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ABSTRACT

CONVECTION IN SUPERPOSED LIQUID AND POROUS LAYERS WITH 

HEAT AND MASS TRANSFER AT THE FREE SURFACE

Rita Kozak

Master o f Applied Science 

in the program of 

Mechanical Engineering, 2005 

School o f Graduate Studies, Ryerson University, Toronto

In the present study, the onset of thermal convection in a liquid layer overlying a porous 

layer in the presence o f a free surface with evaporation is investigated. The Navier- 

Stokes equations are solved for the liquid layer, while the Brinkman model describes the 

porous layer. Two and three-dimensional geometrical models are considered, with 

bottom heating and lateral heating. Buoyancy convection, thermocapillary convection 

and combined convection are studied in detail for different aspect ratios. For the 

evaporation analysis, two conditions are treated simultaneously at the free surface. In the 

first, surface tension is assumed to vary linearly with temperature. In the second, a linear 

saturation temperature is imposed at the free surface to allow evaporation. Different 

aspect ratios, thickness ratios as well as Marangoni numbers are studied in detail. Results 

reveal the significant effect evaporation in the liquid layer has on convective flow 

patterns.
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CHAPTER 1 

Introduction and Literature Review

1.1 Introduction

The study o f thermal convection of fluids in porous media is important and has many 

applications. Many processes in nature involve transport in porous media. An important 

example is the world’s supply of oil, which formed and is stored in porous rock 

formations. The movement o f fluids through porous media is also common in many 

industrial processes. As an example, distillation and absorption columns are often filled 

with beads in a variety o f shapes that serve to form a porous matrix. The related problem 

of a liquid layer overlying a porous layer is also found in many environmental and 

engineering applications. This configuration is evident in water reservoirs, underground 

storage tanks, and solid matrix heat exchangers to name a few. An extensive collection 

o f work devoted to the area of convection in porous media is documented in the book by 

Nield et al. [1]. They define a porous medium as a material consisting of a solid matrix 

with an interconnected void. The void allows the flow of a fluid through the material. 

Examples o f porous media are beach sand, rye bread or glass beads. The porosity ^  is 

defined as the fraction o f the total volume of the medium that is occupied by void space,

or the liquid in this case, (p = . V is the total volume defined by V = V̂ - + , where

the subscript / denotes the liquid and 5 the solid beads. This would make \-(p the 

fraction that is occupied by the solid beads. It is important to note that the volume 

average is applied to the mass, momentum and energy conservation equations solved in 

the porous medium. Nield et al.[\]  also point out that for natural media the porosity does 

not normally exceed 0.6. For solid spheres, such as glass beads, the porosity can vary 

between 0.2545 and 0.4764.

For the onset o f thermal convection in fluids, it is well known that two mechanisms are 

responsible. The buoyancy (Rayleigh-Benard) effect is the principal mechanism in



problems where gravity is taken into consideration. The variation of mass density with 

temperature is the process that drives the flow. However, in micro-gravity the 

predominant mechanism responsible for convective motion is the thermoeapillary 

Marangoni effect, which is caused by surface tensions. As is noted by Carey [2], the 

surface tension at the interface between a liquid and a vapour phase varies with 

temperature in the liquid. Consequently, if the temperature varies over the interface, the 

interfacial tension will be non-unifonn. This results in the liquid near the interface in 

regions of low surface tension being pulled towards regions o f higher surface tension. If  

the temperature variation is maintained, a steady flow pattern may be established. As 

defined, in order for Marangoni convection to begin, there has to be an applied 

temperature gradient. This can either be applied at the bottom of a cavity or at the side, 

in which case it would be called a laterally heated cavity.

Due to the occurrence of liquid evaporation in experiments, the effect o f evaporation on 

thermoeapillary convection becomes very important for a more complete understanding 

o f these processes. Evaporation is the process in which a substance undergoes a state 

change from liquid to gas, as molecules leave the surface of the liquid and go into the 

vapour phase. Liquid-vapour phase change processes, such as evaporation, play a vital 

role in many technological applications. These processes are encountered in power and 

refrigeration cycles, in petroleum and chemical processing, liquefaction o f nitrogen and 

during evaporation or precipitation of water in the earth’s atmosphere to name a few. 

Carey [2], also points out the application for thermal control in spacecraft environments 

via a compact evaporator.

Following is the literature review that shows the developments in recent years in the area 

o f the onset o f thermo-convection in fluid and porous layers and the effects o f 

evaporation.

1.2 Onset o f Convection in Liquid and Porous Cavity

Nearly four decades ago, Beavers and Joseph [3] studied by experiment the boundary



conditions at a naturally permeable wall. The experiment was designed to examine the 

nature of tangential flow in the boundary region of a fluid-porous interface. A two- 

dimensional Poi seuil le flow above a fluid saturated porous block was used to demonstrate 

the value of the velocity at the interface. It was postulated that the slip velocity at the 

fluid-porous interface differs from the mean filter velocity within the penneable material, 

that shear effects are transmitted into the body of the material through a boundary-layer 

region and that the slip velocity for the free fluid is proportional to the shear rate at the 

permeable boundary. They found that the slip coefficient was dependent on the structure 

o f the material at the interface. Their experiments have also shown that the flow o f a 

viscous fluid over a porous material induced a boundary layer region within the material. 

The effect o f the boundary layer can be successfully replaced with a slip velocity 

proportional to the exterior velocity gradient. This is the adopted condition for the 

interface boundary in many experiments that followed at future dates.

It is known that, when a porous layer is underlying a fluid layer, the critical condition for 

the onset o f convection when the system is being heated from below is considerably 

different from that o f the porous layer alone. The onset o f convection in a fluid layer 

overlying a porous medium was first theoretically treated and published by Nield [4]. Up 

to that point, convection in a single fluid layer or porous layer was investigated. Nield 

applied linear stability analysis to superposed fluid and porous layers with uniform 

heating from below and general boundary conditions. However, since no experimental 

data was available, the solution was restricted to the case o f constant-flux thermal 

boundary conditions. The Marangoni effect was also taken into account at the 

deformable upper surface, and it was assumed that only non-oscillatory convection 

occurs. In the fluid region, the Oberbeck-Boussinesq equations were applied, and in the 

porous region, the steady-state Darcy-Oberbeck-Boussinesq equations. The boundary 

conditions applied for the perturbation variables included; no mass flux across the 

boundaries, continuity of tangential and normal stress at the upper boundary, continuity 

o f normal velocity, normal stress, temperature and heat flux at the interface, and the 

conditions of Beavers and Joseph [3] relating the shear in the fluid to the slip velocity at 

the interface. The result o f the analysis is a tenth-order system o f differential equations



and ten boundary conditions that form a standard eigenvalue problem. The Rayleigh 

number can be regarded as the eigenvalue and the non-dimensional horizontal wave- 

numb er a as a parameter. For the stability criterion, the Rayleigh number must be 

minimized as a function of a. The solution for constant heat flux boundary conditions 

was obtained and checked against known results for special cases such as: viscous fluid 

between one rigid and one free boundary, viscous fluid between two free boundaries, 

porous medium between one impermeable boundary and one boundary at constant 

pressure, and a porous medium between two impermeable boundaries. The results 

obtained for the constant flux case were also useful for estimating the stability criterion 

for more general thermal boundary conditions when the critical wave-number is no 

longer zero.

Chen and Chen [5] have also used linear stability analysis to investigate the 

hydrodynamic problem o f the onset o f finger convection in a horizontal porous layer 

underlying a fluid layer in the directional solidification of concentrated alloys. However, 

they used a shooting method to solve the eigenvalue problem. They began by first 

considering the thermal convection problem as a check and in the process uncovered 

some aspects overlooked by previous investigators. They found that, at low depth ratios 

(the ratio o f the fluid layer depth to the porous layer depth), the marginal stability curve 

had a bimodal nature and depicted two relative minima. For a depth ratio o f 0.10, the 

convection pattern was dominated by the porous layer. This changed to that o f the fluid 

layer as the depth ratio was increased to 0.13. For values greater then 0.13, the flow 

remained in the fluid layer, and at values greater then 0.5, the velocity in the porous layer 

was essentially zero. The critical fluid Rayleigh number for a Bernard problem with a 

fixed or a free boundary is known to be 1100 [5], with the porous interface behaving 

more like a free boundary than a fixed one. In the salt finger case, with a fixed thermal 

Rayleigh number, as the depth ratio increases, the critical salt Rayleigh number first 

decreases and upon reaching a minimum increases. This phenomenon is again due to the 

fact that, at a small depth ratio, convection is dominated by the porous layer, and at a 

larger, ratio it switches to the fluid layer.

4



To verify their theoretical results, Chen and Chen [6] also performed a series of 

experiments. They once again showed that the fluid layer dominated convection changes 

to porous layer dominated convection as the thickness ratio decreases.

Kira and Choi [7], further investigated the onset o f buoyancy-induced convection and 

diffusive phenomena between porous and overlying fluid layers heated from below. 

They focused on the critical Rayleigh number and the corresponding number o f cells, and 

defined the depth ratio d, as the thickness of the liquid layer to that o f the porous layer. In 

the supercritical regime, when d > 0.12, the convection was limited to the fluid layer with 

conduction dominating the heat transfer in the porous layer. The number of re

circulating cells was shown to increase as the Rayleigh number increased, which in turn 

caused a larger Nusselt number.

Desaive et al. [8] studied the problem of buoyancy instability in a liquid with a free 

surface overlying a porous layer heated from below. They described the porous medium 

using Brinkman’s model and determined the corresponding linear stability equations. The 

role o f a free surface whose surface tension is temperature dependent was also examined, 

which makes their stability analysis unique. They found that for the pure thermoeapillary 

condition, the critical depth ratio d, which in essence was the thickness of the porous 

layer, is equal to 0.96. If d  is below the critical value, the thermoeapillary flow will 

dominate the liquid layer without penetrating to the porous layer. For the pure buoyancy 

condition, this critical value was found to be equal to 0.90, above which the buoyancy 

convection dominated the entire cavity. The critical Rayleigh and Marangoni numbers 

for the onset o f convection were also determined.

The effects o f interaction between Rayleigh and Marangoni convection in a system of a 

liquid layer on top of a porous layer with bottom heating was examined by Saghir et al. 

[9]. They considered several cases. In the first case, the upper cavity wall was rigid and 

buoyancy convection was studied. In the second case, the liquid layer had a free surface 

and the interaction between Marangoni and Rayleigh convection was investigated for 

different thicknesses of liquid and porous layers. The full Navier-Stokes equations were



solved for the fluid layer, and the Brinkman model was used for the porous layer. From 

previous studies it was noted that in the porous medium the fluid remains stationary 

below the first critical porous Rayleigh number Rap = 4tt^. The flow starts beyond the 

first critical Rayleigh number and oscillatory flow starts when the second Rap number is 

above 390. For the fluid layer, it was noted that the critical fluid Rayleigh number Rac  

was around 1732, and the flow would become oscillatory when the fluid Rayleigh 

number was above 1x10^. For the buoyancy convection case, it was found that for equal 

liquid-porous layer thickness, the convection was confined to the liquid layer. 

Decreasing the liquid layer to the ratio o f 1/11 of the total cavity layer, forced the 

convection to move to the porous layer. For the combined buoyancy and Marangoni 

convection, it was found that the Marangoni convection enhanced the flow in the liquid 

layer. There was also an increase in the Nusselt number in the presence of Marangoni 

convection.

