MEASURING THE DYNAMIC ENERGY EFFICIENCY OF FPGAS OVER PROCESSORS

by

Muhammad Umair Zafar,

Bachelor of Electrical Engineering(Electronics),

Bahria University, Islamabad, July 2010

A thesis presented to

Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2016

© Muhammad Umair Zafar, 2016

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

| hereby declare that | am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

| authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

| further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

| understand that my thesis may be made electronically available to the public.

Measuring the Dynamic Energy Efficiency of FPGAS

over Processors

Muhammad Umair Zafar
Master of Applied Science
Electrical and Computer Engineering
Ryerson University
2016

Abstract

This work investigates the dynamic energy efficiency of the parallel execution model of an FPGA
and the sequential execution model of a processor, for latency-insensitive applications. We create
the temporal implementations (sequential instructions) of the MCNC benchmarks to be executed
on a processor that employs a 4LUT as its functional unit. This processor is ~716 times inefficient
for dynamic energy than a 4LUT FPGA, mainly due to the large amount of memory
(instruction/data) that is required to encode the 4LUT based instructions. The size of the memory
(instruction/data) can be reduced by increasing the data-path width and the logic complexity of the
ASIC-based functional units of the processor. Particularly, at 64-bit data-path width and when the
(instruction/data) memory sizes are reduced to less than ~9% of their corresponding 4LUT-based
instructions, the processor with ASIC-based complex functional unit can achieve higher dynamic

energy efficiency than the FPGA for MCNC benchmarks.

Acknowledgements

First of all, 1 would like to say thanks to my supervisor Dr. Andy Ye, for his support and
supervision during this work. | sincerely appreciate the time and efforts he invested in mentoring

me.

I would like to say thanks to my friends and lab partners. Also | would like to thank Ryerson

University for providing me an opportunity and good environment to perform this research.

| would like to say thanks to my family, without their support this work would have never been

possible.

Dedication(s)

To my wife Safoora

Contents

AULNOIS DECIATALION. ... cuiitiiiieiieie ettt b e bbb s et et st benbenbeene e i
N o1 1= Tod OSSPSR ii
ACKNOWIBAGEMENTS ...ttt b et e s 1\
DT [or: {01 o TSP RRUP PRI %
LISE OF TADIES ... bbbt b bbbt bt viii
LIST OF FIQUIES ...ttt sttt e b et e et e e ne et e e ne e be e beenteeneenteeneennes IX
Ty T [N o1 AT] o PSSP RRTOPRPST 1
IO R O 1V T VT PSPPSR 1
1.2 TheSiS OFganiZatiON........c.ccueiieiieiieie et ste et e st ae e st eete e e s teetesneesraesneenee e 3
Background and MOTIVATIONooiiiiiiiiieee bbb 4
2.1 Field Programmable Gate AITaYS........c.ooeiiiiiiiiiiiieeeiee e 4
211 FPGA AFCNITECIUIE ...ttt ettt bbb 4
A OF AN B I (] g i = A SRR R TSP 7
2.2 PIOCESSOIS.eeeteeiiee ettt ettt h ettt e et h e e e bt e b e e et e e e s e e e R b e e b et e b e e e R e e e R e e eRe e e n e e ne e neeannas 9
2.2.1 Von Neumann MaChINE........cooiiiiieiiiisesie et nreas 10
2.2.2 Harvard IMACKINEccoiiiiiiiece ettt nte e nneenns 10
2.2.3 Typical Implementation of Computation 0N PrOCESSOIScccoveierierierienienieniesienneas 11

2.3 Effects of functional unit complexity on dynamic energy consumption of processors . 12

EXPEriMENtal PrOCEAUIEc.eeieeee ettt sttt et e e s re e sbe e saesneesaeeee s 17
K T0 A O V=T VT PSSR 17
3.2 Sequential/Temporal Processing ENErgycccccoeoeiiieniiinininieieee e 18
3.2.1 Live Variable ANAYSIS ..o 22
3.3 Parallel/Spatial Processing ENEIQY.......cccciviiiiieiieieieeie ettt 24

EXPErimental RESUITSooiiiiieeie e 27
O © Y=Y oV S SRS 27
4.2 4-LUT Processor vs 4-LUT FPGA (Dynamic ENErgy)ccccvvvveveeiiieiiieiieeieesie e 27
4.3 Increasing data-path (SIMD).......ccooiioiiiiiicce e 30
4.4 Compressing Memories at 64-bit SIMDccccoviiiiiiiiic e 40

ConClUSION AN FULUIE WOTKoiieireie ettt enae e e eneenns 44
T8 A O] o] [V [o FO PSR P PSR OP 44

Vi

B2 FULUIE WOTK ., 45

N 0] 01 0 LG SRR 46
[T 0] [0 o =10 1Y/ 133
(€] (01 1SY: SRRSO PRRRN 137

Vii

List of Tables

Table I.

Table II.

Table I11.

Table IV.

Table V.

Table VI.

Table VII.

Table VIII.

Table IX.

Table X.

Table XI.

Table XII.

(7,2) Compressor Tree Dynamic Energy CONSUMPLIONcccocevvverieneeinenenienee e 14
Dynamic Energy Consumption of MCNC Benchmarks 1bit (100% Memory) 28
Energy Distribution fOr PrOCESSONccviiieiiiiiiiaie et 29
Dynamic Energy Consumption of MCNC Benchmarks 2bit (100% Memory) 32
Dynamic Energy Consumption of MCNC Benchmarks 4bit (100% Memory) 33
Dynamic Energy Consumption of MCNC Benchmarks 8bit (100% Memory)............ 34

Dynamic Energy Consumption of MCNC Benchmarks 16bit (100% Memory) 35
Dynamic Energy Consumption of MCNC Benchmarks 32bit (100% Memory) 36
Dynamic Energy Consumption of MCNC Benchmarks 64bit (100% Memory)......... 37
Dynamic Energy Consumption of MCNC Benchmarks 128bit (100% Memory)....... 38
Dynamic Energy Consumption of MCNC Benchmarks 256bit (100% Memory) 39

Dynamic Energy at 64bit(s) 9% MemOry Size.........cccccvvveveiieieeie e 41

viii

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Figure 20.

BasSIiC LOGIC EIBMENToeiiiiiecie e 4
[T T30 =1 [ot GO 5
HOMOQGENOUS FPGA ... s 6
HEterogeneouUS FPGA 6
A typical FPGA CAD FIOWoouiiiiiiiiee e 8
VoNn Neumann MACHINEooiiii e 10
Harvard ArCRITECTUIEoc.oiiiiiieiee e 11
Typical Processor Computation Implementationcccoccevevevinienienenie e 11
8bit (7,2) Compressor Tree CIFCUIL.vcvvviieiece e 12
ALUT PrOCESSOI SYSTEIM....iiiiiiiiiieiiiieiiete sttt e sieeestee e st e et e e snb e e srbe e s snne e s nsneesneees 13
Experimental Procedure (CAD FIOW)cccoooiiiiiiie e 17
Graph Representation Of CIFCUIL..........cccoiiiiiiiie s 18
Linked List Representation Of CirCUIL.............cccovieiiiiiiic i 19
Live Variable Analysis AIQOrithm...........cccoviiiiiic e 23
Definition of a minimum width transiStor area.............ccoceeeireneiieneiese e 25
Ratio for MCNC Benchmarks (CPU/FPGA)........ccooii it 29
Dynamic Energy Ratio Vs Increasing Bit Widthccccocoiieiiiii i 30
Average Energy Ratio for MCNC Benchmarks at 640it(S)cccccovvvivieiieiiicinnnn, 40
Energy Distribution at 64bit (9% MeMOIY)cceeoiiiiieie e 42
Dynamic Energy Consumption at 64bit(s) 9% Memory.........ccccocvvevieiieeiieecee s 43

Chapter 1

Introduction

1.1 Overview

Microprocessors and Field-Programmable Gate Arrays (FPGAS) are the two main programmable
platforms for implementing digital computation. The main computing elements in modern FPGAS
are look-up tables (LUTs) and bit-configurable routing resources [1]. In combination, these
resources can be effectively used to exploit bit-level data parallelism in order to deliver much
higher performances and energy efficiency than today’s state-of-the-art processors [2]. Modern
microprocessors, however, are increasingly incorporating accelerators, such as GPUs [3], image
processing and DSP cores [4], on the same die as CPUs. These accelerators function as advanced
functional units and are much more complex in structure than the hard-blocks incorporated on an

FPGA.

This difference in complexity is mainly due to the sequential execution nature of a processor and
the parallel execution nature of an FPGA. In particular, on a processor, each functional unit is
shared over many instructions so only a small number of functional units of each type are needed
per processor. On an FPGA, on the other hand, many more hard-blocks of the same type are needed
in order to exploit the parallelism. Consequently, FPGAs only can afford to use much simpler
accelerators, such as multipliers, as hard-blocks while still maintaining their original parallel

execution model [5].

Since the functional units and the hard-blocks are essentially ASICs, which are known to be much
more energy efficient than reconfigurable LUTSs [6], it is important to understand the impact of
this difference in complexity on the energy efficiency of FPGAs and processors. To this end, this
work first measures the dynamic energy required to execute MCNC benchmarks on a 4-LUT-
based FPGA (spatial implementation). We then serialize the LUT configurations so each
configuration is mapped into an instruction that can be executed by a 4-LUT-based sequential
processor (temporal implementation). Using this serialized version of the LUT configurations, we
measure the effect of increasing functional unit complexity on the dynamic energy efficiency of
processors by relating the increase in functional unit complexity to the reduction in instruction and

data memory size.

This work is related to [7]. It differs from previous work in two main aspects. First, this work uses
a benchmark-based approach over the analytical model from previous work. In particular, the
analytical model from [7] only considers homogenous activities, i.e. every single wire is switched
at every clock cycle. This over-estimates dynamic energy consumption. In this work, we have
provided more accurate results with a simulation based empirical approach of estimating
heterogeneous activity (actual switching) on the nets by simulating MCNC benchmark circuits

with random inputs.

Secondly, the work in [7] has only compared FPGAs to the simplest possible implementations of
a processor (Single 4-LUT), which only use one LUT in its functional unit. It also shows that when
using monolithic memories for both instruction and data, such a processor would consume much

more dynamic energy than FPGAs [7].

