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Abstract
PRELIMINARY SAILPLANE DESIGN USING MDO AND MULTI-

FIDELITY ANALYSIS

Chris V. Pilcher
Master of Applied Science
Graduate Department of Aerospace Engineering

Ryerson University

2011

A multidisciplinary design optimization (MDO) strategy for the preliminary design of a sailplane has been
developed. The proposed approach applies MDO techniques and multi-fidelity analysis methods which
have seen successful use in many aerospace design applications. A customized genetic algorithm (GA)
was developed to control the sailplane optimization that included aerodynamics/stability,
structures/weights and balance and, performance/airworthiness disciplinary analysis modules. An
adaptive meshing routine was developed to allow for accurate modeling of the aero-structural coupling
involved in wing design, which included a finite element method (FEM) structural solver along with a
vortex lattice aerodynamics solver. Empirical equations were used to evaluate basic sailplane
performance and airworthiness requirements. This research yielded an optimum design that correlated
well with an existing high performance sailplane. The results of this thesis suggest that preliminary
sailplane design is a well suited application for modern optimization techniques when coupled with,

multi-fidelity analysis methods.
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Chapter 1

Introduction

Aircraft design is a complex process involving many disciplines and design criteria. The traditional design
approach uses teams of experts from each discipline to collaboratively develop a design which meets
the required goals [1]. Typically designers rely on years of past experience as well as empirical or
statistical methods developed from previous projects. This process has been successful in many aircraft
designs however; it can be a time consuming and costly endeavour. Multidisciplinary-design-
optimization (MDO) has been successfully shown as an alternative design approach when dealing with
extensive disciplinary coupled and complex problems [2] [3]. Sailplane design is an example of a complex
design process despite the absence of a propulsion system. Instead they rely on a highly efficient design
to maintain flight. Sailplane efficiency is usually based on the ability of a sailplane to glide as long and as
far as possible [4]. These two design goals are most influenced by the aerodynamic efficiency and the
weight of the sailplane and therefore a sailplane with a very high lift VS drag ratio and a low mass is
desired. Consequently the most influential disciplines in sailplane design become the aerodynamic and
structures disciplines. The strong dependence on both of these disciplines presents a challenge as they
are also highly coupled and often exhibit conflicting impacts on a design. This can lead to problems
when conducting disciplinary analysis using low fidelity methods which, are often defined by relatively
few variables [5]. Since low fidelity conceptual design approaches are defined by only a few key
quantities, it becomes increasingly difficult to model highly coupled disciplines that themselves are
linked by many variables. For this reason higher fidelity analysis methods are adopted into MDO
problems to better handle disciplinary coupling [6]. However, the use of high fidelity analysis methods
can significantly increase the computational requirements and convergence time. Thus it is beneficial to
utilize higher fidelity methods in disciplines that have a sensitive impact on the objective function of the
optimization problem, while sticking to lower fidelity methods in less influential disciplines. Aside from
analysis approaches, another consideration in the formulation of an MDO problem is the choice of a
suitable optimization method. Several methods exist each with their own merits, but their effectiveness
depends on the type of problem. Two main classes of optimizers are deterministic and stochastic

methods which are further explained in Chapter 2.



1.1 Research Motivation & Objective

Though modern optimization techniques have been used in several aerospace applications they have
not been widely used for sailplane preliminary design. As will be seen later in the literature review
section of this thesis, the majority of work considering sailplane design optimization has been focused
on low fidelity conceptual designs, or more detailed work on specific components of sailplane design.
Therefore the objective of this work was to apply modern MDO along with multi-fidelity analysis
methods to a preliminary sailplane design case. This work aims to demonstrate the validity of modern
MDO techniques and multi-fidelity contributing analysis methods for preliminary sailplane design by

achieving optimum deigns with comparable performance to existing high performance sailplanes.

1.2 Literature Review

This section will first give a brief history on the advancements of sailplane design and describe some of
the designs that have helped create the modern sailplane. This will be followed by a summary of recent

work in aircraft and sailplane design optimization.

In the late 19" century the first successful gliding flights were performed by Otto Lilienthal. Lilienthal
developed a glider from which the pilot hung and was able to launch from hill tops and glide several
meters seen in Figure 1.1. The glider was an extremely light design which used external bracing to
support a very thin wing. This design provided a slow forward speed and a minimum sink rate of about 1

m/s with a maximum lift VS drag ratio of approximately 6 [7].



Figure 1.1 Lilienthal Glider [7]

The next fundamental advancement in gliding flight came with the preliminary testing conducted by the
Wright brothers in the early 1900’s. The Wright brothers developed the concept of control surfaces on
early non powered prototypes of their famous Wright flyer. This was the first time that an aircraft was
controlled by changing the geometry of the sailplane rather than shifting the center of gravity as done
with hang gliders. Since the Wright brothers also started the movement of powered flight around this
time sailplanes were not focused on for over two decades until the 1920s. It was in this time that post
First World War Germany began developing sailplanes after they were forbidden to develop powered
aircraft as a result of the Treaty of Versailles. It was during this period that aerodynamics was identified
as the main influence over sailplane performance. Additionally, the concept of thermal soaring was
explored when it was found that sailplanes could benefit from rising air currents. The Vampyr, seen in
Figure 1.2 was a design from this era that started to push sailplane flight endurance from minutes into

hours.



Figure 1.2 Vampyr Glider [7]

Further progress in sailplane development was sparked by annual sailplane competitions in the Rhon
Mountains that by the outbreak of the Second World War saw sailplane ranges approaching 500km and
their glide ratios nearing 30 [7]. Once again sailplane development slowed during the Second World
War, but the huge leap in aerospace technology that came from the war showed great potential in
sailplane development. The introduction of laminar flow airfoils such as the NACA-6 series fuelled a
movement towards smooth surfaced construction materials in sailplane design. In the late 50’s and early
60’s the Ka 6 seen on the left in Figure 1.3, was the most successful sailplane design which, was still
primarily wooden but was able to partially take advantage of laminar flow. The next big leap in sailplane
design came with the introduction of the Eppler airfoil sections. These were developed specially for
sailplanes and could benefit from the advancements in fibreglass construction also occurring at that
time. It became possible to construct strong lightweight structures with sufficiently smooth lifting
surfaces that could take advantage of laminar airfoil sections. The Phoenix sailplane on the right of
Figure 1.3 was the first to take advantage of these advancements and, in 1957 and was able to achieve a
glide ratio of 40:1 [8]. Furthermore, in the 1950’s sailplane classes were introduced to handle the wide
variety of designs used in competitions. The classes included: an open class, 15 m wingspan class, 18 m
wingspan class and a standard class. The standard class is essentially the same as the 15 meter wingspan

class however, lift enhancing devices are prohibited [9].



Figure 1.3 Ka 6 (left) Phoenix (right) [7]

By the early 70s carbon fibre composite materials were entering into sailplane designs, the first being
the SB-10. It was this advance in materials that allowed the massive 29 m wingspan SB-10 to be the first
sailplane to reach a glide ratio over 50 [8]. The most modern advances in sailplane design have come
with the development of composite materials allowing for larger wingspans and aspect ratios. The
highest performance sailplane to date is the eta seen in Figure 1.4 which has a wingspan of 31 meters

and an aspect ratio of 51 allowing it to reach a maximum glide ratio of 70 [7].

Figure 1.4 eta [7]

There have been many successful applications of design optimization techniques to aircraft design
problems. These applications cover a wide range of approaches depending on the optimization

strategies and the fidelity of the analysis methods. The levels of fidelity related to optimization



problems have been defined for structural and fluid analysis by Bartholomew [10]. Bartholomew divides
the fidelity of an analysis tool into 3 levels. The first level includes low fidelity analysis based on
empirical equations. In the second level, basic structural beam theory, and vortex panel based
aerodynamics solvers are covered. Finally the third level encompasses high fidelity finite element
analysis and computational fluid dynamics methods for structures and aerodynamic analysis
respectively. The majority of aircraft design optimization applications have been regarding conceptual
design optimization which use low and sometimes intermediate fidelity analysis such as the work by
Neufeld et al. [11]. In this work, a multidisciplinary design optimization for the conceptual design of
regional commercial aircraft considering uncertain contributing analysis was conducted. The results of
this work showed that in some cases, low fidelity analysis methods can introduce a measure of
uncertainty into the optimization results. It was found that the optimum designs seemed feasible until
subjected to more detailed analysis. This doesn’t mean that low fidelity analysis methods provide
inaccurate results; it has instead been described by Giesign and Barthelemy as a lack of assurance that

the results properly simulate reality [12].

In the last decade the increases in computational power have driven the use of higher fidelity analysis
tools in design optimization [12]. It is now much more practical to embed some forms of higher fidelity
analysis within an optimization scheme as done in references [5], [13], and [14]. In these three works,
aircraft wing optimizations were conducted using combinations of low, intermediate and high fidelity
analysis methods. It is clear from their results that complex tasks such as wing design may require some
higher fidelity analysis tools to provide reliable and practical results. This is most prevalent for the
aerodynamic and structural coupling involved in wing design which often requires more detail than low
fidelity methods can provide. Furthermore, if the designer wishes to aim for a preliminary design

optimization, higher fidelity methods must be considered.

With regards to optimizer choice it was found that genetic algorithms (GA) and sequential quadratic
programming (SQP) approaches have both been successfully applied to aircraft design optimizations. It
was discovered that gradient based strategies such as (SQP) were preferred in some cases [5], [15] as
they tend to provide quick solutions if the problem is smooth enough for a gradient optimizer to operate
effectively. However, GAs have also proven to be an efficient technique in several previous works [1],

[16], [17] and [18] where a more robust strategy was required.