Villers and Flatten [10], studied the convection in liquid acetone due to coupled 

buoyancy and Marangoni effects. The acetone was subjected to a horizontal temperature 

difference in a laterally heated cavity. They performed several experiments and ran 

matching numerical simulations. Different aspect ratios, Rayleigh numbers and 

Marangoni numbers were considered in the study. Results from both methods confirmed 

the existence of three states: mono-cellular steady states, multi-cellular steady states and 

spatio-temporal structures for higher values o f the control parameter.

The effect o f interaction between Rayleigh and Marangoni convection in a superposed 

system but with a lateral heating condition was closely examined by Saghir et al. [11]. 

The convection patters were studied for various ratios o f liquid to porous layer as well as 

various non-dimensional parameters. With equal liquid-porous layer thickness for the 

Marangoni convection, it was found that as the Marangoni number increases, the 

formation o f multi-cells also increases in the liquid layer. As a result, the flow does not 

penetrate into the porous layer. A similar result was found for buoyancy convection. 

With increasing Rayleigh number, the flow did not penetrate into the porous layer.



However, when the thickness o f the liquid layer was decreased, the flow penetrated into 

the porous cavity even for a small Marangoni number. The same conclusion was 

observed for buoyancy convection. This numerical study showed the sensitivity of the 

thickness and non-dimensional parameters with respect to Rayleigh and Marangoni 

convection.

A three-dimensional finite rectangular container was considered by Dauby and Lebon 

[12]. The cavity included rigid lateral walls with a realistic no-slip condition and the free 

surface o f the liquid layer was assumed to be non-deformable. They studied 

thermoeapillary convection with the free surface subjected to a temperature-dependent 

surface tension. Both the linear and non-linear problems were considered. For the linear 

problem, a spectral Tau method [12] was used to determine the critical Marangoni 

number and the convective pattern as functions of the aspect ratios o f the container. The 

dependence o f the results on non-zero Rayleigh and Biot numbers was examined. The 

non-linear problem was studied by reducing the dynamics o f the system to the dynamics 

o f  the most unstable modes of convection. It was found that due to the presence o f the 

rigid walls, the convective pattern above the threshold may be quite different from that 

predicted by the linear approach.

Pattern formation in thermo-convection when a horizontal fluid layer is heated from 

below has also received much interest in the last decade. Generally, the motion that 

appears above the stability threshold is well structured and a regular pattern of convective 

cells may be observed. The geometrical nature of the convective cells depends greatly on 

the mechanism that causes the instability. The main results on this subject are outlined 

next.

Schatz et al. [13], have focused on the onset of surface-tension driven Marangoni 

convection in a fluid layer heated from below. Their experiments with shadowgraph 

visualization revealed a sub-critical transition to a hexagonal convection pattern in thin 

liquid layers that have a free surface.



Parmentier et al. [14], have taken on the difficult task of performing a non-linear

theoretical analysis o f coupled buoyancy and capillary thermo-convection. They studied 

the thermo-convective instability in an infinite horizontal fluid layer heated from below. 

The influence of the Prandtl number and Biot number was emphasized. For buoyancy 

convection only, rolls were observed. The situation became more complex when 

capillary effects were present. It was observed that a hexagonal cell structure was 

preferred at the linear threshold. For higher thermoeapillary forces, the size o f the region 

where hexagons were stable was larger. It was also shown that the direction of motion 

inside the hexagons was directly linked to the value of the Prandtl number. For Pr > 

0.23, the fluid moved upwards at the center o f the hexagons, but for Pr < 0.23, the fluid 

motion was inverted.

The possibility o f the occurrence of square structures in gravitational and capillary 

thermo-convection was also investigated by Regnier et al. [15]. They showed that square 

cells occurred when the instability was mainly eapillarity driven and the fluid layer was 

thin enough.

1.3 Evaporation in Liquid

In recent years, there has been an increased interest in the phenomena o f evaporation, and 

its effects have been studied for various physical and engineering applications. For 

example, in the spin-coating process, Haas and Bimie [16] showed evaporation to cause 

thermoeapillary instability within the coating solution. This instability drove the 

convective flows that resulted in non-uniform coatings. It has also been confirmed that 

Marangoni instability induced eonvection can and does occur in the droplet evaporation 

process [17-19]. A lot o f focus on the evaporation phenomena has also been given by 

Ward and his colleagues [20-22]. They performed several experiments to study the 

conditions existing at the liquid-vapour interface during evaporation and these are 

outlined next.

8



Recently, it has been noticed that there is a strong disagreement with the predictions from 

classical kinetic theory with past measurements of the temperature profile across the 

liquid-vapour interface o f an evaporating liquid. However, the previous measurements in 

the vapour phase were made within 27 mean free paths o f the interface. To determine if 

the disagreement could be resolved Fang and Ward [20] performed a series of 

experiments with temperature measurements as close as one mean free path of the 

interface of an evaporating liquid. They also studied higher rates of evaporation. When 

the system was brought to a steady state with a constant evaporation rate, the temperature 

was noted on the center line of the evaporation chamber with thermocouples and a 

positioning micrometer. Near the interface, the temperature was measured at 

approximately 0.1 mm intervals. Classical kinetic theory does specify that sharp changes 

in the temperature can occur near the interface. From the results, it is shown that in fact it 

is the higher-energy molecules that escape the liquid during evaporation. A discontinuity 

is noted in the temperature profile across the interface but in the opposite direction to that 

predicted by classical kinetic theory and at a much larger magnitude. The highest 

difference in temperature between the vapour at the interface and the liquid at the 

interface occurred in the experiment with the highest evaporation rate and was 7.8 °C.

Ward et al. [21] have conducted steady state experiments to study the interfacial 

conditions during evaporation or condensation of water. The temperature profiles were 

measured in the liquid phase near the interface. A layer was found where the temperature 

was uniform. Deeper in the liquid phase, the temperature assumed a constant linear 

gradient, indicating the mode of energy transport was by thermal conduction. For the 

evaporation experiments, the thickness of the uniform temperature layer varied from 0.35 

to 0.61 mm and decreased as the evaporation rate was increased. The existence of the 

uniform temperature layer and the gradient in the sub-interface region suggests that 

thermoeapillary convection is present in the liquid near the interface. There was also a 

temperature discontinuity that was measured at the liquid-vapour interface in each of the 

experiments. In both the evaporation and condensation cases, the interfacial temperature 

in the vapour was greater than that in the liquid. This suggests that it is primarily the 

molecules from the high-energy end of the energy distribution that are escaping the liquid



during the evaporation case. A correlation was also found between the magnitude o f the 

temperature discontinuity and an increase in the evaporation flux.

A further experimental analysis was performed by Ward et al. [22], to observe 

Marangoni-Benard convection of water, which has previously been difficult to 

accomplish. This could be due to the fact that earlier analytical studies performed have 

neglected the flow of the fluid to the interface when determining the eriterion for the 

onset o f Marangoni convection. A series of water evaporation experiments were 

conducted under steady state by having the evaporation rate equal to the syringe pumping 

rate in the procedure. The temperature was then measured over a range of positions by a 

thermocouple mounted on a positioning mierometer. The temperature profile was found 

to have a discontinuity at the interface, in which the vapor temperature at the interface 

was greater than that in the liquid at the interface. As the evaporation flux was increased, 

the temperature discontinuity increased as well. It has previously been suggested that this 

discontinuity results from the higher energy molecules escaping the liquid phase during 

evaporation. To test for recirculation in the uniform temperature region near the liquid 

interface, the thickness o f the uniform temperature layer was measured. The thickness o f 

the uniform temperature layer was shown to vary with the evaporation rate. Below the 

uniform layer, the temperature profile indicated that conduction was the primary mode of 

energy transport. It was concluded that the behavior o f the uniform temperature layer is 

consistent with that o f a convecting liquid.

1.4 Research Objectives

In this thesis, the aim o f the study is to investigate the onset of convection in a two- 

dimensional superposed liquid and porous layer cavity subject to bottom and lateral 

heating. Based on Desaive et al.’s [8] stability analysis, several cases are considered. 

First, pure buoyancy, pure thermocapillary and combined buoyancy-thermocapillary 

convection are analyzed for different porous layer thickness and different aspect ratios for 

the bottom heating condition. In the second case, the flow is studied in detail for the 

lateral heating condition. A second aim of the thesis is to verify that the two-dimensional
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results reasonably predict the convective fluid motion in the case of a three-dimensional 

cavity with buoyancy, thermocapillary and combined convection.

It is also the intention of this thesis to further study thermocapillary convection in a 

laterally heated cavity with the phenomenon of phase change, namely evaporation, at the 

free surface. Two cases are considered. In the first case, Marangoni convection is 

examined without evaporation, while the second case is examined in the presence of 

evaporation at the free surface. Different parameters are studied, such as the variation of 

the liquid-porous thickness, the aspect ratio and the Marangoni number.
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CHAPTER 2 

Governing Equations and Numerical Solution

2.1 Model Description

The schematic diagram for this study is illustrated in Figure 1. It presents two- 

dimensional and three-dimensional versions of the model. The system consists o f a 

rectangular cavity split into a liquid layer and a porous layer. The incompressible liquid 

layer, whose thermal expansion coefficient is P t, has a height of di and a width o f H. 

The physical properties o f the liquid are assumed constant, except for the density in the 

buoyancy term in the momentum equation. The top wall o f the liquid layer is a non- 

deformable free surface.

The liquid layer overlays a homogeneous and isotropic rectangular porous layer that is 

saturated with the liquid. It is assumed that the fluid and solid are in thermal 

equilibrium. The porous matrix has a porosity of ^ = 0.39, which corresponds to having 

glass beads o f 3.25 mm in diameter [9]. The Darey number is set to a constant o iD a  -  1 

X 10'^ for the duration of the study. The porous layer has the same width of H  and a 

height o f dz. The total thickness is defined hyL  = d̂  -vd^. The aspect ratio is the width 

o f the cavity to its thickness, denoted byAR = H I L ,  and will be studied in detail 

throughout the thesis. The gravitational acceleration term is set to act in the negative y- 

direction.

For the three-dimensional model, the cavity is extended by a value of 0.5, which is half o f 

the height o f the cavity, in the positive Z-axis direction. For this model, the gravitational 

acceleration term remains pointing in the negative Y-axis direction. The plane on top of 

the cavity remains a non-deformable free surface.
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2.2 Liquid Layer Governing Equations

The flow under consideration is assumed laminar and incompressible. The model is 

presented in Cartesian coordinates. The complete continuity, momentum balance and 

energy balance equations are solved simultaneously in order to study the convection 

patterns. Using the finite element technique, the equations are solved numerically for 

both the liquid layer and the porous layer of the cavity. Following are the governing 

equations, boundary conditions and numerical procedure used for the various cases in this 

study. The equations are presented for the three-dimensional model, but similar 

equations with the z-term removed are used for the two-dimensional model. The 

dimensional and non-dimensional equations are explained in detail in Appendix A.

2.2.1 Continuity Equation

The equation o f continuity is a partial differential equation which represents the 

conservation o f mass for an infinitesimal control volume. The continuity equation for an 

incompressible fluid is given by:

d u  d v  d w 1 1-----
d x  B y  d z

=  0 0)

2.2.2 Momentum Balance Equation

For the liquid layer, the momentum balance equation is represented by the Navier-Stokes 

equations. The flow model is Newtonian, incompressible and steady. In the x direction, 

the principle o f conservation o f linear momentum dictates that:

d u d u d u d p d ^ u d ^ u d ^ u

p . f U-  —  +  V
d x

---------h  W
d y d z

=  - —  +  / / •  
d x d x ^ ' d z \

( 2 )
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In the y direction, the momentum equation is written as follows:

P f
dv dv dv

ti   f" V  W ' —
dx dy dz

dp-  -  —  + //• 
dy

- p , P r ( T - T y g  (3)

The Boussinesq approximation in the momentum equation in the y-direction allows for 

modeling of buoyancy effects for an incompressible fluid. The Boussinesq 

approximation has the following two assumptions: the variations in fluid density affect 

only the buoyancy term and the fluid density is a function of temperature [23].