Instructions based on LUT configurations, however, are extremely inefficient and often consume

much more memory than it is required by conventional processor instructions — since real

2

functional units are implemented in either custom ICs or ASICs and can include many hardwired
instructions. The goal of this work is to help a designer making a selection between spatial (FPGA)
or temporal (CPU) processing platform for implementing a computation based on dynamic energy
efficiency. As a result, this work examines the trade-off between data and instruction memory size
and the dynamic energy efficiency of processors. We specifically measure the amount of on-chip
SRAM based instruction and data memory reduction that is needed from the LUT-based
instructions in order for a processor to achieve the same dynamic energy consumption as a LUT-
based homogenous FPGA. This result is particularly relevant in the age of dark silicon, where
there is a trend for processors to include a variety of application-specific precompiled cores in
order to increase their performance and efficiency [8]. Consequently, it is important to quantify
the amount of memory reduction that a processor should achieve in order to be more energy

efficient than regular LUT-based FPGA:s.

1.2 Thesis Organization

The remainder of this thesis is structured as follows: Chapter 2 (Background and Motivation)
provides architectural details about some of the platforms available for implementation
computations such as FPGAs and CPUs. It also provides the motivation for measuring the effect
of functional unit complexity on dynamic energy consumption of processors and FPGASs using an
example of 8-bit wide (7:2) compressor tree circuit, Chapter 3 (Experimental Procedure) presents
the procedure that is used to measure the dynamic energy consumption of the temporal
representation of the MCNC benchmarks on a single 4-LUT based processor and the spatial 4-
LUT-based FPGA. Chapter 4 (Experimental Results) presents experimental results and Chapter 5

(Conclusion and Future work) concludes and future direction for further research.

Chapter 2

Background and Motivation

2.1 Field Programmable Gate Arrays

FPGAs provide a hardware programmable platform to implement digital computations. Since their
introduction in 1984, they have become a $30 Billion (still growing) industry in 2016. They can
provide a huge performance advantage over general purpose sequential processors by providing
dedicated hardware such as application-customized data paths. They are re-programmable, and
provide a competitive option against standard Cell ASIC development by reducing NRE costs and

achieving faster time-to-market [9].

2.1.1 FPGA Architecture
In past few decades FPGA architecture has much evolved from containing a simple network of
LUTSs (Look-up Tables) and programmable routing circuits to complex network of LUTs and hard-

core processing blocks, such as DSPs and BRAMs.

4-LUT

A 4

DFF

Figure 1. Basic Logic Element

A typical FPGA contains k-input LUTs, DFFs (D-Flip Flops) and bit programmable routing
circuits grouped into BLE (Basic Logic Element). Figure 1, shows a basic logic element of FPGA.
DFF can used when output for a BLE needs to registered. This is known as ‘soft logic’
implementation on FPGA. In order to achieve higher densities on chip and reduce their overall
delay, these BLEs are grouped together into ‘clusters’ also known as LB (Logic Blocks) [10]. A
study has shown that using 4 BLEs inside a logic block can provide a 5-10% reduction in area for
FPGAs [11]. Also [12] shows that 4 input LUT is the most area efficient design mainly because,
as the number of inputs for a single LUT grows the complexity of LUT grows exponentially
making 4-LUT the most optimal design choice. This is one of the reason we choose 4-LUT for our
research further explained in later chapters. Figure 2, shows a group of BLEs packed in a group to

form a LB [11].

| L,
BLE:1
|
[
| [] N
! . e N
—> Outputs
° °
|| _I b
| L
BLE:N
L |
I /\
Inputs
Clock

Figure 2. Logic Block

LB LB LB LB LB LB LB
LB LB LB LB LB LB LB
LB LB LB LB LB LB LB
LB LB LB LB LB LB LB
LB LB LB LB LB LB LB
LB LB LB LB LB LB LB
Figure 3. Homogenous FPGA
LB LB LB LB LB LB LB
LB LB LB LB
Block Block
RAM RAM
LB LB LB LB
LB LB LB LB
Block Block
RAM RAM
LB LB LB LB
LB LB LB LB LB LB LB
Figure 4. Heterogeneous FPGA

Figure 3, shows a simple homogenous FPGA with LBs and routing network, however most
modern FPGAs incorporate the ‘hard’” blocks such as DSPs or Block RAMs. Even though ‘soft
logic’ can implement any type of digital circuit but having these ‘hard’ blocks on chip provide

more efficiency by trading flexibility. A typical heterogeneous FPGA is shown in Figure 4.

2.1.2 CAD for FPGAs

In order to implement a digital circuit on FPGAs, a designer need to design and describe the circuit
at a higher abstraction level which is either in HDL code or simply in graphical description. Before
this design is ready to be implemented on FPGA, it needs to be converted into a low-level bit
stream which can control the routing and logic switches inside the FPGA. This process requires a
set of tools, and is known as ‘CAD flow’ for FPGAs. From design to device, these tools are
required to make a lot of different decisions to implement the circuit more efficiently on the chip,
while fulfilling all the design constrains such as area, delay and power [13]. Figure 5, shows a flow

of these CAD tools [14].

High Level Synthesis:

A recent trend in FPGA CAD flow is the addition of HLS (High Level Synthesis), which provides
the designer a highest level of abstraction by expressing the circuit algorithmically in more
traditional programming languages such as C [15] and OpenCL [16]. Using this algorithmic

description of HLS selects the appropriate hardware for implementation.

Logic Synthesis:

Logical synthesis consists of further 3 steps: elaboration, logic optimization and technology
mapping. During elaboration, CAD converts the behavioral description of hardware into logical

hardware description. Then logic optimization is then performed to improve the quality of resulting

hardware by reducing area, delay or power. After the optimization performed here, mapping
generates the netlist of circuit using primitive set of hardware available in FPGA such as LUTSs,
Flip-Flops and multipliers. A careful CAD implementation at earlier stages can reduce the over

power consumption of FPGA, i.e. 7.6% just because of power-aware technology mapping [17].

e e

Top-Level Physical Synthesis

Design

Packing/Clustering

|
|
|
|
|
|
|
|
|
|
|
: Placement
|
|
|
|
|
|
|
|
|

v

Technology Mapping

FPGA Device

High Level Synthesis

T .__}____.____1 ¢

| Logical Synthesis :

|

! : l Routing

: Elaboration |

| I

| ¢ | E——————— g ————— —
|

| | v

|

| Logic Optimization l Bit Stream

| |

| |

| |

| |

I |

| |

I |

| I

Figure 5. A typical FPGA CAD Flow

Physical Synthesis:

Physical synthesis is performed using various algorithms such as simulated annealing [18] [19] for

placement and a variant of Lee’s Algorithm [20] for routing [21]. This process consumes a great

amount of compile time for FPGAs CAD flow, and the efficiency (power, speed and area) of final
implementation very much depends on the efficiency of CAD tool being used. First step in physical
synthesis is Clustering or Packing, which means grouping together the primitive hardware into the
actual blocks of FPGA architecture. A good clustering algorithm also ensures that design is more

efficiently routable and thus reducing compile time for later stages such as routing [22] [23].

Next step would Placement of these blocks on FPGA, it’s one of the very important steps in FPGA
implementation, as placement would also determine the accuracy of later steps such as routing. A
better placement means less wires to be routed thus reducing the delay and power consumption of
the final circuit. A bad placement might actually make a certain design un-routable on FPGA due

to a limited number of routing resources available on the chip.

Last step in physical synthesis is Routing, which is similar to ASIC design flow, given the
placement of different blocks at this point, it is determined how to connect these blocks using the

routing resources available on FPGA.

Once the logical and physical synthesis is completed the final design is analyzed to ensure that it
meets the design constraints such as delay and area. And finally the bit stream is generated which

can be downloaded on the FPGA.

2.2 Processors

Sequential processors have a long and rich history as computational platforms than FPGAs. They
are considered one of the most famous platforms for implementing computation. They provide
software re-programmability, thus providing much flexibility than other solutions such as ASICs
although which comes at a cost of performance. They provide a set of instructions, which are

executed sequentially, using these set of instructions a programmer can write a program to

implement any computation. The idea of stored program computers was first implemented in
1940s and used for military applications. There are two types of famous architectures for such
computers, which differ in the way they store and access instructions and data; which is either in

same or different physical memories.

2.2.1 VVon Neumann Machine

VVon Neumann architecture [24] stores the data and instructions for Central Processing Unit (CPU)
in same physical memory and share the same bus to access them. According to Von Neumann the
instructions are stored in a memory and extracted by the processor and then executed in a
sequential manner, data stored in the memory is changed while the program is executed. Figure 6,

shows a Von Neumann architecture [25].

Memory Central
(Instruction Processing

and Data) Unit (CPU)

Figure 6. Von Neumann Machine

2.2.2 Harvard Machine

Harvard architecture differs from VVon Neumann architectures by storing the instructions and data
in separate memories connected with separate busses [26]. Instructions are executed sequentially
by the processor, therefore instruction memory can be constructed as sequential access memory
which requires less addressing circuitry than random access memories, thus reducing overall
power consumption. We have chosen this architecture for our work to implement 4-LUT based

processor, which is shown in Figure 10. A general form of Harvard machine is shown in Figure 7.

10

Instruction Instruction Bus >
Memory
Central
Processing
Unit (CPU)
Data < Data Bus >
Memory
Figure 7. Harvard Architecture

2.2.3 Typical Implementation of Computation on Processors
Implementing computation using processors is much easier and requires less compile time than
FPGAs. A typical flow to implement a computation, from a program written in higher level

languages such as C and C++ down to hardware is shown in Figure 8 [27].

Higher
Lol Compiler | AESETIRY Assembler | Object Code
Language Code
Code
Hardware . .
(CPU) Binary Code Linker
Figure 8. Typical Processor Computation Implementation

Where a compiler is a computer program which converts a higher level program, into low level
assembly code, which is them read by assembler which converts it into object code which is the
form of input a linker would take to generates bits of Os and 1s. As hardware can only understand
the instructions in binary code, which is very hard for human programmers to program in, therefore

these abstractions provide more ease to program for humans.

11

2.3 Effects of functional unit complexity on dynamic energy consumption of
pProcessors

The dynamic energy consumption of a processor is strongly dependent on the logic complexity of
its functional unit. In particular, consider measuring the dynamic energy required to implement an
8-bit wide (7:2) compressor tree [28], as shown in Figure 9, on a sequential processor. As shown,
the circuit consists of a series of full adders (FA) acting as (3,2) counters, and one can take the
approach proposed in [7] to measure the dynamic energy consumed by the processor by first
mapping the circuit into a set of 4-LUTs and then using a LUT-based processor as shown in Figure

10, to execute one LUT configuration at a time.

A;B;G Dy R Gy AB,C; DyE,F G AiBiCi DiEgFi Gi AgBoCo DoEgFo Go

[] [] []
: : C‘mfromG Cin rom -1
T l*_c T : - Cin:rom-z
Cout t03 4—1 Cinfrom-l
Cou'r to3 ‘
Cout 09 CouttoS 515 514 SS S4
Figure 9. 8bit (7,2) Compressor Tree Circuit.

