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Abstract

In this thesis, we study the admission control and bandwidth allocation methods 

for classA traffic in RPR networks. First, we investigate the performance of classA traffic 

under the current RPR protocol. The simulation results show that RPR networks can 

support low-delay classA traffic even if the networks are congested with classB and classC 

traffic. The low-delay performance, however, is subject to the condition that the load of 

classA traffic must be properly controlled. Consequently, an admission control mechanism 

must be used for classA traffic. In this thesis, several admission control algorithms are 

studied. They are the Simple Sum algorithm, the Measured Sum algorithm, and the 

Equivalent Bandwidth algorithm. The simulation results show that the Equivalent 

Bandwidth algorithm is the most suitable to use as the admission control mechanism for 

classA traffic.

The admission control mechanism makes admission decision based on the 

available bandwidth allocated to the classA traffic. The existing RPR standard assumes the 

bandwidth allocated for classA traffic at each node is fixed. The fixed bandwidth 

allocation introduces inflexibility and inefficient use of bandwidth for classA traffic. In 

this thesis, three bandwidth allocation algorithms are proposed to dynamically allocate 

bandwidth for classA traffic. These algorithms have different levels of complexity and can 

be applied to different traffic environments. Simulation results show that the proposed 

algorithms improve the bandwidth efficiency of the RPR networks. The proposed 

algorithms are also readily integrated with the existing Internet Quality of Services (QoS) 

paradigms such as Diffserv and RSVP services.
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Chapter 1 

Introduction

It is important to guarantee the high priority traffic (classA traffic) in Resilient Packet 

Ring (RPR) networks to achieve low end-to-end delay performance. This thesis studies 

several admission control algorithms to support low delay performance for high priority 

traffic. Our simulation study shows that with proper control of classA traffic load, the delay of 

classA traffic can be kept low, even though the network is congested with lower priority 

traffic (classB and classC traffic). The study also shows that most o f the delay is introduced at 

the source node. Once the traffic enters the network, the delay is minimum and is almost 

equal to the propagation delay.

Admission Control for classA traffic in RPR networks must be supported by the 

bandwidth reservation procedure, which is in turn, affected by how the bandwidth is allocated 

to each node in the network. In the current RPR draft, no reservation algorithm or bandwidth 

allocation method is proposed. One approach to deal with bandwidth allocation is to allocate 

fixed bandwidth to each node. However, our study has shown that fixed bandwidth allocation 

is not efficient. In this thesis, we propose a dynamic bandwidth allocation method using the 

concept o f common-bandwidth pool. Three reservation algorithms based on the dynamic 

bandwidth allocation method are then proposed and studied. Our results show that the 

proposed algorithms can provide better bandwidth efficiency than the fixed bandwidth 

allocation method.

In the rest of this chapter, the basic concepts in RPR networks, classA traffic and 

Quality o f Service (QoS) will be briefly covered.

1.1 Introduction to RPR networks
Resilient Packet Rings (RPR) are data optimized networks, with at least two counter 

rotating fiber ringlets in which multiple nodes share the bandwidth without the requirement o f 

provisioning circuits [1]. For the best-effort traffic, the nodes on the ring can automatically 

negotiate for bandwidth among themselves via the Fairness Algorithm. Each station has a 

topology map of the ring and can send data on the optimal ringlet towards its destination.



RPR layer 2 technologies define a media access control (MAC) protocol that decides 

the manner in which available bandwidth can be utilized by transmitting stations. The MAC 

protocol also decides how a station would react to congestion on the media. Finally, the MAC 

regulates access to the media by buffering and prioritizing packets onto the media. The RPR 

MAC supports three service classes:

1) High priority traffic (class A): The traffic class requires Committed Information Rate 

(CIR) services. The service supports guaranteed bandwidth and low latency/jitter 

applications. Voice, video, and circuit emulation applications can utilize this class of 

traffic. Within this class, the MAC uses two subclasses, sub cl ass AO for reserved 

bandwidth and subclass A 1 for reclaimable bandwidth.

2) Medium priority traffic (class B): This traffic class requires CIR services that have less 

stringent (but still bounded) jitter/latency requirements. Any usages above the CIR are 

considered EIR (excess information rate) and are subject to the fairness algorithm. Bursty 

data applications can utilize this traffic class.

3) Low priority traffic (class C): This traffic class is used for best- effort traffic. Nodes 

negotiate to receive a fair share of the ring capacity using the RPR fairness algorithm.

Most of the Internet traffic belongs to this traffic class.

1.2 Quality of Service (QoS)

Networks today are carrying more data than ever in the form of bandwidth-intensive, 

real-time voice, video, and data, which stretch network capability and resources. So QoS issue 

plays more and more important role to provide better service to the selected network traffic.

The primary goals of QoS are to provide better and more predictable network service 

by providing dedicated bandwidth, controlled jitter and latency, and improved loss 

characteristics. To achieve these goals, several QoS tools have been developed. These tools 

include traffic policing, traffic shaping [4] and admission control [6]. Below, we will briefly 

describe these QoS tools.

1.2.1 Traffic policing

Traffic policing allows a network to control the rate of traffic transmitted or received 

on a network interface. A traffic policer monitors the traffic flow and tries to detect non



conforming packets. A packet is deemed non-conforming if the transmission of that packet 

means that the traffic flow violates the agreed policing parameters such as peak data rate, 

mean data rate and maximum burst length. A non-conforming packet is either discarded or 

marked. Marked packets are usually treated with lower QoS.

1.2.2 Traffic Shaping

Traffic shaping is similar to traffic policing, except that traffic shaping uses a buffer to 

store the nonconforming packets, thus the nonconforming packets are delayed, instead of 

being discarded or marked. If the buffer is full, however, nonconforming packets will also be 

discarded. Traffic shaping is used extensively to control the traffic flow at the MAC layer of 

the RPR network.

1.2.3 Admission Control

Admission control is the procedure for the network to determine if it should admit a 

new flow. A flow is usually characterized by a given source/destination pair. By computing or 

measuring existing traffic load, the network decides if  there are sufficient resources to meet 

the QoS required by the new connection. The role of any admission control algorithm is to 

ensure that admittance of a new flow into a resource constrained network does not violate 

service commitments made by the network to the existing flows.

1.3 QoS Support in the Internet

Two models are used in the Internet for QoS support. They are the Integated Services 

[2] and Differentiated Services models [3]. These models are briefly described below.

1.3.1 Integrated Serviees (IntServ); In the IntServ model, routers treat each flow separately 

according to its required QoS. Each flow makes its own reservation using the Resource 

Reservation protocol (RSVP). The admission control mechanism in each router interworks 

with RSVP to decide if a flow is admitted or not. While such architecture provides required 

QoS per flow, it has significant scalability problems. Routers must process per-flow 

reservation requests, and must keep many per-flow states. This will place a lot o f burden on 

routers, especially those routers in the Internet Service Provider (ISP) networks, where there



can be tens of thousands of flows. '

1.3.2 Differentiated Service (DiffServ):

DiffServ is another approach to provide QoS in the Internet. DiffServ requires no per- 

flow admission control or signaling, and routers do not maintain any per-flow state. In 

DiffServ, a potentially large number of traffic flows are merged into a much fewer number of 

traffic classes. Each traffic class receives different QoS service; while flows in each class 

receive the same QoS service. Because DiffServ only needs to deal with a small number of 

traffic classes, it is more scalable than IntServ.

DiffServ is widely used in today's ISP networks. Note that RPR also only define a 

small number of service classes (three), thus, its structure in QoS support is very similar to 

DiffServ.

1.4 ClassA traffic in RPR network:

1.4.1 SubclassAO & SubclassAl:

As it is mentioned before, classA service provides guaranteed bandwidth and supports 

low latency/jitter applications. Internai to the MAC, classA traffic is partitioned into two 

subclasses: subclassAO and subclassAl. The bandwidth reserved for subclassAO cannot be 

used (reclaimed) by traffic from other classes even it is not used by subclassAO traffic; while 

unused bandwidth reserved for subclassAl can be reclaimed by traffic from classB and classC. 

Note that the MAC client has no notion of subclassAO and subclassAl services. The client 

just passes the classA traffic to the MAC layer. It is up to the MAC layer to assign traffic to 

different subclasses. The amount of bandwidth that can be allocated for subclassAl depends 

on the sizes of the secondary transit queues (STQ) in the RPR nodes (STQ will be discussed 

next). In this thesis, subclassAO and subclassAl are combined and treated as a single classA 

class since both subclasses receive essentially the same QoS treatment. Distinguishing 

subclassAO and subclassAl only has the effect on the performance of classB and classC 

traffic.



1.4.2 Transmit Operation

A RPR node has to deal with both the transmit traffic and the transit traffic. The 

transmit traffic is the traffic originated from the local MAC clients; while the transit traffic is 

received from the upstream RPR node. At the MAC layer, four traffic shapers are used to 

shape the traffic from four different transmit traffic classes (subclassAO, subclassAl, class B 

and class C). The shaped traffic is then selected to enter the stage queue based on the 

priorities of the traffic classes. SubclassAO has the highest priority; subclassAl has the second 

highest priority; while class C has the lowest priority. The RPR MAC datapaths are shown in 

Figure 1.1.

C lient

MAC control sublayer
fairness
controladdM ac j-hMlSgSSi

Medium access control

.! r I Urrate 
monitors

c h e c k e r PTC & STO

L eg en d : shAO: subclassAO shaper
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shM ; MAC control shaper

■normal ■■■■■<
frame path

shA l : subclassA l sh ap er 
shF : fa irness eligible shaper

■ alternative control 
frame path

shB ; ClassB shaper 
sh l: idle sh ap er

MAC Internal 
information path

Figure 1.1 RPR MAC datapaths [ 1 ]

The client labels its frames as classA, classB and classC. The classA client adds 

classA flows (addA) through subclassAO or subclassAl shaper. The classB client adds classB 

flows (addB) through classB or fairness eligible shaper. The classC client adds classC flows 

(addC) through fairness eligible shaper. Fairness eligible traffic (ClassB-ElR and classC) is 

controlled by fairness eligible shaper and uses the available bandwidth from the unallocated 

bandwidth and unused reclaimable bandwidth. All unreserved transmit and transit traffic



flows are shaped by the downstream shaper.

Accepted client traffic is placed in the stage queue. The transmit traffic at the stage 

queue has to compete with the transit traffic for the access of the outgoing link of the node. 

The transit traffic is buffered in the transit queue. There are two types of MAC transit 

queueing designs: single-queue and dual-queue. The single-queue design places all transit 

traffic into a primary transit queue (PTQ), and sends the frames in the queue in the first-in- 

first-out sequence. The dual-queue design places classA transit traffic into a higher- 

precedence PTQ, and classB and classC transit traffic into a lower-precedence secondary 

transit queue (STQ). In this thesis, we will only consider the dual-queue operation for it 

provides the best QoS support for classA traffic. In the dual-queue operation, the traffic at the 

PTQ (the transit classA traffic) has the highest priority for transmission. If there is no traffic 

waiting for the transmission at the PTQ, then the traffic from the stage queue is selected for 

transmission. Finally, traffic at the STQ will be transmitted if there is no traffic waiting at 

both PTQ and the stage queue. For the purpose in this thesis, the brief description of the 

transmission operation above is sufficient. The exact transmission operation, however, is 

more complicated. It is because the transmission operation also has to deal with the 

transmission of control frames and the prevention of buffer overflow of the STQ. See the RPR 

document for more details [ 1 ].

1.4.3 Inefficient bandwidth usage problem for classA traffic in RPR network

In the RPR draft, no bandwidth allocation method is proposed. The bandwidth 

allocated for classA traffic at each node is assumed to be assigned statically through some 

Operational and Maintenance (0AM) procedures. Once the reserved bandwidth is assigned to 

an individual node, the node can only use that much bandwidth to transmit classA traffic even 

though there is more bandwidth available. It makes the bandwidth usage for classA traffic in 

RPR network not very efficient. This is especially true for subclassAO type because the 

bandwidth allocated for this class of traffic, in general, cannot be spatially reused. We will 

investigate the inefficient bandwidth usage problem in more detail in Chapter 3 and propose 

three bandwidth reservation algorithms to tackle the problem.



1.5 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, the effect o f traffic shaping 

in the control o f traffic throughput at the RPR MAC layer is studied. In the same chapter, 

three admission control algorithms are introduced and their effectiveness on the delay 

performance of classA traffic is investigated. In Chapter 3, we introduce the concept o f 

common-bandwidth pool, where RPR nodes can dynamically reserve bandwidth firom it. The 

introduction of common-bandwidth pool makes the bandwidth usage in RPR networks more 

efficient. Three bandwidth reservation algorithms are proposed to dynamically reserve and 

release bandwidth firom the pool. They are: Basic Reservation Algorithm, Flow-Based 

Reservation Algorithm and Hop-by-Hop Reservation Algorithm. Finally, Chapter 4 describes 

the integration of the proposed dynamic bandwidth allocation algorithm with DiffServ and 

RSVP.



