most 

processes are labour intensive (Jaber & Bonney, 2011).  

The Wright’s learning curve (WLC), which is the most utilized learning curve, assumes that 

every unit of production has an acceptable level of quality, which is not the case in many 

production environments. Many studies reported that a production process may go out-of-

control, thus generating defective items requiring rework. Jaber and Guiffrida (2004) have 

modified the WLC by accounting for rework time. In a later study, Jaber and Guiffrida (2008) 

allowed for production interruption to restore the quality of the production process to reduce the 

number of defective per lot. Although these works were the first analytical models that linked 

learning to quality, their results cannot be generalized as they considered a single (first) 

production cycle. This assumption ignores the transfer of learning that occurs between cycles in 

intermittent production environments. Phase 2 of the thesis addresses this limitation and 

considers the knowledge transferred to deteriorate because of forgetting. The results indicate that 

the performance function of the process has a convex form under certain conditions. The 
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performance of the system improves with faster learning in production and rework, frequent 

process restorations, and transfer of learning between cycles. 

This Phase also considers quality deterioration in the production line where the process generates 

defective items and is influenced by worker’s learning and forgetting. The system performance 

measure used is the time required to produce a working unit. If it is a defective item, then it is 

reworked. An optimization method is applied to determine the optimal lot size. 

Phase 2 of this research sets strategies for quality improvements, waste reduction, and improving 

the standard time (breaking the learning plateau). The results are useful in scheduling workers in 

the DRC systems where there is a trade-off between quality and productivity. The results of this 

Phase were presented at the 10
th

 Computational Management Science (CMS) conference in 

Montréal, QC, in May 2013. Also, an extended version of the conference paper is found in:  

Jaber, M.Y., Givi, Z.S. (2014). Imperfect production process with learning and 

forgetting effects, Computational Management Science (DOI: 10.1007/s10287-014-

0205-y). 

3.3 Phase 3: Investigating human error with learning-forgetting and fatigue-recovery  

Recent studies have shown that automation does not necessarily decrease human involvement in 

manufacturing, nor does it reduce the worker’s physical workload. As a matter of fact, there are 

still numerous assembly jobs that require human involvement. Therefore, human performance 

continues to have a significant impact on the quality and cost of products. 

While modelling human error has been investigated in the engineering literature for many years, 

the existing models are not capable of anticipating how and when an error occurs. This Phase of 
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the thesis studies the confluence of learning-forgetting and fatigue-recovery factors that affect 

human reliability when performing a manual task. Human error is defined as a mistake in 

performing a task that results in producing a quality deficit, which is corrected at a cost and it is 

considered to be affected by the worker’s personal capabilities and the work characteristics. The 

learning curve represents the worker’s capability in performing a repetitive task, or competence. 

Also, the effect of the work specifications on the worker’s outcome is presented by worker’s 

fatigue which is directly affected by the work environment. A mathematical model is developed 

that estimates the human error rate while performing an assembly job and accounts for the 

dynamic behavior of human reliability in a production process. This model measures and 

optimizes the production throughput with regard to human reliability.   

The preliminary results of this Phase were presented at an IIE Annual Conference as:  

Givi, Z.S., Jaber, M.Y., (2014) Human error due to learning and fatigue. Paper 

presented at the Proceedings of IIE Annual Conference and Expo 2014, May 31- 

June 03, Montréal, Canada. 

An extended and full version of this paper was submitted for review and is cited here as:  

Givi, Z.S., Jaber, M.Y., Neumann, W.P. (Submitted) Modelling worker reliability 

with learning and fatigue. Journal of Applied Mathematical Modeling. 

 

3.4 Phase 4: Investigating flexibility and transfer policies in a DRC system with some 

human factors 

This Phase of the thesis develops a DRC system model and integrates it into the Learning 

Forgetting Fatigue Recovery Model (LFFRM), the Quality Learning Forgetting Curve (QLFC) 
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models, and human/process error to examine the system performance. Conflicting system 

objectives arise when the effects of learning-forgetting and fatigue-recovery are combined. Some 

of the parameters such as learning, recovery, and flexibility, enhance the system performance, 

while others weaken it such as fatigue, excessive flexibility, forgetting, and defects. Phase 4 

completes this thesis by presenting an inclusive model for a DRC system which is capable of 

relating the system characteristics (flexibility and transfer policies) to human behavior (learning-

forgetting, fatigue-recovery, and error making). The developed model could be used for quality 

improvement and for deriving strategies for production planning and job scheduling. The results 

of this Phase were submitted to the following peer-reviewed journal for review: 

Givi, Z.S., Jaber, M.Y., Neumann, W.P. (Submitted) Production planning in DRC 

systems with human intervention, Journal of Computers and Industrial Engineering. 
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4. Phase 1: Incorporating fatigue-recovery into the learning-forgetting model 

In Phase 1, the Learn Forget Curve Model (LFCM) is modified to account for the effects of 

fatigue and recovery. The "Learning Forgetting Fatigue Recovery Model" (LFFRM) is 

developed, which investigates the interaction of workers’ physical capabilities with learning and 

forgetting. This Phase of the thesis provides solutions to improve the system performance as well 

as workers' wellbeing. The results of this Phase will be used to capture the influence of human 

behaviour in production planning in Phase 4.  

4.1 Introduction 

The “Learning Curve” (LC) has been an interesting subject to many researchers and practitioners 

including industrial engineers and psychologists since the work of Wright (1936), and Hovland 

(1951). Since then, several learning curve models were developed that have different forms (e.g., 

power exponential, S-curve). The Wright's learning curve has been the prominent model because 

of its simplicity and ability to fit well a wide range of learning data (Yelle, 1979; Badiru, 1992; 

Jaber, 2006).    

Globalization and competition have changed the market environment and imposed pressures on 

manufacturing firms to deliver new and quality products at competitive prices more frequently, 

requiring these firms to be responsive, efficient, and flexible. To cope with these changes, 

manufacturing firms started acquiring flexible workforce approaches to alleviate the detrimental 

effects of bottlenecks resulting from machine breakdowns, product type changes, or external 

demand changes. The flexible workforce can also reduce work-in-process inventory levels, lead-

times, and improve customer service performance (Park & Bobrowski, 1989). However, 

flexibility comes at the cost of the workforce partially or fully forgetting the knowledge acquired 
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for one task while performing different tasks (Jaber et al., 2003; Inman et al., 2004). Automotive 

manufacturers are an example where significant amounts of money have been spent on training 

(learning) and retraining (relearning following forgetting) workers (Park & Bobrowski, 1989; 

Omar et al., 2011). This enticed many researchers to investigate how learning and forgetting 

interacts, and to develop models that capture these phenomena (Bailey, 1989; Jaber & Bonney, 

1997; Kleiner et al., 2011).  

In environments that emphasize flexibility, forgetting, which may be thought of as the loss of 

access to knowledge or procedures, occurs either because a worker has been away from a given 

task for some time or because he/she confuses similar knowledge or skills (Bjork & Bjork, 

2011). In the industrial engineering literature, it has been documented that the length of a 

production break has a direct effect on the degree to which humans forget (Anderlohr, 1969; 

Cochran, 1973) and it may occur over relatively short periods of time (MacLeod & Macrae, 

2001; Anderson, 2003). Modelling the forgetting curve falls in one of the mathematical, 

experimental, and empirical groups as stated in Section  2.2 where the “Learn Forget Curve 

Model” (LFCM) was found to be a promising model (Jaber & Bonney, 1997; Jaber et al., 2003; 

Jaber & Sikström, 2004a, 2004b). The models of the three groups were most likely investigated 

in environments where a worker may be subjected to fatigue on the job. There is evidence in the 

literature that repetitive human daily activities deplete an individual’s resources leading to 

fatigue (Winwood et al., 2005; Sonnentag & Zijlstra, 2006). It is reasonable therefore to assume 

that workers in an industrial setting are subject to fatigue on the job.  

Fatigue is multidimensional. Tiredness and lack of energy (Barker & Nussbaum, 2011), physical 

exertion (Barker & Nussbaum, 2011), physical discomfort (Yoshitake, 1978), lack of motivation 
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(De Vries et al., 2003), and sleepiness (Smith et al., 2005; Theorell-Haglöw et al., 2006) have 

been distinguished as dimensions of fatigue (Åhsberg, 2000). Fatigue is a common result of work 

(Winwood et al., 2005) and leads to performance problems. It has detrimental effects on 

judgment, omission of results, indifference to essentials, decreased efficiency and productivity, 

and higher error rates and quality problems (Rohmert, 1987; Åhsberg, 1998; Chaffin et al., 2006; 

ElMaraghy et al., 2008). When fatigue becomes chronic or excessive, it reduces a person’s 

quality of life and can contribute to work-related disorders (Åhsberg, 1998; Frank, 2000; Asfaw 

et al., 2011; Bevilacqua et al., 2012). Rest breaks help alleviate body fatigue and recover a 

worker to his/her normal strength and capacity.  

In a flexible workforce schedule, workers alternate between different tasks that require various 

workloads. When a worker performs a task, muscle force capacity is reduced by time up to a 

threshold value (maximum endurance time) due to the muscle fatigue (Ma et al., 2009). This 

fatigue is either alleviated by a rest break or by the worker moving to perform another task that 

has less and different physical loading allowing for some recovery. However, some of the 

learning acquired previously is lost when the worker has been away from a task for a period of 

time. Although fatigue has been considered widely in the ergonomic literature, it has not 

received much attention in the Operation Research literature. There is no study available that 

demonstrates the mathematical relation between worker fatigue and production outputs such as 

production time and volume. 

Conflicting system objectives arise when the effects of learning-forgetting and fatigue-recovery 

are combined. On one hand, the system productivity improves as workers move down on their 

learning curves by producing more per unit time; although their ability to work for long periods 
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of time is constrained by muscular fatigue. On the other hand, a rest break or transferring a 

worker to a different task alleviates fatigue and recovers a worker's physical condition to a 

comfort state (Jaber & Neumann, 2010); however, it may impede the worker’s productivity 

because of forgetting . There is no available model in the learning-forgetting literature that 

accounts for human fatigue and recovery. The aim of this Phase is to present the "Learning 

Forgetting Fatigue Recovery Model" (LFFRM) that addresses possible issues relating to 

workers’ capabilities and restrictions in manufacturing environments. The rest of this section is 

organised as follows. Section  4.2 presents the mathematics of the “Learn Forget Curve Model 

(LFCM)”, followed by a brief introduction to human fatigue and recovery models in  4.3. The 

mathematics of the integrated LFFRM is developed in  4.4 followed by methodology in  4.5. 

Numerical examples are provided in  4.6 with their results discussed to address several research 

questions. Section  4.7 addresses the limitations and feasible solutions of the developed models 

and the last section, section  4.8, is for discussion and conclusions.  

4.2 Mathematics of the LFCM 

Wright’s (1936) learning curve suggests that the time to perform a task decreases by a constant 

percentage each time the cumulative output doubles, and it is represented by:  

b

x xTT  1  
( 4.1) 

where xT is the time to produce the x
th

 unit, 
1T  is the time to produce the first unit, x is the 

cumulative production, and b is the learning index (0 ≤ b <1), where )2log()log(LRb  and LR 

is the learning rate measured in percentage (0 < LR < 1; e.g. LR = 0.8 or 80%).  
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Equation (‎4.1) is hypothesised by Wright (1936) theory that the labor-hour required to perform a 

unit of job, decreases by a constant percentage every time the repetition quantity is doubled. 

Typical learning rates according to Crawford (1944) are shown in Table ‎4.1. 

Table  4.1. Typical learning rates adapted from Crawford (1944), higher rates represent slower learning. 

Type of work LR % Industry LR % 

ASSEMBLY 84-85 AEROSPACE 85 

PROTOTYPE ASSEMBLY 65 COMPLEX MACHINES 75-85 

CLERICAL OPS 75-85 CONSTRUCTION 70-90 
INSPECTION 86 ELECTRONIX MFG 90-95 

MACHINING 90 MACHINE SHOP 90-95 

WELDING 85-90 SHIPBUILDING 80-85 

Similar information to the one in Table  4.1 can be found in Dutton and Thomas (1984) and Dar-

El (2000). The forgetting phenomenon has been considered to be a mirror image (Globerson et 

al., 1989) of the learning curve and it is represented by: 

f

x xTT  1
ˆˆ  

( 4.2) 

where xT̂ is the time for the x
th

 unit of lost experience on the forgetting curve, 1T̂  is the intercept 

of the forgetting curve, x is the amount of output that would have been accumulated if 

interruption did not occur and f is the forgetting index. Figure  4.1 shows the learning-forgetting 

process.  
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Figure  4.1. An illustration of the behaviour of the learning-forgetting process over repeated work-rest 

cycles. 

 

Using equations ( 4.1) and ( 4.2), Jaber and Bonney (1996) developed the “Learn Forget Curve 

Model” (LFCM) which is represented by: 

  b

iix xuTT
i


 1

 
( 4.3) 

where
ixT is the time to produce the x

th
 unit in cycle i, iu is the experience measured in the number 

of units remembered at the beginning of cycle i, and xi is the number of repetitions (units 

produced) in cycle i. The term iu is determined from the work of Jaber and Bonney (1996) as: 
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where 
1u =0, iS  is the number of units of a product that could have been produced in cycle i if 

production interruption did not occur. The terms iS and if  are given respectively as: 
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  

( 4.6) 

where 
i is the length of the interruption period that has occurred after producing batch i, B is the 

time to which total forgetting occurs (
i ≤ B), and )( ii xut   is the time to perform (produce) 

ii xu   repetitions (units) continuously on the learning curve. Assuming that total forgetting can 

occur is not unrealistic given that it was observed in the studies of Anderlohr (1969), McKenna 

and Glendon (1985), and Globerson et al. (1998). 

4.3 Fatigue and recovery models 

Fatigue can take many forms such as mental fatigue, lack of alertness, specific muscular fatigue, 

or general body fatigue (Åhsberg, 1998). The effect of fatigue on performance has been 

documented across many industrial and service sectors, e.g., the loss of throughput (Wang & Hu, 

2010), error increasing (Misawa et al., 1984; Kopardekar & Mital, 1994), worker’s 
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dissatisfaction (Saijo et al., 2008), performance decrement (Mital et al., 1991; Goode, 2003; 

Leung et al., 2006; Barker & Nussbaum, 2011), and injuries and accidents (Schuster & Rhodes, 

1985; Dinges, 1995; Kristal-Boneh et al., 1996; Muggleton et al., 1999; Burke & Fiksenbaum, 

2008). However, a mathematical model that relates fatigue and production outcomes has not 

been introduced. This thesis focuses on muscular fatigue which is defined as the inability of the 

body muscles to sustain a specific posture or force level required to perform a task (Ma et al., 

2009). A model is developed to quantify the relation between worker’s muscular fatigue and 

production outputs.  

Maximum Endurance Time (MET) is the duration for which a specific body posture (or muscular 

effort) can be sustained (applied) by a worker before his/her capability limits are reached (Niebel 

et al., 1999; El ahrache et al., 2006). It is a function of the level of the force being applied, e.g., 

(fMVC). This force is usually a fraction of the muscle’s Maximum Voluntary Contraction (MVC) 

when performing a specific task (El ahrache et al., 2006), e.g., fMVC=%MVC. Readers may refer 

to El ahrache et al. (2006) or Ma et al. (2009) for a good review of a number of empirical models 

that predict MET. The available models are either of exponential forms, e.g., MVC

0

f
eMET

 


(Rose et al., 1992), or power forms, e.g.,   MVC0 fMET (Sjøgaard, 1985), where 0 ,  , 0  

and  are model-specific parameters and MET is measured in minutes. These MET models are 

limited in the sense that they predict a fatigue end-point under a given fMVC load but provide no 

indication to the shape of the fatigue accumulation function or depict the fatigue state over the 

course of the task execution.   

Although some researchers asserted that fatigue accumulates exponentially with time (Lindstrom 

et al., 1977; Bechtold & Sumners, 1988; Konz, 1998), none have empirically or experimentally 
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showed that it does. This remains an open research question to be addressed in the Human 

physiology literature. On the contrary, more attention was paid by researchers in ergonomics to 

the form of the recovery function, which Konz also suggests is exponential (Konz, 1998), with 

maximum benefit in the earlier phases of the recovery period. Readers may refer to El ahrache 

and Imbeau (2009) for a review of recovery models. As suggested by Konz (1998), this thesis 

assumes that fatigue and recovery are of the following forms respectively: 

tetF 1)(  
( 4.7) 

ietFR i





 )()(  ( 4.8) 

where )(tF is the fatigue accumulation at time t ≤ MET, and )( iR  is the residual fatigue after a 

rest break of length i ≥ 0; R = 0 represents complete recovery (no residual fatigue) and R = 1 

represents no recovery (maximum fatigue). Since the learning rest break 
i  in equation ( 4.5) in 

this Phase is equal to the recovery rest break i  in equation ( 4.8), only in this Phase of the thesis, 

both are referred to i . In ( 4.7) and ( 4.8),   and   are fatigue and recovery parameters, 

respectively. These parameters control the rate of fatigue accumulation and recovery alleviation; 

i.e., a low value of   ( ) means slow fatigue accumulation (recovery) whereas a high value 

means a fast one. Figure  4.2 illustrates the behaviour of a fatigue-recovery process. 
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Figure  4.2. An illustration of the behaviour of the fatigue and recovery process over repeated work-rest 

cycles. 

 

Note that equation ( 4.7) advocates that fatigue accumulates over t from an initial value of zero, 

meaning that full recovery was attained in the previous rest break. In practice, rest breaks 

separating work cycles are usually short and do not permit full recovery to occur. The residual 

fatigue )( iR   is carried forward from cycle i to cycle i+1 and equation ( 4.7) is re-written as: 

 )(

1 1))(1()()( ix tt

iii eRRtF


 
  

( 4.9) 

where tx is the production time of the cycle i and ti  is determined by projecting the value of )( iR 

on the fatigue curve as: 

F
a
ti

g
u

e 
L

ev
el

 

Recovery 

Time 

Fatigue Recovery Fatigue 

work work rest rest 



39 

 

   )(1ln ii Rt   
( 4.10) 

A dynamic fatigue model (Ma et al., 2009) is used to consider different maximum endurance 

times (MET) for different production batches as a result of fatigue accumulation. This 

assumption is based on the hypothesis that the maximum force a subject can exert declines as the 

muscle capacity diminishes because of fatigue (Ma et al., 2009). With this assumption, the 

endurance time decreases as more batches are processed. Therefore, MET for a given batch 

varies between two extreme values, which are when the body is fresh or completely recovered 

from previously accumulated fatigue and when the body is in the state of complete tiredness. 

Thus, and for simplicity, it is assumed that ifMVC  , in which i is the batch number and  is the 

fatigue index. Therefore MVCf  is equal to  for the first batch, 2 for the second batch and so on. 

Note that one may represent MVCf  as a function of time, )()( ttfMVC  ; however, lack of 

evidence and data, and without loss of generality, it was assumed that ifMVC  , where i in the 

batch number that increases with time. More empirical research is still needed in this regard. 

4.4 The Learning Forgetting Fatigue Recovery Model (LFFRM) 

The LFCM in Section  4.2 favours a policy of longer production cycles with short breaks as this 

improves productivity. However, an ergonomic policy, aimed at minimizing injury risks, will be 

to minimize a worker’s fatigue through short production cycles and rest breaks of lengths that 

guarantee quick recovery. Here, the LFFRM is a constrained LFCM model. The production time 

in cycle i cannot exceed MET. From ( 4.1) we have: 
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where 
ixt is the production time in cycle i which should be equal or less than MET: 

ixt ≤ MET 
( 4.12) 

from which the following constraint is determined: 
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where U

ix is the upper bound of units that can be produced in batch i. Ideally, the length of a rest 

break would not exceed the time for total forgetting, i.e., Bi  . However, the break time could 

either be the time a worker spends performing another task (producing a different product) 

during which some of the strained body muscles are relaxed and recovered or, it could be a real 

rest break. Also one might assume that at the end of the shift the person is largely "on break" 

until work starts - so long as they are not doing the same kind of tasks at home or off hours. The 

length of a work break is usually governed by output constraints that managers have to weigh 

carefully against the workers’ welfare and the system’s productivity. Therefore, the length of a 

break should be less than B, but long enough to alleviate a significant amount of the worker’s 

fatigue. It is assumed that management would always try to balance between the workers’ 

welfare and system’s productivity. Therefore, management would like to alleviate at least  % of 
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a worker’s accumulated fatigue and ensure that  % of the experience is transferred from one 

batch to the next. If a manager wants to alleviate  % of the worker’s fatigue then from ( 4.8), 

ietFtFR i

 
 )()()( , implying that    lni . On the other hand, a manager has to 

sustain an acceptable level of productivity by retaining a specific level of learning to be 

transferred between cycles, e.g., at least  %  of the worker’s experience should be retained, then 

from ( 4.4), ( 4.5) and ( 4.8), we have:  
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( 4.14) 

where L

i is the lower bound and U

i is the upper bound of the break length, and   is the specific 

level of learning transferred between cycles. The derivation of ( 4.14) is shown in Appendix I.  

