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Investigation of Integer Neural Networks For Low Cost Embedded Systems. Master of 

Applied Science Thesis, Thomas Behan, Electrical and Computer Engineering, Ryerson Uni­

versity, Toronto, 2009. 

Abstract 

Neural networks have been a topic of study for almost half a century and have become one of 

the predominant methods used for intelligent systems. During this time much progress has 

been made on improving the accuracy and expanding the capabilities of neural networks. 

This thesis is an investigation in a different direction, that is to reduce the computational 

requirements of neural networks to make them more suitable for implementation on very low 

end micro controllers and DSPs. The goal is to understand the trade offs in cost, accuracy, 

and execution time on these low cost processors. To do this, two tests are performed. The 

first compares execution speed of a simple neural network on low cost hardware. This test 

demonstrates the advantages to using integer neural networks, and DSP operations. The 

second test, is a contrast of the accuracy of an integer neural network and a floating-point 

neural network. This test uses a real world example and allows for testing multiple levels of 

quantization. The test results show the effects of quantization due to the use of integers, and 

the amount of decay to be expected when creating an integer neural network. The results 

show that there is a strong case for using integer neural networks on low cost microcontrolers, 

and that significant cost savings can be achieved in exchange for a very small reduction 

accuracy. 
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Chapter 1 

Introduction 

The purpose of this thesis is to investigate the capabilities of Artificial Neural Networks 

(ANNs) on low cost micro controllers and Digital Signal Processors (DSPs). The field of 

artificial neural networks has been a topic of study for many years and much progress has been 

made on expanding the capabilities of neural networks. Since their first inception, artificial 

neural networks have improved greatly, both in the range of tasks that they can solve, as 

well as the accuracy with which artificial neural networks can solve these tasks. However, 

these advances often come with the cost of additional complexity. This complexity has been 

partially offset by increasingly powerful computers. On modern computer hardware, very 

large networks can be simulated in reasonably short amount of time, leading to a large and 

varied range of applications. However, for low cost systems, the processing power needed to 

. simulate these networks can be prohibitive. While processor technology continues to advance, 

the fact remains that simpler is most often cheaper, especially with respect to hardware. For 

this reason, low end micro controllers and DSPs will always rely on having reduced circuit 

complexity in order to keep down production costs. Reduced circuit complexity means that 

low cost micro controllers and DSPs may not have the hardware to perform some math 

operations natively. These operations be must be performed in software, leading to greatly 

reduced processing power. 
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1.1 Purpose Breakdown 

1.1.1 Integer Neural Networks 

The lower cost of less complex circuity creates a case for simplifying artificial neural networks. 

If the computational complexity can be reduced, then cost of the hardware required to 

execute the network in a reasonable time frame can also be reduced. In this thesis, the 

focus will be on using Integer Neural Networks (INNs) to reduce computational complexity. 

The hardware for performing integer calculations is much simpler than the hardware for 

floating-point hardware. This reduction in hardware complexity will allow for lower cost 

implementations of neural networks. 

1.1.2 DSP Operations 

A secondary investigation is into low cost DSPs. Many floating-point neural networks are 

implemented on DSPs that have special instructions that can be used to accelerate the 

calculation of the network. If low cost implementations are to receive wide acceptance, it will 

be necessary for them to have comparable execution time. For this reason, the execution time 

of a neural network must be contrast both with, and without DSP operations. The relative 

performance gap is very important in selection of a processing unit for any application, and 

neural networks are no exception. 

1.1.3 Comparison 

Having established a floating-point neural network as the base of comparison, the different 

combinations of hardware, and integer neural network will be examined. The key points to 

this comparison are, the cost of the processor, the accuracy of the network, and the execution 

time of the network. In addition, power consumption is also reduced when using simpler 

hardware. However the total power consumption is highly subjective and dependent on the 

other factors, such as processor type, clcok speed, and time spent in idle mode. 
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1.2 Thesis Structure 

1.2.1 Introduction and Background 

The first section of the thesis contains the introduction and background of the topic. Chapter 

1 provides a basic overview of the thesis, its purpose, goals, and methods. In Chapter 2, the 

background of subject is examined. An overview of neural networks, integer neural networks, 

and the hardware under consideration is given. This establishes the current state of the art 

which the thesis expands on. 

1.2.2 Integer Neural Networks 

Chapter 3 is a special section on integer neural networks. Because integer neural networks 

are so central to this thesis, it is important to describe it in great detail. This provides 

the background on how the network operates, and of the problems faced when training 

integer neural networks. The ideas of this chapter are used to explain the specifics of the 

implementation of the tests performed in later chapters. 

1.2.3 Contributions 

Chapter 4 and Chapter 5 contain the tests that confirm the hypotheses. Chapter 4 concerns 

the performance tests on low cost microcontrollers. This test shows that integer neural 

. networks using DSP operations are the fastest, followed by integer neural networks, followed 

by floating-point networks on low cost microcontrollers that lack floating-point instructions. 

Chapter 5 investigates the effects of quantization. Using a small range of integer values in the 

network is important in reducing memory usage. However a small range of values degrades 

the accuracy of the network using a real world test case. Chapter 5 shows the effects of 

various rates of quantization, and provides a simple method for comparing networks with 

variable rates of quantization. 
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1.2.4 Conclusion 

The end of the thesis is Chapter 6 which is the conclusion. Here the work of the thesis is 

reviewed. This chapter explains how the work done in this thesis demonstrates the effec­

tiveness of using integer neural networks on low cost hardware. This chapter also reflects on 

the considerations for future work, and emphasizes the balance of trade offs between cost, 

speed, power consumption, and accuracy. 
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Chapter 2 

Background 

This chapter provides a background for the work done in this thesis. Artificial Neural 

Networks (ANNs) are discussed in detail. This provides a starting point for the work done 

in this thesis as it moves from artificial neural networks in general, to integer neural networks 

which will be the major focus of this thesis. Integer neural networks are the section 2.2 and 

provide a brief understanding of what integer neural networks are and where they are situated 

in the realm of artificial neural networks. Once the properties of integer neural networks 

are defined, it is possible to describe the type of hardware being used. This forms the 

third section of this chapter. Finally a review is done on previous work relating to integer 

neural networks, specifically DSPs, power consumption, and Field Programable Gate Arrays 

(FPGA)s. 

2.1 Artificial Neural Networks 

2.1.1 Purpose 

Artificial neural networks are mathematical models that attempt to simulate the workings of 

a brain, which is a biological neural network. Artificial neural networks derive functionality 

from their ability to adapt the weighting of the connections between the neurons of the 

network. In this thesis supervised learning will be used to train the networks. This means 

that the network is trained with a series of inputs and target values, with the goal being for 

the network's output equal to the target value for a given set of inputs. By repeatedly feeding 
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inputs into the network and updating the weights of the inter-neuron connections, a network 

will emerge with the ability to extract the features and relationships from the input values to 

produce the output values. This ability to learn and extract the salient features of the inputs 

is the key to neural network operation. The ability to create machines that can intelligently 

predict and classify without having to be explicitly programmed based on mathematical 

models, is very useful. There are many applications for such machines across a wide range 

of disciplines. Some of these applications include, power systems [1], steel manufacturing [2J, 

optical processing [3], finance [4], traffic flow [5], and control problems [6J. Artificial neural 

networks are an old and promising field of study within machine learning. The primary goal 

of this thesis is to demonstrate the feasibility of extending this body of knowledge to low 

cost embedded systems. 