Chapter 2

The Study of Traffic Shaping and Admission Control for ClassA

Traffic

To ensure that the classA traffic has low delay and jitter, admission control and traffic 

shaping must be used in the RPR networks. Admission control is used to make sure that the 

network resources are not oversubscribed; while traffic shaping regulates the input traffic to 

prevent temporarily traffic overload. In this chapter, we first introduce the traffic shaping 

method used in the RPR MAC layer and study the effect of traffic shaping on regulating the 

traffic load in the RPR network. We then focus on the admission control. Three admission 

control algorithms are introduced and their effects on the delay performance of classA traffic 

are investigated.

2.1 Traffic Shaping
2.1.1 Token bucket implementation

The traffic shapers used at the RPR MAC layer is implemented based on the token 

bucket algorithm [1]. In the token bucket algorithm, a frame can only be transmitted if  there 

are enough credits (tokens) in the bucket. Every time a frame is transmitted, corresponding 

number of tokens (decsize) will be removed from the bucket. If there are not enough tokens in 

the bucket upon the arrival of a frame, then the frame cannot be transmitted until more tokens 

become available. Tokens are added to the bucket at a constant rate, which is the average rate 

at which frames are transmitted. This is accomplished by incrementing the credits in the token 

bucket by incsize at a constant interval. If no frames are waiting in the transmit buffer, then 

tokens begin accumulating in the bucket. The tokens stop accumulating when the bucket is 

full. The number o f tokens at a given time represents the maximum number of bytes that can 

be sent. It is never possible for the number of credits to become negative after subtracting the 

number of bytes in the transmitted frame. Figure 2.1 illustrates how the credits are 

accumulated and depleted.
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Figure 2.1 Token bucket algorithm used in MAC shaper [1]

There are two threshold values in the token bucket: loLimit threshold and hiLimit 

threshold. The loLimit threshold is used to generate a rate-limiting indication when the 

number of credits goes below the loLimit threshold. When no frames are ready for 

transmission, credits are reduced to loLimit (if currently higher than loLimit) and can 

accumulate to no more than loLimit. The loLimit is set to MTU_S1ZE (maximum transmission 

unit size) in order to allow the transmission of a full sized frame without reducing the credits 

below zero.

The hiLimit threshold limits the positive credits, to avoid overflow. When frames are 

ready for transmission (and are being blocked by transmit traffic), credits can accumulate to 

no more than hiLimit. The hiLimit value should be at least MTU SIZE. If it is set to exactly 

MTU SIZE, no bursts are allowed.

2.1.2 Simulation study on traffic shaper

In this section, simulation results are presented to illustrate the effect of using the 

traffic shaper to regulate the traffic in the RPR network. In all the simulation scenarios, a 

RPR network with 20 nodes shown in figure 2.2 is used. Each of the nodes is a RPR router. 

The nodes are connected by dual-ring. The link rate for the transmission link is 622Mbps. 

And the distance between two adjacent nodes is 14 kilometers.
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Figure 2.2: RPR Network Topology
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Case 2.1: Traffic regulation using classA shaper

In this case, classA traffic shaper at nodcl is set to support data rate of 200 Mbps. 

Nodcl, however, generates 300 Mbps of classA traffic to nodeS. The simulation result in 

Figure 2.3 shows that the shaper has successfully reduced the throughput to 200 Mbps. The 

excess traffic is queued in the transmit buffer and got delayed. Once the buffer is full, the 

excess traffic was dropped by the MAC layer.
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Figure 2.3: Throughput of classA traffic shaped by classA shaper

Case 2.2: Traffic regulation using downstream shaper

Downstream shaper is used to regulate the traffic that does not make any bandwidth 

reservation. In this simulation scenario, the reserved traffic bandwidth for classA traffic is set

10



to 200Mbps. Consequently; the downstream shaper is set to support the rate of the unreserved 

bandwidth, which is (622Mbps - 200Mbps) = 422Mbps. If node! generates 600Mbps of 

classC traffic, then only 422Mbps of traffic should be sent. Figure 2.4 shows the simulation 

result on this scenario.
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SOD, 000^000
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Figure 2.4: Throughput of classC traffic shaped by downstream shaper

Case 2.3 : Traffic regulation with both classA and downstream shapers

In this case, the reserved rate for classA traffic is set to 100Mbps, so the unreserved rate 

is 522Mbps. Here, 300Mbps of classA traffic is generated fi-om nodel to nodeS; 600Mbps of 

class C traffic from node 2 to node 9; and 600Mbps of class C traffic from nodeS to node 10, 

Because the link rate is 622Mbps, congestion happens in this scenario. Figure 2.5 shows the 

simulation results. From the results, we can see that the throughput of classA traffic is 

restricted to 100Mbps. Node2 and NodeS fairly share the unreserved bandwidth of 522Mbps 

through the use of the RPR fairness algorithm. Consequently, they both send about 260Mbps 

o f ClassC traffic.

11
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Figure 2.5 Throughputs of traffics shaped by classA and downstream shaper

2.1.3 Conclusion of the simulation study

The simulation results presented in the previous section demonstrate the effectiveness 

of using traffic shapers to control the traffic load. The results also demonstrate that, with the 

control of the rate of classA shaper, the bandwidth allocated for classA traffic can be properly 

reserved and excessive classA traffic is discarded by the shaper. To prevent large portion of 

classA traffic to be discarded, admission control must be implemented to keep the admitted 

traffic load below the bandwidth allocated to classA. In the next section, we will study the 

admission control process.

2.2. Admission Control

In admission control, a traffic flow must first get admitted before the data traffic is 

allowed to enter the network. The admission decision is usually based on the available 

network resources and made at the management node or traffic nodes along the path from the 

source to the destination. There are many admission control algorithms in the literature. Here,
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we will study the bandwidth admission control algorithms [6,7]. These algorithms have the 

advantage of being relatively simple and thus suitable to be implemented in h i^-speed  

environments such as RPR.

In bandwidth admission control, a certain amount of reservable bandwidth is allocated 

to each traffic class. A flow of a given traffic class that wants to get admitted will first provide 

a set o f traffic parameters to the admission control process to assist the process to make the 

admission decision. The traffic parameters usually include average data rate, peak data rate 

and maximum burst length. Based on the parameters, the admission process calculates the 

request bandwidth of the flow and adds this value to the current traffic load. If the sum is less 

than the reservable bandwidth, then the flow is admitted. There are two basic approaches to 

bandwidth admission control. The first, which we call the parameter-based approach, make 

the admission control decision simply based on the traffic parameters provided by the source. 

Once the admission control algorithm admits the flow, it uses these parameters to calculate 

the new traffic load. An example of parameter-based approach is Simple Sum. The second, 

the measurement-based approach, does not rely on the traffic parameter provided by the 

source to compute the traffic load, but instead, uses the measurement o f actual traffic load in 

making adm ission  decisions. An example of measurement-based approach is Measured Sum.

2.2.1 Simple Sum:

Simple Sum admission control algorithm simply ensures that the sum of all the 

requested bandwidth does not exceed the reservable bandwidth. Let v be the sum of the 

reserved bandwidth, u be the reservable bandwidth and r° be the requested bandwidth for flow 

a. The Simple Sum admission control admits the new flow as long as it satisfied the following 

condition:

v+r° <u (2.1)

Simple Sum admission method is easy to implement. But it has some drawbacks. 

Firstly, because it merely relies on the traffic parameter provided by the source. If the source 

reserves more bandwidth than it actually uses, the unused bandwidth cannot be reassign to 

other flows. Secondly, equation 2.1 does not account for the multiplexing effect on the 

outgoing link. Consequently, the requested bandwidth may be too large if  peak data rate is 

used and too small if  average data rate is used.
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2.2.2 Measured Sum
Whereas the "Simple Sum" algorithm merely uses the sum of the requested 

bandwidths of the existing flows to compute the current traffic load, the "Measured Sum" 

algorithm measures the current load on the link, and makes the admission control based on the 

measurement and the requesting bandwidth of the new flow. Let v ’ be the measured load on 

the link and a be the user-defined utilization target. The Measured Sum algorithm admits the 

new flow, a, with the requested bandwidth of r‘' if the following condition is satisfied:

V ’ + <a.u (2.2)

Here we define a utilization target value, a, to keep the link utilization below a certain 

level to prevent a large delay variation at high link utilization. The Measured Sum algorithm 

measures the average network load, v ’, periodically. The choice of the length of the measured 

period, S, has a significant impact on the performance of the algorithm. If S is too short, the 

value measured may not truly reflect the actual traffic load of the overall traffic. If S  is too 

large, the measurement process may not react fast enough to the change of traffic load. In 

either case, a wrong admission decision may result. Consequently, the accuracy of the load 

measurement depends on the proper choice o f S.

2.2.3 Simulation study on the performance of classA traffic

In this section, we study the performance of classA traffic using the two admission 

control algorithms discussed above. The simulation is based on the topology shown in Figure

2.2. The study focuses on the end-to-end delay performance since classA service is designed 

to provide services to delay-sensitive traffic. The main components in the end-to-end delay 

here are propagation delay and queueing delay. To calculate the propagation delay in the 

simulated RPR network, we note that the distance between two adjacent nodes is 14 

kilometers, and the light travels inside the optical fiber at the speed of 200,000 kilometers per 

second. Thus, the propagation delay between two adjacent nodes is 14km/200,000km/sec = 

0.07ms. In the simulation, we choose the packet size to be 1500 bytes including the RPR 

packet header. We use on-off bursty traffic source in the simulation.

Case 2.4: Delay performance with two classA traffic flows

In the simulation, two classA traffic flows fi-om nodel to node20 starting at O.OIs are
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generated. The peak/average rates required by these two flows are 200/100Mbps and 

90/45Mbps, respectively. We also generate 600Mbps classC traffic from both nodel and 

nodc3 to nodel9 to create congestion in the network. Here, the "Simple Sum" algorithm 

makes the admission control decision based on the average rates of the flows. Figure 2.6 

shows the end-to-end delay and the classA queue size at nodel. The end-to-end delay in this 

simulation is around 28.6ms. The maximum queue size in the trzinsmit buffer of nodel is 

about 4M bits. Thus, the maximum queueing delay at nodel is about 26.6ms, which 

contributes the large portion of the overall delay of 28.6ms. The result can be explained as 

follows: Since nodel is the source node, the classA transmit traffic is shaped by a classA 

shaper and experiences substantial delay because of that. Once the traffic gets inside the 

network, it uses the PTQ and can virtually consume all the bandwidth available (622Mbps), 

so the delay experienced by the classA traffic is small at the transit node.

, nod«„a of LofficAi Network 
p r i o r i ^  su f fe r  Queujlngr S i t t  (b its )

mmmm

2,000,000

. . . . . . . . . .fAfAfWwWv
riode_20 of Loçic-ii Network

0.8*0 . 6s0.4s

Figure2.6: Delay with two classA traffic flows (Simple Sum)

Case 2.5: Delav performance with multiple classA traffic flows

In this part, we study the delay performance with multiple traffic flows in the network. 

The total reservable bandwidth for classA traffic in the network is 210Mbps. Ten nodes 

generate classA traffic flows and share the reservable bandwidth uniformly, so each has
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21Mbps. They all start generating traffic flows at O.OIs. The traffic parameters are o f these 

traffic flows are given in the following table:

Peak Rate ON Period OFF Period Average Rate

Nodel-Node20 (classA) 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Node2-Nodel9 (classA) 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Node3-Nodel8 (classA) 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Node4-Nodel8 (classA) 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Node5-Nodel8 (classA) 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Node6-Nodel8 (classA) 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Node?-Node 18 (classA) 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Node8-Nodel8 (classA) 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Node9-Nodel8 (classA) 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Node 10-Node 18 (classA) 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Node 11-Nodel (classC) 600Mbps Exponential (10ms) Exponential (10ms) 300Mbps

Nodel 2-Node 1 (classC) 600Mbps Exponential (10ms) Exponential (10ms) 300Mbps

Table 2.1 : Traffic parameters for multiple traJfic flows in the network

Figure 2.7 shows the throughput and delay performances. The simulation results show 

that the maximum delay is around 115ms. It is much higher than the previous cases. The 

reason is that the ON state period is longer (O.OIs) and the ClassA shaper rate is much lower 

(21Mbps) than the previous cases. The longer ON state period causes a longer data queue 

buildup; and the lower shaper rate means it takes more time for the traffic to be drained out of 

the transmit queue. We can also take a look at the transit queue size in the transit nodes shown 

Figure 2.8. The transit buffer in the node is used to store the transit frames which are passing 

through the node via the ring. From the graph, we can see that the transit buffer size in the 

transit nodes is only about one packet. It means that once a classA frame enters the network, 

the queueing delay for the frame experienced at a transit node is small. Most of the delay is 

introduced by the queueing delay at the source node.
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Case 2.6: Delav performance with multiple traffic sources in one node

In this part, we study the end-to-end delay and the transmit buffer size with multiple 

traffic sources in one node.