The average processing time (performance) Z per unit, is computed by dividing the total 

processing time by the total number of units produced as: 








N

i

i

N

i

x

x

t

Z
i

1

1  
( 4.15) 

where N is the total number of batches. The productivity of the system is highest when ( 4.15) 

records its lowest value. Therefore, the above model could be written as Minimize Z; subject to 

the following constraints: (1) U

ii xx 0 , and (2) U

ii

L

i   . 
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4.5 Methodology  

The behaviour of the Learning Forgetting Fatigue Recovery Model (LFFRM) is now investigated 

using several numerical examples to demonstrate how the input parameters, i.e., learning index, 

number of batches, fatigue index, and recovery index, influence the outcomes of the production 

process. The numerical results are discussed to highlight the managerial implications and 

insights of the developed model. For this purpose, the results are those of the optimal solutions. 

That is, the optimal solution is determined by minimising Z in ( 4.15), subject to the constraints of 

( 4.13), U

ii xx 0 , and ( 4.14), U

ii

L

i   , where i = 1, ..., N. The input and output parameters 

are as follow: 

The input parameters:  

 The learning index is set to 3 levels corresponding to the slow (90%), moderate (80%), and 

fast (70%) learning with b=0.152, b=0.322 and b=0.515, respectively (Dar-El et al., 1995). 

 The parameters for MET calculation, 0 = 4.16 and  = 7.96, are taken from the study of 

Rose et al. (1992).  

 Fatigue alleviation factor ( ) and the experience transfer factor ( ) are set at 50%,  =  = 

0.5. 

 The time required to produce the first item is set to 1 unit of time, T1 =1.  

 Total forgetting time is set to B=2000 units of time. 

 The fatigue index is set to 3 levels corresponding to the slow, moderate, and fast fatigue 

accumulation with λ=0.01, λ=0.03 and λ=0.05, respectively.  



43 

 

 The recovery index is set to 3 levels corresponding to the slow, moderate, and fast recovery 

with μ=0.03, μ =0.05 and μ =0.07 respectively. 

The last two parameters, fatigue accumulation index and recovery index, were determined using 

a test. With the assumption of 80% maximum fatigue per unit of time, the fatigue index was 

obtained from ( 4.7) as 1.6094. With the assumption of 80% recovery, the recovery index per unit 

of break time is also obtained from ( 4.8) as 1.6094. The optimal problem was examined with 

these measures but no feasible solution was obtained. These values decreased until the above set 

of   and   values was found that yield optimal solutions. 

The optimization outputs:  

 Z: Average unit processing time, which is computed from equation ( 4.15), is the performance 

measure of the system.  

 F: Average accumulated fatigue from production of N batches, which is computed from 

equations ( 4.7) - ( 4.9). 

 Q: Production volume as restricted by ( 4.13) where Q =  

N

i ix
1

. 

  : Average length of a rest break between batches, where the number of breaks is equal to 

the number of batches minus one, is computed as  


N

i i1
 , which is restricted by ( 4.14). 
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4.6 Results 

4.6.1 What effect does the learning index have on the production process? 

In order to investigate the behaviour of the process regarding the learning index, in addition to 

the input parameters and their values given in Section  4.5 (T1=1, B=2000,  =50%, and 

=50%), the following input parameters are assumed: (1) Three learning indices are selected as 

discussed in  4.5, (2) fatigue and recovery indices are set to medium levels, i.e.,  =0.03 and 

=0.05, and (3) ten batches, N =10, are considered for the process. The mathematical 

programming model described by equations ( 4.13), ( 4.14) and ( 4.15) is optimised for these input 

parameters. The optimal average length of a beak in-between adjacent batches for the three 

learning indices was found to be 02.6 . The reason that the optimum break time is not 

changed with the learning is because it depends on  , the fatigue alleviation factor, and on  , 

the recovery index, as per  ( 4.14), which restricts the break length to a value irrespective of the 

learning rate. Figure  4.3 shows that, as learning becomes faster (b = 0.515), the system’s 

performance, Z, improves and becomes flatter. This suggests a range of values over which Z is 

relatively stable which may provide managers with more flexibility to meet their obligations for 

their workers’ welfare while also meeting their productivity targets. Other results are 

summarised in Table  4.2. 



45 

 

 

Figure  4.3. The behaviour of the systems optimal performance for different learning indices. 

 

Table  4.2. The effect of learning index on the process outputs when λ=0.03 and μ=0.05. 

Learning indices b = 0.152 b = 0.322 b = 0.515 

Production volume, Q 59 112 340 

Total production time,  

N

i xi
t

1
 39.64 40.82 42.19 

Average fatigue (%) 17.44 17.87 18.39 

Average production time per unit, Z 0.67 0.36 0.12 

 

The results in Table  4.2 show that as learning becomes faster (b increases from 0.152 to 0.515), 

the production volume increases by about 82% (from 59 to 340). The average production time 

per unit, or Z, decreases (improves) correspondingly from 0.67 to 0.12 as shown in Figure  4.3 

but average fatigue does not change considerably with the learning. The results also suggest that 

a worker with fast learning experiences slower fatigue accumulation and improves the system’s 

performance (smaller Z values). This further suggests that investing to improve workers learning 

may be a good strategy for processes that are highly labour intensive. 
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It should be noted that the actual performance of the system does not represent a smooth learning 

curve. Learning data usually shows some variations with every repetition (unit produced). 

However, the variation in performance between subsequent repetitions tends to reduce as the 

number of repetition increases. To capture the variation in performance, upper and lower bounds 

of a learning curve are set (Jaber, 2006). 

4.6.2 What effects does the number of batches have on the production process?  

In order to investigate the behaviour of the process with the number of batches, in addition to the 

input parameters and their values given in  4.5 (T1=1, B=2000,  =50%, and  =50%), the 

following input parameters are assumed: (1) The learning, fatigue, and recovery indices are set at 

their medium values as b=0.322,   =0.03, and  =0.05, respectively, and (2) two batch numbers 

are considered, which are N =5 and N = 10. The mathematical programming model described by 

( 4.13), ( 4.14), and ( 4.15) is optimised for these input parameters. The results in Table  4.3 show 

that the production volume and subsequently the total production time increase as the number of 

batches N increases from 5 to 10. The optimal break length for both plans was found to be 

02.6 . However, the average fatigue decreases by about 16% and the average performance 

(Z) improves by about 12% with more batches, i.e. N=10. It may be concluded from these results 

that producing in more batches positively impacts Z and improves workers’ welfare as more rest 

breaks provided reduce the average fatigue level. It should be noted that the length of the break is 

the outcome of the program optimization and the result of aiming the target of maximum 

production, which relates to the worker’s fatigue in LFFRM. Therefore, the break length may not 

be considered as reasonable comparing to the production time. These results are indicators of the 

extreme cases of optimality and dependant on values of the input parameters. Having said that, 
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more reasonable break times may be obtained by introducing real data to the LFFRM model 

collected from actual industrial setting.        

Table  4.3. The effect of the number of batches on the production process when b = 0.322, λ=0.03, and 

μ=0.05.  

No. of Batches N = 5 N=10 

Production volume, Q 65 112 

Total production time,  

N

i xi
t

1
 26.74 40.81 

Average length of the rest break,   6.02 6.02 

Average fatigue (%) 21.26 17.87 

Average production time per unit, Z 0.41 0.36 

 

4.6.3 What effects does the fatigue index have on the production process? 

In order to investigate the behaviour of the model regarding the fatigue accumulation index, in 

addition to the input parameters and their values as set in Section  4.5 ( T1=1, B=2000,  =50%, 

and  =50%), the following input parameters are assumed: (1) Three different fatigue indices 

are selected for slow (  = 0.01), medium ( = 0.03) and fast (  = 0.05) fatigue accumulation, 

(2) learning and recovery indices are set at their medium values as b = 0.322 and   = 0.05, and 

(3) ten batches, N =10, are considered for the process. The mathematical programming model 

described by ( 4.13), ( 4.14), and ( 4.15) is optimised for these input parameters. The results are 

summarised in Table  4.4.  
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Table  4.4. The effect of fatigue index on the production process when b = 0.322 and  =0.05. 

Fatigue index   = 0.01  = 0.03  = 0.05 

Production volume, Q 209 112 65 

Total production time,  

N

i xi
t

1
 62 40 28 

Average fatigue (%) 9 17 20 

Average production time per unit, Z 0.3 0.36 0.43 

 

The results show that the fatigue index has a very little effect on the behaviour of the system 

performance (Z). This is because the numerator and denominator of ( 4.15) both decline with 

more fatigue. The optimum length of the rest break was found to be 02.6  for all cases. 

Table  4.4 illustrates that with faster fatigue accumulation (from 9% to 20%), the production 

volume Q decreases by 68% which suggests that the production volume actually declines as a 

direct result of worker fatigue. Figure  4.4 suggests that physically difficult tasks (larger   value) 

negatively affect the production output (cumulative number of items produced reduces) because 

a fatigued worker tends to produce less, either in smaller batches or shorter production runs.  

 

Figure  4.4. The behaviour of the fatigue curve for different λ values representing different levels of task 

difficulty. Production volume declines as the task difficulty increases.  
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4.6.4 What effects does the recovery index have on the production process? 

In order to investigate the behaviour of the process regarding the recovery index, in addition to 

the input parameters and their values given in section  4.5 (T1=1, B=2000, θ=50%, and δ=50%), 

the following input parameters are assumed: (1) Three different recovery indices are selected for 

slow  (  = 0.03), medium (  = 0.05) and fast (   = 0.07) recovery, (2) learning and fatigue 

indices are set at their medium values as b=0.322 and  =0.05, respectively, and (3) ten batches, 

N=10, are considered for the production process. The mathematical programming model 

described by ( 4.13), ( 4.14), and ( 4.15) is optimised for these input parameters. The results are 

summarised in Table  4.5, which show that as recovery from fatigue becomes faster,   increases 

from 0.03 to 0.07, production volume Q increases from 102 to 118 and the total production time 

decreases from 130 to 79 resulting in an improvement in the system performance Z of about 13% 

(from 0.4 to 0.35), and reducing the length of a rest break by 60% (from 10 to 4). 

 

Table  4.5. The effect of recovery index on the production process when b = 0.322 and   = 0.03. 

Recovery index  = 0.03  = 0.05  = 0.07 

Production volume, Q 102 112 118 

Total production time,  

N

i xi
t

1
 130 95 79 

Average length of the rest break,   10 6.02 4 

Average production time per unit, Z  0.4 0.36 0.35 

 

Lead time is defined as the sum of the production times for all 10 batches and the lengths of the 9 

production breaks. As recovery becomes faster, the length of the production breaks are affected 

considerably. For a slow recovery, i.e. 03.0 , the optimal break length obtained as 10
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units of time, for a medium recovery, 05.0 , 02.6 , and for a fast recovery, 07.0 , 

4 , which results in about 47% reduction in the lead time in the fast recovery case. The 

average production time is not changing considerably with the rate of recovery since in this case 

the production is not constrained by the fatigue level. The results of Table  4.5 indicate an 

increase in the lead time due to slow recovery. It may be concluded from the results that 

according to the LFFRM model, slow recovery deteriorates the process lead time which has not 

been considered in the unit production time, Z.  

4.7 LFFRM constraints and feasible solutions 

This section elaborates the importance of the constraints of the LFFRM model. We may find 

solutions for the LFFRM model without the constraints, but they are not feasible solutions. The 

solutions of an optimization problem usually lie in a more restricted range regarding to the 

general solutions. By studying the constraints of the LFFRM model, we will test the solutions 

and their feasibility. More specifically, we need to demonstrate how much the results would 

differ if the constraints are not considered and how this impacts the problem. The LFFRM 

constraints arise from a worker maximum endurance time (upper limit of production in ( 4.13)), 

the necessary level for fatigue alleviation (lower limit of break length in ( 4.14)) and maximum 

forgetting (upper limit of the break time in ( 4.14)).  

In order to study the effects of the constraints on the model, in addition to the input parameters 

given in section  4.5 (T1=1, B=2000,  =50%, and  =50%), other parameters are set as follows: 

(1) Two batch numbers are considered, N=5 and N =10, (2) total production volume is set to Q 

=200 items, i.e., 200 items are produced in 5 or 10 batches with xi =20 and xi = 40 items per 



51 

 

batch, respectively, and (3) three break times of 5.1 , 6 , and 12  are considered for the 

production process. Equations ( 4.1) to ( 4.15) are solved without considering constraints ( 4.13) 

and ( 4.14). Further, the effects of learning, fatigue accumulation, and recovery rates on the 

outputs were studied. When studying the effect of one parameter, we set the other parameters to 

their medium values. Results are in accordance with our previous observations indicating that 

fatigue is reduced when: learning is fast (b=0.515), production occurs in small more frequent 

batches (N=10), break times are longer ( 12 ), and there is faster recovery from fatigue (

07.0 ). This indicates that although some of the solutions produced when the constraints are 

ignored are infeasible, the model’s behaviour remains the same as when the constraints are 

imposed.  

To consider the limitations of fatigue allowances which set the upper and lower bounds on the 

production quantity produced in each batch and the length of the rest, we consider the case where 

b=0.152 (slow learning), 03.0 (medium fatigue accumulation), and 05.0  (medium 

recovery). The optimal solution occurs when Q=37 units and four rest breaks, each of 6 units 

of time are provided result to F=20.8%, and Z=0.76. Excluding the constraints in ( 4.13) and 

( 4.14) we have Q=200 units, four rest breaks of 5.1 units of time each, F=64.6%, and 

Z=0.586. Comparing these cases, it is clear that solving the problem without the fatigue 

constraint, will yield better results regarding the production, i.e., more production (Q) in less 

time (Z), but poor worker welfare as average fatigue increases (F), i.e., 64.6% versus 20.8%. 

Furthermore, the optimization regarding the required alleviating of 50% of the worker’s fatigue 

will yield a rest break of 6  units of time in length ( ). This further means that having 

5.1  units of time is not possible unless workers welfare is ignored.  
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4.8 Discussion and conclusion   

In this Phase of the thesis, a Learning Forgetting Fatigue Recovery Model (LFFRM) has been 

developed and exemplified through numerical examples. Our contribution was to develop a 

model which integrates the “Learn Forget Curve Model” (LFCM) with a fatigue-recovery model 

since these two phenomena occur simultaneously during the production process and production 

breaks. This model is capable of capturing the quantitative effects of workers’ abilities, i.e., 

improvement through learning and replenishment of the resources by recovery, and restrictions, 

i.e., losing experience by forgetting and capabilities due to physical fatigue, on the outputs of a 

production process. An interesting aspect of this research is that learning and recovery and 

forgetting and fatigue have opposite impacts on the performance, which requires trade-offs to 

optimise the system performance. 

The effect of learning on the model has then been investigated and it was shown that, as learning 

becomes faster, the system performance improves, which is consistent with the previous studies 

(Benkard, 2000; Syverson, 2010). A further insight from the LFFRM model was that smaller 

batch sizes are recommended as they result in less fatigue. The benefits of reduced fatigue 

observed during the fast learning scenarios suggest that technologies and/or training programs 

may quicken the learning process of the workers. It has been shown that more production results 

in longer production times and, subsequently, more fatigue. In the LFFRM model the lengths of 

breaks are optimized such that enough fatigue is alleviated and not much experience is lost 

because of forgetting. Similar to previous studies, e.g. Tucker (2003), the model recommends 

shorter frequent breaks to increase the production output.   

LFFRM model demonstrated that: 
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i) Faster learning helps to reduce fatigue. Learning will cause the process to have more 

production with the same amount of fatigue. It may suggest to managers to consider 

investing in training programs as this meets two managerial objectives, the welfare of the 

workers and the productivity of the system.  

 

ii) Fatigued workers are counterproductive. This finding has been observed by Mital et al. 

(1991) who showed that the worker performance declines because of fatigue. Fatigued 

workers also have higher likelihood of making errors and being injured (Kopardekar & 

Mital, 1994; Dinges, 1995; Frank, 2000; Dionisio, 2010; Asfaw et al., 2011; Bevilacqua et 

al., 2012). Therefore direct and indirect results of fatigue may cause the process to be more 

costly (Ricci et al., 2007). If the length of a break is not enough to alleviate the fatigue, or if 

the fatigue rate is high, management could consider to invest in learning to lessen the 

fatigue, designing less fatiguing jobs, or allowing for longer breaks. This suggests that 

investing in training may be an improvement strategy for processes that are highly labour 

demanding either by training the workers, or by designing work tasks in ways that foster 

learning. For instance, designing material kits that are implicit instructive for assembly 

sequence (Medbo, 2003), encoding inferences into routines, e.g., forms, rules, procedures 

and strategies (Levitt & March, 1988), adopting new technologies (Shafer et al., 2001), 

changing the product design, tools, equipment, and works methods (Konz & Johnson, 2000), 

using knowledge diversity (Kellogg, 2009), and using cross-trained employees at numerous 

work stations (Finch & Luebbe, 1995) have been mentioned as ways to speed up the 

learning. Another way to confront fatigue is to reduce the fatigue accumulation rate by 

controlling the workload levels for operators through reduced physical forces, improved 
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worker postures, and reduced durations of force application (James & William, 1993; Yeow 

& Nath Sen, 2003).     

 

iii) As the recovery becomes faster, the limitation on batch number is relieved and more units 

can be produced with less average production time (better performance). As a result, when 

the worker recovers faster from the accumulated fatigue, lead time shrinks. Recovery rate 

may be considered as a personal attribute. The author was not able to find any industry 

related study for speed up the recovery. However, there is literature available in the 

Physiology field, e.g. the study of Tessitore et al. (2007), which suggests aerobic exercises 

and electrostimulation help soccer players to recover faster and to avoid damage of their 

muscles.   

In order to study the limitations that arise from worker’s capabilities, the constraints of the 

LFFRM model were studied. The LFFRM constraints arise from the worker’s maximum 

endurance time (fatigue), the necessary level for fatigue alleviation and maximum forgetting. 

Relieving the upper bound of the production volume constraint and lower bound of the break 

time constraint revealed that the real production process would not achieve the initial goals that 

have been set for it because of these constraints. The literature of the productivity loss due to 

health problems (Punnett & Wegman, 2004; Meerding et al., 2005; Escorpizo, 2008) may 

support the results of the LFFRM modelling. Worker’s capabilities and limitations are crucial 

issues that must be considered in designing the future manufacturing systems (Keyserling & 

Chaffin, 1986). 
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The LFFRM of Phase 1 of this thesis, provides a basis for further research into the process 

improvement and also workforce scheduling however it has some limitations. First of all, only 

physical fatigue has been modeled in this version of LFFRM. Secondly, only the effect of fatigue 

on the productivity was investigated. Other aspects of the problem such as the effect of fatigue 

on the product quality have not been studied. Thirdly, the product variety has not been 

investigated and the process was assumed to produce only one type of product. Finally, I did not 

provide solutions for improving the learning and recovery or decreasing the fatigue 

accumulation; however, some solutions have been provided in the literature as discussed above. 

To refine the LFFRM model it would be best in the future to collect real-life data from 

manufacturing environment. This data will help to refine or modify the models and utilize them 

for optimization purposes in industry.  
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5. Phase 2: Incorporating forgetting into the quality learning curve, Quality 

Learning Forgetting Curve (QLFC) 

Phase 2 of the thesis investigates the effect of forgetting on a production process where some 

produced items do not conform to quality. Such items are considered to be defective and are then 

reworked. In this Phase, the forgetting effects are integrated into a known quality learning curve 

to develop the Quality Learning Forgetting Curve (QLFC). The results of this Phase are useful in 

production planning and the scheduling of workers in DRC systems in Phase 4. 