2.1.2 Structure Of Artificial Neural Networks 

The structure of an artificial neural network is taken directly from its biological counterpart 

[7J. The base element is called a neuron. A neuron has many inputs and only one output 

as shown in Fig. 2.1. The inputs (I) to a neuron are weighted (W) independently, then are 

combined with a scalar bias (B) and passed through a non-linear transform(f(x)) to produce 

an output (0), 

0= f(W· I + B) (2.1) 

Individually a neuron is quite simple in operation. The key to the power of artificial neural 

networks lies in the connections between neurons, making neural networks a connectionist 

form of computation. An important result of the connectionist nature is that artificial neural 

networks are massively parallel, making them inherently suited to distributed computing and 

vector processors [8J. 

2.1.3 Training Methods 

The backpropagation method discussed in this thesis updates the weights of the network 

based on error at the network output. The sum squared error (SSE) between the target 

6 



B 

o 

f(W*I+B) 

I 2 I 

Figure 2.1: Block diagram of a neuron. 

value (T) and the networks output (0) is used as the error (also called cost) function to 

calculate the total error of the system, which we would like to minimize, and used to update 

the weight values. The (SSE) is divided by half to make the derivative of the error function 

simpler, thereby reducing the time to calculate the weight updates, each weight of each 

. neuron, written as 

(2.2) 

For example updating the weight of a neural network using sum squared error (2.2) as the 

error function, and gradient decent (2.13) as the training method and the standard neuron 

output, 

0= f(W·J +B) (2.3) 

Now the B value can be considered a weight with a constant input of 1, doing this simplifies 

the equation. In this way the bias functions as an additional element in both I and W 
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vectors. This results in, 

0= f(W· I) (2.4) 

The resulting equation (2.4) is used with the error function and the result is, 

E = ~ L (T - f(w· I))2 (2.5) 

The gradient decent method is then applied to (2.5) to minimize the new error function, 

oE o~ 2: (T - f(W . I))2 
oW = oW (2.6) 

From this point each weight has its own weight updated, with the error function derived fOF 

it, 

oE 02: (T - f(W· I)) 
(2.7) 

oW oW 
oE (2: (T - f(W . I)))of(W . I) 

(2.8) 
oW oW 
oE (2: (T - f(W . I)))f'(W . I)oW . 1 

(2.9) 
oW oW 
oE (L (T - f(W . I)))f'(W . I)1 (2.10) 
oW 

Finally this equation (2.10) can be expressed more contently as, 

8 = oE = C'" (T - 0)) . f'(W . I) ·1 
oW ~ 

(2.11) 

Training neural networks can be viewed as an optimization problem, and a subset of machine 

learning. Methods such as Newton-Raphson(2.12), gradient descent (2.13), Gauss-Newton 

(2.14), and Levenberg-Marquardt (2.15) are common methods. 

Xn+l = 
f(xn) 

Xn - f'(xn) (2.12) 

Xn+l Xn - In V' F(xn) (2.13) 
m 

8((3) L r;((3) (2.14) 
i=l 
m 

8((3) L [Yi - f(Xi, (3W (2.15) 
i=l 
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Flow of Information 

Output Layer 

Hidden Layer 

Input Layer 

Figure 2.2: Feedforward network. 

In addition, a combined approach has also been proven to have some advantages. A variety 

of combinations such as neural networks utilizing genetic algorithm [9, 10, 11], simulated 

annealing [12, 13, 14], and fuzzy logic [15, 16, 17] can be utilized to produce hybrid schemes. 

These methods aim to combine the characteristics of different machine learning techniques 

to produce improved characteristics. 

2.1.4 Network Architectures 

While this thesis will focus exclusively on feedforward networks, there exist several archi­

tectures for artificial neural networks which remain unexplored for low cost implementation. 

The feedforward network is the simplest architecture. The network is divided into layers and 

all outputs flow to the next higher layer. In this way the flow of information is unidirectional 

with clearly defined connection paths as shown in Fig 2.2. Another popular type on network 

is the recurrent network. This architecture follows a similar pattern to the feedforward with 

the addition of loop back connections. In this type of network the output is fed back into 
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Recurrent Loop 

Output Layer 

Hidden Layer 

Input Layer 

Figure 2.3: A simple recurrent neural network. 

itself, in this way the network retains memory of previous values, making it especially useful 

for learning dynamic systems [18, 19, 20]. In this situation one or more of the inputs (I) is 

an output (0) from a previous execution (2.16). A simple form of this network with only 

one recurrent loop is shown in Fig. 2.3. 

(2.16) 

Other types of network topologies include radial bias function network [21, 22, 23], Hopfield 

network [24, 25, 26]' echo state network [27, 28, 29], stochastic neural network [30, 31, 

32] . Additionally there are methods of combining networks by using each network as an 

isolated independent unit that is attached to a larger network [33, 34, 35]. Sometimes these 

units compete in what is called a competitive neural network [36, 37, 38]. These types of 

architectures are based on having different networks in the hopes of providing a more robust 

and diverse solution. While the number of architectures is broad, little work has been done 

concerning low cost implementation and they present a large selection of possible future 

works based on this thesis. 
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2.2 Introduction To Integer Neural Networks 

2.2.1 Motivation 

A central theme of this thesis will be the use of integer neural networks which are of par­

ticular interest when dealing with very low cost microcontrollers. Integer neural networks 

are implementations of artificial neural networks that only use integer values, as opposed 

to conventional implementations that use floating or fixed-point values. Using integer only 

values can greatly reduce the computational complexity for hardware that does not natively 

support floating and fixed point instructions. 

2.2.2 Challenges 

However using only integer values can greatly reduce the accuracy of the network, by round­

ing to the nearest whole value. Integer values are granular and so limit weight values that 

network can have. This in turn limits the ability to produce accurate outputs [39, 40, 41]. 

Additionally integer neural networks create difficulties in training a network. This is again 

due to the granularity of integers. In this chapter the effects of limiting values to whole 

numbers will be explored, as well as the reasons behind the need for integer neural networks 

and the types of hardware that can expect an increase in performance when using integer 

only networks. Additionally, we will look at the advantages of using DSP operations that 

. are now available on some of these low cost microcontrollers. Later in Chapter 3 integer 

neural networks will be examined in greater detail, but first the motivation for using them 

must be made clear. 

2.3 Hardware 

2.3.1 Floating-point vs. Integer 

The motivation behind using integer neural networks is to reduce the final cost and power 

consumption of a system that uses a neural network. This is possible because microcontrollers 

that contain the hardware for performing floating or fixed point operations are significantly 
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more complex than integer versions, and thus more expensive, both in terms of cost and en­

ergy consumption. Early Personal Computers (PCs) did not include floating-point hardware 

for this very reason. IBM computers using the Intel x86 family of processors did not include 

floating-point hardware until the release of the 486DX, and the Intel 486SX was released 

as a cheaper version of this processor without floating point hardware. Any floating-point 

operations had to be done in software which greatly reduced execution speed, or via the Intel 

8087 floating-point co-processor. Apple computers using the Motorola 68000 operated in a 

similar fashion with the 68881/68882 as the coprocessor. While modern computer designs 

have moved past these limitations, and implemented the floating-point unit in the main 

processor, selecting a micro controller for a low cost application makes this a pertinent con~ 

sideration. Microcontrollers that include floating-point hardware can cost many times more 

than an equivalent integer only version. 

2.3.2 DSP Operations 

Recently new integer-only micro controllers (such as the Microchip dsPIC30fxxxx and dsPIC33f:xxxJ 

series chips, example shown in Fig. 2.4) have been released that include some Digital Signal 

Processor (DSP) operations. DSP operations have previously been shown to greatly increase 

the performance of floating-point neural networks. In Chapter 4 it will be demonstrated that 

DSP operations have a similar effect on integer neural networks. These new DSP-capable 

microcontrollers are more expensive than regular micro controllers, however they are still 

much cheaper than floating-point capable units. The DSP operations allow for a neural 

network to be executed much faster than before, with only a moderate increase in cost of 

the system. DSP operations, specifically the MAC (Multiply ACcumulate) instruction, are 

well suited to increasing the performance of neural networks, as shown below in Fig. 2.5. 