In this test, 150Mbps of bandwidth is reserved for the classA traffic at node 1. Ten 

traffic sources are setup to generate 10 high priority traffic flows to nodc20 at O.OIs. The 

traffic parameters for the traffic flows by the 10 sources are as the following table:

Peak Rate ON Period OFF Period Average Rate

Source 1 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Source 2 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Source 3 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Source 4 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Source 5 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Source 6 20Mbps Exponential (10ms) Exponential (10ms) 10Mbps

Source 7 10Mbps Exponential (12ms) Exponential (12ms) 5Mbps

Source 8 10Mbps Exponential (12ms) Exponential (12ms) 5Mbps

Source 9 40Mbps Exponential (10ms) Exponential (10ms) 20Mbps

Source 10 10Mbps Exponential (12ms) Exponential (12ms) 5Mbps

Table 2.2: Traffic parameters for multiple traffie sourees in one node

We use the "Simple Sum" admission control method in this case. Because the sum of 

the average rates requested by the 10 traffic sources is 145Mbps, all these 10 flows are 

admitted into the network. We also define both nodel 1 and nodel2 to generate 600Mbps 

(average rate) classC traffic to cause the congestion in the network. Figure 2.9 shows the 

queue length of the transmit queue at the source node (nodel) and the end-to-end delay of the 

class A packets.
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Figure 2.9: Delay performance with multiple traffic sources in one node 

The result shows that the maximum delay is around 22ms, which is smaller than the 

28.6ms maximum delay found in Case 2.4 where there are only two traffic flows. The higher 

number o f traffic flows introduce a smaller delay because o f the multiplexing effect. Simply 

summing the average bandwidths of the flows cannot capture the multiplexing effect because 

the multiple flows’ aggregate statistical behavior differs from the sum of their individual 

statistical representations. In the next section, we will utilize the concept of Equivalent 

Bandwidth in the admission control algorithm to make the algorithm compute the traffic load 

more accurately.

2.2.4 Equivalent Bandwidth

High-speed network architectures are capable of supporting a wide range of 

connections with different bandwidth requirements and traffic characteristics. While this 

environment provides increased flexibility in supporting various services, its dynamic nature 

poses difficult traffic control problems when trying to achieve efficient use of network 

resources. One such problem is the issue of bandwidth management and allocation. When 

connections are statistically multiplexed, their aggregate statistical behavior differs from their
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individual statistical representation. One needs, therefore, to define other metrics to represent 

the effective bandwidth requirement of an individual connection as well as the total effective 

bandwidth requirement of connections multiplexed on each link. In this section, the concept 

of equivalent bandwidth is introduced. By using the equivalent bandwidth, the actual 

bandwidth requirement of the multiplexed connections can be determined more accurately.

2.2.4.1 Equivalent bandwidth derivation
The equivalent bandwidth C(e) of a set of connections multiplexed on a link is defined 

as the amount of bandwidth required to achieve a desired grade of service (GOS), such as 

guaranteed delay value or buffer overflow probability, given the offered aggregate bit rate 

generated by the connections[8]. Here, we measure the GOS by s, which is the probability of 

the buffer overflow.

To calculate the equivalent bandwidth of a single traffic flow, we use the traffic 

parameters of the traffic source. When a source asks for the permission of connection, it 

should provide the peak rate (p), the burst period (b), and the utilization (u) which is the 

fi-action of time when the source is active. We define the maximum of the burst period to be 

bmax- Reference [6] provides a simple approximation of C(e) by Cs(e):

« (:,(;;)== , (:L3)
(=I

where N is the number of multiplexed connections, and C,- is the equivalent bandwidth for the 

i-th connection and is given by the following equation:

_  o * , ( l - K i ) P i  - Z  + -Jt:y

Where a = ln(l/e) and % is the buffer size; pi, bi and Uj are the peak rate, burst period and 

utilization of i-th connection respectively.

In RPR node, we use the following equation to determine the maximum buffer size for a 

single traffic flow:

X=bmax(pi-C/) . (2.5)

By substituting equation (2.5) into equation (2.4), we get

+ - K p ,+ ^ ( b ^ ( l+ u , ) - K Ÿ  p,^
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Where K = ln(l/8)bi(l-U i).

Essentially the calculation of the equivalent bandwidth for multiple traffic flows using 

equation (2.3) is to sum the equivalent bandwidths for all the traffic flows together. Thus, 

equation (2.3) uses the same approach as the Simple Sum method does, except that the 

requested bandwidth of a flow is equivalent bandwidth of that flow, rather than the average 

bandwidth. By using equation (2.3), we can simplify the bandwidth reservation algorithms 

proposed in the next chapter. We have also investigated other methods to calculate the 

equivalent bandwidth provided in references [7]. The main advantage of equation (2.3) is its 

computational simplicity. However, by simply summing the equivalent bandwidths of 

individual flows we overestimate the equivalent bandwidths once the flows are multiplexed. 

Other methods may be more accurate when we calculate the equivalent bandwidth for a large 

number o f connections multiplexed over relatively long burst periods. But those methods are 

more complicated to implement, and their accuracy is not significantly better compared with 

that from (2.3) when the number of connections in the network is not too large.

In RPR network, a node makes the admission control decision based on the equivalent 

bandwidth calculation for a classA traffic flow using (2.3) and (2.6). Let C(e) be the sum of 

the equivalent bandwidths for all the existing flows, Q  be the equivalent bandwidth for the 

coming flow and u be the outgoing link capacity. Then the equivalent bandwidth admission 

control admits the new flow as long as it satisfies the following condition:

C(e) + C i<  u .  (2-7)

Note that equation (2.7) has the same form as equation (2.1) of the Simple Sum algorithm. In 

the next section, we will show the simulation results using the Equivalent Bandwidth 

admission control algorithm.

2.2.4.2 Simulation result using the Equivalent Bandwidth algorithm

Case 2.7: Delav parameters measured using the Equivalent Bandwidth algorithm

In this case, we use the same simulation setup as in case 2.6. We reserve 150Mbps 

bandwidth for the classA traffic at node 1. We also have 10 traffic sources to generate 10 

classA flows using the same traffic parameters used in case 2.6. The traffic parameters, 

together with the corresponding equivalent bandwidth, are given in Table 2.3:
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Start Time Peak Rate ON Period OFF Period Equivalent

Bandwidth

Source 1 O.OIs 40Mbps Exponential (10ms) Exponential (10ms) 25.98Mbps

Source 2 0.02s 40Mbps Exponential (10ms) Exponential (10ms) 25.98Mbps

Source 3 0.03s 40Mbps Exponential (10ms) Exponential (10ms) 25.98Mbps

Source 4 0.04s 40Mbps Exponential (10ms) Exponential (10ms) 25.98Mbps

Souree 5 0.05s 40Mbps Exponential (10ms) Exponential (10ms) 25.98Mbps

Source 6 0.06s 20Mbps Exponential (10ms) Exponential (10ms) 12.99Mbps

Source 7 0.07s 10Mbps Exponential (12ms) Exponential (12ms) 6.49Mbps

Source 8 0.08s 10Mbps Exponential (12ms) Exponential (12ms) 6.49Mbps

Source 9 0.09s 40Mbps Exponential (3ms) Exponential (3ms) 25.98Mbps

Source 10 0.10s 10Mbps Exponential (12ms) Exponential (12ms) 6.49Mbps

Table 2.3 Traffic parameters for multiple traffic flows in one node 

equivalent bandwidth algorithm

with

With the use of the Equivalent Bandwidth algorithm, the source node can only accept 

7 traffic flows firom source 1 to source 7, because the sum of equivalent bandwidth for the 7 

flows is 149.38Mbps and the source node carmot accept the traffic flow from source 8, source 

9 and source 10. Figure 2.10 shows the queue size of the source node and the end-to-end 

delay.

22



.... a o d e _ l o f L o g ic a l  n e tw o rk
K o  P r i o r i t y  T ra n s m it  B u f f e r  Q ueuing S iz e  ( B i t s )

ullJ
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Figure 2.10 Delay performance with Equivalent Bandwidth algorithm 

From the figure, we can see that the maximum end-to-end delay in this case is 7.8ms, 

which is much smaller than the 22ms maximum end-to-end delay introduced by the Simple 

Sum algorithm in case 2.6. On the other hand, the Equivalent Bandwidth algorithm admits a 

smaller number of flows. Thus, there is a trade-off between the number of admitted flows and 

the delay performance. Since classA service is more concerned with the delay/jitter 

performance. Equivalent bandwidth is a more suitable choice for this type of service. In the 

rest o f the thesis, the Equivalent Bandwidth algorithm will be used as the underlying 

admission control process.

2.3 Conclusion

In RPR network, it is important to provide high QoS to classA traffic. Here we study 

different bandwidth admission control methods to control the classA traffic. From our 

simulation results, we observed that with the use of bandwidth admission control, the delay 

performance is usually acceptable. We also observed that most o f the delay is introduced by
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the classA shaper at the source node. After the data traffic enters the network, the delay in the 

network is almost the same as the propagation delay. Out of the three admission control 

algorithms studied, we conclude that the Equivalent Bandwidth algorithm is the most suitable 

to use for classA admission control process.
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Chapter 3
Dynamic Bandwidth Allocation Using Common Bandwidth Pool

3.1 Introduction

In the RPR standard, the reserved bandwidth for classA traffic at each node is 

statically assigned. Once the reserved bandwidth is assigned to a node, the node can only use 

that much bandwidth to transmit classA traffic even though there is more bandwidth available. 

For instance, consider the case where a network has 11 nodes, and the reserved bandwidth for 

classA traffic is 100Mbps in the whole network. If we equally assign reserved bandwidth to 

each node, each node receives 10Mbps bandwidth because only 10 nodes can use any given 

link at the same time. Based on this assignment, each node can only send maximum 10Mbps 

classA traffic even if  all the other nodes are not using their shares of bandwidth.

In this chapter, we will investigate a more efficient method in which bandwidth is 

dynamically allocated. In this method, two types of bandwidth are defined: guaranteed 

bandwidth and common bandwidth. The guaranteed bandwidth for classA traffic is pre

assigned to each node. Besides an assignment of guaranteed bandwidth to each node, a 

common-bandwidth pool is created where all the nodes share the bandwidth in the pool. The 

bandwidth firom the common-bandwidth pool is called common bandwidth. If a node requires 

more bandwidth than its guaranteed bandwidth, it can send request to reserve the extra 

bandwidth firom the common-bandwidth pool along the path of the traffic flow. All the nodes 

along the path must then perform admission control to decide if  the request for common 

bandwidth should be granted. The admission control adopted in this chapter is based on the 

equivalent bandwidth algorithms covered in Chapter 2. If there is enough available bandwidth 

firom the common-bandwidth pool to satisfy the request, the request will be granted. The path 

is successfully setup if all the nodes along the path grant the request. If the available 

bandwidth from the common-bandwidth pool in any transit node is not enough to grant the 

request, a negative acknowledgment will be sent back to the source node and the reservation 

setup fails. After the bandwidth reservation for a flow is successfully set up, the source node

can start sending data fi’ames from that flow.
In what follows, we will propose and study three bandwidth reservation algorithms for
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classA traffic based on the equivalent bandwidth calculation. These algorithms are: Basic 

Reservation Algorithm, Flow-Based Reservation Algorithm and Hop-by-Hop Reservation 

Algorithm.

3.2 Definitions
In this section, we define some important terms that are associated with the reservation 

algorithms to be discussed in this chapter.

1) Guaranteed Bandwidth (B^jt); The Guaranteed bandwidth is the bandwidth statically 

assigned to node k in the RPR network used for classA traffic.

2) Available Guaranteed Bandwidth (B^c_t): The available guaranteed bandwidth 

indicates how much bandwidth from the guaranteed bandwidth pool is available for a 

new connection at node k. The initial value for Bag j is the same as Bcjt- Once the 

node admits a new flow, i, it adjusts the Bac j value by using:

Bagj = max (0, Bagj - C,) (3.1)

Where Cj is the equivalent bandwidth of flow i. When B^c  ̂becomes zero, it means 

no more guaranteed bandwidth left for new connections.

3) The Requested Bandwidth (AC,.): AC; is the bandwidth required from the common 

bandwidth pool to support the new traffic flow, i, and is carried in the bandwidth 

request packet to set up the reservation. When the equivalent bandwidth from a new 

traffic flow is greater than the value Bag j, the source node k calculates the AC; by 

using:

AC,- C, - B^g_â. (3.2)

4) Common-bandwidth pool size (Bc^t); The common-bandwidth pool size specifies the 

amount of common bandwidth at node k to be shared by all the nodes in the RPR 

network.