5.1 Introduction 

The main assumption of the Wright’s learning curve (WLC; 1936) is that all units of production 

have acceptable quality. However, when production increases, the probability of the process 

going out-of-control increases for several reasons and non-conforming quality items are 

generated as a result (Pal et al., 2013). Therefore, at the start of production, the process is 

assumed to be in a control state and that produced items conform to quality. After some time, the 

process may go out-of-control and start generating non-conforming or defective items that may 

be either repaired or scrapped (Sana, 2010). This situation has been observed in many process 

industries (Flapper et al., 2002; Meyr, 2004; El Saadany, 2009; Glock & Jaber, 2013a; Roy et al., 

2013) where the defective items are reworked. If the rework process is also imperfect, double 

defective items are scrapped (Jamal et al., 2004; Peter Chiu et al., 2010; Taleizadeh et al., 2013).  

Learning has been observed in production and rework processes where the cost of producing and 

repairing items is reduced as a result of using better tools and processes (Burr & Pearne, 2013). 

Learning reduces production costs and cycle times (Sebrina & Diawati, 2012; Tirkel, 2013) and 

inventories (Jaber et al., 2009), and improves the quality of manufactured products (Levin, 2000; 
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Choo et al., 2007). Forgetting, on the other hand, is pertinent to deteriorating the quality and 

production levels and increasing the costs and inventories (Jaber et al., 2009; Teyarachakul et al., 

2014). Failure to achieve the expected level of productivity makes a firm less competitive. 

Readers may refer to Jaber (2006, 2014) for a concise review on learning curves and their 

applications. 

The research on how learning and quality interact interested many researchers, of which few are 

surveyed here. Koulamas (1992) found that there is a relationship between quality improvement 

activities such as product redesign and process performance. He also found that product redesign 

improves the quality of the products by decreasing the quality related problems but it increases 

the costs. Badiru (1995) investigated the effects of learning and forgetting on product quality and 

demonstrated that the actual unit cost is underestimated if forgetting effects are not considered. 

Jaber and Bonney (2003) further analysed the data of Badiru (1995) and empirically validated 

two hypotheses: the time required to rework a defective item declines following a learning curve, 

and the quality of the products deteriorates as the forgetting increases. In another study, Jaber et 

al. (2010) investigated a supply chain in which the manufacturer experiences a continuous 

improvement process through capacity utilization, reduction in the set-up times, and elimination 

of the defective items by rework. Their results justified a production policy with smaller lots and 

more frequent production and indicated that forgetting increases the costs throughout the supply 

chain. Readers are referred to Jaber and Bonney (2011) for a review of the studies that 

investigated the learning effects in lot sizing.    

Research on the learning-quality relationship also shows that the improvement in the process 

quality follows a learning curve (Lapré et al., 2000) and targeting for higher levels of quality, 



58 

 

moves organizations through steeper learning curves (Subedi, 2006). Stratman et al. (2004) 

investigated deployment policies regarding the hidden costs associated with defective items 

resulting from different levels of learning (skills) and forgetting. They found that assigning 

skilled workers to upstream operations is superior to the other policies. Readers are referred to 

Khan et al. (2011) for a good review of the studies that investigated the learning - quality 

relationship.  

There is a debate in the literature about whether the learning curve improvement continues 

indefinitely (Zangwill & Kantor, 1998; Ferioli et al., 2009) or if it ceases at a plateau for some of 

the following reasons: management unwillingness to invest, labour intentions for learning, 

depreciation in the knowledge, or forgetting (Kennedy & Trafton, 2007; Peterson & Jun, 2007; 

Feldman et al., 2009; Sikström & Jaber, 2012; Takahashi, 2013; Tirkel, 2013). Jaber and 

Guiffrida (2004) argued that the plateauing may be attributed to quality problems and could be a 

barrier for process improvements.  

An interesting model developed by Jaber and Guiffrida (2004) is the Quality Learning Curve 

(QLC) for  a production process that generates defective items requiring rework. The QLC is a 

composite learning curve, which is the sum of two learning curves: one represents production 

while the other represents rework. They showed that the QLC may be of a convex form under 

some conditions. The convexity corresponds to a unique minimiser that reciprocates the best 

performance on the curve. Jaber and Guiffrida (2004) used the model of Porteus (1986) to 

calculate the number of defective items in a lot that requires rework. Like Porteus (1986), they 

assumed that once the process goes out of control it remains in that state until the entire lot is 

produced. In a follow up study, Jaber and Guiffrida (2008) revised their earlier work by allowing 
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for the interruption of the production process to restore its quality, a notion adopted from Khouja 

(2005). The works of Jaber and Guiffrida (2004, 2008) have a major limitation. They assumed a 

single production cycle, the initial one. Jaber and Khan (2010) investigated the model of Jaber 

and Guiffrida (2004) in a serial production line with lot splitting where scrapped items at each 

stage are discarded. Jaber and Khan (2010) found that the system deteriorates as the number of 

stages in a serial production line increases. Like Jaber and Guiffrida (2004, 2008), Jaber and 

Khan (2010)  considered no transfer of learning between subsequent batches.  

None of the works surveyed above considered forgetting effects. Forgetting hinders the learning 

process when production is intermittent by breaks. After producing a lot, the production process 

ceases to allow the reworking of defective items and to release the process for other tasks. In this 

situation, workers forget some of the knowledge previously acquired because of alternating 

between different tasks (Jaber et al., 2003).  

Psychologists have reported that forgetting may occur in any of the following situations: (1) 

when there is not enough similarity between the conditions of encoding and retention of material 

learned, (2) when old learning interferes with new learning, and (3) when there is an interruption 

in the learning process for a period of time (production break) (Jaber, 2014, p.549). Knowledge 

depreciation could also occur due to worker turnover, changes in a product or a process, or loss 

of organizational records (Jaber, 2014). Knowledge depreciation was reported in energy 

technology, aircraft production, automotive, textile and information technology industries, 

shipyards, and fast food franchises (Nembhard, 2000; Kim & Seo, 2009; Argote, 2013; Kang & 

Hur, 2013; Grubler & Nemet, 2014).  
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Phase 2 of this research extends the work of Jaber and Guiffrida (2004, 2008) by assuming 

forgetting to occur when a worker alternates between the production and rework segments of a 

cycle and when cycles are interrupted by production breaks. It aims to incorporate the aspects of 

production quality into the learning and forgetting curve and demonstrate the effect of forgetting 

on the production planning in this perspective. The developed model in Phase 2 is called Quality 

Learning Forgetting Curve (QLFC) and it will be used in developing the production planning in 

DRC systems in Section  7.  

The rest of Section ‎5 is organized as follows: Section ‎5.2 provides a review of the QLC model, 

the methodology of Phase 2 is demonstrated in Section ‎5.3. Section ‎5.4 provides the numerical 

examples. Results are presented in Section ‎5.5 and discussed in Section ‎5.6. 

5.2 Review of the Quality Learning Curve (QLC) 

This section provides a brief background to the mathematics of the Quality Learning Curve 

(QLC) of Jaber and Guiffrida (2004) and Jaber and Guiffrida (2008). Jaber and Guiffrida (2004) 

considered two QLC cases. The first case assumed learning in production but no learning in the 

rework, while the second case assumed learning in both production and rework.  

The learning curve for the first case was found to be of a convex form with an optimum lot size 

that has the best performance on the curve, of: 
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The learning curve for the second case was also found to be of a convex form, only if 

5.00.0  , with an optimum lot size of: 
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The QLC was shown to plateau when 5.0 and to continuously improve for any 15.0  , 

behaving similar to the Wright’s learning curve.  

In a follow-up study, Jaber and Guiffrida (2008) assumed that the production process can be 

interrupted and restored back to the in-control state, with the restoration time being  a percentage 

of the production time. Similar to their earlier work, they also considered two cases. The learning 

curve for the first case was found to be a convex form with an optimum lot size of: 
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The learning curve for the second case was also found to be convex, only if 5.00.0  , with 

an optimum lot size of: 
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If the restoration time is negligible, i.e. 0 , as it is assumed in this section, then ( 5.3) and     

( 5.4) will converge to 
b

nr

bT
x














1

1

1

1


and

  






21

1

1

1

1

2212
























b

nr

bT
x , respectively.  

5.3 Methodology 

In practice, production is intermittent. The break time between two production lots (or cycles) 

that allows for performing other tasks results in forgetting, where some of the experience 

(knowledge) gained from previous lots is lost. It is assumed that in each cycle a production run is 

followed by a rework run to repair some of the defective items generated during the production 

run. Like the work of Jaber and Guiffrida (2004, 2008) I also consider two cases: (1) learning in 

production but no learning in rework, and (2) learning in production and rework.   

The following assumptions are made in this section: 

 The rework process is always in control, and no scrap (double defective) item is generated. 

 Once the process goes out of control with a given probability, defective items start 

accumulating.  

 The time to restore the production process is negligible in comparison to the cycle time, i.e. 

production plus rework times. 

5.3.1 Learning in production and no learning in rework ( 0.0 ) 

If r is the time to rework a defective item, then  ixdr is the time to rework  ixd units. The 

number of defective items in a lot of size xi is estimated from Khouja (2005) as nxxd ii 2)( 2 , 

where  is the probability that the process goes out of control and produces defective items, xi is 
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the lot size, and n is the number of maintenance restorations in a lot, which is divided as a result 

into n – 1 sublots. The total time to produce a lot is the sum of the production (Y(xi)) and rework 

time (R(xi)) in a serial line from LFCM model (section  4.2): 
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where ui is experience (in units) transferred to production run i from i -1 previous runs following 

an interruption. The time per unit, or the learning curve, is determined by differentiating ( 5.5) 

with respect to (w.r.t) xi to get: 
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 ( 5.6) 

Lemma 1: The learning curve expression in ( 5.6) is convex in x with a unique minimum at x

. 

Proof: The first and second derivatives of ( 5.6) w.r.t. x are given, respectively, as: 
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and  
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then ( 5.6) is convex and has a unique minimum, which is obtained by setting the first partial 

derivative of ( 5.6) equal to zero and solving for xi to get:  
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Note that for n = 1 and ui = 0, ( 5.9) reduces to ( 5.1). Also note that 


ix  must be a feasible 

quantity with respect to production capacity of the process. The related numerical examples are 

provided in sections  5.4.1.1 and  5.4.2.1. 

5.3.2 Learning in production and rework ( 0.0 ) 

When learning in rework is considered, ( 5.5) can be written as:  
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where r1 is the time to rework the first unit and nxxd ii 2)( 2  is the number of defective units 

that need reworking. The term vi, similar to ui, is the experience (in units) transferred to rework 

run i from i -1 previous runs performed before the interruption occurs, while   is the learning 

index for the rework process. The time per unit or the learning curve is determined by 

differentiating ( 5.10) w.r.t xi to get: 
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Note that, if 0.0  in ( 5.11), ( 5.6) is obtained.  
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Equation ( 5.11) holds for every value of the rework learning index   and it is used in providing 

three lemmas. The rework learning index between 0.0 and 0.5; 5.00   , is discussed in 

section  5.3.3 and lemma 2. The rework learning index 0.5, 5.0 , is discussed per section  5.3.4 

and lemma 3 and 4. The rework learning index between 0.5 and 1, 15.0   , is discussed in 

section  5.3.5. No lemma is assigned to this case.  

5.3.3 Cases of 5.00.0   

Lemma 2: The learning curve expression in ( 5.11) is convex in xi with a unique minimum at *
ix . 

Proof: y(xi) in ( 5.11) is a monotonically decreasing function of xi since: 
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Similarly for 5.00   , )( ixr  in ( 5.11) is a monotonically increasing function of xi . The first 

and second derivatives of r(xi) in ( 5.11) w.r.t. xi are given respectively as: 
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and 
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Therefore, the sum of monotonically decreasing, y(xi), and increasing, r(xi), functions as in          

( 5.11), i.e. t(xi), is a convex function with a unique minimiser.  

The optimum lot size that minimises ( 5.11) is found by equating the first derivative of ( 5.11) to 

zero as: 
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Equation ( 5.16) is solved numerically as no closed form solution exists. For the special case 

when iu  = 0 and iv  = 0, the solution for xi is obtained as:  
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In (‎5.17), if  = 0.0, i.e. no learning in the rework process, and n = 1, (‎5.17) reduces to (‎5.1). 

Also, if only n = 1, it reduces to (‎5.2). Note that the unique minimiser of (‎5.11), 


ix , must be a 

feasible quantity with respect to production capacity of the process. The related numerical 

examples are provided in sections ‎5.4.1.2 and ‎5.4.2.2. 
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5.3.4 Cases of 5.0  

Lemma 3: With no forgetting in the production and rework process, and equal lots of size x 

each, the learning process in ( 5.11) reaches a plateau when the rework learning index is one-

half, i.e, 5.0 , and that the plateau value decreases as the number of restorations or 

interruptions increases.    

Proof: For 5.0 , in case of no forgetting in production and rework, the total experience 

accumulated from producing the first lot of size x is transferred to the next lot of the same size x 

reducing ( 5.11) to:  
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When x  (i.e. x is a very large number), the first term 0))1(( 11
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learning curve in ( 5.11) reaches the plateau value of  
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plateau term decreases as the number of splits, n, increases. The related numerical example is 

provided in section  5.4.1.3. 
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Lemma 4: With forgetting in the production and rework process, the learning curve in ( 5.11) 

reaches a plateau when the rework learning index is one-half, i.e. 5.0 , and that the plateau 

value decreases as the number of restorations or interruptions increases.    

Proof: For 5.0 , ( 5.11) reduces to:  
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When ix  (i.e. x is a very large number), the first term 0)(1  b

ii uxT , while the second 

term is written as: 
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As ix , the term 
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Therefore, the learning curve in ( 5.20) approaches a plateau value; 
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When a lot of size xi is split into n equal sublots, the plateau term decreases as the number of 

splits, n, increases. Investigation for very large numbers of cumulative production is important 

since learning asymptotically reaches a plateau suggesting no further improvement beyond that 

point. The plateau time as per  ( 5.20) for ix  is used to estimate the standard (or steady 

state) time of the production (Teyarachakul et al., 2014). The same case was observed in the 
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study of Jabar and Guiffrida (2004) where they suggested that plateauing might occur due to 

quality improvement efforts. The plateau phenomenon requires managers to invest in training or 

new technologies to be able to improve the production process. The related numerical example is 

provided in section  5.4.2.3. 

5.3.5 Cases of 15.0   

It can be easily shown that if 5.0 , the derivative of equation ( 5.11) is negative for every ix , 

i.e.,  
i

i

i x
x

xt





,0

)(
, which indicates that )( ixt is a continuously decreasing function. Therefore, 

for 15.0   , the composite learning curve behaves similar to the Wright’s learning curve with 

continuous improvement towards less times. The related numerical examples are provided in 

sections ‎5.4.1.4 and ‎5.4.2.4. 

5.4 Numerical examples 

For simplicity and feasibility reasons, only integer values are considered for lot sizes. In 

obtaining the numerical results, the values of the input parameters have been set according to 

Table  5.1. 

Table  5.1. Parameters’ initial values. 

Description of the parameter Symbol Numerical values 

Production learning index b 0.25, 0.5, 0.75 

Rework learning index  0, 0.25, 0.5, and 0.75 

Time to produce the first unit T1 10 units of time 

Time to rework the first unit r1 5 units of time 

Probability to go out of control ρ 0.001 

Total forgetting time B 2000 units of time 
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The numerical examples are presented in two different cases for learning in production: (1) with 

no forgetting, where the production is performed in five lots with no loss of experience between 

lots, and (2) with forgetting, where the loss of experience occurs between subsequent lots. The 

first case, with no forgetting, is presented to compare its results with the previous works, and to 

set a benchmark for the second case, forgetting cases. 

5.4.1 No forgetting  

The no forgetting case is investigated for four different scenarios of learning in rework: (1) 

0.0 , (2) 5.025.00.0  , (3)  5.0 , and (4) 15.0  .    

5.4.1.1 No learning in the rework process ( 0.0 ) 

If there is no forgetting (B →) in the production process, then any experience accumulated 

from producing x units in each of i lots is fully transferred to the next lot; i.e. xiui )1(  . Then 

(‎5.9), can be rewritten as: 
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Using the values of parameters in Table ‎5.1 (except for B), for five consecutive lots, i = 5, when 

n = 1, 2 or 3, the results are summarized in Table ‎5.2 and Table ‎5.3. The results in Table ‎5.2 

show that for any lot number 1 to 5, the lot size decreases as learning becomes faster. For 

example, for two sublots, when 2n , x
*
 decreases by 80% (from 185 to 37) when learning 

becomes faster (b increases from 0.25 to 0.75). The reduction is about the same for 1n (76%) 
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and for 3n  (81%). These percentages slightly increase when the lot size number increases due 

to cumulative experience. The results also show that for a given learning index, say 25.0b , as 

the number of interruptions to restore the process increases, n goes from 1 to 3, x
*
 increases. This 

is logical as less defective items are produced, allowing for more production and less rework. 

The results suggest that if a firm wishes to produce more units when the learning in production is 

slow, 25.0b , it is recommended to restore the process more frequently. Jaber and Guiffrida 

(2004) considered one lot and 1n , while Jaber and Guiffrida (2008) considered one lot and 

1n . The effect of restoration is somewhat insignificant when learning in production is fast, 

75.0b . The rationale for this is that as learning becomes faster, b increases from 0.25 to 0.75, 

the process benefits from producing in smaller lots, which also results in fewer items to rework. 

For a given learning index, say 25.0b , the process benefits more from producing in more lots. 

To illustrate, assume that a firm needs to produce a lot of 200 units, then should it produce the 

200 units in 1 lot, 2 lots, etc.? By looking into Table ‎5.2, the firm will produce in 2 lots of 106 

each since 2106 = 212 is closer to 200 than 144. Furthermore, the performance on the learning 

curve would be better. To illustrate, refer to Table ‎5.3, where the corresponding performance for 

unit number 144 in Table ‎5.2 on the learning curve is 3.606, whereas the performance time of 

unit 106 when 2 lots are produced is 2.654, which is better (lower).  
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Table  5.2. Optimum values of the lot size, x
*
, with learning in production, no learning in rework, and no 

forgetting. 

x* b = 0.25 b = 0.5 b= 0.75 

0.0  n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3 

No. of Lots          

1 144 251 347 100 159 208 65 97 122 

2 106 185 256 56 88 116 25 37 47 

3 96 166 230 47 74 97 20 30 38 

4 89 155 215 42 66 86 17 26 32 

5 85 148 204 38 61 79 16 23 29 

  

Table  5.3. Performance on the learning curve for the last unit produced as per Table  5.2. 

t* b = 0.25 b = 0.5 b = 0.75 

0.0  n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3 

No. of Lots          

1 3.606 3.139 2.895 1.5 1.191 1.04 0.761 0.566 0.475 

2 2.654 2.311 2.131 0.833 0.661 0.577 0.294 0.218 0.183 

3 2.389 2.08 1.918 0.698 0.554 0.484 0.234 0.174 0.146 

4 2.232 1.943 1.792 0.623 0.495 0.432 0.202 0.150 0.126 

5 2.122 1.847 1.703 0.573 0.455 0.397 0.181 0.135 0.113 

 

The average time to process a unit, computed from ( 5.5) as  

N

i i

N

i i xnxT
11

),( , when the 200 

units (where 25.0b , 0.0 , and 1n ) are processed in a single lot is 3.678, in 2 lots of 100 

units each is 3.615, in 3 lots of 66.667 each is 3.592, in 4 lots of 50 each is 3.581, and in 5 lots of 

40 each is 3.574. The reduction in the average processing time benefits from the transfer of 

learning between subsequent lots and from having less defective items to rework as the lots are 

of smaller sizes. If learning becomes faster, i.e. 75.0b , then the average unit processing times 

would be 1.138, 0.954, 0.889, 0.856, and 0.835, respectively. Repeating the same example (200 

units, 25.0b , and 0.0 ) for 3n ( i.e. three process restoration instances per lot) the average 

processing times improve by reducing the time from 3.678, 3.615, 3.592, 3.581, and 3.574 to 

3.592, 3.569, 3.562, 3.558, and 3.555, respectively, corresponding to improvement in average 

performance of  2.34%, 1.27%, 0.84%, 0.64% and 0.53%. The behavior was similar for the case 
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when 75.0b , 0.0 , and 3n , the average unit processing times would reduce to 0.889, 

0.822, 0.799, 0.787, and 0.780, respectively. The percentage improvement in performance is 

greater when process restoration is applied in the presence of fast learning than for slow learning; 

where the average improvement in performance is 21.88%, 13.84%, 10.12%, 8.06%, and 6.59%. 