Lastly, in the z direction:

Pf
9w 3w 9iv

w *--------\~ V ---------- f- W ' -----
dx dy dz

dp

dz
d^w d^w d ‘w
dx dy dz"

(4)

In the above equations u , v and w represent the velocities in the x, y and z directions in a 

Cartesian coordinate system. The , T, and g  are the density o f the fluid,

pressure, dynamic viscosity, coefficient o f volumetric expansion associated with 

temperature variations, temperature and gravity, respectively.

2.2.3 Energy Balance Equation

The thermal energy conservation equation for an incompressible fluid is expressed as:

dT dT dT
XI   h V   f~ W -------

dx dy dz
k f d^T d^T d^T 

dx^ dy^ dz^
(5)

Where p f ,  {Cp)f, and ^  denote the density, the specific heat at constant pressure and the 

conductivity o f the fluid.

2.3 Porous Layer Governing Equations

For the saturated porous matrix, the Brinkman model was used. As noted by Saghir et al.
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[11], at the fluid-porous interface, the boundary conditions are the continuities o f 

velocities, temperatures, normal shear stresses and heat flux. Following are the 

continuity, momentum balance and energy balance equations for the porous medium.

2.3.1 Continuity Equation

Since the flow is incompressible, the continuity equation for the porous layer is also 

given by:

^  3v ^  dw 
dx dy dz

=  0 (6)

2.3.2 Momentum Balance Equation

Darcy was the first to formulate the basic equation of flow in porous media based on the 

proportionality between the flow rate and the applied pressure difference that was 

revealed from experiment [1], Conventionally, Darcy’s law was used as the momentum 

balance equation in a porous medium. However, as noted by Saghir et al. [9], it suffers 

from mathematical inaccuracy due to the inability to impose a no-slip boundary 

condition. Consequently, in this study the Brinkman equation is used to represent the 

momentum equation. In the x direction, the momentum equation is written as follows:

K dx
d^u d^u d^u 
dx^ dy^ dz^

(7)

In the y direction, the momentum equation is represented by:

K dy
d^v d^v 

dx^ dy^ dz^ -  P'  P t (8)

Lastly, in the z direction:
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K dz

d^w d^w d^yv 
dx^ dy^ dz^

(9)

Here, the permeability is denoted by K in the Darcy term on the left hand side o f the 
above equations (7)-(9). The Brinkman form of the momentum equation is suitable when 
one wants to match a solution in a porous medium and in an adjacent viscous fluid. The 
Brinkman extension is added as the second term on the right hand side o f the above 

equations.

23.3  Energy Balance Equation

The energy equation for the porous layer is given by:

( p c , ) ,
dT d r  dr

U   h V  --------1" W --------
dx dy dz

d^T d^T d^T  
dx^ dy^ dz^

( 10)

In addition to the governing equation, the following constitutive thermal relationship is 

used for the overall thermal conductivity:

( 11)

The subscript e specifies an effective property for which the value must be set. The 

effective thermal property is related to the fluid and solid matrix properties by the relation 

in Equation (11). The subscript s refers to the solid matrix properties while f  denotes the 

fluid properties [23]. In Equation (11), ke , k s , and kf are the effective, solid and fluid 

conductivities, respectively. The porosity is denoted by (p. In general, the dynamic 

viscosity /n and the effective dynamic viscosity / 4  are only approximately equal to each 

other. However, the Brinkman approximation sets the viscosity and the effective 

viscosity equal to each other. It is also important to note that, in order to maintain 

consistent boundary conditions in the porous layer, the equations in the fluid and porous 

medium are all solved in terms o f volume averaged quantities.
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2.4 Non-Dimensional Analysis

Non-dimensional formulation of the governing equations has many advantages. Scaling 

the variables and assembling the non-dimensional parameters provides a measure o f the 

importance of the various terms in the equations and identifies the dominant physical 

phenomena [23]. Equations (1) — (11) were rendered dimensionless by using the 

following non-dimensional groups:

u  = ^ ,  v  = ^ ,  r = ^ ,  A- = ü ,  y . z ,  z = ^ ,  (12)
Uo Uo L L L

^  „  _ r  ’ L = d^+d^,  = yjg ■ P t ' ^fl-Uo 1 I Ç

Where U, V, W, X, Y, and Z are the non-dimensional x, y and z component o f velocity, 

and non-dimensional x, y and z coordinates respectively. P  is the non-dimensional 

pressure term and Û the non-dimensional temperature term. The characteristic length, 

temperature and velocity are denoted by L, T, and u„ . During the non-dimensional 

analysis several other parameters appear, such as the Reynolds number Re, the Darcy 

number Da, and the Prandtl number, Pr. The parameters in Equation (12) were used in 

the analysis, which is fully outlined in Appendix A. The governing equations in their 

dimensionless form are described in the sections below.

2.5 Non-Dimensional Liquid Layer Governing Equations

2.5.1 Continuity Equation

d u  dV dW 
+ — + = 0 (13)

d x  dY  a z

2.5.2 Momentum Balance Equation

The Navier-Stokes equations for the X, Y and Z directions are given as follows.
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X direction:

Re dx dy dz
dP
dx

d^U d^U d^U 
d x^  ^  d¥^ ^  a z '

(14)

Y direction:

Re
L, dv _ dv az] dP Fa'z a 'z a 'z lu — +v— +w —  ax ay az . ay ax ' ay' -R e -0  (15)

Z direction:

Re dx dv dz
dp
dz

d^W d^W d^W
ax ' ay' ^ a 'z (16)

2.5.3 Energy Balance Equation

Re Pr U- —  + V —  + W- —dx d¥ dz
d^e  a 'g  d^e  
ax ' ay' az' (17)

2.6 Non-Dimensional Porous Layer Governing Equations

2.6.1 Continuity Equation

dU dV dW + -— +ax ay az

2.6.2 Momentum Balance Equation

=  0 (18)

2 0



X direction:

■ I '
■ u -  + 'd^U ,a ^ G a 'G l

_Da d x [dx^ a y ' a z '
(19)

Y direction:

Da
V = - ~  + 

dY
a v  a v  a v

— Re G (20)

Z direction:

■ 1
■ w  = - — + 'd^W a'py-j--------— a ' r '

------r-i D a j d z a z ' a y ' a z '
(21)

2.6.3 Energy Balance Equation

Re Pr-
d x  a y  az

= G d^G d^G d^G
dx^  ^ a y ^  ^ a z ^

(22)

(23)

Two model configurations are studied, namely, a bottom heated cavity and a laterally 

heated cavity illustrated, in Figure 2 and Figure 3. The definitions o f the liquid Rayleigh 

number Rai  and the porous Rayleigh number Rap vary, depending on the case studied. 

The same also applies to the definition o f the Reynolds number, which is fully derived in 

Appendix A [11].

For the bottom heating case, the Reynolds number is defined as:
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Rüp
~D^

(24)

Where the liquid and porous Rayleigh numbers are defined as follows:

g P , d l \ T , - T ^ )
a v

Rap =
g-(5j  -d^ -k -(T„ - T j )

a v
(25)

K V
The Darcy number is defined as Da — —r- and the Prandtl number is defined as Pr = — .

Û  a

or and v are the thermal diffusivity and kinematic viscosity respectively. The thickness of

the liquid layer is represented by dj and the porous layer by c/j. Here, Th is the hot

temperature at the bottom surface o f the cavity, Tc is the temperature o f the surrounding

gas near the free surface, and 7} is the temperature at the interface between the liquid and

porous layers.

For the lateral heating case, the Reynolds number is defined as:

Re =
Ra^

y Pr V y
(26)

Where the liquid and porous Rayleigh numbers are defined as follows:

V a
Ra -  ^  ~Tç)

 ̂ v a
(27)

Here, Th represents the temperature o f the right vertical wall also known as the hot 

surface and Tc denotes the temperature of the cold vertical wall of the cavity. These 

equations also show a clear relationship between the liquid Rayleigh number and the 

porous Rayleigh number for the lateral heating condition. By assuming that the thickness
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o f the porous layer is approximately that o f the entire height o f the cavity, this 
relationship can be expressed as:

Rüp = Ra^ ■ Da ■ (28)

Each geometrical model also has its own specific boundary conditions depending on the 

case studied and these are presented next.

2.7 Model Boundary Conditions

In order to properly analyze fluid motion, the basic conservation laws have to be applied 

along with the appropriate boundary conditions on each segment of the boundary. These 

conditions are shown for the two cases studied, namely, with the bottom heating and 

lateral heating conditions. The boundary conditions for the evaporation case are also 

fully outlined in the sections below.

2.7.1 Bottom Heating Boundary Condition

Figure 2 shows a diagram of the boundary conditions applied to the cavity with bottom 

heating. The bottom surface is maintained at a temperature 9,  while the two vertical side 

walls are kept adiabatic. In the porous layer, the velocity components that are normal to 

the wall surface at the boundary of the cavity are set to zero. The velocity components 

that are parallel to the wall surface remain free to move to take into account the effects o f 

the porous matrix. However, in the liquid layer, all the components o f velocity are set to 

zero at the boundary o f the cavity. At the non-deformable free surface, the velocity 

component normal to the surface is set to zero, and heat is lost to the surroundings 

through natural convection.
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Figure 2 Bottom heating boundary condition

2.7.2 Lateral Heating Boundary Condition

In the case o f the cavity which is laterally heated, the horizontal temperature gradient is 

applied parallel to the free surface. The left vertical wall is fixed with the cold 

temperature Tc, while the right vertical wall is maintained at a hot temperature Th- The 

bottom surface is insulated, while the top surface o f the liquid cavity has a non- 

deformable free surface through which heat is lost to the surroundings by natural 

convection. Since Marangoni convection is studied, the heat loss through the free surface 

is defined by the Biot number, Bi.

The boundary conditions for the four walls o f the cavity are presented in Figure 3. To 

take into consideration the Marangoni effect, which is the variation of surface tension 

along the free surface, a boundary condition for the shear stress jump along the liquid-gas 

interface is included. To account for this, a new non-dimensional surface tension is

n / |  /  ^  j

defined as, cr„, =  .It is a function o f the Marangoni number. Ma = —---- ------------
Re Pr ^ Of./i

the Reynolds number defined previously, and the Prandtl number, Pr = For
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this experiment, a linear variation of surface tension with temperature is specified at the 

fi-ee surface, which is kept at a constant location.

Ma 
Re Pr

6 =  (

0

1 
:

Liquid Layer

Porous Layer

I
I

^  =  1

V = 0, = 0
dn

Figure 3 Lateral heating boundary condition

2.7.3 Evaporation Boundary Condition

The modeling capabilities in FIDAP 8.7.0 have been enhanced to allow for evaporation at 

the liquid-vapour interface. This allows for user-defined expressions for saturation 

temperature and the latent heat o f vapourization, as well as modeling o f a single phase, in 

this case, the liquid phase.

For the study of evaporation at the free surface, a laterally heated cavity was utilized as 

shown in Figure 4. The right vertical wall was set to the non-dimensional temperature 0 

= 1, and the left vertical wall kept as the cold wall with 6 = 0. The bottom surface o f the 

cavity was kept adiabatic, and the proper velocity constraints were set on all the cavity 

walls.

