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Abstract

The process of converting a behavioral specification of an application to its equivalent system architecture

is referred to as High Level-Synthesis(HLS). A crucial stage in embedded systems design involves finding

the trade off between resource utilization and performance. An exhaustive search would yield the required

results, but would take a huge amount of time to arrive at the solution even for smaller designs. This

would result in a high time complexity. We employ the use of Design Space Exploration (DSE) in order

to reduce the complexity of the design space and to reach the desired results in less time.

In reality, there are multiple constraints defined by the user that need to be satisfied simultaneously.

Thus, the nature of the task at hand is referred to as Multi-Objective Optimization. In this thesis,

the design process of DSP benchmarks was analyzed based on user defined constraints such as power

and execution time. The analyzed outcome was compared with the existing approaches in DSE and an

optimal design solution was derived in a shorter time period.
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Chapter 1

Introduction

1.1 Overview

The major hurdle for Systems Design Engineers in the development of the latest embedded systems is

to minimize the complexity of the design space. This can be achieved once a set of realistic solutions

that meet all the performance objectives are met. Upon incorporating more silicon per unit area, the

complexity of the design space increases exponentially. The goal is to optimize multiple parameters

simultaneously whilst keeping in mind the user-defined constraints and specifications. Most often the

multiple objectives that need to be satisfied are - power consumed, area occupied by the resources and the

execution speed of the resources. In general, while designing the VLSI circuits, each parameter is a trade-

off above the other as per the priority of the consumer. An ideal system is one, which can be implemented

on a very small chip area that runs very fast and consumes the least power. The development of an

embedded system undergoes the process of physical realization from its conceptualization through a

sequence of stages where at each step, more information is imparted than the preceding stage. Two

broad steps combine the design flow in VLSI systems: Front end design and Back-end design. Front

End Design comprises of stages where the manufacturing takes place in software and verification of

the functionality. These stages are as follows: Design Specification, Behavioral Description and RTL

Verification. The stages in Back End design consist of making the Gate Level Net-list and the Physical

Layout. Figure 1 shows a block diagram of the VLSI design flow.

Electronic System Level Synthesis is the process of rendering a digital hardware from the algorithmic

description of the desired behavior and implementing it. The most important stage in the whole flow of

design is performing Design Space Exploration (DSE) in order to make the randomly arranged design

space into a partially arranged one. This happens because the process of DSE aims at satisfying most

of the system constraints thus resulting in the best candidate architecture. Since this design process of

the HLS flow is complicated, it can only be performed by the system design architects. An organized

methodology needs to be employed to find the best candidate architecture from the ever expanding

design space. Care needs to be taken in terms of time and design complexity while undergoing these
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procedures. A Rapid Design Space Exploration Approach for Multi-Objective Optimization of DSP

Filter Designs is presented in this thesis. An analysis is made of the existing procedures the Pareto

Front method[5], and the evolutionary algorithm procedures[9],[6],[15] that are used to find the best

design architecture and reducing the number of resources used per unit area.

1.2 Related Works

One of the earliest methods researchers introduced in order to analyze and manage the trade-offs between

contradictory design space objectives was that of achieving the pareto optimal set. In [5] the authors

use Pareto Front Arithmetic (PFA) to explore giant search spaces. The Pareto Optimal solutions were

scrutinized in their method by utilizing the hierarchical problem structure. Based on their analysis,

Piccolboni et al. proposed COSMOS in their research [11], where they implemented an approach for

the exploration of complex accelerators that were made of multiple components by correlating the mem-

ory optimization tools and HLS. In [8], the authors used Architecture Configuration Graphs (ACG) for

optimization of performance parameters and variant analysis to regulate the design space. In [14], the

authors use Simulated Annealing to determine the optimal configuration of the resources. As research

progressed into the domains of HLS and DSE, the use of evolutionary algorithms was proposed. Algo-

rithms such as the Genetic Algorithms [9] and Particle Swarm Optimization [6] were used. Algorithms

such as Simulated Annealing and Genetic Algorithms, although proved to be quite efficient often faced

the problems of getting stuck in the local minima and being unable to find the global optimum solution.
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To resolve the problem of the algorithm getting stuck in the overlapping domains, the authors in [12]

used the concept of Stability in Competition first introduced by Hotelier [8]. The nature of the multi-

objective optimization problem is a Multi-Dimensional Multi-knapsack problem, also addressed in [12].

However, for us, since the basic constraints that we need to satisfy are just two, we use the solution of

the Bi-Dimensional Knapsack problem as described in [10]. An analysis is made of the various methods

used for solving these multi objective optimization algorithms in the succeeding chapters.

1.3 Motivation of Research

There has been a significant progress in the advancement of Register Transfer Level (RTL) Synthesis

development. With an ever increasing dependence on technology, researchers are attempting to automate

the synthesis at higher level of the design hierarchy.The main motivation for carrying out this research was

to evaluate the different methodologies used to carry out the DSE procedure and how these methodologies

behave with different DSP filters, such as the Infinite Impulse Response Filter (IIR), the Finite Impulse

Response Filter(FIR), Elliptic Wave Filter (EWF), Bandpass Filter (BPF) and the AutoRegressive Filter

(ARF).

The various techniques investigated in this research are capable of generating numerous designs from the

same specifications in a short amount of time. Thus for the developers, a settlement can be accomplished

between the cost, area, power, speed etc, according to what the user desires for their application. In

accelerating the design procedures, the companies manufacturing these chips can lower their development

costs. Upon verification, if found that the initial design and the final outcome are corresponding to each

other then that would mean less debugging time and fewer errors for the new chips.Hence, it is imperative

to explore the various methodologies and discuss the ones most suited for Multi-Objective Optimization

procedures.

1.4 Thesis Organization

The thesis has been arranged in the following manner: Chapter 2 discusses the concepts of High Level

Synthesis (HLS), Design Space Exploration (DSE), Stability in Competition, Knapsack Problems and

Evolutionary Algorithms. In Chapter 3, the design space is created with the initialization of all the

resources. All the constraints and user defined specifications are also stated in this section. Chapter

4 describes the Priority Factor approach to solve the multi-objective optimization problem. A set of

optimum design variants is achieved in this section and the data flow graph is made. Chapter 5 elaborates

on the exploration process used by Genetic Algorithms to accelerate the search. The end of this chapter

discusses the drawbacks of using Genetic Algorithms which are overcome by using the Particle Swarm

Optimization algorithm reviewed in Chapter 6. The mathematical formulation is described and the best

set of resource configuration is found using this method. The HLS flow is materialized in chapter 7 using

Scheduling, Allocation and Binding. In Chapter 8, the results are discussed and analyzed for different

DSP benchmarks. The thesis is conferred by discussing the Conclusion and Future work.
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Chapter 2

Preliminaries

The context of the framework of work done in this thesis, is provided in this chapter. Sufficient back-

ground for High Level Synthesis, Design Space Exploration, Stability in Competition, Knapsack Prob-

lems and Evolutionary Algorithms are addressed and presented.