Typically the MAC instruction uses two pairs of registers and a special accumulator register. 

In each pair, one register holds the address of the data and one register holds the data itself. 

On every execution of the MAC instruction, data is moved from the addresses stored in the 

address registers into the data registers. The address registers are then post incremented to 
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Figure 2.4: dsPIC30f6013 from the dsPIC30fxxxx family. 

the next memory location. Finally, the two values in the data registers are mUltiplied and 

added to the special accumulator register. The accumulator register is typically much larger 

than normal registers to prevent the data from becoming so large that the accumulator over­

flows. The MAC instruction is typically used to accelerate discrete convolution. Discrete 

convolution (2.17) is used in many applications, but is especially noteworthy for its use in 

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) digital filters. These 

. filters are very commonly used, and one of the major applications for DSPs. 

(f. g)(n) = L f(m) . g(n - m) 

a+-a+b·c 

(2.17) 

(2.18) 

The MAC instruction can accelerate this operation by combining all of the accumulation, 

multiplication, increments, and move operations in one instruction cycle (2.18). This means 

that only one instruction cycle is needed for every element in an array, rather than the many 

instructions that would otherwise be required. This is important for neural networks because 

convolution and the calculation of the net value of a neuron are mathematically identical. 

13 
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Figure 2.5: Simplified MAC Instruction Block Diagram. 

The net value (N) is the sum of the products of the inputs (I) and the weights (W) (2.19). 

The output (0) of a neuron is a function of the accumulated products of all the weights and 

inputs in that neuron, 

N=I·W 

0= f(1· W) 

(2.19) 

(2.20) 

This implies that neural networks can benefit from the MAC instruction in the same way 

that digital filters do. As we will see later in this chapter, using the MAC instruction can 

greatly increase the speed at which a neural network can be executed. 

2.4 Previous Work 

2.4.1 DSP Acceleration 

As previously discussed DSP operations can greatly accelerate neural networks. While this 

has been throughly demonstrated [42, 43, 44, 45, 46] on floating-point hardware, with good 
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results. In this thesis it will be shown that motivation for using DSP operation remains 

when using integer neural networks. It is imperative that low cost integer neural networks 

are capable of performing with equivalent execution speed so that they are a valid option 

for implementations that require a high sampling rate. Without having comparable speed 

performance, integer neural networks would be much more limited in their range of appli­

cation. The issue of comparable execution time also has important implications for power 

consumption. 

2.4.2 Power Consumption 

While it is readily apparent that reduced complexity leads to lower cost hardware, power 

consumption is a more complex issue. While it is clear the simpler hardware will consume less 

power, this is not always the case. As shown in [47] the power consumption of a processor 

is dependent on both the number and type of operations being performed. As will be 

demonstrated in Chapter 4, integer neural networks execute much faster than floating-point 

networks on low cost hardware. This means that the processor consumes less power executing 

the network. But further than this, it also means that the processor can spend more time in 

low power idle mode. This issue of comparative processing time holds true when comparing 

floating-point DSP and integer DSP processors. The integer DSP system will consume 

less power because it takes the same amount of calculations while consuming less power 

·per operation due to its simpler hardware. However the case is not clear when contrasting 

floating-point DSP, and integer processors without DSPs. Here the issue is between the power 

saved by completing the network faster, and the lower power consumption per operation of 

the simpler hardware. Because the total power savings is depended on both the idle power 

consumption and the power consumption for each operation, the total power consumption 

is highly dependent on the specific processors used. Any comparison made would be specific 

to the processors tested, however is known that in general power consumption is lower for 

integer only chips [48]. For this reason it remains an important consideration when selecting 

the type of network and processor to be used in an actual implementation. While power 

15 



consumption is especially important for mobile applications where extending battery life is 

a key consideration of the design. It is also important for the fact that electricity costs 

money. Reducing the power consumption can save operating costs in addition to the up 

front manufacturing savings. 

2.4.3 FPGA 

By far the most relevant work to this thesis has been implementation of integer neural 

networks on FPGAs [8]. FPGAs allow for easy construction of custom processors, especially 

processors which have many parallel components [49]. This ability makes neural networks 

and FPGAs a natural fit. The FPGA is able to execute all of the neurons in the neural 

network in parallel making the system very fast. The only limitation is the size of network 

that the FPGA can contain. This is determined by the number of neuron as well as the 

circuit complexity of each neuron. It is for this reason integer neural networks are of interest 

for FPGA implementations. The simplicity of the hardware for calculating integer neural 

networks means that an integer neural network consumes much less fabric space and power 

consumption than an equivalent floating-point unit [48]. This has two major advantages. 

First this allows FPGAs to hold much larger networks. And second for small networks the 

FPGA needs to operate less gates, resulting in lower power consumption. These benefits 

mean that the largest body of work for integer neural networks on embedded system comes 

from the investigation of integer neural networks on FPGAs. This range of applications 

explored via FPGA implementation [8, 49] offers a solid foundation for the establishing 

the practicality of integer neural networks for embedded system. A comparison between 

FPGA and low cost DSP integer neural network is outside the scope of this thesis, but 

it is clearly a possible point for future investigation into reducing power consumption and 

decreasing execution time. The major concern with FPGA implementations is the cost, 

FPGAs are significantly more expensive than the micro controllers, due to their complex 

circuity. Additionally FPGAs are known to be relatively inefficient in power consumption 

for the same reason. This contrast suffers from the same subjectivity issue as floating-point 
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verses integer hardware. As a results a comparison would be difficult. However, generally a 

low cost microprocessor consumes much less power than FPGAs for low speed integer neural 

networks. 
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Chapter 3 

Integer Neural Networks 

Integer neural networks are the key to extracting maximum execution speeds from low cost 

microcontrollers. The feedforward operation of these networks is quite simple and will be 

throughly tested in Chapters 5 and 6. Creating an efficient integer only feedforward network 

is important to making integer neural networks practical on low cost systems. However 

training an integer neural networks without floating-point values is a significant task and 

much literature [40, 39] is dedicated to this topic. A simple method of backpropagation is 

described in this section and is used to create the test network in Chapter 4. 

3.1 Feedforward Networks 

3.1.1 Topology 

The simplest form of neural network is a feed forward network. In this network, the inputs 

are fed into one end of the network and the output is produced at the other. All the 

neurons in one layer connect to the neurons in the next layer. An integer neural network 

of this type will be explored later in this chapter. However, there are many other types, 

such as stochastic networks [30, 31, 32]' recurrent networks [18, 19, 20], radial bias networks 

[21, 22, 23]" etc. Each type of network has its own advantages and disadvantages. The 

feedforward network was chosen as the example network for its simplicity. Fig. 3.1 shows 

a simple 2-2-1 neural network that is used later for testing. The output of a neuron is a 

function of the accumulated product of the neurons inputs and its weights. The function is 
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Figure 3.1: Diagram of a 2-2-1 neural network. 

called the activation function and it is most often a sigmoid to simplify the calculation of the 

derivative when performing backpropagation. There are several types of activation functions 

such as the logistic function (3.1), arc-tan (3.2), and hyperbolic tan (3.3), but generally they 

perform the same purpose. Most importantly it is from the activation function that a neural 

network achieves non-linearity in the output of a neuron. Also the activation function places 

limits on the magnitude of the values inside the network. Limiting the size of the values in 

the network is an important consideration for integer neural networks as the range of values 

is much more limited than floating-point values, due to the need to express all values as 

whole numbers. 