5) Available Common Bandwidth (Bacj)- The available common bandwidth indicates 

how much bandwidth from the common-bandwidth pool at node k is available for a 

new connection. The initial value for B^c_t is the same as Be k. Once node k admits a 

new connection, it adjusts the B^c_k value by using:

B^c_* = B^c_a - AC,. (3.3)
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Note that if - AC,- is less than zero, the reservation request will be rejected.

6) Released Bandwidth (C/fc): Released bandwidth is calculated at the source node. It 

indicates how much bandwidth from the common bandwidth pool should be released 

downstream when the connection is terminated.

7) Total Bandwidth: the "Total Bandwidth" for a node is the sum of the guaranteed 

bandwidth and the common-bandwidth pool size, B cjt+  B^jt- Total bandwidth is the 

maximum bandwidth available to node k.

3.3 State Tables
Each node uses two state tables, the transmit state table and transit state table, to 

record the reservation states of all traffic flows.

3.3.1 Transmit State Table

The transmit state table is used by the source node to record the traffic parameters for the 

locally sourced flows. Every locally sourced flow has one entry in the transmit state table. 

Each entry contains the following fields: source flow ID, destination address, flow bandwidth, 

request bandwidth and the flag. Further definitions of these fields are given below.

1) Source flow ID: The source flow ID of a traffic flow uniquely identifies that traffic 

flow from other traffic flows that have the same source node.

2) Destination address: It records the destination address of the traffic flow.

3) Flow Bandwidth: It records the equivalent bandwidth of the traffic flow.

4) Request Bandwidth: It records the requested common bandwidth of the flow.

5) Flag: It indicates whether this flow has reserved bandwidth from the common- 

bandwidth pool. Flag=l indicates that a reservation is made; Flag=0 indicates the 

opposite of that.

3.3.2 Transit State Table:
The transit state table is used to keep track of the transit flows. Every transit flow has 

one entry in the transit state table. Each entry only contains one field which is the flow ID. 

The flow ID consists of the MAC address of the source node and the source flow ID. The
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flow ID uniquely identifies a flow at the transit node. Note that the transit state table does not 

record the request bandwidth of a flow. The common bandwidth reservation and release are 

only controlled by the source node. This characteristic allows a RPR node to handle tens of 

thousands of flows without requiring significant storage and processing.

3.4 Packet Formats
The reservation algorithm defines 5 control packet types: bandwidth_request,

Release Reservation, acknowledgment (ACK_BR) for bandwidth request packet, 

acknowledgment (ACK_RR) for Release Reservation packet and negative acknowledgment 

(NAK). The packet formats for the five packet types are the same. These packets are 

encapsulated by RPR control frame and are processed by each hop along the path from the 

source to the destination. Figure 3.1 shows the basic packet format:

src addr

source flow Id 
n G bits)

bandwidth type
length (8 bits)

bandwidth field 1

bandwidth field 2
(64 bits)

bandwidth field 3 : .... : A
(64 bits)

Figure 3.1: Packet Format for dynamic bandwidth allocation method 

The "src addr" field contains the station addresses of the node that generates the 

control packet. The “dest addr” field contains the station address of the destination of the 

control packet. The "bandwidth" field contains the hop address and requested bandwidth for 

that hop. The first six bytes of the “bandwidth” field contain the “hop address” in the network 

which is the MAC address of the transit node, while the last two bytes of the “bandwidth” 

field is the actual “requested bandwidth”. The number of bandwidth fields in the Hop-by-hop 

Reservation Algorithm (discussed in section 3.8) is the number of hops of the flow minus one. 

The “bandwidth length” field indicates the number of the bandwidth fields in the packet. In 

the Basie Reservation Algorithm and the Flow-based Reservation Algorithm, the “hop 

address” is not used and is set to be Oxffffffff. There is only one bandwidth field in the 

packets for these two algorithms. The "source flow ID" field contains the souree flow ID of 

the traffic flow. When the transit node receives the bandwidth request/release packet, it
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combines the MAC address of the source node and the source flow ID carrying in the packet 

and gets the flow ID of the incoming traffic flow. The flow ID is unique in the whole network. 

The "type" field is used to identify different packet types. The description of each packet type 

is given below.

1) Bandwidth Request Packet:Bandwidth Request packet (type = 0) carries the 

requested bandwidth from the source node to the destination node to set up the 

reservation for the new traffic flow

2) Release Reservation Packet: When a traffic flow has terminated, the source node 

generates the Release Reservation packet (type = 1) downstream to the destination 

node to release the reservation of the flow.

3) Acknowledgment Packets: The acknowledgment packet (ACK) is generated by the 

destination node of the flow. It is used to acknowledge the reception of the bandwidth 

request packet or bandwidth release packet. We define two types of acknowledgement 

packet: the ACK for Bandwidth Request packet (type = 2) and the other is the ACK 

for Release_Reservation packet (type = 3). In the acknowledgment packet, the 

"bandwidth" field is the amount of common bandwidth to be reserved or released for 

the flow.

4) Negative Acknowledgment Packet: The negative acknowledgment packet (NAK) is 

generated by any of the transit nodes along the path from the source node to the 

destination node who does not has the enough bandwidth available in its common- 

bandwidth pool to support the new traffic flow. There is no NAK packet for the 

bandwidth release packet.

3.5 Basic Reservation Algorithm

In this section the basic reservation algorithm is introduced. In the basic reservation 

algorithm, when the MAC layer of the source node receives a connection request o f a traffic 

flow firom the local MAC client, it decides whether it needs to reserve bandwidth fi"om the 

common-bandwidth pool for the connection. If it does, it will generate the bandwidth request 

packet downstream to setup the reservation. When the traffic flow is terminated, the MAC 

layer decides whether it needs to release the common bandwidth. If it does, it will generate
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the bandwidth release packet downstream to release the reservation. In the rest of the section, 

the algorithm will be described in detail.

3.5.1 Reservation procedure at the source node:

The reservation procedures at the source node, transit node and destination node are 

different. They will be described separately. First, we will describe the admission control 

procedure at the source node. We assume that the source node currently supports i-1 classA 

coimections and a new classA connection request from traffic flow i just arrives. The 

reservation procedure at the source node can be described by the following flowchart. The 

next few paragraphs give detailed explanations of the flowchart.
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2. Create an entry for this traffic flow in the transmit state table.

Flowchart 3.1: Basic Reservation Algorithm at the source node
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When the MAC layer of node k receives a new traffic flow connection request from its 

upper layer, the MAC layer goes through the following steps according to the above 

flowchart:

1) When a new connection request for traffic flow i arrives, the MAC layer calculates the 

equivalent bandwidth (C, ) for the new flow using equation (2.6).

2) If C, is less than 'Qagj, the request is granted and no common bandwidth reservation is 

required. The MAC layer creates an entry in the transmit state table for the new traffic 

flow and save the C, and AC, values (AC, = 0 in this case) in the new entry. The 

information is used to modify Bagj and Bacj values when this traffic flow is 

terminated. The MAC layer also updates Bag j using equation (3.1). If C, is greater 

than Bag j, go to step (3).

3) Calculate the extra bandwidth needed to support the new traffic flow by using 

equation (3.2). The MAC layer compares the AC, value with the Bac j value. If the AC, 

value is less than Bacj, the MAC layer generates the Bandwidth Request packet 

downstream to the destination node. The requested bandwidth carried in the 

Bandwidth Request packet is the AC, value. MAC layer also creates an entry in the 

transmit state table for the new traffic flow and saves the C, and AC, values in the 

“flow bandwidth” and “request bandwidth” fields of the new entry. After generating 

the Bandwidth Request packet, MAC layer updates the Bagj and Bac j value by 

using the equations (3.1) and (3.3). This means that an amount of bandwidth 

equivalent to the requested bandwidth is removed from the common bandwidth pool 

and is unavailable for new reservation requests. The source node also starts a time-out 

timer and waits for the reply packet from the downstream node.

If the AC, value is greater than the Bacj value, MAC layer rejects the connection 

request.

4) When the source node k receives the reply packet from its downstream node, it checks 

the packet type (ACK or NAK). If the packet is an ACK packet, the connection is 

established. If the packet is a NAK packet, the source node rejects this traffic flow and 

adjusts the B^o_/tand Bacj values according to the following equations:

Bacj ^  Bacj + AC, (3.4)

+ (C, -  AC,) (3.5)
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5) If the retransmission timer started in step (3) times out and no reply packet received, 

the MAC layer retransmits the Bandwidth Request packet. The MAC layer expects to 

receive an ACK or NAK of the request eventually. If it does not receive any reply 

after many tries, it generates a system error to alert the administration for the possible 

network problems.

3.5.2 Admission control procedure for the transit nodes:

When a transit node receives the bandwidth request packet, it goes through the 

following steps to make the admission control decision:
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Flowchart 3.2: Admission control procedure at the transit node

34



When the transit node k receives the Bandwidth_Request packet, first it tries to locate 

the flow ID in its transit state table. If the transit node finds an entry for the flow ID in the 

transit state table, it means the node has already set up the reservation for this flow and the 

node just simply forward this request packet downstream. This situation happens when the 

Bandwidth Request packet is retransmitted.

If the transit node k does not find an entry for the flow ID in the transit state table, it 

compares the requested bandwidth (AC,) with the available bandwidth left in its common 

bandwidth pool. If the requested bandwidth is less than the available bandwidth in the 

common bandwidth pool, it means this node has enough available bandwidth left for the new 

connection. Then the node admits the new traffic flow and forwards the B and widthRequest 

packet downstream. At the same time the node saves the flow ID carried in the request packet 

into the transit state table and adjusts the size of the common bandwidth pool using equation 

(3.3).

If the requested bandwidth is greater than the available bandwidth in the common 

bandwidth pool, the node rejects the new traffic flow and generates NAK packet upstream to 

the source node.

When the transit node receives the reply packet, it checks the reply packet type. If the 

reply packet is an ACK packet, the transit node forwards the reply packet upstream to the 

source node. If the reply packet is a NAK packet, the node also forwards the reply packet 

upstream to the source node. In addition, it deletes the entry of the flow from its transit state 

table and releases the common bandwidth reservation by the amount indicated in the NAK 

packet. The reservation release can be performed simply by adjusting the available common 

bandwidth using equation (3.6):

B,c_. = + AC, (3.6)

3.5.3 Admission control procedure at the destination node:

When the destination node receives the bandwidth request packet, it generates an 

acknowledgment (ACK) packet back to the source node. The source and destination addresses, 

the request bandwidth and the flow ID field are directly copied fi-om the corresponding fields 

in the bandwidth request packet.
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3.5,4 Reservation release for the traffic fiow:

Whenever a flow is terminated, the source node determines if  the terminated flow has 

reserved common bandwidth based on the flag value stored in the transmit state table. If the 

flag value is 0, no common bandwidth is reserved for the flow and the source node does not 

generate the Release Reservation packet. Instead it just modifies the value using equation 

(3.7):
+ C, (3.7)

If the flag value is 1, the terminated flow has reserved common bandwidth and the 

source node will generate a Releasc Reservation packet towards the destination node to 

release the bandwidth reservation. The Release_Reservation packet specifies the amount of 

common bandwidth to be released. Let C^c denoted as the amount of common bandwidth to 

be released. In the Basic Reservation Algorithm, we have

Cy;c = AQ (3.8)

The values of B^G_t and Bacjc are then adjusted by using equations (3.9) and (3.10):

B^c_* = B^c_/t + Crc (3.9)

B^gj = BxG_t + C; - Crc (3.10)

When the transit node receives the Release Reservation packet, it searches for an 

entry in its transit state table that has the same flow ID. If the entry is found in the transit state 

table, the transit node knows it has reserved certain bandwidth for this traffic flow and now it 

need to release the bandwidth as indicated by Crc- The transit node goes through the 

following steps to release the reservation:

1) It erases the entry from the transit state table;

2) It adjusts the B^c_* value by using the equation (3.9);

3) It forwards the Release Reservation packet downstream to the destination node.

When the destination node receives the Release Reservation packet, it sends the ACK

for bandwidth release packet to the source node carrying the flow ID of the flow. When the 

transit node receives the ACK packet for the Release Reservation packet, it simply forwards 

the ACK packet upstream to the source node. When the source node receives the reply packet 

for the ReleaseReservation packet, it removes the entry of the corresponding traffic flow in 

it’s transmit state table.
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3.6 Retransmission mechanism

Because the MAC layer does not provide reliable b-ame transfer, a retransmission 

mechanism is required in the algorithm to deal with the possible control packet loss. The 

retransmission mechamsm will be explained from the angles of the source node, transit node 

and destination node.

3.6.1 Retransmission mechanism at the source node:

Whenever the MAC layer of the source node sends a bandwidth request or release 

packet, it starts a retransmission timer. It also saves the source flow ID and the requested 

bandwidth for this traffic flow in the transmit state table. When the MAC layer receives either 

the acknowledgment (ACK) or the negative acknowledgment (NAK), it clears the 

retransmission timer. If the MAC layer has not received any acknowledgment (ACK or NAK) 

when the retransmission timer expires, it retransmits the packet.