Research revealed that sailplane optimizations have been conducted in the past; although, they have

mainly been focused on basic conceptual designs or on specific components such as aero/structural

6



wing design. In the late 1980s a low fidelity simultaneous optimization for sailplane design and flight
trajectory was conducted by Kawamura and Suzuki [19]. This work concluded that sailplane design, as
with many complex systems, involves extremely coupled design criteria that cause significant tradeoffs
depending on the optimization objective. Also in the late 80s, an integrated aero/structural sailplane
wing design was conducted by Grossman et al. [20] in which low and moderate fidelity analysis methods
were used to model the aero/structural interactions of a sailplane wing for a given flight mission. In their
approach, lifting line theory and structural beam modeling methods were used to determine the
deformed wing planform characteristics and their effect on the aerodynamic performance of the wing.
This work further demonstrated the need for integrated or MDO analysis in sailplane design. With the
growing use of modern analysis techniques, a few more sailplane design problems have been addressed
in literature. The optimization of sailplane winglets and sailplane wing/fuselage combinations were
conducted by Maughmer and Boermans et al. respectively [21], [22]. These two papers further

demonstrated the importance of an efficient aerodynamic design for an unpowered aircraft.



Chapter 2

Design Optimization

The term optimization has been described as a process in which the inputs to a problem are adjusted to
determine the minimum or maximum output [23]. The process of optimization is a very old aspect of
mathematics dating back to the advent of calculus at which time it was used to determine the extreme
values of simple functions [5]. The more modern technique called design optimization uses
computational methods to determine the best possible design for a given objective or set of objectives
in the most effective and efficient way possible. The objective function of a problem is represented as a
mathematical function that is then minimized yielding the optimum result based on contributing design
variables and analysis. However, when searching for practical optimum designs, constraints are often
required to ensure that the optimum design is feasible. Therefore, constraint functions are added to the
problem to keep the optimum design within set limits. Search boundaries are also added to the design
variables to avoid impossible or impractical design variable selections, for example, negative material
thicknesses. In the event of a constraint violation a penalty function is set in place to penalize the
objective function helping keep the optimization out of infeasible design space. A general formulation
for constrained optimization problems is shown in by equations 2.1-2.3 where f;, represents the non-
penalized fitness value and P is the penalty function vector. g;(x) represents the normalized constraint

function vector, g,ctuq 1S the constraint parameters calculated value and, g, ;mir is the constraint limit.

Minimize f(x) = f, + Z p (2.1)
If gi(x) <0:P, =0 else: P, = g;(x) * fy (2.2)
_ (Yactual (2.3)
i =|l—--1
9:(x) <gLimit )



2.1 Optimization Algorithms

The optimizer of a design optimization problem controls the problem by choosing sets of design
variables and monitoring their impact on the objective function of the problem. Several optimization
strategies exist and use a variety of techniques for searching for optimum designs. The two predominate
methods are deterministic and stochastic and of these two methods the most used are the sequential
guadratic programming and genetic algorithm approaches. The SQP optimizer method uses a gradient
based strategy to move from a starting point in the direction of steepest slope. Similar to Newton’s
Method, a sequence of one dimensional optimizations involving quadratic approximation functions
representing the objective and constraint functions are solved recursively until an optimum solution is
found. A drawback of this method is its reliance on gradient information that is typically calculated using
finite differencing when analytical means are not possible. As a result, sufficiently smooth objective and
constraint functions are required to ensure accuracy when calculating the gradient information.
Furthermore, gradient based optimizers are susceptible to finding local optima as they do not explore
the entire solution space [6], [24]. Despite some of the fallbacks of SQP it has been widely and
successfully used for optimization problems with non-linear constraints [24]. GA’s are optimizers based
on evolutionary theory and operate by selecting an initial population of randomly selected design
points. This type of optimization scheme tends to be less computationally efficient but is generally more
robust when dealing with non-smooth functions [5], [25]. In addition, GA optimizers have shown
desirable performance in complex aerospace related optimizations from hovercrafts to unmanned aerial
vehicles [16], [17]. For this thesis a sailplane optimization with many variables and a non-smooth
objective function was conducted and therefore a GA optimizer was chosen over a gradient based

method.

The optimizer used for this work was based on the GA available in the commercial technical computing
software package MATLAB. However, the default GA available in MATLAB was not designed for the type
of optimization problem conducted for this thesis, and therefore was customized to better manage the
problem at hand. Evaluations of the default MATLAB GA identified several issues when applied to the
sailplane problem that lead to the development of the custom GA. The main issue with the MATLAB GA
was the inability to edit the source codes of the GA. This effectively made some functions of the
MATLAB GA black box functions that could not be adjusted to better suit the sailplane problem. Another

problem with the default GA was its high computation times. Several test cases were conducted using



the default GA and it was found that a sub optimization was conducted within each generation. This
meant that for a population of m designs carried over n generations, (n x m) x n iterations were
required. This led to significantly longer solution times and had no apparent advantage to the
customized GA which looped through the population once for each generation. Finally, the output
functions for the default GA were limited and therefore in the customized version a post processing
code was added to save all the results of the optimization and automatically create graphical results.

The block diagram shown in Figure 2.1 is a general formulation of the GA used in this work.

Generationl

Initial Population

h,

Fitness Evaluation

h

" &

Penalty Function

Scaling Function | N loops

ﬁf Selection

[ Mutation, Crossing ] Elite

\\'\‘9' Next Population |
v

il .y
Generation 2

L% r

il ¢ ™
Generationn

L ’

Figure 2.1 Genetic Algorithm Block Diagram

As can be seen in Figure 2.1 a GA mimics the evolution process by subjecting a random initial population

to a fitness evaluation to determine the best, or elite designs based on the objective and constraint
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functions. Designs that violate constraints are penalized using a penalty function. This used to ensure
that poor designs are given poor fitness values and thus less likely to survive in subsequent generations,
similar to nature in which the strong survive to pass on their superior genes. The procedure for choosing
a subsequent generation of designs is handled through crossover and mutation. Crossover takes the
high fitness designs and merges them to form children designs from two or more parents; this is done to
mimic the breeding of superior individuals. Mutation is a process in which random changes are made to
designs to allow more diversity and search more areas of the design space, giving every point in the
design space a chance to be explored [25]. This process is useful as it helps avoid convergence to a local
optimum point by pushing some designs away from main search direction. The selection, crossing and
mutation processes are then repeated for a specified number of generations until an optimized solution

is found. A detailed description of the GA that was used in this work can be found in Chapter 3.

2.2 Multidisciplinary Design Optimization

MDO has been described as a methodology that can be used for the design of complex systems in which
coupling between disciplines exists [5]. This makes MDO a valuable tool for aerospace related design
tasks as they are generally complex problems incorporating several disciplines and many design criteria.
The term disciplinary coupling refers to a condition in which the output of one discipline is required for
the input of another. To handle this coupling Multi-Disciplinary Analysis (MDA) packages are developed
to pass the required information between disciplines until convergence is achieved. An example

showing the MDA package used in this work which includes three disciplines is shown in Figure 2.2.
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Figure 2.2 Multi-disciplinary Analysis package

Figure 2.2 shows the analysis package for the sailplane optimization in which aerodynamics/stability,
structures/Weights and balance and, performance/airworthiness disciplines are considered. The figure
also shows how each discipline is connected to the other two by the input and output values. For this
reason, MDA packages are organized in a loop that passes the data between the disciplines until the

entire analysis package converges within a set tolerance.

Once the optimizer and analysis package have been chosen a suitable optimization strategy can be
selected. The MDO structure is responsible for governing the overall optimization process by connecting
the optimizer to the MDA package and relaying information between the two. There are several MDO
architectures capable of handling coupled optimization problems. The Multi-Discipline Feasible (MDF)
method is the simplest and earliest technique. It is also very commonly used for a wide variety of
engineering problems. This method was first introduced in 1994 by Cramer et al. [23]. MDF is considered
a black box approach to an optimization problem in which the optimizer controls only the design
variables and the MDA package handles all the analysis disciplines [23]. This method requires the MDA
loop to be solved for every change in design variables and often requires several iterations within the
loop before convergence between the disciplines is achieved. A block diagram of the MDF method is
shown in Figure 2.3. The objective function f and the constraint function g are defined by three types of

variables. The global variables denoted as z are used in all the disciplines, the coupling variables are

12



denoted as y, and the local variables only used in a single discipline are denoted as x. Since this method
can require several iterations of the MDA package for each change in the design variables it is
considered a more time consuming method than other techniques [26]. However, this more time
consuming approach has proven to provide accurate results in many cases [27]. Furthermore, the MDF
method has been widely and confidently used in many design optimization applications. Therefore the
MDF method was chosen for this work as it served as a reliable and simple platform for evaluating the
effectiveness of using multi-fidelity analysis methods to handle heavily coupled disciplinary analysis

modules.

—» Optimizer
f(z,y(z,y,x))
g(z,y(z,y,x)) z, X

h 4

Multidisciplinary Design Analysis

Discipline 1 l
A
Discipline 2
\ 4
T Discipline 3

Figure 2.3 Multi-Disciplinary Feasible Method
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Chapter 3

Analysis Modules and Functions

This chapter will explain the structure of the MDO framework developed for this thesis by breaking
down the various functions and analysis packages. As stated in Chapter 2, a customized version of the
MATLAB GA was implemented along with the MDF architecture for the sailplane optimization. Also one
of the objectives of this work was to demonstrate the benefits of using multi-fidelity analysis methods
within MDO problems. Therefore, a combination of high, moderate and, low fidelity methods were used

for the disciplinary analysis modules and will be explained in this section of the thesis.