The processor shown in Figure 10, consists of a functional unit containing a single 4-LUT and
connected to two distinct monolithic memory blocks — a sequential access memory for storing
instructions and a random access memory for storing data, implemented using 32nm CMOS

process [7]. Note that in Table I, “M” is the number of words in memory and “W” is the width of

12

each word in bits. As shown in Table I, 80x46 (M x W) bits of instruction memory are required
to encode the 4-LUT configurations, where there are 80 instructions (one for each 4-LUT) and
each instruction consists of a 16-bit wide 4-LUT configuration bits and 5 6-bit wide addresses to
indicate the location of the four (4-LUT inputs) and one (4-LUT output) in data memory. Also,
62x1 (M x W) bits of data memory are needed to store all primary inputs and outputs of the circuit

and to provide intermediate storage for internal LUT input and output values.

Instruction Overands
Memory P Data:Memory.
(Sequential (Random-Access)
Access)
\ 4
Operand
Address ALUT Result
—> |
Config. hits alif i

Figure 10. 4L UT Processor System

Once the size of the instruction and data memory is determined for the processor, one can measure
the dynamic energy consumed by the processor by summing the total dynamic energy required to
read the instructions from the instruction memory, total dynamic energy required to read
(operands) and write (results) to the data memory and total dynamic energy required to evaluate

each 4-LUT configuration [7].

In particular, the dynamic energy consumed for each read/write access to a memory block is a
function of the size of the memory. In particular, for a fixed supply voltage, this energy is

proportional to total wiring capacitance that is switched during the memory access and can be

13

estimated using the following two equations for sequential and random access memory [7],

respectively,

CRandom(W’ M) = (logz(M) + Z(ZW + 2)) WMAbitCu (1)

Csequential(W; M) = 2(2W + 1)y WMAp;:Cy, 2)

Note that in Equation (1) and Equation (2), “M” is total number of words in the memory block,
“W? is the width of each word, “Ap;;” is the layout area for a one SRAM cell (estimated in [7] as
14012 for a dense SRAM cell, where f is the feature size), and C, is 6.4 x 10718 Farads (F), the

wiring capacitance per feature size for minimum width wires.

Table I. (7,2) Compressor Tree Dynamic Energy Consumption
Processor
: FPGA
4-LUT FA 8-hit FA
M 62 59 11 11
wW 1 1 8 8
Capacitance per 15 15 14 14
Data Memory Access (F) — (1) 8.32x10 8.07x10 2.8x10 2.8x10
No. of Accesses 400 200 25 11
Co —Total 3.33x1012 1.61x1012 7.01x10% | 3.08x1073
Capacitance (F)
M 80 40 5 0
w 46 30 20 0
Instruction | CA@Pacitance per g o) s 3.2x10%3 6.21x101 0
M Access (F) — (2)
emory
No. of Accesses 80 40 5 0
C,—Total 11 11 -13
Capacitance (F) 6.84x10 1.28x10 3.1x10 0
Capacitance per | 564,1015 | 319x10% | 268x10% | 1.8x101
Access (F)
Functional Unit No. of Access 80 40 5 1
Cr - Total 2.91x1073 1.28x1012 1.34x10%2 | 1.8x10M
Capacitance (F)
Total Capacitance (pF) (Cpo+Ci+Ck) 71.97 15.69 2.35 18.31
Total Energy (pJ)
(Vaa = 1.8V) 116.6 25.42 3.81 29.67

14

Table I presents the results obtained from the calculation. We use Equation (1) and Equation (2)
to calculate the dynamic energy required to access instruction (sequential access) and data (random
access) memory. In addition, we also estimate the 4-LUT evaluation energy using Equation (1) by
treating the 4-LUT functional unit as a 16x1 (M x W) bit random access memory. As shown in
Table I, overall the 4-LUT processor is required to switch 71.97(pF) of capacitance in order to
perform a full set of calculations of the (7:2) compressor tree. Assuming 1.8(V) supply voltage
(V4q), this capacitance corresponds to 116.6(pJ) of total dynamic energy, calculated using

Equation (3) [29].
EDynamL'c = O-SCVdd2 (3)

It is important to note that this LUT-based functional unit is extremely inefficient since LUTs
provide too fine-grain level of configuration. For example, we can replace the 4-LUT based
functional unit by a full adder (FA) implemented on ASIC. As shown by column 3 (column —
Processor: FA) of Table I, the new processor has significantly reduced instruction memory size as
well as significantly reduced the number of accesses to both the instruction and data memory. This
leads to a significant reduction in total capacitance switched to access data and instruction memory
from 3.33(pF) and 68.4(pF) to 1.61(pF) and 12.8(pF), respectively, and results in the reduction of

total dynamic energy from 116.6(pJ) to 25.42(pJ).

Note that, we assume the FA (and the 8-bit FA) functional unit is implemented in ASIC and its
energy is estimated using VPR 4.30 place and route result [30] and converted to ASIC energy
using the methodology from [6] by assuming ASIC implementations consume 1/14th of the energy
of FPGA implementations. It would be an over estimation as a careful ASIC implementation

optimized for dynamic energy for such small circuits can be more efficient but for consistency and

15

to keep the model simple for calculations we use the approach described in [6] throughout this

work.

Extending the data-path width per instruction can further reduce the size of the instruction memory
and the number of accesses to both the instruction and data memory. As shown by column 5
(column — Processor: 8-bit FA) of Table I, the total dynamic energy consumption is reduced to

3.81(pJ) for a processor with 8-bit wide full adder as its functional unit.

Table I, also lists the total dynamic energy consumed by (7:2) compressor tree placed and routed
ona4-LUT FPGA using VPR 4.30. The total logic and routing capacitance switched for executing
one set of compressor tree calculations are then calculated and shown in column 6 (column —
FPGA) of Table I. The calculation assumes the primary inputs and outputs of the FPGA are stored
in random access memory. The energy required to read configuration bit stream for FPGA was
deliberately ignored due to the fact that this energy has very little contribution in total energy and
can be amortized on large number of computations FPGAs perform after being configured once.
Compared to the processor with 8-bit wide FA (implemented in ASIC) as its functional unit, the
FPGA implementation consumes 7.7x more dynamic energy, while the FPGA consumes 3.92x

less dynamic energy than the single 4-LUT processor implementation.

Given that processors can gain energy efficiency by using more specialized functional units in
order to reduce the number of accesses and size of both instruction and data memory, the energy
required to perform the same set of functions on a processor is strongly dependent on the
complexity of the functional units that the processor contains. Consequently, for the remainder of
this thesis, we measure the amount of instruction and data memory reduction that is required in

order for a processor to become more dynamic energy efficient than LUT-based FPGAs.

16

Chapter 3

Experimental Procedure

3.1 Overview

As in [7], wire-capacitance-based models are used in this work to measure the dynamic energy
consumption of processors and FPGAs. In particular, for a processor, we measure the dynamic
energy consumed by the processor for accessing its instruction memory, its data memory and its
functional units. For an FPGA, we measure both the dynamic energy consumed by the LUT
evaluations and the routing network. Finally, ASIC energy is estimated as 1/14th of FPGA energy
[6]. The detailed experimental procedure that was used to measure the dynamic energy
consumption of the MCNC benchmarks on a processor with a 4-LUT-based functional unit is
presented in Section 3.2, and the experimental procedure used to measure the dynamic energy

consumption of the same benchmarks on an FPGA is presented in Section 3.3.

|
T |
| e#::;g -l;];t/?ﬁgkfor Using VPR place and Read routing information from VPR
g VPR Without P route the circuiton P and simulate circuit with random
clustering 4LUT FPGA inputs based on wire length

Parallel Processing System

MCNC
Benchmark
Circuits (.blif)

Measure

Dynamic
Energy

Using live variable analysis estimate
reresentation of o| the size of data memory required to
| c(ieriuit on ALUTSs " implement complete circuit on single
| 4LUT

Simulate the circuiton
4LUT processor with
random inputs

Generate sequential

A 4

| Sequential Processing System

Figure 11. Experimental Procedure (CAD Flow)

17

3.2 Sequential/Temporal Processing Energy

The CAD flow for estimating the dynamic energy required to execute the MCNC benchmarks on
a sequential processing system is shown in Figure 11. In particular, we first map each 4-LUT-
based FPGA circuit onto the 4-LUT-based processor as shown in Figure 10. T-Vpack [30] is first
used to read each MCNC benchmark circuit in BLIF (Berkeley Logic Interchange Format) [31].
Once read, our tool first creates a directed graph representation of the circuit and then map the
directed graph into a sequential temporal representation through breath-first search [32]. In
particular, we schedule each LUT into a sequential execution sequence only if the sources of all
inputs to the LUT have been scheduled previously, in software terms satisfying the variable

dependencies in the program.

INg

ouT,

IN>

OouT,

IN3

OUT;

INg4

Figure 12. Graph Representation of Circuit

Figure 12, and Figure 13, show an example of such a schedule. In particular, Figure 12, shows the
directed graph representation of a circuit. Here the rectangular nodes represent the primary inputs,
outputs from registers, primary outputs and inputs to registers. Circular nodes represent single 4-

LUT-based processing elements “PEy”, each containing only one 4-LUT configuration. The

18

scheduler does a breath-first search through the graph and schedules primary inputs and register
outputs first. Then each LUT is scheduled only if all nodes that generate the input edges to the
LUT have already been scheduled before and the final sequential schedule is shown in Figure 13.
Note that in Figure 13, the data memory location associated with OUTz, OUT, and OUT3z will be
updated as part of PE7, PEg and PEg execution respectively. Also, any registered outputs for LUTs
(DFFs) are also scheduled before all Processing Elements (PEs). For the very first simulation
cycle, they are considered to have a random value, which will be updated to the actual LUT result
after each later cycle during simulation. Also note that in Figure 13, t1 to tg represents different
times during execution. For example, at t; the LUT is configured as PE; and after evaluation it is
reconfigured as PE; for second evaluation in ty, it is then reconfigured as PE3 for evaluation in ts,

and so on.

——————————————

e "~

- < - i S ~<
Ptag - i SR~ TN 2R < 27N 7 s i AN N
G R @ @ @
o = S~ P TN Nt 2 he Y2 S N o
BRI N p :":’ P ~ BRI <~ o o Bags 7 ’

t t ty ty ts tg t7 tg ty

Figure 13. Linked List Representation of Circuit

In order to measure the dynamic energy consumed by the 4-LUT processor system, we perform a
cycle by cycle simulation. During each cycle, the processor follows a traditional fetch, decode,
execute and store cycle by first reading an instruction from the instruction memory. The instruction
contains a 16-bit LUT configuration and five addresses indicating the location of the four inputs

to the LUT and the one output of the LUT in data memory. Based on these addresses, the processor

19

then reads the operands of the instruction from data memory. The 4-LUT instruction is then

evaluated and the output written back to data memory.

