NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HARDWARE SOFTWARE CO-SYNTHESIS OF
HETEROGENEOUS HYPERCUBE ARCHITECTURES
FOR FAULT TOLERANT EMBEDDED SYSTEMS

by

Jacob Levman, BASc, Toronto, September 17" 2004

A thesis
presented to Ryerson University
in partial fulfillment of the
requirement for th¢ degree of
Master of Applied Science
in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2004

© Jacob Levman 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UM! Number: EC52963

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC52963
Copyright 2008 by ProQuest LLC.
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 E. Eisenhower Parkway
PO Box 1346

Ann Arbor, MI 48106-1346

- Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ryerson University requires the signatures of all persons using or photocopying this
thesis. Please sign below. and give address and date.

i

- Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hardware Software Co-Synthesis of Heterveneous
Hypercube Architectures for Fault Tolerant Embedded
Systems

Jacob Levman.
Masters of Applied Science, 2004.
Electrical and Computer Engineering.
Ryerson University

Abstract

The hardware-software co-synthesis of an embedded system's architecture involves the partitioning of a
system specification into hardware and sofiware modules so as to meel various non-functional
requirements. A designer can specify many non-functional requirements including cost, performance,
reliability etc. In this thesis, we present an approach to the hardware-sofhware co-synthesis of emhedded
systems largeting hypercube topologies. Hypercube topologies provide a flexible and reliable architecture
for an embedded device with multiple processing elements. To the best of our knowledge, this is the first
time that hypercube topologies have been supported in a co-synthesis algorithm. The co-synthesis
approach presented here supports the following features: 1) input in the form of an acvclic periodic rask
graph with real-time constraints, 2) the pipelining of task graphs, 3) the use of a heterogencous set of
processing elements, 4) Support for fault tolerance through our newly developed group based fuull
tolerunce technique. The co-synthesis algorithm has been applied to two case studies to demonstrate its

efficacy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

The author would like to thank his two supervising professors. Dr. Gul Khan and Dr.
Javad Alirezaie. for providing their guidance. knowledge and support. The author would
also like to thank the members of the review committee for their participation. The
author would like to thank the National Science and Engineering Research Council of
Canada (NSERC) for providing funding support for this research project in the form of
multiple grants to my supervising professors. The author would like to thank Ontario
Graduate Scholarships (OGS) for funding this research through a scholarship. The author
would also like to thank Canadian Microelectronics Corporation (CMC) for providing the

ARM rapid prototyping platform that was used in the case studies of this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

I would like to dedicate this thesis to my wife whose drive to accomplish is inspiring.

Without her love and support [would not be where I am today.

vi

-Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1. INTRODUCTION
1.1 Overview
1.2 Original Contributions

1.3 Thesis Organization

2. DESIGN OF EMBEDDED SYSTEMS
2.1 Introduction to Hardware-Software Co-Design
2.2 Hardware-Software Partitioning
2.2.1 Standard Approach
2.2.2 Partitioning Granularity
223 Dynamic Programming
2.2.4 Fault Tolerance
2.3 Hardware-Software Co-Synthesis

2.4 Hypercube Architectures

3. CO-SYNTHESIS FOR HYPERCUBE SYSTEMS
3.1 Introduction
3.2 Fault Tolerance at the Task Graph Level
3.2.1 Overview
3.2.2 Task Based Fault Tolerance
3.2.3 Cluster Based Fault Tolerance
3.2.4 Group Based Fault Tolerance
3.2.5 Task Graph Based Fault Tolerance Comparison
3.3 Pipelined Scheduler
3.4 Device Expansion

3.5 Communication Link Integration

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS
4.1 Parallel MPEG-2 Decoding

vii

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16
17

18
21

P4

22

25

28

68
68

4.2 Parallel Block Matching 75

4.3 Discussion of Experimental Results 93
5. CONCLUSIONS AND FUTURE WORK 98
REFERENCES 101
Appendix A - Prototype Device Code Listing 105
viil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y

List of Tables
Table 3.1: Fault Tolerance Comparison Data
Table 4.1: Processing Element Utilization of Design Space for MPEG Decoding

Table 4.2: Processing Element Utilization of Design Space for Block Matching

Table 4.3: Generated Motion Vectors

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 2.1: Traditional Design

Figure 2.2: Hardware-Software Co-Design
Figure 2.3: Hardware-Software Co-Synthesis

Figure 2.4: A 4D Hypercube

Figure 2.5: Examp.e Hypercube Architecture

Figure 2.6: Example Hierérchical Architecture

Figure 3.1: Hypercube Co-Synthesis Algorithm Flow

Figure 3.2: Task Based Fault Tolerance Example

Figure 3.3: Cluster Based Fault Tolerance — Input & 1 lteration
Figure 3.4: Cluster Based Fault Tolerance — 2 & 3 Iterations

Figure 3.5: Cluster Based Fault Tolerance — Final Clustering

Figure 3.6: Final Added Assertion Tasks After Clustering

Figure 3.7: Group Based Fault Tolerance — Input & 1 Iteration
Figure 3.8: Group Based Fault Tolerance — 2 & 3 Iterations

Figure 3.9: Group Based Fault Tolerance — Final Grouping

Figure 3.10: Final Added Assertion Tasks After Grouping

Figure 3.11: Randomly Generated Task Graph (Graph #1)

Figure 3.12: Hypercube Co-Synthesis Scheduler

Figure 3.13: Binary Naming for Hypercube Nodes

Figure 3.14: Non-Symmetrical 3-D Hypercube

Figure 4.1: Parallel MPEG Decoding: Functional Task Graph
Figure 4.2: Design Space Exploration of Parallel MPEG Decoding
Figure 4.3: Parallel MPEG Decoding: Architecture for 1* Test Case
Figure 4.4: Parallel MPEG Decoding: Architecture for 2™ Test Case
Figure 4.5: Parallel MPEG Decoding: Architecture for 5™ Test Case
Figure 4.6: Block Matching: Functional Task Graph

Figure 4.7: Block Matching Task Graph: GBFT Grouping

Figure 4.8: Block Matching Task Graph with Added Assertion Tasks
Figure'4.9: Block Matching: Final Resultant Task Graph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1C: Block Match Circuit Design

Figure 4.11: Block Match State Machine

Figure 4.12: Design Space Exploration of Parallel Block Matching
Figure 4.13: Final Prototype Device Architecture

Figure 4.14: Reference Image

Figure 4.15: Input Image

Figure 4.16: Macroblock Identification

X1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

-

D

89
90
91
91

Glossary of Acronyms

CAD - Computer Aided Design

GBFT - Group Based Fault Tolerance
CBFT — Cluster Based Fault Tolerance
TBFT — Task Based Fault Tolerance
CPU — Central Processing Unit

ASIC - Application Specific Integrated Circuit
FPGA — Field Programmable Gate Array
MPEG — Motion Picture Experts Group
PE — Processing Element

IP — Intellectual Property

SW — Software

HW — Hardware

VHDI. ~ Very high speed integrated circuit Hardware Description Language

xil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ks mANDTUY

CHAPTER 1

INTRODUCTION

1.1 Overview

The average Canadian equates the idea of a computer with a desktop or laptop. In
actuality, the definition of a computer is much broader. It is estimated that in the
average Canadian’s home there are 30 to 40 embedded systems. Television. audio
systems, refrigerators, telephones, temperature controls and stoves all use embedded
computers. Embedded computers also play an integral role in many of the assisted
devices that aid disabled individuals in performing daily activities, e.g. power
wheelchairs and communication devices. Additionally, many embedded devices are
responsible for protecting human life; embedded computers control modern medical
instrumentation. airplanes, air traffic control systems, anti-lock breaking systems
(ABS) and even the “fasten your seatbelt” light on the dashboard of your car. By
many estimates, embedded devices account for 99% of worldwide computers while
desktops and laptops account for just 1%. Embedded computers are small-scale
application-specific computing devices. Embedded computers already permeate our

society and their growth is expected to continue indefinitely.

It is common knowledge that technological developments are producing increasingly

efficient and compact computers. This applies to embedded computers as well. The

- Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

morce powertul and complicated the components ot an embedded device. the more
difficult it is for a computer engineer to produce a product that meets safety.
performance, cost and power consumption requirements within a rcasonable amount
of time. The production of the high performance embedded devices of the future will

require tools and formal methods to aid engineers in system design and development.

The rescarch presented in this thesis is centred around the development of computer
aided design (CAD) software tools that will be used to aid in the design and
development of future embedded devices. Essentially. an engineer will tell the CAD
tool what the desired device should be capable of doing; the tool will analyze the
given information and recommend a reliable and efficient design. This can aid a
product engineer in developing systems that are far more reliable, cost, time and
power efficient. Reliability is key for the development of safety-oriented devices that
are responsible for protecting human life. Minimal production cost is important for
ensuring the final products are accessible to all people regardiess of socio-economic
status. Similarly, decreased labour costs as a result of more expedient design, results
in a cheaper product. Finally, minimizing a device’s power consumption is essential
to reducing energy costs, both financial and environmental. These CAD tools will aid
in the development of new devices that will continue to play a central role in our

lives.

Within electrical and computer engincering, embedded systems rescarch is in its

infancy. This makes it an exciting ficld to work in as it provides unique and novel

3]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T s]

opportunities. 1t is also attractive due to its broad range of applications (acrospace,
automotive, communications etc.). Decveloping these sofitware tools can be

technically challenging and thus intellectually rewarding.

1.2 Original Contributions

This thesis presents a new hardware-software co-synthesis tool to aid in the design
and development of high performance embedded devices. The proposed approach
focuses primarily on computationally intensive computing systems requiring high
levels of fault tolerance. A full hardware-software co-synthesis approach is presented
with comparisons to a fully exhaustive technique. Implementation results are also

provided in order to further demonstrate the algorithm’s efficacy.

The major contributions of this thesis are as follows:

. Development of a hardware-software co-synthesis algorithm capable of
generating hypercube architecture based embedded devices

. Development of group based fault tolerance (GBFT), a technique designed

to effic..atly add support for fault tolerance in embedded systems at the task

graph level
. Comparative analysis between the newly developed GBFT algorithm and
other existing methods

. Comparative analysis between the co-synthesis algorithm presented here and

i

. -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the optimal case

. Implementation of a security/navigation device in simulation in order to
demonstrate the efficacy of the co-synthesis algorithm

. Implementation of a parallel block matching device in order to
demonstrate the efficacy of the co-synthesis algorithm

o Prototype construction of the block matching case study

1.3 Thesis Organization

This thesis consists of five chapters. The second chapter encompasses a survey of
hardware-software co-design, and a thorough survey of hardware-software
partitioning, and co-synthesis. Chapter 2 also includes background on hypercube
architectures. These two chapters are intended to provide the basic understanding of
the design issues of hardware-software embedded systems and to survey the existing

research in this field.

The third chapter is the main component of this thesis. [t consists of a full description
of all of the components of the co-synthesis algorithm. These include group based
fault tolerance, a pipelined scheduling technique, a method for adding processing
elements to the current system design, placing existing processing elements within a

hypercube topology and synthesizing all required communication links.

Reproduced with permission of the copyright owner. Further reproduction prohibited without periniss-cn.

The fourth chapter describes the two case studies implemented in order to
demonstrate the algorithm’s etficacy. The first case study performs the decoding of

parallel MPEG-2 video streams and compares the algorithm’s results with that of an

exhaustive technique. The second case study performs parallel block matching and a
final prototype device is constructed. The fourth chapter also includes a discussion of

the experimental results obtained from both of the case studies. The fifth chapter

concludes this thesis.

T R P e

T o, A ST e B T A

e 8 oy« e

*

' Reproduced with permission of the copvriaht owner. Further renroduction nrohibited without nermissian.

CHAPTER 2

DESIGN OF EMBEDDED SYSTEMS

2.1 Intreduction to Hardware-Software Co-Design

This section surveys hardware software co-design. Hardware-software co-design is
an active area of research that involves the development of tools and methodologies
to aid in the design of embedded computer systems. Embedded computers are
processing devices used in areas as diverse as wireless communications, medical
instrumentation, transportation and food preparation. Although these fields are
widely different, the embedded device components of the products share common
design techniques. This is an outline of hardware-software co-design: a method for
designing and developing an embedded computer device. The motivation behind co-
design is that both hardware and software components shouldv be addressed
simultaneously in order to ensure that the final device meets cost, performance,

reliability and power consumption goals.

Separate software and hardware design methods have been the subject of a great deal
of research over the years [21, 41]. However, the design of both hardware and
software as a joint venture remains an area of rapidly growing research. Most of the
embedd‘ed systems research has been stimulated by the development of fairly

inexpensive high performance microprocessors {8]. When embedded processors were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exclusively small and responsible for the execution of minimal amounts of software,
simple techniques were more than sufficient to create devices that satisfied
performance and functional goals within a reasonable time to market. With the
number of transistors on a chip increasing exponentially, embedded devices have the
potential to utilize far more sophisticated circuits and architectures [48]. The
embedded engineer requires CAD tools to aid in the design and development of

embedded computers and to predict implementation costs.

The rest of the subsection introduces the motivation behind hardware-software co-
design of embedded systems. Additionally, it intends to introduce the various

components of the hardware-software co-design process.

Co-Design Overview

The embedded system design process will vary considerably with respect to the type
of product under development. However, commonalities can be identified and the
ability to abstract hardware and software components to the same level is greatly
exploited in hardware-software co-design. The traditional approach to the design of
an embedded computer system is to enforce hardware-software partitioning at an
early stage. This results in well-defined design tracks for both the hardware and

software components. The major weakness in traditional embedded systems design

Reproduced with nermission of the copvriaht owner. Further renraduction orohibited withaut nermission.

lies in the early partitioning process. A graphical overview of the traditional design

approach is provided in Figure 2.1 below.

Requirements And
Specification

l

Partitioning

R s e e e e e)

i)

R I S R

Hardware Design Software Design
\\/ ?
integration 3

Completed Design

Figure 2.1: Traditional Design
One of the major flaws of such an approach is the inability of the design and _
development flow to correct mistakes made in the partitioning phase. If during
integration, an embedded systems engineer discovers that the product vill not meet
L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

various non-functional requirements (performance, power consumption. etc.), the cost

imposed on re-evaluation of the design will be extremely high.

The hardware-software co-design process begins with the creation of device
requirements, which leads to a formal specification. Both functional and non-
functional requirements such as performance, cost and power consumption are
specified. This can then be converted into a standardized system description or
specification. Embedded system specification requires detailed models to aid in the
abstract description of component functionality. Abstract modeling that does not
differentiate between hardware and software is known as co-specification. Further
research into the high level ﬁqodeling of embedded devices would be greatly

beneficial.

It is common for this standardized description to be converted into a task graph
format. Hardware-software partitioning is performed on this task graph. Partitioning
is concerned with assigning an execution location (software or hardware) to each
task. After partitioning, co-synthesis is performed and typically, the co-synthesis and
partitioning phases are closely knit. Co-synthesis is broken down into the
assignment, allocation and scheduling phases. Finally, the generated software,
hardware and interface modules are integrated. Feedback in the design process can
occur at system integration by returning to the partitioning phase, thus allowing the
designer to refine the given solution. At integration, the overall system can be

evaluated for functional and non-functional requirements by using hardware software

A

Reproduced with permission of the copvriaht owner. Further reproduction prohibited without permission.

co-simulation. Co-simulation allows for both hardware and software components to
be tested congruently. A visual overview of the co-design process is provided in

Figure 2.2.

Requirements and
Specification

Conversion to Task Graph

Hardware-Software
Partitioning and Co-
Synthesis

Hardware

Integration
&
Prototyping

Completed Design

Figure 2.2: Hardware-Software Co-Design

10

Rebroduced with npermission of the convriaht owner. Further renroduction nrohibited without nermiscion.

S

—

HW/SW Partitioning

The partitioning process is concerned with deciding what system functionality will be
implemented as hardware and what will be implemented as software. Typically, an
embedded device will need to meet a number of non-functional requirements. These
would often include performance, price, reliability and power consumption. With
more components implemented in hardware, system price and power consumption
will increase. However, with a large number of components implemented in
software, system performance and reliability can degrade. It is important to balance
the selection of hardware and software components to ensure that all system
requirements are met. Significant research has been conducted with respect to
partitioning algorithms in order to automate the process of obtaining an efficient

hardware-software layout for an embedded device.

HW/SW Co-Synthesis

Hardware-software co-synthesis of an embedded device is the pfocess by which the
hardware-software architecture of the system is automatically derived to satisfy
multiple goals. These goals can include factors such as cost, performance and power

consumption. Hardware-software co-synthesis is inseparable from the process of

11

Ranrndiiced with narmiscinn nf tha convrictht nwner Firirthar renrndiictinn nrnhihited withniit narmicainn

s

partitioning. The hardware-software co-synthesis design flow consists of three main

components: allocation. assignment and scheduling. Allocation is concerned with

selecting the number and type of communication links and processing elements in the .
5

system. The assignment component is concerned with the mapping of tasks to #

processing elements. The scheduling component is concerned with the timing of task £

R

execution and communications. Typically, the partitioner will iteratively adapt its
hardware mappings based largely on the results of the scheduler. The scheduler is
typically the final phase of co-synthesis. A visual overview of a common approach to

co-synthesis is provided in Figure 2.3.

Allocation

<z

Assignment

L

Scheduling i

S
¥
&
gs
z
b
®
&
p
2
b
B
£
o
%
By

i
:
&
5

Figure 2.3: HW/SW Co-Synthesis

R R A e R e ER Y

12

B b e B it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HW/SW Co-Simuiation

High performance embedded system components can be extremely complex. It is
difficult to develop comprehensive analytic systems to model the performance of an
embedded device that consists of complicated components. Concurrently simulating
components with differing behavioural models is referred to as co-simulation.
Typically, a co-simulation environment will model multiple components, both
software and hardware. This can be a difficult task as software simulation consists of
modeling a processor executing a series of instructions. However, hardware
simulation can consist of modeling something completely different, such as an analog
or digital circuit. In an embedded device it is common for the execution of
application specific integrated circuits to depend on commands issued by one of the
system’s processors. One should note that co-simulation requires the hardware

simulator to react to input from the software simulator and vice versa.

A number of co-simulation tools have been developed. One of the most well-known
co-simulation tools is Seamless from Mentor Graphics. Seamless allows the user to
tie in various hardware and software simulators. Seamless coordinates the
communications between simulators to ensure that the overall behaviour reflects that
of an embedded device. Although Seamless performs as an effective co-simulation

tool, it can also be applied for hardware-software co-verification [44].

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HW/SW Co-Verification

The complexity of embedded systems prevents the designer from relying on
traditional validation techniques such as simulation and testing. These techniques are
insufficient to properly verify the correctness of such a system. To address this
problem, new formal verification methods are needed to overcome the limitations of

traditional validation techniques.

Multiple methods have been developed for performing hardware-software co-
verification. A common approach involves the use of a Petri-net based representation
of embedded systems, as in the system named PRES [9, 10]. The PRES model
proves the correctness of an embedded system by determining the truth of
computation tree logic and timed computation tree logic. These research projects
make use of model checking to prove the correctness of embedded systems and have
used an automatic teller machine server to demonstrate the feasibility of their
approach. Another approach developed by Hsiung involves the use of linear hybrid
automata and employs a simplification strategy to address the state-space explosion

that occurs in the formal verification of complex systems [26].

Presently, our knowledge of the joint hardware-software design process is far more

limited than that of either of the two separately. While embedded systems

development can be performed as separate processcs of hardware and software

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N A R R

G

RV

A o Yo e) M P R

=

i

design, this route can be far more challenging when attempting to meet various price
and performance rec ~ nonts. Additionally, this design path has a tendency to result

in more error prone - .ucts due to difficulties in embedded system veritication.

Research into system modeling is a key element to our understanding of hardware-
software co-design. While many abstract models for embedded system components
exist, there is a lack of accurate models to address the detailed characteristics of these
components. Embedded systems are always being developed with various
performance and cost metrics in mind. In order to properly meet those requirements,
it is essential to develop a thorough understanding of modeling that includes both the

intricacies of a component as well as its high level properties.

In the current embedded systems market, designers and developers can mostly
produce devices that meet requirements within a reasonable amount of time.
However, soon the utilization of sophisticated hardware-software co-design
techniques will be required in order to meet future device demands. As advanced
processors and ASICs become less expensive, the need for tools to aid the design and

development process will increase dramatically in order to ensure the development of

high quality devices with a minimum time to market.

15

L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Hardware-Software Partitioning

[y
.

Hardware-software partitioning is the process by which the various components of an
embedded computer’s functionality are placed in either hardware or software. The
motivation behind the partitioning process is to produce a reliable embedded device

that meets performance, cost and power consumption requirements.

The partitioning process is a subset of hardware-software co-design. Computer
components suitable for use in embedded devices have increased in ability and
complexity dramatically in recent years. The job of an embedded systems engineer
involves selecting appropriate components and integrating them to produce an
embedded device. The rapid increase in both complexity and performance of these
components has resulted in an increase in the difficulty of component selection and
integration. These difficulties have fuelled demand for tools and design
methodologies to aid in the creation of embedded devices that are comprised of both

hardware and software components.

The typical embedded system design approach is significantly restrictive. The main
flaw revolves around the lack of design flow after system integration and prototyping.
If the system is integrated and an expensive prototype is produced, further design

changes can be extremely costly. These further design changes may have to occur if

16

Reproduced with permission of the copvriaht owner. Further renraduction nrahibited withorit narmiscinn

prototyping reveals that the system will not meet non-functional requirements (such

as performance).

This subsection’s goal is to introduce the reader to the motivation behind hardware-
software partitioning for embedded devices. Additionally, this subsection intends to

introduce the reader to the existing research in hardware-software partitioning.

2.2.1 Standard Approach

The partitioning process is concerned with deciding which system functionality will
be implemented as hardware and which will be implemented as software. It is
important to balance the selection of hardware and software components to ensure
that all system requirements are met. Significant research has been conducted with
respect to partitioning algorithms in order to automate the process of obtaining an

efficient hardware-software layout for an embedded device.

The standard approach to hardware-software partitioning involves the use of a
heuristic to prioritize a task set. This prioritization aids in the determination of task
mapping (to hardware or software). Often much of the job of the partitioning
algorithm researcher is simply to develop an effective heuristic that will result in an

optimal partitioning algorithm.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The carliest partitioning algorithms proposed. began by implementing all components

TR P) >

in software and proceeded to move components to hardware implementations until
various system requirements were optimized [18]. Other early approaches proposed

to implement all components in hardware and to proceed to move components to

S T e

software until system requirements were met [22]. A more recent approach involves

FE

making an educated guess with reference to whether a given task should first be

TR

G

mapped to software or to hardware [6]. Afterwards, the algorithm would iteratively

attempt re-mapping tasks from their original locations until requirements are satisfied. ¢

. . ~ cry - . &
These techniques and versions thereof are still in use. In all cases the approach is z
similar, the algorithm attempts a default or initial configuration, analyzes its :

effectiveness and iteratively alters the current layout if non-functional requirements
are not met. Other techniques to aid in the heuristics for partitioning decisions

include linear integer programming [38], simulated annealing [40] and petri-nets [19].

2.2.2 Partitioning Granularity

T oo P e S o e T s A e

Granularity defines the size of system components that can be implemented in either

3
B
=
&
Fod
s

hardware or software. A partitioning algorithm that operates at a high level of
granularity (also referred to as coarse-grained) uses only large blocks of system

functionality to be implemented on any given processing element (PE). It can be

B

beneficial for a large segment of functionality to be implemented on the same PE.

This is particularly evident in larger scale distributed embedded devices, where

S

RS

18

Renroduced with nermiscion af the canvriatht nowner Furthar ranradnntinn nrohihitad withnitd narmiccinn

dividing a high grained system into smaller components and then mapping them
across the system can yield an unnecessarily high communication overhead. This
occurs when tightly coupled components are “spread out” throughout the system.
Using the granularity that is specified by the programmer of an application is often
referred to as a high level of granularity. Gupta and DeMicheli developed an
approach to the coarse grained hardware-software partitioning problem [23]. They
present a partitioning procedure to identify potential hardware and software
components of a system. Their technique also utilizes the Olympus Synthesis System
for digital design [39] for the synthesis of dedicated hardware within their system.
Yen and Wolf have also developed an approach to the coarse grained partitioning
problem [52]. They present an automatic iterative improvement technique for
simultaneously performing concurrency optimization and hardware-software
tradeoffs. By considering both concurrency and hardware-software tradeoffs, their
approach is able to identify cost/performance points that may not have been identified

otherwise.

A partitioning algorithm that operates at a low level of granularity (also referred to as
fine-grained) will often divide an embedded system’s functionality into extremely
small components. Fine-grained partitioning algorithms have the disadvantage that
separating system functionality on such a small scale can dramatically increase
communication overheads, which has the effect of decreasing system performance.
Some systems use this approach when they are dealing with partially re-configurable

processors (processors whose IP cores can be modified during the design process).

19

A

Renrodueced with nermission of tha canvriaht owner Furthar ranradiictinn nrahihitad withat it narmiecinn

Fine-grained systems can provide a better solution than coarse-grained algorithms

because they are more {lexible in terms of mapping the correct computationally

intensive components to the appropriatc processing elements. Fine-grained systems
reduce the potential negative effect of having to deal with a poorly defined system
functional specification. A fine-grained system can refine the design on such a small
scale that some will take one single computationally intensive CPU instruction and

treat it as a separate task [1]. It is common for tasks (individual components that can

-

T R B Y

be mapped to hardware) to be called base blocks when dealing with fine grained

partitioning. Ernst et al. have developed a heuristic approach to the fine grained

A

hardware-software partitioning problem [18}. They have developed an iterative

partitioning process which is based on hardware extraction and is controlled by a cost
function. This technique is in use in the COSYMA system [40]. Knudsen and
Madsen have also presented an approach to the fine grained partitioning problem
{30]. This approach uses dynamic programming to solve both tlie problems of system

execution time and hardware area constraints. This technique is in use in the LYCOS

system [38].

Finally, there is one research project known that involves merging these two ideas of

varying granularity [24]. This concept is known as flexible granularity. Depending

D B A P T RS P R R

on the characteristics of the specific application and the system’s non-functional
requirements, the selected granularity can span from a low level of base blocks all the
way to the user-defined functions. This approach is intended to overcome the

shortcomings of both of the previous approaches. This work also includes estimation

20

Ranradiinad with narmicainn Af tha ~canurinht Aammar Corthar ranradiiatian meahibhibad aedihacod macmalosiaoe

|

methodologies adapted to different levels of granularity, which help to determine the

final system granularity.

2.2.3 Dynamic Programming

Dynamic programming is a technique ideal for problems where calculating all
possible outcomes is not computationally feasible. This makes dynamic
programming well suited to the partitioning problem, which can be extremely
computationally intensive. Typically, a dynamic solution is recursive and iterative in

nature.

Dynamic programming problems can always be divided into stages where a decision
will be required at each stage. Typically there are a number of states associated with
each stage. Decisions made at one stage will alter the current state into a new state in
the next stage. The decision made at a given state does not depend on the decisions
made in the previous state. It can be seen that dynamic programming extends itself
easily to hardware-software partitioning which can be approached as a recursive,
iterative, state based problem. Often a dynamic programming solution will
effectively process a task graph and improve algorithm execution speed by avoiding

testing infeasible combinations.

21

Reoroduced with permission of the convriaht owner. Further renroduction nrohibited without nermission.

Shrivastava et al. {45] have used dynamic programming to develop an algorithm that
can effectively solve the partitioning problem with extremely fast execution times.
Chang and Pedram [5] have also used dynamic programming to determine the
solution to the coarse-grained partitioning problem of a generic task graph. Knudsen
and Madsen [31] have used dynamic programming to determine the solution to the

fine-grained partitioning problem.

2.2.4 Fault Tolerance

Fault tolerance is a large area of computing, whereby computational devices are
developed which must meet various mission critical and safety critical requirements.
These types of systems are common in aerospace and biomedical applications. Fault
tolerant computing has been a large area of study [46], however, incorporating some

of these ideas into hardware-software partitioning is an extremely young discipline.

It is common in the development of fault tolerant devices to incorporate a system’s
fault tolerant components late in the design process. This often creates a significant
overhead in terms of implementation cost. Incorporating fault tolerance at an earlier
stage of design is likely to be very beneficial in reducing this overhead. This line of
reasoning has sparked research in incorporating fault tolerance inio earlier phases in

the design process. such as hardware-software partitioning.