P(t) 
1 

(3.1) -
1 + e- t 

y = arctan(x) (3.2) 

tanh(x) 
eX - e-X 

(3.3) 
eX + e-X 

3.1.2 Activation Function 

Typically an activation function output ranges from 0 to 1 or -1 to + 1. While this is not 

an issue for floating-point networks, it is for integer neural networks. Taking the second 
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Figure 3.2: Stretched activation function (tanh). 
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case, an integer neural network would quantize the output of the activation function into 

-1,0, +1. This does not provide nearly enough selectivity to provide accurate classifications 

or predictions. One method to avoid this is to stretch the activation function so that more 

function outputs exist as whole values. Fig. 3.2 shows the activation function, tanh, stretched 

according to, 

Y = 16 . tanh (~) (3.4) 

This quantized activation function can be stored in a Look Up Table (LUT) so that a tanh 

function, such as its Taylor series expansion, does not need to be executed, which further 

increases performance. A LUT stores all of the output values sequentially in memory. When 

the function is called, the input (I) is added to a constant offset (C) to determine the memory 

address. The value at that memory address (M(I+C)) is the output (0) ofthe function (3.5). 

Fig. 3.3 provides and example of the operation of a LUT. 

0= M(I +C) (3.5) 

In this way only one addition needs to be used to get the result. Using a LUT is much 
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Figure 3.3: Example operation of a LUT. 
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faster than calculating tanh even if the micro controller supports floating-point operations. 

This means that the tanh value does not have to be calculated which can be a time and 

resource consuming task. Another time saving feature is that because sigmoids have simple 

derivatives calculation time can be saved in training. For example, the derivative of the tanh 

function (3.6) contains the original tanh calculation in it, 

f(x) 

f'(x) 

tanh(x) 

(1 - tanh2(x)) 

(3.6) 

(3.7) 

From this we can modify the equation to allow for any amount of scaling in either the output 

space, A, or the input space, B. Then solve for the derivative, 

f(x) 
x 

(3.8) A· tanh( -) 
B 

f'(x) 
dA . tanh( Ii) 

(3.9) 
dx 

f'(x) 
dtanh(Ii) 

(3.10) = A· 
dx 

f'(x) 
X d!E.. 

A· (1- tanh(B))· d~ (3.11) 

f'(x) 
A x 

(3.12) - . (1 - tanh( -)) 
B B 

Here it is convenient to introduce g( x) to make explicit the final derivative, 

g(x) 
x 

(3.13) = tanh(B) 

f(x) A· g(x) (3.14) 

f'(x) A 2 
(3.15) = -(1 - 9 (x)) 

B 

From here is can be seen how by saving the output of g(x) (3.13) when performing the 

feedforward operation (3.14) the value can be reused for performing backpropagation (3.15). 

In the case used for the first test (3.4) A = 16 and B = 4. By substituting these constants into 

the equations derived above (3.13)(3.14) (3.15) we can arrive at both the original activation 

function (3.17) and its derivative (3.19) with only one tanh calculation (3.16), or call to the 
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LUT. 

g(x) 
. x 

tanh(4) (3.16) 

j(x) - 16· g(x) (3.17) 

f'(x) 16 ( 2( - 1- 9 x)) 
4 

(3.18) 

f'(x) 4· (1 - g2(X)) (3.19) 

3.2 Backpropagation 

3.2.1 Floating-Point Network 

Training of a neural network is usually done with floating point values, and this method has 

been quite successful. The most common method of training a neural substituting is back­

propagation. In a normal neural network the magnitude of the weight updates is attenuated 

by the decimal values in the network. Additionally a small constant, T], is multiplied directly 

to the weight update (bow) to further reduce the rate at which the weights are updated as 

seen in (3.21). This is important because the network must gradually move to a solution, 

by having very small weight updates the network does not skip over possible solutions. This 

allows the network to gradually move towards a solution. 

3.2.2 Integer Neural Network 

However in an integer neural network, the magnitude of the values in the network are always 

equal to or greater than one. This means that the weight updates have the potential to 

become very large after successive multiplications (3.20). When the weight updates are very 

large the output of the network will change drastically after each update, preventing the 

network from moving toward a solution. The second major challenge is in the derivative of 

the stretched tanh function. Fig. 3.4 shows that only a small portion of the input space 

for the derivative of the activation function is non-zero. This means that for a large range 

of net values the weight update is zero. This zero cancels out the rest of the factors of the 
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Figure 3.4: Stretched differential of the activation function (tanh). 

equation and the network does not move towards a solution, 

5 = (T - 0) . f'(N) . I (3.20) 

(3.21) 

Equation (3.21) shows how the weight update is determined for the output neuron, and 

how the value TJ is used to control the rate of weight convergence. The input weight for a 

neuron is calculated by multiplying the input, I, the derivative of the activation function 

f(N), and the difference between the target value and the output (3.20) . For values of net 

where f'(N) is zero, 5 is also zero, leading to !':lw the weight update, to also be zero (3.20). 

Without the use of the derivative of the stretched tanh function, normal backpropagation 

cannot be performed. 

3.2.3 Fixed Weight Update Magnitude 

There are many approaches to this problem, such as fixed weight updates [7], as shown in 

the following equations, 

5 = (T - 0)· I (3.22) 
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6.w = {I if <5 > 0 
-1 if<5<O 

(3.23) 

This simplified backpropagation is used in Chapter 4. It allows the weights to be updated 

by small steps, avoiding the need for 17 to reduce the magnitude of the weight update. It also 

removes the need to calculate the derivative of the activation function. However the down 

side to this approach is that the network is trained very slowly and it can be difficult for 

the weights to diverge because they are being changed at the same rate every epoch. Other 

methods such as [7] and [50] provide some other methods of weight updates for integer neural 

networks using different solution, however these solutions, while an improvement, suffer from 

their own drawbacks. Training integer neural networks remains much more difficult than 

training floating-point networks. 
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Chapter 4 

Performance Comparison 

This chapter explains the test setup for contrasting execution times for both integer and 

floating-point networks on low cost microcontrollers. In addition this chapter also compares 

the execution time for integer neural networks with and without DSP operations. The 

evidence provided in this chapter proves that integer neural networks offer a significant 

performance improvement, and the DSP operations can further decrease execution time. 

4.1 Test Setup 

4.1.1 Execution Time Considerations 

The first consideration when choosing an integer neural network is execution time. If the 

target system has timing constraints that are easy to meet, then it may be possible to use a 

floating-point network on low cost hardware despite the performance drawbacks. However 

it is often the case that faster execution is required to meet the demands of the application. 

Additionally a faster network allows the micro controller to operate at a reduced clock speed 

or spend more time in an idle state, and thereby consume less power. 

4.1.2 Hardware Selection 

To compare the performance of integer neural networks and floating-point neural networks a 

very simple 2-2-1 neural network, shown in Fig. 4.1, was trained to solve the XOR problem 

and then implemented in hardware. The XOR problem is one of the simplest problems 
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Figure 4.1: Feedforward neural network for solving XOR. 

Table 4.1: XOR truth table. 

Input A Input B Output 
0 0 0 
1 0 1 
0 1 1 
1 1 0 

that requires a multilayer network, and is quite common in testing new neural networks 

techniques. The XOR problem is also useful because the solutions are definitive, the network 

either solves the XOR problem or it does not, comparisons of accuracy are not necessary. 

Table 4.1 shows the truth table for the XOR problem. For testing, a dsPIC30F2011 was 

chosen as being representative of the type of low cost DSP capable micro controllers that 

are best able to benefit from integer neural networks, as well as demonstrate the effects of 

DSP acceleration( see Appendix B for a comparison of a selection of microcontrollers). For 

timing purposes the number of clock cycles used was chosen as the base measurement as it 

is independent of the type and clock speed of the micro controller . 
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4.1.3 Network Implementation 

Equations (4.1), (4.2), and (4.3) show the output of the neurons at the output, hidden, and 

inputs layers respectively. 