3.1 Custom Genetic Algorithm

As mentioned in Chapter 2, there were several aspects of the default MATLAB GA that were not
desirable for the problem in this thesis. However, some of the sub-functions of the default GA were
used in their original form. Therefore, the customized GA was developed to maintain compatibility with
some of the existing MATLAB functions while, literature was used as a references to determine the
various options to best suit the sailplane optimization [28]. As was shown in Figure 2.2, the GA is made
up of several sub-functions that are used to evolve one generation into the next. The first task of a GA is
to generate the initial population which can be conducted in different ways. Two common techniques
include, a randomly distributed method which takes points randomly across the entire design space or,
a Gaussian distribution method that is taken from one or more starting points. The second method was
used in this work as it was found to provide a faster solution if a good starting design was chosen. The
next step of a GA is to perform a fitness evaluation on the population. Since the sailplane problem was a
constrained optimization, the constraint functions were also calculated at this step. The objective
function for each design is first calculated in absence of the constraint functions to determine the non-
penalized value and then adjusted based on any constraint violations. Research regarding penalty
functions was undertaken to determine a suitable method for this problem and several techniques were
discovered. The fundamental technique is to eliminate any design that violates a constraint called the

“death penalty”. This approach guarantees that only feasible designs survive, yet, its strict approach can
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lead to problems. For instance some constraints may be of less importance, and promising designs that
would be considered worth keeping could be slightly violating one of these constraints. Another
approach is based on the total number of constraints violated regardless of the magnitude of the
violation. This approach was avoided as it could allow a design to survive if it only violated a single
constraint even if it was a critical constraint or a large violation. Finally, a more effective method was
identified in which penalties are determined based on the extent of a constraint violation. This type of
penalty function is preferred as it incorporates a dynamic aspect in which the penalty increases
proportionally with the magnitude of constraint violation [29]. This was the method chosen for this
thesis, as was shown in equations 2.2 and 2.3. In the event of a constraint violation the objective
function is increased based on the percentage of the violation ensuring that slight violations are only

slightly penalized while large violations receive heavy penalties.

The next portion of the GA is the scaling function which is used to rank the designs before a selection
process determines the designs that will survive into the next generation. The main ways to control the
scaling are based on absolute and relative performance. The absolute method scales the individuals
based on the objective function values directly; whereas the relative method determines the overall
performance of a design relative to the average of all the designs. The default MATLAB GA has an
existing function for scaling the designs based on their relative performance, which was maintained in

the customized GA.

For the selection process a few methods available as sub-functions of the default MATLAB GA were
considered. The responsibility of the selection stage is to determine the parent designs for the next
generation. The three methods that were considered are as follows: the Roulette method, Stochastic
Uniform selection and, the Tournament method. In the Roulette and Stochastic Uniform approaches, a
uniform random number generator is used to select individuals and the probability that an individual
will be selected is proportional to its objective or (fitness) value. The fitness values are normalized such
that the sum of the overall fitness value is one, as shown by equations 3.1 and 3.2. The designs are then
arranged in a line adding up to a total length of one, such that designs with higher fitness values span a
larger portion of the line.

Mpop (3.1)

fam = ) f
i=1
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Where foum, Npop » fi and, f; represent the sum of all fitness values, the number of individuals in the

population, the fitness value on an individual and, the normalized individual fitness value respectively.

Up until this point the Roulette and Stochastic Uniform methods follow the same process however, the
two methods are different with regards to the final selections process. In the Roulette selection process
a random number between 0 and 1 is selected and located on the line of designs in turn indicating the
design that will be selected, shown in Figure 3.1(a). This process is then repeated for the total number of
parents denoted by n,g, . In the Stochastic Uniform method a starting point is randomly selected and
the step size § is calculated using equation 3.3. The line is then uniformly distributed based on the step
size, shown in Figure 3.1(b).

1 (3.3)

§= ——
(npar + 1)

w

n parents

W

n parents
S

fa

(a) Roulette (b) Stochastic Uniform

Figure 3.1 Roulette and Stochastic Uniform Selection Methods
Seen in Figure 3.1(a) the randomness of the parent selection for the Roulette method could lead to
certain individuals being skipped and in rare cases high performing designs could be neglected. This
problem can be mostly avoided by using nonlinear scaling on the fitness values to ensure good designs

span a much larger portion of the selection line, or by adjusting the number of parents to be selected.
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On the other hand, Stochastic Uniform selection will always select designs that have a normalized fitness

value that is greater than the step size.

The Tournament method operates by selecting subsets of the population and then selecting the best
individuals from each of the subsets. This method does not require the scaling process that the two
previous methods rely on; but, selecting an appropriate size for the subsets can be critical to achieving
the best results. A survey of literature regarding this issue identified 4 individuals in each subset as the
most common choice, although, larger subsets provide a better likely hood that high performing
individuals are chosen. This method has been shown effective when a large population is being used, as
it avoids the time consuming sorting and scaling step, though, this advantage is less noticed as problems
increase in complexity [28]. A comparison case was conducted to test the three selection methods
against each other and the Tournament method was identified as the best choice for this work. The

results of this comparison are shown in Appendix A.

The next step of the GA involves three separate processes: Elite selection, Crossover and, Mutation. Elite
selection simply selects a predetermined amount of the best performing individuals from the population
and passes them through to the next generation. This is done to guarantee that the best individual of a
generation will at least be equal to the previous generation and not worsen as the optimization moves
forward. The Crossover process is performed to mimic breeding by combining the genes from two
parents to generate children. A few Crossover techniques are available within the MATLAB environment.
The most common method is the single point method in which the variable vectors of the parents are
split at a single point and the portions of the design variable vectors are swapped creating two new
children designs. MATLAB includes a double point method as a slightly more advanced technique in
which the same process as the single point method is conducted however, a second split is made in each
vector and in turn more children designs can be formed. A third method called scattered crossover, is
operated based on a randomly generated binary vector with the same length as the design variable
vectors. A child is then formed by replacing the ones in the binary vector with the respective design
variable from one parent, and replacing the zeros with the corresponding design variables from the
other parent. This method was chosen for the thesis as it provides the most diversity of the three

methods considered.
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The Mutation step of a GA is used to provide genetic diversity by means of altering one or more of the
design variables of an individual. This can be done in a variety of ways depending on the distribution
function used. A common technique is to use a normal distribution to create children near an existing
design. The variance can then be adjusted to widen or tighten the search radius. This technique can lead
to problems if the variance is not carefully chosen as was found to be a problem with the MATLAB
mutation function. It was observed that if a design variable was close to one of its boundaries the
mutation function in MATLAB would occasionally push the variable outside the boundary leading to
infeasible designs. In certain cases this problem caused material thicknesses to be forced negative,
which in turn caused the structural solver to crash. Adding to the problem the MATLAB GA would also
occasionally select the infeasible designs and continue them on to the next generation leading to slow
and inaccurate convergence. For this reason a condition was added to the default mutation function
that checks the design variable boundaries and in the event of a violation forces the variable back into
the feasible region. The modified Gaussian mutation function used in this work can be found in
Appendix A. Two parameters are also required for the mutation step, the scale and shrink factors. The
scale factor is used to control the standard deviation of the mutation in the first generation, which is
equated by multiplying the scale factor by the range of the initial population. The shrink factor is used to
control the rate at which the average amount of mutation decreases from generation to generation.

This is added to reduce the scatter of individuals as the solution nears the minimum value.

The default MATLAB GA includes several options for displaying results as the optimization is carried out,
unfortunately, there lacked an efficient way to track the population data of each generation. Especially
when debugging, it is useful to monitor each individual of a population and observe the various selection
and genetic processes as they are applied to the designs. To assist in this, a function was created that
stored the data from each generation so that it could be reviewed afterwards and used in the post
processing of the results. This was also used to help visualize the progress of the designs and identify the

most influential design variable changes with regards to achieving a better fitness value.

In summary it should be noted that although some aspects of the MATLAB GA have been altered to
better suit this thesis, the customized GA is still heavily dependent on many of the original functions
available in the MATLAB environment. Therefore the development of the custom GA should not be
regarded as a major contribution of this work, rather just a necessary step to better manage the

problem at hand.

18



Although the customized GA used in this work is still very dependent on the MATLAB GA, validation was
conducted to ensure the custom approach operated properly. This was also conducted to determine if
the changes made to the default GA provided any benefit to the results. To accomplish this, the
Rosenbrock function shown by equation 3.4 was used as a comparison test function.

hi(x,y) = (1 —x)? + 100(y — x2)? (3.4)

1500

1000

Figure 3.2 Rosenbrock function

The Rosenbrock function has its global minimum at (1, 1), surrounded by an area with a very low
gradient. This function is useful for demonstrating the advantage of a GA over gradient based
optimizers. While a gradient based optimization algorithm will converge in areas with low gradients it is
very likely that it would take considerably more iterations than a GA. A summary of the options and
conditions, used for the test, are given in Table 3.1. The MATLAB GA with the default Gaussian mutation
function was compared to the customized GA and its modified Gaussian mutation function using the

Rosenbrock function as a test problem.
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Table 3.1 Genetic Algorithm Test Case Settings

Criteria Rosenbrock with MATLAB  Rosenbrock with Custom
GA GA

Generations 20 20

Population 100 100

Selection Tournament Tournament

Tournament pool size 4 4

Mutation Gaussian Modified Gaussian

Elite count 2 2

Crossover fraction 0.5 0.5

Scaling 0.2 0.2

Shrink 0.9 0.9

x variable boundaries [0,2] [0,2]

y variable boundaries [-1, 3] [-1, 3]