22

Renradiicad with narmiacinn af the nnnurinht nwner Fiirther ranrndiintinn nrahihitad withninit narmiceinn

e

XHH

IR

S

R

AP

A

R

ST RSTH

S T e e L

e

Fault tolerant hardware-software partitioning generally involves adapting the
partitioning process to automatically accommodate systems requiring fault tolerance.
The most predominant work in this field is that of Dave and Jha [13]. These
researchers have developed a system that will input a functional task graph
specification and perform task clustering for fault tolerance. Their system will
choose an error recovery topology that is optimized to use a small number of extra
processing elements. Additionally, Bolchini et al. [4] have developed a partitioning
algorithm that incorporates fault detection capabilities. This may not be as robust as
full fault tolerance, however fault detection is relevant as it is a subset of fault

tolerance.

Presently, our knowledge of the joint hardware-software design process is far more
limited than that of either of the two separately. While embedded system
development can be performed as a separate process of hardware and software
design, this route can be far more challenging when attempting to meet various price
and performance requirements. Additionally, this design path has a tendency to result

in more error prone products due to a lack of formalism in design methods.

Hardware-software co-design is a burgeoning field of research and one of its most
active subsets is hardware-software partitioning. Partitioning is the process of
deciding what functional system components will be implemented as hardware and

what will be implemented as software. Effective hardware-software partitioning is

—— 0

Reproduced with permission of the copyriaht owner. Further reproduction prohibited without permission.

essential for creating embedded devices that meet non-functional requirements such

as performance, power consumption and cost.

Since hardware-software partitioning has begun to flourish as a field of research,
&
greatly varying approaches to the problem have been taken. Researchers have

attempted to tackle many issues and incorporate many varying ideas. The concept of i

varying degrees of granularity allows an algorithm to separate a system’s

functionality into components of various size. Dynamic programming is an iterative,

recursive technique that has been effectively incorporated into approaches to

Sh
SE
A
3£
ki
3
B
k1
i
N
ey
én‘

partitioning. Fault tolerance is an extremely important issue, especially in embedded
systems, and partitioning approaches have been developed to incorporate these

abilities.

In the current embedded systems market, designers and developers can mostly

Wty ntoe s, 0
T

produce devices that meet requirements within a reasonable amount of time.

SaTy

However, soon the utilization of sophisticated hardware-software co-design

SR

i

techniques will be required in order to meet future device demands. As advanced
processors and ASICs become less €xpensive, the need for tools to aid the design and

development process will increase dramatically in order to ensure the development of

high quality devices with a minimum time to market. Hardware-software partitioning

will be an integral component of these tools.

SRS

Reproduced with permission of the convriaht owner. Further renraduction prohibited without nermission.

2.3 Hardware-Software Co-Synthesis

An embedded system’s architecture is typically determined by the intuition of a
design engineer. This process adds time to the development cycle and sometimes
results in architectures that do not meet non-functional requirements. It can also
residt in an over-designed architecture with excessive hardware that results in overly
expensive devices. Consequently, incorporating hardware-software co-synthesis in
design automation tools is essential for producing optimal devices with an accelerated
time-to-market. The hardware-software co-synthesis problem is concerned with
determining optimal hardware and software architectures. This involves the selection
of processors (CPUs), application specific integrated circuits (ASICs) and
communication links in order to produce a device that meets non-functional
requirements. The co-synthesis problem typically involves the selection of the
quantity and type of processing elements and communication links (allocation), task
assignment from a task graph to processing elements and confirmation of whether the
system meets requirements (usually through scheduling). A task graph is a collection
of tasks and communication dependencies that describe device functionality. The
allocation and scheduling phases are known to be NP-complete [20, 33]. thus
determining an optimal solution‘ in the co-synthesis phase can be extremely

computationally intensive.

This work is motivated by the need to automate the embedded system design process

while simultaneously producing high quality devices. The research presented in this

25

Renroduced with narmiscion of the convriaht ownar. Furthar renradiictinn nrahihitad withoiit narmicsinn

thesis is further aimed at producing high performance fault folera11t embedded
systems. Embedded applications that would particularly benefit from high levels of
fault tolerance include aerospace, medical instruments and high performance
telecommunication systems. In fact, it is believed that within the next two or three
decades probes will be sent to orbit nearby stars [34]. Such embedded devices would
be responsible for considerable system control and measurement instrumentation in

addition to unparalleled fault tolerance requirements.

The primary focus of most of the co-synthesis research problem has concentrated on
the simplistic single processor and ASIC architecture (3, 6, 18, 28]. Some approaches
assume more complicated architectures, such as two CPUs and hardware-accelerated
circuitry [37]. Various approaches have been attempted that involve moving tasks
from hardware to software or vice versa in order to meet the system requirements. In

the co-synthesis of distributed systems, target architectures can incorporate multiple

processors, ASICs or FPGAs (field programmable gate arrays). Two main techniques
have been utilized to handle the co-synthesis of distributed systems: the optimal and

heuristic approaches.

The optimal approach can be divided into three sections: exhaustive, mixed integer
linear programming, and constraint solving. The exhaustive approach is

characterized by attempting all possible mappings to provide an optimal solution. It

S e S e s T

Y

can be very computationally intensive and is only suitable for smaller systems.

5

o

D’Ambrosio and Hu have presented an exhaustive technique for hardware-software

-
i

s et

26

Ranradiicad with narmiccinn nf tha nanvrinht nwwnar Fiirthar ranradiintinn nrahihitad withaiit narmiceinn

s
H

partitioning [11]. I-'Iowever, their approach is limited to single processor architectures
and ignores the communication overhead. A hardware-software partitioning
technique using mixed integer linear programming is presented by Prakash and
Paﬁrker [42]. The execution time of this technique is prohibitive for large task graphs.
Moreover, this approach is limited to bus based architectures or pre-determined point-
to-point interconnection topologies. A constraint solving approach has been
presented by Kuchcinski in the JaCoP system that concentrates on scheduling and

) resource assignment [32].

The heuristic-based co-synthesis approach can be divided into two methods:
constructive and iterative. The iterative scheme is characterized by having an initial
solution, which is iteratively improved. Kirovski and Potkonjak presented an
iterative algorithm that includes power as a cost function but their approach ignored
the inter-task communication time [30]. Other iterative techniques have been
developed [25] but they are limited in that they allow for only one type of
communication link. Li and Wolf have presented an iterative co-synthesis algorithm
capable of synthesizing memory hierarchies for bus architecture topologies [36].
MOGAC is an iterative approach to the co-synthesis problem that uses genetié
algorithms [16]. Experimental results show that for large systems MOGAC suffers
due to large execution times. Wolf has also presented an iterative approach to the co-
synthesis problem producing generic device architectures [47]. Generic device
architectures can be tuned to a particular application, but it can also result in

disorganized and difficult to understand designs as the interconnection topology may

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not conform to an established architecture. The constructive heuristic method is
characterized by building the solution step by step. where the final outpui is not
-available until the algorithm terminates. Constructive co-synthesis algorithms are
presented in the COSYN [15] and COFTA [13] systems. Bakshi and Gajski have
also presented a constructive partitioning approach that supports pipelining at varying
degrees of granularity [2]. Although their approach allows the addition of multiple
software processors, it does not account for the hardware cost of adding each CPU.
All of the above co-synthesis algorithms support distributed embedded systems but

none have utilized hypercube topologies as a target architecture.

2.4 Hypercube Architectures

Hypercube topologies are useful for high performance embedded systems and have a
number of advantages over other architectures [12, 27, 35, 43]. Hypercube nodes
represent processing elements (PE) and a link between nodes represents a
communication interface (serial, parallel, Ethernet link, etc.). Hypercube topologies
are very flexible, versatile and generic. Figure 2.4 shows a hypercube network of
degree four, constructed from two 3D hypercubes. The high level of
. interconnectivity in a hypercube architecture results in a system that is suited to fault
tolerance. Additionally, hypercube systems support high performance computation
while limiting the communication overheads and/or bottlenecks associated with large-

scale systems consisting of many PEs. These features make hypercube architectures

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-y AR AT
o |

‘c“‘-.s«:u .. R

an excellent choice for multiple PE embedded systems that need to couple fault-
tolerance with complex computation. Additicnal advantages of hypercube
architectures include topologies with small diameters and high levels of symmetry.
Finally, routing in hypercube networks is well researched and efficient routing

algorithms are available [29].

Figure 2.4: A 4D Hypercube

" The main disadvantage of hypercube topologies is their poor upward scalability. It
can be a difficult and complex process to add nodes to a hypercube network. This
criticism applies more directly to hypercube computer systems, which are likely to be
reconfigured and expanded regularly. It is uncommon for a distributed embedded

device that has already been manufacturéed to require any additional processing

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elements. Such a circumstance could be used in reconfigurable space systems.
Another disadvantage of hypercube systems is the large number of communication
links, but additional links support fault tolerance. These communication links and
their interfaces to the processing elements result in a significant cost overhead.
However, it should be noted that this research targets high performance fault-tolerant
embedded devices. As a result, the associated cost to produce systems that meet the

flexibility, reliability and performance requirements of demanding applications is

knowingly accepted.

Many co-synthesis methods for distributed embedded systems target varying
architectures. Hypercube topologies can be considered a superset of a number of
other hierarchical architectures. Topologies such as mesh, torus, binary and quad
trees can be partially represented by suitable sized hypercube topologies. Binary
trees have even been embedded in incomplete hypercube systems [S1]. A hierarchical
architecture (e.g. tree topology) is one of the most prevalent system targets in the high

performance distributed co-synthesis research projects [13, 14].

Much of the work on automatic architecture generation in co-synthesis algorithms for
distributed embedded systems has concentrated on hierarchical topologies [14].
Although hierarchical systems can be adapted to enhance their fault tolerant
capabilities [13], a comparison of the two architectures is provided to illustrate the
capabilities of hypercube topologies. Consider a 3D hypercube with eight processing

elements presented in Figure 2.5. If the communication link between PE® and PE'

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

!
z
z
F
3

Wbra b

Wit wesipiR

i

RETIT Bag! PR A,

s
A

S0 i

2w

W R

W S R e

fails. the device could still operate correctly by routing messages along alternate
channels (e.g. PE* — PE' — PE® — PE"). System performance would decrease as
communication between nodes connected by a faulty link (e.g. PEY - PE') would take
longer (three transfers instead of one). However, most importantly. the system will
continue to function. Now consider a possible hierarchical architecture
implementation of the same embedded device shown in Figure 2.6. If the equivalent
communication link (connecting PE’ and PE') fails, PE', PE’, and PE® of the
embedded device would cease to function as they cannot communicate with any of
the other PEs. This would result in a catastrophic system failure. The benefits over

alternative architectures were a major motivation for developing the first hardware-

software co-synthesis algorithm targeting hypercube topologies.

31

Reproduced with permission of the coovriaht owner. Further repradiiction nrohibited without nermission.

Broken
Link

Figure 2.5: Example Hypercube Architecture

Broken
Link

Figure 2.6: Example Hierarchical Architecture

Ranrndiinad with narmiceinn af tha ranurinht aumar Furthar ranradiintinn nrahihitad withant narmieccinn

CHAPTER 3

CO-SYNTHESIS FOR HYPERCUBE SYSTEMS

3.1 Introduction

A constructive co-synthesis approach that targets a hypercube topology as the final
system architecture is presented. The algorithm uses a library of processing elements
(PEs) including processor cores (CPUs) and application specific integrated circuits
(ASICs), which provides relevant data such as hardware area requirements and
performance information. The library can consist of many CPU types and ASICs.
The library also provides information related to various types of communication links
available with their interconnectivity costs. The algorithm takes in a task graph
representing the functionality of the device. The communication links are generic
and the co-synthesis algorithm supports all types of communication links including
serial, parallel, etc. The algorithm assumes that each PE in the hypercube system
consists of either a CPU or an ASIC. In addition to this, each PE consists of some
local memory for computational purposes and interface circuitry for communication

links.

The constructive co-synthesis approach presented in this thesis is provided in Figure

3.1 and consists of six main steps:

33 *

Reproduced with bermission of the coovriaht owner. Further renroduction prohibited without nermission.

1) Specification: Defining the required device functionality and performance
and arca requirements.

2) Profiling: Evaluating each functional unit in the specification for performance
and area utilization data.

3) Group Based Fault Tolerance (GBFT): A heuristic technique for adding
fault tolerance to an embedded device at the task graph level.

4} Scheduling: A technique for evaluating the current device architecture for
performance.

5) Add Processing Element: A heuristic technique for adding an additional

processing element (CPU or ASIC) to the current device architecture.
6) Synthesize Communication Links: A technique for arranging the system’s
processing elements into a hypercube topology and synthesizing all

connecting communication links.

The first phase of the approach is concerned with defining the device requirements.

Although any specification language can be used, the experimentation presented in
this thesis has been specified in C language. The second phase or the algorithm
involves the profiling of the device specification. The specification is manually
converted into task graph form. Each task in the task graph represents a functional
section of the overall device. Each of these functional sections are timed for
execution on each type of processor available in the library. Additionally hardware
alternatives to the software implementation are developed and are profiled for both

performance and area utilization. The profiling stage is complete once the software

34

Renrnduced with nermissian of the convrintht nwner Frirther ranrndiictian nrahihited withatit narmiceinn

and hardware timing data and thc hardware area data have been collected for each

task in the task graph.

The third phase is the group based fault tolerance (GBFT) method which is applied to
the input task graph. This heuristic was developed to add a minimal fault detection
mechanism to the system and to simplify fault recovery. The algorithm adds
additional assertion and duplicate/compare tasks to the task graph. [t minimizes the
fault detection overhead by exploiting a task’s error transparency and combining
tasks into groups. The quantity and type of spare PEs in the final device is set by the
user. [Ifa fault is detected by one of the added tasks, an additional processing element
is signaled to commence execution of the failed task group. This simple heuristic

provides a low overhead method for performing node-fault detection and recoveryv.

The fourth phase is the scheduling technique (see the “Scheduling” block in Figure
3.1). This heuristic method was developed to efficiently evaluate the current device
architecture to determine if it meets performance requirements. In order to improve
device throughput, the scheduling technique utilizes the established RECOD retiming
heuristic to support pipelining of the task graph [7]). The scheduler accurately
predicts overall device performance by scheduling tasks based on data dependencies.
If the scheduler finds a task execution configuration that allows the current device
architecture to meet performance requirements then the co-synthesis algorithm
terminates successfully. If the scheduler is unable to schedule the task graph within

device performance constraints the co-synthesis algorithm proceeds to the fifth phasc.

35

L

Reproduced with permission of the copvriaht owner. Further reproduction prohibited without nermission.

The fifth phase is concerned with the addition of another processing element to the
system (see the “Add Processing Element” block in Figure 3.1). This section of the
co-synthesis algorithm analyzes the current device architecture, the current task
mappings., each task’s hardware/software performance data and each task’s hardware
area data to determine the ideal type of processing element to add to the current
system. If this phase is successful in adding a processing element to the system, the
co-synthesis algorithm proceeds to phase six. If this phase is unsuccessful in adding
another processing element (unable to add more hardware while still meeting the
device hardware area constfaint) the co-synthesis algorithm terminates unsuccessfully

and provides the user with the partial solution generated.

The sixth phase is concerned with arranging the system’s processing elements within
a hypercube configuration and synthesizing all of the communication links (see the
“Synthesize Communication Links” block in Figure 3.1). This phase arranges all of
the processing elements within a hypefcube topology while attempting to keep PEs
with high levels of intercommunication within close proximity of each other. Once
all of the system’s PEs have been arranged, communication links connecting the PEs

are synthesized. Once this phase has completed, the co-synthesis algorithm proceeds

to the scheduling phase.

36

Renroduced with narmission of the convriaht ownar. Further renroduction nrohihited without narmissinn

5t S APy S iR S TS o

gt L ST 2.,

R s

a3 i

l’ Specification]
[Profiling]

t
(GTT]
——«»[Scheduling

Y

Yes

Constraints

Satisfied? Finish - Successful)

Add Processing
Element

1

Successful ?

L Yes

Synthesize
Communication Links

Finish - Unsuccessﬂ

Figure 3.1: Hypercube Co-Synthesis Algorithm Flow

37

Renrndiiced with narmiccinn nf tha nanurinht numar Fiirthor ranradiictinn nrahihited withanit narmiceinn

3.2 Fault Tolerance at the Task Graph Level

3.2.1 Overview

This subsection discusses the two main preexisting techniques for adding fault
detection/tolerance at the task graph level. Additionally, section 3.2.4 presents an
original contribution to task graph based fault tolerance techniques. In all cases fault
detection is accomplished through the addition of fault detection tasks to the task
graph. There are three types of tasks that any of the approaches presented may add to
a task graph: assertion tasks, duplicate tasks and compare tasks. An assertion task
will analyze another task’s output in order to determine whether the generated results
are erroneous. A duplicate task reproduces the same work as another task in the
graph. Typically a duplicate task will utilize an alternative implementation to that
used by the task it is duplicating. A compare task will examine the results of two
tasks to detect any inconsistencies. The addition of an assertion task typically
requires considerably less computational overhead than the addition of a duplicate
and compare set. However, assertion tasks are not always feasible. For an assertion
task to be used, error states must be able to be detected by analyzing the results. An
example assertion task could be the analysis of a checksum or checking that the

generated results lie within an expected range. Duplicate and compare tasks tend to

require a much higher computational overhead. First the entire task’s functionality

needs to be duplicated and then both generated results need to be compared.

38

poisindid

Reproduced with permission of the copvriaht owner. Further reproduction prohibited without permission.

3.2.2 Task Based Fault Tolerance

Task based fault tolerance (TBFT) was developed by Yajnik et al. [49]. Task based
fault tolerance is a technique designed to add fault detection capabilities at the task
graph level. In task based fault tolerance, some form of error detection must be
performed for the results generated by each node in the task graph. Due to the
significant difference in fault tolerant overhead, assertion tasks are favoured in the
task based fault tolerance algorithm. If a given task is capable of supporting
assertions then an assertion task is added. Duplicate and compare tasks are only
added if assertions are unavailable for the given task. To demonstrate these concepts
Figure 3.2 provides an example input task graph. Figure 3.2 also illustrates the
resultant task graph after processing by the task based fault tolerance algorithm. Here
all of the tasks in the graph support the use of assertion tasks for error detection with
the exception of task T3. Task T3 has had duplicate and compare tasks added to

provide support for fault detection.

39

Renroduced with nermission of the coovriaht owner. Further renraduction nrohibited withouit nermission.

— Pl {
/ 3 ’
[TO | (10
Input ’°
Assert
T2
Figure 3.2: Task Based Fault Tolerance Example ;

3.2.3 Cluster Based Fault Tolerance

Cluster based fault tolerance was developed by Dave and Jha [13]. This technique
was developed as an extension of the ideas presented in the task based fault tolerance
algorithm. Modifications were made to the approach in order to reduce the

substantial fault tolerant overhead prevalent in task based fault tolerance. In cluster

40

Ranradiiced with narmiscion of tha canvriaht awnar Fiirthar ranradiiatian nrahihitad withor it nermiccinn

based fault toler.ance, Dave and Jha have introduced the concept of error transparency
[13]. If atask provided with an erroneous input always produces an erroncous output
then that task is said to be error transparent. This effect is exploited in their algorithm
by grouping error transparent tasks into clusters which only require one assertion or
duplicate/compare task. Figure 3.3 shows an example task graph input and the results
generated by one iteration of the cluster based fault tolerance algorithm. Figure 3.4
shows the results after both 2 and 3 iterations of the algorithm. Figure 3.5 shows the
final clusters for the given input task graph. After all of the tasks have been grouped
into clusters, each cluster is given an assertion or duplicate/compare task to perform
error detection. Figure 3.6 shows the final clustered task graph with the addition of
error detecting assertion tasks. Each cluster is now treated as a single task in order to
ensure that all tasks within a cluster are executed on the same processing element. In

the example graph provided, all of the tasks are assumed to be error transparent.

The CBFT algorithm traverses a task graph based on task priority levels that favour
tasks that are higher in the graph. The algorithm only allows one of a given task’s
children to be added to that task’s cluster. Cluster based fault tolerance also
introduces the concept of a maximum tolerated error detection time. If a large
number of tasks were grouped into one cluster and an error occurs in the uppermost
task, the error state would not be detected until all tasks in that cluster have completed
execution. This may be undesirable as it will adversely affect performance. To avoid
this problem, Dave and Jha have incorporated a user specified maximum tolerated

error detection time into the cluster based fault tolerance algorithm [13]. The

41

Ranradiinad with narmiceinn nf tha nnnurinht Annar Eilrthar ranradiintinn nrahihitad withas o narmiosiann

algorithm will not group more tasks intc one cluster if the sum of the software
execution times of those tasks exceeds the user specified maximum error detection

time. In the cluster based fault tolerance algorithm, if an error is detected on a given

cluster, the entire functionality of that cluster is moved to a spare processing element

and signaled to recommence execution.

T

4 ' ster //
<TO> Clust: 1

\»

(\\ T1 > T1

()

Input After 1
lteration

Figure 3.3: Cluster Based Fault Tolerance — Input & 1 [teration

Rebroduced with nermission of the convriaht awner. Further renraduction nrahibitad witharit narmissinon

b VeSS

P

IR T i o

e A

s e

e e e e

Fﬁ?«z;&nm |, Birt

T T, Cluster 1
Cluster 1.7 7"~) —

4 “/

(o), / / ,/ K TO)
J /\ Cluster2
T1 .

VRN
\(T1 > <T2 / (

\,/‘
After 2 After 3
lterations lterations

Figure 3.4: Cluster Based Fault Tolerance — 2 and 3 Iterations

Cluster 1

After 4
lterations

Figure 3.5: Cluster Based Fault Tolerance — Final Clustering

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cluster 1

e

N
- 4 ™ !
S TO
/7
Cluster 2
/ /’\T ™

e o —’\

Assertion
Tasks

Figure 3.6: Final Added Assertion Tasks After Clustering

3.2.4 Group Based Fault Tolerance

This section presents a new and original technique for adding fault detection and
tolerance at the task graph level named group based fault tolerance (GBFT). This
technique was developed as an extension of the ideas presented in both the task based
fault tolerance [49] and cluster based fault tolerance algorithms [13]. Modifications
were made to the approaches in order to reduce the fault tolerant overhead prevalent.
This algorithm utilizes the concept of error transparency. Group based fault tolerance

also uses the concept of a user specified maximum tolerated error detection time.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NSty NN i e St gt - A

AN, 1 A R A A My VM

s

In group based fault tolerance, the task graph is traversed from the lowest nodes to the
highest nodes. FEach leaf node (bottom level node) is assigned to its own group. Each
of the leaf’s parents are analyzed to determine whether they can potentially be added
to the given leaf’s group. A parent is considered a possibility for grouping in its
child’s group if it is not already grouped and if adding it to its child’s group will not
violate the user imposed error detection timing constraint. Once the set of parents
eligible for grouping have been assembled for a given task, the parents are iteratively
added to the group in order of decreasing fault tolerant overhead. This process is
ended if fhe addition of another parent task to the group will violate the user defined
error detection constraint. If a task has no children, its fault tolerant overhead is set to
its assertion overhead. If a task i does have children, its fault tolerant overhead is
calculated to be:
max{assertion _overhead(children(i))+ Com(i,children(i))]+ assertion _overhead(i)

where,

assertion_overhead(/) = the assertion overhead of task / children(i) =

set of the child tasks of i

Com(u, v) = communication time from task » to v across a

communication link
Figure 3.7 shows an example task graph input and the results generated by one
iteration of the group based fault tolerance algorithm. Figure 3.8 shows the results

after both 2 and 3 iterations of the algorithm. Figure 3.9 shows the final groupings

for the given input task graph. Finally, Figure 3.10 shows the final clustered task

45

Reproduced with permission of the copvriaht owner. Further renroduction nrohibited without nermission.

araph with the addition of crror detecting assertion tasks. A more complex example
of GBFT based task groupings is provided in Figures 4.6. 4.7, 4.8 and 4.9 in section
4.2. After all of the tasks have been grouped, each group is given an assertion or
duplicate/compare task to perform error detection. Each group is now treated as a
single task in order to ensure that all tasks within a group are executed on the same
processing element. In the example graph provided, all of the tasks are assumed to be
error transparent. In the group based fault tolerance algorithm, if an error is detected
on a given cluster, the entire functionality of that cluster is moved to a spare

processing element and signaled to recommence execution.

The group based fault tolerance algorithm adds assertion and duplicate/compare tasks
to a task graph. It does not add assertion or duplicate/compare tasks to perform
checks on the fault detection tasks that it adds. If fault detection of faults occurring in
the GBFT added tasks is wanted, then it must be added manually after the GBFT

algorithm has completed execution.

46

Renradiiced with naermiasian nf tha canvriaht nwner Furthar ranrndiictinn nenhihited witharnt narmiceinn

~

Vd \ Group 1 —~
() (T
. \
~— After 1\//”
Input iteration

Figure 3.7: Group Based Fault Tolerance — Input & 1 Iteration

Ay
a

N
J]

/
y /
/ //
y

After 3
lterations

Figure 3.8: Group Based Fault Tolerance —2 & 3 Iterations

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e — ~—

/'
f

% \>/\

/,

/Group 1

\\T1> (Tz
\}TJ/

After 4 ~
lterations

Figure 3.9: Group Based Fault Tolerance — Final Grouping

Assertio
T:sli " @

Figure 3.10: Final Added Assertion Task After Grouping

48

Reproduced with permission of the copvright owner. Further reproduction prohibited without permission.

iﬁiﬂi:w- .

3.2.5 Task Graph Based Fault Tolerance Comparison

A comparison of the results of the group based fault tolerance algorithm with both the
cluster based and task based techniques is provided in order to evaluate the newly
developed GBFT technique. Thirteen random test cases were generated and the
output of all three algorithms is compared. The test cases have varying task graph
configurations and varying user defined tolerated error detection times. The
outputted error detection information from each algorithm is compared. The data
collected has been assembled in Table 3.1. Here the values under the GBFT, CBFT
and TBFT columns are the counts of error detection tasks added to the task graph.
The fewer number of error detection tasks added to a task graph results in a smaller
fault tolerance overhead. A smaller fault tolerance overhead is desirable as it will

yield a fault tolerant device that utilizes less hardware and/or less computation time.

The first randomly generated task graph has been provided in Figure 3.11. Task

graph 4 corresponds to the task graph from the MPEG decoding case study. The task

graph can be found in Figure 4.1. Task graph 5 corresponds to the task graph from

the block matching case study and can be found in Figure 4.6.

The information gathered in the table reveals that the group based fault tolerance

. technique yields a 18.75% improvement in fault tolerance overhead over the cluster

49

Reproduced with nermission of the cobvriaht owner. Further rebroduction nrohibited without nermissian.

based fault tolerance technique and a 45.83% improvement over the task based fault

tolerance technique.

Table 3.1: Fault Tolerance Comparison Data

Task Graph # | Tolerated Error Detection Time | GBFT | CBFT TBET
(msec)
I 4 2 3 8
1 3 3 3 8
1 2 4 4 8
2 3 7 7 11
2 2 7 8 11
3 9 1 3 9
3 8 2 3 9
3 7 2 3 9
3 6 3 3 9
3 5 3 3 9
3 4 3 3 9
) 3 3 4 3 9
3 2 5 5 9
4 800 1 16 22
4 300 15 16 22
4 120 14 17 22
4 80 17 17 22
4 40 21 21 22
4 34 22 - 22 22
5 150 000 1 16 22
5 40 000 13 16 22
5 30000 14 16 22
5 20000 15 16 22
5 15000 16 16 22
50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 7) (&)

Figure 3.11: Randomly Generated Task Graph (Graph #1)

3.3 Pipelined Scheduler

The functionality described in this sub-section occurs in the “Scheduling” block in
Figure 3.1. The effectiveness of a given architecture alternative is evaluated by
obtaining a pipelined schedule that is executed in the algorithm’s scheduling phase.
A pipcelined schedule with a minimum period P is an assignment of completion times

of all tasks, F(v), such that for all tasks v in the system 0 <= F(v) <== P. For a task v

51

Reproduced with permission of the copvriaht owner. Further renroduction orohibited without nermission.

with a data dependence ¢=(u, v). where u is a parent of v, the schedule time of v must
honour the following equation:
Py Fan v, +Clen) if PSMatch(u, v)
Foryzr,, otherwise
where,
Vowee = €Xecution time of task v
C(u, v) = the overall communication time between mapped tasks « and
v (0 if no communication)
PSMatch(u, v) = true if tasks « and v are located on the same pipelined

stage, false otherwise

This definition requires that a task will not commence execution before receiving the
required data from all parent tasks. The scheduler takes communication delays and
resource usage into account when assigning tasks to processing elements. The
algorithm utilizes the established RECOD retiming transformation to divide the task

graph into multiple pipelined stages [6, 7].

The RECOD retiming transformation divides a task graph into multiple pipelined
stages by inserting a cut-line which separates two tasks (parent and child) and defines
the separation between two pipelined stages. The location of this cut-line is
dependent on the parent and child’s current pipeline stage, the parent and child’s
mapping, the length of the constraining path of the parent and the amount of

information passed between the parent and child.