2.1 High Level Synthesis

The process of conversion of a high level (algorithmic) language to an RTL net list (Behavioral Language)

is known as High Level Synthesis. It is also sometimes accredited names such as: Behavioral Synthesis,

Algorithmic Synthesis, C Synthesis or Electronic System-Level (ESL) Synthesis. An example of the

procedure is as follows - Conversion of the input (a language such as C) to a description language

(VHDL/Verilog). The tools required for the successful termination of this process are logic networks

and state diagrams. There are however, many constraints that need to be kept in mind such as the

delay and area constraints. An array of input specification languages was examined initially but the

applications in the market accept synthesizable subsets of languages such as MATALB/C/C++ etc. A

gate can be manufactured using a logic synthesis tool after a Register Transfer Level (RTL) Hardware

Description Language (HDL) is generated from the high level input language by thorough analysis given

the user specified constraints and scheduling times given.

In the last decade, a quantum leap has been noticed in technology especially in Very Large Scale

Integration (VLSI) electronics industry. This apparent shift endorsed new manufacturing technologies

such as 3D integration [13],[3] and FinFET [7],[2] along with the heterogeneous Systems-On-Chip (SoC)

design [4]. However, though, despite the advancements in this sector, no comparable improvement was

found for the RTL description languages, logic synthesis, circuit simulation and automatic place and

route. However, the system design complexity increases each day due to limited available silicon chip

area. Thus in order to address this problem of complexity, researchers rely on Design Space Exploration

for better HLS designs.
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2.1.1 Y Chart in VLSI Hardware Design

Different aspects of hardware design in VLSI can be shown in the Gajski-Kuhn chart, also known as

the Y-diagram. Developed in 1983 by Daniel Gajski and Robert Kuhn and refined in 1985 by Robert

Walker and Donald Thomas, this is now a widely used chart in the augmentation of integrated circuits.

Hardware development is usually a top-down design problem that can be anticipated in three domains.

These three domains can be shown as three different axes that produce a Y (the result). The degree of

abstraction are described by the abstraction levels. Thus the layout goes top-down to further detailed

abstraction levels. In general, the design process does not follow any one sequence of the diagram. As

a designer, one has the freedom to switch between the three domains to see one view or another. The

outer shells are generalizations and the inner shells are the refinements.

The primary properties of the electronic system are determined on the system level of the chart. To

make the abstractions of the signals and their time responses in the behavioral description, block dia-

grams are used. These are memory chip, central processing unit (CPUs) etc. Blocks like the Arithmetic

Logic Unit (ALUs) are used in the structural domain. The algorithmic level consists of the algorithms

that define the loops, classes, signals, assignments and variables) while the logic level defines the Boolean

equations. An even more descriptive level of abstraction is the register-transfer level (RTL). Here a de-

tailed explanation of the logic units and the communicating registers is provided and the flow of data is

determined. The design step of the floorplan is located in the geometric view.

5



2.2 Design Space Exploration

Depending on the design constraints and the user defined specifications, the analysis of eliminating

the unwanted design points is known a Design Space Exploration (DSE). In electronics and embedded

systems design, there is an overabundance of the choices of design based on what algorithms to choose,

how many resources are needed to perform an operation, how many connections per resource etc. As a

result, there is a need to have an analysis that is systematic and helps complete the exploration process

without much time and factor complexity.

The basis of DSE is a trade off between two competing resources or parameters of interest. The most

commonly used parameters of interest include power consumption by the resources, execution time of

the resources, area occupied and the cost of the resources. For other smaller systems, we may or may

not have other constraints needed to be satisfied such as weight, size, shape and energy dissipated. Since

the process of exploration can get too intensive, researchers aim at finding an automated DSE where a

software can complete this process, take a decision and come up with the optimal solution.

In order to cater to larger and more complex systems, the objective of the researchers is to raise

the abstractions of the component and system definition. Many tasks in engineering such as system

integration, chip optimization and rapid prototyping is achieved by DSE. It is responsible for organizing

the design space in such a way that it becomes partially arranged.

2.3 Multi-Objective Optimization

A combinatorial class of NP complex problems that have more than one objective that needs to be

satisfied simultaneously is known as Multi-Objective Optimization. As described in [10], the objectives

that need to be satiated simultaneously are contradictory and thus lead to sub optimality and solutions

in-feasibility.

Commonly used in combinatorial optimization, the knapsack problem is one which was conceptualized

out of the idea of a person who has a fixed sized traveling knapsack and he/she can only fit in limited

number of items without exceeding the capacity of this rucksack as shown in Figure 3. For a hiker, for

example, there are various things that he/she may need to fit in their knapsack for their trip. The aim is

to fit in as many things as possible into the bag without making it too heavy for the hiker to carry. Only

the essential items make it into the bag. The same concept is used in hardware design where designers

want to maximize the amount of resources, but without exceeding the maximum capacity.

The knapsack problem finds its applications in applied mathematics, cryptography, computer science

applications and combinatorics. The 0/1 knapsack problem can be described as:

(0/1)


maximize

∑n
i=1 pjxj

st
∑n

j=1 wiz ≤ Ci,

xjε {0, 1}

(2.1)

6



Capacity of the Knapsack = 8 kgs

Figure 3: An Example of the Multi-Knapsack Problem

A multi knapsack problem (MKP) is similar to the 0/1 knapsack problem with the exception that it

has multiple knapsacks. The formulation for which is given below:

(MKP )


maximize

∑n
i=1 pjxj

st
∑n

j=1 wiz ≤ Ci, i = 1, 2...m

xjε {0, 1} , j = 1, 2...n

(2.2)

However, since researchers mostly deal with two constraints Power consumed per unit area and

Execution time, the problem of multi objective optimization can be modeled as a Two Dimensional

Knapsack Problem, as done in [12]. It can be worked out as follows:

(BKP )


maximize

∑n
i=1 pjxj

st
∑n

j=1 wiz ≤ Ci, i = 1, 2

xjε {0, 1} , j = 1, 2...n

(2.3)
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Figure 4: Graph portraying the principle of Stability in Competition between two competing businessmen

2.4 Stability in Competition

Proposed by Harold Hoteling in 1929 [6], Stability in Competition closely observes the relationship

between two competing sellers and how they decrease or increase their supply of commodities as per

the demand by the consumers in the market. The behavior between two competing variables until the

point of stability is reached can be shown in Figure 4. Here each variable counter balances the others

cumulative weight.

Between two competing buyers: A and B, if A is the smarter seller, they would decrease their costs

first thus increasing their profits. In the graph, it can be seen as the horizontal move to point R. Seeing

this B would lower their prices too, hence increasing their profits which can be seen as a vertical motion

to point S. Then A would further lower their prices, following which B would do the same. This would

go on and so forth, till point E or the point of stability is reached. This is also referred to as the point

of equilibrium. Beyond this point, none of the two sellers would be able to decrease their costs without

facing substantial losses to their business.

In the analysis of DSE, when an algorithm is under way looking for the most optimal resource

configurations, there may be areas where two resources are mapped simultaneously at the same points

or too close to each other, consequently leading to overlapping domains.

There is a major possibility of the algorithms to get stuck in the overlapping domains and keep

searching within them, resulting in the problem of getting stuck in the local minima.