5.4.1.2 Learning in the rework process ( 25.0 )  

In this section, the second case of no forgetting is considered, which is learning in production 

and rework processes. Since xiui )1(   and 
n

x
ivi

2
)1(

2
 , where i = 1, 2,..., N  in ( 5.17), the 

optimum lot size is computed as: 
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x  ( 5.23) 

Equation ( 5.23) corresponds to the lot size that minimizes the total time to produce and rework a 

lot. Any deviation from the optimum value will deteriorate performance. As shown in Table  5.4, 

learning in the rework process, provides the opportunity of producing more units in a lot. By 

comparing the values in Table  5.4 to those in Table  5.2, one can observe that with learning in 

production and rework processes, the number of units that could be produced in a lot and still 

move down on the learning curve, increases. For example, when the number of lots is 1 with no 

process restoration ( 1n ), the process can improve on the learning curve up to unit 144 in Table 

 5.2, beyond which if production continues, performance deteriorates, because of the convex 
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behavior of the learning curve. This is typical in the construction industry when towards the end 

of a project, most of the workforce are correcting mistakes rather pouring concrete. Whereas 

when there is learning in rework ( 5.00  ) the learning curve continues for 5.5 times more 

(from 144 to 794) in Table  5.3. Similarly, for 2n and 3, the learning curve continues for 6.3 

(from 251 to 1587) and 6.8 (from 347 to 2381) times more, respectively. The performance on the 

learning curve corresponding to the values of x
*
 in Table  5.4 are given in Table  5.5. Table  5.4 

shows that the optimum lot size is not different when 25.0b  regardless of the number of 

lots, i.e. 1, 2,..., and 5. This is because the terms   bb ii
 

11 1  and     
11 1ii  eliminates 

one another in ( 5.23) when b .  

Table  5.4. Optimum values of the lot size, x
*
, with learning in production and rework, and no forgetting. 

x* b = 0.25 b = 0.5 b = 0.75 

25.0  n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3 

No. of Lots          

1 794 1587 2381 299 503 682 132 200 256 

2 794 1587 2381 182 306 414 47 72 92 

3 794 1587 2381 159 267 363 38 58 74 

4 794 1587 2381 146 246 333 33 51 65 

5 794 1587 2381 137 230 312 30 46 58 

  

Table  5.5. Performance on the learning curve for the last unit produced as per Table  5.4. 

 

 

 

Repeating the same numerical example of producing 200 units when 25.0b and 1n ,  but  for

25.0 , the average times to process a unit are 3.510 when producing in 1 lot, 3.555 in 2 lots,  

t* b = 0.25 b = 0.5 b = 0.75 

25.0  n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3 

No. of Lots          

1 2.826 2.376 2.147 1.156 0.891 0.766 0.641 0.469 0.391 

2 1.926 1.62 1.464 0.614 0.473 0.407 0.262 0.192 0.159 

3 1.689 1.42 1.283 0.504 0.388 0.334 0.206 0.151 0.126 

4 1.551 1.304 1.178 0.443 0.342 0.294 0.177 0.129 0.108 

5 1.465 1.224 1.106 0.403 0.311 0.267 0.158 0.115 0.096 
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3.565 in 3 lots, 3.568 in 4 lots, and 3.568 in 5 lots registering improvements of 4.57%, 1.65%, 

0.76%, 0.37%, and 0.16%. This suggests, when the rework learning index is 25.0 , 

improvement in the average performance is more recognizable when the 200 units are produced 

in less lots than in more lots.  

Note that the benefit from learning in production and rework is more apparent when more units 

are produced per lot. For example, it is assumed that instead of producing 200 items the firm has 

a commitment of producing 2000 units, when 25.0b and 1n , with 25.0 instead of 0.0, 

improvements in the unit average processing time of 57.24%, 42.44%, 33.58%, 27.67% and 

23.44% were registered. For the same input parameters except for 3n , improvements in the 

unit average processing times of 33.58%, 20.27%, 14.26%, 10.87% and 8.70% were registered. 

Repeating the same numerical example for 2000 units, 75.0b , 25.0 and 3n , 

improvements in the unit average processing times by 68.27%, 59.27%, 52.75%, 47.60% and 

43.35% were registered. This suggests that when learning in rework is slow ( 25.0 ), 

maximum benefit can be attained when learning in production is fast (b = 0.75) and process 

restoration is more frequent. The best performance, average time to process a unit (0.248), was 

recorded when the 2000 units were processed in 5 equal lots, where 75.0b , 25.0 , and 

3n . Whereas the worst (3.497) was when they were processed in a single lot, where 25.0b , 

0 , and 1n .  
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5.4.1.3 Learning in the rework process ( 5.0 ) 

The learning curve in ( 5.11) reaches a plateau value, i.e.  

2/1
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
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n
iirxt i


as 

ix for 5.0  according to lemma 3 where i is the lot number. Considering 51 r units of 

time and 001.0 , the process plateaus at the values summarized in Table  5.6. 

Table  5.6. Plateau values of the composite learning curve when there is no forgetting in the learning and 

rework processes, for all 0b , and 5.0 . 

t(x) n = 1 n = 2 n = 3 

Lot #1 0.224 0.158 0.129 

Lot #2 0.093 0.065 0.053 

Lot #3 0.071 0.500 0.041 

Lot #4 0.060 0.042 0.035 

Lot #5 0.053 0.037 0.030 

 

The results in Table  5.6 suggest that, for a given lot number, when restoration is more frequent    

( 1n ), plateauing is broken where the process moves to a lower plateau value each time the 

process is restored therefore the plateauing behavior that is usually observed in the learning data 

can be further overcome when the process benefits from the transfer of learning between lots, 

that is, as the number of lots increases.    

5.4.1.4 Learning in the rework process ( 15.0  ) 

If the learning index in the rework process is 15.0  , the process improves continuously, as 

more lots are produced. A well-known example of this situation is the Wright’s learning curve 

(1936). The behavior of the aggregated learning curve has been previously explained, for the first 

lot only, in Jaber and Guiffrida (2004). As more lots are produced, the same behavior of the 
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learning curve is observed as that for the first lot, except performance moves further down on the 

learning curve as a result of the transfer of learning between lots.    

5.4.2 Forgetting Cases 

In this section, an intermittent production/rework process in examined during which forgetting 

occurs as a result of breaks. That is, production/rework processes are intermittent. This allows 

for some of the experience gained from previous lots to be lost because of the time breaks, which 

are of two types:   

i) a cycle (i.e. production + rework) is interrupted for a period of time to release the 

workstation to perform another dissimilar job, or for resting, or both.   

ii) a worker is shifted to reworking the defective items generated in the production 

segment of a cycle, where it is assumed that a worker is flexible to perform both 

production and rework tasks. It is also assumed that production and rework are 

dissimilar tasks and the period for reworking defective items is considered as a break 

over which some of the experience gained from production segments of the previous 

or prior cycles is lost.  

In the numerical examples performed in this section, it is assumed that the length of the 

interruption period that separates two subsequent cycles is fixed at 200 units of time relative to 

2000B units of time, which is the time for total forgetting to occur. The interruption time 

between two production periods, i and 1i , would be the time to rework the defective items 

produced in the current cycle, Rti, plus the 200 units. Similarly, the interruption time between 
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two rework periods, i and i +1, would be the time to produce the items in the next cycle, Pti +1, 

plus the 200 units. Then, we have the breaks computed as follows: 

11, 200   iir Pt  
( 5.24) 

iip Rt 2001,  
( 5.25) 

This process is illustrated in Figure  5.1 with the current production and rework lots. The 

experience from production (PL(i)) and rework (RL(i)) is transferred to cycle i from the previous 

cycle and is measured in units, represented by u(i) and v(i), respectively, and x and d(x) depict 

the lot size and number of defective items, respectively.  

 

Figure  5.1. Cycle i consists of production and rework processes. The experiences u(i) and v(i) are 

transferred to the current cycle from previous runs.  

 

The next section investigates the effect of forgetting in the production and rework processes for 

different learning rates in production and rework, different number of process restorations, and 

for consecutive lots. 

cycle i 

to cycle i + 1 

x-d(x) 

PL(i) RL(i) d(x) d(x) u(i) 

v(i) 
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5.4.2.1 No learning in the rework process ( 0.0 ) 

To illustrate the effect of forgetting on the QLC, when there is no learning in the rework process, 

with the assumption that 2000 items are produced in 5 lots, the following steps are taken:  

1. Calculate the time to process the 400 units in the first lot by integrating equation ( 4.11) 

over the proper limits. 

2. Calculate the time to rework the defective items generated from producing the first lot, 

  nr 2400
2

 , where r1 = r. The amount of the experience transferred from a cycle to the 

next, is calculated from ( 4.4) to ( 4.6) by ( 5.24) and ( 5.25) for the production and rework 

breaks, respectively. 

3. Calculate the lot size that minimizes ( 5.6) and the corresponding time on the learning 

curve. 

4. Repeat the above steps for the remaining lots.  

 

Note that in this example the amount of experience transferred from rework is not calculated 

since we assume no learning in rework, i.e. 0.0 . In later sections, where 0.0 , step 2 is 

also performed for rework. The results are summarized in Table  5.7 and Table  5.8. Comparing 

these results with their corresponding ones in Table  5.2 and Table  5.3, where there was full 

transfer of learning between subsequent lots (i.e. no forgetting), it can be noticed that larger lot 

size values are produced and the performance deteriorates as a result.  
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Table  5.7. Optimum values of the lot size, x
*
, with learning and forgetting in production and no learning 

in rework. 

x* b = 0.25 b = 0.5 b = 0.75 

0.0  n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3 

Lot #1 144 251 347 100 159 208 65 97 122 

Lot #2 111 182 258 81 119 155 54 73 90 

Lot #3 108 170 238 81 116 149 53 72 88 

Lot #4 108 168 233 81 115 148 53 72 88 

Lot #5 108 168 232 81 115 148 53 72 88 

 

Table  5.8. Performance on the learning curve for the last unit produced as per Table  5.7. 

t* b = 0.25 b = 0.5 b = 0.75 

0.0

 

n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3 

Lot #1 3.606 3.139 2.895 1.5 1.191 1.04 0.761 0.566 0.475 

Lot #2 3.439 2.967 2.746 1.406 1.092 0.952 0.703 0.506 0.422 

Lot #3 3.426 2.937 2.712 1.403 1.083 0.941 0.702 0.503 0.419 

Lot #4 3.425 2.932 2.704 1.403 1.082 0.939 0.702 0.503 0.418 

Lot #5 3.425 2.931 2.702 1.403 1.082 0.939 0.702 0.503 0.418 

 

By comparing the first five lots of Table  5.7 to Table  5.2, it can be seen that the forgetting effects 

are observed in lots 2-5. When there is forgetting, it takes more units to reach the optimum 

performance on the learning curve, where performance is slower than when there is no 

forgetting. To better illustrate the effect of forgetting; let us consider the case when the 2000 

units are produced in 5 equal lots of 400 units each. For the case when 25.0b , 0.0 , and      

1n and no forgetting, the average time per unit to produce and rework a unit is 3.318, 2.528, 

2.320, 2.18, and 2.115 for lots 1, 2, 3, 4 and 5, respectively. When there is forgetting, the average 

time per unit to produce and rework a unit is 3.318, 3.086, 3.075, 3.074, and 3.074, for lots 1, 2, 

3, 4 and 5, respectively, corresponding to a deterioration in the average performance of 0%, 

22.08%, 32.54%, 41.01%, and 45.34%. Repeating the same numerical example but for 3n , the 

average time per unit deteriorates by 0% (from 3.108 to 3.108), 19.7% (from 2.219 to 2.656), 

31.3% (from 1.984 to 2.605), 40.4% (from 1.848 to 2.594), and 47.8% (from 1.754 to 2.592). 
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Now, repeating the above example for 75.0b , when 0.0  and 1n , the average time per 

unit deteriorates by 0% (from 1.206 to 1.206), 16.6% (from 0.904 to1.0544), 19.6% (from 0.881 

to 1.054), 21.1% (from 0.871 to 1.054), and 21.9% (from 0.864 to 1.054) when there is 

forgetting. For 3n , the average time per unit deteriorates by 0% (from 0.732 to 0.732), 31.7% 

(from 0.392 to 0.517), 40.4% (from 0.366 to 0.514), 45.1% (from 0.354 to 0.514), and 48.1% 

(from 0.347 to 0.514). These results suggest that forgetting can significantly impede the 

performance.  

5.4.2.2 Learning in the rework process ( 25.0 )  

Here, we investigate the effects of learning in production and rework when forgetting exists. Let 

us consider the numerical example where 2000 units are produced in 5 equal lots of 400 units 

each, where 25.0b , 25.0 , and 1n , production break is 200, and 2000B . By 

comparing the average time to process a unit of this case to the one with the same parameters 

except for 0.0 , the average time per unit improves by 13.92% (from 3.318 to 2.856), 19.81% 

(from 3.086 to 2.475), 20.91% (from 3.075 to 2.432), 21.18% (from 3.074 to 2.423), and 21.24% 

(from 3.074 to 2.421), when   increases from 0.0 to 0.25. Repeating the same example for 3n

the average time per unit improves by 4.18% (from 3.108 to 2.978), 7.42% (from 2.656 to 

2.459), 8.52% (from 2.605 to 2.383), 8.91% (from 2.594 to 2.363), and 9.10% (from 2.592 to 

2.356), when   increases from 0.0 to 0.25. These results suggest that with learning in rework 

and more frequent restorations, the effect of forgetting can be reduced. Further improvement can 

be claimed when b increases from 0.25 to 0.75, where the average time per unit per lot improves 

by 79.75% (from 2.978 to 0.603), 85.81% (from 2.459 to 0.349), 85.9% (from 2.383 to 0.336), 

85.86% (from 2.363 to 0.334), and 85.82% (from 2.356 and 0.334), when 3n , 25.0 , 400 
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units produced per lot, 200 is the break length and 2000B . These results suggest that when 

learning in rework is present, the process improves more than when there is only learning in 

production. Further improvements can be claimed when the process is restored more frequently 

and when learning in production is fast. This reduces the cycle length and, therefore, reduces the 

impact of forgetting (see Jaber & Bonney, 2011).  

5.4.2.3 Learning in the rework process ( = 0.5) 

The learning curve in ( 5.11) reaches the plateau value of 
n

rxt i


2)(   as ix for 5.0

according to lemma 3 where n is the number of restorations and the process undergoes 

forgetting. Considering 51 r units of time and 001.0 , the process plateaus in each of the 5 

lots at 0.224 ( 1n ), 0.156 ( 2n ), and 0.129 ( 3n ). This indicates that more restorations in 

the process push the plateau value of a learning curve to lower values. This may entice managers 

to follow such a policy to unlock the improvement of their processes.  

Forgetting causes the plateau level to increase. We compare 
n

rxt i


2)( 1  (see Lemma 4) and 
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 (with no forgetting) when ix  in section ‎5.3.4. These two 

formulas correspond to the cases of forgetting and no forgetting, respectively. The ratio of the 

second to the first gives: 
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1i , which is always less than one for any lot 

except the first one. Therefore, the process will plateau at a higher time value under the effect of 

forgetting, which is an indication of the loss of profit due to forgetting.  

5.4.2.4 Learning in the rework process ( 15.0  ) 

Let us consider the numerical example where 2000 units are produced in 5 equal lots of 400 units 

each, where 25.0b , 75.0 , and 1n , production break is 200, and 2000B . The average 

time per unit is 2.609, 2.095, 2.002, 1.975, and 1.965 for lots 1 to 5, respectively. The values 

improve over the case when all the parameters are the same except for 25.0 by 8.65%, 

15.35%, 17.68%, 18.49%, and 18.85%, respectively. The average time to process a unit 

improves significantly when 75.0b  and 3n . The percentages of the improvement in 

performance are 79.85%, 89.21%, 89.56%, 89.52%, and 89.01%, respectively. 

5.5 Results 

The results of this Phase shed light on an intermittent production process which is restored for 

the quality maintenances and it entails the forgetting effects. The effect of restorations on the 

performance is represented in Figure  5.2 for a composite process of production, with 25.0b , 

and rework, with 0.0 . More restorations decrease the number of defective items and move the 

optimum lot size forward on the horizontal axis. The optimum lot size increases from 144 to 251, 

347, 437, and 523 for n = 1, 2, 3, 4 and 5, respectively, which allows producing in larger lots. 
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The process also can benefit from producing in smaller lots more frequently. The more the 

process is restored; the lower is the average unit time (better performance). 

  

Figure  5.2. The effect of restorations on the average unit time of the process when 25.0b and 0.0 . 

A single lot for (i=1) is restored for n times, n=1, ..., 5. 

 

Figure  5.3 illustrates the effect of forgetting on the optimum lot size with different number of 

restorations where 25.0b  and 0.0 . Without forgetting, the optimum lot size continues to 

decrease due to learning effects. With forgetting, the optimum lot size reaches a plateau and 

ceases to reduce. The results indicate that more restorations increase the lot size due to producing 

less defective items. Figure  5.4 illustrates the effect of forgetting on the optimum time per unit in 

a cycle (i.e. production + rework) where 25.0b  and 0.0 . Without forgetting, time per unit 

continues to decrease per lot. With forgetting, the improvement ceases due to the plateauing 

effect. More process restorations shift the curves down, which is an indication of a breakage in 

the plateau barrier and subsequently a reduction in the standard time of the process.   
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Figure  5.3. The effect of splitting a larger lot into smaller sublots with and without forgetting. The 

optimum lot size decreases with more lots. The forgetting effect prevents the lot size to decrease as per 

Table  5.2 and Table  5.7. 

 

Figure  5.4. The effect of splitting a larger lot into sublots with and without forgetting. The plateau effects 

prevents the time per unit to decrease due to forgetting as per Table  5.3 and Table  5.8.  
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5.6 Discussion and conclusion 

Phase 2 of this research extended the quality learning curve (QLC) developed by Jaber and 

Guiffrida (2004, 2008) to account for the transfer of learning and forgetting effects in a 

production line with the quality effects. The QLC model of Jaber and Guiffrida (2004) 

considered a single production cycle that is not restored once it goes out of control. In a 

following study, Jaber and Guiffrida (2008) revised the QLC by allowing the process to be 

interrupted and restored as a policy to reduce the cumulative number of defective units in a cycle 

and to break the learning plateau barrier. This Phase extended these earlier works by considering 

several cycles performed sequentially and that forgetting may occur when these production 

cycles are separated by production breaks.  

Similar to the previous models, the QLFC model demonstrated three different behaviors: convex, 

plateau, and continually improving. The results showed that when the rework learning index is 

half, i.e. 5.0 , the process plateaus at a time smaller in the case of no forgetting and larger 

when forgetting occurs. This suggests that the process will operate at higher costs because of 

forgetting. When the rework learning index is larger than 0.5, i.e. 5.0 , the process continues 

to improve. The results also indicated that the performance improves with faster learning and 

frequent process restorations. 

This Phase of the thesis would be helpful to set strategies for quality improvements, waste 

reduction, and for breaking the learning plateau barrier. The results of this Phase may also be 

used in scheduling workers in DRC systems where there is a tradeoff between flexibility and 

productivity.  
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A significant amount of money is spent by industries, e.g., automobile manufacturers, for 

training (learning) and retraining (following forgetting) purposes (Jaber et al., 2003; Omar et al., 

2011; Bapna et al., 2013; O'Leonard, 2013) to encounter the effects of forgetting. Using robotics 

and flexible manufacturing systems, worker flexibility, cross-training, sharing the experience, 

and assignment scheduling were also suggested to reduce the forgetting effects (Jaber & Bonney, 

1999; Heimerl & Kolisch, 2010; Kang & Hur, 2013). In a competitive and dynamic market, the 

capability of manufacturing companies to increase the learning abilities, and to reduce or 

anticipate the forgetting effects is vital for them in order to survive. This Phase of the thesis may 

help managers in identifying operations and processes that are subject to learning and forgetting 

effects and to properly estimate their associated costs. The QLFC model developed in this Phase 

could also be investigated in a more complex context such as production planning and control.  



88 

 

6. Phase 3: Investigating human error with learning-forgetting and fatigue-

recovery  

This Phase of the thesis studies the interaction of human behavioral functions such as learning-

forgetting and fatigue-recovery that affect human reliability when performing a manual task. A 

mathematical model is developed that calculates the human error rate while performing an 

assembly job and accounts for the dynamic behavior of human reliability in a production 

process. The results of this Phase will be used in production planning in a DRC system in Phase 

4. 

6.1 Introduction 

The costs of reworking or scrapping defective items are of concern to many manufacturers. 