OUtk = f (2: Wjk . Outj ) 

Outj = f(L Wij . Outi ) 

(4.1) 

(4.2) 

(4.3) 

At the output layer (4.1) the output is the sum of the weights (Wjk ) and the outputs from 

the previous layer (Outj ), which is also called the Net value. The Net is then transformed 

by the activation function, and the result is the output. The output of the hidden layer (4.2) 

is the same, except the previous layer is now the input layer (4.3). The input layer (4.3) is 

simply the inputs to the network. No operations are performed at the input layer (4.3). As 

can be seen from Table 4.1 the sign of the output (4.4), 0, of the network output determines 

whether the result, R, should be 1 or O. 

R = {1 if 0> 0 
o if 0<0 

( 4.4) 

The magnitude of the networks output is only used to demonstrate maximum separation 

between the two output and network robustness. Other values can still provide an accurate 

result, as long as there is a clear separation at the output between the results that should 

evaluate as 1 and those that should evaluate as O. 

4.1.4 Training Method 

The training method used for this network is discussed in Chapter 3. The fixed magnitude 

weight update method is a very simple and fast way to train a network. It was used to 

demonstrate the potential for training a neural network entirely with integers, however due 

to the drawbacks discussed in Chapter 3, this method is not used for the second test. To 

ensure that maximum accuracy is provided, the network was trained so that output values 

of -16 represent false, and 15 represent true as shown in Table 4.2. This ensures that the gap 
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between true and false are at the limits of the lookup table, giving maximum separation. 

Because there are only four possible input and output combination the network is trained 

Table 4.2: XOR network output. 

Input A Input B Output 
0 0 -16 
1 0 15 
0 1 15 
1 1 -16 

with the entire input space. All of the values are initialized to small (magnitude less then 

16) random values. The network is then trained until the error for each output is zero. 

The network will not always converge to a solution due to the limitations of the constant 

magnitude update method. In these cases the network must be re-trained with new random 

initial variables. Once the network was trained the weights were programmed into the 

microcontroller for testing. 

4.2 Results 

4.2.1 Comparison Accuracy Considerations 

Three variants of the code were written: one with floating-point variables and constants; 

. one with integer variables and constants; and one with integer variables, constants, and DSP 

operations. Note that there is no floating-point with DSP because the hardware does not 

support this. The DSP operations are not available for floating-point operations as they 

are special instructions built into the micro controller which does not support floating-point 

operations natively. To maintain an accurate comparison, the output of the floating-point 

net calculation was set to zero so that it may use a LUT. This was done to ensure that the 

performance increase shown is the result of using integers and not because of the LUT. 
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4.2.2 Execution Time 

The net calculation is the number of clock cycles needed to calculate the net value for one 

neuron. "One Neuron" is the number of clock cycles needed to calculate the output of a 

single neuron, the net calculation plus the use of the LUT. Finally whole sample set is the 

number of clock cycles needed to calculate the output of the network for the whole input 

space. The time to execute these parts of the neural network in clock cycles is shown in 

Table 1. Fastest times are in bold. As seen in Table 1, the integer neural network is the 

Table 4.3: Execution Time In Clock Cycles (CC) 

INN with DSP INN without DSP Floating-Point 
Net Calculation 21cc 87cc 776cc 
One Neuron 49cc 115cc 923cc 
Whole Sample Set 717cc 1509cc 11996cc 

fastest method in all of the cases. The DSP operations allow the Net value to be calculated 

four times faster than would be possible without DSP operations. For the calculation of 

the whole sample set, the speed increase provided by the DSP operations has been reduced 

because the Net calculation accounts for only a small portion of the overall calculations. 

The integer calculations without DSP operations also perform quite well. While slower 

than the DSP version, it is still significantly faster than the floating-point version. The last 

tested version was the floating-point version. As expected the lack of floating-point hardware 

greatly degrades the performance of this network. The integer versions are faster by a factor 

of 7.9 without DSP acceleration and by a factor of 16.7 with DSP operations when compared 

to the floating-point method. These results very strongly supports the case for using both 

integers and DSP operations on low cost hardware. 

4.2.3 Effects Of Network Size 

Table 4.4 shows the percentage of the whole sample set a single net calculation occupies. 

The results of Table 4.4 show that relative to the INN without DSP and Floating-Point, the 

INN with DSP spends a significantly smaller portion of the total execution time calculating 
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Table 4.4: Net CalCulation vs. Whole Sample Set Percentage. 

INN with DSP INN Without DSP Floating-Point 
Ratio % 2.93 5.765 6.47 

net values. This is an important consideration because as the network size increases, the 

number of inter-neuron connections will greatly increase. The small size of this network 

means that there are few inter-neuron connections, and as a results fewer components to the 

net calculation. However for larger networks the percentage of the time taken to calculate 

the Net values will increase. This means that the larger the network is, the more incentive 

there is to use DSP operations, as they have been shown to be effective in reducing the Net 

Calculation time. Despite the impressive performance of the INN with DSP, these results 

should be considered conservative because this network is so small. On larger networks the 

performance gap between the INN with DSP and the other two methods will increase relative 

to the number of inter-neuron connections. 

4.3 Discussion 

4.3.1 Performance Bias Considerations 

It is important to note that the activation function is not actually calculated to remove any 

testing bias against the floating-point version. A full implementation that calculates the 

. activation function will require many more clock cycles. This in combination with the small 

network size, which biases the results against the INN with DSP, results in a performance 

comparison that leaves little doubt about the superiority of the INN with DSP method. 

Despite operating at an unavoidable disadvantage, it remains the most capable in terms 

of execution speed of the three methods. The INN without DSP operations also runs at 

a disadvantage relative to the floating-point method, but remains significantly faster. The 

floating-point would perform much better on hardware that supports floating-point opera­

tions, but on low cost chips the performance is significantly less than that of integer only 

neural networks. 
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4.3.2 Integer Neural Networks Practicality 

These results creates a strong case for the practicality of low cost integer neural networks in 

cases where the both cost and execution time are important factors. Especially important is 

the performance of the integer neural networks when compared to the floating-point network. 

The results clearly show the performance improvement in using integer neural networks. 

Where execution time is not critical, a low cost micro controller can be used to implement 

a floating-point neural network. But for situations where execution time is critical integer 

neural networks are a faster option. Due to the complexitites of neural networks, and it 

is impossible to state exactly how the use if integer neural networks will effect accuracy, 

execution time, and power consumption. However it can be claimed in general, that the 

floating point method offers the most accuracy, in exchange for the highest cost, and worst 

execution time. While INN with DSP offers the best execution time at a mid range cost, 

with reduced accuracy. The INN without DSP offers the lowest cost solution, while having 

a mid range execution time, and reduced accuracy. Finally it should be noted that each 

application is different and it is entirely possible that low cost micro controllers may not be 

suitable. In these circumstances the only solution is to use micro controllers with floating­

point DSP operations to increase accuracy, or to use FPGAs for especially large networks. 

Both of these options are more expensive and consume more power, but may be the only 

solution available. 
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Chapter 5 

Accuracy Comparison 

With Chapter 4 demonstrating the performance improvement it is now necessary to inves­

tigate the accuracy lost due to quantization. It is imperative to demonstrate that integer 

neural networks can provide accurate results. While it is known that integer neural net­

works can never be as accurate as floating-point networks [40], it is possible to create integer 

networks that are accurate enough to meet the requirements of the application. 

5.1 Test Setup 

5.1.1 Integer Constraints 

The second major consideration when choosing to use an integer neural network is the 

accuracy of the network. All of the values in an integer neural network must be whole 

numbers. For this reason all of the values in the integer neural network must fit into a 

limited range of predefined values. The range of values affects the accuracy, as well as the 

amount of memory used by the network. A larger range of values will be more accurate, but 

also require more memory to store values and LUTs. To explore the effects of quantization 

we will. use the following example system. 