Consequently, during each execution cycle, the processor would read the instruction memory once
and read data memory for the maximum of four times and write to data memory once. Note that
the number of read access to the data memory is the instruction dependent. Finally, we calculate
the total dynamic energy consumed by the 4-LUT processor in each cycle by summing the dynamic
energy consumed, to access the instruction memory, the data memory and the energy required to

evaluate the 4-LUT functional unit as shown by Equation (4).

ETotal = EData Memory + Elnstruction Memory + EFunctional Unit (4)

Dynamic power consumed by a circuit is directly proportional to the amount of capacitance being
charged and discharged during its operation. We assume instruction memory is implemented in
sequential access memory, as instructions are executed in strictly sequential manner and sequential
access requires less energy than random access due to reduced decoding circuitry. We measure the
capacitance consumed by the instruction memory based on Equation (2). Note that in order to
estimate the capacitance, we need the size of the instruction memory in terms of the total number
of memory words (M;,struction) @nd the width of each memory word in bits (W, struction)-

“Winstruction and “Mseruction”” are calculated using Equation (5) and Equation (6), respectively,

Winstruction = 2k + ceil(5log,(Mpata)) (5)

Minstruction = Nputs (6)

where “k” is the size of the LUT, “Mpg,:,” is the number of words contained in data memory,

“Npyrs” is the total number of LUTs in each circuit and “ceil” means ceiling function. “W” and

20

“M” in Equation (2) is then set t0 “Wipstruction and “Mistruction > T€Spectively, to calculate

dynamic energy per access for the instruction memory.

Similarly, the capacitance consumed by data memory is measured using Equation (1). Note that
LUT output is always a 1 bit wide therefore “Wp,.,” is always equal to 1. “Mp,,” is computed

based on our live variable analysis results, explained in Section 3.2.1.

In particular, since data memory is implemented in random access memory, we can minimize the
size of data memory by re-using the memory words containing data that are no longer required by
the program (dead variables). Therefore, to measure the accurate size of the required data memory,
we used live variable analysis algorithm [33] to eliminate dead variables after the execution of
each instruction and measure “Mp,;,” as the largest required memory size during the execution of
an entire program. “W” and “M” in Equation (1) are then set to “Wp,:,” and “Mp,:,” respectively

to estimate to dynamic energy required for each access to the data memory.

For a single 4-LUT as a functional unit, we estimate the capacitance consumed by the functional
unit itself also using Equation (1). Note that during each simulation cycle, each 4-LUT will be
accessed twice, containing 1 write and 1 read access. First the 4-LUT is re-configured (1 write
access) and then evaluated (1 read access) for each instruction. In particular, for the write access,
we assume the write circuitry is implemented using random access memory containing 1 16-bit
word by setting “W” to 16 and “M” to 1. For read access, we assume the read circuitry is
implemented using the same SRAM cells but organized into 16 1-bit wide words by setting “W”

to 1 and “M” to 16.

21

3.2.1 Live Variable Analysis

In order to measure the correct amount of data memory words “Mp,;,”” Which is required to
perform a single operation on 4-LUT processor, we implemented an algorithm to estimate the
minimum amount of data memory required. A naive way of selecting data memory, to execute the
complete schedule in Figure 13, is to choose a random memory containing words “Mp,;,” equal
to the total number of LUTs “Nyyrs” in the circuit. An efficient implementation would be to
measure the highest number of intermediate values stored in the data memory at any moment of
time, during program execution. The purpose of this algorithm is to accurately measure the “Mpata”
based on the maximum “alive” variables or intermediate values stored in data memory at any

moment of time during program execution.

This algorithm starts by initially going through the schedule in reverse order (starting from the
LUTSs scheduled at the end and directly connected to OutPads of FPGA), it will update a list of
pointers in each node of the linked-list as shown in Figure 13, by providing it a list of pointers to

all nodes it is being connected to in the future.

Once each node is aware of its future connections, we can start traversing the linked-list again
from the very first node in the schedule and create a list of all connections (live variables) for
future nodes. Also at each node we check if that particular node is present in the list, if it is present
then it is considered as dead. Figure 14, provides the flow chart for this algorithm. Largest size of
this list at any particular time during this traversal would be the minimum amount of data memory

required to perform a single operation on 4-LUT processor.

22

Starting from the
last LUT in list

Update theinput
LUT by giving it a

7’| pointer to current
LUT
No Yes Move to the
Allinputs done? previous LUT in
schedule
No
Yes

| Data Memory Size (M) =0

A

Last node?

-

Create List

Is this node
connected to anyone
in future?

Move to Next Node

A

A

Add all future nodes
in the list and
measure the total
size of list (S)

Remove current
node from list

Is current node
present in list?

Figure 14. Live Variable Analysis Algorithm

23

3.3 Parallel/Spatial Processing Energy

Our simulator uses the same schedule to measure the dynamic energy consumption of the 4-LUT-
based FPGA that is used to measure the dynamic energy consumption of 4-LUT-based processor.
Again a cycle by cycle simulation is performed to measure the actual net activities based on the
results of individual LUT evaluations, using random primary inputs. Total dynamic energy
consumed by the FPGA is then calculated as the sum of the energy required to switch the routing

network and evaluate all LUTSs as described in Equation (7).

ETotal(FPGA) = ELUTS Evaluations T ERouting Network (7)

To measure LUT energy, we use Equation (1) by assuming each 4-LUT as a random access
memory with 16 1-bit wide words. For routing energy, the CAD flow shown in Figure 11, is used.
The VPR 4.30 tool chain [30] is used to map the MCNC benchmarks onto an island style FPGA
where each logic block contains one 4-LUT and each routing track expands two logic blocks before
being interrupted by routing switches. The VPR tools are then used to search for the minimum

number of routing tracks that are needed to successfully route each circuit.

Assuming each FPGA tile is laid out in a square, the minimum width transistor area [34] per tile
(A,nwe) reported by the VPR tool is then used to calculate the length of routing tracks that is needed
to span one FPGA tile. Minimum width transistor area means the layout area required to implement
a smallest transistor in any process. VPR provides a generalized process free area estimation.
Minimum width transistor area model for VPR assumes the layout area occupied by the transistor
and distance required from its neighboring transistors, such as shown in Figure 15 from [34]. This
area model is however improved by [35] by proving that VPR underestimates the actual layout

area by a factor of 2.5%, therefore Equation (8) adjusts the actual area by this factor.

24

Minimum horizontal spacing

Perimeter of minimum

. . width transistor
—
Diffusion

\ Contact
Polysilicon

(gate)

Figure 15. Definition of a minimum width transistor area.

The area is first converted into feature size based area using the lambda())-based layout rules from
[29] by assuming each minimum area transistor takes 40/ 2 layout area. The feature size based
area is then adjusted by a factor of 2.5x to account for the under-estimation of actual layout area
by the minimum width transistor area model [35]. Finally, for each routing connection that
corresponds to an edge in our routing schedule (shown as dashed lines in Figure 13,) the Manhattan
distance (Dy45) that the edge spans on the FPGA is then used to calculate the wiring capacitance

of the routing connection “Croyting” based on Equation (8).

CRouting = Dyan 2-5Amwt40f26u (8)

25

where f is feature size and “C,” is 6.4 x 10718 (F) at 32nm process, the wiring capacitance per

feature size for minimum width wires [7].

Note that energy required for configuring the LUTs and the routing resources are ignored by our
simulation since once configured an FPGA is typically used over many cycles of computations

and once amortized over all the cycles the configuration energy becomes negligible.

26

Chapter 4

Experimental Results

41 Overview

We first present the dynamic energy consumption of the simple 4-LUT-based processor and
compare the processor’s energy consumption to the energy consumption of the 4-LUT-based
FPGA for the MCNC benchmarks. The data-path width of the processor is then increased from 1-
bit to 256-bits, and its effects on the relative dynamic energy consumption between the processor
and the FPGA is then measured. Finally, the effect of reducing the instruction and data memory
sizes on the energy efficient of the processor over the FPGA is measured to account for the effect

of replacing the 4-LUT based functional unit by more complex ASIC based functional units.

4.2 4-LUT Processor vs 4-LUT FPGA (Dynamic Energy)

Table 11 provides the results obtained from the experiment performed with a single 4-LUT as the
functional unit for the processor. Column 1 lists the name of each benchmark. Column 2, 3, and
4 list the three components of the CPU dynamic energy consumption including the instruction
memory, data memory, and functional unit dynamic energy consumption, respectively. Column 5
lists the total dynamic energy consumption of the CPU. The components of FPGA dynamic energy
consumption are shown in column 6 and 7 including the routing energy consumption and 4-LUT
evaluation energy consumption, respectively. The total FPGA dynamic energy consumption is
shown in column 8. Finally, the ratio between the total CPU energy consumption and FPGA energy

consumption is shown in column 9. As shown, on average for the MCNC benchmarks, the 4-LUT

27

processor consumes 717x more dynamic energy to perform the same computation than the 4-LUT

FPGA.
Table 1. Dynamic Energy Consumption of MCNC Benchmarks 1bit (100% Memory)

MCNC Processor Dynamic Energy (nJ) FPGA Dy?ﬁ;;‘ic Energy ggtS}

e oy | vy | on™ | o | Roung [oot | o | 1ot
FPGA

alu4 224.69 4.15 0.11 228.95 | 1.37 0.11 1.48 | 154.58
apex2 307.97 5.70 0.14 313.81 @ 1.85 0.14 1.99 | 157.36
apex4 169.65 2.95 0.05 172.65 | 0.62 0.10 0.72 | 240.26
bigkey 301.90 6.19 0.08 308.17 & 0.98 0.13 1.11 | 277.65
clma 3881.01 | 56.83 0.32 | 3938.16 | 3.90 0.63 453 | 869.43
des 240.14 4.63 0.14 24492 | 191 0.12 2.03 | 120.89
diffeq 273.66 431 0.02 277.99 | 0.15 0.11 0.27 | 1038.92
dsip 223.26 5.48 0.07 22881 | 0.84 0.10 0.95 | 242.05
elliptic 1306.20 | 17.19 0.05 | 132345 | 0.47 0.27 0.74 | 1796.47
ex1010 131.33 2.14 0.05 133.52 | 0.59 0.08 0.67 | 199.32
ex5p 1436.42 | 23.80 0.11 | 1460.33 | 1.13 0.35 1.47 | 990.53
frisk 1212.78 | 15.12 0.04 | 1227.94 | 0.27 0.27 0.54 | 2275.50
misex3 197.59 3.70 0.09 201.37 | 1.09 0.11 1.19 | 169.01
pdc 1425.66 | 25.58 0.15 | 145139 1.75 0.34 2.10 | 691.75
s298 322.18 5.58 0.04 327.79 | 0.40 0.15 0.54 | 605.07
$38417 2719.04 | 36.48 0.08 | 2755.61 | 0.67 0.46 1.13 | 2436.12
$38584.1 | 2753.42 | 39.72 0.09 |2793.23 | 0.76 0.47 1.24 | 2259.65
seq 277.03 4.85 0.12 282.00 | 154 0.13 1.67 | 169.03
spla 938.94 | 16.56 0.12 955.62 | 1.40 0.28 1.68 | 569.66
tseng 175.13 2.37 0.01 177.52 | 0.10 0.08 0.18 | 970.59
Average: 925.90 | 14.17 0.09 940.16 | 1.09 0.22 1.31 | 717.13

28

Table 111 presents the energy distribution among memories and the functional unit. As show in
column 2 of Table 111, majority of this energy (98.48%) is consumed in reading the instructions

from sequential memory.