It is also important to specify appropriate boundary conditions at the liquid-vapour 

interface to assist the solution of the governing equations for heat, mass and momentum 

transfer in the two fluids on either side of the interface. As noted in Carey [2], at the
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interface, the system must satisfy the principles o f conservation o f mass, momentum and 

energy. It should be noted that the general equations are greatly simplified due to the 

non-deformable surface condition, as well as the modeling of the liquid phase only. The 

conservation of mass at the interface results in:

A  (29)

Where the subscripts I, v, and n denote the liquid phase, vapour phase and the normal 

direction, respectively.

Conservation o f momentum in the normal direction to the interface, with no interface 

curvature effects and with negligible interface motion (hence no liquid and vapour 

momentum terms), results in the following boundary condition:

(30)

Where C7, „ and (T„ „ are the normal stresses in the liquid and vapour phases normal to the 

interface.

Continuity o f tangential stress at the interface, along with the no-slip condition can be 

written as:

~  ^ v ,r  =  - J :  » « /,r  =  «V,/ ( 3 1 )

The surface tension is assumed to vary linearly tangential to the liquid-vapour interface, i, 

to allow for thermocapillary convection.

Lastly, the balance o f thermal energy at the interface results in the following condition:

? / - ^ v=A -«/.A ^/v (32)
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Where qi and qv are the heat fluxes on the liquid and vapour sides, respectively, and hiv is 

the latent heat o f vapourization. It is also assumed that local thermodynamic equilibrium 

exists at the interface. In addition, a necessary boundary condition for thermal transport 

in the vapour and liquid regions is a saturation temperature that is applied linearly at the 
interface.

In FIDAP 8.7.0, equations (29), (30), and (31) are imposed during the solution o f the 

momentum and conservation of mass equations. The saturation temperature condition is 

imposed during the solution o f the energy equation [23].

Ma
Re Pr 

Liquid Layer

Porous Layer

V=0, 1 ^  = 0 
on

i
o
P

d  =  \

Figure 4 Evaporation boundary condition

2.8 Numerical Solution Technique

The fluid dynamics analysis package FIDAP 8.7.0 that uses the finite element method is 

used in this study. The source code for several cases is outlined in Appendix B.

For free surface problems, FIDAP 8.7.0 utilizes the segregated solver. This is an

27



uncoupled method where each degree o f freedom is solved separately. To update the free 

surface during iteration, the normal stress update algorithm is used for cases without 

evaporation, and the kinematic algorithm for cases with evaporation. In the kinematic 

update, the normal and tangential stress boundary conditions are satisfied throughout the 

solution procedure [23].

In post-processing operations, variables such as the stream function, heat fluxes and flow 

rates can be derived from the numerically computed velocity, pressure and temperature 

fields. These capabilities are provided by the graphics postprocessor program FIPOST, 

which can also graphically display the numerical results [23].

2.8.1 Finite Element Analysis

The numerical procedure consisted o f solving the non-dimensional Equations (13) -  (17) 

and Equations (18) -  (23) using the finite element technique. The finite element 

technique reduces the infinite number o f degrees o f freedom in a problem to a finite 

number by solving a system of equations. For the two-dimensional model, the 

computational domain was divided into many small quadrilaterals. For the three- 

dimensional model, the cavity was divided into brick elements. To achieve a greater 

accuracy in the results, a finer mesh was applied to the two vertical walls o f the 

rectangular cavity and at the free surface where the driving force of the flow is located 

and where evaporation takes place in the second case.

The mesh was defined with a finite number of elements, where the variables were 

evaluated simultaneously. As can be seen in Figure 5, the free surface of the cavity is 

defined by key-points 3 to 9, and the fluid-porous layer interface by key-points 2 to 8. 

The velocities, temperature and pressure are unknowns and are numerically calculated at 

each node in the meshed cavity. A linear approximation for the pressure using the penalty 

method is adopted. The convergence criterion for the iterative solution of symmetric and 

non-symmetric linear equation systems is 10'^. Therefore the iterations will continue 

until an error o f 10'^ is found between two consecutive iterations.
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Figure 5 Node numbers for key-points

2.8.2 Mesh Sensitivity Analysis

Performing a mesh sensitivity analysis is an integral part o f producing accurate, time- 

efficient and cost-effective results. For this study, the nodal point mesh for the cavity 

was generated according to the anticipated field variables. Since a lateral heating scheme 

was employed for much of this study, it was assumed that a high temperature gradient 

occurs parallel to the free surface. Numerically, it is always wise to have fine nodal 

spacing in the direction of high gradients, while in directions with smaller gradients much 

larger nodal spacing may be used. As mentioned before, the mesh is graded so that it is 

finer near the hot and cold wall, as well as the free surface. For the two-dimensional 

study, the number of elements in the Y-axis was kept constant at 40. For the mesh 

sensitivity analysis, the cavity was varied from 40 to 140 elements in the X-direction in 

increments o f 20. Figure 6 shows some of the different finite element mesh 

configurations considered. It is evident from this figure how the coarseness o f the mesh 

changes with each trial. For the sensitivity analysis, the two-dimensional pure 

thermocapillary case with a laterally heated cavity was used to calculate and compare the
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Nusselt number for the various mesh gradients. The case selected had the following 

parameters: the Marangoni number Ma = 60000, the liquid and porous layer thicknesses 

d] = d2 = 0.5 and the aspect ratio AR = 4. The Nusselt number has been chosen for the 

analysis because it is directly related to the driving force o f the physical problem, the 

temperature gradient. The Nusselt number is calculated at the hot wall and at the cold 

wall in a similar fashion to that o f Kim and Choi [7]. The equations are expressed as 

follows:

X =4

i do
0 a ?

■ dY  (32)
X=Q

The overall averaged Nusselt number is:

(33)

The results o f the analysis are presented in Table 1, with the Nusselt number listed for 

each case. It is evident from the table that the Nusselt number is converging to an 

accuracy of two decimal places after the 100 element point. There is not a significant 

change between 120 and 140 elements. Thus for the present study a mesh o f 120 

elements in the X-axis by 40 elements in the Y-axis is selected. The chosen mesh 

configuration is shown in Figure 6c. Utilizing a finer mesh would result in a longer time 

being required for convergence without significantly improving the accuracy of the 

results.

For the three-dimensional model, a similar finite element mesh is adopted in the X and Y 

direction. It should be pointed out that in the Z-direction the cavity has a length o f 0.5 as 

compared to the total height o f 1 in the Y-direction for the cavity. Assuming that the 

driving force of the temperature gradient is still applied in the X-direction, a finite 

element mesh of 10 elements is chosen for the Z-axis.

30



  .
. F I I I i l l l l l l l l l i l l l l l l K I I I H I
i i n i i i i i i i i i i t t n i i t i i i t i t i i i

iimlmlHiKBiimimiiiiniiiiitiiuiiHii

' II  111111*11111

mulmMHllllllllll'IlH
i r iR i i i i i t t i i i i iK i i i n i i t i M ih
i i m i i i i i i i i i i i n i i i i i M i i i i i i i i

S i S i s S S
liii i i i
i i i l i i l l i l i i i i i i i i i i i i i i i i i l i i i i i ifiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
! | | l 8 l l ! ! ! ! ! S I I I ! l l l l l l ! i i l l l l l l liiimiiÊÊiÊiiimmiimi'iiiiiiiiiiiiiiitiiiiiiiiiiiiiiiii

o

iillÉli
i i i i

I S I I s

niiiiimiiiimiiiitiiiiimim

l l l l l l i l l l l l l l l M l l l l l t l t l i l l l l l i l
i i i i i i i i i i i i i iR rn i in in t i i i i iM M

l i i l i i i i i l i i i

g
4)
"o
c/i

I

(/)

X
o
X 
O 

CS (N

"Sc
%"O
'03
0 
6

a

1
e

§
I

13

c
£

VO

%
&

o
o
X
o
00

oTf
X
oTf-
CJ3

1css
Z

vnr-r-
VO

r-
vnr-
VO

o
VO

OvO
VO

OOO
VO

s
s

w

(VV)%3
z

m m m m m

1
I

o 0)
w

1
?

o
VO

O
oo §

O
N §

X

I
CO

I

uI
4-»

I
1
1
U

IS9
H





CHAPTER 3

Superposed Liquid and Porous Layer with Adiabatic Free

Surface

3.1 Two Dimensional Modeling

To study the patterns o f fluid motion, the discipline o f fluid mechanics utilizes several 

different techniques to visualize the flow. One common type o f line pattern is a 

streamline, which is a line everywhere tangent to the velocity vector at any given instant

[24]. In this study, to display the results of computed flow fields for the two-dimensional 

modeling, streamline functions are employed. For two-dimensional incompressible flow,

gY
the stream function, ÎP , is determined using the following relationships; V  = and 

BY
V =  ——— . The lines o f constant IPare then used to give the streamline pattern o f the

flow in the graphical results. The two-dimensional modeling section is broken down into 

several subsections. Bottom heating and lateral heating conditions are investigated for 

buoyancy, thermocapillary and combined convection in a cavity with a superposed liquid 

and porous layer.

3.1.1 Bottom Heating Buoyancy Convection

The convection pattern predicted by the linear stability analysis o f Desaive et al. [8] for 

different Biot numbers, Bi = 100 and Bi=\ is shown in Figure 7 for aspect ratio A R =  \ . 

Desaive et al.'s analysis showed that the flow switched from convection in the liquid 

layer to that o f the porous layer when the thickness <7;, was equal to 0.90. A relationship 

between the thickness cf; and the critical Rayleigh number was also found for Biot 

numbers that exceeded 100. Therefore, in the first case, the Biot number is set equal to 

100. Also, in the present analysis the liquid Rayleigh number, Rai  is set equal to 1000 

and the porous Rayleigh number. Rap is set equal to 55, for *  = 0.9. For d2 = 0.97, the
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liquid Rayleigh number is set to 100 and the porous Rayleigh number is set to 75.

In the figure, two large convective cells are evident, rotating in opposite directions with 

the left cell rotating counterclockwise. When the porous layer thickness is equal to the 

critical value of d2 -  0.90, the center of the cell is in the fluid layer. The main convection 

is also taking place in the fluid layer, with the flow beginning to penetrate into the porous 

layer. However, as the porous layer thickness is increased to above the critical value, 

namely d2 = 0.97, the convection then switches completely to a porous layer dominated 

flow. When the flow of the Bi = 100 case is compared to that o f the Bi — 1 case, it can be 

seen that the flow becomes weaker with decreasing Biot number. This is also evident in 

Figure 7a as the center o f the convective cell moves closer to the lateral walls. For the 

case of Bi = 1 in Figure 7b, the cell also moves closer to the liquid layer due to the lower 

Biot number. According to Desaive et al.'s analysis, the critical Rayleigh number should 

be smaller for Biot numbers that are less than 100. However, even for Bi = 1, it is shown 

that the convective cell pattern behaves in a similar manner.

To further examine the effect o f the aspect ratio on convection. Figure 8 shows in more 

detail the streamline and temperature variation pattern for aspect ratios ranging from AR 

= 1 to AR  = 6 for the case of Bi = 1. The critical porous layer thickness value is exceeded 

at d2  = 0.97 and the flow is taking place in the porous regime. It is found that as the 

aspect ratio increases, multi cellular flow begins to form in the porous cavity. This is 

most evident when the aspect ratio AR is equal to 6 in Figure 8d. The strength o f the flow 

also increases with a maximum streamline value o f 3.51x10"^ for AR ~ 1 and 6.71x10"* 

for AR  = 6. A similar convection pattern trend has also been observed by Saghir et al. 

[11], where the flow was studied for a Biot number o f 100.