3.6.2 Retransmission mechanism at the transit node:

The transit node does not perform any retransmission. It also does not try to 

distinguish if  a received control packet is an original or a retransmission. Each control packet 

carries a flow ID. A transit node processes a control packet differently based on whether it can 

find the corresponding flow ID at its transit state table. The flow IDs are very important for 

the packet retransmission. Whenever there is a flow ID in the transit state table, it means the 

transit node has already accepted the traffic flow and reserved certain bandwidth for this 

traffic flow. Without the flow ID, the same bandwidth may be reserved or released multiple 

times due to retransmission.

3.6.2.1 Reception of a Bandwidth Request packet

When the transit node receives a Bandwidth Request packet, it searches for the Flow 

ID carried in the Bandwidth Request packet in the transit state table. If the flow ID is not 

found in the transit state table, it means the node has not reserved any bandwidth for this 

traffic flow. In this case, the transit node will perform the normal reservation procedure as 

described in the previous section.

If the flow id in the received Bandwidth Request packet is found in the transit state
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table, the transit node knows it already reserved the bandwidth for this traffic flow, so it will 

not make another reservation. It just forwards the Bandwidth Request packet downstream to 

destination node without any changes locally.

3.6.2.2 Reception of a Release Reservation packet

If the node finds the flow ID at the transit state table that corresponds to the flow ID 

carried by the Release_Reservation packet, it will perform the normal reservation release 

procedure.

If the flow ID is not found in the transit state table, the transit node knows there is no 

reservation for this traffic flow at this node and there is nothing to release. So the transit node 

just simply forwards the Release Reservation packet downstream.

3.6.2.3 Reception of a reply packet

Since all the ACK and NAK packets are end-to-end significant. The transit node 

should pass these types of packets upstream towards the source. In addition, if NAK for 

bandwidth reservation request is received, the transit node will release the requested 

bandwidth only if it found the corresponding flow ID in its transit table.

3.6.3 Retransmission mechanism at the destination node

The destination node does not perform retransmission. It just replies to requests, either 

requests for reservation or reservation release, by sending back an ACK. The 

source/destination addresses, source flow ID fields and the bandwidth field in the ACK are 

directly copied from those in the request packet. The destination node does not generate NAK 

packets for it does not reserve bandwidth destined to itself.

3.6.4 Retransmission Examples:

When the Bandwidth Request packet, Release Reservation packet or the associated 

reply packets are lost, the source node will perform retransmission. It is very important to 

make sure that the same bandwidth is not reserved or released multiple times. Our packet 

retransmission algorithm handles this problem well. The handlings of the lost packets are 

illustrated in several examples given below.
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All the examples are based on a RPR network with 6 nodes. Node 1 tries to set up a 

reservation from node 1 to node 6. The flow id for this traffic flow is 10, and the requested 

bandwidth is 10Mbps. We use the following notation to identify the type of control packet 

and the content in the packet:

(Source flow ID, Request Bandwidth, Type)

Based on the above notation, the Bandwidth Request packet, Release Reservation packet, 

ACK packet and NAK packet can be described as (10, 1OM, R), (10, lOM, RR),

(10, lOM, A) and (10, lOM, N), repectively.

de ^  xiode_2 node_3
------- -----------

no de_4 aode_S

Figure 3.2 RPR Network Setup 

Example 1: A Bandwidth Request packet is lost on the link between node 3 and node 6.

In this case, when node 3 first receives the Bandwidth Request packet (10, lOM, R), it 

looks for the flow ID “MAC„ode/ + 10” in the transit state table. Suppose there is no such flow 

ID found in the table, node 3 will create an entry for the flow ID “MAC„o^e/ +10” into the 

local table, adjusts the 'Bacj value with "B̂ .̂ j = B^^ j - lOM", and forward the 

Bandwidth Request packet downstream to node 6. If the request packet is lost on the way 

from node 3 to node 6, the retransmission timer for this request at node 1 will expire. Node 1 

generates another Bandwidth Request packet (10, lOM, R) to node 6. When node 3 receives 

this retransmission packet, it finds the flow ID “MAC„o^e/ +10” in its transit state table. It then 

deduces that it has already reserved bandwidth for this traffic flow and it just forwards the 

packet downstream. The same bandwidth is not doubly reserved in this case. When node 6 

receives the retransmission packet, it generates the ACK packet back to node 1.

Example 2: The ACK packet is lost on the link between node 3 and node 1.

In this case, node 3 receives the ACK packet (10, lOM, A) from node 6. Node 3 just 

forwards the packet upstream to node 1 without any changes locally. If the ACK packet gets
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lost on the way from node 3 to node 1, node 1 retransmits the Bandwidth Request packet (10, 

lOM, R). When node 3 receives the retransmission packet, it finds the flow ID “MAC„orfe/

+10” in its transit state table. Node 3 just forwards the retransmission packet downstream to 

node 6. When node 6 receives the retransmission packet, it generates another ACK packet (10, 

1 OM, A) back to node 1. The loss of an ACK causes the retransmission of 

Bandwidth Request packets. Again, our algorithm prevents repeated reservation of the same 

flow.

Example 3: The NAK packet is lost on the link between node 3 and node 1.

In this case, node 3 receives the NAK packet (10, lOM, N) from downstream node and 

it finds the flow ID “MAC«orfe/ +10” in its transit state table. Node 3 knows the set up for this 

traffic flow has been failed. Thus, it removes the entry with flow ID “MAC„orfe;+10” from its 

transmit state table, adjusts the B a c j  value with ^   ̂+ 1 OM", and forwards the reply

packet upstream to the source node.

The NAK packet gets lost on the way from node 3 to node 1. Node 1 generates 

another Bandwidth Request packet (10, lOM, R) to node 6. When node 3 receives this 

retransmission packet, it searches for the flow ID ''MAC„oiiei +10” in its local table and can 

not find the corresponding flow ID in the table. Thus, node 3 reserves 10Mbps bandwidth for 

this traffic flow, and forward the request packet downstream to node 6. In this case, node 3 

still only reserves the 10Mbps bandwidth for the traffic flow once. Eventually, the NAK 

packet will be retransmitted and Node 3 releases the bandwidth reservation again.

Example 4: The Release Reservation packet lost in the links between node 3 and node 6.

Node 1 generates the Release Reservation packet (10, lOM, RR) to node 6 to release 

the reservation. When node 3 receives the Release Reservation packet (10, lOM, RR), it finds 

the flow ID “MAC,jodei +10” in its transit state table. Node 3, thus, deletes the entry with flow 

id “MACnodei +10” in the transit state table, adjusts the Bacj value with "B^,.  ̂= B^,.  ̂+ lOM", 

and forwards the Release Reservation packet downstream to node 6. This packet gets lost on 

the way from node 3 to node 6. After the retransmission timer for release reservation times 

out at node 1, node 1 generates another Release Reservation packet to node 6 carrying the 

same information (10, lOM, RR). When node 3 receives this retransmission packet, it 

searches for the flow ID “MAC„odei +10” in its transit state table. Because node 3 has deleted 

the entry with flow ID “MAC„odei +10” in the last step, it cannot find it now. Node 3 just
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forwards the Release Reservation packet downstream to node 6 without any changes locally. 

The 10Mbps bandwidth is not released twice in this case.

From the above examples, one can see that our algorithm works well to deal with the 
loss of control packets.

3.6.5 Guaranteed Bandwidth Hole problem

In the reservation procedure, a node will use up its guaranteed bandwidth before 

making reservation of common bandwidth. It is because the guaranteed bandwidth is more 

restrictive for it cannot be reserved by the other nodes even if  it is not used by the node that 

owns it. Extending this concept, a desirable reservation condition is that a node should not 

have any common bandwidth reservation at any time if its available guaranteed bandwidth is 

non-zero. Condition 1 below describes the desirable operating condition:

Blcj: > 0 only if B^c_/t=0, (Condition 1)

Where Blc_a is the amount of common bandwidth reserved by the locally sourced flows at 

node k.

Unfortunately, the Basic Reservation Algorithm sometimes introduces the situation 

that does not satisfy condition 1. More specifically, situation may arise such that Bz,cjt> 0 

even if B^g'_a >0. This undesirable situation is termed as guaranteed bandwidth hole problem. 

A simple example is given here to illustrate how the problem arises.

Consider a node k with B e j  of 10 Mbps and Bcjt of 50 Mbps. Suppose the node 

makes two reservations for the locally sourced flows: flow I and flow 2. Flow 1 requests a 

reservation o f 8 Mbps first, and later Flow 2 requests a reservation of 7 Mbps. After the two 

reservations, B j g j  and B^c_*have the values of 0 and 5 Mbps, respectively. Note that Flow 1 

did not make any common bandwidth reservation. Now suppose Flow I is terminated and 

since it did not make any reservation from the common-bandwidth pool, the node just releases 

the bandwidth back to the guaranteed bandwidth pool. The new B lc j  and Bagj. values are 5 

Mbps and 8 Mbps, respectively. In other words, the node has some guaranteed bandwidth 

unused but at the same time occupied bandwidth from the common-bandwidth pool. This 

obviously violates condition 1. In the extreme case, the node may uses up all the available 

common bandwidth but leaves its guaranteed bandwidth untouched. This is an undesirable 

situation for other nodes cannot make reservation of the unused guaranteed bandwidth. In the
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next two sections, two modified reservation algorithms will be presented to deal with the 

guaranteed bandwidth hole problem.

3.6.6 General Observations for the basic reservation algorithm

Even the basic reservation algorithm may introduce the guaranteed bandwidth hole 

problem, it is still an attractive algorithm due to its simplicity. Furthermore, the guaranteed 

bandwidth hole problem does not affect the effectiveness of the reservation for the types of 

flows that come with large number and require small bandwidth reservation individually. A 

good example of this type of flows is VoIP connections. This type of flows creates small 

guaranteed bandwidth hole that only exists in short duration for a hole will be quickly filled 

up by a new flow request.

3.7 Flow-Based Reservation Algorithm
The flow-based reservation algorithm is used to reduce the effect caused by the 

guaranteed bandwidth hole problem. The central idea of the algorithm is to adjust the existing 

flows to “fill up” the guaranteed bandwidth hole left by a newly terminated flow. Following is 

the flowchart that describes the algorithm performed by the source node.
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Flowchart 3.3 Flow-based Reservation Algorithm at the source node 

The algorithm consists of four different bandwidth release procedures. Procedure 1 

deals with the case where Blcj. = 0. In this case, the source node simply releases the 

guaranteed bandwidth reserved by the terminated flow (flow /)• Procedure 3 is another simple 

case where AC, = Blc k- This case implies that all the current common bandwidth reservation 

was reserved by flow i. Thus, the source node simply releases the guaranteed and common 

bandwidths using the release procedure from the basic reservation scheme.

Procedures 2 and 4 are more complicated. They involve the bandwidth reservation 

adjustment of the existing flows. To adjust the bandwidth reservation of the existing flows, 

the source node first calculates how much common bandwidth, Crc, it can release. Crc can be
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determined using the following equation:

Crc = min { B /,o  C ,} (3.11)

Once C r c  is determined, the source node searches for the flow candidates (the concept of 

flow candidate will be discussed later) that it can use to adjust the bandwidth reservation. 

Depending on the availability of the flow candidates and the characteristics of these flows, the 

amount of common bandwidth released could be less than or equal to C r c .  In the rest of this 

section, the mechanism for bandwidth adjustment is first described. Then the criteria of 

choosing flow candidates for Procedures 2 and 4 are given.

3.7.1 Reservation Adjustment

Assume that the source node has already identified flow j  as the flow candidate for 

reservation adjustment, it will then check if C r c  is less than or greater than or equal to AC,. If 

Crc is greater than or equal to ACy, the source node simply releases the common bandwidth 

of flow j  downstream and updates the corresponding entry of flow j  in the transmit state table. 

Specifically, A Q  and flag are both set up zero. If Crc is less than ACy, the source node will 

first make another reservation for flow j  with different flow ID  and the common bandwidth 

reservation of ACy’, where

AC/-ACy-C;;c. (3.12)

If the new reservation is successful, the source node will tear down the old reservation 

for flow j. The amount of common bandwidth released is the difference between ACy’ and ACy, 

which is C r c .  Also note that if the amount of bandwidth released is less than C/jc,the 

adjustment procedure can be repeated for other flow candidates. The adjustment process will 

stop if the total amount of released bandwidth is equal to Crc or if no more flow candidate is 

available.

3.7.2 Identification of Flow Candidate

The identification of flow candidate for reservation adjustment depends on the release 

procedure used.