The results for the MATLAB GA are shown in Table 3.2 and Figure 3.3(a) and the custom GA results are
shown in Table 3.3 and Figure 3.3(b). Comparing the results shows that the custom GA took a more
gradual approach towards the solution, taking 10 steps until the converged solution was found in the
18" generation. On the other hand the MATLAB GA took only 3 steps as seen in Table 3.2, meaning that
it found a solution very close to the optimum point in the first generation. This however does not mean
the MATLAB GA preformed better, in fact its optimum solution had an error term an order of magnitude
higher than that of the custom GA. The difference in steps taken by the two optimizers was simply a
factor of the random selection of points in the first generation. A more critical difference between the
two approaches can be seen in the graphical results. The white dots on each of the plots represent the
1% generation of points, the purple dots show the 10™ and, the final generation is shown by the black
dots. The custom GA follows a very expected pattern in which the dots gradually cluster towards the
global minimum and are all within the feasible region or on the constraint boundaries. This trend is not
as gracefully followed by the MATLAB GA, which is due to its mutation method. It can clearly be seen
that the MATLAB GA stayed within the specified variable boundaries for the initial population. In
contrast, the 10" generation shows that there are several individuals beyond the boundaries which
seem to be diverging from the optimal solution. This is a result of the Gaussian mutation algorithm
neglecting the design variable limits when creating the distributions for the mutations. Adding to this
problem, the optimizer occasionally selects one or more of these outlying points to progress into the
next generation leading to a less accurate solution. This was identified as an issue with the default GA

when applied to the sailplane problem and was the main reason for developing the customized version.
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Table 3.2 Rosenbrock Function Optimization Results for MATLAB GA

Generation X y hi(x,y)
1 1.0418 1.09582  0.01290
16 1.0431 1.0868 0.00202
18 1.0416 1.0868 0.00199

Table 3.3 Rosenbrock Function Optimization Results for Custom GA

Generation X y hi(x,y)
1 1.1057 1.1879 0.13076
2 0.9753 0.9170 0.11107
3 0.9632 0.9170 0.01076
9 0.9660 0.9421 0.00907
12 0.9622 0.9178 0.00746
13 0.9942 0.9946 0.00381
14 1.0277 1.0529 0.00182
15 0.9969 0.9905 0.00114
16 1.0085 1.0201 0.00096
18 1.0086 1.0165 0.00013

Generation 1
+ (eneration 10
+ (Generation 20

g

g

Fig 3.3(a) MATLAB GA Fig 3.3(b) Custom GA

Figure 3.3 Rosenbrock Function MATLAB Vs Custom GA Results Comparison
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3.2 Variable and Parameter Updating

The sailplane optimization conducted for this thesis was defined by a large number of parameters and
design variables. To help manage this, a system of structured variables was created that organized the
parameters and variables in a hierarchal way similar to a file path system, as shown in Figure 3.4.
Arranging the data in this format allowed for entire sets of defining information to be passed between

functions as a single variable.

ac
| [ .
wing Htail WVtail fuselage
span taper offset chord
|
[ ] 1
Lct J[ec2 J[ |

Figure 3.4 Structured Variables System

Figure 3.4 shows a small fraction of the sailplane definition variable demoted as “ac” which can easily be
managed despite it consisting of many variables and parameters. As an example, to access the wing

chord length at the root of the wing, the variable would be: ac.wing.chord.c1.

Not only does this portion of the optimization organize and store all of the variables, it also is
responsible for updating them. When the GA chooses a set of design variables for an individual design,
the vector is sent into the update function and the rest of the data needed to generate the model is
calculated. Furthermore, as a design is processed in the MDA loop the update function makes the
changes to the designs that occur during the iterations until convergence is achieved. After the
evaluation of an individual, the data is cleared to a default case and the process is repeated for the next

design.
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To help reduce the total number of design variables needed to define the sailplane problem, specifically
the wing box thickness variables, two decay factors were introduced. The roll of the decay factors was to
define the rate of exponential decay for the wing box component material thicknesses. The first decay
factor was responsible for controlling the rib thickness as a function of the wing span b and the thickness

of the rib at the root of the wing box. The rib thickness was then defined as:

trip(b) = toppe~P/4) (3.6)

Where ty,;p and d; are the wing box root rib thickness and the decay factor variable respectively. The

second decay factor was used to control the decay of the spars, flanges and stringers:

t(b) = tye(~b/d2) (3.7)

Where t; represents the root thickness of the respective wing box component and d, is the decay
factor. With this formulation the rate of exponential decay is increased with decreasing values of the
decay factor. A condition was added to limit the thickness values to a reasonable minimum value to
avoid unrealistically thin material thicknesses. This approach allowed for several parameters of the wing

box to be expressed using only two variables, the respective root thickness and a decay factor.

3.3 Aerodynamics and Stability Analysis

The aerodynamics solver used for this thesis is a vortex-lattice solver called the Athena Vortex Lattice
program (AVL) along with a component breakdown parasite drag approximation based on methods
established in [30], [31]. The vortex lattice program was chosen because it is a faster and easier method
to implement into design optimization than methods such as, Computational Fluid Dynamics (CFD), and
still provides a suitable degree of accuracy and flexibility for the early stages of design. Additionally, this
type of approach has seen successful use in many recent aerospace optimization problems for both
conceptual and preliminary designs [11], [32], and [33]. The AVL program extends the capabilities of 2D
aerodynamic solvers as it has the ability to calculate the lift distributions of finite lifting surfaces. This is
achieved by employing an extended vortex lattice model for the lifting surfaces and a slender body
model for the fuselage. Furthermore, a dynamic flight analysis can be modeled using a full linearization

of the aerodynamic model combined with user specified mass properties [34]. The aerodynamic analysis
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is conducted by applying horseshoe vortexes on each of the panels that make up a lifting surface. The
Biot-Savart law is then used to determine the fluid velocities along with a boundary condition enforcing
that the flow field may not flow through the lifting surfaces [35], [36]. AVL is considered a moderate
fidelity analysis package as it is more complex than simple empirical aerodynamic approaches but, lacks
the finer detailed analysis available in CFD packages. AVL assumes quasi-steady flow, meaning that
unsteady vorticity shedding is neglected. This translates to the assumption that any oscillatory motion
modeled must be slow enough such that the period of oscillation is much longer than the time it takes
the flow to transverse the airfoil chord [34]. However, this is not a problem for the relatively simple
sailplane manoeuvres considered in this research, namely a steady glide condition and a maximum gust

loading case simulated by a “pull up” manoeuvre.

AVL uses the classical Prandtl-Glauert transformation to treat compressibility effects by converting the
Prandtl-Glauert equation into the Laplace equation, which is then solved using the basic incompressible
method. The Kutta-Joukowsky relation is then applied to each vortex to calculate the aerodynamic
forces under the assumption of irrotationality and linearization about the freestream [34]. The validity

of this approach is gauged based on the Prandtl-Glauert factor 1/B as shown by equation 3.8.

1 1 3.8
B Ja-m?)

The Prandtl-Glauert method is considered valid for a Prandtl-Glauert factor ranging from 1-1.25 or, a
freestream Mach number M<=0.6 after which transonic flow may exist and the solution becomes
suspect [37]. For the sailplane optimization this process is a valid approach as the freestream Mach

number remains far below the limit.

The stability component of the AVL software provides static and dynamic stability coefficients that are
used to formulate constraint functions that ensure acceptable handling and flight stability is maintained.
It is also used to calculate the aerodynamic center of the sailplane along with the trim requirements for

the elevator, rudder and ailerons.

To run the AVL software three files are needed as inputs, a geometry file, a mass file and, a case file.

These three files are automatically created from the data generated in the variable and parameter
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updating function and are saved as text files. The geometry file includes the full sized model dimensions
for all the major components of the aircraft including: the wing, horizontal and vertical stabilizers and,
the fuselage. Once the geometry file is read into the AVL software the discretized aerodynamic model is

generated. An example of an aerodynamic model is shown in Figure 3.5.
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Figure 3.5 AVL Aerodynamic Model

The mass file is required for the dynamic flight analysis aspect of the AVL program. Mass and inertial
properties of each of the components of the model can be entered in separately or, the total values can
be specified. For this thesis the mass, inertial properties and center of gravity of the entire sailplane are

calculated during the data updating process and entered directly.

The final file required for the aerodynamics solver is the case file that defines the flight conditions to be
tested. To create a test case several parameters can be specified and are shown in Table 3.5. Along with
the input parameters in Table 3.5 you are able to specify either a trimmed flight or a looping flight
condition. For this thesis the trimmed flight condition was used to simulate steady gliding flight and, the
looping flight condition was used to simulate the maximum gust loading case. The specific input

parameters for each case can be found in Chapter 4.
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Table 3.4 AVL Case File Input Parameters

Variable Parameter

() Bank angle (deg)

C. Lift Coefficient

\" Velocity (m/s)

m Mass (kg)

o] Air Density (kg/m~3)

g Acceleration due to Gravity (m/s"2)
X X Position of CG (m)

Y Y Position of CG (m)

X Z Position of CG (m)

Since the aerodynamic loading of the wing is needed for the structural analysis module, the mesh of the
wing was kept as consistent as possible between the aerodynamics and structures disciplines. This
allowed for a much easier force mapping process which was done by solving the strip and element
forces using the AVL program, and then generating normalized pressure distribution splines in the chord
and span directions. Figure 3.6 shows an example of a normalized pressure distribution that was
calculated using the splines created from the AVL results. Further transformation of the normalized

pressure distribution into the lift forces is conducted in the structures module.

presswee ||
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Figure 3.6 Normalized AVL Pressure Distribution
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3.4 Structures & Weights and Balance

The structures/weights & balance discipline consists of a Finite Element Analysis (FEA) of a wing box
structure using the commercial software ANSYS and, a simple function that manages the weights and
locations of each of the sailplane components to determine their center of gravity and inertial
properties. Since the ANSYS software used in this discipline was operated in batch mode, several
MATLAB functions were created to control the processes involved in generating and solving the FEA
models. The MATLAB functions that control the structures discipline were responsible for writing the
files that define and generate the wing box model as well as giving the solution commands and
collecting the end results. The general components of an input file for the ANSYS model are shown in
Figure 3.7. As shown in Figure 3.7 the ANSYS file starts with a header in which the job name, data path,
units and, ANSYS execution options are set. Following that, the element and material properties are

specified. These two initial steps remain constant for the entire optimization;

[ Header ] however, the remaining portions of the ANSYS input file were updated for each
individual design. The key point generation in the next step is used to define the
Element &
Material wing box geometry by setting the corner points of each rib from which the rest
Definition
of the components are defined. The key point coordinates are a function of the
Keypoint design variables of the optimization and therefore are repositioned and
Generatlon
updated for each design. From the key points the areas for each of the wing box
Area
‘—"t'"t';d“ﬂ” ) components are then defined by systematically creating each area based on 4
Line Divisions J corner key points. The line divisions section is responsible for setting the
> II : element sizing parameter for each of the lines that served as edge boundaries
eshing
| to the areas. To control this, a dynamic meshing algorithm was created to
Stringer maintain the best possible mesh quality for the changing wing box geometry.
Once the element sizing is selected the wing box is meshed with the ANSYS
Force and
displacement mapped meshing option. Stringers are defined after the meshing of the areas is
BC
;|—"‘ complete, since they require nodes to be defined upon. The force and
Solver displacement information is then defined consisting of: the aerodynamic
) | . loading calculated in the aerodynamics module and, the degree of freedom
Postprocessing (DOF) constraints used to fix the root of the wing box. The solution commands

e -

J! are then given and the static FEA model is solved. Finally the post processing

Figure 3.7 ANSYS Flow stage of the structures module is used to save the required information for the
Diagram
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aerodynamics discipline.