Unnecessary rework and disposal costs of scrapped items require committing additional 

resources that increase production costs (Jenab et al., 2009). Reducing the worker’s error rate 

reduces the number of defective items generated. According to a report by U.S. National Safety 

Council, in 1999, human error was a contributor to 80% of all industrial accidents, which caused 

$98.5 billion of costs (Griffith & Mahadevan, 2011). To counter the detrimental effects of human 

error, one has to study why and how an error occurs. Noroozi et al. (2013) identified several 

causes of human error in manufacturing environments, such as: lack of training, poor design, 

poor lighting or noise condition, improper tools or work layout, and unclear operating procedure. 

This indicates that human error is a multidimensional problem, which affects the reliability of the 

system and the quality of its output.  

In order to measure and manage the reliability of labour intensive systems, it is necessary to 

assess the reliability of the workforce of such systems. According to Cacciabue (1998), human 
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reliability analysis (HRA) predicts human error rates and evaluates the degradation to the 

human-machine system that is caused by declines in human functioning, operational procedures, 

and practices, and other system and human characteristics which affect the system behaviour .  

In HRA models, human error probability (HEP) is calculated based on the operator’s activities 

and his/her performance shaping factors (PSF) that are either related to the working environment, 

or the physical and mental capabilities of workers, or both. Identifying PSFs is then essential in 

HRA process (Di Pasquale et al., 2013).  

HRA models are classified into two main categories of first and second generations. The first 

generation models are quantitative models such as the Technique for Human Error Rate 

Prediction (THERP) by Swan and Guttman (1983) and Human Cognition Reliability (HCR) by 

Hannaman et al. (1984). These models treat a worker as a mechanical element that does not have 

any interaction with his/her surrounding environment. For such models, HEP is determined from 

task characteristics and PSFs by fuzzy success/failure modes, and the causes and reasons of 

human error are not considered (Di Pasquale et al., 2013).  

The second generation of HRA models are qualitative models that use methods like Cognitive 

Reliability Error Analysis Method (CREAM) by Hollnagel (1996) and Standardized Plant 

Analysis Risk HRA method (SPAR-H) by Boring and Blackman (2007). These models pay more 

attention to the causes of human error, and the dependency (interaction) of PSFs of one factor on 

(with) other factors. The cognitive models in this category, describe the man-machine 

interactions by considering a human cognition system in deciding situations where the operator 

is in possession of “awareness” and “judgement” (Di Pasquale et al., 2013). Unlike the first 

generation, the models of the second generation have not been empirically validated and in the 
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majority of the proposed models, implicit functions relate the PSFs to numeric probabilities 

(Mosleh & Chang, 2004; Di Pasquale et al., 2013). Based on the study of HRA models, it is 

concluded that the available HRA models have the following shortcomings: Firstly, there is no 

available empirical data to validate them. Secondly, they do not consider human behaviour 

objectively. Thirdly, and lastly, the available models are limited to distinct areas (such as nuclear 

power plants or transportation systems) and their HEP estimation depends on the applied 

methodology. Moreover, HRA models require an expert’s judgment to determine/estimate the 

PSFs values (Griffith & Mahadevan, 2011). Another problem with HRA models is that these 

models were developed primarily to analyze the causes and occurrences of accidents in the work 

environments that are restrictive in nature and subject to stringent measures. Therefore, they are 

more concerned about the outcome of a decision making process rather than analysing the 

dynamics of the error generation process. They also cannot be used to predict when and how 

often an error occurs. Therefore, the estimation of error and management of workers’ reliability 

remain a concern in labour-intensive systems.   

Reducing the cost associated with errors is achieved by proper measurement and control of PSFs. 

It has been shown that the error rate of a worker decreases as he/she accumulates more 

experience and it increases by fatigue (Giuntini, 2000; Myszewski, 2010). The aim of Phase 3 of 

the thesis is to model the error rate of a worker taking into account the PSFs of learning and 

physical fatigue and their opposites, forgetting and recovery. The error rate of a worker, on one 

hand, decreases as he/she accumulates more experience due to repetition in accordance with 

his/her learning curve (Giuntini, 2000), but at the same time, he/she accumulates fatigue, which 

increases the error rate (Myszewski, 2010; Michalos et al., 2013). Rest breaks, alleviate worker 

fatigue (Krajcarski & Wells, 2008) and decrease the probability of committing mistakes/errors 
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on a job, but at the same time, they cause forgetting (Anzanello & Fogliatto, 2011; Froehle & 

White, 2013), which is an error-increasing PSF (ElMaraghy et al., 2008). The combined effect of 

learning and forgetting along with fatigue and recovery has not been investigated in the HRA 

and human error modelling literature. The aim of this Phase therefore, is to contribute to HRA 

literature by presenting a mathematical model for human error analysis by considering the 

interaction of learning - forgetting and fatigue - recovery phenomena.    

The rest of Section ‎6 is organized as follows: Section ‎6.2 presents a literature review for human 

reliability models. The methodology of Phase 3 is demonstrated in Section ‎6.3. Results are 

presented in Section ‎6.4 and discussed in Section ‎6.5.  

6.2 Human Error  

Kirwan (1992, p. 300) has defined failure or error as: “The failure to perform an act within the 

limits (of time, accuracy, etc.) required for safe system performance, or else the performance of 

a non-required act which interferes with system performance”. Dhillon (2009) categorized the 

common human errors in engineering processes as: maintenance error, operator error, design 

error, assembly error, inspection error, handling error, and contributory error. Error in assembly 

has been associated with worker’s capabilities such as knowledge and competence; worker’s 

fatigue; task parameters such as workload and repetitiveness; and the work environment 

(ElMaraghy et al., 2008; Xin & Fan-Sen, 2010; Michalos et al., 2013). These errors can occur as 

a result of performing tasks non-sequentially, using the wrong parts, apply the wrong force or 

torque, misalignments, loose joints, and missing parts (Michalos et al., 2013).  
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In this thesis, human error is defined as a mistake in performing a task that results in producing a 

quality deficit. Errors are corrected at a cost and are considered to be affected by the worker’s 

personal capabilities and the work characteristics. The worker’s capability in performing a 

repetitive task, or competence, is presented by his/her learning curve. Also, the work 

characteristics such as work environment (e.g. noise and humidity) and severity, are represented 

by the worker’s fatigue (Ji et al., 2006). Other parameters, that directly or indirectly affect these 

two factors are summarised in Table ‎6.1.  

Table  6.1. Example of categorization of parameters affecting human error
 
as per ElMaraghy et al. (2008). 

Parameters contribute to Learning Parameters contribute to Fatigue 

Task repetitiveness and complexity Task repetitiveness and complexity 

Skill level Task environment 

Training Skill level 

Interruptions Stress 

Forgetting Ergonomic design of workplace  

Multitasking Line speed 

Job rotation Worker personality  

Task reallocation Management strategy 

Task reconfiguration Task time 

Work teams Work teams 

 

6.2.1 Human error and learning-forgetting 

It has been documented in the literature that a worker’s error rate declines with experience 

(Chand, 1989; Koulamas, 1992; Teng & Thompson, 1996; Franceschini & Galetto, 2002; 

Myszewski, 2010; Grosse & Glock, 2013). However, experience as a result of learning has not 

been explicitly considered in HRA models. These models provide numerical measures 

(probability of committing an error) associated with a description of a worker’s knowledge level 

or experience. For example, the probability of committing an error by an operator who is totally 

unfamiliar with a task is considered as 0.55 as suggested by Human Error Assessment and 
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Reduction Technique (HEART) model whereas for an operator who is totally familiar with the 

task and performs it repetitively is 0.0004 (Smith, 2011). Although the HEART model 

distinguishes among the factors that (negatively or positively) contribute to error-making, 

including learning, it does not provide a methodology to rationalize this distinction. In another 

model, Empirical Technique to Estimate Operator Error (TESEO) by Bello and Colombari 

(1980), the skill of an operator is classified as “Expert”, “Average” , and “poorly trained” with 

“error scores” of  0.5, 1 and 3, respectively. Although TESEO emphasizes on the relationship 

between the level of expertise and error-making, the relationship is numerically derived from 

informed guesses, rather than empirically driven data (Geisinger, 2003). The lack of supporting 

evidence indicates that there is not enough justification in support of these scores and the way the 

accumulation of experience contributes to these scores.  

Some researchers modelled error generation as a function of time. For example, Myszewski 

(2010) and Giuntini (2000) have suggested that the human error rate decreases as the number of 

repetitions increases with the time, according to a learning curve, but have not accounted for its 

opposite phenomenon, forgetting. Forgetting may occur during breaks or production 

interruptions (Globerson et al., 1989; Jaber & Bonney, 1996; Anzanello & Fogliatto, 2011; 

Froehle & White, 2013) and it was identified as a cause of human error, which affects the quality 

of products (Reason, 1990; Kirwan, 1992; ElMaraghy et al., 2008). Since learning and forgetting 

are considered to be mirror images of one another, while learning improves quality by decreasing 

the occurrence of errors, forgetting tends to increase errors and impede the quality.    
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6.2.2 Human error and fatigue-recovery 

Fatigue is known as a contributor to human error generation (Granger & Jen-Gwo Chen, 1994; 

Luczak & Mueller, 1994; ElMaraghy et al., 2008; Michalos et al., 2013). Errors caused by 

fatigue have been observed in aviation (Helmreich, 2000; Isaac et al., 2002; Dhillon, 2009), 

transportation (Dhillon, 2007; Gander et al., 2011), healthcare (Dean et al., 2006; Barker & 

Nussbaum, 2011), electronic industry (Yeow & Nath Sen, 2003) and car manufacturing 

(Fritzsche et al., 2014). A study by National Aeronautics and Space Administration (NASA) 

revealed that 70% of all aviation accidents were related to fatigue (Helmreich, 2000). In the 

manufacturing sector, 26% of deficit items were shown to be related to human fatigue (Dodé, 

2011). Although fatigue is acknowledged as a multidimensional problem and there is an 

increasing interest among scholars in this subject, it has not been considered explicitly in HRA 

models (Griffith & Mahadevan, 2011). For example, in the TESEO model, while calculating the 

human error probability, fatigue could be considered as an “Ergonomics” scale factor. In this 

context, “Excellent ergonomics” is factored by 0.7, “Good ergonomics” by 1, “Average 

ergonomics” by a number between 3 and 7, and “Very poor ergonomic” by 10. TESEO 

associates each of this ergonomic description with a probability of error. Clearly, excellent 

ergonomics has very low error probability while the poorest has the highest error probability. 

Readers are referred to Griffith and Mahadevan (2011) for information about the inclusion of 

fatigue in current HRA models Where they describe the current status of HRA methods towards 

fatigue as “fatigue is neither considered as a PSF in HRA models nor do current HRA methods 

adequately include explicit quantitative measures for the effects of fatigue”(p.1444).                                                              
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The contribution of physical fatigue in producing human error has been investigated by some 

researchers. For example, Myszewski (2010) and Giuntini (2000) provided an error rate curve 

model which suggests that human error increases as fatigue increases over time. Michalos et al. 

(2013) considered a physical fatigue score that is calculated using  the fatigue model of Ma et al. 

(2009), where fatigue accumulates over time as more work is performed. Michalos et al. (2013) 

then used the utility function of ElMaraghy et al. (2008) to calculate the corresponding error rate 

but none of the above models have considered how recovery from fatigue affects the error rate in 

assembly workers

Recovery could be defined as the time needed by an individual to return to the pre-stress level of 

functioning following the termination of the stressor (Jansen et al., 2002). Work breaks interrupt 

the production process and decrease the available time of production, but they are necessary to 

alleviate some of the accumulated fatigue and decrease the boredom (Di Pasquale et al., 2013). 

In this context, recovery has the opposite effect of fatigue on worker’s performance; i.e., it 

decreases the error rate and the risk of accidents (Tucker, 2003).   

The above literature review reveals that there is an increasing interest in evaluating the learning 

and fatigue contribution in producing human error but there is no research available that 

incorporates learning and fatigue together with their reverse associated functions, forgetting, and 

recovery, in producing human error. The present Phase of the research aims to cover this gap by 

considering a repetitive assembly task in which a worker experiences learning and forgetting, 

and fatigue and recovery. The LFFRM developed in Phase 1 measures a worker’s performance 

for the overlapping learning-forgetting and fatigue-recovery processes however, it did not 

account for the error rate of the worker and implicitly assumed that all items produced/assembled 
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conform to quality. The current Phase overcomes this limitation and addresses how human error 

can generate quality deficit items in the assembly process. It utilizes LFFRM model to capture 

the interactions of learning-forgetting and fatigue-recovery phenomenon and then incorporates 

provisions for estimating the human error rate. 

6.3 Methodology  

Workers performing tasks on an assembly line are usually subjected to learning and forgetting 

and fatigue and recovery, simultaneously. Fatigue and recovery represent the general physical 

workloads associated with the tasks performed and the work environment. When a worker starts 

a task, he/she starts with a high initial error rate and a low initial cumulative experience. As time 

passes on the job, cumulative experience increases and error rate decreases as the worker moves 

down on his/her learning curve. However, with time, the worker accumulates general body 

fatigue that increases the error rate. To elevate fatigue, a learning (work) session is followed by a 

break. During this break, some of the knowledge acquired could be lost because of forgetting as 

a result of interruption.  

In this Phase of the research, a model is developed to account for the contribution of learning and 

fatigue in generating human error along with the LFFRM model developed in ‎4. The normalized 

functions and the procedure provided by ElMaraghy et al. (2008) are utilised to develop this 

model.  

To estimate the contribution of learning in decreasing the error probability, a normalized learning 

score is defined as: 
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1/TtNLS x  
( 6.1) 

where NLS is the normalized learning score, tx is the time to perform the x
th

 repetition of a task 

(the real time), and T1 is the time to perform the first repetition. Equation (‎6.1) suggests that NLS 

(and its contribution to worker error) decreases as tx decreases. Equation (‎6.1) also indicates that 

the error rates of inexperienced operators are higher than those of experienced ones. From (‎6.1), 

the learning utility function is presented by: 

NLSul   
( 6.2) 

where  is a constant multiplier and 10  lu . In (‎6.2), it is assumed that learning induced error 

is at its maximum value, i.e. 1lu  wherever there is no learning acquired. In this condition, xt , 

in (‎6.1) is equal to the time required to assemble the very first unit, 1Ttx   and 1NLS . 

Therefore, the maximum learning induced error rate from (‎6.2),  1lu  is obtained if 1 .  

To estimate the contribution of fatigue to the error probability, a normalized fatigue score is used 

as: 

  max/ FtFNFS   ( 6.3) 

where NFS is the normalized fatigue score, F(t) is the accumulated fatigue at time t, which is 

calculated from (‎4.9), and Fmax is the maximum fatigue, that for the purpose of this research is 

chosen as 1 (or 100%). Equation (‎6.3) suggests that NFS (and its contribution to worker error) 
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increases as fatigue F increases over time, where 0 < NFS < 1. The fatigue utility function is 

presented by: 

NFSu f    ( 6.4) 

where β is a constant multiplier and 10  fu . It is assumed that the fatigue induced error rate is 

at its maximum value, i.e. 1fu  whenever fatigue is 100 % and therefore, β = 1. The utility 

function that describes the human error rate with learning and fatigue effects is given as 

(ElMaraghy et al., 2008; Michalos et al., 2013): 

  ffll wuwuflU ,  ( 6.5) 

where lw  and fw are the user defined weights, such that 1 fl ww , and lu  and fu  are the 

learning and fatigue utility functions as given in (‎6.2) and (‎6.4), respectively. The relative 

importance of PSFs (weights) in equation ( 6.5) can be determined by expert judgment, aspiration 

level of the workers, previous experience, or may be obtained from applying the Analytic 

Hierarchy Process (AHP) technique (Park & Jung, 1996)(Park & Jung, 1996)(Park & Jung, 

1996)(Park & Jung, 1996)(Park & Jung, 1996) . AHP is used to determine the relative 

importance of a set of factors by pair wise comparison.  

According to ElMaraghy et al. (2008), it is recommended that a mapping function is used to 

scale the HEP in the range of 10
-6

 and 1. This scaling is performed using the following function: 
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    flUHEP ,log6log 1010   ( 6.6) 

To illustrate the effect of input parameters on the error rate in equation (‎6.5) in numerical 

examples the input parameters are set as follow: 

 Total forgetting time is set at 1B year.  

 The relative contribution of learning and fatigue to the error rate is considered as follow: 

 lw = 1/3 and fw = 2/3, where learning is less important than fatigue, 

 lw = 1/2 and fw  = 1/2, where learning and fatigue are equally important, 

 lw = 2/3 and fw  = 1/3, where learning is more important than fatigue. 

 The initial time to perform the task is set as T1 = 4 minutes. 

 The learning rate is set at 3 levels corresponding to the slow (90%), moderate (80%), and fast 

(70%) learning with 152.0b , 322.0b , and 515.0b , respectively (Dar-El et al., 1995). 

 The fatigue accumulation rate is set at 3 levels corresponding to the slow, moderate, and fast 

fatigue accumulation with 3104.6  ,  3106.9  , and 19.0 , respectively.  

 The recovery rate is set to 3 levels corresponding to the slow, moderate, and fast recovery 

with 
3104.6  , 

3106.9  , and 19.0 , respectively. 

The fatigue accumulation index and the recovery index were determined using a test. With the 

assumption of 99% fatigue at the end of an 8 hour work shift, the fatigue index is obtained as 

3106.9  for the medium fatigue accumulation level from ( 4.7). The same assumption applies to 

obtain the indices for the cases of slow and fast fatigue accumulation where 99% fatigue is 
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assumed to be reached in 4 and 12 hours respectively, which result to 19.0  and 

3104.6  respectively. The same procedure was used to determine the recovery indices with 

the assumption of 99% recovery at the end of a 4, 8, and 12 hours rest break. The recovery 

indices are obtained as 19.0 , 3106.9  , and 3104.6   from equation ( 4.9) 

respectively.  

The human error is estimated over a work-break schedule taken from Ihara (2007) for a Toyota 

assembly line as presented in Table  6.2. The total time for the working period is considered as 

7.58 hours including two breaks of lengths10 minutes and one break of length 45 minutes.  

Table  6.2. Work schedule in a shift with four working cycles adding up to 455 minutes. 

 Working hours Cycle time (min)  Rest time (min) 

 6:25 a.m- 8:30 a.m 125 10 

 8:40 a.m- 10:40 a.m 120 45 (lunch break) 

 11:25 a.m- 1:25 p.m 120 10 

 1:35 p.m- 3:05 p.m 90 -- 

Total 7.58 (hrs) 455 (min) 65 (min) 

Table ‎6.3. Parameters’ initial values. 

Description of the parameter Symbol Numerical values 

Learning index b 0.322 

Time to produce the first unit T1 4 minutes 

Total forgetting time B 1 year 

Fatigue index   3106.9   

Recovery index   3106.9   

Break time   10, 45, 10 minutes 

Learning to Fatigue weight ratio wl /wf 1 

6.4 Numerical examples and results 

In this section, numerical analyses are provided to demonstrate the model behavior. A base 

model is created using the medium values of the problem parameters and additional insights are 

gained through six research questions. The work-rest schedule in Table  6.2 and  
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Figure  6.1. The learning error utility function over the working shift with small rises over breaks. 

 

Figure  6.2. The fatigue error utility function over the working shift with declines over breaks. 

 

parameters value in Table ‎6.3 are used to obtain the base error rate. The learning and fatigue 

utility (error percentage) functions from equation (‎6.2) and equation (‎6.4) over the shift are 

3rd break 

2nd break 

1st break 

1st break 

2nd break 
3rd break 
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obtained as in Figure  6.1 and Figure  6.2. Figure  6.1 shows that the first utility function associated 

with error (learning induced error) declines (from 1 to 0.13) with accumulated experience and 

increases very slightly over the breaks. Figure ‎6.2 shows that the second utility function 

associated with error (fatigue induced error) increases (from 0 to 0.91) with cumulative output 

and decreases slightly over the breaks. 

The behaviour of HEP in equation (‎6.6) is illustrated in Figure  6.3. In this figure, the variation of 

error rate with time is presented by the blue line and with cumulative output with red line. The 

dotted line suggests that during the first working cycle, the error rate reduces because of 

learning. In this cycle, the error rate reaches its minimum of 0.0017 after 11 repetitions and then 

starts to increase up to the point when production ceases. During the first break, the worker 

forgets some of the experience he/she just gained, but also gets some rest, therefore, the error 

probability decreases. In the second working shift, the error rate increases to its maximum value 

of 0.021. During the second break, the error rate drops to 0.003. After the second break, the error 

rate becomes less sensitive to changes in learning and more sensitive to fatigue, which begins to 

dominate. The third working shift ends with an error rate of 0.016, which drops to 0.01 during 

the last break. In the fourth working cycle the error rate increases up to 0.02. 