52

Renroduced with nermission af the convriaht awner. Further renradiiction nrohihitad withaiit narmiscinn

Initially, the RECOD transformation is repeatedly used to divide the task graph into a
maximum number of pipelined stages. After performing the RECOD retiming
transformation, the scheduler attempts to assign completion times to all tasks to
satisfy device performance requirements. If unsuccessful, the algorithm attempts to
improve the task allocations iteratively in order to minimize device communication

overhead. A flow diagram of the scheduler’s operation is provided in Figure 3.12.

Renradiicad with narmiccinn nf tha canuricht nwnor Fiirthar ranradiintinn nrahihitad withanit narmiceinn

|

Conslrainis
Satisfied?

Finish - Constraints
Satisfied

Improved
from Previous

Remap Task Back)
Schedule?

'

Yes Finish - Constraints
; not Satisfied

[Iterative Improve j

Figure 3.12: Hypercube Co-Synthesis Scheduler

For the purposes of scheduling (“Scheduling” block in Figure 3.1), each task from the
input task graph is assigned to one of the three sets, m, n and p. In order to specify
the first set, pathLoadChild, pathLoadParent and pathLoad variable values arc

assigned to each task v. These values are defined as:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pathLoadCHId(v) = v, . + max{PSMatciv. children(v))* pathLoadChild(childrem(y))}

pathLoadParent(v) = v, . +max{PSMatch(v, parents(v))* pathLoudPureni(parenis(v))}
pathLoad (v} = pathLoadChild(v) + pathlLoadPuarent(v) - v, .
where,
PSMatch(u, v) = 1 if tasks u and v are located on the same pipelined
stage, 0 otherwise

children(v) = set of the child tasks of v

parent(v) = set of the parent tasks of v

As u result, a task v's pathLoad is the value of the heaviest loaded path containing
task v.
The first set of tasks m is defined as:

3 m AT — (pathLoad(m) == max{pathLoad(AT)})

where,
3, —», and ==represent there exists, such that and equivalent
respectively

AT is the set of all tasks

Set m is the set of tasks that are located on the constraining path and are scheduled
first. Set w consists of all the tasks having a path to m. The second set n, is defined
as:n =w—m.

Set » consists of tasks that are ancestors of all the tasks of set m exciuding the

members of set .

55

Renroduced with nermission of the cobvricht owner. Further renraduction nrahihited withniit narmiccinn

The final set p. is defined as: p = AT — m — n. Set p consists of the remaining

ungrouped tasks and will be scheduled last.

These sets are used to prioritize the tasks for scheduling. The constraining path is the
longest path through the graph in terms of the execution times of its tasks. When
scheduling a task of set m that has unscheduled parents, the parents are scheduled
first. Dividing tasks into these set configurations prioritizes tasks located on the
constraining path. The tasks on the constraining path are mest likely to adversely
affect the target device performance and so the motivation is to schedule them first.
If a system schedule is obtained that meets the performance requirements, the
schedule function exits successfully, otherwise the scheduler attempts to improve
iteratively. Excessive communications is a potential problem in hypercube topologies
as they can slow down overall system performance by causing PEs to wait for data.
When two tasks are located far from each other in the architecture, communication
between them may require multiple hops. In order to alleviate this potential problem,
the algorithm includes an iterative improver (as labeled in Figure 3.12) whose goal is
to refine the task mapping. The value commLevel for each task is defined as:
commLevel(v, PE) = ZC om(v,x)* Nh(v,x)+ ZCom(u,v) * Nh(u,v)

where,

Com(u, v) = communication time from task u to v across a

communication link

N(u, v) = number of links (hops) that must be traversed to

communicate between tasks w and v

56

Renroduced with permission of the convriaht awner. Further renrodiictinn nrahihitad withniit nermiccinn

x = children(v)

u = parents(v)

A task ¢ is selected for ré-mapping based on the following equation:

execTime(v,execLoc(v)) + commLevel(v, e.\'ecLuc(v))}

g = arg max -
execTime(v, APE) + commLevel(v, APE)

where,

exec Loc(v) = the execution location (PE) of task v

exec Time(v, PE’) = the execution time of task v on PE’

APE = the set of all processing elements

The above equation selects task q for mapping based on total performance gain. Task
q 1s subsequently remapped to a new processing element to improve the overall
execution and communication times. This process is repeated as long as the
scheduler reveals continued improvements in the overall solution. When this iterative
process does not provide any further improvements, the scheduler exits
unsuccessfully. This technique was incorporated in order to help minimize any

unnecessary communications.

3.4 Device Expansion

2

The functionality described here is executed as part of the “Add Processing Element’

block of the design flow given in Figure 3.1. This co-synthesis section is responsible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for expanding the current system architecture to include an additional processing
element (PE). The PE type can be a CPU or an application specific integrated circuit
(ASIC). The primary focus of this function is to determine the most effective type of
PE to be added. The addition of a PE should provide a maximum performance
enhancement with a minimum additional hardware area. If the addition of a PE
causes a violation of the hardware area constraint, the function exits unsuccessfully.
Otherwise. the function will add a new PE and exit successfully. In order to make a
knowledgeable decision on which PE to add, the algorithm estimates the ratio of
expected performance improvement due to the increase in hardware area for all the
available options. For these calculations the variable, speedupSW is included as a
preliminary estimate of performance improvement due to the addition of another CPU
and defined as:

speedupSW = TSW,_ (AT)*(1—TP /(TP +1))
where,
TS Wexeo(v) = the total execution time of all tasks mapped to SW from

set v

TP = the count of total CPUs in the current system architecture

The variable ratioSW is defined that estimates the performance to hardware area ratio
for adding a CPU and is defined as:
ratioSW = ExL* speedupSW | PAC
whiere,

PAC = the area cost for the addition of another CPU

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ExL = the expected load of the new processor

ExL is provided to weight the decision of adding a new processor based on the

expected load that processor would receive. ExL is defined as:

ExL=0 i.f CST <=TP
ExL = CST/(k*TP) if CST > TP and CST < k*TP
ExL=1 otherwise

where,

CST = the count of tasks currently mapped to software

As an estimation, it is assumed that if the current system architecture contains & times
as many tasks mapped to software as there are CPUs, then the newly added processor
will be provided with a full task load. The value & is user set. These equations were
selected to quickly approximate the expected amount of speedup obtained by adding

an additional CPU to the system.

With respect to the speedup and ratio factors for adding new ASICs, a task set v is
declared as the set of all tasks currently mapped to software. The speedupHW/[v] and
ratioHW{v] array variables are then calculated for the set of tasks in v. Each

individual ratioHW value represents an expected improvement factor for moving the

ek s ks A G T

given task from its current location in software to an ASIC implementation. The
speedupHW/[v] represents the difference between the execution time of task v in

software and in hardware. In order to define ratioHW the variables CouldBen and

IR ek

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(WillBen are created. The (CouldBen[v] variable is defined as the count of tasks
having an identical hardware configuration pattern as task v. The (WillBen/v]
variable is defined as the count of tasks having an identical hardware configuration

pattern as task v and is currently mapped to software. The ratiol{W[v] is defined as:

ratioHW{v] = speedupHW{v] e speedupHWIv]\ [tWillBen[v] -1
A(v) A(v) tCouldBen{v]

where,

A(v) = the area cost for the hardware implementation of task v

The above formulation encourages the selection of hardware solutions that can be
reused by multiple tasks. All of the ratio values (both hardware and software)
obtained are compared and the maximum value is used to decide the PE type to be
employed in the expansion. When the PE being added is an ASIC (PE,si), the
function assigns a maximum number of tasks with matching configuration patterns to
the newly added ASIC, given that the following constraints are met:

THW,,,.(PT(PE ,.)) < timCons

where,

timCons = the user specified device timing constraint

PT(PE) = the set of tasks allocated to processing element PE

THW ox.c(v) = the total execution time of all tasks mapped to HW from

setv

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the added PE is a CPU, the function must decide which tasks will be initially
allocated to the new CPU. The task to be allocated to the new processor P, is
selected from the processor identified by the variable Py in the following equation:

P

dunar

= max(75W,

e (PT(APY)
where,

AP is the set of all processors

The above equation ensures that the donor processor would always be the most

- heavily loaded. The task with the lowest communication overhead with respect to the
other locally allocated tasks is selected for remapping from the donor process. This is
intended to minimize the communication overhead and simplify the iterative process
for the scheduler. After this task has been reallocated to the new PE, the selection of
a donor processor and a task is repeated until the new CPU load reaches the average
processor load. To accomplish this, the variable loadAverage = TSW,,. /TP is defined.
where TP is the total number of processors. This process is repeated until an
allocation is obtained such that the difference between the load on the new processor

and the average load is a minimum.

While adding new hardware, the algorithm tracks the overall area of the device to
ensure an accurate prediction of the final system cost. The hardware area overhead
associated with each communication interface located at each PE node is recorded, in

g addition to the cost of each communication link.

SR

61

o ,
@@@W LI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Communication Link Integration

The f{unctionality described here is executed in the “Synthesize Communication
Links™ block of the design flow provided in Figure 3.1. This section of the co-
synthesis algorithm is responsible for cormecting all the system PFs and assignment
of communication links to form a hypercube topology. To limit the communication
overhead. the processing elements with high levels of inter-communication are placed
as close as possible in a hypercube topology. An array of communication coefficients
is defined, comCoeff] TPE] (where TPE = the count of total processing elements), for
each processing element. The commCoeff for processing element PE, with respect to
PE,, is defined as:
PEArray{ PE J.comCoeff{ PE, 1= ZCom(PE T(PE,), PET(PE.Y)
where,
PET(PE) = the set of tasks currently allocated to PE

PEArray = the array of all processing elements

In order to clarify the process of assigning specific locations to each processing
element within the framework of a hypercube architecture, the established binary
naming convention for labéling nodes is utilized [29]. The binary ﬁaming convention
in a 3D hypercube is shown in Figure 3.13. This naming convention is convenient for

message routing and the number of communication hops between two nodes can be

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quickly determined by the number of bit-wisc mismatches between the binary

identitiers for each node.

| /
\ 110 111 >

%) /
7 .

010 gom S E—— 011

101

000

Figure 3.13: Binary Naming for Hypercube Nodes

Initially, the first CPU is placed at location 000. Subscquently, each location (h¥) is
filled by the PE named in the variable selecredPE by the following definitions:

3 pe in APE — he(hN, BL(pe))

ne e

selectedPE = arg max(Z PEArray[n).comCoeff[UPE))

where,

63

Reproduced with permission of the copvriaht owner. Further reoroduction orohibited without nermission.

APE = the set of all processing elements currently assigned to a
specific hypercube location

BL(pe) = the binary number that processing element pe is assigned 10
he(hN, hM) = the hypercube edge connecting binary location AN to
binary location AM

UPE = the set of all processing elements currently unassigned to a

specific hypercube location

The next PE to place in the hypercube is selected from the set of unassigned PEs.
The PE is selected such that it has the largest communication coefficient with respect
to the already assigned PEs that will be its neighbour. This process is repeated until
all the PEs arc allocated to hypercube nodes. This heuristic was selected to minintize

the occurrence of long communication delays.

The co-synthesis algorithm does not require the hypercube architecture to be perfectly
symmetrical. If all the processing elements are not a power of two, some of the PEs
will have fewer communication links than the others. This is generally considered
undesirable as one of the advantages of hypercube architectures lies in its innately
fault-tolerant topology. Consequently, if the total number of processing clcments is
not a power of two, an additional communication link to compensate for the shortage
in the most recently added PE is introduced. This communication link connects the
PE in the highest binary location (finalPE), with a destinationPE. In order to

determine the destinationPE, the sct of processing elements, neigh is defined as the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

set of PEs that share a neighbour with the fina/PE. The processing clement

destinationPE, is selected 1o be the task identified by:

max(PEArray finalPE}comCoceffTn]) while n € neigh

The above equation was selected to connect the final PE with the compatible PE with
which it communicates most often. To illustrate this example consider Figure 3.14,
where a 5-node hypercube is provided and the final communication link will connect
the PE at node (100) to the shaded PE with which it communicates most. As
previously mentioned, one of the advantages of hypercube topologies is its inherent
fault tolerant capabilities. The motivation for the above heuristic is to eliminate the
potential catastrophic failure that could occur if the communication link connecting
node (000) and (100) fails. This heuristic preserves fault tolerance in non-

symmetrical hypercube systems.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.14: Non-Symmetrical 3-D Hypercube

In summary the approach consists of six phases. The first three are performed once,
and the final three are repeatedly executed until a final device architecture has been
generated. The first phase is responsible for clearly defining the device’s functional
and non-functional requirements. The second phase is concerned with converting the
functional requirements into task graph form and gathering all of the relevant data
needed in the later phases. The third phase adds fault detection tasks to the task
graph, thus facilitating low overhead fault tolerance. The fourth phase involves
evaluating the device’s performance and determining if it meets non-functional

performance requirements. The fifth phase is concerned with adding a processing

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

element to the system. Finally. the sixth phase is responsible for synthesizing all of

the device's communication links.

i 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

4.1 Parallel MPEG-2 Decoding

An effective demonstration of the capabilities of the co-synthesis algorithm would
have to involve an application that is computationally intensive. Additionally, for
demonstrative purposes it is beneficial to implement a device that is easily
understood. A multiple PE embedded Jdevice was implemented, which is responsible
for decoding 16 MPEG-2 video streams and simultaneously comparing their decoded
images to predetined data. Such a device could be used in autonomous navigation or
security systems. The device was fully specified in C language encompassing 9500
lines of code. A task graph representation was obtained by analysis of the
specification and is provided in Figure 4.1. The functionality of the system is
expressed as a graph of 22 tasks. The design space of the application has been tested
in terms of device area and timing constraints in order to cvaluate the performance of
the presented approach. The test and experimental results are provided in Figure 4.2.
The results of an optimal technique that exhaustively attempts each possible
combination is also included. This is useful for demonstrating the quality of the

algorithm and its results as comnpared to the optimal solution.

68

Renroduced with permission of the copvriaht owner. Further renroduction nrohibited without nermission.

%

EREppe e i s

1 Initialization

P . TR S I S

N3 N

MPEG
Decoders
\ - 1 Passes One
f i Frame
Regional
1 8 1 9 21 Comparison
Passes
Highest
Correlation
Frame
Final
Comparison
Stage

Figure 4.1: Paralicl MPEG Decoding: Functional Task Graph

A set of hardware and software implementation data is provided to the algorithm. In
order to establish the software execution times for each task, the C language based
specification was profiled on a Pentium [1 450 MHz CPU. The algorithm library can
consist of many CPU types however, for simplicity and practicality only the Intel
Pentium 1 450 MHz CPU was included for this case study. Each of the tasks were
fully implemented in hardware and profiled for performance and hardware area

requirements on an Altera FLEX10KE FPGA. The only exception is the MPEG-2

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decoding tasks, where the pre-existing IP core from Amphion Semiconductor was
utilized for the hardware implementation. Table 4.1 provides information regarding

the quantity of each type of PE used for each of the design constraints studied.

The co-synthesis algorithm provides support for fault tolerant communications by
generating the target device into a hypercube architecture. By using the group-based
fault tolerance techniques (GBFT) previously outlined, a fault tolerant embedded
device has been synthesized. The GBFT algorithm adds assertion and
duplicatc/compare tasks to the task graph. Upon detection of a failure, the
assertion/compare task signals one of the spare PEs to commence execution of the
failed task. The type and number of spare PEs are defined by the user. It should be
noted that in order to compare the algorithm with the optimal case the GBFT section
of the algorithm had to be disabled. The GBFT algorithm would substantially
increase the total number of tasks in the task graph. The optimal approach is
extremely computationally intensive and unable to generate results for larger task
graphs within a reasonable amount of time. Although node fault tolerant versions of
this case study have been simulated, the data presented illustrates results obtained
without the use of the GBFT portion of the algorithm. Further analysis that includes

the error detection tasks added by the GBFT portion of the algorithm is provided in

section 4.2.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g R —— i

—o— Device Constraints
14 {mr - - Device Results
- -&--- Optimal Device

13 {-—

12

11

10 -

Device Area (million transistors)

eI S R RS e T T e

A
\1
|

30 40 50 60 90 120 130 600 770
Device Period (msec)

Figure 4.2: Design Space Exploration of Parallel MPEG Decoding

The results provided in Figure 4.2 demonstrate the ability of the method to synthesize
embedded devices with varying design constraints. A comparison of hardware area
to performance trade-offs can be very useful to an embedded engineer in order to
examine differences between design alternatives. The results from using an
exhaustive (optimal) mapping technique is also provided. The exhaustive approach

attempts all the possible combinations and is very computationally intensive.

Comparison results from the co-synthesis algorithm with those obtained by the

=

5

optimal technique revealed that the algorithm produces embedded devices with

.

it

96.25% of the performance obtained by the optimal technique on average.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Additionally, the embedded devices generated by the algorithm only utilized 0.62%

(average) more hardware than the devices obtained by the optimal method.

Table 4.1: Processing Element Utilization of Design Space for MPEG Decoding

Area Timing Initial MPEG-2 HW — Reg. HW - Final Total Exec. Optimat |
Constraint Constraint HW - Decoding Comparison | Comparison PEs Time cmse
(millions of {msec) Task 1 Cores Tasks 18-21 Task 22 (msec) | Execssizn
transistors) Tasks 2-17 r f

13.5 30 1 6 1 1 10 35.2 1
i
1.5 40 0 4 | 1 7 14.8 ~E3%rs
11 50 0 3 1 1 6 1.2 ~ZZ%rs i
10.5 60 0 3] 1 6 13.5 ~24 a8
9.5 90 0 2 1 ! 5 7.9 ~F2Ars
9 120 0 1 |] 4 4.2 ~3F &3
8.5 130 0] 1 0 3 34 | ~Iigs
7.6 600 0 0 1 0 2 16 | -Zikes
; =
7.5 770 0 0 0 | 0 1 0.8 ! -Iinms

Table 4.1 provides detailed information regarding the configuration of each solution
that the co-synthesis algorithm produced. Given the design constraints provided iz
the first two columns. the algorithm gencrated a device that could meet specificaticas.
The next four columns (3-6) provide the count of various ASIC circuits present in 5kz
final synthesized system. The total PEs column provides a count of the total nusmskes
of PEs present in the given device. The count of CPUs in the table have not bzen

included as there is only one CPU for cach case. The execution time column sharss

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the length of time the algorithm took to execute on a Pentium IV in order to
synthesize the device. The final column provides the ‘approximate execution times
from performing exhaustive co-synthesis. Figure 4.3 provides the final device
architecture for the first test case provided in table 4.1. Figure 4.4 provides the final
device architecture for the second test case. The architecture for the fifth test case is

provided in Figure 4.5.

0110
111
MPEG MPEG
Decode \ Decode
) MPEG
Init Decode
0013 001
E .-'é%% _‘
gg
E MPEG MPEG
g Decode Decode
0100) 0101
& CPU | Regional MPEG
; Comparison Decode

G001

0000

Figure 4.3: Parallel MPEG Decodit g: Architecture for 1% Test Case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Final
Comparison

Regional
* Comparison

MPEG
Decode

010

MPEG
Decode

MPEG
Decode

101

MPEG
Decode

001

Figure 4.4: Parallel MPEG Decoding: Architecture for 2" Test Case

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MPEG . —_{ Regional
Decode 7 T Compariso

Final
Comparisen

MPEG
Decode

Figure 4.5: Parallel MPEG Decoding: Architecture for 5" Test Case

4.2 Parallel Block Matching

An effective demonstration of the capabilities of the co-synthesis algorithm would
have to involve an application that is computationally intensive. Additionally, for
demonstrative purposes it is beneficial to implement a device that is easily
understood. In the previous case study a device has been implemented that utilizes 16
MPEG decoders. MPEG decoding is the process by which a compressed video file is
uncompressed for the purpose of viewing or accessing the raw image data. For the
second case study, the block matching algorithm has been implemented. MPEG and

other video compression formats are designed for fast transmission / casy storage of

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

video data. In order for such a format to be useful, the decoding process must be
relatively fast. In order to efficiently compress the video data for easy decoding, a
computationally intensive encoding algorithm must be run. Block matching is the
most time consuming component of MPEG encoding. Block matching analyzes the
macroblocks from the input image and compares them with the surrounding area on
the reference image. By analyzing all possible locations, an exhaustive block
matching algorithm will generate motion vector data indicating the movement of a

given macroblock from one image 1o the next.

A multiple PE embedded device responsible for performing the block matching
algorithm has been implemented. Such a device could be used for any application
involving the acquisition of video data. The device is fully specified in C language.
A task graph representation is obtained by analysis of the specification and is
provided in Figure 4.6. The functionality of the system is expressed as a graph of 22
tasks. The group based fault tolerance (GBFT) techniques previously outlined have
been used and the resultant task grouping is provided in Figure 4.7. The GBFT
grouping results in the addition of the assertion tasks shown in Figure 4.8. The final
resultant task graph after GBFT has been performed and each group has merged to
become a single task is provided in Figure 4.9. Further discussion of how the GBFT

algorithm groups tasks together is provided in section 3.2.4.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initialization

....... 1 6 { Frame
Blockmatching

Passes One
Vector

Vector
Assembly

20

-

Final Vector
Assembly

Figure 4.6: Block Matching: Functional Task Graph

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.7: Block Matching Task Graph: GBFT Grouping

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Group 2
Assert
Group 3 ;
Ass};n 37 \ ' j
U | ¥ S 7N
Group 4 N - ' » '
oy (36) ()
(17 19) (20} @
: Assert
Group 15
{ Assert
‘) Group §

Group 1
Assent

Figure 4.8: Block Matching Task Graph with Added Assertion Tasks

79

‘Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Initialization
0 and
Blockmalching

Inkt Assert QS/)

.
12 (13 J 14) BlockMalch

) BlockMatch
Assert

@
@

1 Blockmalching
3 0 and all Vector

Assembly

Figure 4.9: Block Matching: Final Resultant Task Graph

The most complex task in the device outlined is the block maich task. In order to
obtain pertinent hardware performance and area information for all tasks, the
functionality needs to be implemented in hardware. This task has been implemented
with the design provided in Figure 4.10. Yang et al. have presented an entire motion
estimation architecture which utilizes a sub-circuit responsible for error calculations
that is similar to the implementation in Figure 4.10 [50]. Dutta and Wolf have
presented a flexible motion estimation architecture [17] based on the research of
Yang et al. In the design presented, the diff circuit calculates the absolute difference

between the two input values. The absolute difference between the corresponding

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T R T R R R S e B T Y

RSN

functionality of the device is provided in the VHDL code in Appendix A.

current motion vector. The control unit tracks the current state of the circuit and

pixel values of the two input images is the error at the given point. The adder circuit
adds the current error to the previously calculated errors to sum the overall error for a
given vector. The comparison circuit compares the two input values and if the new
value is lower than the old value, the circuit outputs the new value and latches the

current [and J values into an internal register. These I and J values represent the

signals all sub circuits, registers and outputs accordingly. A formal description of the

81

Figure 4.10: Block Match Circuit Design

Control
addByte aliDone
T { Start
il T L———
cursent |
inByte — current J
outf:
outd
Register
L4
Ditt Adder Compare
R -
Init L———- 3 init
Register Register

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This block match circuit operates using a state machine which is administered in the
control unit and is provided in Figure 4.11. State 0 is the initial state wﬁen the circuit
is waiting for input. In state 1 the circuit has just received an even numbered count of
inputs and as a result, the adder register is signaled to load the adder circuit generated
value. In state 2 the circuit has just received an uneven number‘ofinputs. If the
circuit has received 512 input values, the circuit transitions to state 3 and signals the
compare sub-circuit to begin execution, otherwise the circuit returns to state 1. In
state 3 the compare register is signaled to load the compare circuit generated error

value. In state 4 the adder register is initialized and the incoming data is loaded into

the input register.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SO

S

if addCounter >
threshold

if finished

Figure 4.11: Block Match State Machine

The design space of the application in terms of device area and timing constraints has
been tested in order to evaluate the performance of the approach. The test and
experimental results are provided in Figure 4.12. A set of hardware and software

implementation data was provided to the algorithm. In order to establish the software

execution times for each task, the C language based specification was profiled on an

ARMT7TDMI processor. The algorithm library can consist of many CPU types,

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

|
I
I
{
|
{

however, for simplicity and practicality only the ARM7TDMI has been included for
this case study. Each of the tasks were fully implemented in hardware and profiled
for performance and hardware area requircments on a Xilinx VirtexE XCV2000E
FPGA. Table 4.2 provides information regarding the quantity of each type of PE

used for each of the design constraints studied.

The co-synthesis algorithm provides support for fault tolerant inter-PE
communications by generating the target device into a hypercube architecture. By
using the group-based fault tolerance (GBFT) method, fault tolerant embedded
devices have been synthesized. @ The GBFT algorithm adds assertion and
duplicate/compare tasks to the task graph. Upon detection of a failure, the
assertion/compare task signals one of the spare PEs to commence execution of the

failed rask. The type and number of spare PEs are defined by the user.

In the previous case study the results were compared with those of an exhaustive
technique. The exhaustive technique is very computationally intensive. On the 22
node task graph provided in the previous case study, the exhaustive technique
required approximately 24 hours of execution time. The parallel block matching case
study consists of 32 nodes (afier GBFT) and as a result the exhaustive technique is far
too computationally intensive to gather comparative results within a reasonable
amount of time. As a result. in Figure 4.12 only the device constraints have been

provided to our program and the resultant output provided by the algorithm have been

included.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o 180 B‘“\'.\\\ ---0r -- Device Results
-4 v ’ — -5~ — Constraints .
2 Q9 {
& w460 '
i (24
- 140 -
3
c
g
& 120
£
y:]
@
< 100
@ ; ?
L - g ! . i
B e ~~g
60 - T - T- y T —
15 17.5 18.5 25 30 32 35 150

Device Period (secy

examine differences between design alternatives.

85

Figure 4.12: Design Space Exploration of Parallel Block Matching

The resulis provided in Figure 4.12 demonstrate the algorithm’s ability to synthesize
embedded devices with varying design constraints. A comparison of hardware area

to performance trade-offs can be very useful to an embedded engineer in order to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: Processing Element Utilization of Design Space for Block Matching

Area Constraint Timing CPU Block Block match Final Total Exec.
(thousands of Constraint cores Matching Assert Cores | Assert PEs Time
transistors) (sec) Cores Cores (msec)
189 15 2 3 1 1 7 3424
174 175 2 2 ! 1 6 233.7
94 18.5 1 2 | | 5 144.0
91 25 1 2 1 0 4 112.5
90 30 1 2 1 0 4 153.7
83 32 1 1 ! 0 3 100.3
82 35 1 1 1 0 3 112.5
74 150 1 0 0 0 1 24

Table 4.2 provides detailed information regarding the configuration of each solution

that the co-synthesis algorithm produced. Given the design constraints provided in

the first two columns, the algorithm generated a device that could meet specifications.

synthesize the device.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

; The next four columns (3-6) provide the count of various ASIC circuits present in the
final synthesized system. The total PEs column provides a count of the total number
of PEs present in the given device. The count of initialization cores and final cores
have not been included as there are none implemented in hardware for each case.

The final column provides the length of time the algorithm took to execute in order to

In order to further demonstrate the efficacy of the approach a prototype device has
been constructed based on the design generated by the hardware-software co-
synthesis algorithm. A device based on the third set of design constraints provided in
table 4.2 has been constructed. The algorithm was provided with an area constraint of
20000 gates in excess of the area of the initial CPU (74209 gates). The algorithm was
also provided with a performance (period) constraint of 18.5 seconds. After co-
synthesis, the algorithm generated a final device arch:iecture as seen in Figure 4.13.
The design consists of a single CPU, two block matching PE circuits. one block
match assert circuit and cone final assert circuit. Additionally, in order to support fault

tolerance one additional spare block matching circuit and two repeater circuits have

been included in the design.

The algorithm predicted a final device area of 19683 gates in excess of the initial

CPU area (74209). One block matching processing element and two repeater
processing elements were added to support fault tolerance. A single block matching
circuit has been synthesized and determined to utilize 3451 gates. The addition of
three more processing elements also results in the addition of six new communication
links. Each additional link results in the addition of two communication interfaces.
Each additional communication interface has been synthesized and determined to
utilize 354 gates. Finally, in order to support software to hardware communications
on the ARM rapid prototyping platforin, additional interface circuitry is required.

This circuitry was synthesized and determined to utilize 2866 gates. The algorithm

also predicted a device period of 18.49 seconds.