First let consider Procedure 2. Procedure 2 is performed under the situation where the 

terminated flow did not make any common bandwidth reservation. In this case, the source 

node can choose any other flow sourced by the node to adjust the reservation. To maximize
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the reservation efficiency, the source node should choose the flow with the largest span (i.e., 

largest number of hops). It is because by releasing common bandwidth reservation of the flow 

with the largest span, more nodes will release the common bandwidth, thus, more bandwidth 

is available for other traffic flows.

Bandwidth release in Procedure 4 is performed under the condition that the common 

bandwidth reservation by the terminated flow is greater than zero but less than B^cj- hi this 

case, the selection of flow candidate is more restrictive. In this case, the candidate must have 

the same destination. If it is not, the mechanism may release common bandwidth over more 

number o f hops than it should in the case where the candidate has a longer span than the 

terminated flow, and lesser number of hops in the case where the candidate has a shorter span.

There are other useful guidelines to select the flow candidates. One obvious guideline 

is to select the candidate with the reserved common bandwidth equal to Crc- This selection 

will avoid the overhead of establishing a new reservation. Another guideline is to choose the 

flow with the largest bandwidth. This choice has the potential to reduce the number o f flows 

that need to be adjusted.

3.7.3 Examples

To demonstrate the Flow-Based Reservation Algorithm, we use the RPR network 

with six nodes presented in Figure 3.2.

In this network, we assign 10Mbps guaranteed bandwidth and define 50Mbps common-pool 

bandwidth at each node. We have five traffic flows in this network. The traffic flow 

parameters are described in table 3.1. In the following sections, we will study several cases 

about the reservation release.
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Start time Source Destination Equivalent

Bandwidth

(Mbps)

B a g j , B a c j  and B l c j  values 

after the flow is admitted

B a g j

(Mbps)

B a c j

(Mbps)

B l c j

(Mbps)

Flow 1 0.1s Node2 Node 4 5 5 50 0

Flow 2 0.2s Node2 Node 4 6 0 49 1

Flow 3 0.3s Node 2 Node 5 10 0 39 11

Flow 4 0.4s Node 1 Node 6 10 0 29 11

Flow 5 0.5s Node 2 Node 4 8 0 21 19

Table 3.1 Traffic flow parameters used for Flow-base Reservation Algorithm examples

3.7.3.1 Reservation release example for Procedure 2:

First let us consider the example for Procedure 2 where the terminated flow did not 

make any common bandwidth reservation.

At 0.6s, flow 1 is terminated at node 2. Node 2 will go through the following steps to 

adjust the reservation. First, node 2 calculates the Crc value using equation (3.11):

C r c  = min {5, 19} = 5 Mbps 

Next, node 2 will identify the flow candidate. As flow 1 did not make any common 

bandwidth reservation, node 2 will choose an existing flow sourced by node 2 with the largest 

span to adjust the bandwidth reservation. In this example, node 2 will choose flow 3 to adjust 

the reservation. In the adjustment procedure, node 2 makes another reservation for flow 3 

using a different flow ID with the common bandwidth reservation of 5 Mbps (10 Mbps — 5 

Mbps). After the new reservation has been set up, node 2 tears down the old reservation for 

flow 3. After the old reservation has been released, the B acj value becomes 26 Mbps and 

B lc j  value becomes 14 Mbps.

Compare to the Bacj and Brcj values before flow 1 was terminated, we can see the 

equivalent bandwidth of the terminated flow has been successfully released without the 

guaranteed bandwidth hole problem.

3.V.3.2 Reservation release example for Procedure 4;

Next, we consider the example for the Procedure 4 where the common bandwidth
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reservation by the terminated flow is greater than zero but less than B^c *•

At 0.6s, flow 2 is terminated at node 2. Node 2 will go through the adjustment 

procedure to release the common bandwidth reservation. First, node 2 calculates the Crc 
value using equation (3.11):

Crc = min (6, 19} = 6 Mbps 

Next, node 2 will identify the flow candidate. Based on the selection guidelines, node 2 will 

select the flow candidate that has the same source and destination as the terminated flow and 

has the largest common bandwidth reservation (node 2 cannot find a candidate with the 

common bandwidth reservation same as Crc) In this example, flow 2 will select flow 5 to 

adjust the bandwidth reservation. To do that, node 2 makes a new reservation for flow 5 with 

a common bandwidth reservation of 2 Mbps. After the new reservation has been set up, node 

2 tears down the old reservation for flow 5. After the old reservation for flow 5 has been 

released, we have 'Qagj = 0, B^c_2= 27 Mbps and B^c 2= 13 Mbps. Again, by compare with 

the Bac_2 and B rc j  values before flow 2 was terminated, we can see that the equivalent 

bandwidth of the terminated flow has been successfully released without the guaranteed 

bandwidth hole problem.

3.7.4 G eneral observations of using Flow-Based Reservation Algorithm

The Flow-Bsed Reservation Algorithm is more complicated than the Basic 

Reservation Algorithm, but it alleviates the guaranteed bandwidth hole problem. The Basic 

Reservation Algorithm may be used in the situation where lots of small bandwidth 

connections come and go fast. In this situation the bandwidth hole is small and filled up 

quickly. Thus, there is no need to make the reservation algorithm more complicated. However, 

in the situation where there are a number of large-bandwidth flows with long connection life 

times, the Flow-Based Reservation Algorithm may be more suitable to use. It is because the 

guaranteed bandwidth hole is larger and lasts longer in this case. The Flow-Based Reservation 

Algorithm will help to eliminate or reduce the size of the hole.

Note that the Flow-Based Reservation Algorithm cannot completely eliminate the 

guaranteed bandwidth hole problem when the MAC layer of the source node cannot find the 

suitable flow candidate. To completely eliminate the guaranteed bandwidth hole problem, a 

Hop-by-hop Reservation Algorithm is introduced in the next section.
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3.8 Hop-by-Hop Reservation Algorithm
The Flow-Based reservation algorithm only solves the guaranteed bandwidth hole 

problem partially. Since the reservation is released per flow, not per hop. Here, a hop is 

defined as a link between two adjacent nodes. The address of the hop is the address of the 

outgoing interface of the transmitted node. When a reservation is reserved or released, every 

hop along the path from the source to the destination makes the same amount of bandwidth 

reservation or release. This forces the flow-based algorithm, in some cases, to only select the 

flows that have the same source/destination as the terminated flow for bandwidth adjustment.

If no such flow exists, the guaranteed bandwidth hole cannot be filled.

The per-flow reservation also leads to an inefficient bandwidth allocation. The 

following example illustrates the inefficiency. Let consider a RPR network with 6 nodes as 

shown in figure 3.2.

A guaranteed bandwidth of 5 Mbps and a common bandwidth of 50 Mbps are assigned 

to each node. Suppose node 1 generates two traffic flows; flow 1 and flow 2. Flow 1 requests 

a bandwidth of 5 Mbps; while flow 2 requests a bandwidth of another 5 Mbps. Destinations of 

flow 1 and flow 2 are node 4 and node 5, respectively. Node 1 made a reservation for flow 1 

first. After the reservation, Bagj = 0. Later node 1 made another reservation for flow 2. This 

reservation causes nodes 1, 2, 3, and 4 to reserve 5 Mbps of bandwidth from the common- 

bandwidth pool. Note that there are 5 Mbps of guaranteed bandwidth owned by node 1 at the 

hop between node 4 and node 5 that is not used. In fact, the guaranteed bandwidth at this hop 

will not be available for any other flows as long as the reservation of flow 1 is not released. 

This situation is not desirable for the reason that if the guaranteed bandwidth of that hop was 

available for flow 2, then flow 2 did not need to make reservation from the common- 

bandwidth pool at that hop, which, in turn, allowed more common bandwidth at that hop to be 

available to other flows. Clearly, a hop-by-hop reservation approach will provide a more 

flexible and efficient reservation mechanism.

3.8.1 Introduction to the Hop-by-Hop Reservation Algorithm:

In the hop-by-hop reservation algorithm, every node maintains a bandwidth usage 

table to record the total bandwidth reserved on every hop for the flows sourced from this node.
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The bandwidth usage table is used for the local transmit traffic only, not for the transit traffic. 

For the N nodes network, the total number of entries in the table is N-1.

When the source node receives a new traffic flow request, it checks the bandwidth 

usage table to decide how much common bandwidth it should request on every single hop 

towards the destination node for the new flow. The requested bandwidth at each hop may not 

be the same. The bandwidth reservation is done hop-by-hop. Using this approach, node 1 in 

the example from the previous section did not need to request the 5Mbps common bandwidth 

reservation on the link between node 4 and node 5 for flow 2. Because the bandwidth usage 

on the link between node 4 and node 5 in the bandwidth usage table would be zero after the 

reservation of flow 1, thus, flow 2 could use the guaranteed bandwidth on the link between 

node 4 and node 5 instead.

To reserve different bandwidth on different hops, we need to add a node address field 

and the bandwidth field for each hop between the source and the destination in the bandwidth 

request packet. The node address field identifies the hop (The output interface of the node) 

and the corresponding bandwidth field indicates the requested bandwidth to be reserved or 

released on that hop. When the source node generates the bandwidth request packet, it puts 

the different requested bandwidth values on different bandwidth fields. When the transit node 

receives the bandwidth request packet, it looks into the bandwidth fields and gets the 

requested bandwidth for its outgoing link. The transit node may admit or reject the new traffic 

flow by comparing the requested bandwidth with the available common bandwidth of that 

link.

When the traffic flow is terminated, the source node needs to release the reservation 

for this flow downstream and adjust the bandwidth reservation for other flows on every hop. 

We cannot just simply release the same bandwidth value on all the hops downstream to the 

destination because the source node may reserve different bandwidths on different hops 

before. To properly release the bandwidth on each hop, the source node should calculates 

released bandwidth for each hop using the algorithm described in later sections. The source 

node puts different released bandwidth values on different bandwidth fields in the 

Release Reservation packet and sent the bandwidth release packet downstream to the 

destination. When the transit node receives the bandwidth release packet, it gets the released 

bandwidth value for its outgoing link and adjusts its available common bandwidth
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accordingly.

3.8.2 Reservation setup process in the Hop-by-Hop reservation algorithm

The following flowchart summarizes the Hop-by-Hop Reservation Algorithm 

performed at the source node.
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Flowchart 3.4: Hop-by-hop Reservation Algorithm at the source node
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Let us define BU(«) and RH(«) as the bandwidth usage on hop n and the request 

common bandwidth for reservation/release on hop n. The bandwidth usage table holds the 

values of BU(«) for n = 1, 2, , N-1. When the MAC layer of the source node receives a

new traffic flow connection request from its client, it goes through the following steps;

1) The MAC layer calculates the equivalent bandwidth for the new flow C, using the 

equation (2.6).

2) If C, is less than Bagj, MAC layer generates the Bandwidth Request packet to the 

destination node. The requested bandwidth for this flow is 0. The algorithm sets up the 

reservation for every flow including the flows using the guaranteed bandwidth. Recall 

that the source node does not make the reservation for the flows using guaranteed 

bandwidth in Basic Reservation Algorithm and Flow-Based Reservation Algorithm, 

because the source node may not need to release the reservations for the terminated 

flows in these two algorithms. For Hop-by-hop Reservation Algorithm, it is more 

efficient for the source node to release every terminated flow even if the flow did not 

make any common-bandwidth reservation. We will talk about the reservation release 

process later. MAC layer updates the bandwidth usage table for all the links from the 

source to the destination using the equation (3.13):

BU(«) = BU(«) + C, (3.13)

The MAC layer also updates the Bagj value using the equation (3.1). If C, is greater 

than B a g j , go to step (3).

3) Calculate the extra common bandwidth needed (AC,) to support the new traffic flow 

by using equation (3.6). If the AC, value is greater than the B a c j  value, MAC layer 

rejects the connection request for the coming traffic flow and generates the NAK 

message to the traffic source. If the AC, value is less than B a c j , go to step (4).

4) In this step, MAC layer generates Bandwidth Request packets to set up the 

reservations. MAC layer calculates the requested bandwidth values on different links 

according to entries in the bandwidth usage table. If the bandwidth usage value on of 

hop n is grater than the guaranteed bandwidth of the source node, the requested 

bandwidth for hop n is the same as C,. If the bandwidth usage value of given hop n is 

less than the guaranteed bandwidth for the source node, MAC layer calculates the 

requested bandwidth on this hop using the equation (3.14):
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RH(n) = C ,-(B G jt-B U (/j))  (3.14)

After the MAC layer calculates all the requested bandwidth on all the links, it 

generates the bandwidth request packet to the destination node. The bandwidth request 

packet cames different requested bandwidth values in different requested bandwidth 
fields.

After generating the bandwidth request packet, MAC layer updates the Bxc * and 

B/4cjc values by using equations (3.1) and (3.3). MAC layer also updates the 

bandwidth usage table for all the links from the source to the destination using the 

equation (3.13). Then MAC layer waits for the reply packets for the bandwidth request 

packets.