The results presented in Figure ‎6.3 show that the human error rate varies between 0.002 and 

0.022 with the highest being 0.022 at the end of the second working cycle and second highest of 

0.02 at the end of the fourth. The average error rate probability due to learning and fatigue (and 

their counter functions, forgetting and recovery) therefore, is 0.012. Figure ‎6.3 also demonstrates 

that the error probability increases with the cumulative output in all working cycles except for 
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the first cycle while the effect of learning dominates. Now the behavior of the developed model 

is examined against the following research questions: 

 

Figure  6.3. Human error probability (HEP) with learning-forgetting and fatigue-recovery over the 

working shift, downward phases are the breaks. 

 

RQ 1- What effect do the learning, fatigue, and recovery indices have on the human error? 

RQ 2- What effect does changing the weighting of learning and fatigue in equation ( 6.5) have on 

the HEP results?   

RQ 3- What work-rest schedule yields the highest process throughput?  

RQ 4- What work-rest schedule results in the lowest worker fatigue?  

RQ 5- What is the effect of additional (5 min) break times on the optimized process in questions 

3 and 4? 

RQ 6- Are the measures of HRA used here comparable with other HRA methods? 

Time 

Cum. output 
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RQ 1- Effects of Learning, fatigue and recovery indices- To examine this question, one 

parameter is changed at a time and the other two parameters are kept at their medium values (as 

per Table  6.3). HEP is estimated from equation ( 6.6) for each working cycle and averaged over 

the shift. The results in Table  6.4 to Table  6.6 summarise the contribution of learning, fatigue, 

and recovery to the generation of the human error probability and examines the first research 

question. For example, to observe the effect of learning, the learning index varies from slow to 

fast learning rates while fatigue and recovery indices remain at their medium value. The results 

in Table  6.4 show that the average probability of making a mistake on the assembly line 

decreases as learning becomes faster. That is, a worker with a fast learning (70%) tends to make 

fewer mistakes than a learner with a slow learning (of 90%), i.e., HEP is less. The results in 

Table  6.5 show the contribution of fatigue to the generation of errors, where the fatigue 

accumulation is described as slow, medium, and fast corresponding to the task demands 

(MacDonald, 2003), i.e., the more fatiguing the task, the more demanding it is and has higher 

HEP values. The results in Table  6.6 show the effect of recovery on the human error probability, 

where slow recovery, causes less fatigue to be alleviated during the breaks and more residual 

fatigue is carried by the worker to the forthcoming working cycles. In this case, the error 

probability is the highest (0.014). As faster recovery is achieved during the breaks, the error 

probability decreases to 0.012 and 0.002 for the cases of medium and fast recovery respectively. 

The results of Table  6.4 to Table  6.6 show that the human error probability and related defects 

decrease with faster learning, slower fatigue accumulation, and faster recovery which answer RQ 

1.  

To examine research questions 2 to 5, a base case scenario is generated. Using medium values of 

the problem parameters as per Table  6.3, a worker produces 600 units in a work shift, resulting to 



105 

 

an average fatigue of 83.97%, average human error probability of 0.012, and 7.2 defective units, 

equivalent to a throughput of 98.8% ((600-7.2)/600) as shown in Table  6.7. 

Table ‎6.4. Average human error probability for different learning indices, fatigue and recovery indices are 

set at medium values. 

Learning rate b HEP  
Defects 

(units/shift) 

Slow (90%) 0.152 0.015 9 

Medium (80%)  

(base) 

0.322 0.012 7.2 

Fast (70%) 0.515 0.008 4.8 

  

Table ‎6.5. Average human error probability for different fatigue accumulation indices, learning and 

recovery indices are set at medium values. 

Fatigue 

accumulation 
  HEP  

Defects 

(units/shift) 

Slow 3104.6   0.008 4.8 

Medium (base) 3106.9   0.012 7.2 

Fast 0.19 0.020 12 

 

Table ‎6.6. Average human error probability for different recovery indices, learning and fatigue 

accumulation indices are set at medium values.  

Recovery   HEP  
Defects 

(units/shift) 

Slow 3104.6   0.014 8.4 

Medium (base) 3106.9   0.012 7.2 

Fast  0.19 0.002 1.2 

 

 Table ‎6.7. The results of the base case (production of 600 units over a 455 minutes work shift). 

Tot. prod. Max Fatigue 
(%) 

HEP   
(average human 
error probability) 

DEF 
(defective items) 

TP 
(throughput) 

600 83.97 0.012 7.2 98.8 

 

RQ 2- Effect of learning and fatigue weights on the throughput- The structure of RQ 2 is 

shown in Table  6.8 and the results are compared with the base case in Table  6.9 to investigate 
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how the different combinations of learning and fatigue weights, affect the process throughput. 

According to the results, learning decreases the human error rate while fatigue increases it. 

Therefore, if the decision maker gives more attention to learning (by choosing a greater weight 

for learning in ( 6.5); 
fl ww  ), HEP is minimum and the throughput is more than the average 

(i.e. the base case). This case is presented by RQ 2-I in Table  6.9. The opposite was observed 

when the decision maker gives more weight to fatigue in producing error (
fl ww  ). In this case 

the error rate is high, and the throughput is less than the average. This case is presented by RQ 2-

II in Table  6.9. Given the conditions that govern the working environment, and according to the 

available data from the firm, it is up to the user to specify the proper weights when using 

equation ( 6.5).   

Table ‎6.8. Weight setting for maximum throughput, problem statement.  

RQ 2 

Objective Function 
Throughput=

outputsofNo

defectivesofNooutputsofNo

.

.. 
 

Effective parameters  Learning weight wl, fatigue weight wf 

 

Table ‎6.9. Weight setting for maximum throughput, solution. 

 wl, wf Tot. 

production 

Max Fatigue 
(%) 

HEP   
 (ave. hum. err. 

prob.) 

DEF 
(def. items) 

TP 
(throughput) 

Base Case 0.5, 0.5 600 83.97 0.012 7.2 98.8 

RQ 2- I 0.9, 0.1 600 83.97 0.002 1.2 99.8 

RQ 2- II 0.1, 0.9 600 83.97 0.153 91.8 84.7 
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RQ 3- The work-rest schedule that yields the highest process throughput- The aim is to 

examine the optimum working schedule for maximum throughput based on the 3 breaks per 

shift. In the current schedule, 600 items, ix , are produced in 455 minutes,  it , and workers 

are given a total break time,  i , of 65 minutes. The optimization problem is defined according 

to Table  6.10 where the throughput is maximized for a total production of more than 600 units, 

600 ix . Also it is assumed that each working period is more than 60 minutes and less than 

125 minutes, 12560  it , the total working time is less than 455 minutes, 455 it , and each 

break time is more than 5 minutes ( min5i ). The optimized schedule in Table  6.11 (case RQ 

3) indicates that the optimized cycles times of 122, 120, 118, and 95 minutes are very close to 

the current times of 125, 120, 120, and 90 minutes in the base case. The present working shift 

(base case), yields a throughput of 98.87% while optimized model shows a 0.02% increase in the 

throughput, which can be obtained by reducing fatigue through small changes in break times. 

RQ 4- The work-rest schedule that yields the lowest worker fatigue. The mathematical 

programming model for RQ 4 is presented in Table  6.12 with the results summarized in Table 

‎6.13. Results in Table ‎6.13 indicate that the redistribution of break times (10, 27.5, 27.5) instead 

of 10, 45, 10) improves the system’s throughput and it is associated with less fatigue (83.97 → 

79.54) and fewer defective items (6.78 → 6.14). However, implementing a break of 27.5 minutes 

may not be practical to measure, so perhaps a closer schedule to the indicated scenario as of 10, 

25, and 30 minutes seems to be more practical. 

RQ 5- Effect of additional break time on the optimal schedule obtained in RQ 3 and 4. In 

RQ-5 the total break time increases by 5 minutes and the maximum fatigue and throughput are 
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compared with the base case. Therefore, workers are given a total break time between 65 and 70 

minutes,   7065 i . Two optimization problems are defined. The first problem is defined 

in Table 6.14 where workers are given 5 minutes additional break without any other constraint 

over the distribution of break times. The solution for this problem is presented in Table 6.15 with 

two optimization cases, maximizing the throughput (RQ 5-I) and minimizing fatigue (RQ 5-II) 

by cycle time and breaks, with the constraints of a total production of more than 600 units, and 

the same total cycle time of 455 minutes. In the second problem, that is defined in Table 6.16, 

workers are given 5 minutes additional break time, with a constraint that the lunch break is more 

than 30 minutes, 302  . The solution for this problem is found in Table 6.17 for maximizing 

the throughput (RQ 5-III) and minimizing the fatigue (RQ 5-IV) with the same previous 

constraints for time and production.  

Case RQ 5-I in Table  6.15 indicates that giving slightly longer breaks to the workers (70 rather 

than 65 min) improves the system’s throughput (98.87 → 98.95) associated with less fatigue 

(83.97 → 83.11) and less number of defective items (6.78 → 6.24). The optimized schedule for 

maximum throughput in this case is suggested to be 125, 125, 90, and 115 minutes for working 

times and the break schedule to be 10, 35, and 25 minutes.  

Case RQ 5-II in Table  6.15 shows that giving slightly longer breaks to the workers (70 rather 

than 65 min) improves the system’s throughput (98.87 → 98.99) associated with less fatigue 

(83.97 → 79.37) and less number of defective items (6.78 → 6.06). The optimized schedule for 

minimum fatigue in this case is suggested to be 80, 125, 125, and 125 minutes for working times 

and the break schedule to be 10, 20, and 40 minutes. 
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Table ‎6.10. Schedule optimization for maximum throughput, problem statement.  

RQ 3 Schedule Optimization for max throughput 

Objective Function 
Throughput=

outputsofNo

defectivesofNooutputsofNo

.

.. 
, to be maximized 

With respect to Cycle time and breaks 

Constraints 600 ix , 455 it , 12560  it ,  65i ,     

 

Table ‎6.11. Schedule optimization for maximum throughput, solution. 

 Cycle time Tot. prod. 
Max Fatig. 

(%) 
Breaks 

HEP  

(ave. hum. err. 
prob.) 

DEF 
(def. items) 

TP 
(throughput) 

Base 

Case 

125, 120, 120, 

90 

(455 min) 

600 83.97 

10, 45, 10 

(65 min) 0.011 6.78 98.87 

RQ 3 122, 120, 118, 

95 

(455 min) 

600 83.67 

12, 40, 13  

(65 min) 0.011 6.64 98.89 

 

Table  6.12. Schedule optimization for minimum fatigue, problem statement. 

RQ 4 Schedule optimization for minimum fatigue 

Objective Function Fatigue, to be minimized 

With respect to Cycle time and rest breaks 

Constraints 600 ix , 455 it , 12560  it ,  65i , 5i  

 

Table  6.13. Schedule optimization for minimum fatigue, solution. 

 Cycle time Tot. prod. Ave. Fatig. 
(%) 

Breaks HEP   
 (ave. hum. err. 

prob.) 

DEF 
(def. items) 

TP 
(throughput) 

Base 

Case 

125, 120, 120, 

90 

(455 min) 

600 83.97 

10, 45, 10 

(65 min) 0.011 6.78 98.87 

RQ 4 

80, 125, 125, 

125 

(455 min) 

600 79.54 
10, 27.5, 27.5 

(65 min) 
0.0102 6.14 98.97 
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Table  6.14. Effect of additional break time on optimal schedules, problem statement. 

RQ 5 Effect of additional break time on optimal schedules 

Objective Function Throughput (I), to be maximized 

Fatigue (II), to be minimized 

With respect to Cycle time and rest breaks 

Constraints 600 ix , 455 it , 12560  it ,   7065 i , 5i  

 

Table  6.15. Effect of additional break time on optimal schedules, solution. 

 Cycle time Tot. prod. Ave. Fatig. 
(%) 

Breaks HEP   
 (ave. hum. err. 

prob.) 

DEF 
(def. items) 

TP 
(throughput) 

Base Case 

125, 120, 

120, 90 

(455 min) 

600 83.97 

10, 45, 10 

(65 min) 0.011 6.78 98.87 

RQ 5-I  

Max TP 

125, 125, 90, 

115 

(455 min) 

600 83.11 

10, 35, 25  

(70 min) 0.0104 6.25 98.95 

RQ 5-II 

min fatigue 

80, 125, 125, 

125 

(455 min) 

600 79.37 
10, 20, 40 

(70 min) 
0.0101 6.06 98.99 
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Table ‎6.16. Effect of additional break time on optimal schedules, lunch break > 30 minutes, problem 

statement. 

RQ 5 Effect of additional break time on optimal schedules and a lunch break 

longer than 30 minutes 

Objective Function Throughout (III), to be maximized 

Fatigue (IV), to be minimized 

With respect to Cycle time and rest breaks 

Constraints 600 ix , 455 it , 12560  it ,   7065 i , 5i , 302   

 

Table ‎6.17. Effect of additional break time on optimal schedules, lunch break > 30 minutes, solution. 

 Cycle time Tot. prod. Ave. Fatig. 
(%) 

Breaks HEP   
 (ave. hum. err. 

prob.) 

DEF 
(def. items) 

TP 
(throughput) 

Base Case 

125, 120, 

120, 90 

(455 min) 

600 83.97 

10, 45, 10 

(65 min) 0.011 6.78 98.87 

RQ 5-III  

Max TP 

125, 125, 90, 

115 

(455 min) 

600 83.11 

10, 35, 25  

(70 min) 0.0104 6.25 98.95 

RQ 5-IV 

min fatigue 

100, 125, 

125, 105 

(455 min) 

600 81.35 
10, 30, 30 

(70 min) 
0.0102 6.13 98.98 

 

Case RQ 5-III in Table  6.17 indicates that giving 5 minutes longer breaks to the workers (70 

rather than 65 min) and imposing a lunch break longer than 30 minutes, improves the system’s 

throughput (98.87 → 98.95) associated with less fatigue (83.97 → 83.11) and less number of 

defective items (6.78 → 6.25). The optimized schedule for maximum throughput in this case is 

suggested to be 125, 125, 90, and 115 minutes for working times and the break schedule to be 

10, 35, and 25 minutes.   

Case RQ 5-IV in Table ‎6.17 shows that 5 minutes additional break time and a lunch break longer 

than 30 minutes (70 rather than 65 min) improves the system’s throughput (98.87 → 98.98) 
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associated with less fatigue (83.97 → 81.35) and less number of defective items (6.78 → 6.13). 

The optimized schedule for minimum fatigue in this case is suggested to be 100, 125, 125, and 

105 minutes for working times and the break schedule to be 10, 30, and 30 minutes. 

The results in Table  6.15 and Table ‎6.17 indicate that having an extra constraint for lunch breaks  

( 302  ) does not affect the throughput of the system. This is because cases RQ 5-I and RQ 5-

III both have the same work-cycle times (125, 125, 90, and 115) and an optimal lunch break of 

more than 30 minutes ( 352  minutes). However, applying a lunch break more than 30 minutes 

results to less throughput and more fatigue in case RQ 5-IV when compared to case RQ 5-II. 

This is because the work-cycle times of 80, 125, 125, and 125 with a 20 minutes lunch break in 

case RQ 5-II, generate higher throughput and less fatigue when compared to 100, 125, 125, and 

105 work-cycles with a 30 minutes lunch break for case RQ 5-IV. This case is an example of 

how workers’ welfare may be ignored in an exchange for higher throughput. Having a lunch 

break of 30 minutes seems reasonable for workers while managers may be more willing to give 

them a lunch break of 20 minutes for better throughput.  These results suggest that a break time 

between 20-30 minutes may be agreeable for both parties. 

RQ 6- How measured HEP of this model compares to other methods – average HEPs 

obtained by this method ( HEP ) are compared with HEART (Williams, 1986) in two extreme 

cases of best and worst.  The best case, corresponds to the minimum HEP , is obtained by having 

a fast learning, slow fatigue accumulation, and fast recovery from fatigue as 0.0014. In the worst 

case, the maximum HEP , is obtained as 0.028 by slow learning, fast fatigue accumulation, and 

slow recovery. The results are presented in Table  6.18. 
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Table ‎6.18. The best case and worst case scenarios representing the spectrum of human error probability 

of the presented model. 

Scenario    iHEP  HEP  HEART 

 learning fatigue recovery 1
st
 

cycle 

2
nd

 

cycle 

3
rd

 

cycle 

4
th

 

cycle 

Total 

averag

e 

HEP = 0.02 

Best case Fast slow fast 0.0034 0.001 0.0009 0.0004 0.0014 HEART 

overestimates HEP 

Worst case Slow fast slow 0.007 0.05 0.023 0.035 0.028 HEART 

underestimates HEP 

 

for the best case scenario, HEP  = 0.0014, is 93% less than HEART’s estimation for a similar 

task  (Smith, 2011). For the worst case, HEP = 0.028, is 40% more than HEART’s prediction. 

The average HEP obtained by this method is 0.0147, which is 26% less than the HEART 

method. These results suggest that unlike HEART, our model is more responsive to the variation 

of work condition and worker abilities.  

6.5 Discussion and conclusion  

Human is central for manufacturing facilities that seek workforce flexibility. There are many 

manufacturing jobs that require human involvement (Tang et al., 2003), especially in the 

automation gaps, where the operator is left with tasks that have not been automated (Luczak & 

Mueller, 1994). Humans are prone to commit mistakes for many reasons relating to the work 

environment, which results in defective units that should be dealt with at a cost. The common 

problem with available HRA methods is that they do not tell when and how an error happens. 

The effect of PSFs in these models is included by non-varying measures that do not change 

during a routine job. Furthermore, in these models, the PSFs such as learning and fatigue are not 
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usually considered. The model developed in this Phase is a function of time which allows for 

estimating the probability of error, and subsequently the number of defective units over a 

working shift. It captures the effect of learning and fatigue accumulation on a job. The developed 

model estimates the probability of committing error on a job at any specific time in a work shift 

and demonstrates that the human error probability and related defects decrease with faster 

learning, slower fatigue accumulation, and faster recovery. This result may help in setting 

inspection and maintenance plans that are based on the times of the working shift when the error 

rate is expected to be relatively high. Furthermore, the model could provide optimized schedules 

to increase throughput or decrease the worker’s fatigue, however, the improvement scale 

depends on the process costs and also product value. Here, within the considered range of 

parameters, and without changing the base work–rest schedule significantly, the throughput 

could be improved by 0.12% by decreasing the defect rate through less fatigue.  

The results of this research could simplify the modelling of HRA models by only considering the 

factors that significantly affect human performance, i.e. learning and fatigue. To decrease the 

error rate, it is recommended to design jobs where workers acquire more learning during the 

process. Tang et al. (2003) observed that the error rate of an assembly task could be reduced up 

to 82% by using methods to educate workers about their jobs such as overlaying 3D instructions 

on the actual work pieces. Designing more ergonomic workstations also results in less fatigue on 

a job and decreases human error (Yeow & Nath Sen, 2003; Molaoa, 2008).   

Phase 3 of this thesis contradicts the traditional managerial attitude to boost the process outcome 

by shrinking the breaks and increasing the working times. As results suggested, excessive fatigue 

as a result of less break times, has adverse effect on the products quality and process outcomes, 
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not to mention the related injuries and insurance costs. Conversely, results indicate that more 

break times, improve the process throughput by less mistakes and higher quality products.     
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7. Phase 4: Investigating flexibility and transfer policies in a DRC system 

with some human factors  

The aim of this Phase of the thesis is to present a DRC system model where the human 

contributes to the performance of the system and quality of the final product. Using the Learning 

Forgetting Fatigue Recovery Model (LFFRM) of Phase 1 and Quality Learning Forgetting Curve 

(QLFC) of Phase 2, and the product quality model of Phase 3, the system performance with a 

cost function is examined. The results are used to determine the production planning and lot 

sizing policy in a DRC system. 