34



a)

b)

1

I

Bi=100 Bi=l

Figure 7 Buoyancy convection in the cavity for different Biot numbers (AR=1, Pr=7):
a) di^O.lO, d2=0.90, RaL^lOOO, Rap=55 b) di=0.03, d2=0.97, RaL=100, Rap=75
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Figure 8 Streamlines and temperature variation in the cavity for different aspect ratios
(RaL=100, Rap=75, di=0.03, d2=0.97, Bi=l, Pr=7) :

a)A R =l b) A R-2 c)AR=4 d)AR=6
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3.1.2 Bottom Heating Marangoni Convection

For Marangoni convection in a bottom heated cavity, Desaive et al. [8] found that the 

critical depth thickness d2 was equal to 0.96. Above this value, the flow dominated the 

entire porous layer, and below this value, it was limited to the fluid layer. They also 

found a relationship between dv and the critical Marangoni number. For the case of d2 = 

0.96, the critical Marangoni number was found to be 60000. In Figure 9, the convection 

pattern is again studied for thermocapillary convection for different aspect ratios and Biot 

numbers. The flow dominates the porous layer with the porous layer thickness above the 

critical value of dj = 0.97. The aspect ratio is once again increased from AR  = 1 to AR  = 

6 and the Biot varied from Bi = 100 to 5 / = 1. In both cases it is shown that the 

convection pattern differs greatly from the buoyancy flow pattern in the porous layer, as 

multiple convection cells do not form as the aspect ratio is increased. Therefore, for flow 

in the porous regime, the aspect ratio does not have any effect on the number o f cells. 

The flow also generally becomes weaker with the increasing aspect ratio but much 

stronger with decreasing Biot number. However, once again the phenomenon o f the 

counter rotating cells shifting to the lateral walls is noticed when the Biot number is taken 

to equal 1. It is also shown that a Biot number below 100 does not have an effect on the 

convection pattern in the cavity. Therefore, a detailed study is performed next on fluid 

dominated flow with a Biot number equal to 1.

In Figure 10, thermocapillary convection is presented with Ma = 60000 and Bi -  1. The 

convection is limited to the liquid layer by setting the porous layer thickness equal to the 

liquid layer thickness such as <7/ = = 0.5, which is below the critical thickness value.

When the flow is dominated by the liquid layer, multi cell formation is once again 

observed as the aspect ratio is varied from AR = \ io AR = 6 with multi cells forming 

accordingly. A similar trend has also been observed by Saghir et al. [11], who found the 

number of convective cells to be dependant on the available space in the cavity. The 

strength o f the flow also becomes greater with the formation o f more convective cells, 

with the maximum streamline value fox AR = i being 1.14x10 ' and fox AR  = 6 the value 

being 2.79x10’'.
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Figure 9 Thermocapillary convection in the cavity for different aspect ratios and Biot
numbers (Ma=60000, RaL=0.1, Rap=0.075, di=0.03, d2=0.97, Pr=7) :

a)A R=l b)AR=2 c) A RM  d)AR=6
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Figure 10 Streamlines and temperature variation in the cavity for different aspect ratios

(Ma=60000, RaL=0.1, Rap=0.0055, di=d2=0.5, B i=l, Pr=7);

a) AR=1 b) AR=2 c) AR=4 d) AR=6
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3.1.3 Lateral Heating Buoyancy Convection

The lateral heating condition is also closely examined, as it is well known that the applied 

heat transfer insures motion. First buoyancy convection is studied with varied porous 

layer thicknesses. In the following sections, thermocapillary and combined convection is 

also studied for the lateral heating condition.

Figure 11 shows buoyancy convection for different aspect ratios with the liquid Rayleigh 

number held constant at Rai = 1000. When the porous layer thickness is set to d2 = 0.5, 

the flow remains in the liquid layer as the aspect ratio is increased from AR  = 2 to AR = 4. 

When d2 = 0.97, the flow similarly dominates the porous layer in the cavity with the cell 

now within the porous layer itself. It is also noted that for the case o f ĉ 2 = 0.97, as the 

aspect ratio increases the flow gets stronger. The maximum streamline value increases 

from 8.59x10"^ for ̂ 7? = 2 to 8.84x10'^ for AR = 4.

Figure 12 investigates buoyancy convection as the liquid Rayleigh number is decreased 

from 1000 to 400 for the case when the porous layer thickness is set to d2 = 0.5 and d2 = 

0.97. When the flow dominates the liquid layer, it can be seen that no significant changes 

occur to the streamline convection pattern as the Rayleigh number decreases. However, 

the flow weakens considerably, with the streamline value decreasing from 6.08x10'^ to 

4.04x10'^ for the liquid Rayleigh number equal to 1000 and 400 respectively. As the 

flow dominates the porous layer with d2 = 0.97, it is noticed that the center o f the 

convective cell does not penetrate as deep into the cavity with the Rayleigh number 

decreased to Rai = 400. However, there is little difference in the streamline values 

between the two cases and the flow is still dominant in the porous layer. This has also 

been observed by Saghir ef al. [11], when studying smaller values o f the Rayleigh 

number. Therefore, the Rayleigh number has more o f an effect on the strength o f the 

flow, when the flow is constrained to the liquid layer, as opposed to the porous layer.

40



3.2x10-4-----

AY=9.04x10'^

di=d2=0.5 d|=0.03 d2=0.97

4 . 4 6 x 5  0 ‘ - _

b)

Figure 11 Buoyancy convection in the cavity for different aspect ratios 
(RaL=1000, M a=l, B i= l, Pr=7); a) AR=2 b) AR=4
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Figure 12 Buoyancy convection in the cavity 

(M a=l, AR=2, Bi=l, Pr=7); a) RaL=1000 b) RaL=400
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3.1.4 Lateral Heating Marangoni Convection

Several cases are studied in detail for a liquid layer overlying a porous layer in a laterally 

heated cavity for thermocapillary convection. The Marangoni number is kept constant 

and equal to Ma = 60000, and the liquid Rayleigh number is kept constant and equal to 

Jiai = 1 during the entire analysis. It should be noted that the liquid Rayleigh number is 

not zero but is very small in comparison to the Marangoni number. This approach 

ensures that Marangoni convection will be the dominant force. To mimic a microgravity 

situation, the gravity vector is assumed to be equal to 10"̂  g.

In the first case, the flow structure is examined as it varies with the aspect ratio and is 

compared to a similar analysis by Saghir et al. [11]. In the second case, thermocapillary 

convection is examined for different Marangoni numbers and thicknesses o f liquid and 

porous layers. Again a eomparison is made to the results obtained by Saghir et al. [11].

Thermocapillary convection is presented for aspect ratios o f AR — 2 and AR  = 4 in Figure 

13. For a porous layer thickness o f dz=  0.5, the flow is limited to the liquid layer. The 

porous layer acts as a solid wall and the flow remains entirely in the liquid layer. When 

the aspect ratio is equal to 2, there is a large convective cell with the eenter near the 

middle of the cavity present in the liquid layer. The convection is said to be mono

cellular. However, as the aspect ratio is increased to 4, multi-cellular flow becomes 

apparent. This has also been predicted by Villers and Flatten [10] and their result o f 

increasing the aspect ratio, is shown in Figure 13c. Therefore, in a finite cavity, the 

number of cells depends on the available space, in essence the aspect ratio.

As the thickness of the liquid layer is minimized and the porous layer is set to d2 — 0.97, 

the flow becomes dominant in the porous layer. It is noticed that a large convective cell 

invades the porous cavity for both values o f the aspect ratio, with the center o f the cell 

close to the free surface and liquid layer. However, the aspect ratio has no effect on the 

number of eonvective cells present in the porous layer. The streamlines get weaker as the 

aspect ratio increases, which results in reduction o f size of the convective cell. The flow
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also gets weaker when the convection is switched from liquid layer dominated to porous 

layer dominated, due to the smaller reach of Marangoni convection within the porous 
layer.

I/
5.52x10-1

5.47x10-1

AT= 1.094

di=d2=0.5

A ^ = l.033x10’̂

di=0.03 d2=0.97

c)

Figure 13 Thermocapillary convection in the cavity for different aspect ratios
(Ma=60000, RaL=l, Bi=1, Pr=7); 

a) AR=2 b) AR=4 c) AR = 4, Ma = 8000, Pr = 4 Villers and Flatten [ 10]

The effect o f varying the Marangoni number is illustrated in Figure 14, with the aspect 

ratio kept constant atAR = 2 and the flow dominant in the liquid layer. As the Marangoni 

number was decreased from 60000 to 30000 and finally to 10000, the flow got 

considerably weaker, with the maximum streamline value equal to 1.05x10*, 5.93 and
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1.88 respectively. It is also noticed that the center o f the convective cell shifted towards 

the hot side wall as the Marangoni number got smaller and the flow weaker. This trend 

enforces the fact that a laterally heated cavity ensures fluid motion, without dependence 

on a critical Marangoni number.

Figure 15 depicts thermocapillary convection in the cavity for aspect ratios ofAJi = 2 and 

AH = 4 with d2 = 0.5 being held constant. The flow remains dominant in the liquid layer, 

with multi cellular flow still forming at Ma = 30000. However, as the Marangoni number 

is decreased to Ma = 10000, multi cellular formation is no longer observed in the 

convection pattern. The flow also gets stronger as the aspect ratio is increased with a 

maximum streamline value of 5.93 for AR -  2 and 6.98 for AR  = 4 in the case o f Ma = 

30000. In the case o f  Ma = 10000, the streamline value increases from 1.88 for AR  = 2 to 

2.41 for^^i? = 4.

The porous layer thickness is also varied from = 0.5 to d2 = 0.97 to study the 

convection pattern when Ma = 30000 and Ma ^  10000 in Figure 16. As the porous layer 

thickness is increased, the flow switches from liquid layer dominant flow to porous layer 

dominant flow. When Ma = 30000 and d2 = 0.97, the flow penetrates to the bottom o f the 

porous cavity. However, when the Marangoni number is decreased further, the flow no 

longer penetrates right to the bottom o f the cavity due to the weaker flow. The maximum 

streamline value decreases from 7.11x10'^ to 2.85x10'^.
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b) AT=6.25xlO"'

9.9xJ0-2

c)A'F=l.98x10''

Figure 14 Thermocapillary convection in the cavity for different Marangoni numbers
( R a L = l ,  di=d2=0.5, AR=2, Bi=l, Pr=7) : 

a)Ma=60000 b) Ma=30000 c)M a=10000
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Figure 15 Thermocapillary convection in the cavity for different aspect ratios
(R at= l, di=d2=0.5, B i=l, Pr=7): 

a) AR=2 b) AR-4

3.67x10-1 .27x10-'

AY=7.34xlO" AY=2.54xlO

É 1.49x10

A'T=3.0xl0-4

b)
Ma=30000 M a=10000

Figure 16 Thermocapillary convection in the cavity for different thickness dj and d2

(RaL=l, AR=4, B i=l, Pr=7); 

a) d]=d2=0.5 b) dj=0.03, d2=0.97
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3.1.5 Lateral Heating Combined Buoyancy and Marangoni 

Convection

To study combined buoyancy and Marangoni convection. Figure 17 shows the case 

where the Marangoni number is equal to 60000 and the liquid Rayleigh number is equal 

to 1000. When the flow is limited to the liquid layer the streamline pattern is very similar 

to that o f Marangoni convection alone, with multi cellular convection also forming as the 

aspect ratio is increased. When compared to the case o f buoyancy convection alone in 

Figure 11a, it can be seen that Marangoni convection significantly enhances the flow in 

the liquid layer with the maximum streamline value increasing from 6.08x10'^ to 

3.32x10“'. However, when the flow penetrates into the porous layer, the flow is mainly 

due to the buoyancy convection with the streamline patterns being similar to that of 

buoyancy convection alone.