5) When the source node receives the reply packet, it checks the reply packet type. If the 

packet is a NAK packet, the MAC layer rejects this traffic flow and adjusts the Bxc_t 

and Bxc_t value using equations (3.5) and (3.6). The MAC layer also updates the 

bandwidth usage table for all the hops from the source to the destination using the 

equation (3.15):

BU(n) = BU(n) - C, (3.15)

If the packet is an ACK packet, the MAC accepts the traffic flow.

The reservation mechanism at the transit node and the destination node in the Hop-by- 

Hop Reservation algorithm is the same as the previous two algorithms.

3.8.3 Reservation release process in the Hop-by-Hop Reservation Algorithm

When a flow is terminated, the MAC layer of the source node starts the reservation 

release process. The MAC layer calculates the released bandwidth on every single link 

downstream to the destination using the following algorithm:

(1) If  the bandwidth usage value on a given link n is less than the guaranteed bandwidth,

the released bandwidth is zero on this link.

(2) If  the bandwidth usage value on a given hop n is greater than the guaranteed 

bandwidth, MAC layer calculates the difference (DC(«)) between the bandwidth usage value 

and the guaranteed bandwidth using equation (3.16):

DC(n) = BU(n) -  B c jt. (3.16)

The MAC layer then calculates the released bandwidth on hop n (C/fc(«) ) using (3.17).
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Qc<«) = min {DC(n), Q} (3.17)

After the source node sends the bandwidth release packet carrying the released 

bandwidths on different hops downstream to the destination node. The source node updates 

the bandwidth usage table using equation (3.18):

BU(/z) = BU(«) - C, (3.18)

When the transit node receives the bandwidth release packet, it looks into the packet 

and obtains the released bandwidth for its outgoing link. Then the transit node modifies the 

available common pool size using the same mechanism we described in the previous two 

algorithms.

3.8.4 General Observations

The Hop-by-hop Reservation Algorithm can completely eliminate the guaranteed 

bandwidth hole problem. But it is more complicated to implement. The source node needs to 

maintain an extra bandwidth usage table and make a number of calculations for each 

reservation or release request. Furthermore, the Bandwidth Request or Release Reservation 

packet for a flow can be quite large if the number of hops for that flow is large. On the other 

hand, the Hop-by-Hop Reservation Algorithm provides the most advantage in a situation 

where there are only few connections and each connection consumes a large amount of 

bandwidth. In addition, this algorithm does not require the search of flow candidates and the 

bandwidth adjustment of the flow candidates, unlike the Flow-Based Reservation Algorithm.

3.9 Simulation Results

This section presents some simulation results that illustrate the performance of the 

reservation algorithms proposed in this chapter. All the simulation uses the 6-node topology 

shown in Figure 3.2. All the traffic flows go through the outer ring. The total bandwidth 

reserved for class A traffic is 100Mbps. We define the guaranteed bandwidth to each node as 

10Mbps and put 50Mbps bandwidth into the common bandwidth pool. So each node can use 

maximum 60Mbps bandwidth for its classA traffic. All the traffic sources are the on-off 

sources.

Case 3.1: Dynamic Bandwidth Allocation
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This case demonstrates how the dynamic bandwidth allocation method admits more

class A traffic. The result in this case also demonstrates that the delay for class A traffic is

quite small with proper admission control even the RPR network is congested with class C 
traffic.

In this case, we set up 5 class A traffic flows from nodel to node 4 and one class A 

traffic flow for each of the following node pairs: node 6-> node 5, node 5 -> node 4, node 4 -> 

node 3 , node 3 -> node 2 and node 2 -> node 1. We also generate 600 Mbps class C traffic 

flows fi*om node 2 to nodel. The traffic parameters of the Class A traffic flows are shown in 

the following table:

Start

Time

Source Destination Peak

Rate

Burst

Period

Utilization Equivalent

Bandwidth

Flow 1 0.10s Node 1 Node 4 30Mbps 0.004s 0.4 16.58Mbps

Flow 2 0.12s Node 1 Node 4 20Mbps 0.006s 0.6 14.70Mbps

Flow 3 0.14s Node 1 Node 4 20Mbps 0.006s 0.6 14.70Mbps

Flow 4 0.16s Node 1 Node 4 20Mbps 0.006s 0.5 12.99Mbps

Flow 5 0.18s Node 1 Node 4 30Mbps 0.004s 0.5 19.48Mbps

Flow 6 0.10s Node 6 Node 5 15Mbps 0.008s 0.5 9.74Mbps

Flow 7 0.10s Node 5 Node 4 15Mbps 0.008s 0.5 9.74Mbps

Flow 8 0.10s Node 4 Node 3 15Mbps 0.008s 0.5 9.74Mbps

Flow 9 0.10s Node 3 Node 2 15Mbps 0.008s 0.5 9.74Mbps

Flow 10 0.10s Node 2 Node 1 15Mbps 0.008s 0.5 9.74Mbps

Table 3.2 Traffic parameters for class A  traffic flows in simulation case 3.1

The traffic parameters for the Class C traffic flow fi-om node 2 to node 1 are shown in 

the following table:

State Time Peak Rate Burst Period Utilization

0.05s 1200Mbps 0.001s 0.5

Table 3.3 Class C traffic parameters used for simulation case 3.1
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At node 1, the equivalent bandwidth for the traffic flows 1-4 together is 58.99 Mbps. 

So these 4 traffic flows are admitted. The traffic flow 5 at node 1 is rejected because the 

requested bandwidth for flow 5 is more than the available common-pool bandwidth. The other 

5 classA traffic flows sourced from the rest of the 5 nodes are all admitted because the 

equivalent bandwidth for each flow is 9.74Mbps which is less than the guaranteed bandwidth. 

In this case, the equivalent bandwidth of the total flows for the hops between nodel and 

node4 is almost 100Mbps that is the maximum reserved bandwidth for classA traffic, and 

there is 600Mbps classC traffic from nodel to nodel. Figure 3.3 shows the simulation results 

of classA transmit queue size at node 1 and the end-to-end delay from node 1 to node 4. It 

can be seen that the maximum end-to-end delay for classA traffic is only about 5 ms, even 

though the network is congested with classC traffic.
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Figure 3.3: Delay performance with dynamic bandwidth allocation method

Figure 3.4 shows the high priority transit queue size in nodes 3 and 4.The maximum 

queue size is equivalent to one packet. This illustrates that the major contribution of the end-
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to-end delay for classA traffic is at the source node. The delay experienced by a classA packet 

at the transit node is negligible as observed in the previous chapter.

This case also demonstrates the effectiveness of using dynamic bandwidth allocation 

method. By dynamically allocating bandwidths for different flows, node 1 can send up to 60 

Mbps classA traffic while 10 Mbps of bandwidth can still be allocated to each of the other 5 

nodes. Without the dynamic bandwidth allocation method, only 20 Mbps bandwidth could be 

statically assigned to each node (assume bandwidth is uniformly assigned) and node 1 would 

have to reject all the flows, except flow 1. The method can also allow the support of more 

connections in the network. For instance, if every connection requires 1Mbps bandwidth and 

we statistically assign 20Mbps bandwidth to each node, the maximum number of the 

connections that can be supported is 20*6 = 120. If we use dynamic bandwidth allocation 

method, we can support maximum 60*6 = 360 connections in the network in the case where 

all the connections are between adjacent nodes.
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Figure 3.4 High priority transit buffer sizes in transit nodes
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Case 3.2: Bandwidth reservation and release process using Basic Reservation Algorithm

In this case, the bandwidth reservation and release process using the Basic Reservation 

Algorithm is simulated. Four classA traffic flows with the following traffic parameters are 

used in the simulation:

Start

Time

Stop

Time

Source Destination Peak

Rate

Burst

Period

Utilization Equivalent

Bandwidth

Flow 1 0.10s 0.50s Node 1 Node 4 30Mbps 0.004s 0.4 16.58Mbps

Flow 2 0.12s 0.45s Node 1 Node 5 20Mbps 0.006s 0.6 14.70Mbps

Flow 3 0.14s 0.40s Node 1 Node 4 20Mbps 0.006s 0.6 14.70Mbps

Flow 4 0.16s 0.35s Node 1 Node 4 20Mbps 0.006s 0.5 12.99Mbps

Table 3.4 Traffic parameters for class A traffic flows in simulation case 3.2

Figure 3.5 shows the simulation result for available common bandwidth at node2.

The simulation results for the available common bandwidth at node 1 and node 3 are the same. 

The results demonstrate that the Basic Reservation Algorithm handles the bandwidth 

reservation and release process correctly.
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Figure 3.5: Available common bandwidth pool size with Basic Reservation Algorithm
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Case 3.3: Guaranteed Bandwidth hole problem of the Basic Reservation Aleorithm

This case illustrates the guaranteed bandwidth hole problem. Four class A traffic flows 

with the following traffic parameters are used in this simulation:

Start

Time

Stop

Time

Source Destination Peak

Rate

Burst

Period

Utilization Equivalent

Bandwidth

Flow 1 0.10s 0.34s Node 1 Node 4 10Mbps 0.004s 0.4 5.52Mbps

Flow 2 0.12s - Node 1 Node 5 20Mbps 0.006s 0.6 14.70Mbps

Flow 3 0.14s - Node 1 Node 4 20Mbps 0.006s 0.6 14.70Mbps

Flow 4 0.16s - Node 1 Node 4 20Mbps 0.006s 0.5 12.99Mbps

Tab e 3.5 traffic parameters used for classA traffic flows in simulation case 3.3

Figure 3.6 shows the simulation result for the available common bandwidth at node 2. 

The simulation results for the available common bandwidth at node 1 and node 3 are the same.
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Figure 3.6: Guaranteed bandwidth hole problem with Basic Reservation Algorithm 

When node 1 made a reservation for flow 1 (at 0.1 s), it accepts this traffic flow without
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making common bandwidth reservation; instead, this flow only uses the guaranteed 

bandwidth. Thus, the available common bandwidth remains to be 50 Mbps. After the 

successive reservations for flows 2, 3 and 4, the available common bandwidth is reduced 

to 12Mbps. At 0.34s, flow 1 is terminated, but node 1 does not release the bandwidth for this 

traffic flow because this flow only used guaranteed bandwidth, and the available common 

bandwidth remains to be 12 Mbps. Consequently, bandwidth of 5.52 Mbps is not available for 

reservation to class A traffic flows from nodes other than node 1. In the next case, the Flow- 

Based Reservation Algorithm is used to deal with the problem.

Case 3.4: Flow-Based Reservation Algorithm

In this case, we try to solve the bandwidth hole problem observed in the case 3.3. 

Figure 3.6 shows the simulation results for the available bandwidth at node 2 using the Flow- 

based Reservation Algorithm. The simulation results for the available common bandwidth at 

node 1 and node 3 are the same.

In this case, after flow 1 was terminated, node 1 started to adjust the bandwidth 

reservation using the Flow-Based Reservation Algorithm. Because flow 1 did not make any 

common bandwidth reservation, node 1 chose the existing flow sourced by 

node 1 with the largest span. Node 1 used the traffic flow 2 to adjust the reservation.
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Figure 3.7; Available common bandwidth size with Flow-based Reservation Algorithm
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Firstly, node 1 set up a new bandwidth reservation downstream to node 4 asking for 

1'^-^0"5-52=9.18 Mbps of bandwidth. After the new reservation has been successfully set up, 

the values at node 1, 2 and 3 are 2.66 Mbps. Then node 1 started to release the 

bandwidth used by flow 2 downstream. After the bandwidth is successfully released, the 

values at node 1, 2 and 3 were 17.5 Mbps. The result shows that the bandwidth reserved by 

flow 1 (5.52 Mbps) is properly released by the Flow-based Reservation Algorithm and the 

guaranteed bandwidth hole problem is avoided.