5.1.2 Real World Test Case 

The goal of this system is to determine the temperature inside a building (Tavg), using 

external measurements [51]. The external measurements used are the outside temperature 
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Figure 5.1: Closed Loop Boiler Control Scheme 

(To), the amount of solar radiation (Q801), and the energy consumed by the boiler (Qin) [52]. 

The purpose of this application is to replace many expensive temperature monitoring points 

with just three sensors. This information can then be used to create a closed loop boiler 

control scheme as seen in Fig 5.1. By being able to cheaply estimate the average temperature 

T avg , the control system can more economically maintain a constant temperature. All of 

the data was collected a special testing facility [53] so that the actual Tavg is available for 

comparison. A 3x20x3x1 network, shown in Fig. 5.2, is then trained using backpropagation 

and the Levenberg-Marquardt method of optimization. This creates a base network from 

which the integer network is derived and compared. 

5.1.3 Network Topology 

The network is trained as an floating-point network. The Levenberg-Marquardt (5.1) method 

of optimization is used to train feedforward networks of various topologies. 

m 

S({3) = L [Yi - f(Xi, (3)]2 (5.1) 
i=l 

The hyperbolic tan (tanh) was again used as the activation function for the network, and 

RMSE was used for the error function. Table 5.1 shows the performance (averaged across 

three runs) of each network topology when trained with the whole data set. These resulting 

network are not usable because when the network is trained with the whole data set it will 
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Figure 5.2: A 3x20x3x1 neural network. 

become over-trained to the specific data set and not extract the underlying relationships. 

However this does provide a maximum level of performance a topology is capable of. Due 

to the complexity of the input output relationships it was judged that a single hidden layer 

network would have poor performance and this was born out during a brief test. Two hidden 

layer networks were believed to be the most appropriate and in testing were shown to have 

the best performance. According to [54] and [55] networks beyond two hidden layer rarely 

show improvement and a brief testing showed this to be true in this case as well. Two layer 

networks were significantly better The best performing topology (shown in bold in Table 

Table 5.1: Network Topologies 

~ Layer 1 
1 3 5 10 20 

5 0.654 0.648 0.597 0.625 0.608 
10 0.636 0.617 0.599 0.628 0.611 
20 0.669 0.568 0.585 0.673 0.683 
50 0.785 0.700 0.658 0.795 0.700 
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5.1) is used as the base network topology. The network was then trained with approximately 

one eighth of the total data set. This was necessary to include a full day cycle and part 

of the weekend plateau. The network was tested with various sections of the data set to 

determine which section would provide a good generalized sample. Additionally a small 

range of training cutoffs to increase generalization, setting the Root Mean Squared Error 

(RMSE) cutoff to 0.60 °C proved most effective. From these tests the resulting network with 

the lowest RMSE and the smallest maximum error across the whole data set was selected as 

the base network. 

5.2 INN Model 

5.2.1 Scaling And Quantization 

All of the training data was collected is normalized to values between -1 and + 1 before use to 

maintain a consistency between the floating-point and integer networks, as well as all of the 

scaled version of the integer network, using the mapminmax function (5.2). The pre-scaling 

can be reversed be re-arranging the mapminmax function to isolate for the original inputs, 

Y 

Y - Ymin = 

(y - Ymin)(Xmax - Xmin) 

(x - Xmin) 

x = 

(Ymax - Ymin)(X - Xmin) + 
Ymin 

Xmax - Xmin 

(Ymax - Ymin)(X - Xmin) 

Xmax - Xmin 

(Ymax - Ymin)(X - Xmin) 

(y - Ymin)(Xmax - Xmin) 

Ymax - Ymin 

(y - Ymin)(Xmax - Xmin) + 
Xmin 

Ymax - Ymin 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

To create an integer neural network from this, all of the input and weights of the network 

are multiplied by a scaling factor Sf and then quantized into whole values. By scaling 

and quantizing each part of the network an integer neural network model is created. All 

values are adjusted to this new scale before being used in any operations. For the activation 

function the scaling is reversed, bringing the value back into the normal range. The activation 

function, in this case tanh, is then applied. The values are then rescaled and quantized for 
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use in the rest of the network. The reason for doing this is to maintain a consistent network 

structure, only the value of Sf is changed for each level of quantization. This allows for 

many different levels of quantization to be tested with the same network while at the same 

time ensuring that model is accurate. In an actual implementation, the activation function 

would be replaced with a LUT for the chosen scaling factor. 

5.2.2 Mathematical Model 

Mathematically the scaling and quantizing are substituted into the normal function of a 

neuron, where ° is the output, I is the input vector to that neuron, W is the weight vector, 

and B is the bias. Equation (5.7) shows the output for a neuron in a normal neural network. 

The scaling factor Sf is applied to each of the values used by the network before they are 

used. The resulting value is then quantized to a whole value as seen in, 

o = tanh(I . W + B) (5.7) 

q(I. Sf)' q(W· Sf) + q(B· SJ) 
0= tanh( S2 ) 

f 
(5.8) 

The scaling factor for the bias must be SJ to maintain proportionality to the rest of the 

equation as shown by the simplification in equations the equations below, 

I . Sf . W . Sf + B . SJ 
0= tanh( S2 ) 

f 
(5.9) 

I,W·SJ+B.S} 
0= tanh( S2 ) 

f 
(5.10) 

o = tanh(I . W . + B) (5.11) 

Once the net value has been calculated the scaling is removed by dividing the total amount 

of scaling, SJ. As can be seen in (5.11), canceling out the SJ term will return the equation 

to its original form, proving that the transformation is correct. This is then used by the 

activation function. The output from the activation function is used as the input for the 

next layer of the network, at this point the scaling and quantization is reapplied because the 

output, 0, of this layer becomes the input, I, for the next layer. The result is that the input 
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first hidden layer are the inputs to the network, called the traditionally called the output 

of the input layer OIL to maintain the idea of one layer feeding the next. These inputs are 

passed through first hidden layer to produce an output OHLb 

q(OIL· Sf)· q(W· Sf) + q(B· SJ)) 
OHLl = tanh( S2 

f 
(5.12) 

This output is now in the range -1 to + 1 as this is the limit of the tanh function. This means 

that the range of values is the same for both a floating-point and integer networks. However 

the integer networks will have experienced quantization. Being able to easily compare the 

effects of quantization at each layer is very useful in troubleshooting the network. It provides 

a very simple way to see the effects of quantization at each stage and potentially identify· 

where the effects of quantization are most severe. The output OHLl is then used as the input 

for the second hidden layer. At this point the output is scaled again by Sf so that it is in the 

scaled range of values. The downscaling before the tanh function, and up scaling afterwords 

allows for the model to test many values of Sf without changing the activation function. 

The output of the second hidden layer OHL2, 

(
q(OHLl . Sf) . q(W . Sf) + q(B . SJ) 

OHL2 = tanh S2 ) 
f 

(5.13) 

Is then used as the input a single neuron at the output layer. 

q(OHL2· Sf)· q(W· Sf) + q(B· SJ) 
OOL = tanh( S2 ) 

f 
(5.14) 

Because the network has only one output, the estimated average temperature Tavgest, only 

one neuron is needed. The output from this final layer, OOL, is the final output of the 

network. This is the direct output from the output layers tanh function, and so is in the 

range of -1 to + 1. These values are feed through the reversed mapminmax function derived 

in (5.6) using the same constants as the input to return the values to proper temperature 

values, 

T = (OOL - TavgmiJ((l) - (-1)) + (-1) 
avgest T. T. 

avgmax - avgmin 
(5.15) 

This produces the estimated average temperature Tavgest which can then be compared to the 

measured Tavg to determine the accuracy of the network, and judge the effects of quantization. 
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5.3 Results 

5.3.1 Base Network Accuracy 

The results of the trained base network is shown in Fig. 5.3. This is the base accuracy from 

which the integer versions of this network can be compared. Below are the outputs of the 

integer neural network with different values for Sf. This shows the effects of varying levels 

of quantization. Also included is the is the network error, this is the difference between the 

measured temperature and the estimated temperature. Fig. 5.3 shows the measured Tavg 
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Figure 5.3: Output of the base neural network vs. Measured Temperature. 
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Figure 5.4: Error of the base neural network. 

and the output of the base network. While this network contains some inaccuracies it is the 
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relative performance between this network and the quantized integer neural networks that 

we are interested in. 