87

~ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The sum of all of the hardware area predictions are as follows:

19863 Gate count of initial hardware in excess of initial CPU
74209 Gate count of initial CPU
3451 -Gate count of 1 additional block match circuit
4248 Gate count of 12 additional interface circuits (12 * 354)
+ 2866 Gate count of ARM circuitry required for HW/SW comm.
= 104637 Total gate count

The entire device represented by Figure 4.13 was implemented in over 2500 lines of

VHDL and C code. A listing of the code is provided in Appendix A. Synthesis of the

final device’s non CPU hardware revealed an actual gate count of 28368 transistors.

Adding the total gate count of the initial CPU (74209) yields a final device actual gate

count of 102577 transistors.

The completed hardware-software device was profiled for performance.

determined to have a period of 17.02 seconds.

88

| Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It was

111

Repeater

Repeater

*
3
4
&

Block
Match

010

101

Figure 4.13: Final Prototype Device Architecture

The group based fault tolerance method developed allows the user to manually select
the quantity and type of spare processing elements. In order to support fault tolerance
but to also limit the fault tolerance overhead one spare block matching processing
element has been included. Additionally, in order to simplify the hypercube topology
and for case of link fault tolerance, two repeater processing elements have been

included. The repeater processing elements consist solely of communication

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interface circuitry, and are only responsible for repeating incoming data on the

appropriate outgoing link.

In order to test the device’s functionality, an input image and a reference image have
been provided as input. The device then calculated the motion vectors for each of the
16 macroblocks in the images. The reference image is provided in Figure 4.14. The
input image is provided in Figure 4.15. The macroblock numbering convention used

is provided in Figure 4.16. The generated vector data is provided in Table 4.3.

Figure 4.14: Reference Image

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.15: Input Image

12 13 14 15

Figure 4.16: Macroblock Identification

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3: Generated Motion Vectors

Macrobiock Row Shift Column Shift _
0 0 0 3
1 0 0 :
2 0 0
3 0 0 ;
4 0 0
5 -1 -1
6 0 0 :
7 0 0 ;
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
i3 -2 0
14 0 0
15 0 0

In order to confirm that the device correctly supports fault tolerance error states were
simulated. Random error conditions in various block matching subcomponents were
simulated by using a random number generator. After an error state has been
detected, all further communication to the block matching PE where the error was
detected is rerouted to one of the spare block matching PEs. Additionally. the set of
tasks executed on the PE where the error was detected must be re-executed on the
newly activated spare PE. This results in a degradation of overall system
performance for the period in which the error was detected. The average measured

period of the device when an error was detected is 20.94 seconds. The output results

from the cases where an error was detected is identical to those generated by the

device when no error was detected.

S TR R PRI AR A o B R 1117

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Discussion of Experimental Results

A design methodology for medium to large-scale fault-tolerant embedded systems has
been presented. The objective has been to introduce a tool to aid the embedded
systems developer to create hypercube devices meeting performance, cost and
reliability constraints within a reasonable amount of time. To achieve this goal
efficiently and effectively, a series of equations were developed to govern pipelined
scheduling, task reallocation, addition of processing elements, configuration of
processing elements within a hypercube topology and synthesis of inter-PE
communication links. One of the predominant motivations is to minimize undesirable
multi-hop communications that can occur in hypercube systems. Additionally, the
innate link-fault tolerant nature of hypercube architectures is preserved. Support for
fault tolerance has been developed through the use of the group based fault tolerance

technique.

In order to demonstrate the efficacy of the new group based fauit tolerance technique,
the algorithm was compared to both cluster and task based fault tolerance. To the
best of our knowledge cluster and task based fault tolerance are “the only other
published methods governing the addition of error detection functionality at the task
graph level. The experimental results showed that on average the group based fault
tolerance method yields a 9.8% improvement in fault tolerant overhead over the

cluster based fault tolerance method and a 61% improvement over the task based fault

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tolerance method. These results demonstrate the efficacy of the group based fault

tolerance method.

In order to evaluate the efficacy of the co-synthesis approach the results of an optimal
algorithm have been provided for the test cases of the first case study. The exhaustive

technique is a simple approach that attempts all possible combinations and is

extremely computationally intensive. This exhaustive technique was implemented for
the sole purpose of evaluating the results of the algorithm with the optimal solution. i
On average the approach yielded devices that under-performed the optimal case by
3.75%. Additionally, the algorithm resulted in designs that use 0.62% more hardware
area than that of the optimal approach. These results show only small deviations
between the algorithm’s solutions and the ideal ones, indicating that the proposed
method yields high quality solutions. To the best of our knowledge, this approach is
the first co-synthesis algorithm developed targeting embedded hypercube systems.
Comparing the results of this approach with, for instance, a co-synthesis algorithm
developed to target bus systems would be inconclusive due to the differences in the

target architectures. Consequently, the comparison has been limited to that of the

optimal method.

Another common approach for comparing various co-synthesis or partitioning
techniques is to evaluate their respective execution times. Some timing analysis of
the algorithm has been performed with relation to the case studies presented in this

paper (see Tables 4.1 & 4.2). It can be observed that as the hardware constraint rises,

e e

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

so does the execution time. As more hardware is added to the system, more itcrations
of the algorithm must be executed. The average execution time for the algorithm
(across both case studies) is 84.92 ms. Synthesizing the 22-task embedded device
(first case study) for the given set of input requirements would take approximately 24
hours to complete using the optimal approach. The execution time of such an
approach is impractical for the comparable task graphs of the case study devices.
Additionally, it is expected that the execution time would increase exponentially if
the number of tasks in the device specification increases. This was verified when
attempting to use the optimal method on the 32-node task graph from the second case
study. The optimal execution time was observed to be prohibitive and as a result no
optimal cases were completed. In the cases where the optimal technique could be
used, it was found to produce marginally better designs but its execution time was too
large and impractical. Both algorithms were executed on a Pentium IV 2.8 GHz
system with S12MB of memory. The execution timing results indicate that the
approach is efficient and its execution time is not a serious impediment to its
performance. The first case study presented in this paper is fully implemented and

executed in simulation.

In order to further confirm the effectiveness of the devices that the algorithm

produces. a prototype of the second case study device has been built using a rapid

prototyping platform based on the ARM CPU and Xilinx VirtexE FPGA.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The results show a final device gate count of 102577 transistors. As discussed in the
previous section, the algorithm predicted a total device gate count of 104637
transistors. These predicted results yield a 2.0% error. This error has been at'gributed
to the estimates on the cost of the communication Ii‘nk interfaces. The interface gate
count was estimated by synthesizirg a standard communication interface. The largest
source of the discrepancy comes from the communication link interface circuitry that
accompanies the CPU processing element. Due to the complex nature of the CPU,
this interface circuitry deviates considerably from that of the other processing
elements. Additionally, the VHDL compiler attempts to optimize the device area
which may reduce the overall device gate count. The existence of these discrepancies
was not realized until the final device was completed, as a result the modeling of

these costs into the actual system was not possible.

The results show a final device performance period of 17.02 seconds. The algorithm
predicted a final device period of 18.49 seconds. This is an 8.6% error. This error
has been attributed to the observed inconsistency in the time measurement functions
available for use with the ARM CPU. During profiling, the same functionality was
repeatedly measured for timing. The execution time of the same software functional
block was observed to typically vary by approximately 10% and in some cases as
much as 40%. Due to this discrepancy, estimated execution times based on the

maximum measured values were selected. This is believed to be the main source of

error contributing to the overall device period estimate being 8.6% higher than the

final measured value.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Esmgr o

It should be noted that with a period of 17.02 seconds, the prototype device is slow.
This is due to us using an ARM7TDMI processor. The ARM?7 is widely used in
small scale embedded systems and at 74,209 transistors, it is an extremely small
processor. By comparison, an old desktop CPU such as the Intel Pentium II, consists
of 7.5 million transistors which is approximately 100 times larger. Additionally the

communication bus on the rapid prototyping platform is also slow.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS

CONCLUSIONS AND FUTURE WORK

The hardware-software co-synthesis of an embedded system architecture involves the

partitioning of a system specification or functional description into hardware and

software modules so as to meet a series of non-functional requirements such as cost

o rSE B AR

and performance. Various distributed embedded device architectures have been
presented previously, including bus, hierarchical and hypercube. Hypercube
architectures are particularly suitable for use in fault tolerant and high performance
devices. To the best of our knowledge, the first co-synthesis algorithm has been
presented that will automatically generate fault tolerant hypercube architecture based
embedded devices. The newly developed group based fault tolerance, a technique for
adding fault tolerance to an embedded device at the task graph level has also béen
presented. The co-synthesis algorithm consists of six main steps: specification -
defining device functional and non-functional requirements, profiling — evaluating the
functional specification for performance and area utilization, group based fault
tolerance — adding fault tolerance to the device at the task graph level, scheduling —
evaluating the performance of the current device architecture, addition of processing
clements — improving device performance by adding more hardware, and the
synthesis of communication links — arranging all processing elements within a
hypercube topology and synthesizing all communication links. The algorithm

attempts to minimize the occurrence of multiple hops during inter-task

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communications. This helps to reduce the overall system communication overhead

and thus increases device performance.

A security/navigation device has been implemented that is responsible for decoding
16 MPEG video streams in parallel. The co-synthesis algorithm’s final architecture
results were compared with that of the optimal case. This comparison revealed only
minor deviations between the co-synthesis algorithm’s generated devices and that of
the optimal technique. These minor deviations illustrate how the co-synthesis

algorithm is capable of generating high quality solutions.

A second device has been implemented to illustrate the algorithm’s ability to generate
fault tolerant devices. This device is responsible for performing the block matching
algorithm which is a computationally intensive and an essential component of MPEG
encoding. Additionally, in order to further demonstrate the efficacy of the approach,
a prototype device based on the algorithm’s results has been implemented. The final
prototype device’s area and timing values were compared with the algorithm’s
predicted values and revealed only modest deviations from the anticipated results.
Error conditions were also sirnulated on the prototype device to confirm correct fault
tolerant device functionality. This demonstrates the co-synthesis algorithm’s ability

to generate fault tolerant devices and to accurately predict device area and

performance costs.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

During the synthesis and development of the block matching case study, available

equipment was limited to a small ARM7TDMI CPU connected to a Xilinx FPGA via
a slow communication medium. This resulted in a slow performing but inexpensive

device. Future work will entail the development of an additional prototype based on

e

2 R AT

a faster and larger CPU. Additionally, the system will have a faster FPGA for the

application specific circuitry and higher speed hardware-software communications.

g

This will further demonstrate our co-synthesis algorithm’s capabilities by

synthesizing and building a prototype device with more practical performance and

area constraints.

The co-synthesis algorithm presented, targets fault tolerant embedded devices and
takes as input functional and non-functional requirements. The non-functional
requirements include performance and area. In order to further enhance the
algorithm’s ability to synthesize fault tolerant devices, future work will entail
adapting the algorithm to include reliability as a non-functional requirement. CPUs,
ASICs and communication links all have an inherent reliability factor and the overall

device reliability will be a function of the selection of differing processing elements,

links and how they are interconnected.

100

| Reproduced with permission of the copyright owner. Further reproduction prohibited without bermission.

REFERENCES

[1] P. Athanas, H. F. Silverman, “Processor reconfiguration through instruction-set
metamorphosis”, /JEEE Computer, vol. 26, no. 3, pp. 11-18, March 1993.

[2] S. Bakshi and D. Gajski, “Partitioning and Pipelining for Performance-
Constrained Hardware/Software Systems,” [EEE Transactions on Very Large Scale
Integration Systems, vol. 7, no. 4, Dec. 1999.

[3] E. Barros, W. Rosenstiel, and X. Xiong, “A method for partitioning UNITY
language to hardware and software,” Proceedings European Design Automation
Conference, Sept 1994, pp. 220-225, Grenoble, France.

[4] C. Bolchini, L. Pomante, F. Salice, D. Sciuto, “Online Fault Detection in a
Hardware/Software Co-Design Environment: System Partitioning”, Proceedings IEEE
International Symposium on System Synthesis, Oct. 2001, pp. 51-56, Montreal,
Canada.

[5] Jui-Ming Chang, Massoud Pedram, “Codex-dp: Co-Design of Communicating
Systems Using Dynamic Programming”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 19, no. 7, July 2000.

[6] K. S. Chatha and R. Vemuri, “Hardware-Software Partitioning and Pipelined
Scheduling of Transformative Applications,” /EEE Transactions on Very Large Scale
Integration Systems, vol. 10, no. 3, June 2002.

{71 K. S. Chatha and R. Vemuri, “RECOD: a retiming heuristic to optimize resource
and memory utilization in HW/SW codesigns,” Proceedings International Workshop
on Hardware/Software Codesign, March 1998, pp. 139-143, Seattle, USA.

[8] J. Choquette, M. Gupta, D. McCarthy, J. Veenstra, “High performance RISC
microprocessors”, [EEE Micro, pp. 48-55, Aug 1999,

[9] L.A. Cortes, P. Eles, Z. Peng, “Formal coverification of embedded systems using

model checking”, Proceedings Euromicro Conference, Sept. 2000, vol. 1, pp. 106-
113, Maastricht, Netherlands.

[10] L.A. Cortes, P. Eles, Z. Peng, “Verification of embedded systems using a Petri
net based representation”, Proceedings International Symposium on System Synthesis,
Sept. 2000, pp. 149-155, Madrid, Spain.

[11] J. G. D’Ambrosio and X. Hu, “Configuration-level hardware/software
partitioning for real-time systems,” Proceedings International Workshop Hardware-
Software Co-Design, Sept. 1994, pp. 34-41, Grenoble, France.

[12] S. K. Das, M. C. Pinotti and ". Sarkar, “Optimal and load balanced mapping of
parallel priority queues in hypercubes,” I[EEE Transactions on Parallel and
Distributed Systems, vol. 7, issue 6, pp. 555-564, June 1996.

[13] B. P. Dave and N. K. Jha, “COFTA: Hardware-software co-synthesis of
heterogeneous distributed embedded system architectures for low overhead fault
tolerance,” /EEE Transactions on Computers, vol. 48, no. 4, April 1999.

[14] B. P. Dave and N. K. Jha. “COHRA: Hardware-Software Cosynthesis of
Hierarchical Heterogeneous Distributed Embedded Systems,” IEEE Transactions on

Computer Aided Design of Integrated Circuits and Systems, vol. 17, no. 10, Oct.
1998.

101

Reoroduced with bermission of the convriaht owner. Further reproduction nrohibited without nermission.

[15] B. P. Dave, G. Lakshminarayana and N. K. Jha, “COSYN: Hardware-software
co-synthesis of heterogeneous distributed embedded systems,” IEEE Transactions on
VLSI Systems, vol. 7, no. 1. March 1999.

[16] R. Dick and N. K. Jha, “MOGAC: A Multiobjective Genetic Algorithm for
Hardware-Software Cosynthesis of Distributed Embedded Systems,” [EEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. vol. 17,
no. 10, pp. 920-935, Oct. 1998.

{17] S. Dutta and W. Wolf “A Flexible Parallel Architecture Adapted to Block-
Matching Motion-Estimation Algorithms”, IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 6, No. 1, pp. 74-86, Feb. 1996.

(18] R. Emst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,” IEEE Design & Test, vol. 10, pp. 64-75, Dec. 1993.

[19] F. C. Filho, P. Maciel, E. Barros, “A Petri Net Based Approach For
Hardware/Software Partitioning”, Symposium on Integrated Circuits and Systems
Design, Sept. 2001, pp. 72-77, Pirenopolis, Brazil.

[20] M.R. Garey and D. S. Johnson, Computers and Interactability: A Guide to the
Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[(21] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software Engineering,
Prentice Hall, Upper Saddle River, NJ, 1991.

[22] R. Gupta and G. DeMicheli, “Hardware/software cosynthesis for digital
systems,” /EEE Design & Test of Computers, pp. 29-41, Sept. 1993.

[23] R. Gupta and G. DeMicheli, “System-level synthesis using re-programmable

components”, Proceedings European Conference on Design Automation, Mar. 1992,
pp- 2-7, Brussels, Belgium.

[24] J. Henkel, R. Ernst, “An Approach to Automated Hardware/Software Partitioning
Using a Flexible Granularity that is Driven by High-Level Estimation Techniques™,
IEEE Transactions on Very Large Scale Integration Systems, vol. 9, no. 2, April 2001.
[25] J. Hou and W. Wolf, “Process partitioning for distributed embedded systems,”
Proceedings International Workshop on Hardware/Software Codesign, Sept. 1996.
pp. 70-76, Pittsburgh, USA.

[26] P.-A. Hsiung, “Hardware-software timing coverification of concurrent embedded

real-time systems”, /EE Proceedings Computers and Digital Techniques, pp. 83-92,
March 2000.

[27] B. A. lzadi, F. Ozguner, “Real-time fault-tolerant hypercube multicomputer,”
IEE Proceedings Computers and Digital Technigues, vol. 149, no. 5, pp. 197-202,
Sep. 2002.

[28] A. Kalavade and E. A. Lee, “A hardware-software codesign methodology for
DSP applications,” JEEE Design & Test, vol. 10, pp. 16-28. Sept. 1993.

[29] G. N. Khan, G. S. Hura, G. Wei, “Distributed Recovery Block Based Fault-
tolerant Routing in Hypercube Networks,” Proceedings IEEE Canadian Conference
on Elecirical and Computer Engineering, May 2002, pp. 603-608, Winnipeg,
Canada.

[30] D. Kirovski and M. Potkonjak, “System-level synthesis of low-power real-time
systems.” Proceedings Design Automation Conference, June 1997, pp. 697-702.
Anaheim, USA.

102

)
| Ranroduced with narmission of the canvriaht awnar Fiirthar renradiietion arohibitad withotit nermicsian

{31]P. V. Knudsen, J. Madsen, “FACE: Adynamlc programming algorithm for
hardware/software partitioning”, Proceedings 4" International Workshop on
Hardware/Software Codesign, pp. 85-92, 1996, Pittsburgh, USA.

[32] K. Kucheinski, “Constraints-driven scheduling and resource assignment,” ACM
Transactions on Design Automation of Electronic Systems, vol. 8, no. 3, pp. 355-383,
July 2003.

[33] Yu-Kwong Kwok and 1. Ahmad, “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors,” JEEE Transactions
on Parallel Distributed Systems, vol. 7, pp. 506-521, May 1996.

[34] L. E. LaForge, “Self-Healing Avionics for Starships,” Proceedings IEEE
Aerospace Conference, March 2000, vol. 5, pp. 499-519, Big Sky, USA.

[35] L. E. LaForge, K. F. Korver and M. S. Fadali, “What Designers of Bus and
Network Architectures Should Know about Hypercubes,” IEEE Transactions on
Computers, vol. 52_ no. 4, April 2003.

[36] Y. Li and W. Wolf, “Hardware/Software Co-Synthesis with Memory
Hierarchies,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 18, no. 10 pp. 1405-1417, Oct. 1999.

[37] Huigun Liu, D. F. Wong, “Integrated Partitioning and Scheduling for
Hardware/Software Co-Design”, Proceedings International Conference on VLSI in
Computers and Processors, Oct. 1998, pp. 609-614, Austin, USA.

[38] J. Madsen, J. Grode. P.V. Knudsen, M.E. Peterson, A. Haxthausen, “LYCOS:
the lyngby co-synthesis system”, Design Automation for Embedded Systems, vol. 2,
no. 2, pp. 195-236, 1997.

[39] D.D. Mitchell, D.C. Ku, F. Mailhot, and T. Truong, “The Olympus Synthesis
System for digital design”, /EEE Design and Test Magazine, pp.37-53, Oct. 1990.
f40] A. Osterling, T. Benner. R. Emst, D. Herrmann, T. Scholz, and W. Ye, “The
COSYMA system”, Hardware/Software Co-Design: Principles and Practice, pp.
263-281. Kluwer Academic Publishers, Amsterdam, 1997.

[41] D. A. Patterson, J. L. Hennessy, Computer Architecture A Quantitative
Approach 2 2" Edition, Morgan Kaufman Publishers Inc., San Francisco, CA, 1996.
[42] S. Prakash and A. Parker. “SOS: Synthesis of application-specific heterogeneous
multiprocessor systems.” Journal of Parallel and Distributed Computing, vol. 16, pp.
338-351, Dec. 1992.

[43] K. Rajan, L. M. Patnaik and J. Ramakrishna, “High-speed parallel
implementation of a modified PBR algorithm on DSP-based EH topology,” IEEE
Transactions on Nuclear Science, vo 1., issue 4, pp. 1658-1672, Aug. 1997.

[44] E. Salminen, T. Hamalainen, T. Kangas, K. Kuusilinna, J. Saarinen, “Interfacing
multiple processors in a system-on-chip video encoder”, International Symposium on
Circuits und Systems, May 2001, vol. 4, pp. 478-481, Sydney, Australia.

{45} Aviral Shrivastava. Mohit Kumar, Sanjiv Kapoor, Shashi Kumar, M.
Balakrishnan, “Optimal Hardware/Software Partitioning for Concurrent Specification

using Dynamic Programming”. /nternational Conference on VLSI Design, Jan. 2000,
pp. 110-113, Calcutta. India.

Renrndiiced with narmiccinn of the nnnvrinht nwnar Further ranrodiintinn nrahihited withant narmiecinn

[46] S. Srinivasan and N. K. Jha, “Hardware-Software Co-Synthesis of Fault-Tolerant
Real-Time Distributed Embedded Systems,” Proceedings FEuropean Design
Automation Conference, Sept. 1995, pp. 334-339, Brighton, UK.

[47] W. Wolf, “An architectural co-synthesis algorithm for distributed, embedded
computing systems,” IEEE Transactions on VLSI Systems, vol. 5, pp. 218-229, June
1997.

(48] W. Wolf, Computers as Components, Morgan Kaufman Publishers Inc., San
Diego, CA, 2001.

[49] S. Yajnik, S. Srinivasan, N. K. Jha, “TBFT: A Task Based Fault Tolerance
Scheme for Distributed Systems,” Proceedings International Conference on Parallel
and Distributed Computing Systems, Oct. 1994, pp. 483-489, Las Vegas, USA.

{507 Kun-Min Yang, Ming-Ting Sun and Lancelot Wu, “A Family of VLSI Designs
for the Motion Compensation Block-Matching Algorithm”, /EEE Transactions on
Circuits and Systems, vol.36, n0.10, pp. 1317-1325, Oct. 1989.

[51] Yao-Ming Yeh and Yiu-Cheng Shyu, “Efficient distributed schemes for
embedding binary trees into incomplete hypercubes,” Proceedings International
Conference IEEE Region 10, Aug. 1994, vol. 1, pp. 182-186, Singapore.

[52] T.Y. Yen, W. Wolf, “Multiple-process behavioral synthesis for mixed hardware-
software systems”, Proceedings 8" International Symposium on System Synthesis,
Sept. 1995, pp. 10-15, Cannes, France.

104

Ranrndtiirad with narmicecinn nf tha ranuriaht nwmar Fiirthor ranrndiintinn nrahihited withniit narmiccinn

i Ranrnciinad with normiceinn nf tha rnnurinht nwnar

Appendix A - Prototype Device Code Listing

The following VHDL and C code define the final prototype device described in
section 4.2 and illustrated in figure 4.13. The device is a symmetrical three
dimensional hypercube that performs the block matching algorithm.

LIBRARY icee:

USE icce.std_fogic_ 1 164.ALL:
USE icee.std_logic_arith. ALL:
USE jeee.std_jogic_unsigned.ALL:

ENTITY reg8 IS
PORT(load 1IN std_logic:
clock :instd_logic:
datain : IN std_ulogic_vector(7 downto 0):

dataout : OUT std_ulogic_vector(7 downto 0)): --parallel outputs
LEND regd:

ARCHITECTURE reg5 OF reg8 1S
--SIGNAL int_reg : integer range 0 to 65533

BEGIN
process(clock)
--variable vec: std_ulogic_vector (1 1o size):

BEGIN
if{ clock'event and clock ="'} then--rising_edge(clock) and load ='1') then
if(load ='1") then
--int_reg <= datain;
dataoul <= datain;
end il
end if:
END PROCESS;

--conncct internal register to dataout port
--dataout <= int_reg:
EEND reg5:

LIBRARY iece:

USE iecestd_logic 1164 ALL:
USE iecestd_logic_arith ALL:
USE ieeestd_logic_unsigned ALL:

--our register definition
ENTITY regosS35int2 1S

PORT(load ©IN std_logic:
clock :instd_logic:
init : IN std_logic:

datain : IN integer range 0 1o 63535:
--datain2 : IN std_logic_vector(i 5 downto 0).—-integer range 0 to 65335
dataout : QUT integer range 0 to 65333); --paralle! outputs
FEND reg6553Sint2;

ARCHITECTURE regl OF regd33351n12 18
--SIGNAL int_reg : integer range 0 to 63335;

BEGIN
process(clock, init)
-variahle vee: std_ulogic_vector (1 to size):

BEGIN
Htinit="1") then
dutaout <= 63535,
tlse

105

Fiirther renrndiintinn nrnhihited withant nermissinn

it{ clock'event and clock ='1") then
it{load ='1") then
--int_reg <= datain;
dataout <= datain:
end if:
end if;,
end if;
END PROCESS:
--conneet internal register to dataout port
--dataout <= int_reg:
END regl:

LIBRARY icee; .
USE icee.std_logic_ 164 ALL:
USE icce.std_togic_arith. ALL;
USE ieee.std_logic_unsigned. ALL:

ENTITY reg65535int IS

PORT(load 1IN std logic:
clock :instd_.ogic;
init : IN std_togic:

datain : IN intcger range 0 to 65535;

dataout : OUT integer range 0 to 65535); --paralicl outputs
END reg655351nt; .

ARCHITECTURE reg4 OF reg65535Int IS
--SIGNAL int_reg : integer range 0 to 65535,

BEGIN
process{clock. init)
--variable vec: std_ulogic_vector (1 to size);

BEGIN
if(init ="1" then
dataout <= (;
clse
if{ clock'event and clock ='1") then
if(load ="1") then
--int_reg <= datain;
dataout <= datain;
end if;
end it}
end if}
END PROCESS:;
--connect internal register to dataout port
--dataout <= int_reg;
EEND regd;

LIBRARY icee:

USE iecestd_logic_F164.ALL;
USE icce.std_logic_arith. ALL;
USE iccestd_Jogic_unsigned ALL;

--our compare circuit definition
ENTITY comp 1S

PORTGnVall : IN integer range 0 to 63535, --paralle] inputs
int} *in integer range 0 to 32;
inji s ininteger range 0 to 32;
inVal2 : IN integer range 0 to 65535; --paratlel inputs:
start in std_logic:
out} : out integer range 0 to 32;
out) : out integer range 0 to 32
out] : OUT integer range O to 65535); --paralle] outputs
ENI comp;

ARCHITECTURE compi OF comp {§
--signal outTemp : INTEGER:

106

. Ranrndiicad with narmisainn of the ncanvriaht ownar. Further renradiiction nrohibited without nermission.

BLEGIN
process{start)

begin
if{start'event and start ='1") then
iftinVall <inVal2) then
out] <= inVall;
outl <=inll;
outd <=indl;
end it
end ift

end process:
--outl <= outTemp;

END compl:

LIBRARY icee:

USE iecestd_logic_64.ALL;
USE iecestd_logic_arith.ALL:
USE icee.std_togic_unsigned. ALL:

--our add circuit definition
ENTITY add IS

POR'T(inl : IN integer range 0 to 63335; --parallel inputs
in2 1 IN integer range 0 to 65535 --paraliel inputs
outl : QUT integer range 0 to 63535): --parallel outputs
END add:

ARCHITECTURE addf OF add IS
signal outTemp : INTEGER;

BEGIN
process(inl. in2)
begin
outTemp <=ini + in2:
end process:
outl <= outTemp:
END addt:

LIBRARY icee:

USE iecestd_logic_1164.ALL:
USE iecestd_logic_arith.ALL:
USE iecestd_Jogie_unsigned AlL:

--our difference circuit definition
ENTITY diffIS

PORT(in1 : IN Std_ulogic_vector(7 DOWNTO 0). --paralie] inputs
in2 . IN Std_ulogic_vector{7 DOWNTO 0); --parallel inputs
outl : QUT integer range O to 63333); --paralle] outputs
[END dilh:

ARCHITECTURE difft OF dit'1s
signal outTemp @ INTEGER:

BEGIN
process(ind. in2)
variable val . INTEGER
variable vall | INTEGER,
vartable val2 - INTEGER;

variable b L INTEGER:

107

Renroduced with bermission of the cobvriaht owner. Further renroduction prohibited without permission.