The materials selected for the wing box are commercially available composites found in reference
[38].The majority of the wing box structure is constructed of a standard carbon fibre reinforced polymer
(CFRP) however, the stringers are modeled as high modulus unidirectional CFRP. Table 3.6 summarizes

the material properties of the two materials.

Table 3.5 Material Properties [38]

Property Std carbon fibre fabric M55 UD (modeled in fibre
weave 50% vol (fabric) direction)

Density (kg/m°) 1600 1650

Poisson’s ratio 0.1 0.3

Elastic modulus 0° (Gpa) 70 300

Elastic modulus 90° (Gpa) 70 12

Ultimate tensile stress (Mpa) 600 1600

Ultimate compressive stress (Mpa) 570 1300

In plane shear modulus (Gpa) 5 5

The standard (CFRP) composite material was not modeled as a layered laminate due to the complexity
and added computational expense it would bring. For this reason it was specified as an orthotropic
material using the ANSYS SHELL181 elements. The SHELL181 element is a simple four node element with
six DOF at each node consisting of: translations in the x, y and, z directions and rotations about the x, y
and z axes. This element type was chosen for its ability to model twist and deflection which are the
essential deformations needed for the aerodynamics model. The stringers were positioned such that
the fibre direction aligned with the wing span to increase the stiffness of the wing box when subject to
bending. To model the stringers, BEAM4 elements were used in ANSYS. The BEAM4 element has the
same DOFs as the SHELL181 element and depending on the moments of inertia specified it can be
modeled as a number of cross sectional shapes [39]. For this work ‘Z’ shaped stringers were used, more
information on the stringers can be found in Appendix A. Figure 3.8 shows the two elements used in this

thesis.
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Figure 3.8 ANSYS Element Descriptions [39]
The geometry generation as stated above is based on a set of key points that define the corners of each
wing box rib as shown in Figure 3.9. The key points are defined by their x, y and, z coordinates which are
constrained based on the airfoil shape and chord length at each spanwise location. The process was
designed such that any airfoil profile can be read in to the program and used for the model however, in
this work the airfoil was held constant. After the rib areas are created at each spanwise section of the
wing, the areas for the flanges and spars are generated by connecting the corresponding points of

adjacent rib areas.

Figure 3.9 Key Point and Rib Configuration

For accurate results in a structural analysis, element aspect ratios close to one are desired [40]. This
eliminates problems such as locking that lead to unrealistically stiff element properties. Unfortunately,
since the size of the wing box was able to change in both the x- and y-directions, a static mesh was not
appropriate. To best address this problem a mapped mesh was applied. However, two problems arise
when creating a mapped mesh for a wing box that tapers towards the tip. As the wing box area
decreases toward the wing tip, the element sizes also tend to decrease. This is not efficient for the

structural analysis of a wing which experiences less applied load toward the wing tip and thus does not
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require a refined mesh in that area. On the contrary, a finer mesh at the wing tip is recommended for
the vortex lattice aerodynamic solver, therefore a compromise was required. A second issue is that as
the wing box changes in chord length, the number of elements and thus the number of nodes must also
change. Since the stringers are defined by the chord-wise nodes, the number of stringers was also
allowed to change with the changing width of the wing box. Considering this, a dynamic meshing
routine was developed to calculate the element sizing for each design and find a compromise to best
suit both the structures and aerodynamic meshes. The first step of the mesh sizing is to determine the
number of line divisions in the wing box chord and thickness directions or the x and, z directions. This is
done using equations 3.9 and 3.10 in which the number of line divisions, A is found by rounding the

average number of divisions for opposed surfaces to find a compromise to best suit both surfaces.

Ao~ AITF/eo + AlBF/eo _ AITF + AIBF (39)
x = 2 B 2e,
z 2 2e,

Where e, and, Al denote the specified initial element size for the root rib and, the line length for which
the subscripts TF, BF, LE and, TE are the top flange, bottom flange, leading edge spar and, trailing edge
spare respectively. The average real element size & can then be calculated, which may differ from the
desired element size & especially if there are a small number of elements (a large element size or small

wing box).

Alig/A, + Altg /A, + Alpp /Ay + Alge/ Ay (3.11)
4

e =

The setup for equation 3.11 gives equal weighting for each area to have an element size as close to 1 as
possible. However, this could be changed to put more emphasis on certain areas of the wing box if

desired.

Finally the number of divisions in the y, or wingspan direction Ay; is set using equation 3.12. This
parameter changes for every segment of the wing box and is the parameter used to control the element
aspect ratio. It is set to be as close as possible to the real element size é that was calculated using

equation 3.11. There must be an equal number of y-divisions for the flanges and spars or the mapped
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mesh would be lost. Therefore the average real element size is scaled with the chord length of the two
ribs that border the segment. The distance between two adjacent ribs is divided by the average of the
two scaled element sizes. The result is a mesh that best fits the x and z element dimensions of the
bordering ribs.

b; (3.12)

Ayi = T 7 cn

' e (& + Cl_+1)

2°\¢y ¢

Where b; and c; represent the span and chord at each segment i and, ¢, represents the initial wing box
root chord length. Figure 3.10 shows a test mesh that was checked for the average element aspect

ratios in the tapered sections of the wing box, the results of the test are shown in Table 3.7

Figure 3.10 Test ANSYS Wing box Mesh

Table 3.6 Average Element Aspect Ratios for Tapered Sections

Segment Avg. AR on Avg. AR on trailing Avg. ARonupper Avg. AR on lower
leading edge spar edge spar flange flange

10 1.2573 0.9057 1.1392 1.1338

11 1.1406 0.8216 1.0335 1.0286

12 1.0561 0.7608 0.9570 0.9524

13 1.2145 0.8749 1.1005 1.0953

14 1.1089 0.7988 1.0048 1.0001

15 1.2040 0.8673 1.0909 1.0858

16 1.0772 0.7760 0.9761 0.9715

17 1.1089 0.7988 1.0048 1.0001
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The results in Table 3.7 show that the dynamic meshing routine was able to maintain reasonable
average element aspect ratios by automatically adjusting the element sizing to accommodate the wing
box taper. Another test was conducted in which the average element aspect ratios of the entire upper
and lower flange were monitored as the element line size was varied from 0.001m to 0.01m. The results
are shown in Figure 3.11 where the points on the plot refer to increments of 0.001m. As can be
expected the mesh is able to maintain an average aspect ratio of very close to one for small element
sizes and starts to oscillate around the target value as the element size is increases. The results
demonstrate the meshes ability to adapt to changing element sizes maintaining an average aspect ratio

within 4+ 0.1 of the desired value. Further mesh validation can be found in Appendix A.
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Figure 3.11 Average Element Aspect Ratio VS Element Edge length

The next step in the structures module is the application of the constraints to the nodes at the root of
the wing box. However, a problem arises when constraining a model as a cantilever by fixing the root
nodes in all their DOFs. The problem is, when completely fixing a row of nodes and leaving the next
spanwise row free to move, singularities occur at the joint areas leading to unrealistically high stress
values. To alleviate this numerical problem, a buffer zone was added to the root section of the wing box
effectively extending the wing box into where a fuselage would exist. This buffer zone is then fixed at its
root leaving it to experience the singularities. The stress and weight of this buffer section is then ignored

and the more realistic values of the actual wing box root can be monitored.

32



Next, the aerodynamic loading of the wing box is determined from the pressure distributions provided
by the aerodynamics module. Since the aerodynamic model considers the entire wing surface, as
opposed to the structures model which only considers the internal wing box, an approximation is made.
The leading and trailing edge spars of the wing box do not actually reach the leading and trailing edge of
the airfoil and therefore some of the loading must be shifted. This process divides the loading into three
sections: the loading forward of the leading edge spar is shifted to the leading edge spar, the loading aft
of the trailing edge spar is shifted to the trailing edge spar and, the loading in between the spars is
mapped to the corresponding nodes that are consistent between the aerodynamics and structures

meshes. Figure 3.12 gives a visualization of this process.

trailing edge

on trailing edge
spar

on top-flange
elements

on leading edge
spar

leading edge

Figure 3.12 Aerodynamic Force Mapping

The aerodynamics module provides the normalized element pressure results and therefore they must
be transformed into nodal forces before they can be applied to the structures model. The first step is to
de-normalize the pressure coefficient and then calculate the lift force on each element using the

fundamental relations for the pressure coefficient C, found in reference [37]:

_Ap (3.13)
q
Ap =p = Po (3.14)

Cp
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1 (3.15)
= — 2

Lift = ApA (3.16)

Where p is the local pressure on the airfoil, p,, the freestream pressure, g the dynamic pressure, po, the
freestream air density, Vthe freestream velocity and A the reference area. The lift for an element can

then be expressed with the local pressure coefficient.