1.74x10-

AY=3.48x10

df=d2=0.5

-2

ifT -7

4 . 9 7 x 1 0 :

b)

A4>=9. 94x10“

a)

AY-8.7xlO“̂  

d,=0.03 d2=0.97

Figure 17 Combined thermocapillary and buoyancy convection in the cavity 
(Ma=60000, RaL—1000, Bi—1, Pr=7): 

a) AR=2 b) AR=4
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With the combined buoyancy and Marangoni convection, the center o f the convective 

cell shifts towards the liquid layer and the flow penetrates less into the porous layer. 

When the aspect ratio is increased, the cell also shifts closer to the hot vertical wall on the 

right. The Marangoni convection enhances the heat transfer through the free surface 

leading to the reduced convection in the porous layer. This analysis is comparable to that 

shown by Saghir et al. [II ], where the general flow profiles remained approximately the 

same for the combined flow case.

Figure 18 shows a similar case to that of Figure 17 but with a decreased Marangoni 
number of Ma = 30000. The streamline patters are again similar to the case of 
Marangoni convection alone, when the flow is dominant in the liquid layer but with a 
weaker flow due to the reduced Marangoni number.

9.44% u d  ;

4.97x10

AY=9.94xlO

I

AT^=9.25x10'^
b)

di=d2=0.5 d]=0.03 dz=0.97

Figure 18 Combined thermocapillary and buoyancy convection in the cavity

(RaL=1000, AR=2, B i=l, Pr=7):

a) Ma=60000 b) Ma=30000
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3.2 Three Dimensional Modeling

The results for the three-dimensional modeling are presented as velocity vector plots with 

a velocity vector drawn at each nodal point. The velocity vector’s length is proportional 

to the fluid speed and the direction of flow is indicated by its inclination. The cavity has 

a height o f L in the Y-axis and a width of H in the X-axis, as in the two-dimensional 

model. A depth o f 0.5 is added in the positive Z-axis direction to make the cavity three- 

dimensional. To display the results, the cavity is cut right in the middle at 0.25 along the 

non-dimensional Z-axis.

The three-dimensional modeling section is broken down into subsections that include 

lateral and bottom heating. Again, different convection types are studied in detail to 

verify that the two-dimensional model reasonably predicts the three-dimensional results.

3.2.5 Lateral Heating

The two-dimensional buoyancy case with liquid Rayleigh number equal to 1000 and a 

negligible Marangoni number, to prevent thermocapillary convection, has been chosen as 

a comparison for the three-dimensional model. The porosity is unchanged at 0.39, with 

the Darcy number kept at Da = 10'^. A case with the flow limited to the fluid layer with 

di -  0.5 is studied with an aspect ratio AR = 4.

The velocity vector diagram is displayed in Figure 19. It is clearly seen that a similar 

flow pattern to that o f Figure l ib  has developed in the liquid layer. The characteristic 

buoyancy type of symmetrical convection cell is present, with the center of the cell near 

the right vertical wall, exactly in the middle o f the liquid layer. From the arrows on the 

velocity vectors, one can tell that the flow is moving in a counter-clockwise direction. It 

is also evident that there is no flow in the porous layer of the cavity.
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Figure 19 Buoyancy convection velocity plot with a cut on the Z-axis at 0.25, displayed 

in the X-Y plane (RaL=1000, M a=l, di=d2=0.5, AR=4, B i=l, Pr=7)

To further investigate the similarity between the two and three-dimensional cases, the 

temperature and velocity profiles are plotted at the free surface of the cavity. Figure 20a, 

shows the temperature versus the X-coordinate, or the aspect ratio, for the two cases 

studied. It is clearly seen from the plot that the temperature distribution follows the same 

pattern for both graphs. Further, in Figure 20b, the U component o f velocity is plotted at 

the free surface. The trend of the two plots is the same with the maximum two- 

dimensional velocity equal to 4.56x10'^ and the maximum three-dimensional velocity 

equal to 3.92x10'^. The small difference in these magnitudes can be attributed to the fact 

that the convection is slowed in the three-dimensional cavity by the effects o f  the 

additional vertical walls, as noted by Dauby and Lebon [12] in their three-dimensional 

cavity study. This effect is further illustrated by plotting the U component o f velocity, 

with cuts made closer to the vertical wall at Z = 0.1 and Z = 0.01, with the velocity 

decreasing accordingly.
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Figure 20 Comparison o f two and three-dimensional buoyancy convection 

(RaL=1000, M a=l, AR=4, B H l, Pr=7):

a) Temperature at free surface b) U at free surface
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A comparison has also been performed for thermocapillary flow in a two and three- 

dimensional laterally heated cavity. The two-dimensional case chosen for the analysis 

included a Marangoni number o f 60000, equal liquid and porous layer thicknesses dj = da 

= 0.5 to ensure flow in the liquid layer, and an aspect ratio of 4. The two-dimensional 

results can be seen in Figure 13b. The Biot number is kept constant at Bi = 1 for all cases 

studied. From the velocity vector plot in Figure 21, it is easy to see that a similar flow 

pattern developed, with the center o f the larger cell closer to the hot vertical wall and free 

surface. The presence of a second cell further to the left cannot easily be seen from the 

vector plot; however it is seen in Figure 22b as a velocity increase at the free surface in 

that area. Therefore, for both the two and three-dimensional thermocapillary flow, multi 

cellular flow develops as the aspect ratio is increased.

iirnirnim m rim siiiiiw iiiw iTTTTTTTTrTifisi^

V

/ / n ,,.

Figure 21 Thermocapillary convection velocity plot with a cut on the Z-axis at 0.25, 

displayed in the X-Y plane (Ma=60000, RaL=l, di=d2=0.5, AR=4, Bi=I, Pr=7)
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Figure 22 displays the comparison o f the temperature at the free surface and the U 

velocity component at the free surface for thermocapillary convection for both the two 

and three-dimensional geometry. The small oscillations at the start o f the plot for the 

three-dimensional case are due to the large temperature gradient in that region and 

boundary layer problems at the vertical wall. The temperature plot in Figure 22a shows a 

similar trend for both cases, with the three-dimensional temperature being slightly higher 

in the first half of the cavity closer to the hot wall. From Figure 22b, it is seen that in the 

three-dimensional case a second cell also develops and is shifted closer to the hot wall, as 

compared to the two-dimensional case. This shift of the second cell towards the hot wall 

could be attributed to the fact that, for the three-dimensional cavity, a third cell is 

beginning to form near the cold vertical wall. Therefore, it is found that, in the three- 

dimensional cavity, multi cellular flow formation occurs earlier, for smaller aspect ratios, 

than in the two-dimensional case. The maximum non-dimensional velocity in the X- 

direction is equal to 274 and 281 for two and three-dimensional convection, respectively. 

Thermocapillary convection is visibly a stronger driving force for fluid flow when 

compared to buoyancy convection alone in a laterally heated cavity.
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Figure 22 Comparison of two and three-dimensional thermocapillary convection 

(Ma=60000, d]=d2=0.5, AR=4, B i=l, Pr=7) ; 

a) Temperature at the free surface b) U at the free surface
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The last case studied for lateral heating, is that of combined thermocapillary and 

buoyancy convection. The two-dimensional case that has been chosen for the analysis 

has the Marangoni number of Ma = 60000 and the liquid Rayleigh number o f Rül = 

1000, as indicated in Figure 17b, The cavity is studied for equal thicknesses dj = d2 = 0.5 

and an aspect ratio o f AR  = 4. Multi cellular flow is present in the three-dimensional 

cavity, with the center o f the cell close to the hot wall and free surface.

m m  nnm#

I III,
->'^^yyyy/'/////t 11,.

Figure 23 Combined thermocapillary and buoyancy convection velocity plot 

with a cut on the Z-axis at 0.25, displayed in the X-Y plane 

(Ma=60000, RaL=1000, di=d2=0.5, AR=4, Bi=l, Pr=7)

Figure 24 presents the plots of the temperature and the U velocity component at the free 

surface for combined thermocapillary and buoyancy convection. The maximum non- 

dimensional velocity for the two and three-dimensional convection is equal to 8.67 and 

8.89, respectively. These values are in close agreement with each other. However, once 

again in the three-dimensional flow, the second cell shifted closer to the hot wall-
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Figure 24 Comparison o f two and three dimensional combined buoyancy and 

thermocapillary convection (Ma=60000, RaL=1000, di=d2=0.5, AR=4, B i=l, Pr=7):

a) Temperature at the free surface b) U at the free surface
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3.2.6 Bottom Heating

Thermocapillary flow in a bottom heated cavity has also been analyzed for similarity 

between two and three-dimensional convection in Figure 25. The case studied included 

thermocapillary convection with a Marangoni number o f Ma = 60000, an aspect ratio of 

AR = 2, and equal liquid and porous layer thicknesses dj = d2 = 0.5. As in the two- 

dimensional model, the flow remained in the liquid layer, without penetrating into the 

porous one. Two counter-rotating cells formed with the highest velocity near the free 

surface.

Figure 26 shows a graph of the non-dimensional X-component o f velocity, U, at the free 

surface for thermocapillary convection in a bottom heated cavity. The counter-rotating 

nature o f the two cells can clearly be seen by the opposite velocities o f the two cells. The 

trend in the velocities is also very similar for the two cases studied. The three- 

dimensional model is in close agreement with the two-dimensional one. Therefore, for 

the evaporation analysis in the next chapter, only a two-dimensional cavity is studied for 

the lateral heating condition with thermocapillary convection.
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Figure 25 Thermocapillary convection velocity plot 

with a eut on the Z-axis at 0.25, displayed in the X-Y plane 

(Ma=60000, RaL=0.1, Rap=0.0055, dj=d2=0.5, AR=2, B i=l, Pr=7)
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Figure 26 Comparison of two and three-dimensional thermocapillary convection 

(Ma=60000, RaL=0.1, Rap=0.0055, di=d2=0.5, AR=2, B i= l, Pr=7)
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CHAPTER 4

Superposed Liquid and Porous Layer with Evaporation at

Free Surface
4.1 Introduction

The evaporation of the liquid occurs at the free surface, thus simultaneously removing 

heat and mass from the system at that interface. Numerically, only the liquid phase is 

being modeled with the vapour phase imposing some boundary conditions at the liquid 

vapour interface as described in section 2.7.3. The laterally heated thermocapillary 

convection case is studied for different aspect ratios, thickness ratios and Marangoni 

numbers. Evaporation is imposed on the free surface with a linear saturation temperature 

applied at the liquid-vapour interface.

4.2 Lateral Heating

Figure 27 displays the results for thermocapillary convection with evaporation in the 

liquid layer. The case is considered with the Marangoni number equal to 60000. The 

liquid Rayleigh number is suppressed to ensure thermocapillary convection. To analyze 

the flow, the results are compared to those of the case without evaporation at the free 

surface, as shown in Figure 13. The phenomenon of evaporation produces some 

interesting results. Most evident is the fact that the location of the cell switches from the 

hot wall to the cold wall in fluid dominated flow, where the thickness of the liquid layer 

is equal to that of the porous. However, the fluid motion is still in the counter-clockwise 

direction. Also, as the aspect ratio is increased, multi cellular flow does not develop as in 

the case without evaporation. It is also noted that the flow becomes much stronger when 

the values o f streamlines are compared. In the case without evaporation, for AR =2, the 

maximum streamline has a value of 1.05x10’ as compared to that with evaporation of 

2.81x1 o ’. For an aspect ratio of AR = 4, the case without evaporation has a maximum 

streamline of 1.04x10’, while with evaporation this increases to 2 .03xl0’. It is evident 

that evaporation enhances the flow greatly when the fluid flow is constrained to the liquid
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layer. Similar findings have been shown by Ward et al. [21], where the evaporation 

enhanced Marangoni convection.