Using the concept of Stability in Competition in our analysis would help us to get rid of the overlap-

ping domains and look for the global best solution while performing Design Space Exploration in High

Level Synthesis.
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Chapter 3

Design Space Exploration

Framework

3.1 Creating a Randomly Arranged Design Space

Embedded systems and electronics are generally comprised of clock oscillators, hardware resources such

as adders/subtractors, multipliers and dividers, software modules, interconnecting logics including the

power distribution architecture, buses, multiplexers and demultiplexers. In this chapter, the framework

for Design Space exploration is discussed and analyzed for the three different methods the Priority

Factor Method, the Genetic Algorithm method and the Particle Swarm Method for exploration in order

to find the resource set within the power constraints. It is essential to use these methodologies as

reaching the solutions of the optimum design space randomly would not only be an exhaustive but also

a cumbersome, time-consuming procedure. For larger applications, the design space grows exponentially

due to the combinatorial nature of the DSE problems. Thus, this must most definitely be avoided. The

work presented in this chapter shows that the solution front can be kept within the feasible regions but

also must be made to avoid overlaps, using concepts such as Stability in Competition.

A vague search through the randomly ordered sets of resources renders the design space partially

ordered [12], as can be seen from the Figure 5.

The intent of randomly ordering the design space before analysis has two reasons to lower the time

complexity and to increase the utility of the solution. This is achieved when in an ordered design space,

the solution is searched only within it. When the algorithm is confined from exploring the redundant

configurations of the design space, less time is wasted and the complexity does not increase exponentially.

3.2 Commencement of the Design Flow

The first step in High Level Synthesis Design is to input the Design Specifications. In order to optimize

the parameters of interest, the consumer needs to define the associated data structure of the end appli-
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Figure 5: : Hypothetical Search through (a) Unordered and (b) Partially Ordered Design Space

cation to be used. A clear characterization of the systems constraints must be stated to the designer.

Not only do these specifications and constraints govern the organization of the micro-architecture, but

also serve as a guide for the design and development costs. In the analysis carried out in this thesis the

following assumptions were made.

1. Maximum power consumption: 350 (mW)

2. Maximum resources available for the system design:

(a) 2 Adder/subtractor Units.

(b) 4 Multiplier Units

(c) 2 Divider Units

(d) 3 Clock Frequency Oscillators: 100, 150 and 200 MHz

3. Maximum time of execution: 62 ms

The following specifications are also assumed as an example for each resource available for system

design.

1. No of clock cycles needed for multiplier to finish each operation: 4 cc

2. No of clock cycles needed for divider to finish each operation: 4 cc
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3. No of clock cycles needed by the Adder/subtractor: 2 cc

4. Area occupied by each adder/subtractor: 10 a.u. on the chip. (e.g. 10 CLB on an FPGA)

5. Area occupied by each Multiplier: 45 a.u. on the chip. (e.g. 45 CLB on an FPGA)

6. Area occupied by each divider: 55 a.u. on the chip. (e.g. 55 CLB on an FPGA)

7. Area occupied by the 100MHz clock oscillator: 5 area units

8. Area occupied by the 150 MHz clock oscillator: 6 area units

9. Area occupied by the 200 MHz clock oscillator: 10 area units

3.3 Problem Description

The behavioral description stage in High Level Synthesis Design is designated by the mathematical

model of the end application the designers are trying to manufacture. From this model, we can evaluate

the data dependency and the input/output relationship of the system. For analysis pertaining to this

thesis, we use an Elliptic Wave Filter with transfer function:

H(z) =
Y (z)

X(z)
=

0.07819− 0.221z−1 + 0.214z−2

1− 2.54z−1 + 2.105z−2
(3.1)

Using convolution, we can convert the transfer function from its frequency domain to the time domain

as follows:

y(n) = 0.07819x(n)− 0.221x(n− 1) + 0.214x(n− 2) + 2.54y(n− 1)− 2.105y(n− 2) (3.2)

For the sake of simplicity of our analysis we assume the following:

1. A = 0.07819

2. B = 0.221

3. C = 0.214

4. D = 2.54

5. E = 2.105

So, the equation now becomes:

y(n) = Ax(n)−Bx(n− 1) + Cx(n− 2) +Dy(n− 1)− Ey(n− 2) (3.3)
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This case study is used in our analysis and an attempt is made to find the most optimum resource

configuration for this particular filter.

12



Chapter 4

Analysis of Exploration of the

Design Space using Priority Factor

Method

4.1 Priority Factor Background

In [10], the authors solve the problem of Multi-Objective Optimization using the Priority factor method

derived from [15]. A measurement of the resource contribution to the objective cost function defines the

priority factor of that particular system. It can be devised as:

PF =
∆N(Rn)K(Rn)

N(Rn)
(4.1)

∆NRnKRn refers to the contribution of the nth resource and KRn is the absolute per unit performance

of the resource.

4.1.1 Mathematical Formulation of Priority Factor (Area)

Given a set of resources, such as the adders/subtractors, multipliers, dividers and clock oscillators, the

total area occupied by all of these resources is simply the sum of all of the areas combined.

A = ΣA (Ri) +A (RCLk) (4.2)

Where A area occupied of the resources and Ri Resources used in systems designs
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On taking the partial derivatives of the above equation we get:

∂A

∂NR1
=
∂Σ (NR1KR1 +NR2KR2 + ...+NRNKRN + (AR)(clk))

∂NRN
= K(R1) (4.3)

On finding the partial derivatives for all the available resources, we can find the absolute per unit

performance for them all. Substituting this back in the equation, we can find the Priority Factors in

terms of area occupied for all of the resources.

4.1.2 Mathematical Formulation of the Priority Factor (Power)

The total power consumption on a particular chip is given in terms of the area and the power consumed

by them at a particular clock frequency.

P = Σ (NriKri)( pc) (4.4)

Where P is the total power consumed,

Nri is the number of resources and

Kri is the absolute per unit contribution of those resources.

Pc is the power consumed per area unit at a particular frequency of operation.

It can also be written as the following:

P = (NR1KR1 +NR2KR2 + ...+NRNKRN )pc (4.5)

On calculating the partial derivative of this equation with respect to these resources, we can find the

priority factors for power consumption as per the following equation:

PF =
∆N(Rn)K(Rn)

N(Rn)
(pc)

max (4.6)

We use the maximum power consumed because we had considered maximum clock frequency. As a

result, the total power consumed by all of the resources in the system is dependent on the change in the

number of the resource.

4.1.3 Mathematical Formulation of the Priority Factor (Execution Time)

Similarly, in terms of time of execution of the resources, the priority factor of the resources can be given

as:

PF (Rn) =
(∆NRnTRn)

NRn
Tmax
p (4.7)

where TRn is the time taken by each functional unit to finish operation and

Tmax
p is the maximum clock period.
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4.2 Analysis of Exploration of Power Consumed in the Design

Space using Priority Factor Method

To calculate the priority factor of resources in terms of the power consumed, the following formula is

used [12]. For Multiplier Unit:

PF (Multiplier) =
∆N(Rn)K(Rn)

N(Rn)
(pc)

max =
(4− 1)(45)

4
(30) = 1012.5mW (4.8)

For Adder/Subtractor Unit:

PF (Adder/Subtractor) =
∆N(Rn)K(Rn)

N(Rn)
(pc)max =

(2− 1)(10)

2
(30) = 150mW (4.9)

For Clock Resources:

Σn
i=1NRiKRi

NRi
∆pc =

(2)(10) + 4(45)

3
(30− 10) = 1333.33mW (4.10)

It can be seen from the calculations done above that with the change in the number of resources, there

will be a change in the total power consumed by that resource too. There is a significant difference

between the priority factors of the adder/subtractor units and that of the multiplier units. The clock

however, has the greatest value (2066.66 mW). On arranging them in decreasing order we get,

PF (Clock) > PF (Multiplier) > PF (Adder/Subtractor).