1
b= [Lepavianay 617

Equation 3.17 can then be expressed without the integral as the pressure distribution is based on

discrete element values:

1
Le = 5 CppeaViZAXe Y (3.18)

Where Ay is the AVL strip dimension in the y-direction given by the dynamic mesh routine and Ax, is
provided in the AVL output file along with the local pressure coefficients, C,. In the next step, the force
per AVL element is mapped onto the ANSYS elements. A spline, representing the integrated pressure
along one strip with respect to the x-position, is generated for this purpose. For the FEA model, forces
are calculated by the evaluation of the integrated pressure at the element edges; thus the spine
function in MATLAB is used. The forces, which are applied on the nodes at the joint of the front spar (FS)

and the upper flange denoted by ZFS as well as on the rear spar (RS) and upper flange are denoted by

Lgs are calculated as follows:

- *Fs 3.19

Lps = Ays U Ap(x)dx] ( )
0

- ¢ 3.20

Lgs = Ayg U AP(X)dX] ( )

where the pressure distribution Ap(x) is constant on each AVL element, and calculated as shown in

Equation 3.13. The integral limits are the x-position of the front spar xps and rear spar,xzs as well as the
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trailing edge of the wing, which equals the chord length c. The lift force on the i FEA element of a strip

of width Ay, on the upper flange can be calculates as:

+

fo el Ap(x)dx — f x;iAp(x)dx]

0

- (3.21)
Le,i = Ay

where the integration boundaries x:'i and x,; denote the x position of the front edge of the i FEA

element and the rear edge position respectively, the two boundaries are correlated as follows:

Xei = Xejt+1 (3.22)

With this approach, the discrete element-wise AVL output is integrated using the FEA element
boundaries, to create a lift force distribution across the entire top surface of the wing box as shown in
Figure 3.13. Figure 3.14 summarizes the various stages involved in the generation, loading and testing of

the wing box model.

Figure 3.13 ANSYS Model with Forces Applied
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Figure 3.14 Stages of ANSYS Wing box Creation and Analysis

3.5 Performance & Airworthiness

The performance discipline uses empirical formulations taken from the Transport Canada Chapter 522
airworthiness regulations for sailplanes as well as the Federal Aviation Regulations [41], [42]. Chapter
522 is a detailed airworthiness manual used to check compliance with sailplane certification regulations.
Many of these regulations require details regarding the performance and handling of the design that
can’t easily be modeled in early design stages. However, compliance to some of the regulations (mainly
flight speeds and loading) can be estimated based on the basic sailplane configuration. This can have a
significant effect on the optimization and may help find an optimal design that could prove easier to

certify later on in the design process.

To estimate the stall speed of the sailplane a maximum design weight similar to existing sailplanes, W of

500 kg was set and C; ., Was estimated based on existing designs to be 1.5 at the best glide speed.

W (3.23)

p SCLmax

Where, p and S are the density and wing plan form area respectively. The sailplane design manoeuvre

speed V, and the design maximum speed V; are calculated as follows:
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Vy = Vsi/ny (3.24)

(3.25)

Where Vsy, ny, (W/S) and Cpmin are the estimated stall speed at design maximum weight with wing-flaps
neutral and air brakes retracted, the limit load factor for utility class sailplanes (+5.3), the wing loading
at max design weight in (daN/m?) and the minimum drag coefficient respectively. The following

equations are used to determine the gust loading factor:

(gpoUVa) (3.26)
mg
S

_ 0.88u (3.27)
53+ u

o m (3.28)

_ S
# plna

ng=1i

Where py is the density at sea level, U is the gust speed in m/s, V is the equivalent flight speed, a is the
wing lift curve slope per radian, m is the mass of the sailplane, g is the acceleration due to gravity, k is
the gust alleviation factor, W is the non-dimensional glider mass ratio, p is the density at altitude and |, is

the mean geometric chord of the wing.

For the maximum gust loading flight case conducted by the aerodynamics and stability discipline the
looping flight condition used to simulate the proper load factor also required the looping flight lift
coefficient. To calculate the lift coefficient for this case the load factor equation as shown in [43] is used.

n=2

mg

Sailplane performance is often governed by cross-country theory which describes a sailplanes basic
flight mission as a gliding section shown in Figure 3.15 as (A-B) followed by a thermal climbing circling

pattern to regain as much altitude as possible (B-C).
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Ve

Figure 3.15 Idealized cross-country flight profile [44]

To determine the sink rate during the glide stage the following equation is used:

Cp 3.30
Vsg = 577 @W/pS)*® (3.30)
CL
Then the total rate of climb in a thermal is given by:
Ve =Vr(r) — Vs (3.31)

where V() is the upward thermal velocity as a function of the radius r from the center of the thermal.

The sink rate Vg, while in a thermal is given by:

Cp, 2w\
Vse = 1.5 1- SC
.l pSCL gr

where CDC , CLC , r and g are the drag and lift coefficients during climb, the radius from the center of the

—0.75 WO (3.32)
p_S)

thermal and, the acceleration due to gravity respectively. To determine the sailplanes average cross-

country flight speed equation 3.33 is used:

VVe (3.33)

Vipy = ————
ATV + Vg
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Chapter 4

Results

4.1 Problem Definition

The goal of the optimization was to optimize a standard 15-meter wingspan sailplane for the
lowest possible sink rate during gliding flight as shown in equation 3.30. The optimization was
conducted using 25 design variables including aspects of the sailplane layout, sizing, and wing box
structure. The upper and lower boundaries of the design variables were set within reasonable limits
based on a survey of existing designs and engineering knowledge. The optimization was also subject to
11 constraints ensuring acceptable handling qualities and compliance with basic airworthiness
directives. A summary of the design variables, constraints and their boundaries can be found in Table 4.1

Figure 4.1 is also included to show some of the variables in context.

tstringerl-

Wing-box T
Lt o ' T—H:‘lstrrnger
Tt

Figure 4.1 Diagram showing many of the design variables
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Table 4.1 Design Variables and Constraints

Variable Symbol Upper Lower
boundary boundary
Wing span segment length in % of total span b1,b2 0.7 0.3
Taper ratio of wing segments A1,A2,A3 1 0.2
Aspect ratio of wing ARwing 30 23
Winglet height (m) WL, 0.6 0.1
Winglet taper ratio WL, 0.8 0.1
Winglet tip offset (sweep) (m) WL, 0.5 0.1
Leading edge wing spar location in % of chord Xes 0.25 0.15
Trailing edge wing spar location in % of chord Xrs 0.65 0.5
Leading and trailing edge wing spar root thickness’s (m) tes, trs 0.05 0.003
Wing box root flange thickness’s (m) tre, tae 0.03 0.003
Stringer height at wing root (m) hs 0.02 0.005
Stringer flange width at wing root (m) fs 0.01 0.0025
Stringer thickness at wing root (m) ts 0.002 0.001
Exponential thickness decay factors d;, d; 5 2
Wing box root rib thickness (m) trib 0.02 0.005
Vertical tail area (m?) S, 1.2 0.8
Vertical tail span (m) b, 13 1
Horizontal tail aspect ratio AR, 6 3
Horizontal tail apex location (longitudinal axis) (m) Xht 6.85 6
Fuselage center of gravity position (longitudinal axis) C8ruse 3.5 2.2
(m)
Constraint symbol unit limit
Maximum wing box root stress Omax Mpa <570/1.5
Static margin K - >5%
Spiral stability (LgN, — LNpg) Spiral - >0
Control surface trim angles S atrims Oktrims ORtrim deg +/-30
Stall speed Vs m/s <22.2
Wing tip deflection and max g load Woeflect m <1.5
Pitching moment coefficient Cn - <0
Lift VS drag ratio L/D - >45
Wing weight Mying kg <150

An existing high performance sailplane was chosen as a target for the design goals in the optimization.
The ASW 27 B is a high performance 15 meter wingspan sailplane that achieves a minimum sink rate of
0.52 m/s at a mass of 320 kg [45]. More details on the ASW 27 B can be found in Appendix A. Therefore
the goal for the optimization was to reach a design with comparable performance to the ASW without
violating any of the constraints. Certain aspects of the sailplane were not considered as design variables,

including the airfoil. Therefore they were selected to match the comparison design.
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As stated in Chapter 3.4, two flight cases were considered in the aerodynamic analysis portion of the
optimization: a trimmed gliding condition and a maximum gust load condition. The trimmed gliding
condition was used as the condition to assess the sailplanes performance and was used to calculate the
objective function. The results used in the comparison to the ASW 27 B sailplane were also gathered
from this case. The maximum gust load condition was used to provide the aerodynamic loading for the
ANSYS wing box structural analysis, to ensure the wing box structure could support the required loading.
Since many of the parameters used to define the two AVL flight conditions are based on the design
variables used in the optimization; they were constantly changing and therefore a set of initial
parameters were rewritten at the beginning of each iteration of the MDA. Table 4.2 shows the initial

AVL input parameters for the two cases.

Table 4.2 AVL Initial Case Parameters

Parameter Flight condition
Trimmed glide Maximum gust load
Mass[kg] 400 400
Airspeed[m/s] 30 65
Altitude[m] 0 0
Center of gravity coordinates[m] [2,0,0] [2,0,0]
Acceleration of gravity[m/s’] -9.81 -9.81
Load factor 1 5.3
Lift coefficient - 1
Pitching moment coefficient 0 0
target
Aileron deflection target[deg] 0 0
Rudder deflection target[deg] 0 0

As discussed in Chapter 3.2 there are a number of parameters required by the GA, the parameters

selected for the sailplane problem are summarized in Table 4.3.