Table I11I. Energy Distribution for Processor
SIMD Bit(s)/Mem Size (%) | 1/100 | 64/100 64/9
Instruction Memory (%) 08.48 | 36.44 34.27
Data Memory (%) 1.51 63.36 58.78
Functional Unit (%) 0.01 0.20 6.95
Processor vs FPGA 1-bit Width 100% Memory
2,500
2,000
1,500
1,000
500 I I I I I I I
anill
o“@x&?ﬁ@e"“@.v;\“'@%‘q\‘o?’ o
B & 6\%{- &Y E.}g& & q}\\Q jS\’g & &L (;1, é);bv ‘2)%‘) £ &

Figure 16. Ratio for MCNC Benchmarks (CPU/FPGA)

Figure 16, shows the difference between the energy consumption of CPU when using single 4-

LUT as processor and an island style FPGA for MCNC Benchmarks, placed and routed by VPR.

29

4.3 Increasing data-path (SIMD)

Processors can increase their dynamic energy efficiency by sharing the same instruction on a set
of data that is more than 1-bit wide. This property is known as SIMD, single instruction multiple
data [7]. Storing a set of bits in the same word in data memory reduces the overall energy per bit
required to address the word. FPGAS, however, require a complete replication of same the LUT
network for each additional bit. Therefore, using a wider data-path should decrease the energy

efficiency gap between the processor and the FPGA.

717
362
185
98
. > 38 36 37 48
H = = = .
1 2 4 8

5
16 32 64 128 256
Data-path width bit(s)

EProcesso r/EFPGA

Figure 17. Dynamic Energy Ratio Vs Increasing Bit Width

Figure 17, shows the ratio between processor dynamic energy consumption (Eprocessor) and FPGA
dynamic energy consumption (Erpca) as a function of data path width. As shown, the ratio of the
dynamic energy consumed by the processor and the FPGA decreases as the data-path width is
increased. The ratio reaches a minimum at 64 bits, where the processor consumes 36x more energy
than the FPGA. After 64-bit width, this ratio starts to increase due to the non-linear nature of the

random access memory model as a function of bit width [7].

30

Note that at 1-bit wide data-path, the processor contains a single 4-LUT as its functional unit.
However, for multiple bit wide data-paths, the processor contains one additional 4-LUT for each
additional bit. This increases the per access dynamic energy consumed by the functional unit. Data
memory energy also increases as its width increases. However, there is no change in dynamic
energy consumption by the instruction memory. This behavior is summarized by column 3 of
Table 111, where, at 64-bit wide data-path width, the data memory consumes the most dynamic
energy (63.36%), instruction memory consumes (36.44%) of the total dynamic energy and the
functional unit still consumes a very small (0.2%) but increasing amount of the total dynamic

energy due to the reduction in the overall all dynamic energy consumption of the processor.

Table IV, Table V, Table VI, Table VII, Table VIII, Table I)X, Table X and Table XI provides the
energies in (n)Joules for all 20 MCNC Benchmarks, at 2, 4, 8, 16, 32, 64, 128 and 256 bits wide
data paths, respectively. In each table; column 1, lists the MCNC Benchmark function; column 2,
provides the energy consumed by instruction memory for processor; column 3, provides the energy
consumed by data memory; column 4, provides the energy consumed by the array of 4-LUT(s) in
functional units; column 5, lists the total energy consumed by CPU, while column 6 and 7 lists the
FPGA energy and ratio of Eprocessor and Erpca. While last row provides the arithmetic mean for all
20 MCNC Benchmarks, except the last cell for ‘“Total CPU/ Total FPGA’ provides the ratio

between ‘Arithmetic Mean of CPU”’ by ‘Arithmetic Mean of FPGA”.

31

Table IV.

Dynamic Energy Consumption of MCNC Benchmarks 2bit (100% Memory)

MCNC Processor Dynamic Energy (nJ) FPGA Total CPU/
Benchmark | Instruction | Data | Functional | Total Dynamic Total
Memory | Memory Unit CPU Energy (nJ) FPGA
alud 56.17 1.80 0.05 58.03 0.74 78.39
apex2 76.99 2.47 0.07 79.53 1.00 79.88
apex4 42.41 1.28 0.03 43.72 0.36 121.68
bigkey 75.48 2.67 0.04 78.19 0.56 140.82
clma 970.25 24.15 0.16 994.56 2.27 438.68
des 60.04 2.01 0.07 62.12 1.01 61.35
diffeq 68.42 1.87 0.01 70.29 0.13 525.57
dsip 55.82 2.36 0.03 58.21 0.47 123.17
elliptic 326.55 7.36 0.03 333.93 0.37 905.68
ex1010 359.11 10.17 0.05 369.32 0.74 500.12
exsp 32.83 0.94 0.02 33.80 0.33 101.32
frisk 303.20 6.49 0.02 309.70 0.27 1147.69
misex3 49.40 1.61 0.04 51.05 0.60 85.58
pdc 356.41 10.93 0.07 367.42 1.05 350.70
5298 80.54 2.42 0.02 82.98 0.27 305.65
s38417 679.76 15.53 0.04 695.33 0.56 1236.22
s38584.1 688.35 16.87 0.04 705.27 0.62 1140.21
seq 69.26 2.11 0.06 71.42 0.84 85.51
spla 234.73 7.11 0.06 241.90 0.84 287.80
tseng 43.78 1.03 0.01 44.82 0.09 490.35
Average: 231.48 6.06 0.05 237.58 0.66 362.41

32

Table V.

Dynamic Energy Consumption of MCNC Benchmarks 4bit (100% Memory)

MCNC Processor Dynamic Energy (nJ) FPGA Total CPU/
Benchmark | Instruction | Data | Functional | Total Dynamic Total
Memory | Memory Unit CPU Energy (nJ) FPGA
alud 56.17 3.50 0.11 59.78 1.48 40.35
apex2 76.99 4.77 0.14 81.91 2.00 41.04
apex4 42.41 2.50 0.05 44.96 0.72 62.53
bigkey 75.48 5.14 0.08 80.70 1.11 72.51
clma 970.25 45.64 0.32 1016.21 4.53 224.28
des 60.04 3.90 0.14 64.08 2.03 31.62
diffeq 68.42 3.61 0.02 72.04 0.27 269.21
dsip 55.82 4.55 0.07 60.43 0.94 64.01
elliptic 326.55 14.02 0.05 340.62 0.74 462.12
ex1010 359.11 19.33 0.11 378.54 1.48 256.22
exsp 32.83 1.84 0.05 34.72 0.67 51.96
frisk 303.20 12.41 0.04 315.64 0.54 584.98
misex3 49.40 3.12 0.09 52.60 1.19 44.16
pdc 356.41 20.77 0.15 377.34 2.10 179.52
5298 80.54 4.68 0.04 85.26 0.54 156.98
s38417 679.76 29.44 0.08 709.28 1.13 627.73
s38584.1 688.35 31.85 0.09 720.29 1.24 582.35
seq 69.26 4.08 0.12 73.46 1.67 43.93
spla 234.73 13.59 0.12 248.45 1.68 147.68
tseng 43.78 2.01 0.01 45.81 0.18 250.52
Average: 231.48 11.54 0.09 243.11 1.31 185.29

33

Table VI.

Dynamic Energy Consumption of MCNC Benchmarks 8bit (100% Memory)

MCNC Processor Dynamic Energy (nJ) FPGA Total CPU/
Benchmark | Instruction | Data | Functional | Total Dynamic Total
Memory | Memory Unit CPU Energy (nJ) FPGA
alud 56.17 7.63 0.21 64.01 2.96 21.61
apex2 76.99 10.37 0.28 87.65 3.98 22.01
apex4 42.41 5.47 0.10 47.99 1.44 33.38
bigkey 75.48 11.12 0.16 86.76 2.22 39.03
clma 970.25 97.01 0.65 1067.91 9.05 117.98
des 60.04 8.49 0.29 68.81 4.05 16.99
diffeq 68.42 7.85 0.04 76.31 0.53 142.82
dsip 55.82 9.86 0.13 65.81 1.89 34.85
elliptic 326.55 30.04 0.11 356.70 1.47 242.05
ex1010 359.11 41.35 0.21 400.66 2.96 135.58
exsp 32.83 4.06 0.10 36.99 1.34 27.58
frisk 303.20 26.70 0.08 329.97 1.08 305.75
misex3 49.40 6.81 0.17 56.38 2.38 23.64
pdc 356.41 44.43 0.30 401.14 4.20 95.52
5298 80.54 10.19 0.08 90.81 1.08 83.76
s38417 679.76 62.74 0.16 742.66 2.25 329.73
s38584.1 688.35 67.65 0.18 756.18 2.47 305.55
seq 69.26 8.89 0.24 78.39 3.34 23.47
spla 234.73 29.25 0.24 264.22 3.37 78.48
tseng 43.78 441 0.03 48.22 0.37 131.92
Average: 231.48 24.72 0.19 256.38 2.62 97.76

34

Table VII. Dynamic Energy Consumption of MCNC Benchmarks 16bit (100% Memory)

MCNC Processor Dynamic Energy (nJ) FPGA Total CPU/
Benchmark | Instruction | Data | Functional | Total Dynamic Total
Memory | Memory Unit CPU Energy (nJ) FPGA
alud 56.17 18.37 0.42 74.97 5.92 12.66
apex2 76.99 2491 0.57 102.48 7.98 12.84
apex4 42.41 13.22 0.21 55.84 2.87 19.44
bigkey 75.48 26.60 0.32 102.40 4.45 22.99
clma 970.25 229.04 1.29 1200.59 18.09 66.36
des 60.04 20.42 0.58 81.04 8.09 10.01
diffeq 68.42 18.88 0.08 87.37 1.07 81.57
dsip 55.82 23.62 0.27 79.71 3.78 21.09
elliptic 326.55 71.39 0.21 398.15 2.95 135.12
ex1010 359.11 98.10 0.42 457.63 5.91 77.41
exsp 32.83 9.85 0.19 42.88 2.67 16.04
frisk 303.20 63.63 0.15 366.98 2.16 170.02
misex3 49.40 16.40 0.34 66.14 4.76 13.88
pdc 356.41 105.39 0.60 462.40 8.38 55.16
5298 80.54 24.50 0.15 105.20 2.16 48.60
s38417 679.76 148.49 0.32 828.58 454 182.32
s38584.1 688.35 159.56 0.35 848.27 4.95 171.48
seq 69.26 21.39 0.48 91.13 6.68 13.64
spla 234.73 69.71 0.48 304.93 6.73 45.32
tseng 43.78 10.65 0.05 54.48 0.73 74.47
Average: 231.48 58.71 0.37 290.56 5.24 55.40

35

Table VIII.