Finding the priority factors of the resources in the circuit, helps in rendering a partially ordered circuit.

4.3 Analysis of Execution Time Exploration of Design Space

using Priority Factor Method

To calculate the priority factor of resources in terms of the speed of execution of the operations by the

resources, the following formulas are used [12].

For Multiplier Unit:

PF (Rn) =
(∆NRnTRn)

NRn
Tmax
p =

(4− 1)(4)

4
(0.01) = 0.03 (4.11)

For Adder/Subtractor Unit:

PF (Rn) =
(∆NRnTRn)

NRn
Tmax
p =

(2− 1)(4)

2
(0.01) = 0.02 (4.12)
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For Clock Resource:

PFClock =
Σn

i=1NRiKRi

NRi
∆Tp =

(2)(10) + 4(45)

3
(0.01− 0.005) = 0.3333 (4.13)

Hence, when the number of resources used for an operation change, a difference in the change in

time of execution is also observed. For a change in clock frequency from 100MHz to 200 MHz, there is a

substantial change that can be observed as compared with the other resources, i.e., the adder/subtractor

units and the multiplier units. On arranging the resources are per the decreasing order of Priority

Factors we get that,

PF (Clock) > PF (Multiplier) > PF (Adder/Subtractor).

4.4 Using PF Analysis to order design space

In Systems on Chip designs, the complexity of the design space has been ever increasing. A vital issue,

thus, in the design of these systems, is selecting optimal parameters that are agreeable, not only in terms

of the technical and behavioral specifications but also with all the user constraints.

A meticulous approach is needed to perform Design Space Exploration, for massive design spaces.

When performed at higher levels of abstraction, it is more profitable than at the transistor levels. For

any algorithm performing DSE operations, there are two main criteria that need to be met the search

space needs to be searched in a short period of time (low time complexity) and achieving a trade off

between two conflicting parameters. Table 1 shows all of the possible configurations in the design space

that are used for analysis.

4.5 Choosing the most optimal resource configuration

An exhaustive search is used to find the variant best suited for the application at hand. Table 1 depicts

a set of all design variants including the clock resources, adder/subtactors and multipliers. The power

and speed of execution is then found based on the area occupied by the resources, power consumed by

the clock and the Latency and cycle time for each operation. The best design variant is chosen from

the whole table based on the restrictions placed on maximum power consumed and maximum time.

The maximum power consumed, is given to us as 350mW and the maximum execution time is given as

62msec. Based on these two constraints, we have four sets of variants that are within these limitations.

These are depicted in Table 2.The multiplier given to us occupies more area (45 au) than the

adder/subtractors (10 au). Given this situation, where we can choose between one or more sets of

variants, the resource configuration having the least number of resources is chosen. Here we choose,

variant 19 as the most optimum. It consists of two multipliers and one adder/subtractor at each level.
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Table 1: Set of all possible Design Variants

Variant Number Variant 13 Variant 14 Variant 19 Variant 20
Resource Configuration (2,3,1) (2,3,2) (3,2,1) (3,2,2)
Power Consumed 290mW 310mW 300mW 330mW
Execution Time 52.83msec 52.82 msec 60.02msec 60.02msec

Table 2: Sets of Best Resource Variants
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Chapter 5

Analysis of Exploration of Design

Space using Genetic Algorithms

5.1 Genetic Algorithms: Basics

Invented in 1960s, Genetic Algorithms are based on the theory of evolution that explains the origin of

species in nature. Based on the concept of Survival of the Fittest, a theory proposed by Charles Darwin,

the algorithm follows that weak and unfit species, in the process of natural selection, die sooner and are

only survived by the stronger species. These species go on to become more dominant than the others.

Sometimes, the genes of these species may undergo random changes to fit into changing times. If the

result of these changes is a stronger gene then over time, it replaces the old one.

Chromosomes are structures that define the nature of the organisms. Each chromosome consists of

genes. In Genetic Algorithm processes, these genes are binary, that is, either 0 or 1. Encoding is the

process of the mapping techniques between these chromosomes and the solution space. A collection of

these chromosomes are referred to as a Population. Over time, as the search matures, the algorithm

includes fitter solutions than the ones first initialized eventually finding the set of best solutions.

5.2 Genetic Algorithms for Multi-Objective Optimization

Two main operators are used in Genetic Algorithms to solve problems pertaining to Multi-Objective

Optimization:

1. Crossover

2. Mutation

A random set of solutions are initialized in the first step and chromosomes are found. Fitness of all of the

chromosomes are found and two of the fittest solutions are chosen to perform the Crossover Operation.
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Figure 6: Flow of the VLSI design flow using Genetic Algorithms

This is done so that, the Offspring is fitter than the parent chromosomes. This operation is carried

out iteratively till the best solution is found. The mutation Operator is used to find a better solution,

this process takes place at the gene level and the probability of a gene to undergo mutation is very low.

It is also dependent on the chromosome length. This process is important as, just using the crossover

operation would lead to two or more similar solutions. Therefore, in order to introduce some diversity

in the algorithm for it to move forward, mutation is done and the parents are found for the following

iterations. Once the off springs are found, their fitness is calculated. If they are fitter than the parent

chromosomes then they become the parent for the next generation else, they are discarded. Figure 6

explains the framework for HLS using Genetic Algorithms. The first step in the analysis of DSE using

Genetic Algorithms is to obtain useful genetic operators that facilitate the Genetic Algorithm in reaching

optimal or near-optimal solutions. A multi-chromosome representation is used in the analysis to encode

chromosomes in the population. The algorithm must guarantee that both scheduling and allocation

information is represented.
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Figure 7: Chromosome Encoding in Genetic Algorithms

5.3 Chromosome Encoding

The chromosome is made up of two substrings namely the Node priority field and the Resource Allocation

Field. The node priority field portrays an ambiguous representation of the final schedule. It is used to

encode a list of tasks that need to be scheduled. The resource allocation field specifies the maximum

available resources at each level of the scheduling process. It is essential that an apt problem encoding

is chosen so that the algorithm attains convergence. This happens when both scheduling and allocation

information are represented. The resource allocation field warrants that each possible combination of

the resources are represented. Based on the constraints described in the resource allocation field of the

chromosome, a schedule builder can be built to decode the node priority field to acquire a valid schedule.

As soon as the operations become available to the functional unit in the next time step, as shown by

the node priority field of the chromosome, a schedule binder is used as a list scheduling heuristic. If all

the preceding nodes have finished their operation in the previous time step and the resource in which

this operation has to take place, is available, then in the node priority field, this operation is said to be

ready. Figure 7 shows the Data Flow graph used in Chromosome Encoding in Genetic Algorithms
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5.4 Crossover Operations

This section discusses one of the two main operators used in Genetic Algorithms Crossover. Akin

to biological reproduction and hereditary, crossover operations are used to diversify the structure of

the chromosome from one level to another. Two chromosomes are taken as parent solutions and this

operation is applied on them to find the children, for the next generation. The encoded chromosome has

two substrings, namely the node priority field and the resource allocation field. Crossover operations

for the both of them are summoned at different times. Each child chromosome produced after crossover

must have a valid schedule. The precedence constraints established by the data-flow graph are retained

in the permutation of tasks in the offspring, since the node priority field is responsible for encoding

topologically sorted permutations of tasks. One-point Topological Crossover is used in the GA operations

in the analysis carried out for this research.