When comparing the case where the flow enters the entire cavity with a porous layer 

thickness of d2 = 0.97, another interesting fact is observed. For the case o f convection 

without evaporation, the maximum streamline value for AR = 2, is 1.0x10^. This 

decreases to 6.4x10’̂  when evaporation is added at the liquid-vapour interface. Similarly 

for AR = 4, without evaporation, the maximum streamline value is 9.82x10 and with 

evaporation this decreases to 3.98x10'^. The strength of the flow in the porous layer also 

decreases as the aspect ratio is increased. A conclusion can be made that evaporation 

does not have a significant affect on flow that is occurring predominantly in the porous 

layer.

6 . 4 x 1 0

3.37x10-'»

c)
di=d2=0.5

AY=6.75xlO"

7 3.98x10-.!

1 .0 7 -

A'F=4.19x10-'’

di=0.03, ds=0.97

AY=4.19x10-^

Figure 27 Thermocapillary convection with evaporation in the liquid layer 
(Ma=60000, RaL=l, Pr=7) ; a) AR=2 b) A R -4 c) A R-6
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Also analyzed is the non-dimensional X-component o f velocity, U, at the free surface for

the case without evaporation and with evaporation. This comparison is shown in Figure 

28 for AR  = 2 in part a and for AR = 4 in part b. For the case when the aspect ratio is 

equal to 2, the velocity is seen to increase significantly when evaporation is included in 

the liquid layer. The case without evaporation has a maximum velocity value of 284, and 

with evaporation this increases to 375. The evaporation is definitely enhancing the flow 

when the convection is limited to the liquid layer. For the case o f AR = 4, the velocity 

actually decreases when evaporation is present. The value changes from 274 without 

evaporation to 251 with evaporation. This can be explained by the fact that in the case 

without evaporation, multi cellular flow is present, but with evaporation, multiple cells do 

not develop.

Figure 29 shows a comparison of the X-component o f velocity, U, plotted on the vertical 

median of the cavity for convection with and without evaporation. A parabolic trend in 

the plot is observed which was also noted by Villers and Flatten [10] for flow in a liquid 

layer. It is also confirmed that there is no flow in the porous layer with a zero velocity 

throughout the vertical cut below a Y-axis coordinate value of 0.5. The direction o f the 

flow is also similar in both cases with the velocity in the counter-clockwise direction. 

From the plot, it is clear that evaporation enhances the velocity of the convection. For the 

case without evaporation, the surface velocity in the negative X-direction is 92, and with 

evaporation this increases to 298.
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Figure 28 Comparison of thermocapillary convection with and without evaporation in 
the liquid layer (Ma=60000, R a^^l, di=d2=0.5, Pr=7); a) AR=2 b) AR=4
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Figure 29 Comparison of U component o f velocity on vertical median o f cavity for 
thermocapillary convection with and without evaporation 

(Ma=60000, RaL=l, d,=d2=0.5, Pr=7)

Thermocapillary flow with evaporation at the free surface is also investigated for 

different Marangoni numbers as shown in Figure 30. The Marangoni number increases 

from 60000, to 80000 and then to 100000. The flow is limited to the liquid layer by 

choosing equal liquid and porous layer thicknesses di = d2 = 0.5. The effect o f increasing 

the Marangoni number is seen as enhanced flow in the liquid layer of the cavity. This 

can also be visualized by studying Figure 31, where the non-dimensional X-component 

o f velocity has been plotted for the various Marangoni numbers. The maximum velocity 

for Ma = 60000 is 375. This increases to 469 for Ma = 80000, and 553 for Ma = 100000. 

Therefore, increasing the Marangoni number enhances thermocapillary convection in a 

liquid layer with evaporation at the liquid-vapour interface.
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Figure 31 Thermocapillary convection with evaporation in the liquid layer for different 
Marangoni numbers (RaL=0, di=d2=0 .5 , AR=2, Pr=7)

In Figure 32, a comparison of the X-direction component o f velocity, U, is again plotted 

on the vertical median of the cavity. In this case, the trend is examined for different 

values o f Marangoni number in the case with evaporation at the free surface. The graph 

once again displays the parabolic trend that was observed by Villers and Flatten [10] for a 

liquid layer. The X-component o f velocity is compared at the free surface when Y = 1, 

for Marangoni numbers o f 60000, 80000 and 100000. The velocity values in the negative 

X-direction are 298, 365 and 427, respectively. An increased Marangoni number is 

found to enhance the flow.
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CHAPTERS 

Conclusion

In this thesis, buoyancy, thermocapillary and combined buoyancy-thermocapillary 

convection has been studied in detail. A rectangular finite cavity has been considered 

with bottom and lateral heating conditions. Several cases have been examined and they 

include: two-dimensional geometry, three-dimensional geometry and the effect of

evaporation applied to the liquid-vapour interface.

For buoyancy convection with bottom heating, it has been confirmed that the flow 

switches from fluid layer dominated to porous layer dominated convection upon reaching 

a critical porous layer thickness value of d2 = 0.9. The flow oeeupied the entire porous 

cavity when this critical value was exceeded. For thermocapillary convection with 

bottom heating, it was confirmed that the critical porous layer thickness value is 0.96. 

Below this value, the flow was limited to the liquid layer, and above it, the flow switched 

to the porous layer. For porous layer dominated thermocapillary flow, it was found that 

increasing the aspect ratio does not increase the number of cells in the cavity. But when 

the flow was limited to the liquid layer only, multi cellular convection did form as the 

aspect ratio was increased. For buoyancy convection, the opposite was found to be true, 

with multiple cells forming according to the aspect ratio in porous dominated flow.

The flow was found to behave in a similar fashion in the cavity with the lateral heating 

condition. The flow switched from fluid layer to porous layer dominated convection upon 

the critical value of porous layer thickness. The aspect ratio was also found to have an 

effect on the number of convective cells in the liquid layer for thermocapillary 

convection, with multiple cells forming accordingly. Thermocapillary flow was found to 

be stronger in nature when compared to the buoyancy flow in the lateral heating 

condition. For combined buoyancy and thermocapillary flow, the Marangoni effect was 

found to enhance the flow in the cavity.
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upon comparing the results from the two and three-dimensional convection cases, it was 

verified that the two-dimensional flow model is a good representation of the three- 

dimensional situation. However, for the laterally heated cavity with thermocapillary 

convection, a greater number o f cells were found to occur in the three-dimensional 

model.

Lastly, evaporation was applied to the liquid-vapour interface of a laterally heated cavity 

with thermocapillary convection. An interesting phenomenon was discovered, in which 

the vortex of the convective cell switched from the hot side to the cold side when 

evaporation was applied. Evaporation was also found to enhance the Marangoni 

convection significantly, as was shown through the analysis o f the streamlines and 

velocity profiles at the free surface.

For further study, it would be interesting to analyze the model for different heating 

conditions and include a different fluid with a different Prandtl number. It would also be 

interesting to observe the effect o f tilted gravity and aspect ratio. It might also be useful 

to additionally study evaporation in a three-dimensional cavity.
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APPENDIX A 

Non-Dimensional Analysis of Governing Equations

The following dimensionless variables are substituted into the dimensional equations in 

order to render them non-dimensional:

u yvu = — , F = — , w = — , x=~,  y = ü ,  z = - ,  p =
L

p L

Th - T c
, A T  = T f , - T ^ ,  L = d , + d „  R e = ^  Pr = - ,  D a = 4

u  a  Lr

B .l Bottom Heating 

Liquid Layer

Continuity Equation

du 3v 5>v
=  0 (B .l)

The dimensionless variables are introduced into the equation for each dimensional term.

djV u J  , d( f V- uJ
+  -

d { X L )  d[Y-L)  d { Z L )
0

L
dU dV dW  

d Y ^  d z
=  0

This further simplifies to give the non-dimensional form o f the continuity equation.
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du d v  dw
 h  1---------
dx dY dz

= 0 (B.2)

X-direction Momentum Balance Equation

Pf
du du du

u    h V ---------h W ■ ——
dx dy dz

d^u d^u d^u 
dx^ dy^ dz^

(B.3)

Left hand side:

Pf

Right hand side:

L
d( X- L)

+  / / •
d^ ( u  u j  a ' ( [ / " J ,

3 (jr -L )‘ d ( Y L f  3 { Z - L f

These equations are then simplified by taking out the common variables on both the left 

hand side and right hand side:

Pf-
u.

dX d¥  dZ
d^U d^U d^U 
dx ^  "** d¥^ dZ^

Multiplying the above equation by a faetor o f -------  to further simplify the equation
P'Uo

gives:
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Re
. dX dY d z

dP d^U d^U d^U
dx^  d y ' ^  a z '

Where:

(B.4)

Re
_ P f  -Uq L

P

Y-direction Momentum Balance Equation

Pf
dv dv dv

U • —----1- V --------- h W ------
dx dy dz ■ Ï -

d 'v  d 'v  d 'v
dx' dy^ dz' ~ P ' f i r ' { P  ~ P c ) ' 8  (B.5)

Substitute in the non-dimensional terms and take out common variables to get:

Pf d x  dy  dz
p- ^o  , p-^o d 'K  d 'K  d 'K

d%' ^  d y ' dZ '

Multiply the above equation by the factor o f -------- . It should be noted that
P-^o

(7 - - r^ )  = ( r „ - r J - 0 .

Re-
d x  d y  dz

d 'K  d 'F  d 'F
djy ' ^  d y ' ^  d z '

- T c ) ' 8 - P

■~v"
*

Simplify the * term:

*  —
Û  ■ p p r g { T „ - T ^ )  

P-^o

Add and subtract 7} in the (7//-7c) term to get:
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L^ p Pr g [ ( T , - T , ) + ( T , - T c ) ]
W,

Substitute in t> = — and separate the two terms:

v-u^ v u „

The liquid Rayleigh number and porous Rayleigh number for the bottom heating case are 

defined as:

g  ■ Pr ■ d,  ■ K ( T „ - T , )  
a v  ’  ̂ a v

Substitute those into the equation to get:

*  _  a  ■ Rup ■ 1} ^  a  • Rüj  ̂ ■ iJ  
d^-K-Uo u^-d^

From the Reynolds number, substitute in the Prandtl number, P r=  ^  ,
P f - L  a p

and the Darcy number. Da  =  — .

* -  ■ L Rui  ̂ ■ Ü
6^2 * Da • Re- Pr Re- Pr-

Note that Z = J , -f c?2 • Hence,
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1
Re- Pr

Rup
~D ^ d .

+ Ra^ -

A definition of the Reynolds number for FIDAP 8.7.0 can be formulated as follows if  the 

characteristic velocity is taken as A T L , with the A T = T „ - T c .

V

Re =
y j g - P r - A T L - L

V

Add and subtract 7} in the A T  term, and separate the variables.

Re

Substitute in the liquid and porous Rayleigh numbers, as well as the Darcy and Prandtl 

numbers. Also note that i  = c?, + «ij. The Reynolds number can now be defined as:

Re —
Pr

Rüp
Da d.

Now introduce the defined Reynolds number into the simplified * term.
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♦ —

Rap
Da + ■

f, d^ t
1 + - ^

^ 2  , rf,

Rap
~D^

+ Rat

Next, the denominator is rationalized to reveal the final simplified * term:

*  —

Pr
Rup r dA

3

1 H----- + Rüp ■ 14--^
Da ,̂JV 2 y

Therefore, the final form of the non-dimensional equation in the y-direction can be 

expressed as:

Re U- —  + V —  + W —dx dr dz
d^V d^V d^V 
dx ^  37" 3Z"

-R e -0 (B.6 )

Energy Equation

i p - c , )p ’f

dT dT dT
U • — k V •  -----1- W ------

dx dy dz
=  k .