Dynamic Energy Consumption of MCNC Benchmarks 32bit (100% Memory)

MCNC Processor Dynamic Energy (nJ) FPGA Total CPU/
Benchmark | Instruction | Data | Functional | Total Dynamic Total
Memory | Memory Unit CPU Energy (nJ) FPGA
alud 56.17 47.44 0.85 104.46 11.85 8.82
apex2 76.99 64.21 1.14 142.34 15.94 8.93
apex4 42.41 34.21 041 77.04 5.75 13.39
bigkey 75.48 68.49 0.63 144.60 8.89 16.27
clma 970.25 583.71 2.01 1555.97 28.12 55.34
des 60.04 52.72 1.16 113.91 16.21 7.03
diffeq 68.42 48.68 0.15 117.25 2.14 54.77
dsip 55.82 60.79 0.54 117.15 1.57 15.48
elliptic 326.55 182.72 0.42 509.69 5.90 86.43
ex1010 359.11 250.81 0.84 610.76 11.83 51.63
exsp 32.83 25.57 0.38 58.78 5.35 10.99
frisk 303.20 163.16 0.31 466.67 4.32 108.11
misex3 49.40 42.37 0.68 92.45 9.55 9.68
pdc 356.41 269.42 1.20 627.03 16.75 37.44
5298 80.54 63.20 0.31 144.06 4.34 33.20
s38417 679.76 378.78 0.64 1059.19 9.02 117.46
s38584.1 688.35 406.44 0.71 1095.50 9.89 110.75
seq 69.26 55.20 0.95 125.41 13.35 9.40
spla 234.73 178.76 0.96 414.45 13.46 30.79
tseng 43.78 27.55 0.10 71.43 1.46 48.84
Average: 231.48 150.21 0.72 382.41 10.08 37.93

36

Table IX.

Dynamic Energy Consumption of MCNC Benchmarks 64bit (100% Memory)

MCNC Processor Dynamic Energy (nJ) FPGA Total CPU/
Benchmark | Instruction | Data | Functional | Total Dynamic Total
Memory | Memory Unit CPU Energy (nJ) FPGA
alud 56.17 127.76 1.69 185.63 23.71 7.83
apex2 76.99 172.78 2.28 252.05 31.90 7.90
apex4 42.41 92.24 0.82 135.47 11.49 11.79
bigkey 75.48 184.19 1.27 260.94 17.78 14.68
clma 970.25 1560.35 4.60 2535.20 64.41 39.36
des 60.04 141.95 2.32 204.30 32.42 6.30
diffeq 68.42 131.01 0.31 199.73 4.28 46.72
dsip 55.82 163.42 1.08 220.32 15.13 14.56
elliptic 326.55 489.64 0.26 816.46 3.70 220.71
ex1010 359.11 671.70 111 1031.92 15.57 66.26
exsp 32.83 69.05 0.76 102.65 10.70 9.59
frisk 303.20 437.73 0.04 740.97 0.54 1370.15
misex3 49.40 114.11 1.36 164.87 19.07 8.64
pdc 356.41 72151 1.82 1079.74 25.43 42.45
s298 80.54 170.14 0.62 251.31 8.67 28.97
s38417 679.76 1013.33 0.71 1693.80 9.92 170.69
$38584.1 688.35 1086.28 0.84 1775.47 11.70 151.79
seq 69.26 148.64 191 219.81 26.73 8.22
spla 234.73 479.57 1.34 715.65 18.80 38.07
tseng 43.78 74.29 0.21 118.28 2.93 40.40
Average: 231.48 | 402.49 1.27 635.23 17.74 35.80

37

Table X.

Dynamic Energy Consumption of MCNC Benchmarks 128bit (100% Memory)

MCNC Processor Dynamic Energy (nJ) FPGA Total CPU/
Benchmark | Instruction | Data | Functional | Total Dynamic Total
Memory | Memory Unit CPU Energy (nJ) FPGA
alud 56.17 352.36 3.39 411.93 47.45 8.68
apex2 76.99 476.17 3.98 557.15 55.76 9.99
apex4 42.41 25451 1.64 298.57 22.99 12.99
bigkey 75.48 506.92 1.96 584.36 27.44 21.30
clma 970.25 4285.04 9.19 5264.49 128.68 40.91
des 60.04 391.39 4.63 456.06 64.84 7.03
diffeq 68.42 361.19 0.61 430.21 8.56 50.28
dsip 55.82 450.18 2.16 508.15 30.27 16.79
elliptic 326.55 1346.49 1.11 1674.14 15.48 108.15
ex1010 359.11 1846.56 2.80 2208.46 39.17 56.39
exsp 32.83 190.72 1.53 225.08 21.41 10.52
frisk 303.20 1204.50 0.66 1508.35 9.18 164.37
misex3 49.40 314.69 2.73 366.81 38.16 9.61
pdc 356.41 1983.57 4.22 2344.20 59.10 39.67
s298 80.54 468.97 0.66 550.17 9.23 59.62
s38417 679.76 2785.19 1.43 3466.38 19.99 173.39
$38584.1 688.35 2982.02 1.67 3672.04 23.35 157.23
seq 69.26 409.73 3.23 482.22 45.22 10.66
spla 234.73 1319.52 3.26 1557.51 45.68 34.10
tseng 43.78 204.96 0.42 249.16 5.85 42.58
Average: 231.48 1106.73 2.56 1340.77 35.89 37.36

38

Table XI.

Dynamic Energy Consumption of MCNC Benchmarks 256bit (100% Memory)

MCNC Processor Dynamic Energy (nJ) FPGA Total CPU/
Benchmark | Instruction | Data | Functional | Total Dynamic Total
Memory | Memory Unit CPU Energy (nJ) FPGA
alu4 56.17 983.68 6.19 1046.05 86.69 12.07
apex2 76.99 1328.93 8.52 1414.44 119.25 11.86
apex4 4241 710.86 2.71 755.97 37.88 19.96
bigkey 75.48 1412.49 4.50 1492.47 63.01 23.69
cima or025 | M50 4777 | 1202566 | 24882 51.95

des 60.04 1092.54 8.68 1161.25 121.47 9.56

diffeq 68.42 1008.34 0.65 1077.41 9.04 119.16
dsip 55.82 1256.27 3.75 1315.83 52.48 25.08
elliptic 326.55 3754.02 2.21 4082.78 30.95 131.91
ex1010 359.11 5147.49 5.03 5511.63 70.49 78.19
exsp 32.83 532.92 2.48 568.23 34.70 16.38
frisk 303.20 3359.29 131 3663.79 18.35 199.67
misex3 49.40 878.71 4.88 932.99 68.28 13.66
pdc 356.41 5529.24 7.86 5893.51 109.98 53.59
s298 80.54 1309.36 1.90 1391.80 26.61 52.31
s38417 679.76 7760.94 2.86 8443.56 40.06 210.79
s38584.1 688.35 8309.68 3.35 9001.39 46.84 192.18
seq 69.26 1143.84 7.04 1220.13 98.50 12.39
spla 234.73 3680.12 6.52 3921.37 91.29 42.95
tseng 43.78 572.42 0.26 616.46 3.61 170.95
Average: 231.48 3085.44 4.92 3321.84 68.91 48.20

39

4.4 Compressing Memories at 64-bit SIMD

As discussed in Section 2.3, the energy consumed by a processor can be reduced by increasing the
complexity of the functional unit that it contains. This increase in turn reduces both the amount of
data and instruction memory that are required to execute the same set of operations. To measure
this effect of increasing functional unit complexity on the overall dynamic energy gap between the
processor and the FPGA, we measure the overall dynamic energy consumption as a function of
reduced memory size. In our measurement, we assume both the instruction memory and data
memory are reduced by the same amount and a reduction in memory size leads to a proportional

reduction in memory access.

Note that as the complexity of a functional unit increases, the energy per access would increase.
The number of accesses, however, will be proportionally reduced. Consequently, in this work we
assume the overall total dynamic energy consumed by the functional unit (Erunctional_unit in EqQuation

(4)) would remain the same as the complexity of the functional unit is increased.

40
35.80
35

30

EPro cessor/EFPGA
N N
o ul

[any
[

[any
o

9]

3.25
1.19 1.03 0.87

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 9% 8%
Dataand Instruction Memory Size

Figure 18. Average Energy Ratio for MCNC Benchmarks at 64bit(s)

40

Table XII.

Dynamic Energy at 64bit(s) 9% Memory Size

MCNC CPU Dynamic Energy (nJ) FPGA Dynamic Energy (nJ) ggtS}
Benchmark | Instruction | Data Functi_onal Total Routing LUT_ Total | Total
Memory | Memory Unit CPU Evaluation | FPGA | FpGA
alu4 6.04 13.61 6.76 26.42 87.36 7.34 94.70 0.28
apex2 8.31 18.33 9.11 35.75 | 118.43 9.06 12749 | 0.28
ex4 4.57 9.79 3.29 17.65 | 39.96 6.09 46.05 | 0.38
bigkey 8.13 19.62 5.08 32.84 62.93 8.23 71.16 0.46
clma 104.77 166.25 18.40 289.41 | 249.50 8.06 25756 | 1.12
des 6.48 15.12 9.26 30.86 | 122.01 7.67 129.69 | 0.24
diffeq 7.38 13.96 1.22 22.55 9.90 7.21 17.10 1.32
dsip 6.02 17.37 4.32 27.71 | 53.82 6.61 60.43 | 0.46
elliptic 35.26 52.07 1.06 88.39 29.77 15.00 14.77 5.98
ex1010 3.53 7.28 3.06 13.87 | 37.67 5.13 42.81 | 0.32
exsp 38.74 71.51 4.44 11469 | 7231 10.19 62.12 1.85
frisk 32.72 46.63 0.15 79.51 17.46 15.30 2.16 36.83
misex3 5.32 12.15 5.45 22.92 69.58 6.74 76.32 0.30
pdc 38.46 76.82 7.28 122.56 | 112.24 10.30 101.94 | 1.20
s298 8.68 18.09 2.48 29.25 25.40 9.31 34.71 0.84
s38417 73.37 107.92 2.88 184.17 | 43.25 2.97 40.29 4.57
$38584.1 74.32 115.70 3.34 193.36 | 48.78 2.07 46.71 4.14
seq 7.47 15.80 7.63 30.91 98.44 8.44 106.89 | 0.29
spla 25.35 51.09 5.36 81.80 89.66 14.57 75.09 1.09
tseng 4.73 7.85 0.83 13.41 6.64 5.05 11.69 | 1.15
Average: 24.98 42.85 5.07 72.90 69.76 8.27 70.98 1.03

41

Figure 18 shows the ratio between the dynamic energy consumption of the processor (Eprocessor)
and the dynamic energy consumption of the FPGA (Erpca) as the instruction and data memory
sizes are reduced. As shown, when the memory size (and access) is reduced to around 9% of the
memory required for a processor that employs 64-bit wide 4-LUT-based functional unit, the

processor consumes the same amount of dynamic energy as the 4-LUT-based FPGA.