5.4.1 One-Point Crossover

In one-point crossover, both the parent chromosomes are selected and all of the genes that are part of

these chromosomes are switched between them resulting in two off-springs. This can be shown in the

figure below. Both parents maintain the precedence relationships, hence it will also be preserved in the

first off-springs generated. Order of the tasks inherited also maintain the tasks specified in the input

data flow graph.

From the data flow graph shown in figure 7, we perform our analysis to get the off springs from

the parent population. This can be seen in Figure 8. For resource allocation fields, the substring

denotes the number of resources used at each level of the DFG The appropriate functional units are all

independent of each other and thus, one-point crossover needs to be applied to the substring. Figure 8(b)

shows the allocation of resources such as the clock oscillators, multipliers and the adder/subtactor units.

On performing the one-point crossover operations, we get the off-springs containing 2 clock oscillators,

2 multipliers and 2 adder/subtractor units as one child and 4 clock oscillators, 3 multipliers and 2

adder/subtractor as the other child.

5.5 Mutation

When a gene undergoes a change in order to get a better solution in the case of chromosome encoding, this

process is termed as Mutation. Similar to how the crossover operations are done, Mutation operations

too are performed separately in the node allocation field and in the resource allocation field. After the

crossover operations are performed, as discussed before, the off-springs retain the topological order of

tasks. However, after a few iterations, there may be solutions that are similar to the parent chromosomes.

As a result, there may not be enough variety after a few generations and the algorithm could face

premature convergence. Mutation helps retain the diversity in the algorithm for it to continue looking

for the global best solution.
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Figure 8: Chromosome Encoding in Genetic Algorithms

5.5.1 For Node Priority Substring

In the data flow graph shown in figure 7, for all the input tasks, there are two tasks happening before

it but many tasks that are executed after it. The authors in [16] proposed the concept of a mutation

scheme, which is used in the analysis of finding the most optimal variants. In this analysis, two random

nodes (vi, vj) are chosen from a string of nodes, [k]. The value of the nodes is swapped among them

thus transforming the nodal string.

5.5.2 For Resource Allocation Substring

The operation of mutation in Resource Allocation Substring is similar to the mutation operation that

takes place in the node priority substring.two random nodes (vi, vj) are chosen randomly in the whole

substring. The value of these nodes is either increased or decreased based on the constraints of the

resources employed and also on the end application.
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5.6 Disadvantages of Genetic Algorithms

Genetic algorithms, when conceptualized, started a monumental trend in the research of evolutionary

algorithms. Although, pretty popular, in recent years, these algorithms have shortcomings in a number

of applications, hence leading to the development of newer, much faster algorithms. Their disadvantages

are as follows:

1. Difficulty of operation: Determining parameters such as the rate of mutation, parameters used

for crossover operations and calculating the fitness function and normalizing it often need tweaks

and adjustments. This is a trial and error method, thus making it more unreliable for important

applications.

2. Time taken for termination: After the initialization process, there is a huge population of chromo-

somes that undergo the crossover and mutation operations. As a result, the solutions cannot be

found faster. Sometimes, for bigger and more complex applications, one may have to wait for a

few days to get the best solution.

3. Problems with convergence: For valuable applications, there is not only an issue with the time

taken by the algorithms to finish operations but also with the rate of convergence. One of the

biggest drawbacks of GA is that one may observe a loss of diversity after a few iterations, hence,

leading the algorithm to a local minimum solution.

4. Vague solutions: The Fitness function of the functional units is literally the only way a user can

interact with the system and exchange information. Because of which, the algorithm may or

may not make any sense. If it continues in this manner, one could expect incomprehensible and

inefficient solutions from a realistic engineering point of view.
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Chapter 6

Analysis of Exploration of Design

Space using Particle Swarm

Optimization

6.1 Background

Particle Swarm Optimization (PSO) is a metaheuristic procedure that is based on the pattern of flight

of a flock of birds as they fly in search of food/shelter. Each bird has its own position and maintains

a particular velocity, both of which may be changed in order to mimic the behaviour of the rest of the

flock as per requirements. The change in the position of the birds may be given as per the following

equation:

xi (t+ 1) = xi + Vi (t+ 1) (6.1)

The new position of the bird depends on its previous position and the updated velocity of the bird. The

velocity can be updated using the following equation:

Vi (t+ 1) = ωVi (t) + c1r1
(
xlbi − xi (t)

)
+ c2r2

(
xgbi − xi (t)

)
(6.2)

Here ω is the inertia weight

c1 and c2 are the cognitive and the social learning factors respectively.

r1 and r2 are random numbers in the range [0,1].

xlbi is the position of the local best particle with respect to the minimization problem and

xgbi is the position of the global best particle.

The whole optimization algorithm aims at achieving xgbi , that is, all the particles try to converge at the

best position of one particle, thus reaching a termination point.
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Figure 9: Flow of Particle Swarm Optimization for High Level Synthesis

6.2 Particle Swarm Optimization for Multi-Objective Optimiza-

tion

For the process of chip optimization in multi objective optimization problems, the PSO algorithm can be

used to find the most optimum resource configuration, given the system constraints and specifications.

The flow of the algorithm can be given in figure 9.

6.3 Framework of the model

The module library, user defined constraints and the behavioral description of the Data Flow Graph

(DFG) are given as the inputs for the PSO algorithm. The following things are known to us at the start

of the algorithm: The number of maximum resources available, energy consumed by each resource, time

taken (in clock cycles) by the resources to finish one operation and the area occupied by the resources.

In the Particle Swarm Optimization method, it is assumed that the Position of the particle is analogous

to the resource configuration and the velocity of the particle to the process of exploration taken by the

algorithm.
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6.4 Initialization

The algorithm is first initialized by taking P1, the very first design variant, having minimum value. The

second particle P2 which is the design variant having the maximum value and a third particle P3, which

is the average of the other two. Rest of the design variants are all found using the formula stated below:

xid =
a+ b

2± α
(6.3)

Here a least value of the resources

b- highest value of resources

α any arbitrary value between a and b

The initial velocity of all of the particles is zero, they are all at rest. Fitness of all of these particles

(design variants) is then calculated in order to find the global optimal solution.

The particle with the minimum fitness is chosen as the global best resource configuration. After the

algorithm begins, this process is repeated at every iteration and the values of position and velocity are

updated, resulting in better resource configurations till the algorithm terminates.

6.5 Analysis of evaluation of design objectives using Particle

Swarm Optimization

6.5.1 Power model analysis

The total power that is consumed by the functional resources is reliant on the static power and the

dynamic power consumed by the resources. It can be given by the following equation:

PT = PD + Ps (6.4)

Where PT Total power consumed by the resources

PD - Dynamic Power consumed by the resources and

Ps - Static Power consumed by the resources

The average dynamic power consumed by the resources is given as:

PD =
NEFU

Texe
(6.5)

Where N Total number of resources
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EFU -Total energy consumed by the resources

Texe - Execution time

EFU = Eres + Emux + Edemux∗ (6.6)

where Eres - Energy consumed by the resources

Emux - Energy consumed by the multiplexers and

Edemux - Energy consumed by the demultiplexers

The total execution time is given by

T = L+ (n− 1)Tcc (6.7)

Where L Latency of a scheduling solution N Number of Frames and Tcc - Cycle time of a scheduling

algorithm

Thus PD can be written as:

PD =
N(Eres + Emux + Edemux)

L+ (n− 1)Tcc
(6.8)

Static power PS depends on the area of the resources and is independent of the dynamic activity of

the module.