3 " r  3 " r  3"T
t- -4-

3y" ' 3z"

Substitute in the non-dimensional parameters to obtain:

(B.7)

Left hand side:

d{X L)  ̂ 3 (7 -L) 3(Z-Z,)

Right hand side:
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d i X L f  d { Y L f  d i Z L f  

Extract the common variables from the left hand side and the right hand side.

dz  d x
do 'd̂ O d̂ o]

dx̂ ay"

Substitute in the Reynolds number. Re = — — -— , and the Prandtl number,
M

//  (Cp)
Pr = ---------- —, to get the non-dimensional form of the energy equation.

Re Pr- U ~  + V —  + W —  
d x  d Y  d z

d^e d^d d^e
dx^  dY^ dz^

(B.8)

Porous Layer

Continuity Equation

For the derivation o f  the non-dimensional continuity equation, refer to the liquid layer 

section above.

X-direction Momentum Balance Equation

K dx
d^u d^u d^u

+ — T +
dx^ dy^ dz^

Introduce the dimensionless parameters and factor out the common variables:

(B.9)
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d^U d^U d^U 
dx^ ay"  ̂az"

Multiply the equation by the factor o f    to further simplify the equation,

K d x
d^U d^U d^U
a%" ay" az"

KSubstitute in the Darcy number Da = —  to get the final non-dimensional form o f  the 

equation:

1
■ U -  ^^4-

lD a \ dx
a"D d^U d^U
â ^ ^ a y "

(B.IO)

Energy Equation

( p - C , ) , -
dT dT dT

U • — h V   h W -------
dx dy dz

=
a"r a"r a"r 
a%" ay" az"

Introduce the dimensionless variables into the above equation to receive the following: 

Left hand side:

( p - c , V d{x-L)  a(y z)  ̂ a(z-L)

Right hand side:
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d[X-LY d{Y-Ly 3[ZLY

Extract the common variables from the left hand side and the right hand side.

Substitute in the Reynolds number, Re = — —  -----, and the Prandtl number,

Pr = , to get the non-dimensional form of the energy equation.

Re Pr dx dr dz = G d^e d^G d^e  
a x '  ^ a r '  ^ a z '

(B.l 2)

Where the non-dimensional overall thermal conductivity is:

G —  ̂+ (l — ̂ ) —— 
kr

B.2 Lateral Heating

The derivations o f the continuity, X and Z direction momentum balance, and energy 

equations are similar to those for the bottom heating condition and given above.

Y-direction Momentum Balance Equation

Pf
dv av av

U  h V  h W •
dx dy dz

a 'v  a 'v  a 'v  
ax ' a%'

- p j 3 r { T - T c ) g  (B.l 3)

Substitute in the non-dimensional terms and take out common variables:
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_  p  u„ dP  , p  û av  a v  av  
a%" ^ay "  ^ a z " -  p  - P t ' ^ - T c ) - g

Tj
Multiply the above equation b y  , and note that (T — 7^) = (7^ —7^)- ^  .

M- K

Re U- —  + V —  + W —  
dx dY dZ - § ^

av av av
+ — T-+ax' ay' az' p - P r ( T „ - T c ) g - e

* *

Simplify the ** term:

For lateral heating case, the liquid Rayleigh and porous Rayleigh numbers are defined as 

follows:

^  S - P r à ^ K \ T „ - T , )  
 ̂ a v  ’ ^

They are also related by:

Rap = 7?a, Da ■f  L  , 3

- ( ^ 1  + t / J '

d\

Substitute the liquid Rayleigh number into the ** term:

^  ' P ’RaL -a-'O

8 0



Substitute in the Prandtl number, Pr = ) /
k.

, the thermal diffusivity of the fluid.

a  ̂f  P f ' ^ , and the Reynolds number. Re = ■ -------
Pf  ■ ) / M

*  *

Pr- Re

Noting that L = d̂  +d^,  the equation becomes:

*  *  — 1
Re Pr \  ‘'■y

By assuming that = ^Jg - Pj. ■ AT •  L , the Reynolds number can now be defined as:

R e=
Pr

The final form o f the non-dimensional equation in the y-direction can be expressed as;

Re
dx BY az

BP
a r"^

av av av 
Bx  ̂ ay" az" -R e -^
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APPENDIX B 

Input Files

C .l Marangoni Convection Lateral Heating

title
Marangoni Convection in Fluid/Porous Laterally Heated Cavity 
/lateral heating Marangoni case
fimesh(2-d , imax=5. j max= 5)
expi
/I 2 3 4 5
/I 0 15 0 29
1 0 121 0 241
expj
71 2 3 4 5
71 0 15 0 29
1 0 41 0 81
7
/physical dimension of the probl(
/the aspect ratio is! varied here
$ar=4
$arl=$ar/2
7the thickness of the liquid and
$dl=0. 5
$d2=0. 5
$l=$dl +$d2
7
point
7n i ] k X y z
1 5 1 1 $ar 0 0
2 5 3 1 $ar $d2 0
3 5 5 1 $ar $1 0
4 3 1 1 $arl 0 0
5 3 3 1 $arl $d2 0
6 3 5 1 $arl $1 0
7 1 1 1 0. 0. 0
8 1 3 1 0. $d2 0
9 1 5 1 0. $1 0

line
71st Plane
2 1
5 4
8 7
2 3 5.5 4
5 6 5.5 4
8 9 5.5 4
4 1 5.5 4
5 2 5.5 4
6 3 5.5 4
4 7 5.5 4

6 for different cases
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5  8  5 . 5 4  ,
6  9  5 . 5  4
surface 
1 8
2 9
elements(boundary, edge, nodes=3, entity="free")
3 9
elements(continuum, quad, nodes=9, entity="porous")
7 2
elements(continuum, quad, nodes=9, entity^"fluid")
8 3
elements(boundary, edge, nodes=3, entity="interface")
8 2
elements(boundary, edge, nodes=3, entity="freec")
3 9
bcnode(coordinate)
3 3
9 9
/define a temperature of 1 for the right vertical wall and 0 for left 
wall
bcnode(temperature,constant)
1 3  1 
7 9 0
bcnode(uy,constant)
3 9 0 
1 7  0
bcnode(surface,constant)
3 9 0
bcnode(ux, constant)
1 2  0
7 8 0
bcnode(velocity,constant)
2 3 0
8 9 0

/
/Physical parameters 
/
/the physical parameters can be varied depending on the case studied
$da=le-5
$por=0.39
$biot=l
$pr=7
$ral=l
$ma=60000
$trl-(1+($d2/$dl) )'■3 
$re=($trl+$ral/$pr)"0.5 
$c2=($ma/($re*$pr))
/
end 
fiprep
problem(2-D, buoyancy, free, nonlinear) 
pressure(mixed=l.Oe-8, disc) 
execution(newjob)
solution(segr=200,velconv=0.001,normal=40,ncgc=le-6,scgc=le-6)
option(stress-divergence)
relax
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0 . 1 2  0 . 1 2  0 . 1 2  0 . 0  0.01 0.6
density(set=l, constant=$re) 
specificheat(set=l, constant=$pr) 
viscosity(set=1, constant=l) 
conductivity(set=l, constant=l) 
conductivity(set=2, constant=l.43)
permeability(acoef, constant=l, x=$da, y=$da, porosity=$por) 
gravity(magnitude=l)
htransfer(constant=$biot, temperature, reftemp=0) 
surfacetension(curve=4)
-100000 0 1 100000 0 0 -$c2 -$c2 
renumber(profile)
entity(name="porous", porous, maperm=l, mscond=2) 
entity(name="fluid", fluid) 
entity(name="free", surface)
entity(name="freec", convection, attach="fluid") 
entity(name="interface", plot, attach="porous") 
end
create(FISOLV)

C.2 Evaporation Lateral Heating

title
Marangoni Convection in Fluid/Porous Cavity with Evaporation 
/lateral heating evaporation case 
fimesh(2-d, imax=5, jmax=5) 
expi
/I 2 3 4 5
/I 0 15 0 29
1 0 121 0 241 
expj
/I 2 3 4 5
/I 0 15 0 29
1 0 41 0 81 
/
/physical dimension of the problem
/
/the aspect ratio is varied depending on the case being studied 
$ar=2
$arl=$ar/2
/the thickness of the liquid and porous layer is varied depending on 
/the case being studied 
$dl=0.5 
$d2=0.5 
$l=$dl+$d2 
/
point
/n i j k X y  z

1 5 1 1 $ar 0 0
2 5 3 1 $ar $ d 2 0
3 5 5 1 $ar $ 1 0
4 3 1 1 $arl 0 0
5 3 3 1 $arl $ d 2 0
6 3 5 1 $arl $ 1 0
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1 1 0 . 0 . 0
3 1 0 . $ d 2 0
5 1 0 . $ 1 0

7  1
8 1
9 1

line
/1st Plane 
2 1
5 4
8 7
2 3 5.5 4
5 6 5.5 4
8 9 5.5 4
4 1 5.5 4
5 2 5.5 4
6 3 5.5 4
4 7 5.5 4
5 8 5.5 4
6 9 5.5 4
surface
1 8
2 9
elements(boundary, edge, nodes=3, entity="free")
3 9
elements(continuum, quad, nodes=9, entity="porous")
7 2
elements(continuum, quad, nodes=9, entity="fluid")
8 3
elements(boundary, edge, nodes=3, entity="interface") 
8 2
bcnode(coordinate)
3 3
9 9
bcnode(temperature,constant)
1 3  1 
7 9 0
bcnode(uy,constant)
3 9 0 
1 7  0
bcnode(surface,constant)
3 9 0
bcnode(ux, constant)
1 2  0
7 8 0
bcnode(velocity,constant)
2 3 0
8 9 0
/
/Physical parameters
/
$da=le-5
$por=0.39
$biot=l
$pr=7
$ral=l
$ma=60000
$trl=(l+($d2/$dl))"3 
$re=($trl*$ral/$pr)^0.5
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$c2=($ma/($re*$pr))
/
end
fiprep
problem(2-D, energy, free, nonlinear) 
pressure(mixed=l.Oe-8, disc) 
execution(newj ob)
solution(segr=2 00, velconv=0.001, lcinematic=10, ncgc=le-6, scgc=le-6) 
option(stress-divergence)
relax
0.12 0.12 0.12 0.0 0.01 0.6 
density(set=l,constant=$re) 
specificheat(set=l, constant=$pr) 
viscosity{set=l, constant=l) 
conductivity(set=l, constant=l) 
conductivity{set=2, constant=1.43)
permeability(acoef, constant=l, x=$da, y=$da, porosity=$por) 
gravity(magnitude=l)
latentheat(set="evapo", constant=-598)
/a subroutine which applies the linear saturation temperature at the
free /surface is called
bcnode(temp, entity="free", fsub)
surfacetension(set=“evapo", curve=4)
-100000 0 1 100000 0 0 -$c2 -$c2
renumber(profile)
entity(name="porous", porous, maperm=l, mscond=2) 
entity(name="fluid", fluid)
/the evap keyword applies mass transfer at the free surface 
entity(name="free", surface, attach="fluid", evap, mlat="evapo”, 
msur f = "evapo")
entity(name="interface", plot, attach^"porous") 
end
create(FISOLV)
RUN(FISOLV, IDENT="Trialla", FISOLVEXEC="myfisolv", BACKGROUND)
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