Functional Unit Instructi
6.95% nstruction

Memory
34.27%

Data
Memory
58.78%

Figure 19. Energy Distribution at 64bit (9% Memory)

The detailed dynamic energy consumption at the 9% memory sizes is shown in Table XII for each
benchmark circuit. As shown the energy consumption ratio between the processor and FPGA also
varies as the benchmark set is varied. In particular, for the largest 10 benchmarks, on average the
processor consumes 1.21x the energy of the 4-LUT-based FPGA at 9% memory size. For the
smallest 10 benchmarks, on the other hand, the processor consumes only 0.36x the energy of the
4-LUT-based FPGA at the same memory size — i.e. the processor is already 3x times more dynamic

energy efficient than the FPGA for the smaller benchmarks.

Finally, Figure 19 provides the energy distribution among the functional unit and the instruction
and data memory. As shown, as the size of the data and instruction memory is reduced, the

functional unit consumes an increased proportion of the total dynamic energy. At 9% memory size,

42

6.95% of the total dynamic energy is consumed by the functional unit while the instruction and
data memory consume 34.27% and 58.78% of the total dynamic energy respectively. Figure 20

provides the energies consumed by both CPU and FPGA at 9% memory for 64-bit wide data path.

MCNC Benchmark Energy Consumption (nJ)

80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00
0.00 1 I i I I I n [I I N
& %Q@& @Q“*} @\%@ & g &Q’&Q,&@ & “&Q@s@@ & @%i@%” £ & g0
)
mCPU mFPGA

Figure 20. Dynamic Energy Consumption at 64bit(s) 9% Memory

43

Chapter 5

Conclusion and Future work

5.1 Conclusion

In this work, we first measured the dynamic energy difference between the 4-LUT FPGA and a 4-
LUT-based sequential processor, by implementing the MCNC benchmarks on both processing
platforms. A single 4-LUT processor was found to be much more inefficient in consuming
dynamic energy than a 4-LUT FPGA. We optimized the processor for dynamic energy by
increasing the number of 4-LUTs in its functional units and then performed the same
measurements for our benchmarks. We showed that the average dynamic energy ratio between the
processor and the FPGA is at a minimum when the processor contains 64 4-LUTs as its functional

unit. Adding more 4-LUTs increases this ratio.

We then measured dynamic energy gap between the processor and the CPU as the complexity of
the functional unit is increased. We found that for the MCNC benchmarks, on average, if a
processor with ASIC-based functional unit can perform the same computation while consuming
less than 9% of the instruction and data as is required by the same processor with 64-bit wide 4-
LUT-based functional unit, it can be more efficient in dynamic energy than a 4-LUT-based FPGA.
Our results show that the dynamic energy consumption of processors and FPGASs is not only a
function of their sequential and parallel execution models but also a function of the complexity of

the functional units/accelerators that they contain.

44

5.2 Future work

Future work, can be performed by adding static energy consumption estimations for the system.
Also memory models can be improved by adding gate capacitances as well which are ignored here
to keep the model simple and only wire capacitances are considered. Our simulator can be grouped
as a part of the CAD tool chain for implementing future designs on complex System-On-Chip
(SoC), containing both sequential and parallel processing capabilities on same Integrated Circuit
(IC). After some further exploration this tool can make decisions at the compile-time to distribute
computations between the parallel and sequential processing elements available, based on the

dynamic energy requirements.

Since it is much easier to increase the complexity of a functional unit in the sequential execution
model of a processor than the parallel execution model employed by an FPGA, it is highly
important for the FPGA research community to continue to increase the complexity of the hard
blocks that FPGAs employ while maintaining the utilization of these blocks under the parallel
execution model in order for FPGAs to maintain their dynamic energy advantage over the

processors.

45

Appendix A

Source Code (.c and .h Files)

Source code for simulation is provided in this appendix, we have reused some code from T-Vpack
to read the MCNC Benchmarks in BLIF format in file ‘read_blif.c’ and some utility functions in
file ‘util.c’. Some part of ‘main.c’ is also reused from T-Vpack, rest of the code in files ‘graph.c’,
‘simulation.c’ and ‘read_route.c’ is completely new code. This section provides the code for all

these file, which includes the reused and new code both in the order we used for our simulation.

Header files and makefiles to compile this code on Linux operating system are provided after the
c-files. In the end of this appendix, | have provided the BLIF files used for the example in chapter
2.

Following is the list of all files:
c-files:

1. main.c

2. read_blif.c
3. util.c

4. graph.c

5. simulation.c
6. read_route.c

h-files:

1. globals.h
2. graph.h

3. read_blif.h
4. read_route.h
5. simulation.h
6. util.h

7. vpack.h

blif files:

1. 8 bit_compressor_tree
2. 8 Full_Adders
3. Full_Adder

46

c-files:

main.c:

#include <stdio.h>
#include <string.h>
#include "graph.h"
#include "util.h"
#include "vpack.h"
#include "globals.h"
#include "read blif.h"
#include "simulation.h"

#include "read route.h"
#define BIG INT 32000

int num nets, num blocks;

int num p inputs, num p outputs, num luts, num latches;
struct s net *net;

struct s block *block;

struct s node *graph;

int graph size;

int num input pins (int iblk) {

/* Returns the number of used input pins on this block. */

int conn_inps;
switch (block[iblk].type) {
case LUT:
conn_inps = block[iblk].num nets - 1; /* -1 for output. */
break;
case LUT AND LATCH:
conn_inps = block[iblk].num nets - 2; /* -2 for output + clock */
break;
case LATCH:
conn_inps = block[iblk].num nets - 2; /* -2 for output + clock */
break;
default:
/* This routine should only be used for logic blocks. */
printf ("Error in num_ input pins: Unexpected block type %d"
"\n for block %d. Aborting.\n", block[iblk].type, iblk);

47

exit (1) ;
break;
}
return (conn_inps);
}
int main (int argc, char *argv[]) {

char title[] = "\nDynamic Energy Consumption: 4-LUT FPGA vs CPU(Functional
Unit: 4-LUT) version 1.0\

\nt-vpack [blif] [route input] [route output] [sim cycles]
[area clb (lambda)]\

[datapath width(bits)] [inst mem %(1.0, 0.9, 0.8...0)] [data mem %(1.0, 0.9,
0.8...0)1\n";

char *blif file = argv[l]; //Input Blif File

char *route input file = argv[2]; //Input Route Information from VPR

char *route output file = argv[3];

int sim cycles = atoi(argv[4]); //Number of Simulation Cycles to be
performed

float area clb = atof(argv[5]); //CLB area in Lambda from VPR

int data bits = atoi(argv[6]); //Datapath width

float inst comp = atof(argv([7]);
float data comp = atof(argv([8]);

printf ("%s",title);

read blif(blif file, 4);

echo_input(blif file, 4, "input.echo");

printf ("\nAfter packing to LUT+FF Logic Blocks:\n");

printf ("LUT+FF Logic Blocks: %d. Total Nets: %d.\n", num blocks -

num_p outputs - num p inputs, num nets);

FILE *data file;
data file = fopen("data.out","a");

fprintf(data file,"SimCycles:%d
$s\tL:%d\tFF:%d\t",sim cycles,blif file,num luts,num latches);

fclose (data file);

graph size = (num blocks-num p outputs)+1;

graph = generate graph (block,net,num blocks,num p outputs,graph size);
struct s node* schedule = generate schedule(graph,block,net);

update net lengths(schedule, route input file, route output file);

int data mem = measure data mem(schedule,num p inputs+num luts+num latches);

simulate (schedule, sim cycles,num_luts,num latches,area clb,data mem,data bits
,inst comp,data comp) ;

printf ("\nComplete.\n\n");
return (0);

}

48

read_blif.c:

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include "util.h"

#include "vpack.h"

#include "globals.h"

#include "read blif.h"

/* This source file will read in a FLAT blif netlist consisting *
* of .inputs, .outputs, .names and .latch commands. It currently *
* does not handle hierarchical blif files. Hierarchical *
* blif files can be flattened via the read blif and write blif *
* commands of sis. LUT circuits should only have .names commands; *
* there should be no gates. This parser performs limited error *
* checking concerning the consistency of the netlist it obtains. *
* .inputs and .outputs statements must be given; this parser does *
* not infer primary inputs and outputs from non-driven and fanout *
* free nodes. This parser can be extended to do this if necessary, *

* or the sis read blif and write blif commands can be used to put a *

* netlist into the standard format. *
* V. Betz, August 25, 1994. *
* Added more error checking, March 30, 1995, V. Betz */
static int *num driver, *temp num pins;

/* # of .input, .output, .model and .end lines */

static int ilines, olines, model lines, endlines;

static struct hash nets **hash;

static char *model;

static FILE *blif;

static int add net (char *ptr, int type, int bnum, int doall);

static void get tok(char *buffer, int pass, int doall, int *done, int
lut size);

static void init parse(int doall);

static void check net (int lut size);

static void free parse (void);

static void io_line (int in or out, int doall);

static void add lut (int doall, int lut size);

static void add latch (int doall, int lut size);

static void dum parse (char *buf);

static int hash value (char *name);

static void add_truth table (char*,char¥*);

static void fill table(int);