PS =

n∑
i=1

NRiKRi.(pc) (6.9)

where NRi - Number of resources

KRi - Area occupied by the resources

pc - Power consumed by the clock

Therefore, the total value of the power consumed by the resources can be given by the following equation:

PT =
N(Eres + Emux + Edemux)

L+ (n− 1)Tcc
+

n∑
i=1

NRiKRi.(pc) (6.10)
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6.5.2 Execution time model analysis

The time taken for the execution by a functional unit is given by the following equation:

T = L+ (n− 1)Tcc (6.11)

Where L Latency of a scheduling solution

N Number of Frames and

Tcc - Cycle time of a scheduling algorithm

6.5.3 Fitness Function Calculation

The fitness of the particles in the algorithm can be found using the following formula:

CPSO = φ1
Texe − Tcons

Texe
+ φ2

PT − Pconst

PT
(6.12)

Where φ1 and φ2 are the weighted functions, whose value is determined by the user themselves. In

our analysis, they are assumed equal and their value is taken to be 0.5.

These weights resonate with the trade-offs between time of execution and the power consumers. Taking

equal weight signifies that both have the same priority during the analysis.

Lower the calculated fitness function of a particular resource, more power reduction can be achieved

during employment of the functional units.

6.5.4 Energy model

Energy values obtained [16],[1] are used in finding the values of EFU These are found using the equation

used to find energy stored.

EFU =
1

2
cV 2α (6.13)

Where c Capacitance of the resource

V- Supply Voltage of the resource

α - Average switching activity at the inputs

The values of the stored energy are taken from [1] and is shown in the tables below. For different

supply voltages 5V, the average energy acquired by the functional units is given in pJ for φ1 = φ2 = 0.5

6.6 Using Particle Swarm Optimization to solve the Multi-

Objective Optimization Problem

The first set of design variants are chosen with the minimum number of resources, that is, one multiplier

and one adder/subtractor: P1 = (1,1,1). The effectiveness of the particle swarm optimization partially
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Functional Unit Energy(pJ)
Adder/Subtractor 98.76

Multiplier 1990.53
Mux 24.05

Demux 68.032

Table 3: Average Energy acquired by the resources

depends on the initial population. The second set of design variants chosen are the ones with the

maximum number of resources from the table, that is 4 multipliers and 2 adder/subtractors: P2 =

(3,4,2). The third set of design variants is the average between the minimum and the maximum number

of resources, that is(
1 + 3

2
,

1 + 4

2
,

1 + 2

2

)
≈ (2, 2, 1)

The values are rounded off to the nearest whole number. It depends on the user if they want to

round it off to a value higher or to a value lower than the result obtained. In our case, we round it off

to values lower than the decimal values. The initial velocity of all of the particles is set to zero in the

first iteration. The social and the cognitive learning factors used in this algorithm can take any values

between [1,4]. We then calculate the value of total power for resources (1,1,1)

PT =
N(Eres + Emux + Edemux)

L+ (n− 1)Tcc
+
∑n

i=1NRiKRi.(pc)

PT =
1000(98.76 + 1990.53 + 24.05 + 68.032)

22 + (1000− 1) 20
+ (1× 45 + 1× 10) (10)

= 109 · 057 + 550 = 659 · 05mW

Execution time is given as :

TExe = [L+ (n− 1)Tcc]Tclk

TExe = [22 + (1000− 1) 20](0.01) = 2000̇2msec

Substituting these values into the formula, we can find the fitness function of the particles as follows:

CPSO = φ1
Texe − Tcons

Texe
+ φ2

PT − Pconst

PT

CPSO = 0.5
200.02− 62

200.02
+ 0.5

659.05− 350

6
59.05

= 03̇45 + 02̇26 = 05̇71
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For maximum number of resources

PT =
N(Eres + Emux + Edemux)

L+ (n− 1)Tcc
+
∑n

i=1NRiKRi.(pc)

PT =
1000(2× 98.76 + 4× 1990.53 + 24.05 + 68.032)

12 + (1000− 1) 8
+ (4× 45 + 2× 10) (30)

= 1030 · 94 + 6000 = 7030 · 94mW

Execution time is given as :

TExe = [L+ (n− 1)Tcc]Tclk

TExe = [12 + (1000− 1) 8](0.005) = 400̇2msec

Substituting these values into the formula, we can find the fitness function of the particles as follows:

CPSO = φ1
Texe − Tcons

Texe
+ φ2

PT − Pconst

PT

CPSO(Particle2) = 0.5
40.02− 62

40.02
+ 0.5

7030.94− 350

7
030.94

= −02̇7 + 04̇75 = 02̇75

Similarly, for P3 (2,2,1)

PT =
N(Eres + Emux + Edemux)

L+ (n− 1)Tcc
+
∑n

i=1NRiKRi.(pc)

PT =
1000(98.76 + 2× 1990.53 + 24.05 + 68.032)

16 + (1000− 1) 12
+ (2× 45 + 1× 10) (20)

= 574 · 34 + 2000 = 2347 · 54mW

Execution time is given as :

TExe = [L+ (n− 1)Tcc]Tclk

TExe = [16 + (1000− 1) 12](0.0066) = 792̇26msec

Substituting these values into the formula, we can find the fitness function of the particles as follows:

CPSO = φ1
Texe − Tcons

Texe
+ φ2

PT − Pconst

PT
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CPSO(Particle2) = 0.5
79.226− 62

79.226
+ 0.5

2347.54− 350

2
347.54

= 0 · 108 + 0 · 425 = 0 · 533

Hence, the particle functions have fitness functions as

Particle 1 (1,1,1): 0.571

Particle 2 (3,4,2): 0.205

Particle 3(2,2,1): 0.533

The one with the least fitness function becomes the global best particle, for that particular iteration.

Here particle 2, is the global best solution for this iteration xgbi . In the next steps, when we find the

fitness of those particles, if it is lower than the current best fitness, then it would become the local best

solution xlbi

6.6.1 Determining the best particle

The next step in the algorithm is to update the position and the velocity of the particles and continue

the search for the global best solution. The configuration of the new particle can be found using the

following equation:

x+ia = f
(
V +
id , xid

)
V +
id is calculated using the following equation:

Vi (t+ 1) = ωVi (t) + c1r1
(
xlbi − xi (t)

)
+ c2r2

(
xgbi − xi (t)

)
Where ω- inertia weight,

c1 and c2 - cognitive and the social learning factors between [1,4] respectively

r1 and r2 - Random numbers in the range [0,1]

xlbi is the position of the local best particle with respect to the minimization problem

xgbi is the position of the global best particle

For the number of clock resources, we use the velocity equation to get,

Vi (t+ 1) = ωVi (t) + c1r1
(
xlbi − xi (t)

)
+ c2r2

(
xgbi − xi (t)

)
Vi (t+ 1) = 1× 0 + 2× 05̇× (1− 1) + 2× 05̇× (2− 1) = 1

And the position is given by

xi (t+ 1) = xi + Vi (t+ 1) xi (t+ 1) = 1 + 1 = 2
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Hence the updated resource configuration is (3,2,2) of the particle.
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Chapter 7

Materializing the High Level

Synthesis Design Flow

7.1 Scheduling and Binding

Acrylic graphs that are represented using edges and vertices, that help in the depiction of the resources

are known as Scheduling and Binding graphs. Vertices denote the resources and the edges denote the

path taken by the operations in these resources. The attributes of an operation are stated by Sequencing

Graphs. They tell us what operations are happening in the resource at one particular time and help in

visualizing the flow of the data elements. There are three kinds of scheduling problems that designers

deal with. They are shown in the figure 10.