BEGIN
val =
b=1,
fory in 0 to 7 loop

it{inl(y) ="1") then
val == val + b:
end if;
b=b*2;
- end loop;--fory
vall = val,

cval =0;
b:=1;
foryin0to 7 loop
iflin2(y) ='1") then
val =val+b;

end if}
b:=b*2;
end loop:--fory
val2 :=val;

if(valt < val2) then
outTemp <= (val2 - vall).
else
outTemp <= (vall - vai2);
end if}

END PROCESS;
outl <= outTemp;
END diftl:

L.IBRARY icee;

USE icee.std_logic_i 164.ALL:
USE ieee.std_logic_arith. ALL;
USE iceestd_logic_unsigned.ALL;

--our register definition
ENTITY reg IS

PORT(load : IN std_logic;
clock :instd_logic;
datain : IN Std_ulogic_vector(7 DOWNTQ 0);, --parallel inputs

dataout : QUT Std_ulogic_vector(7 DOWNTO 0)); --parallel outputs
END reg:

ARCIHITECTURE v1 OF reg IS
SIGNAL int_reg - Std_ulogic_vector(7 DOWNTO 0);

BEGIN
process(clock)
BEGIN
ificlock’event and clock ="1") then
if{load ="'1") then
int_reg <= datain;
end il
end if}

EEND PROCESS:

--connect internal register to dataout port

dataont <= int_reg:-- when timeToOutput = '1' ¢lse "2ZZZZLLL":

END vI;
LIBRARY icee:
USE jece.std_logic 1164 ALL;

USE ieeestd_logic_arith ALL:
USE iceestd_logic_unsigned. ALL:

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i
s

ENTITY blockmatch 1S

PORT(
--stopAltDone :INSTD_LOGIC:
addByte :IN STO_LOGIC:--goces high when it is time to add a byte (o the arrays
clk SINSTD_LOGIC:

inByte S IN STD_ULOGIC_VECTOR(7 DOWNTO 0);

aliDone : OUT STD_LOGIC:--goes high when EVERYTHING is finished

outl : OUT integer range 0 to 32; --the i shift value (SW will make it -16 1o +16)

outl - OUT integer range 0 1o 32); ~the j shift valuc (SW will make it -16 10 +16)
END blockmatch:

ARCHITECTURE description OF blockmatch 1S

COMPONENT reg {S
PORT(load LN std_logie:
clock :instd_logic,
datain : IN Std_ulogic_vector{7 DOWNTO Q). --parallel inputs
dataout : OUT Std_ulogic_vector(7 DOWNTO 0)); —-paralict outputs
END component:

COMPONENT ditt' IS
PORT{(in} : IN Std_ulogic_vector{(7 DOWNTO 0); --parallef inputs
in2 : IN Sud_ulogic_vector(7 DOWNTOQ 0); --parallel inputs
out! : OUT integer range 0 to 65535); ~-parallel outputs
END component;

component add 1S

PORT(inl : IN intcger range O to 65535; --paralicl inputs
in2 : IN integer range 0 to 65535; --parallel inputs
outl : QUT integer range 0 to 65535); --parallel outputs
END component:

component comp IS

PORT(inVall : IN integer range 0 to 63535: --parallel inputs
inll : in integer range 0 to 32:
inji : in integer range 0 to 32:
inVal2 . IN integer range 0 to 65535; --parallel inpuis
start : in std_logic:
outl : out integer range 0 1o 32:
out) . out integer range 0 10 32:
out! : QUT integer range 0 to 65333); —parallel outputs
[END component:)

component regd3333Im2 1S

PORT(load : IN std_logic:
clock :instd_logic;
init :IN std_logic:

datain : IN integer range 0 to 65535,
~-datain2 : IN std_logic_vector(15 downto 0);—integer range 0 10 65535
dataout : OUT integer range 0 to 65535); --paralle! outputs
LEND component:

component regh3535Int 1S

PORT(load D INstd_logic:
clock :instd_logic:
init :IN std_logic:

datain ; IN integer range 0 to 65535
dataout : OUT integer range O to 65533). --parallc! outputs
END component:

-=stgnal load : STD_LOGIC_VECTOR(2559 downto 0);—-the load lines tor all the registers
=-signal regOutput 1 STD_LOGIC_VECTOR(2559 dowmo 0):--the line indicates if this register should be outputting

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal regActiveOut : STD_ULOGIC_VECTOR(7 downto 0):
--signal regOldOut : STD_ULOGIC_VECTOR(7 downto 0),
signal diff1Out : integer range 0 to 65535;

signal addRegQut : intcger range 0 to 65535;

--signal load2ndReg : STD_LOGIC_VECTOR(1088 downto 0);
--signal reg2ndOutput: STD_LOGIC_VECTOR(1088 downto 0);
signal iVal ; integer range 0 to 32; --generated by control circuitry to tell comparator what index is being compared
signal jVal : integer range 0 to 32; --as above

signal compQut : integer range 0 to 65535;

signal i0ut: integer range 0 to 32;

signal jOut: integer range 0 to 32;

signal bestErrorYet : integer range 0 to 65535;

signal loadCompReg : STD_LOGIC:

signal initCompReg : STD_LOGIC;

--signal regAdderln2 : integer range 0 to 65535;

--signal reg ActiveTimeToOutput : std_logic_vector(255 downto 0);

--signal regO1dTimeToOutput : std_logic_vector(2303 downto 0);

signal addOut : integer range 0 to 65535

signal loadAddReg : std_logic;

signal initAddReg : std_logic:

signal loadinReg : std_logic:

signal reg2ndOut : std_logic_vector(15 downto 0);
--subtype WORDS is STD_LOGIC_VECTOR (7 downto 0);
~type ARRAY 1089 is array (1088 downto 0) of WORDS;
--signal reg2ndOut : ARRAY1089;

signal compStart : std_logic;

BEGIN

inRegActiveLabel: reg PORT MAP(foadInReg, clk, inByte, regActiveOut).

dittCircuit: diff port map(regActiveOut, inByte, diff1Out);

add): add port map(difftOut, addRegOut, addOut),

addReglLabel: reg655351nt port map(loadAddReg, clk, initAddReg, addOut, addRegOut):

compl: comp port map(addOut, iVal, jVal, bestErrorYet, compStart, iOut, jOut, compOut);
compRegister: reg65535Im2 port map(loadCompReg, cik, initCompReg. compQut. bestErmrorYet):

--templaRegOut <= regActiveOut;
--tempDiffOut <= difT10ut;
--tempAddRegOut <= addRegOut:
--tempAddOut <= addOut;
--tcmpCompRegOut <= bestErrorYet;
--tempCompQOut <= compQut;

process(clk)
variable addCounter : integer;
variable compCounter: integer;
variable 1 @ integer;
variable j : integer;

variable state : integer ;= (); -0 means we arc¢ loading values. | means we are doing

the adding
begin
if(rising_edge(clk)) then
--sct all registers to no load....

allDone <="0'";
loadinReg <="0",
loadAddReg <="0".
initAddReg <= '0"
loadCompReg <="0";
initCompReg <= '0';
compStart <= '0";
if(addByte ="1") then
--then we are adding another byte to the circuit flow
- tempSignal <="1",
- tempClk <="1"
addCounter := addCounter + 1
if{state = 1) then

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T e DA

PRESET RTINS

SR

K ey et s

load AddReg <="1"
state 1= 2
eisif{state = 2) then
loadInReg <="1",
iftaddCounter > 511) then --254) then
state = 3:
addCounter .= -1

j=i+ L
if(j > 32) then
j=0:
=i+l
end if
if(i > 32) then
--resel i - we are done - don't update the output i's and j's
=0
else
iVal <=1,
jVal <=j;
compStart <="1".
end if:
clse
state == |,
end if:
elsif(state = 3) then
loadCompReg <="1",
state .= 4,

clsif(state = 4) then
initAddReg <="1";
loadinReg <="I";
compCounter ;= compCounter + 1.
if{compCounter > 1088) then --we just did the last on
state :=(); .
aliDone <="1";

clse
state ;= [
end if:
clse --we are in state 0

loadinReg <="1"
initAddReg <="1";
initCompReg <= 1",
i=0:
j=0:
--campCounier = 0;
state := 1:

--s0 we are probably in state 0 (loading of the registers so do nothing....

end ifi—-if state = 1 2....

end ifi--if addByte =1
-- lempState <= state:
end ifi--if rising_edge clock
end process;

outl <= iOut:
outd <= jOut:

END description:

LIBRARY icee;

USE jccestd_logic_ 1161 ALL:
USE icee.std_logic_arith.ALLL
USE icec.std_logic_onsigned. ALL:

ENTITY PE_BlockMateh 1S

PORT(
cik s in std_logic:
inDestination | SINSTD_LOGIC_VECTOR(2 downto 0);
inSource! CINSTD_LOGIC _VECTOR(2 downto 0):
inDatal SINSTD_ULOGIC_VECTOR(7 downto 0);
111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intD1 1 IN STD_ULOGIC_VECTOR(7 downta 0).
inStartl : in std_logic: --goes high when the three things above are ready
inDestination2 1IN STD_LOGIC_VECTOR(2 downto 0).
inSource2 1IN STD_LOGIC_VECTOR(2 downio 0);
inData2 - IN STD_ULOGIC_VECTOR(7 downto 0),
inlD2 : IN STD_ULOGIC_VECTOR(7 downto 0): g
inStart2 - in std_logic; --goes high when the three things above are ready i
inDestination3 : IN STD_LOGIC_VECTOR(2 downio 0).
inSource3 : IN STD_LOGIC_VECTOR(Z downto ().
inData3 : IN STD_ULOGIC_VECTOR(7 downto 0).
inlD3 1IN STD_ULOGIC_VECTOR(7 downto 0):
inStart3 : in sid_logic: --goes high when the three things above arce ready
- mylD : in std_logic_vector(2 downto 0);--what this PE's ID is
1D} : in std_logic_vector(2 downto 0);—-what PE I's ID is
1D2 : in std_logic_vector(2 downto 0);--what PE2's ID is
ID3 : in std_logic_vector(2 downto 0);—what PE 3's 1D is
outDestinationl < out STD_LOGIC_VECTOR(2 downto 0).
outSource! :out STD_LOGIC_VECTOR(2 downto 0);
outDatal < out STD_ULOGIC_VECTOR(7 downto 0);
outlD1 : out STD_ULOGIC_VECTOR(7 downto 0).
outStarti s out std_logic: ;
outDestination2 : out STD_LOGIC_VECTOR(2 downto 0): i
outSource2 :out STD_LOGIC_VECTOR(2 downto 0); ;
outData2 :out STD_ULOGIC_VECTOR(7 downto 0);
out]D2 : out STD_ULOGIC_VECTOR(7 downto 0);
outStar2 : out std_logic;
outDestination3 : out STD_LOGIC_VECTOR(2 downto 0);
outSource3 :out STD_LOGIC_VECTOR(2 downto 0);
outData3 : out STD_ULOGIC_VECTOR(7 downto 0):
outiD3 :opt STD_ULOGIC_VECTOR(7 downto 0);
outStart3 : out std_logic);
END PE_BlockMatch;
ARCHITECTURE PEdescription OF PE_BlockMatch IS
component blockmatch 1S
PORT(
--stopAllDone : INSTD_LOGIC;
addByte :IN STD_LOGIC;--gocs high when it is time to add a byte to the arrays
clk :INSTD_LOGIC:
inByte 1IN STD_ULOGIC_VECTOR(7 DOWNTO 0).
allDone : OUT STD_LOGIC;~goes high when EVERYTHING is finished
outl : OUT integer range 0 to 32; —-the i shift value (SW will make it -16 (0 +16) ,
out) : OUT integer range 0 to 32); --the j shift value (SW will make it -16 10 +16) k.
END component;
signal circuitStart : std_logic:—tied to ctk

signal addingAByte : sid_logic:--tied to addByte

signal inData : std_ulogic_vector(7 downto 0Y;--tied to inByte %
signal donc : std_logic:~-listen if circuit is done ’
signal outDatal_lnt : integer range 0 to 32;
signal outData)_Int : integer range 0 to 32; 5
signal outDatal . std_ulogic_vector(7 downto 0):--the value of outl from circuit converted to vector 1o send :
signal outData) : std_ulogic_vector(7 downto 0);--the value of outJ from circuit converted to vector to send

signal outDatal_LOGIC : std_togic_vector(7 downto 0);

signal owiDatal_[.OGIC : std_logic_vector(7 downto 0);

--will be sent on outlD lines a flag will have 1o be set in the top 2 bits
begin
B8M: blockmatch port map(addingAByte, clk, inData, done, outDatal_int, outData)_Ini):
process(clk)
variable destCounter| : integer range 0 to 3:
variable destCounter2 : integer range 0 to 3;

variable destCounter3 : integer range 0 to 3:
variable iTemp s integer range 0 to 32;

Hadarmorin i notea & v &

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variabie jTemp rinteaer meoae 010 32,

begin
if(rising_edge(clk)) then

outStartl <="'0"

outStart2 <='0".

outStar3 <="{";

addingAByte <='0";

circuitStart <="'0";
- tempOut3<="0".

if{done ="'1") then
--tempOut <="1";
--s0 the BM circuit just finished!
—convert outDatal_Int and outDatal_int to outDatal and outDatal
—set top 2 bits of outDataj to zero (it won't overwrite any info)
--destination "000" figure out which link to send the data down
--assign outDestination# <= "000", outData# <= outDatal, outlD¥ <= outDatal.
--outStart¥ <="'1";
--same data must also be sent to ASSERT task at location "011"
iTemp = outDatal_Int;
jTemp = outDatal_Int;
-- they have been latched, tel} the BM circuit to stop having allDone be high!
addingAByte <='0".--without adding a byte
circuitStart <="{";
outRatal_LOGIC <= CONV_STD _LOGIC_VECTOR(iTemp, 8):
outDatal_LOGIC <=CONV_STD_LOGIC_VECTOR(jTemp, 8):

foriin0to 7 loop
outDatal{i) <= outDatal_LOGIC(i),
outDatal(i) <= outDataJ_LOGIC{i):
end inop;
outDatal(7) <="0",
outDatal(6) <='0";-~flags to indicate what this info is
--which link is closest to 0600 and which to 011?
destCounterl :=0;
destCounter2 :=(;,
destCounter3 := 0,
foriin 0 to 2 loop
if(ID (i) ="0") then
destCounter! = desiCountert + 1:
end if}
H(ID2(i) ='0') then
: destCounter2 = destCounter2 + 1
end if
i1D3(i) ='0') then
destCounter3 = destCounter3 + 1
end if:
end loop:
if{destCounter| > destCounter2) then
if{destCounter! > destCounter3) then
--send down link!
outDestination! <= "(00";
outSourcet <= myfD:
outDatal <= outDatal;
outlDY <= outDatal;
outStart] <="'1";
--is assert closer to link 2 or 37
dustCounter2 = 0;
destCounter3 = 0;
foriin0tol loop
IFID2Z() = '1") then
destCounter2 = destCounter2 + |
end if:
(f(103¢) = '1") then
destCounter3 = destCounter3d + 1
end if:
end loop;
H{HD2(2) = 0") then

115

i

[Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

destCounter2 = destCounter2 + 1
end if,
if(ID3(2) ='0" then

destCounter3 ;= destCounter3 + 1
end if;
if{destCounter2 > destCounter3) then
--send packet down link2
outDestination2 <= "000":
outSource2 <= mylD;
outData2 <= outDatal;
outlD2 <= outDatal; ,
outStartz <="1"; p

else
--send packet down link3
outDestination3 <= "000";
outSource3 <= myiD:
outData? <= outDatal;
outlD3 <= outDatal;
outStartd <='I" i
end if} E
clse)
--send down link3 E
outDestination3 <= "000";
outSource3 <= mylD;
outData3 <= outDatal;
out!D3 <= outDatal; H
outStart3 <='l"; §
--is assert closer to link 2 or 17 3
destCounter2 :=0;
destCounterl = 0; B
foriinQto] loop)
if(1D2(i) ='1") then
destCounter2 = destCounter2 + 1:
end if; ;
if(ID1(3) ='1") then
destCounterl := destCounter] + |
end if}
- end loop;
if(1D2(2) ='0") then
destCounter2 ;= destCounter2 + |; :
end il 3
if(ID1(2) ="'0") then)
destCounter! := destCounter] + |; :
end if;
if(destCounter2 > destCounter) then :
--ser d packet down link2
outDestination2 <= "000": ;
outSource2 <= mytD:
outData2 <= outDatal:
out]D2 <= outDatal;
outStart2 <="'{"
clse
--send packet down link |
outDestinationt <= "000";
outSourcel <= mylD;
outDatal. <= outDatal;
outlD] <= outDatal:
outStartl <='{",
end if:
end if

if{destCounter2 > destCounter3) then
--send down link2
outDestination2 <= "000":
outSource2 <= myll);
outData2 <= outDatal;
outlD2 <= outDatal;
outStart2 <="'{"
--is assert closer to fink t or 37
destCounterl ;=0

114

et

; Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

destCounter3 ;= 0;
foriin0to | loop
f(ID1(i) ="1"Y then
destCountert = destCounter | + 1
end if}
HUD3() ="1") then
destCounterd = destCounter3 + 1
end ift
end loop:
if(ID1(2) ="'0") then
destCounterl := destCounter) + 1
end if}
if(1D3(2) ='0") then
destCounter3 = destCounter3 + |;
end if,
it{destCounter! > destCounter3) then
--send packet down link2
outDestination! <= "000":
outSource! <= mylD;
outDatal <= outDatal;
outiD1 <= outDatali:
outStart] <="'1"

else
--send packet down link3
outDestination3 <= "000";
outSource3 <= myliD:
outData3 <= outDatal;
outlD3 <= outDatal;
outStart3 <='I"

end if}

clse

--send down link3

outDestination3 <= "000";

outSource3 <= mylD;

outData3 <= outDatal;

outiD3 <= outDatal;

outStart3 <="1"

~-is assert closer to link 2 or 1?

destCounter2 = 0:

destCounter] = 0;

foriin0to 1 loop
if{1D2(i) ="1") then

destCounter2 ;= destCounter2 + 1;
end if
if{ID1() ="1") then
destCounterl := destCounter! + I

end if}

end foop:

ii>2(2) ="'0') then
destCounter2 ;= destCounter2 + 1

end it}

HUDI1(2)="0" then
destCounteri = destCounter! + |

end if;

if{destCounter2 > destCountert) then
--send packet down link2
outDestination2 <= "000";
outSource2 <= mylD;
outData2 <= outDatal;
outlD2 <= outDatal;
outStart2 <="1";

clse
--send packet down link 1
outDestination! <="000";
outSource! <= mylD;
outDatal <= outDatal;
outlDI <= outDataJ;
outStartl <="1"

end if:

emd i}
115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end if}
end if,
iflinStart! ='1") then
--something has come in off of the | lines
if{inDestination! = myiD) then
--this packet is for here! Pass it along to the BM circuit
addingAByte <="'1";
inData <= inDatal;
circuitStart <="'1";

clse

--then we must forward the packet

--forward the packet to the neighbour with the closest tD

destCounter2 :=0;

destCounter3 =0,

if{inDestination 1(0) = 1D2(0)) then
destCounter2 := destCounter2 + 1

end if;

if{inDestination1{1) = iD2(1)) then
destCounter2 = destCounter2 + 1

end if;

if{inDestination 1(2) = 1D2(2)) then
destCounter2 = destCoumer2 + 1

end if}

if(inDestination1(0) = 1D3(0)) then
destCounter3 := destCounter3 + 1.

end if}

if(inDestination1(1) = ID3(1)) then
destCounter3 := destCounter3 + 1

end if}

if(inDestination1(2) = 1D3(2)) then
destCounter3 := destCounter3 + 1;

end if}

if{destCounter3 > destCounter2) then
~forward packet to ID3
outDestination3 <= inDestinationl:
outSource3 <= inSourcel;
outData3 <=inDatal;
outiD3 <= inlD1;
outStart3 <='I"

clse
—forward packet to 1D2
outDestination2 <= inDestination];
outSource2 <= inSourcel;
outData2 <= inDatal;
outlD2 <= inlD1;
outStart2 <='1"

end if:

end if:

end if}
if(inStart2 ='1') then
if{inDestination2 = myID) then
--this packet is for heret Pass italong to the BM circuit
addingAByte <='{"; :
inData <=inDatal L
circuitStart <="'1*;
tlse
--then we must forward the packet
--forward the packet to the neighbour with the closest 11
destCounteri = 0;
destCounter3 := 0
if(inDestination2(0) = 1D1(0)) then
destCountert = destCounterl + 1
end if:
if{inDestination2(1) = ID1{ 1)) then
destCounter! = destCounterl + 1

P

end if; F
if{inDestination2(2) = ID1(2)) then 4
destCounterl = destCountert + 1 g

end if}
116 :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iftinDestination2(0) = 1D3(0)) then
destCounter3 = destCounter3 + 1
end if;
if{inDestination2(1) = 1D3(1)) then
destCounter3 = destCounter3 + 1;
end if}
if{inDestination2(2) = 1D3(2)) then
destCounter3 = destCounter3 + 1;
end ift
if{destCounter3 > destCounterl) then
--forward packet to D3
outDestination3 <= inDestination2;
outSource3 <= inSource2;
outData3 <= inDala2;
outlD3 <= inlD2;
outStart3 <="'{"
clse
--forward packet to ID!
outDestination] <= inDestination2;
outSourcel <= inSource:
outDatal <= inData2;
outiD] <=inlD2;
outStartl <="1"
end if:
end if}
end if)
if{inStart3 ='1") then
iftinDestination3 = mylD) then
-this packet is for here! Pass it along to the BM circuit
- tempOut3<="1";
addingAByte <="1";
inData <= inDatal;
circuitStart <= addingAByte;--'1";
else
--then we must forward the packet
--forward the packet to the neighbour with the closest 1D
destCounteri =0
destCounter3 :=0;
it{inDestination3{0) = ID1(0)) then
destCounterl = destCounter + i
end if;
if{inDestination3(1) = 1D1(1)) then
destCounterl := destCounter} + 1
end it
if{inDestination3(2) = ID1(2)) then
destCounter] = destCounterl + 1
end ift
iftinDestination3(0) = 1D2(0)) then
destCounter2 == destCounter2 + 1:
end if;
if{inDestination3(1) = ID2(1)) then
destCounter2 ;= destCounter2 + 1
end ift
if{inDestination3(2) = 1D2(2)) then
destCounter2 ;= destCounter2 + 1
end if}
if{destCounter2 > destCounterl) then
--forward packet to ID3
outDestination2 <= inDestination3:
owSource2 <= inSource3;
outDuta2 <= inData3;
outlD2 <= inlid3;
owmStart2 <="'1"
else
--torward packet to 1D1
outDestination] <= inDestination3:
owtSourcel <= inSource3:
outDatal <= inData3:
outlDi <=ini3;
outStant} <="'1",

117

: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end ify

end ifl
end ift
end ift
cnd process:

end Pldescription:

LIBRARY icec:

USE ieee.std_logic_J 164.ALL;

USE icee.std_logic_arith ALL;

USE iece.std_logic_unsigned. ALL;

ENTITY PE_BM_Assert IS

PORT(

clk :in std_logic;
inDestination1 tIN ST—I')__LOGIC__VECTOR(Z downto 0):
inSourcel 1IN STD_LOGIC_VECTOR(2 downto 0).
inDatal 1IN STD_ULOGIC_VECTOR(7 downtao 0);
inID1 1IN STD_ULOGIC_VECTOR(7 downto 0):
inStart! : in std_logic; --goes high when the three things above are ready
inDestination2 <IN STD_LOGIC_VECTOR(2 downto 0).
inSource2 1IN STD_LOGIC_VECTOR(2 downto 0):
inData2 1IN STD_ULOGIC_VECTOR(7 downto 0);
iniD2 - IN STD_ULOGIC_VECTOR(7 downto 0);
inStart2 instd_logic, —goes high when the three things above are ready
inDestination3 1IN STD_LOGIC_VECTOR(2 downto 0);
inSource3 1IN STD_LOGIC_VECTOR(2 downto 0);
inData3 ‘ 1IN STD_ULOGIC_VECTOR(7 downto 0):
inlD3 1IN STD_ULOGIC_VECTOR(7 downto 0);
inStart3 2 in std_logic: —-goes high when the three things above are ready
myiD :instd_Jogic_vector(2 downto 0);--what this PE's D is
D1 :in std_logic_vector(2 downto 0):--what PE I's ID is
D2 : in std_logic_vector(2 downto 0);~what PE 2's ID is
D3 : in std_logic_vector(2 downto 0);--what PE 3's 1D is
outDestination rout STD_LOGIC_VECTOR(2 downto 0):
outSourcel sout STD_LOGIC_VECTOR(2 downto 0);
outDatal cout STD_ULOGIC_VECTOR(7 downto 0):
outlD! :out STD_ULOGIC_VECTOR(7 downto 0):
ouiStart| : out std_logic:
outDestination2 cout STD_LOGIC_VECTOR(2 downto 0):
outSource2 rout STD_LOGIC_VECTOR(2 downto 0);
outData2 sout STD_ULOGIC_VECTOR(7 downto 0):
outlD2 :out STD_ULOGIC_VECTOR(7 downto 0);
outStart2 s out std_logic:
outDestination3 :out STD_LOGIC_VECTOR(2 downto 0}:
outSource3 cout STD_LOGIC_VECTOR(2 downto 0):
outData3 cout STD_ULOGIC_VECTOR(7 downto 0).
outiD3 cout STD_ULOGIC_VECTOR(7 downto 0);
outStart3 :out std_logic);

END PE_BM_Assert;
ARCHITECTURE PEAsseridescription OF PE_BM_Assert 1S

begin
process(clk)
variable destCounterl : integer range 0 to 3;

variable destCounter2 : integer range 0 to 3;
variable destCounter3 : integer range 0 to 3:

variable sendlirror : integer range O to 1;--goes high if error is detected (so a packet must be sent to the
--control so that that PE is now neglected)

variable bad BM : std_logic_vector(2 downto 0):--represents which BM is faulty

begin

ifirising,_cdge{clk)) then
outStartt <="0"

118

" Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outStart2 <='0";
outStant3 <='(",
sendError := 0
iftinStart] ='1") then
--something has come in of'of the 1 fines
it(inDestination] = myliD) then
--this packet is for here!
--is there an error in the packet?
H{ (inlD1(7) = 'I'} and (intD2(7) = 't} } then
--then it is an error packet
sendizrror == 1
badBM = inSourcel;

end if}
else

--then we must forward the packet

-~forward the packet to the ncighbour with the closest [[>

destCounter2 = ();

destCounter3 ;= 0:

if(inDestination 1(0) = ID2(0}) then
destCounter2 = destCounter2 + 12

end if}

it{inDestination (1) = 1D2(1)) then
destCounter2 = destCounter2 + i:

end if;

iftinDestination 1 (2) = [D2(2)) then
destCounter2 ;= destCounter2 + 1.

end if}

iffinDestination1{0) = {D3(0)) then
destCounter3 = destCounter3 + 1:

end it:

iftinDestination (1) = 1D3(1)) then
destCounter3 = destCounter3 + 1:

end if:

iflinDestination1(2) = 1D3(2)) then
destCounter3 := destCounter3 + |

end if:

itldestCounter3 > destCounter2) then
--forward packet to ID3
outDestination3 <= inDestination!;
outData3 <= inDatal:
outiD3 <= inlD1;
outSource3 <= inSourcel:
outStart3 <="[",

clse
-~forward packet 1o 1D2
outDestination2 <= inDestinationi:
outData? <= inDatal:
outiD2 <= iniD1;
outSource2 <= inSourcel
outStar2 <="J"

end if;

end if?

end if;
if{inStart2 = '1") then
if{inDestination2 = myiD) then
--this packet s for here! Pass it along to the BM circuit
~-was there an error in the packet?
H{ (inlD2(7) = '1") and (inlD2(7) = '1") nthen
--then it is an error packet
sendError ;= 1
badBM = inSource2:
end if:
clse
—then we must forward the packet
~-forward the packet to the neighbour with the closest 11
destCounter! =
. destCounter3 :=0;
if{inDestination2(0) = [{0)) then
destCounter] = destCounter! + 12

119

- Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end if}
end if:

iflinStart3 ='1") then

end if:

{inDestination2(1) = ID1(1)) then
destCountarl = destCounterl + |2

end if

iftinDestination2(2) = 101(2)) then
destCounterl := destCounterl + 1}

end if}

if{inDestination2(0) = 103(0)) then
destCounter3 = destCounter3 + 1

end if

if{inDestination2(1) = 1D3(1)) then
destCounter3 = destCounter3 + |

end if:

if(inDestination2(2) = 1D3(2)) then
destCounter3 = destCounter3 + |:

end if"

if{destCounter3 > destCounterl) then
--forward packet to 1D3
outDestination3 <= inDestination2:
outSource3 <= inSourcel;
outData3 <= inData2;
outlD3 <= inlD2;
outStart3 <='I"

else
--forward packet to ID1
outDestinationl <= inDestination2;
outSourcel <= inSource2;
outDatal <= inData2;
outlD1 <=iniD2;
outStartl <="'l";

end if;

if(inDestination3 = myID) then

else

--this packet is for hercf Pass it along to the BM circuit
--was there an error in the packet?
if{ (inlD3(7) ="1") and (inID3(7) ='1") Ythen
--then it is an error packet
sendError := 1,
badBM = inSource3;
end if]