5.3.2 INN At High Values Of Sf 

Measured Temperature vs. Estimated Temperature 
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Figure 5.5: Output of an integer neural network with Sf = 128 vs. Measured Temperature. 
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Figure 5.6: Error of an integer neural network with Sf = 128. 

Fig. 5.5 and Fig. 5.7 show the network outputs when Sf is equal to 128 and 64 respec­

tively. At this level of quantization, the integer and base networks are almost identical. 
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Figure 5.7: Output of an integer neural network with Sf = 64 vs. Measured Temperature. 
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Figure 5.8: Error of an integer neural network with Sf = 64. 

5.3.3 LUT Considerations 

However memory usage is significant as the range of input values for the L UT are from 

-Sf' 2 to +Sf . 2. This results in 32 768 addresses and 8 192 addresses for the LUT for 

Sf = 128 and Sf = 64 respectively. On a low cost micro controller, this may exceed the 

amount of available RAM. However some microcontrollers will also allow L UTs to be stored 

in the program memory. In these cases, this is not an issue. 
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5.3.4 INN At Mid Range Values of Sf 

Fig. 5.9 and Fig. 5.11 show the network output for Sf of 8 and 4 respectively. Here the effects 

of quantization become much more pronounced and the accuracy of the networks degrades. 

At this level of quantization the network is clearly not as accurate as the base network. This 
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Figure 5.9: Output of an integer neural network with Sf = 8 vs. Measured Temperature. 

level of accuracy is the minimum that can be accepted as offering a comparable level of 

accuracy. 
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Figure 5.10: Error of an integer neural network with Sf = 8. 
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Figure 5.11: Output of an integer neural network with Sf = 4 vs. Measured Temperature. 
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Figure 5.12: Error of an integer neural network with Sf = 4. 

5.3.5 INN At Low Values of Sf 

Fig. 5.13 shows the network output at Sf equal to 2. Here the network is very inaccurate, 

the effects of quantization have degraded the network to such an extent that it is unusable. 

5.3.6 Statistical Comparison 

Table 5.2 shows a comparison of the accuracy of the networks at each level of quantization, 

using three types of statistical measures; the Root Mean Squared Error (RMSE), the corre­

lation of determination (R2), and the Sum Squared Error (SSE). As can be seen from Fig. 
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Figure 5.13: Output of an integer neural network with Sf = 2 vs. Measured Temperature. 
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Figure 5.14: Error of an integer neural network with Sf = 2. 

Table 5.2: Accuracy comparison for selected levels of quantization. 

Network RMSE (0C) R2 SSE (OC) 
Base Network 0.60 0.7944 2724 

Sf = 128 0.60 0.7942 2423 
Sf = 64 0.60 0.7947 2729 
Sf = 8 0.63 0.7779 2955 
Sf =4 0.66 0.7331 3281 
Sf = 2 0.95 0.6058 6770 

5.3 to Fig. 5.13 and Table 5.2, when the value of Sf is high the integer neural networks per­

formance is nearly identical to that of the base network. However as the rate of quantization 
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increases, the accuracy of the network gradually degrades. These results are comparable to 

performance of a physical model developed in [56] which achieved a RMSE of 0.54 DC, and 

the work in [52] which improved this performance to 0.22 DC. The base network tested here 

is only marginally less accurate then these attempts while being much simpler to implement 

in a low cost embedded system. 

5.3.7 Example Subjectivity 

The graceful degradation seen in this example will not be true for all systems. The network 

may degrade faster or slower but it may also hit a point where the level of quantization is too 

much and the network accuracy degrades very quickly. The key consideration for the level of 

quantization is the trade-off between network accuracy, memory consumption, and register 

size. The larger the value of Sf, the smaller the amount quantization, the more accurate the 

network will be. However, at the same time this will increase the amount of memory needed 

to store the weights, inputs and LUTs. 

5.3.8 Practical Consideration 

Additionally if the quantization results in weights or inputs larger than can be stored in one 

register on the microcontroller, the network will suffer an additional performance penalty. 

This can aid in the selection of the type of microcontroller to use. If the level of quantization 

. allows for the inputs and weights to be stored in an 8 bit register, then a very low cost 

micro controller can be used. However if the values are larger, then a 16 bit or possibly even 

32 bit microcontroller would be better suited to implementing the network. 

5.4 Discussion 

5.4.1 Trade-offs 

Almost all system designs involve trade-offs between performance, speed, and cost. In this 

chapter, we have explored integer neural networks as a method of reducing the cost of 

a system, while attempting to retain as much of the accuracy of a floating-point neural 
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network. It is important to note that integer neural networks are just one possible method 

of meeting design constraints. Integer neural networks excel on low cost micro controllers. 

However integer neural networks can never achieve the level of accuracy that floating-point 

networks can. 

5.4.2 Network And Hardware Choice 

For this reason the decision on which type of network to use is depended on the type of 

data being used and must be viewed in light of the design goals for the system. In addition, 

while in this example the accuracy of the network degraded gracefully, this will not be 

the case for all implementations. The level of quality depredation is dependent on the' 

application and the base network. It is entirely possible that for certain networks INNs are 

not practical. However when cost is the primary design concern, integer neural networks offer 

a very compelling combination of accuracy, speed, and cost that can reduce the hardware 

costs to implement an effective neural network. 
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Chapter 6 

Conclusion 

This thesis has been very successful in achieving our goals. It has proven the execution 

speed advantages of integer neural networks on low cost DSPs. It then demonstrated the 

effects of quantization at different scaling factors, and provided a convenient method for 

converting floating-point neural networks to integer neural networks. The results from these 

tests provide a very strong case for using integer neural networks on low cost DSPs and 

microcontrollers. 

6.1 Review Of Purpose 

The purpose of this thesis is to investigate neural networks for low cost systems. This in­

vestigation centered around the use of integer neural networks. These networks have the 

ability to run natively on very low cost integer only micro controllers. Integer only micro­

controllers are cheaper and consume less power due to the fact that integer calculations are 

simpler than floating-point calculations, and therefore require less complicated hardware. 

With these facts at hand two important aspects about the feasibility of using integer neural 

networks was investigated. First, an investigation of the hypothesized performance improve­

ment on low cost integer only microcontrollers, and the possible performance enhancement 

offered by DSP operations. Second, a case study of the effects of quantization on neural 

networks, the effects of different scaling rates, and a method for creating an integer neural 

network with a variable scaling rate. 
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6.2 Performance 

In Chapter 4 the contrast between the performance of integer and floating-point networks 

was investigated in detail. The results show that integer neural network do indeed offer 

greatly increased performance. In all cases the floating-point network was by far the worst 

performer of the three. These tests also demonstrated the effectiveness of DSP operations, 

which proved to have the best performance in all cases. By using a worst case network, and 

biasing the results against the desired conclusion, it was demonstrated that a performance 

improvement by a factor of ten or greater is entirely possible. This provides a very strong 

case for using integer neural networks in cases where execution time is critical. In addition,. 

the significantly shorter execution time supports the case for using integer neural networks in 

conditions where low power consumption is desirable, such as portable or battery operated 

equipment. 

6.3 Accuracy 

In Chapter 5 the effect of quantization inherent in integer neural networks was investigated. 