Resource Constrained Scheduling: The constraint is the number of resources. Fastest schedule is deter-

mined with respect to the constraints imposed on the functional units.

Time Constrained Scheduling: The number of time steps determine the cheapest possible scheduling

and are taken as the constraints.

Feasible Constrained Scheduling: An output, if it exists, needs to be scheduled. The maximum number

of resources and time are the constraints that need to be satisfied in parallel.

Thus in general, the scheduling problem is known to be three fold; based on dependency, time and re-

sources. It is an NP complete problem. The manner in which an operation is specified to the functional

units is known as Scheduling. This is done to improve the efficiency of the system and to also achieve

goals that are crucial for that particular application. Scheduling algorithms are of different kinds, namely

the As soon As possible Scheduling(ASAP), As late as possible (ALAP), Force Directed Scheduling, List

Scheduling and so on. In the analysis required for this thesis, As Soon As Possible (ASAP) scheduling

was used. This was done to make sure that as soon as the resource finishes one operation, it can be ready

for the next. This helps in execution of the operations at a faster rate, especially in heavily pipelined

circuits. Binding helps in comprehending the function that is used as a benchmark application in the

manifestation of the optimized design flow. In computer architecture and synthesis, three dimensions
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Figure 10: Three Divisions of Scheduling Problems

can be used to specify a circuit. These three dimensions include the sequencing graph, number of

functional units and the constraints. In Figure 11, a register R has been added in time step T3. The

addition of another register was done because the adder/subtractor unit wasnt free in that particular

time step. Thus is holds the value till the resource becomes free in the next time step and the operation

can be executed. The latency of the function given in Figure 11 was calculated to be 16 clock cycles.

7.2 Resolving the Multiplexing Scheme

The next task for SoC designers is to incorporate the multiplexers and the demultiplexers into the

data path of the circuit. This is done using Binding. In the process of high level synthesis design

flow, determining the multiplexing scheme is one of the most relevant steps, it helps in symbolizing the

functional units with their respective inputs, outputs and data flow along with the interconnections.

Realizing the multiplexing scheme and later making a schematic diagram helps in figuring out the

complexity of the circuit and it may also help in preventing failures at a later stage.

7.3 Block Diagram of the circuit

There are two distributions of the block circuit developed of the system after the multiplexing scheme

has been made. These two sections are the data path and the control path. The data path is responsible

34



A 𝑥(n) B 𝑥(n-1) C 𝑥(n-2) D 𝑦(n-1) E 𝑦(n-2)

X X

X X

X

+

+

+

+

𝑦(n)

T1

T2

T3

T4

T5

Reg R

Figure 11: Data Flow Graph with Register

for administering the sequence of operations that need to be performed in the circuit. It is accountable

for the flow of data in the circuit through the wires and the buses. Apart from the functional units

performing the operations, the data path consists of memory elements such as latches. Latches help in

storing the data until it is ready to be used again at a later stage. It also consists of registers, as well

as multiplexers and demultiplexers. For the most optimum variant that we got in the analysis for the

sake of our thesis, the block diagram consists of two multipliers and one adder/subtractors. The circuit

also consists of a control unit that helps implement all the required timing and synchronization. The

control unit is generally a finite state machine in which the state varies as per the activation and the

deactivation of the other elements during different periods of time. Figure 12 shows the block diagram

of the circuit.
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Figure 12: Block Diagram of the System Data Path Description
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Chapter 8

Results and Analysis

8.1 Overcoming the Overlapping Domains

An analysis has been made of the three different methods for finding the most optimal configuration

for the resources in the circuit. The border variants need to be found for all the three methods before

selecting the most optimum architecture. In all of the three methods, there is a chance that there may

be overlapping regions. These are dangerous in our search. This is because the algorithm gets stuck in

the overlapping region and keeps searching within it. In case of evolutionary algorithms, this may lead

to premature convergence of the algorithm. H. Hoteliers concept of Stability in Competition [8] has been

used in order to make the search space as linear as possible. The figure shown below depicts the case

of overlapping domains. In part (a) of the figure, a representative model of partially arranged design

variable is shown which is overlapping. Arranged variables have overlapping domains if the following

condition holds:

NR1kR1 > NR2KR2

For the algorithm to avoid overlapping domains, it needs to fit the following criteria: NR1kR1 ≈
NR2KR2

8.2 Comparison of Particle Swarm Optimization with Genetic

Algorithms and Priority Factor method

In order to find the most optimum resource, two of the evolutionary algorithmic procedures Particle

Swarm Optimization and Genetic Algorithms were compared with the Priority Factor method. The

results for different DSP filters obtained from benchmarks[3] are shown in the table below. The values

of phi1 and phi2are defined by the user and for the sake of our analysis are taken as 0.5. As we can

see, the results obtained by PSO algorithm are much better. These utilize lesser resources to solve the

multi-objective optimization problem than the genetic algorithm or the priority factor method.
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Figure 13: Illustrations showing the overlapping domains of partially arranged design variables in PF
hierarchy and the linearly ordered decision variables with restricted domains to avoid inferior domains

DSP Filter
Resource Configuration

PSO GA PF
Elliptic Wave Filter 2(mult),1(add/sub) 1(mult),1(add/sub) 2(mult),1(add/sub)

Infinite Impulse Response Filter 2(mult),1(add/sub) 3(mult),1(add/sub) 4(mult),1(add/sub)
Finite Impulse Response Filter 3(mult),1(add/sub) 2(mult),2(add/sub) 4(mult),2(add/sub)

Bandpass Filter 2(mult),1(add/sub) 2(mult),2(add/sub) 4(mult),2(add/sub)
AutoRegressive Filter 3(mult),1(add/sub) 4(mult),1(add/sub) 4(mult),1(add/sub)

Table 4: Optimal Resource Configuration for the Benchmarks [3]
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DSP Filter Latency Power(mW)
Execution Time

Constraint Solution
Elliptic Wave Filter 16 300 55 52.83

Infinite Impulse Response Filter 18 520 62 60.42
Finite Impulse Response Filter 30 460 68 59.23

Bandpass Filter 10 600 25 11.7
AutoRegressive Filter 24 580 70 54.9

Table 5: Comparison of Power and Time of execution for the benchmarks[3]

Figure 14: Depiction of the search time with the Number of Iterations

The speed of execution and power were also compared for the benchmarks, and the results are

tabulated below:

8.2.1 Exploration Run Time and Time of Convergence of the algorithms

All of the three methods used in the Design Space Exploration process were also analyzed for the total

time taken in searching for the best design solution and the results were plotted for the case study used

in this thesis. From figure 14, it is observed that for smaller sets of data the Priority Factor method

performs better than the evolutionary algorithmic methods of analysis. The behavior of the heuristics:

The Genetic Algorithm and the Particle Swarm Optimization method is almost the same for smaller

sets of data as well.