Table 4.3 Genetic Algorithm Options for Sailplane Optimization

Parameter Setting
Generations 100
Population 100
Selection Tournament
Tournament pool size 10
Mutation Modified Gaussian
Elite count 10
Crossover fraction 0.5

Scaling 0.3

Shrink 0.9
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4.2  Optimization Results

The convergence history of the sailplane optimization is presented in Figure 4.2. The objective function
which was the gliding sink rate is plotted on the y-axis and, the generation number is shown along the x-
axis. The penalized and non-penalized objective function values are shown by the hashed and solid lines
respectively. From the convergence history plot it can be seen that after 4 generations the optimum
designs were no longer being penalized and therefore were within the feasible solution space. Shown
under the convergence plot are the optimum designs from the 1%, 3" 21 and final generation. These
designs were selected to highlight the main changes in the design. Table 4.4 is a summary of the design
variable and constraint values for each of the highlighted designs. The constraint values are presented as

their actual value rather than the normalized value used to represent them in the optimization.

42



Gliding Sink Rate Vs Generation Number

= hon-Penalized

====Penglized

(m/s)
<
B

0 10 20 30 40 20 60 0 B0 50 100

Generation
e -
i - Lt ] i
" o NE——
“ |
Generation1 Generation 3 Generationll Generation100

Figure 4.2 Penalized and non Penalized Objective Function Convergence History Including Top Views for Optimum Designs
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Table 4.4 Design Variable and Constraint Values for Selected Designs

Variable Generation 1 Generation 3 Generation 21  Generation 100
b1,b2 0.6415,0.3585 0.6899,0.3101 0.5772,0.4228 0.5772,0.4228
A1, A2,A3 0.85,0.78,0.22 0.90,0.88,0.27 0.97,0.85,0.47 0.99,0.85,0.47
ARwying 25.922 25.3386 25.1274 25.0037
WL, 0.3430 0.3842 0.5967 0.5967
WL, 0.3076 0.5117 0.5856 0.6934
WL 0.1052 0.3472 0.2042 0.2042

Xes 0.2220 0.2183 0.2329 0.2234

XRs 0.5814 0.5101 0.5142 0.5142

tes, trs 0.0249,0.0081 0.0284,0.0216 0.0198,0.0145 0.0203,0.0185
trr, tar 0.0041,0.0202 0.0104,0.0200 0.0145,0.0165 0.0145,0.0179
hs 0.0191 0.0172 0.0138 0.0138

fs 0.0060 0.0062 0.0086 0.0062

ts 0.0016 0.0015 0.0015 0.0017

d;, d, 4.51,3.87 4.69,3.71 4.29,3.95 3.41,3.71
trib 0.01315 0.0068 0.0129 0.0133

S, 0.9026 1.2503 1.0487 0.8318

b, 1.087 1.1449 1.1973 1.2503
AR, 3.959 4.624 4.057 4.630

Xht 6.782 6.069 6.317 6.5456
Cgruse 2.617 2.759 2.646 2.6464
Constraint

O max 153 138.7 140.5 143.1

K 34.5 16.67 24.8 22
(LgN, — L,Npg) 8.82 6.53 9.8 9.3

S atrims Oktrims ORtrim 0,-3.5356,0 0,-1.7,0 0,-2.5,0 0,-2.3753,0
Vs 22.7 22.36 22 21.9
Waeflect 1.5229 1.4591 1.4375 1.4763

Cn 0 0 0 0

L/D 48.8 49.28 49.7 49.9188
Myjing 112.7 119 115.9 119.99

A careful review of Table 4.4 identifies the main changes the optimizer made to the designs during the
optimization. It becomes apparent that with a population of 100 designs the optimizer was able to find a
reasonably well performing design in the first generation; however, a review of the constraint limits in
Table 4.1 reveals that the optimal design in generation 1 was in violation of two constraints. Both the
minimum stall speed and the maximum wing tip deflection constraints were violated. This was mainly a
result of the designs heavily tapered wing which forced a very thin internal wing box structure as well as
a smaller wing area.

Over the next two generations the optimizer was able to reduce the wing tip

deflection back into the feasible region by making a number of changes. One such change was a shift of
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the wing area distribution by moving the joint between the spans bl and b2 inwards by nearly 5%. This
effectively shifted wing area away from the wingtip and thus reduced the lift generated by the outer
wing section. The wing taper was also relaxed allowing room for a larger wing box structure and a larger
wing area. Another change was the forward shift of both the spars which, as shown by Figure 3.6 is
where most of the aerodynamic load occurs and thus placed them in a better load baring position. Lastly
the thicknesses of both the spars and the top flange were increased to provide more rigidity to the
structure, although the weight of the 3" generation design did slightly increase as a result. The stall
speed constraint violation was still a problem in the 3" generation design; but the violation was
extremely low and therefore did not have much impact in the form of a penalty to the objective
function. By the 21 generation the optimal design was free of constraint violations. To eliminate the
stall speed constraint violation the wing area was increased slightly and the wing weight was decreased
which, based on the definition of the stall speed shown by equation 3.23 results in a lower stall speed.
This design also showed a small decrease in the wing weight and a minor increase in the lift VS drag
ratio. This can be attributed to the reduction of several of the wing box component thicknesses and very
slight changes to the wing geometry and winglets. By the final design the objective function value was
only able to increase very slightly to a final gliding sink rate of 0.5434m/s. Improvements beyond this
could not be achieved as several of the constraints were on or very near their respective boundaries and
the design had converged on its optimum glide speed in which the combination of induced and form
drag reached its minimum. The wing weight of the final design increased slightly compared to the 21%

generation however, the wing area also increased which negated any negative effect on the sink rate.

Table 4.5 summarizes the data comparison between the ASW and the final design obtained with the
proposed optimization. Table 4.5 shows that in many aspects the optimized design correlates very well
with the ASW having nearly equal wing geometry and configuration. The wing weights are also very
similar however, the mass of internal components such as control linkage and control surface mounting
hinges were estimated for the optimized design and could lead to some discrepancy. This likely
contributed to the main discrepancy between the two designs which was the total sailplane weight at
their best performance conditions. This difference is also due to the fuselage weight estimate used in
this work, which was done conservatively due to a lack of reference data. Furthermore, the fuselage was
not varied in the optimization and thus its weight was estimated as a fixed value. A review of equation
3.30 shows the impact of sailplane weight on the sink rate helping to explain the slightly higher sink rate
achieved by the optimum design. A three principle view comparison of the two sailplanes is shown in

Figure 4.3
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Table 4.5 Sailplane Data comparison

Criteria ASW 27 B Optimized
Design
Wing area (m?) 9 8.9987
Wing aspect ratio 25 25.0037
Airfoil DU 89-134/14 DU 89-134/14
Wing mass (kg) 116 119.99
Manoeuvre speed (km/h) 215 224.317
Mass for below performance specifications (kg) 320 329.99
Best L/D speed (km/h) 100 96.79
Max glide ratio 48 49.918
Minimum sink rate speed (km/h) unknown 71.2
Minimum sink rate (m/s) 0.52 0.5434
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Figure 4.3 Sailplane layout comparison between the ASW 27 B [45] and the optimized design

Figures 4.4 and 4.5 show the Von Mises stress for the top and bottom of the wing box of the final design
respectively. It can be observed that the stress is reasonably well distributed as a result of the
exponential material thickness formulation. Although, since the objective of the optimization was
focused on the gliding sink rate of the sailplane, the resulting wing box structure is not fully optimized.
This is mainly identified by the maximum stress constraint which was far from the boundary in the final
design. This was partially due to the impact of other constraints namely the wingtip deflection constraint
which reached its limit deflection and thus forced the maximum stress to remain quite conservative.
Another factor that contributed to this was the competitive nature of aerodynamic and structural
objectives. Since this optimization was aimed at mainly aerodynamic efficiency, the optimizer favoured

designs with long slender, high aspect ratio wings. This is very opposed to a structurally efficient design

46



which would have preferred a shorter, lower aspect ratio wing and could have provided a lighter

structure with a more optimized stress distribution. This is evidence of the highly coupled disciplinary

analysis involved in complex designs such as aircraft.
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Figure 4.4 Von Mises Stress Distribution of Optimized Design (Top View)
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Figure 4.5 Von Mises Stress Distribution of Optimized Design (Bottom View)
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Chapter 5

Conclusion

An MDO approach using multi-fidelity analysis methods has been applied to preliminary sailplane
design. The proposed work was based on a non-planar vortex lattice solver for the aerodynamics and
stability analysis; the commercial FEM solver ANSYS for structural analysis, and, empirical aircraft
performance equations were used for performance and airworthiness calculations. Multi-fidelity
analysis was used to include more detailed analysis where required, while using simple methods where
applicable to manage computational costs. Specifically, this entailed the use of a high and a moderate
fidelity method to accommodate for the aero-structural coupling of wing design, and, a low fidelity
approach to the sailplane performance and airworthiness calculations. An automatic meshing algorithm
was developed to adapt and re mesh the model to accommodate for changes of the wing and wing box
configuration. The meshing algorithm was designed to maintain desirable element aspect ratios and
thus an acceptable mesh quality for the entire possible range of designs. A modified genetic algorithm
was developed based on components of the existing optimizer available in the MATLAB software
package. The customized genetic algorithm was validated using well known analytical functions and,
showed improved performance over the default MATLAB genetic algorithm. Furthermore, a series of
case studies were performed to determine the best optimizer settings for the preliminary sailplane
design problem. The objective of the optimization was to minimize the gliding sink rate of the sailplane
while maintaining competitive performance in comparison to existing high performance sailplanes. The

design was also subject to several airworthiness and stability constraints.

The results of the optimization showed that the application of MDO techniques along with multi-fidelity
analysis methods to sailplane preliminary design is a viable and useful approach. When these methods
are applied with performance and airworthiness constraints, it has been shown that practical
preliminary sailplane designs are obtained. This work was intended to demonstrate that modern
optimization techniques can be used with confidence in early sailplane design phases. These techniques
have been successful in many applications and have the potential to benefit sailplane designers by

providing a non-bias approach that can stretch outside traditional design trends. Finally, MDO methods
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can also be used to quickly and affordably explore potentially beneficial designs that would be
considered too expensive to investigate with traditional means which, could lead to many innovations in

aerospace design.