--then we must forward the packet

--forward the packet to the neighbour with the closest 1D

destCounterl = 0;

destCounter3 = 0;

if(inDestination3(0) = ID1(0)) then
destCounter| = destCounterl + 1:

end if,

if{inDestination3(1) = [D1(1})) then
destCounterl = destCounterl + 1;

end if}

it{inDestination3(2) = [D1(2)) then
destCounter! = destCounterl + 1,

end if}

if(inDestination3(0) = 11D2(0)) then
destCounter2 = destCounter2 + 1

end ift

if(inDestination3(1) = 1D2(1)) then
destCounter2 = destCounter? + |

end i}

if(inDestination3(2) = ID2(2)) then
destCounter2 = destCounter2 + 1;

end ift

itdestCounter2 > destCounter () then
--forward packet to 1D3
outDestination2 <= inDestination3;
outSource2 <= inSource3:
outData2 <= inData3:

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o T A

KPR T

B k2t

[N

e

BN e

outlD2 <= infD3:
outStart2 <="t":
clse
--forward packet to {1
outDestination! <= inDestination3:
outSourcel <= inSource3:
outDatal <= inData3;
outlD! <= iniD3:
outStart <="'{"
end if:
end if?
end if;
. ifisendError = 1) then
--send a packet to "000" containing a message that says:don't use BM located in
--badBM

--which fink is closest to 0007
destCounterl = ()
destCounter2 = 0;
destCounter3 := 0;
foriin 0102 loop
D) ='0") then
destCounter! := destCounterl + 1
end if;
if(1ID2(i) ='0") then
destCounter2 .= destCounter2 + 1;
end if;
IfID3(i) ="'0") then
destCounter3 = destCounterd + |
end if;
end loop:
if{destCounter] > destCounter2) then
ifdestCounter] > destCounter3) then
--send down tinki
outDestinationl <= "000":
outDatai(7) <="0".+
outDatal (6) <="0";
outDatal(5) <='0",
outDatal(4) <="0";
outDatal(3) <='0"
outDatal(2) <= badBM(2).
outDatal(1) <= badBM(1).
outDatal{0) <= badBM(0);
outiD1 <= "00000000":
outSource!l <= mylD:
outStant] <='{"

--send down link3
outDestination3 <= "000"
outData3(7) <="0"
outData3(6) <='0";
outData3(3) <="0)";
outData3(4) <="0";
outData3(3) <="'0":
outData3(2) <= badBM(2):
outData3(1) <= badBM(1):
outData3(0) <= badBM(0):
outiD3 <= "00000000";
outSourced <= myll);
outStant3 <="1"

end it

clse

H{destCounter2 > destCounter3) then
--send down fink2
outDestination <= "(00",
outData2(7) <=")".
outData2(6) <='0"
outData2(3) <="'0"
outDatad(4) <="0",

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outData2(3) <="0",
outData2(2) <= badBM(2).
outData2(1) <= badBM(1).
outData2(0) <= badBM(0);
outiD2 <= "00000000":

outSource2 <= myliD; %
outStart2 <='i" g4t
else &
--send down link3 %
outDestination3 <= "000"; &
outData3(7) <='0", gg
outData3(6) <="'0"; i
outData3(5) <="'0"; 5
outData3(4) <="0";
outData3(3) <='0": "
outData3(2) <= badBM(2); &
outData3(1) <= badBM(1); 4
outData3(0) <= badBM(0); &
outlD3 <="00000000"; iy
outSource3 <= mylD: i3
outStart3 <='1" %
end if: i
end if:
end if} g
end if: &
end process;
end PEAssertdescription;
LIBRARY ieee;
USE icee.std_logic_1164. ALL:
USE ieee.std_logic_arith. ALL;
USE icee.std_logic_unsigned. ALL:
ENTITY PE_Final_Assert IS
PORT(-
clk cin sid_logic;
inDestination| 1IN STD_LOGIC_VECTOR(2 downto 0): b
inSourcel :IN STD_LOGIC_VECTOR(2 downto 0): g
inDatal 1IN STD_ULOGIC_VECTOR(7 downto 0); N
iniD1 - IN STD_ULOGIC_VECTOR(7 downto 0); 3
inStart1 : in std_logic; --goes high when the three things above are ready 3
inDestination2 1IN STD_LOGIC_VECTOR(2 downto 0); 3
inSource2 : IN STD_LOGIC_VECTOR(2 downto 0y, ¥
inData2 . IN STD_ULOGIC_VECTOR(7 downto 0); i
infD2 1IN STD_ULOGIC_VECTOR(7 downto 0); i
inStart2 :in std_logic: --goes high when the three things above are ready
inDestination3 1IN STD_LOGIC_VECTOR(2 downto 0);
inSource3 T IN STD_LOGIC_VECTOR(2 downto 0):
inData3 - IN STD_ULOGIC_VECTOR(7 downto 0): :
inlD3 - IN STD_ULOGIC_VECTOR(7 downto 0); .
inStart3 :in std_logic; --goes high when the three things above are ready
mylD . in std_logic_vector(2 downto 0);—what this PE's 1D is :
1Dt : in std_logic_vector(2 downto 0).--what PE 1I's D is
102 : in std_logic_vector(2 downto 0);--what PE 2's ID is
D3 : in std_logic_vector(2 downto 0);--what PE 3's (D is
outDestination] cout STD_LOGIC_VECTOR(2 dowato 0):
outSourcel cout STD_LOGIC_VECTOR(2 downto 0);
outDatal s out STD_ULOGIC_VECTOR(7 downto 0);
outlD1 :out STD_ULOGIC_VECTOR(7 downto 0);
outStart] - out std_logic;
outDestination2 sout STD_LOGIC_VECTOR(2 downto 0):
outSource2 s out STD_LOGIC_VECTOR(2 downto 0);
outData2 :out STD_ULOGIC_VECTOR(7 downto 0):
outiD2 out STD_ULOGIC_VECTOR(7 downto 0):
outStart2 : out std_logic:
outDestination3 :out STD_LOGIC_VECTOR(2 downto 0):
outSource3 cout STD_LOGIC_VECTOR(2 downto 0);
outData3 :out STD_ULOGIC_VECTOR(7 downto 0):

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outiD3 s out STD_ULOGIC_VECTOR(7 downto 0).
outStart3 :out std_logic):
END PE_Final_Assert,

ARCHITECTURE PEFinalAssentdescription OF PE_Final_Assert 1S

begin
process{clk)

variable destCounter! : intcger range 0 to 3;
variable destCounter2 : integer range 0 to 3:
variable destCounter3 : integer range 0 to 3;

variable sendError : integer range 0 to 1:--goes high if error is detecied (so a packetl must be sent to the
--control so that that PE is now neglected)
variabfe bad3M - std_fogic_vector(2 downto 0);—represents which BM is fauity

begin
if{rising_cdge(clk)) then

outStart] <="'0",

outStart2 <='0".

outStart3 <= '0";

sendError := 0;

if(inStartl = '1') then
--something has come in oft of the | lines
if(inDestination] = mylD) then

--this packet is for here!

--is there an crror in the packet?

i {(inID(7)="1") and (inID2(7) ="'1")) then
~-then it is an error packet
sendError == |;
badBM = inSourcel;

end if%

else

--then we must forward the packet

--forward the packet to the neighbour with the closest 1D

destCounter2 == 0:

destCounter3 = 02

iftinDestination 1 (0) = 1D2(0)) then
destCounter2 = destCounter2 + 1

end if’

if{inDestination1(t) = 1D2(1)) then
destCounter? = destCounter2 + 1

end if

iflinDestination 1(2) = 11D2(2)) then
destCounter2 ;= destCounter2 + 1:

end if}

if{inDestination 1 (0) = 1D3(0)) then
destCounter3 = destCounter3 + 1

end if:

f(inDestination 1 (1) = 1D3(1)) then
destCounter3 = destCounter3 + 11

end if}

it{inDestination §{2) = 1D3(2)) then
destCounter3 ;= destCounter3 + 12

end it

iftdestCounter3 > destCounter2) then
--forward packet to 1D3
outDestination3 <= inDestinationl
outData3 <= inDatal;
outlD3 <=inlh1:
outSouree3 <= inSourcel:
outStarty <="'1";

clse
--forward packet to [D2
outDustination2 <= inDestination!:
vutData2 <= inDatal;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outiD2 <=inlD1;
outSource2 <= inSourcel:
outStart2 <="1";
end if}
end if,
end ift
if{inStart2 ='1") then
if(inDestination2 = myiD) then
—this packet is for here! Pass it along to the BM circuit
--was there an error in the packet?
i (inlD2(7) ="1"}y and (inID2(7) ='1") Ythen
--then it is an error packet
sendError == 1;
badBM := inSource2;

end if:
else

--then we must forward the packet

--forward the packet to the neighbour with the closest 1D

destCounter] = 0;

destCounter3 =0,

if{inDestination2(0) = 1D 1(0)) then
destCounterl == destCounter] + 1;

end if;

iftinDestination2(1) = ID1(1)) then
destCounterl = destCounter] + 1

end if;

if(inDestination2(2) = ID1(2)) then
destCountert := destCounter} + I

end if,

if(inDestination2(0) = 1D3(0)) then
destCounter3 = destCounter3 + 1)

end if;

if(inDestination2{1) = {D3(1)) then
destCounter3 ;= destCounter3 + 1

end if}

f(inDestination2(2) = ID3(2)) then
destCounter3 = destCounter3 + 1

end if}

iftdestCounter3 > destCounterl) then
--forward packet to 1D3
outDestination3 <= inDestination2:
outSource3 <= inSource2;
outData3 <= inData2;
outiD3 <= iniD2;
outStart3 <="'1";

clse
-~forward packet to IDl
outDestination! <= inDestination2:
outSourcel <= inSource2;
outDatal <= inData2;
outlDl <=iniD2;
outStart] <='1";

end ift

end if:

end if:
if{inStart3 ='1") then
if{inDestination3 = mylD) then
--this packet is for here! Pass it along to the BM circuil
--was there an error in the packet?
if{ (inID3(7) ="1") and (iniD3(7) = '1") Ythen
--then it is an error packet
sendError == I
badBM = inSource3;
end if}
else
~-then we must forward the packet
--forward the packet to the neighbour with the closest 1D
destCounterl := 0,
destCounter3 == 0;
if{inDestination3(0) = ID1(0)) then

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

NP

gxN

i

TR S S EE L

destCountert = destCounterl + 13
end if}
if{inDestination3(1) = ID1(1)) then
destCounterl = destCounterl + 1:
end if}
if(inDestination3(2) = ID1(2)) then
destCounterl = destCounterl + |2
end if}
iftinDestination3(0) = 1D2(0)) then
destCounter2 = destCounter2 + 1
end if}
if(inDestination3(1) = 1D2(1)) then
destCounter2 := destCounter2 + 1
end if:
tf(inDestination3(2) = 1D2(2)) then
destCounter2 = destCounter2 + 12
end il
if(destCounter2 > destCounter1) then
--forward packet to 1D3
outDestination2 <= inDestination3;
outSource2 <= inSource3;
outData2 <= inData3:
outlD2 <= iniD3:
outStart2 <="'l"
clse
--forward packet to 1D1
outDestination] <= inDestination3;
outSourcel <= inSource3;
outDatal <= inData3:
outiD} <= iniD3;
outStarti <="'1";
end if}
end if’
end if
iftsendErvor = 1) then
--send a packet to 000" containing a message that says:don't use BM located in
--badBM

--which link is closest to 000?
destCounter! :=0:
destCounter2 :=0:
destCounter3 = 0:
foriin 0 to 2 loop
if(ID1(i) ='0') then
destCounter! := destCounter! + [
end if}
HID2(i) ="0") then
destCounter? = destCounter2 + |;
end if:
i{ID3(i) ="0") then
destCounter3 = destCounter3 + [
end if;
end loop:
if(destCounter! > destCounter2) then
if{destCountert > destCounter3) then
--send down linkl
outDestination| <= "000";
outDatal <= "00000000";
outiD1 <= "(0000000";
outSource] <=myl:
outStartl «<="'l",

clse
--send down link3
autDestination3 <= "000";
outDatad <= "00000000";
outlD3 <= "00000000";
outSourced <= my il
outStartd <='{"

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clse

end ift
end if;
end if}
end process:
end PEFinalAssertdescription;

LIBRARY icee:

USE ieee.std_logic_1164.ALL:
USE iece.std_logic_arith. ALL;
USE iece.std_logic_unsigned. ALL;

end if;

if{destCounter2 > destCounter3) then

--send down link2
outDestination2 <= "000";
outData2 <= "00000000";
outiD2 <= "00000000":
owlSource2 <= mylD,
outStart2 <='I";

else

--send down link3
outDestination3 <= "000";
outData3 <= "00000000";
outiD3 <= "00000000";
outSource3 <= mylD;
outStart3 <='I",

end if;

ENTITY PE_CPU IS--the interface and control circuitry "around” the cpu

PORT(
clk
inSignalFromCPU
inDataFromCPU

inDestination]
inSourcel
inDatal

iniDI

inStart!
inDestination2
inSource2
inData2

iniD2

inStart2
inDestination3
inSource3
inData3

inlD3

inStart3

mylD

1D}

D2

1D3
outSignalToCPU
--outDataToCPU
outDataToCPU
outDestination!
outSource!
outDatal
outiD}
outStart!
outDestination2
outSource2
outData2
outlD2
outStart2
outDestination3
outSourcel

s in std_logic;

1 in std_logic;--there is data available from the CPU

1IN STD_ULOGIC_VECTOR(i6 downto 0).--8 downta 0).—-the data
-~from the CPU

: IN STD_LOGIC_VECTOR(2 downto 0);

SIN STD_LOGIC_VECZTUR(2 downto 0);

1IN STD_ULOGIC_VECTOR(7 downto 0):

. IN STD_ULOGIC_VECTOR(7 downto 0).

:in std_logic; --goes high when the three things above are ready

1IN STD_LOGIC_VECTOR(2 downto 0},

: IN STD_LOGIC_VECTOR(2 downto 0);

1IN STD_ULOGIC_VECTOR(7 downto 0);

1IN STD_ULOGIC_VECTOR(7 downto 0),

: in std_logic; --goes high when the three things above are ready

- IN STD_LOGIC_VECTOR(2 downto 0):

: IN STD_LOGIC_VECTOR(2 downto 0);

1IN STD_ULOGIC_VECTOR(7 downto 0):

1IN STD_ULOGIC_VECTOR(7 downto 0);

: in std_logic; --goes high when the three things above are ready

- in std_logic_vector(2 downto 0);--what this PE's 1D is

: in std_logic_vector(2 downto 0);--what PE 1's 1D is

s in std_logic_vector(2 downto 0);--what PE 2's 1D is

: in std_logic_vector(2 downto 0);--what PE 3's 1D is

: out std_togic;-~there is data available from the CPU

:out STD_ULOGIC_VECTOR(8 downto 0);--the data from the CPU

cout STD_ULOGIC_VECTOR(16 downto 0);--the data from the CPU

:out STD_LOGIC_VECTOR(2 downto 0);

rout STD_LOGIC_VECTOR(2 downto 0);

s out STD_ULOGIC_VECTOR(7 downto 0):

s out STD_ULOGIC_VECTOR(7 downto 0);

:out std_logic:

sout STD_LOGIC_VECTOR(2 downto 0):

rout STD_LOGIC_VECTOR(2 downto 0);

sout STD_ULOGIC_VECTOR(7 downto 0);

:out STD_ULOGIC_VECTOR(7 downto 0):

:out std_logic:

sout STD_LOGIC_VECTOR(2 downto 0);

sout STD_LOGIC_VECTOR(2 downto 0):

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outData3 :out STD_ULOGIC_VECTOR(7 downto 0).
outlD3 rout STD_ULOGIC_VECTOR(7 downto 0):

-lemp lemp

tempBMCounter : out integer range 0 to 13;

tempDestinationBM : out sid_logic_vector(2 downto 0):

outStarid
END PE_CPU:

ARCHITECTURE PECPU OF PE_CPU IS

component reg8 IS
PORT(load : IN std_logic;
clock :in std_logic;
datain : IN std_ulogic_vector(7 downto 0):

dataout : OUT std_ulogic_vector(7 downto 0)); --parallel outputs
END component:

signal loadIReg : std_logic_vector(13 downto 0);

signal loadJReg : std_logic_vector(13 downto 0):

signal BMIntermediatel : std_ulogic_vector(7 downto 0):

signal BMIntermediated : std_ulogic_vector(7 downto 0);

subtype WORDS is STD_ULOGIC_VECTOR (7 downto 0};

type ARRAYOFBYTESI4 is array (13 downto 0) of WORDS;
signal BMIData : ARRAYOFBYTES14;

signal BMJData : ARRAYOFBYTES 14;

--signal BM1Destination : std_logic_vector(2 downto 0) :="001";
--signal BM2Destination : std_logic_vector(2 downto 0) := "010":
--signal SpareBM! :std_logic_vector(2 downto 0) ;= "101":
--signal SpareBM2 :std_logic_vector(2 downto 0) == "110":
—-signal SpareBM3 : std_logic_vector(2 downto 0) :="111";
--signal destinationBM : std_logic_vector(2 downto 0) ;= "001";
~-signal BMcounter : integer range 0 to 13 =0,

begin
--regl: for i in 0 to 13 generate

- regl Label: reg8 port map(loadIReg(i). clk, BMIntermediatel

sout std_logic):

. BMIData(i)):

- reg2Llabel: reg8 port map(toadJReg(i). clk. BMIntermediatel. BMJData(i)):

--end generate;,
process(clk)

variable destCounter| : integer range 0 to 3:
variable destCounter2 : integer range 0 10 3:
variable destCounter3 : integer range 0 to 3;
variable BMcounter : integer range 0 to 13 := 0

variable BM1Destination : std_logic_vector(2 downto 0) :

"001":

variable BM2Destination : std_logic_vector(2 downto 0) ;= "010";
variable SpareBM1 :std_logic _vector(2 downto 0) == "101";
variable SpareBM2 :std_logic_vector(2 downto 0) == "110";
variable SpareBM3 : std_togic_vector(2 downto 0) :="111";
variable destinationBM : std_logic_vector(2 downto 0) := "001":

variable BMQutCounter : integer = 0:

variable packetToGo : integer range O to | ;=0

variable toGoDestination : std_logic_vector(2 downto 0):
variable toGoData : std_ulogic_vector(7 downte 0):

variable toGoLink * integer range 1 to 3:
begin

tempDestinationBM <= destinationBM:
tempBMCounter <= BMCounter;,

if{rising_cdge(cik)) then
outStartt <=0,
ousStan2 <='0";
outStart3 <= '(";

127

Reproduced with permission of the copyriaht owner. Further reproduction prohibited without permission.

outSignalToCPU <="0",
loadIReg <= (others =>'0");
loadJReg <= (others =>'0");
it{inStartl ='1*) then
--something has come in off of the 1 lines
iftinDestination! = mylD) then
--this packet is for here!
--if it is from a BM circuit we need to have that data ready to give
--to the LEDS register
--if it is from the BM assert then we need to cancel use of the given BM
--circuit
if(inSourcel ="011") then
—then it is an assert signal to block the use of'a BM circuit
--so simply change the BM#Destination signais and sparcBM
--stuff’
if{SpareBM 1| = "000") then
--there are no spares lefi - do nothing
else
if((inDatal(2) = BM1Destination(2)) and (inDatal(1)=
BMI Destination(1)) and (inDatal(0) = BM1 Destination(0))) then
--BMI is to be replaced
BM1 Destination := SpareBMI;
--now move the others down the line
SpareBM1 := SpareBM2;
SpareBM2 := SpareBM3;
SpareBM3 = "000";
clse
--BM2 is to be replaced
BM2Destination ;= SparcBM1;
--now move the others down the line
SpareBM1 ;= SpareBM2;
SpareBM2 = SpareBM3;
SpareBM3 :="000";
end if;
end ift
clsif{inSourcel ="100") then
--then it is an error on the final task, we are not supporting
--error recovery in this case since we have no spare general
--purpose CPU
clse
—-it is info from a BM circuit - that needs to be stored in the
—~corresponding place
BMintermediatel <= inDatal
BMintermediate) <= inlD1;
load|Reg(BMCounter) <="}",
loadJReg(BMCounter) <="1";
BMCounter ;= BMCounter + 1;
if{BMCounter > i3) then
BMCounter ;= 0
end if:
--now just send it directly to the LEDS for reading by
--software
outDataToCPU(15 downto 8) <=iniD1(7 downto 0);
outDataToCPU(7 downto 0) <= inDatal(7 downto 0);
outSignalToCPU <="1";
end if

else

--then we must forward the packet

--forward the packet to the neighbour with the closest 1D

destCounter2 ;=0

destCounter3 =0,

iftinDestination 1{0) = 1D2(0)) then
destCounter2 = destCounter2 + |

end il

it{inDestination1(1) = 1D2(1)) then
destCounter2 := destCounter2 + |

end if;

if{inDestination 1(2) = 1D2(2)) then
destCounter2 = destCounter2 + 1

128

Renroduced with permission of the copvriaght owner. Further reproduction prohibited without permission.

Laiad .-».-.««M:wf,"J

end ift
ifinDestination 1 (0) = 1D3(0)) then
destCounter3 = destCounter3 + 1:
end if}
if(inDestination 1 (1) = 1D3(1)) then
destCounter3 = destCounter3 + 1;
end ift
if(inDestination 1(2) = 1[23(2)) then
destCounter3 = destCounter3 + 12
end if}
if{destCounter3 > destCounter2) then
--forward packet to 1D3
outDestination3 <= inDestination}:
outData3 <=inDatal;
outlD3 <=iniD}:
outSource3 <= inSourcel:
outStart3 <='I"
else
--forward packet to ID2
outDestination2 <= inDestination!;
outData2 <= inDatal:
outiD2 <= iniDi:
outSource2 <= inSourcel:
outStar2 <="'{";
end if:
end if:
end if;
it(inStart2 = ') then
if(inDestination2 = myID) then
--this packet is for here!
--if it is from a BM circuit we need to have that data ready to give
--to the LEDS register
--if it is from the BM assert then we need to canced use of the given BM
--circuit
if{inSource2 ="011") then
--then it is an assert signal to block the use of a BM circuit
--s0 simply change the BM#Destination signals and spareBM
--stuff
if{SpareBM1 = "000") then
-~there are no sparces left - do nothing
else
if{ (inData2(2) = BM I Destination(2)) and (inData2(1) =
BM1Destination(1)} and (inData2(0) = BM1 Destination(0))) then
--BM1 is to be replaced
BM 1 Destination ;= SpareBM1;
--now move the others down the line
Sparel3M! = SpareBM2;
SpareBM2 := SpareBM3:
SpareBM3 = "000":
clse
--BM2 is to be replaced
BM2Destination := SpareBM
- --now move the others down the line
SpareBM1 = SpareBM2:
SpareBM2 := SpareBM3:
SparcBM3 :="000";
end 1f}
end if:
elsiftinSourcel = "100") then
—then it is an crror on the final task. we are not supporting
--CITOr recovery in this case since we have no spare general
--purpose CPU

-«it is info from a BM circuit ~ that needs o be stored in the
--corresponding place

BMintermediate! <= inData2;

BMintermediate) <= inf2;

loadtReg(BMCounter) <= 1"

loadJReg(BMCounter) <= "1"

BMCounter = BMCounter + 12

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end if}

iBMCounter > 13) then

BMCounter =
end i}
--now just send it directly to the LEDS for reading by
--software
—outDataToCPU(8) <="0"
outDataToCPU(15 downto 8) <= inl1D2(7 downto 0);
outDataToCPU(7 downto 0) <= inData2(7 downta 0):
outSignalToCPU <="1"

end if}
else
--then we must forward the packet
--forward the packet 10 the neighbour with the closest 1D
destCounter] :=0;
destCounter3 = 0;
if(inDestination2(0) = 1D1(0)) then
else
destCounter] = destCounter} + 1;
end if;
if{inDestination2(1) = IDI(})) then
clse
destCounter! := destCounter] + 1:
end if;
if(inDestination2(2) = (D1(2)) then
else
destCounter} := destCounter} + 1;
end if}
if(inDestination2(0) = 1D3(0)) then
else
destCounter3 := destCounter3 + §
end if}
if{inDestination2(1) = 1D3(1)) then
clse
destCounter3 := destCounter3 + I
end if}
if{inDestination2(2) = ID3(2)) then
else
destCounter3 := destCounter3 + 1
end if;
if{destCounter3 > destCounterl) then
--forward packet to {D3
outDestination3 <= inDestination2;
outSource3 <= inSource2;
outData3 <= inData2;
outlD3 <=inlD2;
outStart3 <="1"
else
~forward packet to D1
outDestination! <= inDestination2;
outSourcel <= inSource2;
outDatal <= inData2;
ouliDl <=iniD2;
outStart] <='i";
end if}
end it

iftinStart3 ="1") then

Reproduced with permission of the copyright owner.

if(inDestination3 = myID) then
--this packet is for here!
--if it is from a BM circuit we need to have that data ready o give
--to the LEDS register
--if it is from the BM assert then we need to cancel use of the given BM
--circuit .
if(inSource3 = "011") then
--then it is an assert signal to block the use of a BM circuit
--s0 simply change the BM#Destination signals and sparcBM
--stuft’
it{SpareBM1 = "000") then
--there are no spares left - do nothing

130

Further reproduction prohibited without permission.

clse
if{ (inData3(2) = BM1Destination(2)) and
(inData3(1) = BM1Destination{ 1)) and (inData3(0) = BM i Destination(()}) then

--BM1 is to be replaced
BMI Destination = SparcBM1;
--now move the others down the line
SpareBMI = SpareBM2;
SpareBM2 =8
SpareBM3 =

clse
--BM2 is to be replaced
BM2Destination := SparcBBM1:
--now move the others down the line
SpareBM] = SparcBM2:
SparcBM2 := SpareBM3:
SpareBM3 = "000":
end ift
end if}
elsif{inSourcel = "100") then
--then it is an error on the final task. we are not supporting
-~error recovery in this case since we have no spare general
--purpose CPU
else
--it is info from a BM circuil - that needs to be stored in the
--corresponding place
BMintermediatel <= inData3:
BMIntermediate <= inlD3;
loadiReg(BMCounter) <="1";
loadJReg(BMCounter) <="1"
BMCounter ;= BMCounter + 1:
iftBMCounter > 13) then
BMCounter ;=0
end if}
--now just send it directly to the LEDS for reading by
--software
--outDataToCPU(8) <="0";
outDataToCPU(13 downto 8) <= inlD3(7 downto 0);
outDataToCPU(7 downto 0) <= inData3(7 downto 0):
outSignal TeCPU <="1"
end if:
clse
--then we must forward the packet
--forward the packet to the neighbour with the closest 1D
destCounter! =0
destCounter3 = 0;
iftinDestination3(0) = ID1(0)) then
destCounterl = destCounterl + 1
end if:
iftinDestination3(1) = ID1(1)) then
destCounter) = destCoumter] + 1:
end if;
iflinDestination3(2) = [D[(2)) then
destCounterl ;= destCounter] + |
end if,
it{inDestination3(0) = 1D2(0)) then
destCounter2 = destCounter2 + | ;
end if;
ifinDestination3(1) = 1D2(1)) then
destCounter2 = destCounter2 + 1
end if:
iftinDestination3(2) = 1D2(2)) then
destCounter? = destCounter2 + 1,
end i}
iftdestCounter2 > destCounterl) then
--forward packet 10 1D3
outbestination2 <= inbDestinationd:
outSource? <= inSourcel:
outData <= inData3:
outiD2 <= inih3:
outStant2 <="1",

Reproduced with permission of the copyright owner. Further reproduction prohikited without permission.