7.1 Introduction 

Dual-Resource Constrained (DRC) systems are the working environments where the number of 

workers is less than the number of machines or workstations (Zamiska et al., 2007). Workers in a 

DRC system are cross-trained to acquire several skills that increase their flexibility and allow 

them to perform a variety of tasks (Thannimalai et al., 2013). Cross-trained workers usually 

handle the situations of unexpected orders and unbalanced workloads. A flexible workforce 

helps reduce lead times and improve customer service (Nembhard et al., 2002; Bokhorst & 

Gaalman, 2009), however, a full cross-trained workforce may not be feasible due to either the 

training costs, required specific skills or equipment (Gel et al., 2007; Robbins et al., 2007). In 

labor-intensive environments, workers accumulate experience (learning) through repetitions but, 

as soon as they cease the repetitions, in order to take a break or transfer to another job, they start 

to forget their previous learning or experience. Also, while performing a job, a worker 

accumulates fatigue, which must be recovered by rest breaks or transferring to a less demanding 

job. The performance of DRC systems improves while workers learn, but is impeded when 
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workers forget their skills and knowledge. Also, the performance of the workers declines with 

fatigue and improves with recovery. Therefore, the intermittent cycles of learning-fatigue and 

forgetting-recovery have adverse effects on the system performance. While the performance of 

DRC systems improves with the flexibility of workers (Jaber et al., 2003; Azizi et al., 2010; 

Jahandideh, 2012), alternating between different jobs or going on a break impedes system 

performance and influences process quality. In DRC systems, learning and forgetting, fatigue-

recovery, and quality have been studied separately, but to the best knowledge of the authors, 

there is no study that captures the combined effects of these phenomena. The focus of this Phase 

is industrial settings where workers perform tasks that require them to identify and select the 

component and follow a sequence to assemble it (Jaber & Kher, 2002). In this process, learning 

occurs during the assembly process and forgetting occurs when workers shift back and forth 

between different assembly stations or products. The present Phase of the thesis, contributes to 

the DRC system literature by presenting a production planning model that captures the aspects of 

human behaviour such as learning, forgetting, fatigue, and recovery, as well as error making and 

creates production schedules that are more realistic and applicable to such working environment. 

The rest of this section is organized as follows: Section  7.2 presents the methodology of this 

Phase. Section  7.3 presents the results and Section  7.4 discusses and concludes this Phase.   

7.2 Methodology 

The LFFRM developed in Section ‎4, QLFC developed in Section ‎5, and the HRA model 

developed in ‎6 are used in this Section to develop a comprehensive model of a DRC system with 

human effects. The model is then utilized to obtain the optimized policies for production 

planning and flexibility level. In this Phase of thesis, a production and rework process with 
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learning effects is considered to investigate the combined effects of quality, learning-forgetting, 

and fatigue-recovery on the performance and throughput of DRC systems. It is assumed that the 

defective items could be generated as a result of human error or when the process goes out of 

control. Therefore the number of defective units that need reworking is introduced by )( ixd  which is 

equal to:  

2)( 2

iii xxHEPxd   ( 7.1) 

in which HEP is human error probability during the production of lot xi (calculated from 

equation (‎6.6)) and  xi
2
/2 is the number of defected items in a lot of size xi, estimated from 

Khouja (2005) where  is the probability of the process going out of control and producing 

defective items (from Section ‎5.3.1). One must be cautious when selecting the value of  to 

produce reasonable values. Khouja (2005) recommend that assumes very small values. 

Equation (‎5.10) is rewritten here as: 

         

















i i

iii

b

i

b

iiii vvxd
r

uux
b

T
xRxYXT





111111 ))((
1

)(
1

)()(  ( 7.2) 

In which T(X) is the cumulative time of the process, Y(xi) is the cumulative production time, and 

R(xi) is the cumulative rework time. r1 is the time to rework the first unit and term vi, similar to 

ui, is the experience (in units) transferred to rework run i from i -1 previous runs performed, 

while b and  are the learning indices for the production and rework processes. 
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The principle “fixed-before-shared” by Koole and Pot (2006) is used which allows cross-trained 

workers help their peers after completing their core job, that is, the worker performs the primary 

job and immediately reworks the defective items. The following assumptions are made in this 

research: 

- The process may shift out-of-control by producing each unit and start to produce defective 

items with a constant and known probability. Once out-of-control, the process remains in that 

state until the end of a production run (Porteus, 1986), 

- All workers have the same capacity for learning and fatigue accumulation, 

- The shop has a constant availability of work, 

- No upfront training is provided, 

- The rework process is always in control, i.e., no scrap is generated, and 

- Defective items are generated as a result of machine malfunction or human error.  

- Only one type of job can be performed at each workstation. 

7.2.1 Performance Measure 

Consider a parallel production system in which a worker is assigned to a workstation that 

produces its own output independently of other workstations (Kim & Nembhard, 2010). The 

performance of such a system can be measured by direct and indirect costs of the process. Direct 

costs relate to the process time, while indirect costs relate to the quality of the products and 

material consumed during the rework. The following performance measure is proposed:  


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in which Z1 is the ratio of the sum of production and rework times for all i cycles when 

considering the learning and forgetting effects, Top,i and without learning and forgetting, Top,0. 

Top,i is determined from equation ( 7.2) as   iii xxRxY )()(  , while Top,0 is determined in the 

same manner after substituting 0b . The best performance for Z1 and Z2 is one and the 

worst is zero. For example, as the number of reworked items in a cycle approaches a minimum 

number, i.e. d(xi) approaches zero, then Z2 approaches 1.  

7.2.2 Transfer Policies 

Workers transfer between different stations with different levels of workload. Therefore, each 

workstation is associated with a specific learning and fatigue index, which is represented by the 

learning and fatigue indices in the following matrices: 
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in which, 
jm swb ,
 and 

jm sw ,  are the learning and fatigue indices that each worker m experiences at 

each workstation j. By working at each station, the worker accumulates learning and fatigue 

simultaneously. However, departing from this station, the worker carries away his/her experience 

and fatigue. By assuming no similarity between workstations, this experience will not become 
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useful until the next time the worker visits the same workstation. However, assuming that 

physical fatigue is only relieved by the rest break, the worker carries along the residual fatigue to 

the immediate next workstation after the rest break. It should be noted that the rest break, that is 

usually used to alleviate fatigue and it has been shown by   throughout this thesis (equation       

(‎4.8)), is now different from the learning break that causes forgetting, that previously was shown 

by   in LFCM model (equation (‎4.5)) since they occur independently. Although equations (‎7.4) 

and (‎7.5), represent the general modeling for this system, in this section, we assume that different 

workers experience the same learning and fatigue while working at the same workstation, i.e., 

11211 ,,, ... swswsw m
bbb  and 

11211 ,,, ... swswsw m
  and etc. 

7.2.3 Parameter values 

The values of the parameters are set according to Table  7.1. The learning index is set at 3 levels 

corresponding to the slow (90%), moderate (80%), and fast (70%) learning with 152.0b , 

322.0b  and 515.0b , respectively (Dar-El et al., 1995). The fatigue index and the recovery 

index are set as explained in section  6.3. With the assumption of 99% fatigue at the end of an 8 

hour work shift, the fatigue index is obtained as 3106.9  for the medium fatigue 

accumulation level. The same assumption applies to obtain the indices for the cases of slow and 

fast fatigue accumulation where 99% fatigue is assumed to be reached in the 4 and 12 hour 

work-shift, respectively, which result in 19.0  and 3104.6   respectively. As fatigue 

accumulation becomes faster, we assume that the work load increases and a task becomes harder, 

for instance, 3104.6  corresponds to the easiest, 3106.9   to the moderate, and 19.0  

to the hardest task. The same procedure applies to find the recovery indices with the assumption 
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of 99% recovery at the end of 4, 8, and 12 hours of rest. The recovery indices were obtained as

19.0 , 3106.9  , and 
3104.6   for fast, medium, and slow recovery respectively.  

Table  7.1. Values of the input parameters used in the numerical study. 

Definition Symbol Value(s) 

Learning index (fast, moderate, and slow learning) b 0.515, 0.322, 0.152 

Fatigue index (hard, moderate, and easy work) λ 0.19, 9.610
-3

, 6.410
-3

 

Recovery index (fast, moderate, and slow) μ 0.19, 9.610
-3

, 6.410
-3

 

Rest break τ 15 min 

Time to produce the very first unit T1 5 min 

Time to rework the very first unit r1 2.5 min 

Time of total forgetting B 1 year (5.2610
5
 min) 

Probability of the process goes out of control  0.001 

Learning and fatigue weights in error generation w1, w2 0.5, 0.5 

 

7.2.4 Scenarios 

This research aims to investigate the performance of DRC systems under the influence of human 

performance by examining the developed models. Therefore, the system is examined by 

considering the configuration of workstations, the level of flexibility of the workers, and the 

number of working cycles in different scenarios.  

In each scenario up to 3 workers are assigned to process 9000 jobs. Here, a ‘task’ means to 

process one unit in one station per cycle. The rotation plan is applied irrespective of the number 

of workers, which means, worker 1 transfers from workstation 1 to workstation 2 after 

processing the required tasks in the first station. If there are two workers, each, transfers to the 

next workstation after performing assigned tasks. A VBA program is developed to assign 

workers as well as specific learning and fatigue indices to each station. It also generates a 
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rotation plan that transfers the worker to the next workstation after processing his/her share of 

the lot which is calculated by:  

cjm

X
xi


  ( 7.6) 

in which xi is the share of each worker to process in each cycle, m is the number of workers, j is 

the number of workstations, and c is the number of working cycles.  

To be eligible to transfer from the current to the next workstation, the worker must process the 

assigned products and rework any defective item. The learning and fatigue matrices defined in 

equations (‎7.4) and (‎7.5) are assigned to each workstation according to the flexibility level. For 

example, if the flexibility level is 2, Flex = 2, workers transfer between two working stations 

with two levels of slow and fast learning and fatigue accumulation. If Flex = 3, there are three 

working stations and the rates vary in three levels of slow, moderate, and fast. If Flex = 4, the 

two middle stations will have the same rates. It should be noted however that the number of 

workers are always less than or equal to the number of workstations. For instance, if the scenario 

contains two workstations (Flex = 2), the number of workers can either be 1 or 2. 

Each worker accumulates learning and fatigue while on the job. It is assumed that a number of 

defective items are generated when processing a batch, which could be caused by many reasons 

(e.g., fatigue, forgetting, human, and/or process error). After a worker has processed the assigned 

work and reworked the related defects, he/she takes a 15 minutes break. During the rest break, 

part of his/her fatigue is alleviated and the remainder fatigue is carried over to the next 

workstation, where the worker performs a different job with different learning and fatigue rates. 

The worker continues moving from one job to the next till he/she comes back to the same 
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workstation for the second, third, and c
th

 time (c is the number of cycles). Each time the worker 

revisits the same workstation, he/she remembers some of his/her previous experience. Therefore, 

the entire time he/she was away from this station, on a rest break or working in other stations 

(learning break), causes him/her to forget. When the entire lot and its associated defects are 

processed, the performance measure is calculated from equation ( 7.3).  

Figure  7.1 shows the possible scenarios to investigate in numerical examples. For example, one 

scenario considers increasing () b and decreasing () , where a worker performs two different 

tasks (Flex=2) in 15 cycles, which means the worker shifts from a slower to a faster learning and 

from a hard to an easy task. In total, 64 (1622) scenarios are created to examine specific 

research questions as follow. 
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Figure  7.1. This figure demonstrates 64 different scenarios created to address the research questions. b 

(), indicates that learning is the fastest (slowest) at first and slowest (fastest) at the last workstation. λ 

() indicates that the work is hardest (easiest) at the first and easiest (hardest) at the last workstation. The 

Flex number, identifies the number of workstations. Each scenario is repeated in 15 or 25 cycles with the 

assigned workers that can be 1, 2, or 3. The Table # indicates where results are presented. 

 

 

Scenarios 

b 

λ 

Flex=2 

15 Cycle 1-2 worker 

25 Cycle 1-2 worker 

Flex=3 

15 cycle 

25 cycle 
. . . 

Flex=4 

15 cycle 

25 cycle 

λ 

Flex=2 

15 cycle 1-2 worker 

25 cycle 1-2 worker 

Flex=3 

Flex=4 
. . . 

. . . 

b 

λ 

Flex=2 

15 cycle 1-2 worker 

25 cycle 1-2 worker 

Flex=3 

Flex=4 
. . . 

. . . 

λ 

Flex=2 

Flex=3 
. . .  

. . . 

Flex=4 

Table  7.2 

Table  7.3 

Table  7.4 

Table  7.5 
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7.2.5 Research questions 

In each scenario, we examine the following research questions: 

RQ-1: What is the optimal level of flexibility?  

This question examines the role of the level of flexibility in DRC systems. Since the flexibility 

level is equal to the number of skills a worker requires, this question answers one of the critical 

questions in DRC systems, that is, how many skills a worker should be trained for (Hottenstein 

& Bowman, 1998)? In this Phase of the thesis, workstations represent flexibility since it is 

assumed that only one type of job can be performed at each workstation. For instance, Flex = 3 

means that a worker can (or is responsible to) perform three different tasks. The performance of 

the system is examined for Flex = 2, Flex = 3 and Flex = 4. It should be noted that to stay within 

the context of the DRC system, the number of workers must always be less than or equal to the 

number of workstations or flexibility level.    

RQ-2: What is the optimal transfer policy?  

This question examines the “when rule” in DRC systems (when to transfer worker to another 

station?). The worker transfers to the next workstation after he/she produces and reworks the 

assigned batch and related defects in one cycle. Therefore, the smaller the batch, the faster is the 

transfer. The number of batches is equal to the number of cycles since each batch is processed in 

one cycle. The answer to this research question gives the number of cycles (or batches) that 

optimises the performance and sets the policy for production planning.   
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RQ-3: What is the best arrangement for workstations? 

This question examines one of the issues concerned in DRC systems that is, the effect of the 

workflow on the performance characteristics (Hottenstein & Bowman, 1998). In this Phase, the 

workflow of the DRC system is affected by different learning and fatigue situations that a worker 

experiences at each station. The answer to this research question tells how the arrangement of 

workstations (high to low or low to high workloads) affects the workflow demonstrated and 

subsequently the performance of the system.    

7.3 Results 

7.3.1 From fast to slow learning 

7.3.1.1 From fast to slow learning and hard to easy work 

The results of solving these scenarios are presented in Table  7.2. With Flex=2, the system is run with 

1 and 2 workers, for 15 and 25 work-cycles. With Flex=3 and Flex =4, the system can have up to 3 

workers working in the same cycles. First, it is assumed that 9000 items are processed in 15 cycles. 

According to equation ( 7.6) each worker must process 
jm15

9000
items and the defects per station per 

cycle, while m is the number of workers and j is the number of workstations. Therefore, for instance, if 

there are 3 workstations with 1 worker, the worker performs 200
3115

9000



 items and the defects 

per station per cycle and he/she performs 9000153200   in total (in 15 cycles). The results in 

Table  7.2 indicate that in this system, Flex=3 with 2 workers yields the best performance. Figure ‎7.2 

demonstrates the performance of this system for Flex = 3 (3 workstations) with the best performance 

obtained by 2 workers (Z = 1.6734) at the 14
th
 cycle. 



128 

 

Table  7.2. Performance measure investigation when learning and fatigue indices decrease from the first to 

the last working station (Learning: F=Fast, M=Moderate, S=Slow; Workload: H=Hard, M=Moderate, 

E=Easy). 

Flex=2 b   Cycle Worker Zmax Cycle of Zmax 

WS1 F: 0.515 H: 0.19  15 1 1.62003 15 

WS2 S: 0.152 E: 6.410
-3

   2 1.6658 15 

     - - - 

    25 1 1.6573 25 

     2 1.6698 19 

     - - - 

Flex=3 b   Cycle Worker Zmax Cycle of Zmax 

WS1 F: 0.515 H: 0.19  15 1 1.6573 15 

WS2 M: 0.322 M: 9.610
-3

   2 1.6734 14 

WS3 S: 0.152 E: 6.410
-3

   3 1.6721 10 

    25 1 1.6679 23 

     2 1.6734 14 

     3 1.6721 10 

Flex=4 b   Cycle Worker Zmax Cycle of Zmax 

WS1 F: 0.515 H: 0.19  15 1 1.6684 15 

WS2 M: 0.322 M: 9.610
-3

   2 1.6726 11 

WS3 M: 0.322 M: 9.610
-3

   3 1.6694 8 

WS4 S: 0.152 E: 6.410
-3

  25 1 1.6705 18 

     2 1.6726 11 

     3 1.6694 8 

 

Figure ‎7.2. System performance (Z) versus working cycles for 3 workstations and up to 3 

workers with Flex =3 during 15 working cycles, learning and fatigue indices decrease from 

the first to the last working station. The inset provides a closer look of the performance of 2 

workers declining after the 14
th
 and 3 workers declining after the 10

th
 cycle (WRK= 

Worker). 
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The system performance Z in Figure ‎7.2, consists of direct cost indicator Z1 and indirect cost 

indicator Z2 according to equation ( 7.3), which have been illustrated in Figure ‎7.4 and Figure ‎7.3 

respectively. For conciseness and to avoid repetition, Z1 and Z2 will not be demonstrated for the 

remaining numerical examples of this Section. 

 

Figure ‎7.3. Performance indicator Z1 increases asymptotically from zero over 15 working cycles for 3 

workstations and up to 3 workers with Flex =3. Learning and fatigue indices decrease from the first to the 

last working station (WRK= Worker). 

 

Figure ‎7.4. Performance indicator Z2 decreases from one over 15 working cycles for 3 workstations and 

up to 3 workers with Flex =3. Learning and fatigue indices decrease from the first to the last working 

station (WRK= Worker). 
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7.3.1.2 Flexibility 

Returning to Table ‎7.2, the system performance of Flex=4 is compared with Flex=3. The 

workload is assumed to be similar to ‎7.3.1.1 (from fast to slow learning and hard to easy work), 

except that this time the two middle workstations have a moderate workload and learning. It is 

assumed that 9000 jobs are to be done by 1, 2, and 3 workers respectively in 15 cycles. Similar to 

‎7.3.1.1, each worker must process 
jm15

9000
 items and the defects per station per cycle. The 

results are shown in Figure ‎7.5 where the best performance obtained by two workers at the 11
th

 

cycle with Z = 1.6726. Comparing the result to Flex = 3 with the best performance of Z = 1.6734 

at the 14
th

 cycle, it is concluded that the best performance of the system declines with increased 

flexibility and also occurs earlier, i.e., cycle 11 instead of 14 which answers RQ-1. 

 

Figure ‎7.5. System performance (Z) versus working cycles for 4 workstations and up to 3 workers with 

Flex=4 during 15 working cycles, learning and fatigue indices decrease from the first to the last working 

station. The inset provides a closer look of the performance of 2 workers declining after the 11
th
 and 3 

workers declining after the 8
th
 cycle (WRK= Worker). 
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7.3.1.3 Number of cycles 

 To examine the effect of number of cycles, we return to Table  7.2 and investigate Flex=3 with 

15 and 25 cycles. Only Flex=3 is considered since it corresponded to the best performance (in  0) 

with 15 cycles. With 25 cycles, each worker should process 
jm25

9000
items and the defects per 

station per cycle. Figure ‎7.6 shows the performance of this system with the best performance 

obtained by two workers at the 14
th

 cycle with Z = 1.6734. Comparing Figure ‎7.2 and Figure ‎7.6, 

it is observed that as the entire lot is processed in more cycles, the performance declines further 

from its optimal value at the 14
th

 cycle. Therefore, producing in 15 cycles is better than 

producing in 25 cycles, since in the latter case, more cycles are performed at off- optimal 

performance. This observation answers RQ-2.  

 

Figure ‎7.6. System performance (Z) versus working cycles for 3 workstations and up to 3 workers with 

Flex=3 during 25 working cycles, learning and fatigue indices decrease from the first to the last working 

station. The inset provides a closer look of the performance of 2 workers declining after the 14
th
 and 3 

workers declining after the 10
th
 cycle (WRK= Worker). 
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7.3.1.4 From fast to slow learning and easy to hard work  

With the same learning scheme (from fast to slow learning) an increasing workload is assumed, 

that is, the work is the easiest at the first, moderate at the second, and the hardest at the third 

workstation. The results of this case are represented in Table ‎7.4. Figure ‎7.7 demonstrates the 

performance of this system for Flex = 3 (3 workstations), with the best performance obtained 

with 2 workers at the 13
th

 cycle as Z = 1.6744. Results indicate that with a decreasing learning 

from the first station to the third, and the transfer of the worker from the easiest job to the 

hardest, the performance of the system improves and also obtained earlier in the process which 

also answers RQ-3.  