Case 3.5: Inefficient bandwidth allocation problem

This case illustrates the inefficient bandwidth allocation problem observed in the 

Basic Reservation and Flow-Based Reservation Algorithms. In the simulation, node 1 

generates several traffic flows to node 4 and node 5. The traffic parameters are shown in the 

following table;

Start

Time

Destination Peak

Rate

Burst Period Utilization Equivalent

Bandwidth

Flow 1 0.10s Node 4 30Mbps 0.004s 0.4 16.58Mbps

Flow 2 0.12s Node 5 20Mbps 0.006s 0.6 14.70Mbps

Flow 3 0.14s Node 4 20Mbps 0.006s 0.6 14.70Mbps

Flow 4 0.16s Node 4 20Mbps 0.006s 0.5 12.99Mbps

Table 3.6 traffic parameters for classA traffic flows in simulation case 3.5

Figure 3.8 shows the simulation results for the available common bandwidth at node 2 

and node 4. At 0.1s, node 1 sets up 6.58Mbps bandwidth reservation for flow 1. After 0.1s, 

the common bandwidth pool size at node 2 is 43.4Mbps, and the available guaranteed 

bandwidth at node 1 becomes zero. At 0.12s, node 1 sets up 14.7Mbps bandwidth reservation 

for flow 2. After 0.12s, the available common bandwidth at node 2 and node 4 are 29.7Mbps 

and 35.3Mbps, respectively. Node 4 has reserved 14.7Mbps bandwidth for flow 2, even 

though 10 Mbps of guaranteed bandwidth owned by node 1 remain used. If that 10 Mbps of 

bandwidth could be utilized, node 4 would have 10 Mbps more of available common 

bandwidth that can be used to support other traffic flows. In the next case, the Hop-by-Hop 

Reservation Algorithm is applied for a more efficient use o f the guaranteed bandwidth.
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Figure 3.8: Inefficient bandwidth allocation problem with Basic Reservation Algorithm

Case 3.6: Solving the inefficient bandwidth allocation problem by using Hop-bv-hop 

Reservation Algorithm

In this case, the simulation has the same setup as in case 3.5, except that the Hop-by- 

Hop Reservation Algorithm is used. Figure 3.9 shows the simulation results. Based on the 

Hop-by-Hop Reservation Algorithm, node 1 only reserves 4.7 Mbps of common bandwidth 

on the link from node 4 to node 5. Thus, the available bandwidth at node 4 is 10 Mbps larger 

than that in case 3.5.
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Figure 3.9; Inefficient bandwidth allocation problem solved by 

Hop-by-hop Reservation Algorithm

Case 3.7: Bandwidth reservation and release using the hop-bv-hop reservation algorithm

In this case, 7 traffic flows are generated. The traffic parameters for the traffic flows 

are shown in the following table:

Start

Time

Stop

Time

Source Destination Peak

Rate

Burst

Period

Utilization Equivalent

Bandwidth

Flow 1 0.10s 0.50s Node 1 Node 4 30Mbps 0.004s 0.4 16.58Mbps

Flow 2 0.12s 0.45s Node 1 Node 5 20Mbps 0.006s 0.6 14.70Mbps

Flow 3 0.14s 0.40s Node 1 Node 4 20Mbps 0.006s 0.6 14.70Mbps

Flow 4 0.16s 0.35s Node 1 Node 4 20Mbps 0.006s 0.5 12.99Mbps

Flow 5 0.10s 0.50s Node 2 Node 1 15Mbps 0.008s 0.5 9.74Mbps

Flow 6 0.36s 0.60s Node 3 Node 6 20Mbps 0.006s 0.5 12.99Mbps

Flow 7 0.20s 0.55s Node 3 Node 6 15Mbps 0.008s 0.5 9.74Mbps
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Table 3.7 Traffic parameters for classA traffic flows in simulation case 3.7

Figures 3.10 and 3.11 show the simulation results of the available common bandwidth

at nodes 2 ,3,4 and 5. Using these figures, the reservations setup and release using the hop-

by-hop reservation algorithm will be described in detail below.

1. At 0.1s, node 2 makes a reservation for flow 5. Since node 2 uses the guaranteed 

bandwidth for the reservation, it does not affect the available common bandwidth.

2. Between 0.1 s and 0.16s, nodes 2, 3 and 4 has reserved the common bandwidth for flows 

1-4. After the reservation setup, the available common bandwidth at node 2 and node 3 

almost becomes zero; while node 4 only reserved 4.7 Mbps bandwidth for flow 2. It is 

because only flow 2 actually uses the link between node 4 and node 5. There is no 

reservation at node 5 for flows 1-4.

3. At 0.2s, a reservation for flow 7 is made. Node 3 uses its guaranteed bandwidth to support 

the reservation.

4. At 0.35s, flow 4 is terminated. Both nodes 1, 2 and 3 release 12.99Mbps of common 

bandwidth.

5. At 0.36s, node 3 generated flow 6. Then node 3, 4 and 5 reserve 12.99Mbps bandwidth for 

flow 6.

6. At 0.40s, flow 3 is terminated. Node 1, node 2 and node 3 release 14.70Mbps of common 

bandwidth.

7. At 0.45s flow 2 is terminated. Node 1, node 2 and node 3 release 14.70Mbps of common 

bandwidth; while node 4 release 4.70Mbps of common bandwidth.

8. At 0.50s flow 1 and flow 5 are terminated. After the release of flow 1, Node 1, node 2

and node 3 release 6.58Mbps of common bandwidth. In the case of flow 5, since node 2 

does not make any common-bandwidth reservation, no release of common bandwidth 

occurs.

9. At 0.55s flow 7 is terminated. Node 3, node 4 and node 5 release 9.74Mbps of common 

bandwidth.

10. At 0.60s flow 6 is terminated. Node 3, 4 and 5 release 2.99Mbps of common bandwidth.

From the above simulation results, we can see that the hop-by-hop reservation

algorithm handles the reservation setup and release well. It completely solves guaranteed
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3.10 Conclusion

The dynamic bandwidth allocation using common bandwidth pool method can make 

the bandwidth usage in the RPR network efficiently. We introduced three bandwidth 

reservation algorithms in this paper. Each of them has its own advantage and drawback. The 

Basic Reservation Algorithm is easy to implement, but it may cause the guaranteed bandwidth 

hole problem and exhibits the inefficient bandwidth allocation problem during the bandwidth 

reservation process. The Flow-based Reservation Algorithm is more complicated than the 

Basic Reservation Algorithm. It can eliminate the guaranteed bandwidth hole problem in most 

cases. But it still has the inefficient bandwidth allocation problem during the bandwidth 

reservation process. The Hop-by-hop Reservation Algorithm is the most complicated one. It 

can completely eliminate the guaranteed bandwidth hole problem and the inefficient 

bandwidth allocation problem. Note that the three algorithms can be deployed in the same 

network. It is because only the source node needs to decide which algorithm to use. The
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transit node and the destination node nse the same mechanism for all three algorithms.
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Chapter 4 Integration with DiffServ and RSVP

4.1 Integration with Differentiated Services (DiffServ)

RPR and DiffServ have similar QoS structure. The best-effort class, the assured 

forwarding classes, and the Expedited forwarding class in DiffServ can be mapped to RPR 

classC, classB, and classA service classes, respectively. In addition, the reservation 

algorithms proposed here can be incorporated with the bandwidth allocation method used by 

the DiffServ. More specifically, the DiffServ bandwidth allocation method can use the 

proposed reservation algorithms to reserve bandwidth at the RPR MAC layer. Figure 4.1 

illustrates the integration between the DiffServ bandwidth allocation mechanism and the RPR 

reservation algorithm.

DiffServ Bandwidth DiffServ Bandwidth

allocation requestallocation request

reservation primitives

RPR

c>

IP node IP node

RPR 
node 2

RPR 
node 1

RPR 
node 3

RPR-level reservation 

Figure 4.1 : Interworking between DiffServ and RPR reservations

In the figure, IP node A receives a DiffServ bandwidth allocation request. The request 

can be generated by a bandwidth booker or some other management entity. Suppose the 

request is to allocate certain amount of bandwidth for some traffic class from the link from IP 

node A to IP node B. To make the requested bandwidth allocation, a bandwidth reservation at 

the RPR MAC layer from node 1 to node 3 is required. The proposed reservation algorithms 

can be used for the reservation. Note that IP node A (B) and RPR node 1 (3) are logical 

entities. Usually, they are co-Iocated in the same physical router.
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Since the bandwidth allocation is relatively static under the DiffServ paradigm, the 

Hop-by-Hop Reservation algorithm seems to be the best choice among the three proposed 

reservation algorithms. It is because the Hop-by-Hop Reservation algorithm provides the most 

efficient mechanism for bandwidth reservation. At the same time, the major drawback o f the 

algorithm, that it is relatively complex to implement, does not incur a significant processing 

overhead under the DiffServ operation for reservation requests do not happen very often.

4.2 Integration with Integrated Services (IntServ)

The resource ReSerVation Protocol (RSVP) [9] is the signaling protocol used for 

reservation in IntServ-enabled networks. The reservation principles adopted by the proposed 

reservation algorithms and RSVP are quite different. In RSVP, it is the receiver that initiates 

the reservation; in the proposed reservation algorithms, it is the sender that initiates the 

reservation. The sender-initiated reservation is chosen for the proposed reservation 

algorithms because the sender is the only node that can decide how much common bandwidth 

reservation is required for each flow.

RSVP uses soft-state approach to maintain the reservation. That means the reservation 

must be refreshed periodically; otherwise, the reservation will be released automatically. The 

proposed reservation algorithms in contrast uses hard-state approach, in which, the reservation 

will persist until it is released explicitly by exchanging reservation release control packets 

among nodes. The hard-state approach is chosen because RPR routes do not change as 

frequently as those in the general IP networks. Consequently, the ability of the soft-state 

approach in adapting the changes of routes does not provide that much advantage in the RPR 

environment. On the other hand, the soft-state approach incurs the overhead of sending 

reservation packets periodically for each flow. The overhead may significantly affect the 

performance o f the RPR networks, since we expect the networks will handles tens of 

thousands of flows at any given time. The hard-state approach has no such overhead.

Even RSVP and the proposed reservation algorithms uses different approaches for 

reservation, nevertheless, RSVP can still incorporate the proposed reservation algorithms to 

make reservation at the RPR path between two RS VP-capable routers. Figure 4.2 illustrates 

the interworking between RSVP and the proposed reservation algorithms.

In the figure, the two RSVP-capable routers first exchange RSVP Path and Resv messages
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(steps 1 and 2). When IP node A receives the Resv message, it will invoke reservation at the 

MAC layer (steps 3 and 4). This leads to the exchanges of request and ack messages at the 

MAC layer (steps 5 and 6) based on the proposed reservation algorithms. Finally, if  the 

reservation is successful, node A will receive the confirmation (steps 7 and 8).

Since RSVP Path and Resv messages are periodically exchanged between the two 

routers, a convergence sub-layer is required to distinguish the original RSVP Path and Resv 

messages from the subsequent RSVP Path and Resv messages. When the RSVP Path 

message for the already established connection is generated by the RSVP process, the sub

layer will not invoke another reservation. Instead, it will automatically generate the RSVP 

Resv message back to the process. In this way, no new reservation or extra traffic is created in 

the RPR network. In addition the convergence sub-layer should also issue RSVP Path 

messages to the downstream IP node (node B in Figure 3.3) periodically. The RSVP Resv 

messages received in response to the RSVP Path messages will be accepted by the 

convergence sub-layer and silently discarded. In the event where the reservation has not been 

refreshed within certain time-out period (this may happen, for instance, when node A has not 

received any RSVP Path message from its upstream node in a given time-out period), the 

convergence sub-layer will issue a release primitive, which in turn, invoke the bandwidth 

release process at the MAC layer based on the proposed reservation algorithms.

It must be emphasized that this chapter only provides preliminary outlines on how to 

integrate the proposed reservation algorithms with DiffServ and IntServ system. More careful 

study must be done to complete the full integration.
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Figure 4.2: Interworking between IntServ and RPR reservations

71



Conclusion and Future Work

In this paper, we studied the admission control methods used in RPR networks and 

proposed the dynamic bandwidth allocation method for classA traffic in RPR network. The 

simulation results show that with the use of admission control, the delay of classA traffic can 

be kept small. Most of the delay is introduced by the processing and queueing delay at the 

source node. Once the traffic enters the RPR network, the total delay introduced by the transit 

nodes is almost the same as the propagation delay. We studied three admission control 

methods: Simple Sum, Measured Load and Equivalent Bandwidth, Simple Sum is the 

simplest one and it is easy to implement, while Equivalent Bandwidth method should be used 

in the situation where many classA traffic flows are multiplexed.

We implemented three reservation algorithms for the dynamic bandwidth allocation 

method: Basic Reservation Algorithm, Flow-based Reservation Algorithm and Hop-by-hop 

Reservation Algorithm. Basic Reservation Algorithm is easy to implement but it is also easy 

to cause the guaranteed bandwidth hole problem and insufficient bandwidth allocation 

problem. Flow-based Reservation Algorithm can eliminate the guaranteed bandwidth hole 

problem in many cases but it still cannot solve the insufficient bandwidth allocation problem. 

Hop-by-hop Reservation Algorithm is the most complex one but it can completely eliminate 

the guaranteed bandwidth hole problem and the insufficient bandwidth allocation problem. 

The three algorithm and be implemented in the same network because only the source node 

decides which algorithm to use; the transit nodes behave the same in all three algorithms. The 

dynamic bandwidth allocation method is also integrated well with the existing Internet 

Quality of Services (QoS) paradigms such as DiffServ and RSVP services.

In this thesis, we only focus the admission control and bandwidth allocation methods 

for the classA unicast traffic in RPR networks. The admission control and bandwidth 

allocation methods for multicast traffic in RPR networks need further study. In addition, this 

thesis has not addressed the situation when there is an equipment or facility failure and the 

two rings are wrapped to form a single ring. In this case the existing reservations will be 

disrupted and new reservations may be required. A more efficient reservation method to deal 

with this situation is desirable.
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