clse
--forward packet to [D1
outDestination] <= inDestination3;
outSourcel <= inSource3;
outDatal <= inData3;
outlD1 <= inlD3;
outStart] <="I"
end if;
end if]
end if}
if(inSignatFromCPU ='1") then
--then there is incoming data from the CPU it needs to be distributed to a BM
~=Clrcuit
--or if it is a signalling packet we need to put info on the LEDS for reading....
iftinDataFromCPU(16) = '1") then
--then it is signalling and we should load the contents of the register
—indexed
--in the lower 7 bits to the LEDS
iftinDataFromCPU(15) ="'1") then
iftinDataFromCPU(14) ="1") then
--signal from CPU to change the BM destination
--circuit!
it{SpareBM1 ="000") then
--there are no spares left - do nothing
else
iff (inDataFromCPU(2) =
BM 1 Destination(2)) and (inDataFromCPU(1} =
BM1Destination(1)) and (inDataFromCPU(0) =
BMI1Destination(0))) then
--BM1 is to be replaced
BM1Destination ;=
SpareBM1;
--now move the others
--down the line
SpareBM! = SpareBM2;
SpareBM2 = SpareBM3:
SpareBM3 :="000";
clse
--BM2 is to be replaced
BM2Destination =
SpareBM1:
--now move the others
--down the line
SpareBM1 := SparcBM2;
SparcBM2 := SpareBM3:
SpareBM3 = "000":
end if:
end if}

end if’
clse

end if
--outSignal ToCPU <="1"

clse
--then data needs to be distributed to the BM circuit!
--immediately send data to destinationBM
--which link do i send it out on?
packetToGo = |:
toGoDestination = destination BM:
toGoData = inDataFromCPU(7 downto 0);

destCounter! = ()
destCounter2 = 0;
destCounter3 == 0,

if{destinationBM(2) = ID1(2)) then
destCounter! = destCountert + 1,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W

s R R A

end ift
if(destinationBM(1) = IDI{1)) then
destCounter! = destCounter] + 13

end it
if(destinationBM(0) = 1D 1(0)) then
destCounter! = destCounterl + 12

end if’
if(destinationBM(2) = 1D2(2)) then
destCounter? = destCounter2 + 1

end ift
if(destinationBM(1) = ID2(1)) then
destCounter2 1= destCounter2 + 1

end if’
if{destinationBM{0) = 1D2(0)) then
destCounter2 = destCounter2 + 1;

end if:
if{ destinationBM(2} = ID3(2)) then
destCounter3 = destCounter3 + 1.

end if;
iftdestinationBM(1) = ID3(1)) then
destCounter3 = destCounter3 + 1

end if;
if(destinationBM(0) = ID3(0)) then
destCounter3 := destCounter2 + 1

end if
if{destCounterl > destCounter2) then
il{destCounter] > destCounter3) then
-~send to D1
outDestinationt <= destinationBM:
outDatal <= inDataFromCPU{7 downto 0);
outSource]l <="000";
out} e <= "00000000":
outStart]l <="'{",
toGol.ink :==1:
else
--send to 1D3
outDestination3 <= dustination3M:
outDatal3 <= inDataFromCPU(7 downto 0):
outSource3 <= "000";
outtD3 <= "00000000";
outStan3 <= "1
toGol.ink = 3:
end if?
clse
if{destCounter2 > destCounter3) then
-send to 1D2
outDestination2 <= destinationBM;
oulData2 <= inDataFromCPU(7 downto 0);
outSource? <= "000":
outiD2 <= "00000000)":
outStart? <="1",
toGol.ink .= 2;
clse
--send fo 13
outDestination3 <= destinationBM
outData3 <= inDataFromCPU(7 downto ()
outSource <= "000";
outhd3 <= "0000H000™;
outStart3 <= 1",
wGol.ink = 3;
end ft
end ift

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BMOutCounter ;= BMOutCounter + 1|
if{BMOutCouster = 1951509) then--3903018) then
--it is time 1o change destination3M! (swap...)
itidestinationBM = BM | Destination) then
destinationBM = BM2Destination;
else
destinationBM = BM 1 Destination:

end if’
BMOutCounter := 0:--start again!
end if:

end ifs
end if:
if(packetToGo = 1) then
ifitoGolL.ink = 1) then
outDestinationl <= toGoDestination;
outDatal <=toGoData;
outSourcel <="000";
outiD1 <= "00000000";
outStartl <="I"
elsif{toGoLink = 2) then
outDestination2 <= toGoDestination;
outData? <=toGoData;
outSource2 <="000";
outfD2 <= "00000000";
outStart2 <="1"

else
outDestination3 <= toGoDestination;
outData3 <= toGoDala;
outSource3 <= "000";
outiD3 <= "00000000";
outStart3 <="'1";
end if}

end if}
end if}
end process:
end PECPUL

-- Pumpose :
- This APB peripheral contains registers

library IEEE;
use [EEE.std_logic_i164.all:

entity APBRegs is

port(
-- Inputs
PCLK tin std_logic; - APB clock
nRESET vin o std_togic: — AMBA reset
PENABLE cin std_logic: -- APB enable
PSEL tin std_logic; — APB select
PWRITE cin std_logic: - APB read/write
nPBUTT +in std_logic; -- input that will be latched for
-- an interrupt example
SwW tin std_logic_vector(7 downto 0):
- switches
PWDATA vin std_logic_vector(31 downto 0);
-- APB wrile data
PA tin std_logic vector(4 downto 2);
-- APB address bus
-- Quiputs
CTRLCLKI cout std_togic_vector(18 downto 0):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

st 31

-- sets frequency of CLKI

CTRLCLK2 Tout sid_logic_vector(18 downto 0);
-- sets frequency of CLK2
REGSINT rout std_logic; — interrupt output
LED rout std_logic_vector(8 downto 0);
-- LED control
PRDATA cout std_logic_vector(31 downto 0)
-- APB read data
)3
end APBRegs:
-~) APBRegs
-- Qverview

-- This APB peripheral contains registers to...

-- * program & lock the two clock oscillators

-- * write to the general purpose LEDs

-- * clear push button interrupt

-- * read the general purpose switches

-- Certain registers are protected by the LOCK register. You must write OxAOSF
-- 10 the lock register to enable the following registers to be modified:

~ LM_OSCI
~ LM_0SC2

- Provides nLMINT to the top level & registers all interrupt sources

- ARCHITECTURE
architecture synth of APBRegs is
-- Component declarations
component PE_BlockMatch IS
PORT(
clk : in std_logic:
inDestination} JIN STD_LOGIC_VECTOR(2 downto ():
inSource! :INSTD_LOGIC_VECTOR(2 downto ()
inDatal T IN STD_ULOGIC_VECTOR(7 downto 03
inID1 1IN STD_ULOGIC_VECTOR(7 downto 0):
inStart} s instd_logic: --goes high when the three things above are ready
inDestination2 CINSTD_LOGIC_VECTOR(2 downto 01
inSource2 D INSTD_LOGIC_VECTOR(2 downto 0):
inData2 S INSTD_ULOGIC_VECTOR(7 downto).
inID2 T IN STD_ULOGIC_VECTOR(7 downto U):
inStart2 :instd_logic: —goes high when the three things above are ready
inDestination3 S IN STD_LOGIC_VECTOR(2 downto 0).
inSource3 1IN STD_LOGIC_VECTOR(2 downto 0y,
inData3 L IN STD_ULOGIC_VECTOR(7 downio ():
iniD3 D INSTD_ULOGIC_VECTOR(7 downto 0):
inStan3 cinstd_logic; --goes high when the three things above are ready
mylD sinstd_togic_vector{2 downto 0)z--what this PE's 11D s
18]} s insid_logic_vector(2 downio 0);—what PE §'s 11D is
1D2 sinstd_logic_vector(2 downto 0)i--what PE 2's 11 s
103 s in std_jogic_vector(2 downto 0).--what PE 3's 1D 1s
outDestination | Tout STD_LOGIC_VECTOR(2 downto 0).
135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

END component:

component PE_BM_Assert 1S

END component:

component PE_Final_Assert IS

PORT(

PORF(

outSourcel
outDatal
outiD1
outStart!
outDestination2
outSource2
outData2
outiD2
outStar2
outDestination3
outSource3
outData3
outiD3
outStar3

clk
inDestinationt
inSourcel
inDatal

iniD1

inStart}
inDestination2
inSource2
inData2

inlD2

inStart2
inDestination3
inSource3
inData3

iniD3

inStart3

mylD

1D1

102

1D3
outDcstinationi
outSourcel
outDatal
outlD1
outStartl
outDestination2
outSource2
outData2
outlD2
outStart2
outLestination3
outSosrce3
outData3
outiD3
outStartt

cik
inDestination |
inSource!
inDatal

iniD1

inStartt
inDestination2
inSource2
inData2

iniD2

inStan2
inDestination3

:out STD_LOGIC_VECTOR(2 downto 0).
:out STD_ULOGIC_VECTOR(7 downto 0):
: out STD_ULOGIC_VECTOR(7 downto 0).
: out std_logic:

:out STD_ULOGIC_VECTOR(7 downto 0):
: out STD_ULOGIC_VECTOR(7 downto 0); 5
:out std_logic); ¥

:in std_logic;

1IN STD_LOGIC_VECTOR(2 downto 0):
1IN STD_LOGIC_VECTOR(2 downto 0): .
* IN STD_ULOGIC_VECTOR(7 downto 0);
: IN STD_ULOGIC_VECTOR(7 downto 0); '
:in std_logic; --goes high when the three things above are ready '
1IN STD_LOGIC_VECTOR(2 downto 0);

1IN STD_LOGIC_VECTOR(2 downto 0);

1IN STD_ULOGIC_VECTOR(7 downto 0);

1IN STD_ULOGIC_VECTOR(7 downto 0);

: in std_logic; --goes high when the three things above are ready

1IN STD_LOGIC_VECTOR(2 downto 0);

1IN STD_LOGIC_VECTOR(2 downto 0};

1IN STD_ULOGIC_VECTOR(7 downto 0);

- IN STD_ULOGIC_VECTOR(7 downto 0);

:in std_logic; --goes high when the three things above are ready

sin std_Jogic_vector(2 downto 0);-~what this PE's ID is

: in std_logic_vector(2 downto 0);—what PE 1's ID is

:in std_logic_vector(2 downto 0);—-what PE 2's ID is

: in std_logic_vector(2 downto 0);—what PE 3's ID is

T out STD_LOGIC_VECTOR(2 downto 0);

:out STD_LOGIC_VECTOR(2 downto 0):

:out STD_ULOGIC_VECTOR(7 downto 0);

:out STD_ULOGIC_VECTOR(7 downto 0},

: out std_logic:

cout STD_LOGIC_VECTOR(2 downto 0):

s out STD_LOGIC_VECTOR(2 downto 0);

;out STD_ULOGIC_VECTOR(7 downto 0),

cout STD_ULOGIC_VECTOR(7 downto 0);

s out std_logic;

cout STD_LOGIC_VECTOR(2 downto 0):

cout STD_LOGIC_VECTOR(2 downto 0);

: out STD_ULOGIC_VECTOR(7 downto 0):

cout STD_ULOGIC_VECTOR(7 downto 0);

: out sld_logic);

g
=
4
3

2

rout STD_LOGIC_VECTOR(2 downto 0); ki
:out STD_LOGIC_VECTOR(2 downto 0): §~
: out STD_ULOQGIC_VECTOR(7 downto 0): &
: out STD_ULOGIC_VECTOR{7 downto 0): &
: out std_logic; 2
:out STD_LOGIC_VECTOR(2 downto 0). 4
:out STD_LOGIC_VECTOR(2 downto 0); 7;

S e Wi

:in std_Jogic:

1IN STD_LOGIC_VECTOR(2 downto ():
JINSTD_LOGIC_VECTOR(2 downto 0):

T INSTD_ULOGIC_VECTOR(7 downto 0):

T IN STD_ULOGIC_VECTOR(7 downto 0);

instd_logic; --goes high when the three things above are ready
: INSTD_LOGIC_VECTOR(2 downto 0);

1IN STD_LOGIC_VECTOR(2 downto 0}):

1IN STD_ULOGIC_VECTOR(7 downto 0):

T IN STD_ULOGIC_VECTOR(7 dowuto 0):

s in std_fogic: --goes high when the three things above are ready
CINSTD_LOGHIC _VECTOR(2 downto 0),

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

END component;

inSource3
inData3

inlD3

inStart3

mylD

ID1

D2

D3
outDestinationl
outSourcel
outDatal
outiD1
outStartl
outDestination2
outSource2
outData2
outinp2
outStart2
outDestination3
outSource3
outData3
outiD3
outStart3

T IN STD_LOGIC_VECTOR(2 downto 0):

1IN STD_ULOGIC_VECTOR(7 downto 0):

: IN STD_ULOGIC_VECTOR(7 downto 0):

: in std_logic; --goes high when the three things above are ready
: in std_logic_vector(2 downto 0):--what this PE's 1) is
: in std_logic_vector(2 downto 0):--what PE I's ID is
s in std_logic_vector(2 downto 0):--what PE 2's 1D is
. in std_logic_vector(2 downto 0);—-what PE 3's 1D is
:out STD_LOGIC_VECTOR(Z downto 0):

:out STD_LOGIC_VECTOR(2 downto 0):

cout STD_ULOGIC_VECTOR(7 downto 0):

s out STD_ULOGIC_VECTOR(7 downto 0):

: out std_iogic:

:out STD_LOGIC_VECTOR(2 downto 0):

s out STD_LOGIC_VECTOR(2 downto 0):

2 out STD_ULOGIC_VECTOR(7 downto 0):

s out STD_ULOGIC_VECTOR(7 downto 0):

: out std_logic;

: out STD_LOGIC_VECTOR(2 downto 0):

s out STD_LOGIC_VECTOR(2 downto 0):

s out STD_ULOGIC_VECTOR(7 downto 0).

:out STD_ULOGIC_VECTOR(7 downto 0):

: out std_logic);

component PE_CPU 1S--the interface and control circuitry "around” the cpu

END component;

PORT(

clk
inSignalFromCPU
inDataFromCPU
inDestination|
inSourcel
inDatal

iniD1

inStarti
inDestination2
inSource2
inData2

inlD2

inStart2
inDestination3
inSource3
inData3

iniD3

inStart3

mylD

ID1

1D2

D3

outSignal ToCPU
outDataToCPU
outDataToCPU
outDestination!
outSourcel
outDatal

outlD]

outStast
outDestination2
outSource2
outData2
outlD2
outStart2
outDestination3
outSource3
outData3
outlD3
outStarn3

in std_logic;

: in std_logic;--there is data available from the CPU

: IN STD_ULOGIC_VECTOR(16 downto 0):--the data from the CPU
: IN STD_LOGIC_VECTOR(2 downto 0):

- IN STD_LOGIC_VECTOR(2 downto 0):

- IN STD_ULOGIC_VECTOR(7 downto 0):

- IN STD_ULOGIC_VECTOR(7 downto 0);

: in std_Jogic: --goes high when the three things above are ready
1IN STD_LOGIC_VECTOR(2 dowsto 0):

; IN STD_LOGIC_VECTOR(2 downto 0):

: IN STD_ULOGIC_VECTOR(7 downto 0):

: IN STD_ULOGIC_VECTOR(7 downto 0):

in std_logic: —goes high when the three things above are ready
: IN STD_LOGIC_VECTOR(2 downto 0):

: IN S$TD_LOGIC_VECTOR(2 downto 0):

: IN STD_ULOGIC_VECTOR(7 downto 0):

1IN STD_ULOGIC_VECTOR(7 downto 0).

sinstd_logic: --goes high when the three things above are ready
:in std_logic_vector(2 downto 0):--what this PE's 11D is

< in std_fogic_vector(2 downto 0);.--what PE I's 1D is

s in std_logic_vector(2 downto 0):--what PE 2's 1D is

s in std_logic_vector(2 downto 0):--what PE 3's 1D is

s out std_logic:--there is data available trom the CPU

rout STD_ULOGIC_VECTOR(8 downto 0):--the data from the CPU
s out STD_ULOGIC_VECTOR(16 downto 0).--the data from the CPU
s out STD_LOGIC_VECTOR(2 downto 0);

cout STD_LOGIC_VECTOR(2 downto 0):

Tout STD_ULOGIC_VECTOR(7 downto 0):

:out STD_ULOGIC_VECTOR(7 downto 0):

: out sid_logic;

cout STD_LOGIC_VECTOR(2 downto 0):

s out STD_LOGIC_VECTOR(2 downto 0).

sout STD_ULOGIC_VECTOR(7 downto 0):

cout STD_ULOGIC_VECTOR(7 downto)

: out std_logic;

sout STD_LOGIC_VECTOR(2 downto 0):

cout STD_LOGIC_VECTOR(2 downto 0);

cout STD_ULOGIC _VECTOR(7 downto 0);

sout STD_ULOGIC_ VECTOR(7 downto 0):

;out std_jogic):

-~ Constant declarations

137

-- 1 Mtlz default clock values
constant QSC1_VECTOR :std_logic_vector(18 downto 0)
="1100111110000000100";

constant OSC2_VECTOR :sid_logic_vector(18 downto 0)
="1100111110000000100™:

-- Lock register key OxAOSF
constant LOCK_KEY :std_logic_vector(l5 downto 0)
="1010000001011111";

-~ Address decoding

constant LM_OSCI : std_logic_vector(4 downto 2) := "000";
-- read/write

constant LM_08C2 :std_logic_vector(4 downto 2) :="001";
-- read/write

constant LM_LOCK - std_logic_vector(4 downto 2) :="010";
-- read/write

constant LM_LEDS :std_logic_vector(4 downto 2) ="011";
- read/write

constant LM_INT : std_logic_vector(4 downto 2) := "100";
-- read/write

constant LM_SW : std_logic_vector(4 downto 2) ="101";
-~ read only

-- Signal declarations
signal LmOscRegl : std_logic_vector(18 downto 0);
-- QOscillator registerl

signal LmOscReg2 : std_logic_vector(18 downto 0):
-- Oscillator register2

signat Lmi.ckReg :std_logic_vector(15 downto 0):
-- Lock register

--signal Lmi.edsReg :std_logic_vector(8 downto 0):
signhal LmledsReg : std_logic_vector(16 downto 0):
— LED register

signal LmintReg :std_logic;
- INT register

signal LmSwReg : std_logic_vector(7 downto 0):
-- Switch register

signal Locked 1std_logic;
-- Registers are Locked

signal NextPRDATA :std_logic_vector(31 downto 0Y;
-- read data

-- a duplex bus based commlink with a bunch a necessary signais (from PE 000 to PE 001)
signal commDest000_001 : std_logic_vector(2 downto 0):

signal commSource000_001 : std_togic_vector(2 downto 0);

signal commData000_001 : std_ulogic_vector(7 downto 0);

signal commID000_001 : std_ulogic_vector(7 downto 0);

signal commStart000_001 : std_logic:

signal commBDest001_000 : std_logic_vector(2 downto 0);
signal commSource001_000 : std_logic_vector(2 downto 0);

_ signal commData001_000 : std_vlogic_vector(7 downto 0);
signal commiDO01_000 : std_ulogic_vector(7 downto 0):

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal commStart001_000 : std_logic:

-- a duplex bus based commlink with a bunch a necessary signals
signal commDest000_010 : s1d_logic_vector(2 downto 0):

signal commSource000_010 : std_logic_vector(2 downto 0);
signal commData000_010 : std_ulogic_vector(7 downto 0):
signal commiD000_010 : std_ulogic_vector{7 downto 0);

signal commStart000_010 : std_logic;

signal commDest010_000 : std_logic_vector(2 downto 0);
signal commSource010_000 : std_logic_vector(2 downto 0);
signal commData010_000 : std_ulogic_vector(7 downto 0);
signal commiD010_000 : std_ulogic_vector(7 downto 0):
signal commStart010_000 : std_logic;

-- a duplex bus based commiink with a bunch a necessary signals
signal commDest000_100 : std_logic_vector(2 downto 0);

signal commSourcc000_100 : std_logic_vector(2 downto (0):
signal commData000_100 : std_ulogic_vector(7 downto 0);
signat commiDO00_100 : std_ulogic_vector(7 downto 0);

signal commStart000_100 : std_logic;

signal commDest100_000 : std_logic_vector(2 downto 0);
signal commSource100_000 : std_logic_vector(2 downto 0);
signal commBDatal00_000 : std_ulogic_vector(7 downto 0);
signal comm{D100_000 : std_ulogic_vector(7 downto 0);
signal commStart100_000 : std_logic;

-- a duplex bus based commlink with a bunch a necessary signals
signal commDest001_i0! : std_logic_vector(2 downto 0};

signal commSource001_101 : std_logic_vector(2 downto 0);
signal commData001_101 : std_ulogic_vector(7 downto 0);
signal commiDO001_101 : std_ulogic_vector(7 downto 0);

signal commStart00t_101 : std_logic;

signal commDest101_001 : std_logic_vector(2 downto 0);
signal commSourcel01_001 : std_logic_vector(2 downto 0);
signal commDatal0!_001 : std_ulogic_vector(7 downto 0);
signaf commlD101_001 : std_ulogic_vector(7 downto 0);
signaf commStart10f_001 : std_logic;

-- a duplex bus based commlink with a bunch a necessary signals
signal commDest001_011 : std_logic_vector(2 downto 0);

signal commSource001_011 : std_logic_vector(2 downto 0):
signal commData00!_011 : std_ulogic_vector(7 downto 0):
signal commID0OO0I_011 : std_ulogic_vector(7 downto 0):

signal commStart00t_01i1 : std_logic;

signal commDestO11_001 : std_logic_vector(2 downto 0);
signal commSource01t_001 : std_logic_vector(2 downto 0);
signal commDataO11_001 : std_ulogic_vector(7 downto 0):
signal commIDOE1_001 : std_ulogic_vector(7 downto 0):
signal commStartO!{_001 : std_logic;

— i duplex bus based commlink with a bunch a necessary signals
signal commDest010_ 011 : std_togic_vector(2 downto 0):

signal commSource010_011 : std_logic_vector(2 downto 0);
signal commData010_011 : std_ulogic_vector(7 downto 0);
signal commiDO10_011 : std_ulogic_vector(7 downto 0):

signal commStart010_011 : std_logic:

signat commbest01}_010 : std_logic_vector(2 downto 0);
signal commSource011_010 : std_logic_vector(2 downto 0);
signat commData0l1_010 : std_ulogic_vector(7 downto 0);
signal commiDO1 1_010 : std_ulogic_vector(7 downto 0);
signal commStart011_010 : std_logic:

-~ 4 duplex bus based commiink with a bunch a necessary signals

signal commDest010_3 10 : std_logic_vector(2 downto 0):
signal commSource010_110 : std_logic_vector{2 downto 0):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal commData010_110 : std_ulogic_vector(7 downto 0),
signal commlIDO10_110 : std_ulogic_vector(7 downto 0);
signal commStart010_110 : std_logic;

signal commDest! 10_010 : std_logic_vector(2 downto 0);
signal commSourcel 10_010 : std_logic_vector(2 downto 0);
signal commDatal 10_010 : std_ulogic_vector(7 downto 0):
signal comm1D110_010 : std_ulogic_vector(7 downto 0):
signal commStart110_010 : std_logic:

-- a duplex bus based commlink with a bunch a necessary signals
signal commDest110_111 : std_logic_vector(2 downto 0):
signal commSourcel 10_111 : std_logic_vector(2 downto 0);
signal commDatal10_111 : std_ulogic_vector(7 downto 0);
signal commiIDI10_111 : std_ulogic_vector(7 downto 0);

signal commStarti10_t 11 : std_logic:

signal commDest! 11_1 10 : std_logic_vector(2 downto 0);
signal commSourcel 11_110 : std_logic_vector(2 downto 0);
signal commDatalll_110 : std_ulogic_vector(7 downto 0);
signal commID!E1_{10 : std_ulogic_vector(7 downto 0);
signal commStant111_110: std_logic;

-- a duplex bus based commlink with a bunch a necessary signals
signal commDest110_100 : std_logic_vector(2 downto 0);

signal commSourcel 10_100 : std_logic_vector(2 downto 0);
signal commDatal10_100 : std_ulogic_vector(7 downto 0);
signal commiD110_100 : std_ulogic_vector(7 downto 0);

signal commStart110_100 : std_logic;

signal commDest100_110 : std_logic_vector(2 downto 0);
signal commSource!00_} 10 : std_logic_vector(2 downto 0);
signal commDatal00_110 : std_ulogic_vector(7 downto 0);
signal commIDI100_110 : std_ulogic_vector(7 downto 0):
signal commStart100_110 : std_logic;

-~ a duplex bus based commlink with a bunch a necessary signals
signal commDest101_111 : std_logic_vector(2 downto 0);
signal commSourcel01_I11 : std_logic_vector(2 downto 0);
signal commDatal01_111 : std_ulogic_vector(7 downto 0);
signal commiDI01_111 : std_ulogic_vector(7 downto 0),

signal commStart101_111 : std_logic;

signal commDest111_101 : std_logic_vector(2 downto 0):
signal commSourceli1_101 : std_logic_vector(2 downto 0);
signal commDatal1}1_101 : std_ulogic_vector{7 downto 0);
signal commIDI11_101 : std_ulogic_vector(7 downto 0);
signat commStart111_101 : std_logic;

-- duplex bus based commlink with a bunch a necessary signals
signal commDest100_101 : std_logic_vector(2 downto 0):

signal commSource]00_101 : std_logic_vector(2 downto 0):
signal commDatal00_101 : std_ulogic_vector(7 downto 0);
signal commlD100_101 : std_ulogic_vector(7 downto 0);

signal commStart100_101 : std_logic:

signal commDest101_100 : std_logic_vector(2 downto 0);
signal commSource01_100 : std_logic_vector(2 downto 0);
signal commDatal01_100 : std_ulogic_vector(7 downto 0);
signal commIDI01_100 : std_ulogic_vector(7 downto 0);
signal commStart101_100 : std_logic:

-- a duplex bus based commlink with a bunch a necessary signals
signal commDest011_111 : std_logic_vector(2 downto 0).
signal commSource011_111 @ std_logic_vector(2 downto 0):
signal commbDataOit 11 std_ulogic_vector(7 downto 0);
signal commIDOT1_111 : std_ulogic_vector(7 downio 0):

signal commStarnt011_1 11 : std_logic:

signal commDestl 11_011 : std_logic_vector(2 downto 0).