A real world test case was used to compare the effects of quantization. The test case required 

a neural network was trained to be an inferential sensor for use in building heating control 

schemes. This network was then converted into an integer neural network with a variable 

scaling rate. Having a variable scaling rate allowed the network to be compared at different 

levels of quantization and showed that with a large scaling factor the results are nearly 

indistinguishable from a floating-point network, and that at medium levels of scaling the 

results are still usable. This testing also showed that the quality of the output does not 

degrade in a linear fashion. These results provide strong support for the use of integer 

neural networks by showing that they are capable of accurate results. 
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6.4 Final Remarks 

The research conducted in this thesis has been very successful in demonstrating the utility 

of using low cost micro controllers to execute integer neural networks. Some of the results of 

the this thesis include: 

• The combined use of these low cost processors, both with and without DSP operations, 

when used in conjunction with integer neural networks reduces the entry cost into 

embedded neural networks. These networks can offer greatly reduced cost due to the 

less complicated chip design. 

• The reduced circuit complexity can also reduce power consumption, which can be very 

important for low power and portable applications. 

• A reduction in power consumption can reduce operating costs when compared with 

floating point networks implemented on more expensive floating-point capable hard-

ware. 

• For a modest increase in cost, integer only micro controllers with DSP operations are 

available. The DSP operations greatly increase the rate of execution for integer neural 

networks, as demonstrated in Chapter 4. 

• The use of integer only neural networks on low cost micro controllers offer a signifi­

cant increase in performance over floating-point networks on micrcontorollers without 

hardware support for floating-point operations. 

• The DSP operations allow integer neural networks to compete with floating-point DSP 

hardware which is commonly used for embedded neural networks. 

• The results from Chapter 5 show that not only are integer neural networks capable of 

fast execution, they can also be very accurate. 

• A method of training an integer neural network completely without floating-point 

values was also presented, however the method suffers from some serious drawbacks. 
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• No integer neural network can be as accurate as a floating-point version. However in 

the examined case in Chapter 5 the accuracy of the base network was the primary 

factor in network accuracy, not the effects of quantization due to the use on integers. 

While this may not be the case for all scenarios, in example scaling factors as low as 8 

offered good accuracy. 

• A method for training a neural network in a conventional method with conventional 

methods and then converting to an integer neural network was presented in Chapter 

5. This allows for much easier training of integer neural networks when the network 

can be trained offline. 

• The conversion method of creating integer neural networks presented in Chapter 5 

allows for varying levels of quantization to be compared with the original floating-point 

network. This method also allows for each layer of the network to be easy contrasted 

with the base network to assist in troubleshooting. 

• The trade-offs between execution speed, accuracy, power consumption, and cost are 

subjective to the processors being considered. However it can be said that in general, 

that it is possible to use integer neural networks on low cost micro controllers to decrease 

cost and power consumption in exchange for a decrease in accuracy. 

• The fast execution speed, low cost, and good accuracy, combine to provide a compelling 

case for the use of integer neural networks on low cost integer only DSPs for embedded 

systems. 

The research conducted in this thesis has been successful in providing a case for low cost 

embedded neural networks. The combined use of low cost integer only micro controllers , 

both with and without DSP operations, in conjunction with integer neural networks, offers 

the potential for embedded neural networks with lower cost and power consumption then is 

currently being considered. These results are practical, and have immediate applications in 

the real world. 
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6.5 Future Work 

This area of research is just beginning, and there exists many further avenues of investigation. 

Some of the areas for future research include: 

• More test case investigations. The full investigation of the effects of quantization has 

just begun, the results will likely differ with each case. A battery of tests is needed to 

fully ascertain the quantization effects. 

• Comparisons of execution times across networks with varying sizes. Chapter 4 inves­

tigated a small simple network, where DSP performance is at a minimum relative to 

the other implementations. While clear conclusions can be drawn from these results, 

an investigation into the performance of larger networks may reveal new information. 

• An investigation networks of different architectures. The feedforward network was 

chosen for these tests for its simplicity, and directness. Using a feedforward network 

minimized the number of variables in network training, performance, and accuracy. 

Attempts to convert other types of network architectures discussed in Chapter 3 such 

as recurrent networks can also be investigated. The higher rate of inter neuron connec­

tivity suggest that some of these network may exact greater performance gains from 

DSP operations. However the effects of quantization will likely effect these networks 

differently, so their utility is still in question. 

• Creating neural networks with integer only backpropagation can also be explored. 

The method utilized in Chapter 3 has many drawbacks that can be imported upon. 

Additionally the execution time for training a neural network on an low cost micro con­

troller could also be an area of interest for applications that demand online learning 

and adaption. 

• Performance comparisons of neural networks that are trained online (while in use). As 

discussed in Chapter 3 training a neural network with only integers is possible but has 

great difficulty reaching an optimum. Floating-point training methods are much faster 
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and more reliable. However because of the performance increase afforded by using only 

integers, this method can make many training attempts in the time a floating-point 

method can make one attempt. It is not at all clear which method is superior or how 

different variables such as optimization method, activation function, network size, etc. 

Effect the time to train a network on a low cost micro controller. 

• Comparisons across a range of processors. It is known that processors with simpler 

circuitry general consume less power, the extant it unknown. The comparison between 

processors of different designs may yield more information concerning execution time 

and power consumption. The dsPIC used in these tests uses a modified Harvard. 

architecture, while desktop computers usually use von Neumann architecture. The 

use of caching is also completely unexplored in this thesis. There are a great many 

considerations in the design of a processor and it is likely that some will be better 

suited to low cost neural networks then others . 

• Power, and performance comparisons can be made with neural networks embedded 

in FPGAs. While it is apparent the FPGAs have a clear advantage in terms of per­

formance, FPGAs also are at a clear disadvantage in power consumption. For low 

power applications it is possible that an integer neural network on a low cost DSP may 

provide a superior set of trade-offs then currently exist. 

Now that lower cost embedded systems with neural networks have shown to be practical, 

the full range and extent of their capabilities are open to further research. 
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Appendix A 

Abbreviation List 

ANN 
CC 
DSP 
FIR 
FPGA 
IIR 
INN 
LUT 
MAC 
PC 
RMSE 
SSE 

Artificial Neural Network 
Clock Cycle 
Digital Signal Processor 
Finite Impulse Response 
Field Programmable Gate Array 
Infinite Impulse Response 
Integer Neural Network 
Lookup Table 
Multiply ACcumulate 
Personal Computer 
Root Mean Squared Error 
Sum Squared Error 
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Appendix B 

Microcontroller Cost Comparison 

This appendix contrasts the prices for a variety of processors. All of the prices were ob-' 

tained from the Digikey Corporation, a leader in the North American electronics retail and 

warehousing. All of the prices listed are in Canadian Dollars. Due to the wide variety of 

chip packaging and features, the highest and lowest costs are listed. This provides are more 

accurate depiction of the price range for these processors then any chip type or average could. 

Table B.1 shows the various costs and capabilities of the processors. 

Table B.1: Comparison of cost and functionality of various processors 

Model Core Type DSP Floating-Point Lowest Price Hightest Price 
PIClOF220 PIC 8bit No No $ 0.48 $ 0.82 

PIC18F1220 PIC 8bit No No $ 2.68 $ 4.75 
MSP430F1101 MSP430 16bit No No $ 1.45 $ 2.80 
MSP430F5438 MSP430 16bit No No $ 7.13 $ 11.41 
IdsPIC30f2011 dsPIC 16bit Yes No $ 3.05 $ 5.10 
dsPIC30f4016 dsPIC 16bit Yes No $ 9.78 $ 29.97 
TMS320C6711 TMS320 32bit Yes Yes $ 26.46 $ 28.58 

OMAP5910 ARM9 32bit Yes Yes $ 38.38 $ 44.81 

1 Processor used for testing. 
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