However, as the number of iterations keeps increasing, the search space keeps getting more and more

non-linear. There may be cases of the algorithm getting stuck in the local minima as the chances of
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Iteration 10
Methods of Exploration
PF GA PSO

Variant Number (2,1,2) (3,4,2) (3,1,1)
Power (mW) 130 128.63 165

Time of Execution (msec) 132.01 100.02 80.06

Table 6: Comparison between the three methods at one particular iteration

one-to-many correspondences in the design space keep increasing too. The exhaustive search method

of the Priority Factor analysis would take a lot of time. Genetic Algorithms, although better than the

PF method, is still worse than the PSO method for bigger systems. The Particle Swarm Optimization

method, as seen from the graph in figure 15, takes the least amount of search time for larger systems that

require a higher number of iterations. The characteristics of the line depicting the PSO algorithm depends

on the position and the velocity of the particles. The velocity of the particles are further dependent on

c1 and c2: the cognitive and the social factors of the particles. On changing those parameters, we can

see that the other two lines, the ones representing the Priority Factor method and the Genetic algorithm

portray exponential time complexity whereas the PSO method is far better.

On comparing the three methods as seen in Table 6,we see that at iteration number 10, the priority

factor method is at Variant number 10, the one having Power as 130mW and Time of execution as

132msec. For the Genetic Algorithm method, it would depend on the number of chromosomes encoded

in the iterations before. Genetic Algorithms and Particle Swarm Optimization are meta-heuristics.

While the operations performed by them cannot be predicted, our simulations show that for the 10th

iteration, the resource allocation field node has (3,4,2) as the off-spring, the Power consumed by the

off-springs(the resources) was 128.63mW and the time of execution was 100.02msec. For Particle Swarm

Optimization, it was seen that the algorithm was almost near termination. Variant (3,1,1) found to be

the global best for this iteration and the power and the time were 165 mW and 80.06 msec respectively.

The time that each algorithm takes in arriving at the best solution is known as the Time of Conver-

gence. As per the analysis, the PSO takes the least amount of time to converge to a particular solution,

Genetic Algorithms, another meta-heuristic that we use in our analysis takes more time and the Priority

Factor method takes the most amount of time to reach the most optimum solution, especially if the

number of design sets (configurations) are in hundreds and thousands. This is shown in Figure 15.

In figure 16, the variation of reduction in runtime has been obtained for different benchmarks. For

complex benchmarks such as the Finite Impulse Response and the Bandpass Filter, the exploration

runtime is higher than the other filters for Particle Swarm Optimization than the other methods. Thus

for this method, the problem of the growing complexity of the design space is solved in a justifiable

period of time.

8.2.2 Quality of Search

To perform the qualitative analysis of all of the filters in runtime, the Quality of Search (QoS) method is

considered too. QoS is dependent on the total time taken by the circuit to be executed using the three
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Figure 15: Time of Convergence Vs Number of Iterations

Figure 16: Percentage Decrease in Runtime for DSP Filter benchmarks
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Figure 17: Graph depicting the quality of search Vs. the nature of the filters

Figure 18: Graph depicting the percentage improvement in quality of search for the filters

algorithms and also on the power consumed by all of the functional units in the system. In [16], the

authors compare the quality of their heuristic in terms of the cost. For Particle Swarm Optimization,

the QoS is much better than the other two methods of searching the design space as can be seen from

Figure 17: As seen in the figure, both the heuristics have almost the same performance for all of the

filters. Since the PF method takes longer to reach the most optimal set of solutions, especially for an

increased number of rounds, the Quality of Search of this algorithm is lower than the other heuristic

methods.The percentage improvement in Quality of Search is shown in Figure 18
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Chapter 9

Conclusion and Future Work

A comparison was made between the three methods for a rapid and a detailed design space exploration.

The main objective of solving a multi-knapsack problem was to design the system in a way such that

minimum resources are used. The power consumed by all of the functional units and the execution time

needs to be within the constraints. In the first approach used, the Priority Factor Method, all of the

resources were arranged in terms of their decreasing priority factors of Power and Time of execution. This

lead to the ordering of the design sets. After this was accomplished, an exhaustive search determined

the most efficient design set could be found that consumed power less than the maximum power used as

a constraint and also had an execution time less than the constraint. Since this process uses exhaustive

search, it isnt very profitable for larger design spaces. Here, we had only 24 sets of the possible design

variants that needed to be searched. However, for larger applications, where we may have thousands

of configurations, the priority method would take eons of time to accomplish this task. Thus other

heuristic methods were considered for solving this multi-objective optimization problem. The most

widely researched algorithm was the Genetic Algorithms [9]. The most optimum set of design constraints

obtained from the Priority method were used to make a data flow graph. This DFG was used for

chromosome encoding. The chromosomes consist of two types of substrings: Node Field Substring and

the Resource Allocation Substring. The Node field substring portrays an ambiguous representation

of the final schedule. It is used to encode a list of tasks that need to be scheduled and the resource

allocation substring denoted the number of functional units required at each time step of the DFG. Two

main operations of Genetic Algorithms, namely, the crossover and mutation operations were discussed.

They were used to find the off-springs that had a fitness function better than the parent population.

Nevertheless, Genetic Algorithms, come with their own drawbacks. Like the priority factor method,

these too, take up a lot of time to reach a conclusion. A major drawback with using this method of

solving the optimization problem is that the computer only recognizes the fitness function and does its

analysis according to that. The output, however, may not be a feasible solution in terms of a realistic

engineering problem. And so, this method isnt very reliable. Particle Swarm Optimization has been

proved, time and again [16, 17] to be a better metaheuristic in solving the optimization problems. In case

of Particle Swarm Optimization, three particles were initialized with zero velocities. One of them had
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the minimum number of resources, one had the maximum and the third particle had resources that were

the average of the other two. The fitness of all of these particles was found, the particle with the least

fitness became the global best particle for the next iteration. The position and velocities were updated

accordingly in the next round. This algorithm goes on until it reaches the desired resource set or if the

number of iterations to be performed are done. One major complication faced by all of these algorithms

is that of overlapping regions. The concept of Stability in Competition is used to overcome this problem

and help the search get out of the overlapping domains. Of all of the methods analyzed, the Particle

Swarm Optimization was found to be the best in searching for the best possible sets of resources helping

in bridging the gap between the ESL to the RTL in the shortest period of time.

9.1 Future Work

Today there are a bunch of applications that require the best performance in the shortest period of time,

that also consumes minimal power. These two parameters, although contradictory, are both extremely

important for all of these applications. The research in this domain is ongoing. There are various

heuristics being developed that perform the exploration process. These algorithms may help in lowering

the number of the sets of configuration that need to be analyzed. As a result, this would lead to a shorter

search time and help in finding the best solution faster. This will not only be more time efficient but also

cost efficient for the manufacturer. In our analysis, only power consumption and time of execution was

considered. There is still scope for improvement in other aspects such as temperature and reliability,

which havent been examined much earlier.
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