140

. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal commSourcel11_011 :std_logic_vecior(2 downto 0):
signal commDatal 11_011 : std_ulogic_veclor(7 downto 0);
signal commiD111_011 : std_ulogic_vector(7 downto 0);
signal commStarti11_011 : std_Jlogic;

--signal dataToLEDs : std_ulogic_vector(8 downto 0);
signal dataTol.EDs : std_ulogic_vector(16 downto 0):
signal databromLEDs : std_ulogic_vector(16 downto 0);
signal signalTol.EDs : std_logic:

signal signalFromLEDs : std_logic;

signal VALOOO : std_logic_vector(2 downto 0) := "000";
signal VALO01 : std_logic_vector(2 downto 0) :="001";
signal VALO10 : std_logic_vector(2 downto 0) :="010";
signal VALO11 : std_logic_vector(2 downto 0) = "011";
signal VAL100 : std_logic_vector(2 downto 0) == "100";
signal VAL101 : std_logic_vector(2 dowato 0) == "101",
signal VAL110 : std_logic_vector(2 downto 0) =="110";
signal VAL : std_logic_vector(2 downto 0) ="111";

-- Function declarations

-- Main body of code

begin
--if you are circuit 000 then your inputs start with 000 and your outputs end with 000
PE000: PE_CPU port map(PCLK, signalFromLEDs, dataFromLEDs, commDest000_001. commSource000_001,
commData000_001, LommlDOOO_OOI commStart000_001,
commDest000_100, commSource000_100, commData000_100, commID000_100. commStart000_100.
commDest000_010, commSource000_010, commData000_010, commiD000_010. commStart000_010.
VAL000, VALOOL, VAL100, VAL010, signalToLEDs, dataToLEDs.
commDest001_000, commSource001!_000, commData00!_000, commID001_000, commStart001_000.
commDest100_000, commSource [00_000, commData100_000, commiD100_000, commStarti00_000.
commDest010_000, commSource010_000, commData010_000. commiDO10_000, commStart010_000):

PE0O1: PE_BlockMatch port map(PCLK,

commDest001_101, commSource001_101, commData001_101. commID001__101. commStart001_101,
commDest001_011, commSource001_011. commData00]_011, commID0O0I_011. commStart00]_011,
commDest001_000, commSource001_000, commData001_000, commiD001_000. commStart001_000.
VALOO1, VALIOL, VALC!L, VAL00O,

commDest101_C01, commSourcel01_001, commDatal01_001. commiIDI01_001. commStart101_001.
commDest011_00i. commSource0l1_001, commData011_001, comm!DO11_001. commStart011_001.
commDest000_001, commSource000_001, commData000_001, comm!D000_001, commStart000_001);

PEOT0: PE_BlockMatch port map(PCLK,

commDest010_000, commSource010_000, commData010_000. commID0O10_000, commStart010_000.

commDest010_011, commSource0]0_011, commData010_0}1, commID0I0_011. commStart010_011,

commDest010_110, commSourcc010_110, commData010_1 10, commiD010_1 10, commStart0§0_110,

VALO10, VAL00O0, VALOI1, VALI10,

commDest000_010, commSource000_010, commDatat00_010, commIDO0O_010. commStart00)_010.

commDest011_010, commSource011_010, commDatad!1_010, commIDOTI_010. commStantd11_010.

commDestt 10_010, commSource110_010, commDatal 10_010, commlD110_010. commStart! 10_010):

PEOT 1: PE_BM_Assert port map(PCLK,

commDest011_010, commSource0ii_010, commData0l 1_010, commiDOTI_010, commStant0i1_010.
commDestOf1_111, commSource0l1_111, commData011_11{ commiDOIT_I 11 commStartOF1_{ 11,
commDBestOt1_001, commSource011_001, commData011_00!, commIDO11_001, commStart011_001.
VALOIL, VALOI0, VAL, VALOOI.

commBest010_011, commSource010_011, commData010_011, commIDUI0_011, commStarth10_011,
commDesti11_011, commSourcel 11_011, commDatat 1_011, commiDH_01 . commStartl 11_011,
commbest001_011, commSource001_011, commData001_011, commIDOOI_011, commStarth0l_t11):

PE100: PI:_Final_Assert port map(PCLK,
commDest|00_101, commSource t00_101, commDatal 60_101, commiI00_101, commStart0G_101,

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

commDest100_000, commSource100_000, commDatal00_000, commlD100_000. commStart100_000.
commDest100_110, commSourcei00_110, commDatai00_t 10, commlID100_1 10, commStart100_110,
VAL100, VAL101. VALG00, VALI10,

commDest101_100, commSource101_100, commDatal0}_100, commliD101_100, commStarti01_100,
commDest000_100, commSource000_100, commData000_100, commlD000_100, commStart000_100,
commDest110_100, commSource110_100, commbDatal 10_100, commiD110_100, commStart{ 10_100):

PE101: PE_BlockMatch port map(PCLK,

commDesti01_001, commSourcel01_00}, commDatal01_001, commlD101_001, commStarti0)_001,
commDest101_111. commSourcel0!_111, commDatalOl_111, commID101_111, commStarti0t_111,
commDest[01_[00, commSourcel01_100, commDatal0i_100, commIDIGI_100, commStart!01_100,
VALIOL, VALOOL, VAL111, VALI00,

commDest001_101, commSource00! _101, commData00!_101, commiDO0I _ lOI commStart00]_101,
commDestHl_lOl commSourceHl__lOl commDatalH_lOl commlDlH_lOl commStarllH_lOl
commDesti00_101, commSource!00_101, commDatal00_101, commID100_101, commStart100_101);

PE110: PE_BlockMatch port map(PCLK,

commDest! 10_010. commSourcel 10_010, commDatai10_010, commIDI110_010, commStart1 10_010.

commDest!10_t11, commSource110_111, commDatal 10_111, commiD110_111, commStarti10_11t.

commDesti 10_100, commSourcel 10_100, commDatal 10_100, commID110_100, commStart110_100,

VALI110, VALO10, VAL111, VALIOO,

commDest010_110, commSourceQ10_110. commData010_110, commlD010_110, commStart010_110,

commDestl11_110, commSourcei!l_110, commDatalit_110, commiD1i1_110, commStart1 11_110,

commDesti00_110, commSource100_110, commDatal00_110, commID100_110, commStart100_110);

PEl11: PE_BlockMatch port map(PCLK,

commDesti11_101, commSourcel 11_101, commDatal 11_101, comm!D111_101, commStartl 11 _101.

commDestl11_011, commSourcel11_011, commDatalll_011, commiD1)1_011, commStarti }1_011,

commbDesti11_110, commSourcel11_110, commDatal1]1_i10, commIDI11_110, commStart111_110,

VALI1L, VALIOL. VALOI I, VALIIO,

commbDest101_111, commSourcel01_i11, commDataiOl_111, commiDIOI_L 11, commStartiO1_i1l,

commDest0O11_111, commSource011_111, commData0l1_111, commliDOLI_111, commStartQi1 111,

commDestl 10_111, commSourcel10_111, commDatal10_}11, commIDI10_} 11, commStart} 10_111);

-~ Locked signal protects registers that could be accidently changed
Locked <='0" when (LmLckReg = LOCK_KEY)
else
1"

-- switch register is read only
LmSwReg <=5W;

-- Lock register is read/write
p_L.dLckRegSeq : process(PCLK, nRESET)
begin
it (nNRESET ="'0') then
LmLckReg <= (others =>'0');
elsif (PCLK'cevent and PCLK ='1") then
i ((PSEL and PWRITE and PENABLE) ='1") then
it (PA = LM_LOCK) then
LmLckReg <= PWDATA(1S downto 0);
end if;
end if:
end if:
end process p_Ldl.ckRegSeq:

-- Oscillator] register is read/write, protected by lock register

p_LdOscRegSeql : process(PCLK, nRESET)
begin
it (nNRESET ="0") then
L.mOscRegl <= 08C1_VECTOR;
elsit (PCLK'event and PCLK ="1") then
it ((PSEL and PWRITE and PENABLE and not Locked) = '1') then
if (PA = LM_OSC1) then
LmOscRegl <= PWDATA(18 downto 0):
end if}

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end ift
end it}
end process p_LdOscRegSeqls

CTRLCLKY <= L.mQOscRegl

-- Oscillator2 register is read/write, protected by lock register

p_LdOscRegSeq? : process(PCLK. nRESET)
begin
i (nRESET ="0" then
L.mOscReg2 <=Q8C2_VECTOR;
elgif (PCLK event and PCLK ="'1") then
iC(PSEL and PWRITE and PENABLE and not Locked} =1’} then
it (PA = LLM_OSC2) then
1.mOscReg2 <= PWDATA(18 downto 0);
end if’
end if,
end if:
end process p_LdOscRegSeq2:

CTRLCILK2 <= LmQOscReg2;

-- LEDS register is read/write

p_LdLLEDSRegSeq : process(PCLK, nRESET)
begin
if(nRESET ="0") then
-- put a pattern on them
L.mLedsReg(8 downto 0) <="101010101";
signalFromLEDs <='0";
elsif (PCLK'event and PCLK ='1") then
signalFromLEDs <='0"
it ((PSEL and PWRITE and PENABLE) ='1") then
if (PA = LM_LEDS) then
--we need to place this info in data from LEDS
--L.mLedsReg(8 downto 0) <= PWDATA(8 downto 0);
LmLedsReg(16 downto 0) <= PWDATA(16 downto 0);

dataFromLEDs(16) <= PWDATA(16);
dataFromLEDs(135) <= PWDATA(13);
dataFromLEDs(14) <= PWDATA(14):
dataFromLEDs(13) <= PWDATA(13);
dataFromLEDs(12) <= PWDATA(12);
dataFromLEDs(11) <= PWDATA(11):
dataFromLEDs(10) <= PWDATA(10):
dataFromLEDs(9) <= PWDATA(9);
dataFromLEDs(8) <= PWDATA(8);
dataFromLEDs(7) <= PWDATA(7);
dataFromLEDs(6) <= PWDATA(6);
datalFromLEDs(5) <= PWDATA(S);
dataFromLEDs(4) <= PWDATA(4):
dataFromLEDs(3) <= PWDATA(3):
dataFromLEDs(2) <= PWDATA(2);
datafromLEDs(1) <= PWDATA(I);
datal'romL.EDs(0) <= PWDATA(0);
signalFromLEDs <="1"
end it
end il
it signatTol. EDs ="'} then
LmlLedsReg(16) <= dataTolLLEDs(16):
Lml.edsReg(15) <= dataToLEDs(15):
Lml.edsReg(14) <= dataTol.EDs(14):
t.mLedsReg(13) <= dataTol.LEDs(!13):
1.mLedsReg(12) <= dataToLEDs(12):;

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LmbedsReg(11) <= dataToLEDs(11):
L.ml.edsReg(!0) <= dataToLEDs(10):
LmbedsReg(9) <= dataToLEDs(9);
f.mLedsReg(8) <= dataToLEDs(8).
Lml.edsReg(7) <= dataTol.EDs(7):
LmbedsReg(6) <= dataTol.EDs(6):
LimLedsReg(5) <= dataToLEDs(5):
{.ml.edsReg(4) <= dataTolLEDs(4);
L.ml.edsReg(3) <= dataToLEDs(3):
LmledsReg(2} <= dataToLEDs(2).
{.mLedsReg(1) <= dataToLLEDs(1);
Lmi.edsReg(0) <= dataToLEDs(0);

end it} .

end if}
end process p_LAdLEDSRegSeq;

LED <= LmLedsReg(8 downto 0):

-- interrupt is latched on rising ¢dge of nPBUTTutton input
-- INT register is read/write(lo clear int)
p_LdIntRegSeq : process{PCLK, nRESET, nPBUTT)
begin
if (nRRESET ='0") then
- LmintReg <='0"
elsif (RPBUTT ='0") then
L.mintReg <='I"
elsif(PCLK 'event and PCLK ="1" then
if ((PSEL and PWRITE and PENABLE) ="1"} then
it (PA = LM_INT) then
LmintReg <= PWDATA(0):
end if}
end ift
end if}
end process p_L.dIntRegSeq:

REGSINT <= LmintReg:

-- Read registers
p_GenNPRDATAComb : process (PA, LmOscRegl. LmOscReg2, LmLckReg, Locked.
LmlLedsReg. LmintReg. LmSwReg)

begin
NextPRDATA <= {others => '0");
case PA is
when LM_OSC1 =>
NextPRDATA(18 downto 0) <= L. mOscRegl:
when LM_OSC2 =>
NextPRDATA(18 downto 0) <= LmQOscReg2:
when LM_LOCK =>
NextPRDATA(15 downto 0) <= LmbLckReg;:
NextPRDATA(16) <= Locked;
when LM_LEDS =>
~-NextPRDATA(8 downto 0) <= LmlLedsReg:
NextPRDATA(16 downto 0) <= LmlLedsReg:
when LM_INT =>
NextPRDATA(O) <= LmintReg;
when LM_SW =>
NextPRDATA(7 downto 0) <= LmSwReg:
when others =>
NextPRDATA(31 downto 0) <="00000000000000000000000000000000™;
end case;
end process p_CienNPRDATAComb:

-- When the peripheral is not being aceessed, '0's are driven
-- on the Read Databus (PRDATA) so as not to place any restrictions
-- on the method ot external bus connection. The external data buses of the

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Yy I

-- peripherals on the APB may then be connected to the ASB-to-APB bridge using
-- Muxed or ORed bus connection method.
p_RdSeq : process (PCLK, nRESET)
begin
i (nRESET ='0" then
PRIDATA <= (others =>'0')
elsif’ (PCLK event and PCLK ="1") then
PRDATA <= NextPRDATA;
end it
cnd process p_RdSeq;

end synth:

- End

#include <stdio.h>
#include <time.h>

[1as defined in irgint.s
extern void uHALir_Enablelnt(void)
extern void uHALir_DisableInt(void);

extern void word_write(int addr, int data),
extern int word_read(int addr);

extern void hword_write(int addr, int data),
extery int hword_read(int addr):

cxtern void byte_write(int addr. int data);
extern int byte read(int addr);

LREERR Rk DEF[NESH 3 f bk ek ok bk kk bk kh ke kkkdkkf

#define FRAME_DIMENSION 16

#detine SCANNING_RADIUS 16

#define IMAGE_ROWS 64

Rdefine IMAGE_COLS 64

#deline FRAMES_IN_ROW 4//must be IMAGE_ROWS / FRAME_DIMENSION
#deline FRAMES_IN_COL 4//must be IMAGE_COLS / FRAME_DIMENSION

#define LM_LEDS 0xC000000C//0xC0000008 //temp set to lock register instead// O0xCO00000C --end with 8 = lack reg. end

with C = LED

/* Timer register informations*/

#define TIMERI_CTRL (0x13000108)
#deline TIMERI_VALUE {0x13000104)
#define TIMER{_LOAD {0x13000100)
Hdefine TIMER]_CLR (0x1300010C)
#detine TIMER2_LOAD (0x13000200)
/* Register set tor IRQ controller ... pp 4-32 */

Hdefine IRQ_STATUS (0x14000000)

#define IRQ_RAWSTAT (0x14000004)

#define IRQ_ENABLESET (0x14000008)
#detine [RQ_ENABLECLR (0x1400000C)
/* bit assignment for interrupts for interrupt controller 0 (first CPU) */

#define SOFTINT (0x1 << 0)
#define TIMERINTI (Ox1 << 6)

#detine TIMERINT2 (Oxt << 7)

* 1IRQ Vector address for integrator/AP platform */
#define IRQ_VECT (0x18)

Hdetine AND_FILTER 0x0000FFFF//0x0000003F

unsigned char activeFrame[FRAME_DIMENSION}{FRAME_DIMENSION}:
H unsigned char
oldFrameArea FRAME_DIMENSION+2*SCANNING_RADIUS[{FRAME_DIMENSION+2*SCANNING_RADIUST:
unsigned char wholeimage lHIMAGE_ROWSHIMAGE_COLS].
unsigned char wholelmage2{IMAGE_ROWSH{IMAGE_COLS];

unsigned char bitmaptleaderinfol 14]:
unsigned char infol{eaderinto{40}:

145

(Rt .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int counter:/fused by timing functions

struet bitmapt feader

unsigned short int type: /* Magic identifier */
unsigned it size: /* File size in bytes *

unsigned short int reserved 1. reserved2;
f/ unsigned short int padding//U've been getting this padded so that offset is alligned causing problems?!

unsigned int offset: /* Offset 10 image data, bytes */

struct infobicader?

unsigned int size: /* Header size inbytes */

int width height: /* Width and height of image */
unsigned shortintplanes: /* Number of colour planes */
unsigned short int bits: /* Bits per pixcl */
unsigned int compression: * Compression type */
unsigned int imagesize; /* Image size in bytes */
int xresolution.yresolution; /* Pixels per meter *
unsigned int ncolours: /* Number of colours */
unsigned int impertanteolours; /* Important colours *

V-
M
struct vector}

int roMovement:

int columnMovement;

-
5

struct veetor MasterOut FRAMES _IN_ROW](FRAMES_IN_COLL:

frexxa i EUNCTION PROTOTYPES*##rrrs/
struct vector blockMaich(void):

it init(void):

int absolute(int in):

void counter_start(void):

double counter_stop(void):

void ¢_enableinterrupt{void):

void IRQenable_interrupts(void);

unsigned IRQ_install_handler(unsigned location. unsigned *vector).
__irg void IRQHandler{void):

void loadArrays{void),

float dumbCounter = 0

int mam(}!
int i j.mun, p.qe
struct vector tenp;,
double timer:,
int blockMatchCounter = -1;
int upperVal:
int lowerVal:
int int{emp;
unsigned char wCircuit{2);
int wim2First = 0z
int wim2Second = 0;
int wim!First = 0;
int wimliSecond = 0;
int errorbDetectflag = 1

/emping = word_read(LM _LEDS):
Hprintf("tlemplint: %d\n\n®. templnt):
Ireturn O:

printf{ "starting up\rin™);
counter_start():

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H{Pmit)
return (0
i
fltest test
Mreturn Gu//did the LEDS go ofT?
/mow toad up one frame from each image and call blockmatch. then switch to the next frame..

for(i = 0.1 < FRAMES _IN_ROW: i++){
for(j = 0:j < FRAMES_IN_COL; j++){
//now foad the whole corresponding section of each image into the tframe!
for(m = 0; m < FRAME_DIMENSION; m++){
for(n = 0; n < FRAME_DIMENSION: n++){
activeFrame[mj}fn] =
wholelmage2[i(*FRAME_DIMENSION+m}{ i* FRAME _DIMENSION +
nl
Hprintf("activeFrame: %d\i\n", activeFrame{m{{n]):
wim2First = i*FRAME_DIMENSION+m:
wim2Second = j*FRAME_DIMENSION+n:
Viend for n
Wlend for m
fprintt"wholelmage2[%d] | %d\\n", wim2First, wim2Sccond),
for(m = 0 m < FRAME_DIMENSION+2*SCANNING_RADIUS: m++)4
for(n = 0; n < FRAME_DIMENSION+2*SCANNING_RADIUS: n++)!
if((I*FRAME_DIMENSION-SCANNING_RADIUS+m) < 0 !
oldFrameArcafm|j[n} = wholelmage 110}{0]://0;
wlm!First =0;
wim!Second =0:
}
else if((iI*FRAME_DIMENSION-SCANNING_RADIUS+m) >
IMAGE_ROWS)
oldFrameArcalm}fn] = wholelmage HOJ[0]://0:
wimlFirst=0: :
wimSecond = 0;
}
clse ifl FFRAME_DIMENSION-SCANNING_RADIUS +n) < 0!
oldFrameArea[m){n] = wholelmage 1{0][0}.//0.
wimlFirst = 0;
wimlSecond = 0;

}

else i G*FRAME_DIMENSION-SCANNING _RADIUS ¥ny >
IMAGE_COLS N
oldFrameArea[m]{n] = wholelmage H0}]0}//0;
wlmlFirst =0:
wimlSecond = 0:

oldFrameArcalmi[n] =
wholelmage ! [I*FRAME_DIMENSION-
SCANNING_RADIUS+m]}j*
FRAME_DIMENSION-
SCANNING_RADIUS+n]:

wimlFirst = *FRAME_DIMUENSION-

SCANNING_RADIUS +m;

wim{Second = J*FRAME_DIMENSION-

B SCANNING_RADIUS+n;

p)
Hiend for n

Viend form

Hprinti{"wholelmage 1 {%d][%d\\n", wim 1 First, wimlSccond):

blockMatchCounter++;

printf{ "working on blockmatch task #%d\r\n", blockMatchCountery;

/I (blockMatehCounter < 13) [} (blockMatchCounter == 14) || (blockMatchCounter =~ 133)8
il {blockMatchCounter < 12}] (MlockMatchCounter == 13} || (blockMatehCounter == 14))3
/fthen do it in {IW
/50 just write ali the data to HW
for(p = 0: p < (Z*SCANNING_RADIUSFI 1 pr)!

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(q = 0, g < (2*SCANNING_RADIUSH) g++)§
for(m = 0, m < FRAMUE_DIMENSION: m+)¢
tor(n = 0; n < FRAME_DIMENSION: n+-+)4

short * shortTempPtr,

int integerfemp:

toCircuit{0} = activeFrame}mi|n};

oCireuitf 1] =
oldlrrameArcalp+mlfg+nl:

shortTempPtr = (short
) &toCircuit]0)):

integeremp = *shortTempPir:

word_write(L.M_LEDS,
integer’Temp):

intTemp =
integerfemp:

téfend forn
Mlend form
}end tor g
Miend for p
" printf("intTemp: %d\in", intTemp):

fiwait to be sure HW circuit has generated the results

for(p = 0: p < 20: p++){
dumbCounter = dumbCounter * 7;
dumbCounter = dumbCounter / 5:

y/fend for p

upperVal = word_read(LM_LEDS)

lowerVal = upperVal;

Hprintf"initial value: Y%d\r\n", upperVal);

/fremove unwanted upper bits

lowerVal = lowerVal & 0x000000FF;
upperVal = upperVal & 0x0000FFQ0;
upperVal = upperVal >> 8:
MasterQut[i]{j].columnMovement = upperVal;
MasterQut[i}{j}.rowMovement = lowerVal:

!
clse
temp = blockMaich();
MasterOQut[i}[j].columnMovement = temp.columnMovement;
MasterOut[i]{j].rowMovement = temp.rowMovement;
!
iflerrorDetectFlag == 1)!
it == 1){
i = 0)!
errarDetectFlag = 0//don't do this again!
/fsend an crror reconfigure packet to the circuit
fword_write(LM_LEDS_0x1C001):/elf them to stop using
{IBM 001
/Imow we must resend everything from the beginning!
MHi=-1.
1y = -L:/fso that they will be incremented to 0
)
}

{lend for
Vend tor i

forti = 01 < FRAMES_IN_ROW; i++}4
tor(G = 0. j < FRAMES_IN_ROW: j++)!
/first shift the values.....
MasterOut]i][j].rowMovement = MasterOutfijfjl.rowMovement - 16;
MasterQutfijjjl.columnMovement = MasterOutfi}{j}.columnMovement ~ 16:
printf{"BM task #%u - row shift:%d. colunn shitt:%d\\n”, $*i+),

148

“Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MasterOutfilfjl.rowMovement. MasterOut[i]{j].columnitovenent).
Viend for §
Viend fori

tmer = counter_stop():

print{"timer for everything is % \n". timer).
printf("tinished\ein™):

return |

1
i

intinit()}
/ftime to open the two big images
I FILE® first, *second:

int i, j:

int firstindex. secondlndex:

first = topen("e:\N0.bmp", "r"):

second = lopen("c:\L.bmp", "r"),

H{ (st == NULLY | (second == NULL) }{
printi{"read crror on input {iles\rf\n");
return 0

1

1

fseek(iirst, 0L, SEEK_SET):

tseek(scecond. 0L, SEEK_SET).

for(i=0:1 < Id; i++){
tscanf(tirst, "%c". &(bitmapHeaderinfoli])):

Yend for i

for(i = 0: 1 <), 1++){
tscanf{first. "%c", &(infoHeaderInfoli])):

Yiend for i

/fjump to the start ot the image data

fseck(sccond, 44L, SEEK_SET);

fseek(tirst, 4L, SEEK_SET):

firstindex = 44L;

sccondindex = 44L;

/Mmow load up the overall image
tor(i = 001 < IMAGE_ROWS; i++){
for(j = 0: j < IMAGE_COLS; j++){
/fchar charTemp:
/lchar charTempl. charfemp2:
flunsigned char uCharTempl. uCharTemp2;
int outputTemp:
int fails:

Hiscanffirst, "%oc", &(charTempi)):/(wholelmage | [IMAGE_COLS*i + jIn:
Hiscanf(second, "%c”, &(charlemp2)):(wholelmage2 [IMAGE_COLS*i + jn.
fscant{first, "%c", (wholcimage [[IMAGE_COLS*i + jh):

fscanf{second, "%c". (wholeimage2 [IMAGE_COLS¥i + j])):

outputTemp = {int)(wholcimage I [IMAGE_COLS*i + j|):
printf{"wholelmage1[%d] = %d\i\n", IMAGE _COLS*i + j. outputTemp):
outputTemp = (int)(whaolclmage2[IMAGE_COLS*i + j])
printf"wholelmage2[%d} = %d\n\n". IMAGE_COLS*i + j, outputTemp);

" charTemp! = faetc(first);

/I if{charTempl == EOF)

I printt{"fgete 1 returned nulivin®):
n" charTemp2 = fgete(second),

" if(charTemp2 == EOF)

/ printl{"feete 2 returned nullirin”y;

HfcharTemp = (unsigned char){wholelmage | IMAGE_COLS*i + j}).

1 uCharTemp! = (unsigned char)(charfempl):
1" uCharTemp2 = (unsigned char)(charemp2);
1" output Temp = (int)(charTempl);

Hprintf("wholetmagel: %d\i\n". outputTempi//wholelmage HIMAGLE_COLS* = ji).
HcharTemp = (unsigned char)(wholelmage2|IMAGE _COLS*i + jj)

" outputTemp = (int){charTemp2).

Hprintf("wholelmage2: %d\i\n”, outputlemp)//wholelmage HIMAGE COLS 1+).
1 wholetmage [IMAGE _COLS*i -+ j] ~ (unsigned char{uCharTempl):
1" wholelmage2[IMAGE_COLS*i + jj = 0:///uCharlemp2;

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tirstindex++;
secondindex++;
Hprintf("that was tor i: %d, j: Yed\i\n®, i, {):

fails = fseck(second, firstindex, SEEK_SET):
) i printf(" fails: Yod\r\n", 1fails);
4 fseek(first, secondindex, SEERK_SET):
7 printf{"fails: %d\n\n", fails);

Hiend for §
Hprintl("one row of loading it up donc\i\n®):
Viend for i

fword_write(LM_LEDS,0x [OF);

fMoad up the arrays*/
loadArrays();
printf{"init is doncii\n");
return 1:
)
int absolule(in in)}
iftin <)
return -in;
else
return in:
'
struct vector blockMatceh()}
int bestRowl.ocation. bestColumnl.ocation:

i int lowestError = 400000000
} int curreatError = 0;
: " int halfWay = SCANNING_RADIUS://used to be + | but | think that is wrong
struct vector out:
ntijom.ne
: for(i = 0:1 < (2*SCANNING_RADIUS*1); i++){
for(j = 0:j < (2*SCANNING_RADIUS+1): j4++)!
i for(m = 0: m < FRAME_DIMENSION; m++){
tor(n = 0; n < FRAME_DIMENSION; n++)!
: currentfirror == absolute{(activeFrame{m|[n|-
i oldFramerealm Fifin g
: Yiend tor n
tend form
itf{currentError < lowestError}
| lowestError = curremError;
bestRowLocation = i;
" bestColumnLocation = j:

H
currentError = 0;
Hiend for §

end for g
Hset them to be -ive it below the hatt way mark.....
out.rowMovement = bestRowLocationy// - halfWay:
out.columnMovement = bestColumnLocation:// - halfWay:,
return out;

v
'

void counter start()

]
v

¢_enableinterrupt(y.
1RQenable_interrupts():
caunter =

*ine ") TIMERT_CTRL = 0x000000C8:

doubic counter stopg)

1
1

double total_time:;
Hpeinti"stop\n”):

|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

*int ¥) TIMER 1 _CTRI = 0x00000000;

/1 The last number 0.01936 is the averhead for starting and finishing the function calls.

total_time = (double) 1/(24000000/256) * (63335 - *{int *) TIMERT_VALUE + counter * §3535)- 0.019:
Hpeinti("%d\n", *(int *) TIMER] _VALUE)X

Hprintf("time %\n", total_time):

return total_time;

/1 This function will enable timer |,
void ¢_conableinterrupt{void)

*(int *) TIMEERT_VALUE = 65335;
*(int *) TIMERI_LOAD = 63335:

1

t

void 1RQenable_interrupts(void)

unsigned original_vector = 0x0:

original_veetor = IRQ _install_handler((unsigned) IRQHandler, (unsigned *) IRQ_VECTY).
*(int *) (IRQ_ENABLESET) = 0x0: /fdisable ALL interrupts
*(int ¥y (IRQ_ENABLECLR) = OxI'FFFFFFF: /fclear ALL interrupts

*int *) (IRQ_ENABLESET) |= TIMERINTI,
*int *) (IRQ_ENABLECLR) &=~TIMERINTI:
*int *) (IRQ_ENABLESET) |= TIMERINTZ;
*(int *) (IRQ_ENABLECLR) &= ~TIMERINTZ;

Hprintf("IRQ_ENABLESET = 0x%X\n". *(int *) (IRQ_ENABLESET)).
Hprintf("IRQ_ENABLECLR = 0x%X\n". *(int *) (IRQ_ENABLECLR)).

Hfprintf("calling Enabling ints ..\n"):
ultALir_Enablelnt():

{/printf("Finished Enabling ints .\n"):
Hprintf("original_vector = 0x%X\n". original_vector):

t
1

unsigned IRQ_install_handler(unsigned location. unsigned *vector)

'
]

unsigned vee, oldvee:

#itder DEBUG
printf{ "location %%p: Ox%p\n". location):
printf("location %6%X: 0x%X\\n", location):

printf("vector %o%p: 0x%pin”. vector).
printf{"vector %%6X: Ox%6X\n", vector),

printi{"location - vector %%X: 0x%X\n", location - (unsigned)vector):

printf("location - vector - 0x8 %%X: 0x%X\n", location - (unsigned)vector - (0x8);

printf{"(location - vector - 0x8)>>2 %%X: 0x%X\n", (location - (unsigned)vector - 0x8)>>2):

printi("((location ~ vector - 0x8)>>2) | Oxeal00000) %% X: 0x%X\n", ((Jocation - (unsignedvector - 0x8)>>2) |
Oxca00000):
Hendif

vee = {{location - (unsigned)vector -0x8) >>2);

if(vee & OxER00000)

1

t
printi{"\ninstallation of handier failed "\n");
return{).

vee = Oxeal00000 | vee:
oldvee = *veetor:
*vector = vees
/* Install new vector ¥/
return(oldvec):

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g

__irg voud IRQHandler(void)

/it n;
unsigned int *base = (unsigned int *) IRQ_STATUS; 7* IRQQ status register for processor (0 */

7* Determine interrupt type and call appropriate handler */

i *base & TIMERINTI)
}
)

*int *) TIMER1_CTRL = 0x00000000:

j‘; counter++;
4 /Mor(n=0; n<10; n++)
1 Hprintf{"%d\n", *(int *)TIMERIT_VALUL):

*int *) TIMERT_CLR =0;
*(int *) TIMLER]_CTRL = 0x000000C8:

[

: Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