The main contribution of this research was the expansion of existing work in sailplane optimization
which, has predominately been focused on conceptual design and simplified analysis techniques. The
existing work as discussed in Chapter 1 of this thesis identified the significant impact disciplinary
coupling can have on sailplane design optimization. Furthermore high fidelity analysis methods have
been successfully applied to focused aspects of sailplane design in more recent publications. This work
aimed to explore the effectiveness of combining aspects of the previous work in sailplane design
optimization by applying more detailed analysis to sensitive aspects of sailplane design while still
considering the entire sailplane configuration at a preliminary design level. By using this approach the
impact on the entire sailplane configuration can be observed when changes are applied to single aspects

of the sailplane such as the wing design.

As briefly stated in the results section of this thesis, the wing box of the final design was not completely
optimized in a structural point of view, however, this was considered in the separate thesis project
mentioned in Chapter 1. A small utility class aircraft wing optimization was carried out using portions of
the same software package that was developed for this thesis. This project focused only on the aero-
structural design of the wing and utilized the adaptive meshing routine discussed in Chapter 3 to analyze
the aerodynamic and structural coupling involved in wing design. An existing wing design was provided
by Found Aircraft Canada Inc, and the optimization showed promising results in reducing the wing box
structural weight by optimizing the material thicknesses to better distribute the stress. The success of
this separate project has demonstrated the abilities of the software used in this research when applied

to different applications with different optimization objectives.

5.1 Future Work

Though the research conducted in this thesis was very successful, there is considerable room for
improvements. For instance, the optimization framework could be expanded to include an option for
selecting other optimization strategies, or, a variety of optimizer algorithms. This addition may identify a

more efficient approach than the MDF and GA framework that is currently applied to the problem.
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Another major task in this research was trying to find a compromise between analysis fidelity and
computational effectiveness. This is a problem experienced in most complex optimization tasks as the
benefits of the approach start to degrade with increasing implementation costs, whether it is from
increased computational power requirements, or increased development and convergence times.
However, as computational power increases, a future project could expand on this research by
implementing high fidelity analysis methods for all disciplines. That being said, future research could
push beyond the preliminary design stage and utilize the high fidelity analysis methods to optimize for

detailed designs.
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Appendix A

A.1 Genetic Algorithm Selection Method Case Study

A test was conducted to determine the best selection method for the sailplane optimization problem.
For this test the Stochastic, Roulette and, Tournament selection methods were compared. The
behaviour of each selection method was tested based on the results at the end of the first generation
with a population of 400 designs. The initial population was generated using the Random Uniform
method available in MATLAB, and, the ranking method was used for the scaling function as shown by

the following equation:

]? _ Z:l:p;pfi 2 (A.1)
‘ finpop

Where ]_CL is the scaled fitness value, also denoted as the expectation, f; is the un-scaled fitness value
which, is already penalized in the event of a boundary conditions violation and, n,,, is the size of the
population. This scaling function is very well suited for initial generations, in which, the range between
the best and worst performing individuals is greater than that of subsequent generations. Figure A.1is a
comparison of the Stochastic and Roulette methods, where, the black bars represent the initial
population and the black dashed line indicates the fitted normal distribution for the initial population.
The blue bars indicate the expectation of the parents selected for the next generation, and, the blue
dashed line indicates its normal distribution. The figure shows that both the selection methods shifted
the population slightly toward the higher expectation values, but, still included a large percentage of the
poor performing designs as parents for the next generation. Figure A.2 was created from the same test
conditions. It includes the Tournament method with a pool size of 4 compared to the Roulette method
from Figure A.1. From this figure it can be seen that the Tournament method makes a significant shift
toward the higher expectation values, meaning that it included a larger percentage of the best designs,
while excluding most of the worst performing individuals. This aspect of the Tournament selection

method is desired to increase the convergence speed; however, it consequently decreases the diversity
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of the population. Therefore the tournament pool size should be selected carefully depending on the

type of optimization problem.
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Figure A.3 shows a comparison of the Tournament method for a pool size of 4, which, is the MATLAB
default setting, and, a pool size of 20. The results display the expected trend; with a larger pool size the
optimizer has a greater probability of selecting well performing designs, thus eliminating the inferior
designs. However, as stated above, increasing the pool size decreases the diversity of the population,
which, can lead to premature convergence. For this reason, a compromise was made by setting the pool
size to 10 in sailplane optimization, which, when coupled with a large population of 100 designs allowed

adequate diversity and a reasonable convergence time.
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Figure A.3 Pool Size Comparison For The Tournament Selection Method

A.2 Modified Gaussian Mutation Function

function mutationChildren =
mutationgaussianl (parents, options, GenomelLength, FitnessFcn, state, thisScore, thi
sPopulation)

scale=0.3;

shrink =0.9;

scale = scale - shrink * scale * state.Generation/options.Generations;
scale = scale * (UB - LB);
mutationChildren = zeros(length (parents), GenomeLength) ;
for par = 1l:length(parents)
parent = thisPopulation (parents (par),:);
for j=1:Genomelength
repeat = 1;
while repeat ==
if options.discrete v (j) == 0;
change = scale(j)*randn(1l,1);
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else
change = round(scale(j)*randn(l,1));
end

if (LB (j)<=(changet+parent(j)) && (change+parent (j))<=UB(7j))

repeat = 0;
end
end
mutationChildren (par,j) = parent(j) + change;

end
end
end

A.3 Structures Model Convergence Study

During the optimization the wing box model was free to change in size and shape. This made it
impossible to use a consistent mesh. As discussed in Chapter 3, a dynamic meshing algorithm was
developed to automatically mesh the models and ensure adequate mesh quality for each design despite
the changing geometry. However, as further validation a simple wing box mesh was tested for
convergence with increasing mesh density to determine a suitable element size to set as a target for the
dynamic meshing routine. Figure A.4 shows the model used for the convergence test. A simple loading
case was applied consisting of a nominal load distributed evenly between the nodes on the upper flange
at the wingtip. The simple loading configuration was used to limit the computation time and remove the
need for the aerodynamics solver. Only the stringers at the corners of the wing box were considered in
the test due to the fact that the number of stringers in the structure changes depending on the number

of nodes in the chord direction.

Figure A.4 Mesh Convergence Test Model
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The wing tip deflection was monitored in the test by calculating the average of the deflections of the
corner nodes on the top flange at the wingtip. Figure A.5 shows the response of the model for a
changing total number of elements. It should be noted that the elements at the root rib are specified

and the rest of the element sizes are determined based on the process described in Chapter 3.
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Figure A.5 Mesh Convergence Results

Figure A.5 includes root element sizes ranging from 0.01m to 0.2m and clearly shows convergence
toward a wingtip deflection of approximately 29.36mm. For the larger element sizes the deflection has a
maximum deviation of only 0.5%, demonstrating the effectiveness of the meshing processes ability to

maintain suitable element quality for the tapering structure.

A.4 Stringer Description
As stated in Chapter 3, the ANSYS BEAMA4 element was used to generate “Z” stringers to provide extra
reinforcement for the wing box structure. Figure A.6 shows a diagram explaining the stringer

dimensions, and, equations A.2 and A.3 were used to calculate the moments of inertia for the stringer

cross section [46]. The web length is denoted by h, the flange width as f and, the thickness as t.
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A.5 ASW 27 B Information Sheet

Figure A.7 shows the performance data sheet for the ASW 27 B sailplane which served as the
comparison design for this thesis. More information regarding the ASW 27 B can be found on the
manufactures website [47].
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ASW 27 B

CONTROL CIRCUITS anp

FITTINGS

BOARD EQUIPMENT anp
ACCESS0RIES

TECHMICAL DATA

Aderon, elevator, flaps, and airbrakes are actuated by pushrods running i anti-noise ball-bearings.
and use automatic connections at the assembly joints. The rudder is actuated by stanless steel ca-
bdes which run in Polyamide tubing. Infinitely variable trim, lockable by a stick-mownted key. AN control
surface hinges of the wing and of the horzontal tail unit use needle bearings or low-mantenance plas-
tic bearings. The actuating levers and bellcranks are fitted with ball bearings and precise “uniball-
joints. This provides the lowest possible actuating forces for the piot and guarantees comfortable.
non-fatiguing flying. The fittings are welded steel and milled or tumed aluminum aloy respectively.

Static pressure vents (for the A.5.1) in the fusslage tad boom l=ft and right. Pitot, static pressure and
TE-compensation through 2-way-nozzle (multi-prebe) in the fin. VHF antenna in the fin.

Span Ingl. Wingiats 15m d3zm
Wing area oM D636 st
Wing aspect rato 25

Fuselage | EESm 214E%
Cockpit height pADm 262
Cockpit width DEAmMm 2
Helght at talplans 13m 4261
Winglet helght Ldsm 1501

Wing aifolis roat DU B9-134714 and
tp DU 80-13414M0D0
Wingiet alrfoll DU 9-056 M4
Emgly mass with min. equipment 245 kg 540 Ib
Emgty mass “SL, min. equipment 230 kg 507 b

Mass of one wing 55 kg 128 I
Max. wing loading 35,55 kQmF 11,38 lnisgt
Min. wing loading =34 kgn® 5,06 lnisgh
Water ballast, max. 1901 50,25 US gal
Usaful load, max. 130 kg 2867 b
Useful kaad In the plot seat, max. 195 kg 253610
May. 265 kmh 154 ks
Manewenng speed 2i5kmh 116 ks
For m = 320 kg (705 Io) Night mass:
MR 70 kmin 36 5
M. sink 052 ms 1024 fhmin
Best gide rati, LD {100 kmh) 48

Way. take-oT mass SO0 kg 1102 b
_
L___t'%‘f___.ﬁ
|
. _ T;
. |

Figure A.7 ASW 27 B Data Sheet [47]
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