Table  7.3. Performance measure investigation when learning index decreases and fatigue index increases 

from the first to the last working station (Learning: F=Fast, M=Moderate, S=Slow; Workload: H=Hard, 

M=Moderate, E=Easy). 

Flex=2 b   Cycle Worker Zmax Cycle of Zmax 

WS1 F: 0.515 E: 6.410
-3

  15 1 1.6257 15 

WS2 S: 0.152 H: 0.19   2 1.6681 15 

     - - - 

    25 1 1.6606 25 

     2 1.6711 18 

     - - - 

Flex=3 b   Cycle Worker Zmax Cycle of Zmax 

WS1 F: 0.515 E: 6.410
-3

  15 1 1.6603 15 

WS2 M: 0.322 M: 9.610
-3

   2 1.6744 13 

WS3 S: 0.152 H: 0.19   3 1.6726 10 

    25 1 1.6696 22 

     2 1.6744 13 

     3 1.6726 10 

Flex=4 b   Cycle Worker Zmax Cycle of Zmax 

WS1 F: 0.515 E: 6.410
-3

  15 1 1.6701 15 

WS2 M: 0.322 M: 9.610
-3

   2 1.6732 10 

WS3 M: 0.322 M: 9.610
-3

   3 1.6698 8 

WS4 S: 0.152 H: 0.19  25 1 1.6716 18 

     2 1.6732 10 

     3 1.6698 8 
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Figure ‎7.7. System performance (Z) versus working cycles for 3 workstations and up to 3 

workers with Flex=3 during 15 working cycles, learning index decreases and fatigue index 

increases from the first to the last working station. The inset provides a closer look of the 

performance of 2 workers declining after the 13
th
 and 3 workers declining after the 10

th
 

cycle (WRK= Worker). 

 

7.3.2 From slow to fast learning 

7.3.2.1 From slow to fast learning and hard to easy work  

The results of these scenarios are presented in Table ‎7.4. As before, with Flex=2, the system is 

run with 1 and 2 workers. With Flex=3, the system can have up to 3 workers working in the 

same cycles. The learning increases and the workload decreases from the first to the last station 

while the number of workstations depends on the Flex number. First, it is assumed that 9000 

items are processed in 15 cycles. Again each worker must process 
jm15

9000
items and the 

defects per station per cycle, while m is the number of workers and j is the number of 

workstations. According to Table ‎7.4 the best performance of this system obtained when Flex = 

3 with 2 workers (Z = 1.6744) at the 13
th

 cycle. 
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Table  7.4. Performance measure investigation when learning increases and fatigue decreases from the 

first to the last working station (Learning: F=Fast, M=Moderate, S=Slow; Workload: H=Hard, 

M=Moderate, E=Easy). 

Flex=2 b   Cycle Worker Zmax Cycle of Zmax 

WS1 S: 0.152 H: 0.19  15 1 1.6261 15 

WS2 F: 0.515 E: 6.410
-3

   2 1.6681 15 

     - - - 

    25 1 1.6614 25 

     2 1.6711 18 

     -  - 

Flex=3 b   Cycle Worker Zmax Cycle of Zmax 

WS1 S: 0.152 H: 0.19  15 1 1.6607 15 

WS2 M: 0.322 M: 9.610
-3

   2 1.6744 13 

WS3 F: 0.515 E: 6.410
-3

   3 1.6725 10 

    25 1 1.6699 22 

     2 1.6744 13 

     3 1.6725 10 

Flex=4 b   Cycle Worker Zmax Cycle of Zmax 

WS1 S: 0.152 H: 0.19  15 1 1.6703 15 

WS2 M: 0.322 M: 9.610
-3

   2 1.6732 10 

WS3 M: 0.322 M: 9.610
-3

   3 1.6698 8 

WS4 F: 0.515 E: 6.410
-3

  25 1 1.6719 18 

     2 1.6732 10 

     3 1.6698 8 

 

7.3.2.2 Flexibility 

Returning to Table  7.4, the system performance with Flex=4 is compared to Flex=3. The 

workload is assumed to be similar to ‎7.3.2.1 (from slow to fast learning and hard to easy work), 

except that this time the two middle workstations have moderate workloads and learning. It is 

assumed that 9000 jobs are to be done by 1, 2, and 3 workers respectively in 15 cycles. Similar to 

‎7.3.2.1, each worker must process 
jm15

9000
 items and the defects per station per cycle. The best 

performance obtained with two workers in the 10
th

 cycle with Z = 1.6732. Comparing the results 

to those of section ‎7.3.2.1 with Flex = 3 and best performance of Z = 1.6744 at the 13
th

 cycle, it 

is observed that the best performance of the system declines with increased flexibility. The 

performance peak  also occurs earlier, i.e., at cycle 10 instead of 14 which answers RQ-1. 
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7.3.2.3 Number of cycles 

To examine the effect of cycles, we return to Table  7.4 and investigate Flex=3 with 15 and 25 

cycles. Again, only Flex=3 is considered since it corresponds to the best performance. With 25 

cycles, each worker should process 
jm25

9000
items and the defects per station per cycle. As per 

Table  7.4, the best performance is obtained by two workers in the 13
th

 cycle with Z = 1.6744. 

Comparing to ‎7.3.2.1 (from slow to fast learning and hard to easy work), as the entire lot is 

processed in more cycles, the best performance does not change since it reached its maximum 

value in the 13
th

 cycle and will not increase further. When producing a lot in more cycles 

however, the process performance is not optimal as it further decreases with increasing cycles 

(from cycle 13 to 25), which answers RQ-2.  

7.3.2.4 From slow to fast learning and easy to hard work  

With the same learning scheme (from slow to fast learning) an increasing workload is assumed, 

that is, the work is the easiest at the first, moderate at the second, and the hardest at the third 

workstation. The results of this case are summarised in Table ‎7.5 and show the best performance 

is obtained with Flex = 3 and 2 workers in cycle 14 where Z = 1.6735. The results indicate that 

as the learning becomes faster as a worker moves from one station to the next and the worker 

transfers from the easiest job to the hardest, the performance of the system declines and is also 

obtained later in the process which answers RQ-3 (compare the corresponding result in Table  7.4 

with Z=1.6744 at cycle 13 and the one in Table  7.5 with Z=1.6735 at cycle 14). 
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Table  7.5. Performance measure investigation when learning and fatigue indices increase from the first to 

the last working station (Learning: F=Fast, M=Moderate, S=Slow; Workload: H=Hard, M=Moderate, 

E=Easy). 

Flex=2 b   Cycle Worker Zmax Cycle of Zmax 

WS1 S: 0.152 E: 6.410
-3

  15 1 1.6205 15 

WS2 F: 0.515 H: 0.19   2 1.6658 15 

     -   

    25 1 1.6581 25 

     2 1.6698 19 

     -  - 

Flex=3 b   Cycle Worker Zmax Cycle of Zmax 

WS1 S: 0.152 E: 6.410
-3

  15 1 1.6579 15 

WS2 M: 0.322 M: 9.610
-3

   2 1.6735 14 

WS3 F: 0.515 H: 0.19   3 1.6720 10 

    25 1 1.6685 23 

     2 1.6735 14 

     3 1.6720 10 

Flex=4 b   Cycle Worker Zmax Cycle of Zmax 

WS1 S: 0.152 E : 6.410
-3

  15 1 1.6688 15 

WS2 M: 0.322 M: 9.610
-3

   2 1.6727 11 

WS3 M: 0.322 M: 9.610
-3

   3 1.6694 8 

WS4 F: 0.515 H: 0.19  25 1 1.6708 18 

     2 1.6727 11 

     3 1.6694 8 

 

7.4 Discussion and conclusion 

Not considering human restrictions and abilities will result in unrealistic production planning that 

could underestimate or overestimate production costs. In this Phase, a more comprehensive 

model for DRC systems considering human aspects was developed. This Phase is a new 

approach that locates the human in the center of industrial planning. Considering that production 

lines are still heavily dependent on the human performance, this thesis contributes to the scarce 

literature investigating the effect and role of human factors on the process quality and output.   

The models that were developed in the previous Phases for human behaviour, i.e., the Learning 

Forgetting Fatigue Recovery Model (LFFRM of Phase 1), the Quality Learning Forgetting Curve 
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(QLFC of Phase 2), and also a model for human error making with learning and fatigue (of Phase 

3) were used to develop and analyze the production planning for DRC systems. The developed 

model simulates a production process in which flexible workers transfer between different 

workstations and each station provokes certain types of learning and fatigue. When performing a 

work, the level of learning and fatigue contribute to the error making of worker who can generate 

defective products. However, defective items could also be generated as a result of machine 

malfunction. When a production lot arrives at the first station of a system, it is processed in 

cycles with the associated defects. The performance of the system was studied with a twofold 

measure function consisting direct (time) and indirect (quality) costs.  

Also the effects of learning and fatigue rates, number of cycles, and the flexibility of workers 

were investigated by addressing three research questions. To answer the first research question 

(RQ-1), the desired level of flexibility was studied. The results showed that irrespective of the 

configuration of learning and fatigue, number of workers, or number of cycles, Flex = 3 always 

yielded better results than Flex = 2 or Flex = 4. This corroborates the finding of Kim and 

Nembhard (2010), Kher et al. (1999), and Jaber et al. (2003) that the best level of flexibility in 

DRC systems is 2 or 3.  

To answer the second research question (RQ-2), the transfer policy of workers was examined. 

The results showed that irrespective of the pattern of learning and fatigue, flexibility level, or the 

number of workers, there is an optimum number of cycles beyond which, the performance of the 

system deteriorates. This result is compatible with the works of Jaber and Guiffrida (2004) and 

Jaber and Guiffrida (2008), where they observed that the quality learning curve has an optimum 

performance level when the rework learning rate is less than or equal to the production learning 
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rate. This result also determines the transfer policy; i.e. the entire lot must be processed in a 

number of cycles that optimises the performance. If a lot is processed in more cycles than the 

optimal number, then the frequency of transfer of a worker increases which is lowering the 

performance. This finding is corroborated by Kher et al. (1999) who concluded that the effect of 

forgetting as a result of increasing flexibility and transfers can be encountered by processing 

larger batch sizes.  

The work performed at each workstation and the configuration of workstations could have 

various effects on the learning behaviour, with cognitive aspects, and fatigue behaviour, with 

motor aspects and result to various levels of quality of products. The results show that 

performing the tasks sequentially from the hardest to the easiest, adjacent to low to high learning 

rates, results to a process of the highest performance. The second best performance obtained in a 

system with workstations associated with high to low learning and low to high fatigue rates. The 

third research question reveals that a system with the opposite arrangement of learning and 

fatigue rates will yield the best performance.   

The managerial implications of this Phase of the thesis indicate that increasing the number of 

workers, working cycles, or the skills flexibility does not necessarily result in a better 

performance of the system. Other hidden factors such as quality issues, fatigue, and forgetting of 

workers are involved that have negative effects and deteriorate the performance in cases of 

excessive flexibility or transfer rate of workers. The results also arrest the attention of managers 

towards the workflow and its effect on the process outcomes. The workflow was addressed by 

configuration of workstations in this Phase of the thesis and it has shown to affect the optimality 

conditions of the working system.    
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8. Contributions and Future Directions   

DRC system models that considered human aspects are scarce. Aspects such as learning, 

forgetting, fatigue, and recovery that impact performance of DRC systems and the quality of the 

final product have been studied either independently or in combination of two (e.g., learning and 

forgetting). There is no study in the literature that considers the combined effects of these 

factors. The aim of this research was to fill this gap by studying how these human aspects 

interact and how they affect the system performance and throughput. This thesis revised 

traditional scheduling and production planning methods that ignore human aspects. New 

mathematical models were developed in four Phases, of which the last is a comprehensive 

model, which integrates learning, forgetting, fatigue, and recovery with product and process 

quality in a DRC setting. Worker flexibility and transfer policies, which are fundamentals of 

DRC systems, were also studied in the specified context. This has become growingly popular 

among manufacturing firms that wish to be responsive, flexible, and efficient, where fewer 

workers are needed to perform the same number of tasks.   

8.1 Contributions 

In Phase 1 of this thesis, fatigue and recovery were incorporated into an existing learning and 

forgetting model to study how the four human aspects interplay. The resultant model was used to 

study human behavior in a workplace where mentioned aspects may be present and to investigate 

the effects of their interactions on the performance of a human-centred production system. The 

results indicated that learning and recovery and forgetting and fatigue have opposite effects on 

the system performance, which can be optimized by a trade-off among the human aspects. The 
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results of Phase 1 suggested that workers’ capabilities and limitations are critical issues that must 

be considered when designing production systems that are labour intensive.  

In Phase 2, lot sizing and batching policies were investigated in the presence of learning and 

forgetting and product and process quality where the interruption of the production process is 

allowed to restore its quality. An optimization method was developed for determining the 

optimal policies. This Phase suggested how product and process quality can be improved in a 

human centred production system and how the standard time can be improved (reduced) as a 

result. The results of this Phase were later used in developing the model of Phase 4.  

In Phase 3, the confluence of learning-forgetting and fatigue-recovery and their effects on the 

reliability of a worker performing a manual task was investigated. A Human Reliability Analysis 

model was developed to measure human error when performing a repetitive task over a period of 

time. This Phase captured how human reliability changes over time in a production process and 

optimized the production throughput with regard to human reliability.   

In Phase 4, a DRC system model was developed in which, workers contribute to the performance 

of the system and product quality. Using the models developed in Phases 1 to 3; which are the 

Learning Forgetting Fatigue Recovery Model (LFFRM) in Phase 1, Quality Learning Forgetting 

Curve (QLFC) model in Phase 2, and Human Reliability Analysis model in Phase 3, the 

production planning and flexibility policies in a DRC system were investigated through a 

twofold cost function. Phase 4, which completes this thesis, presented an inclusive model of a 

DRC system which is capable of relating system characteristics (flexibility and transfer policies) 

to human behavior (learning-forgetting, fatigue-recovery, and error making). This model 

provided some insights into how managers can balance between system performance and 
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throughput and workers welfare. The results indicated that in order to obtain reasonable and 

applicable policies for production planning and job scheduling, it is suggested that human 

characteristics be considered when designing DRC systems.  

8.2 Limitations 

The limitations of the research presented in this thesis are: 

8.2.1 Benchmarking  

Modelling and analyzing human behavior is a complex subject. Although there are many models 

that represent the learning and forgetting process, the fatigue and recovery process, and error 

generation mechanisms, there is no consensus among researchers to which one to use in which 

setting and under what conditions, and many models either have not been validated empirically 

or have been tested in experimental settings that resemble a manufacturing environment. For 

example, there are at least 10 groups of univariate and multivariate learning curve models 

(Badiru, 1992), 10 forgetting models (Nembhard & Osothsilp, 2001; Sikström & Jaber, 2002, 

2012), 8 groups of fatigue (Dawson et al., 2011), and 4 groups of recovery models (El ahrache & 

Imbeau, 2009) to be used in various areas. Furthermore, some models may have been developed 

for specific applications, such as Rose’s models (1992) for fatigue and recovery of construction 

workers. Also, in some situations, it is not possible to distinguish some aspects of human 

behaviour such as fatigue or boredom or to separate cognitive from motor learning. These 

limitations make the benchmarking of the results restrictive and conservative since it is not 

possible to track the behavior of each outcome to the related individual sources.   
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8.2.2 Data availability 

Analytical models need empirical data to be validated; however, such is scarce, especially, when 

it involves the characteristics of workers. Also, as the literature shows, human behaviour in the 

workplace has been measured by subjective methods. Translating such data to quantitative ones 

that can be used to validate mathematical models may be questionable. Of course, having 

available data will give a modeller the opportunity to test his/her model against data, measure 

deviation and revisit the model for tuning and fine-tuning until a model produces the output that 

reasonably conforms to the collected data. Although the results of this thesis are useful for 

setting strategies for performance measurement, management, and improvement, they cannot be 

generalised in the absence of empirical validation.  

8.2.3 Assumptions  

Another limitation is in some of the assumptions made in this thesis. For example, in this thesis it 

was assumed that the fatigue level has a maximum of one and a minimum of zero, and that the 

fatigue function is exponential. It may be possible that fatigue has a minimum residual value and 

a maximum threshold value and the form of the fatigue accumulation function may be of 

different form, say S curve. There was no model in the literature that quantifies general fatigue 

and unfortunately, the behaviour of the fatigue accumulation found in the literature was 

descriptive. These assumptions raise other fundamental questions that if answered, may 

somewhat affect the results of this thesis. For example:   

- How much learning can a worker really achieve during a work shift? 

- How much fatigue a worker is allowed to/can accumulate in a work shift? 
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Answering the above questions probably will change outcomes of the developed models and the 

managerial insights and implications.  

8.2.4 Interactions 

A human being is a complicated system. It consists of motor and mental functions that interact 

with one another. It is not yet known how they interact and to the author’s knowledge there is no 

mathematical model that captures that interaction. This raises several interesting research 

questions, which are:  

- What type of a job generates what kind of fatigue? 

- How do physical and psychosocial aspects of human behavior interact with each other, and 

how one affects the other? 

- How does the type of fatigue affect the rate and duration of recovery? 

- Does fatigue limit the learning process? Does recovery, improve it? 

- What is the effect of age, gender, or skill level on learning and fatigue behaviour?  

8.3 Future directions 

The models provided in this thesis could be improved by removing some of the aforementioned 

limitations. Benchmarking the analytical models with precise data, subtle knowledge of human 

cognitive and motor functions and their interactions, as well as reliable assumptions, improve the 

modeling and yield more realistic results.  

A future work of Phase 1 could consider a process with dynamic scheduling for break times and 

their frequency. The LFFRM was studied for processing of a fixed number of batches and 
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breaks. A dynamic program could be developed to have enough flexibility for scheduling an 

optimized process for varying number and frequency of batches and break times.  

Phase 2 assumed that defective items are reworked and there is no double defected (scrap) item.  

Also it was assumed that restoration times are negligible in comparison to the cycle time. More 

insights into this problem are needed to determine the optimal restoration policy to be used 

regarding the above limitations.  

In Phase 3 the effect of rushing on a job or meeting a due-date  (Myszewski, 2010), was not 

considered. Also, worker’s learning ability was assumed not to be affected by fatigue. Future 

work could extend this Phase by removing these limitations.  

In Phase 4 it was assumed that the recovery rate remains at the medium level throughout the 

entire work and the rework process has the same learning rates as the production process. A 

future work could address these limitations and also consider the effect of heterogeneous or 

homogenous workforce, job similarity, upfront training, and behavioral interaction effects. 

The future work of this research in general could extend upon the following areas: 

- Considering a heterogeneous workforce with a wide range of learning, forgetting, fatigue, 

recovery, and therefore error making possibilities,   

- Estimating the effect of worker turnover, new hiring, upfront training, and organizational 

learning in the production planning, and  

- Using more complex models such as multivariate models for learning and forgetting that 

consider the interactions of several factors in estimating the improvement in learning or cost 

reduction of the process.  
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9. Summary and Conclusions 

DRC systems include two types of resources: workers and machines (jobs). When workers 

alternate between different jobs the productivity of the system is affected by their learning-

forgetting, fatigue-recovery, and error making behaviour. Machines also could influence the 

production process by malfunctioning. 

This thesis provided a model for DRC systems that take these characteristics into consideration 

and merged them into a single and comprehensive model. It relates worker characteristics of 

learning and forgetting, fatigue and recovery, and error generation, and malfunctioning 

behaviour of machines. The model was created in four Phases. In the first Phase, a learning-

forgetting model was modified by accounting for fatigue and recovery to develop the Learning 

Forgetting Fatigue Recovery Model (LFFRM) for a worker. In the second Phase, it assumed that 

the quality of a production process may deteriorate, thus generating defective items that require 

rework. This Phase, illustrated a system in which the products are not 100% quality accepted and 

need rework. In Phase 3, a human error model was developed and integrated into the LFFRM. 

Lastly, in Phase 4, a comprehensive model was developed that integrated the models developed 

in Phases 1 to 3 into a DRC system where the quality of the production process is imperfect. The 

developed model was investigated for production planning with different transfer and flexibility 

policies. This thesis represented a DRC model that resembles a real setting to some extent, and 

provided insights for improving the performance and throughput of DRC systems while 

considering workers’ welfare. The results of this research are also applicable to manufacturing 

and service environments that are labor intensive. Aircraft manufacturing and hospitals are 
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examples of such environments where the learning, forgetting, fatigue, recovery, and error 

making of workers may have significant effects on the quality of products and services delivered. 
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