49

static void decode_ address (char*,int¥*);

static int address valid(char*);

void read blif (char *blif file, int lut size) {

char buffer[BUFSIZE];
int pass, done, doall;
blif = my fopen (blif file, "r", 0);
for (doall=0;doall<=1l;doall++) {
init parse(doall);
/* Three passes to ensure inputs are first blocks,

outputs second and *

* LUTs and latches third. Just makes the output netlist more readable. */
for (pass=l;pass<=3;pass++) {
linenum = 0; /* Reset line number. */
done = 0;
while ((my fgets (buffer,BUFSIZE,blif) != NULL) && !done) {
get tok(buffer, pass, doall, &done, lut size);
}
rewind (blif); /* Start at beginning of file again */
}
}
fclose (blif);
check net (lut_size);
free parse();
}
static void init parse(int doall) {
*/

/* Allocates and initializes the data structures needed for the parse.

int i, len;
struct hash nets *h ptr;
if (!doall) { /* Initialization before first

num nets = 0;
hash = (struct hash nets **) my calloc(sizeof (struct hash nets *),

(counting) pass */

HASHSIZE) ;
}

/* Allocate memory for second (load) pass */

else {

net = (struct s net *) my malloc(num nets*sizeof (struct s net));

block = (struct s block ¥*)

sizeof (struct s block));
my malloc (num nets * sizeof (int));

my malloc (num blocks*

num _driver = (int *)

temp num pins = (int *) my malloc(num nets*sizeof (int));

for (i=0;i<num nets;i++) {

num _driver[i] = 0;

50

net[i] .num pins = 0;

}

for (i=0;i<HASHSIZE;i++) {
h ptr = hash[i];
while (h ptr != NULL) {

net[h ptr->index].pins = (int *) my malloc(h ptr-

>count*sizeof (int)) ;

/* For avoiding assigning values beyond end of pins array. */

temp num pins[h ptr->index] = h ptr->count;
len = strlen (h _ptr->name);
net[h ptr->index].name = (char *) my malloc ((len + 1)*

sizeof (char));

strcpy (net[h ptr->index].name, h ptr->name);

h ptr = h ptr->next;

/* printf ("i\ttemp num pins\n\n");
for (i=0;i<num nets;i++) {
printf ("$d\t%d\n", i, temp num pins[i]);
yoox/
}
/* Initializations for both passes. */
ilines = 0;
olines = 0;
model lines = 0;
endlines = 0;
num_p inputs = 0;
num _p outputs = 0;
num_ luts = 0;
num_ latches = 0;
num blocks = 0;
}
static void get tok (char *buffer, int pass,
int lut size) {
/* Figures out which, if any token is at the

* takes the appropriate action.

#define TOKENS " \t\n"
char *ptr;

ptr = my strtok(buffer, TOKENS,blif,buffer);

if (ptr == NULL) return;
else if (strcmp(ptr,".names") == 0) {
if (pass == 3) {

51

int doall, int *done,

start of this line and *

*/

add_lut (doall, lut size);
if (doall)
fill table(0);
}
else {
dum parse (buffer);

}

return;

}

else if (strcmp(ptr,".latch") == 0) {
if (pass == 3) {

add latch (doall, lut size);
}
else {
dum parse (buffer);
}
return;
}
else if (strcmp(ptr,".model") == 0) {
ptr = my strtok(NULL, TOKENS,blif,buffer);

if (doall && pass == 3) { /* Only bother on main second pass. */
if (ptr != NULL) {
model = (char *) my malloc ((strlen(ptr)+l) * sizeof (char));

strcpy (model, ptr) ;
}

else {
model = (char *) my malloc (sizeof (char));
model[0] = '\0';
}
model lines++; /* For error checking only */
}
return;
}
else if (strcmp(ptr,".inputs") == 0) {
if (pass == 1) {
io_line(DRIVER, doall);
*done = 1;
}
else {

dum parse (buffer);

if (pass == 3 && doall) ilines++; /* Error checking only */

52

return;
}
else if (strcmp (ptr,".outputs™) == 0) {
if (pass == 2) {
io line(RECEIVER, doall);
*done = 1;
}
else {

dum parse (buffer);

if (pass == 3 && doall) olines++; /* Make sure only one .output line

*/
} /* For error checking only */
return;

}

else if (strcmp(ptr,".end") == 0) {
if (pass == 3 && doall) endlines++; /* Error checking only */
return;

}
/* Could have numbers following a .names command, so not matching any *
* of the tokens above is not an error. */
//Everything else is assumed to be a part of Truth Table (numbers)
else {

if (doall && pass == 3)

{

add truth table (ptr,buffer);

return;

}

static void dum parse (char *buf) {

/* Continue parsing to the end of this (possibly continued) line. */
while (my strtok (NULL,TOKENS,blif,buf) != NULL)

}

static void add lut (int doall, int lut size) {

/* Adds a LUT (.names) currently being parsed to the block array. Adds *
* its pins to the nets data structure by calling add net. If doall is *
* zero this is a counting pass; if it is 1 this is the final (loading) *
* pass. */
char *ptr, saved names[MAXLUT+2] [BUFSIZE], buf[BUFSIZE];
int i, j, len;

num blocks++;

53

/* Count # nets connecting */
i=0;
while ((ptr = my_strtok(NULL,TOKENS,blif,buf)) != NULL) {
if (i == MAXLUT+1l) {
fprintf (stderr, "Error: LUT #%d has %d inputs. Increase MAXLUT or"
" check the netlist, line %d.\n",num blocks-1,i-1,linenum);
exit (1) ;
}
strcpy (saved names[i], ptr);

i++;

if (!doall) { /* Counting pass only ... */
for (3=0;3<i;j++)
add net (saved names[]j],RECEIVER,num blocks-1,doall);

return;

}

block[num blocks-1].num nets = i;

block[num blocks-1].type = LUT;

for (i=0;i<block[num blocks-1].num nets-1;i++) /* Do inputs */
block[num blocks-1].nets[i+1l] = add net (saved names[i],RECEIVER,

num blocks-1,doall);
block[num blocks-1].nets[0] = add net (

saved names [block[num blocks-1].num nets-1], DRIVER,num blocks-
1,doall);

for (i=block[num blocks-1].num nets; i<lut size+2; i++)

block[num blocks-1].nets[i] = OPEN;
len = strlen (saved names[block[num blocks-1].num nets-1]);
block[num blocks-1].name = (char *) my malloc ((len+l) * sizeof (char));

strcpy (block[num blocks-1].name, saved names[block[num blocks-1].num nets-

11):
num_luts++;

}

static void add latch (int doall, int lut size) {

/* Adds the flipflop (.latch) currently being parsed to the block array.

* Adds its pins to the nets data structure by calling add net. If doall
* is zero this is a counting pass; if it is 1 this is the final
* (loading) pass. Blif format for a latch is:
* .latch <input> <output> <type (latch on)> <control (clock)> <init val>
* The latch pins are in .nets 0 to 2 in the order: Q D CLOCK. */
char *ptr, buf[BUFSIZE], saved names|[6] [BUFSIZE];
int i, len;

num blocks++;

54

/* Count # parameters, making sure we don't go over 6 (avoids memory corr.)

*/
/* Note that we can't rely on the tokens being around unless we copy them.
*/
for (1i=0;1i<6;1i++) {
ptr = my strtok (NULL,TOKENS,blif,buf):;
if (ptr == NULL)
break;
strcpy (saved names[i], ptr);
}
if (1 !'= 5) {
fprintf (stderr, "Error: .latch does not have 5 parameters.\n"
"check the netlist, line %d.\n",linenum);
exit (1) ;
}
if (!doall) { /* If only a counting pass ... */
add net (saved names[0],RECEIVER,num blocks-1,doall); /* D */
add net (saved names[1],DRIVER,num blocks-1,doall); /* Q */
add net (saved names[3],RECEIVER,num blocks-1,doall); /* Clock */
return;
}
block[num blocks-1].num nets = 3;

block[num blocks-1].type = LATCH;

block[num blocks-1].nets[0]

add net (saved names[1],DRIVER,num blocks-1,

doall); /* Q */
block[num blocks-1].nets[1l] = add net(saved names[0],RECEIVER,num blocks-1,
doall) ; /* D */
block[num blocks-1].nets[lut size+l] = add net(saved names[3],RECEIVER,
num blocks-1,doall); /* Clock
*/
for (i=2;i<lut size+l;i++)
block[num blocks-1].nets[i] = OPEN;
len = strlen (saved names[1]);
block[num blocks-1].name = (char *) my malloc ((len+l) * sizeof (char));

strcpy (block[num blocks-1].name,saved names[1]);

num_ latches++;

}

static void io line(int in or out, int doall) {

/* Adds an input or output block to the block data structures. *
* in _or out: DRIVER for input, RECEIVER for output. *
* doall: 1 for final pass when structures are loaded. 0 for *

55

* first pass when hash table is built and pins, nets, etc. are counted. */
char *ptr;
char buf2[BUFSIZE];

int nindex, len;

while (1) {
ptr = my strtok(NULL, TOKENS,blif,buf2);
if (ptr == NULL) return;

num blocks++;

nindex = add net(ptr,in or out,num blocks-1,doall);

/* zero offset indexing */

if (!doall) continue; /* Just counting things when doall == 0 */
len = strlen (ptr);
if (in _or out == RECEIVER) { /* output pads need out: prefix
to make names unique from LUTs */
block[num blocks-1].name = (char *) my malloc ((len+l+4) *
sizeof (char)); /* Space for out: at start */
strcpy (block[num blocks-1].name,"out:");

strcat (block[num blocks-1].name,ptr);
}
else {
block[num blocks-1].name = (char *) my malloc ((len+l) *
sizeof (char));

strcpy (block[num blocks-1].name,ptr);

block[num blocks-1].num nets = 1;
block[num blocks-1].nets[0] = nindex; /* Put in driver position for */

/* OUTPAD, since it has only one pin (even though it's a receiver */

if (in_or out == DRIVER) { /* processing .inputs line */
num_p inputs++;
block[num blocks-1].type = INPAD;

}

else { /* processing .outputs line */

num p outputs++;

block[num blocks-1].type OUTPAD;

}
static int add net (char *ptr, int type, int bnum, int doall) {

56

/* This routine is given a net name in *ptr, either DRIVER or RECEIVER *
* specifying whether the block number given by bnum is driving this *
* net or in the fan-out and doall, which is 0 for the counting pass *
* and 1 for the loading pass. It updates the net data structure and *
* returns the net number so the calling routine can update the block *
* data structure. */
struct hash nets *h ptr, *prev ptr;
int index, j, nindex;
index = hash value(ptr);
h ptr = hash[index];
prev_ptr = h ptr;
while (h ptr != NULL) {

if (strcmp(h ptr->name,ptr) == 0) { /* Net already in hash table */

nindex = h ptr->index;

if (!doall) { /* Counting pass only */
(h_ptr->count) ++;
return (nindex);

}

net [nindex] .num pins++;

if (type == DRIVER) {

num_driver [nindex]++;

3=0; /* Driver always in position 0 of pinlist */
}
else {

J = net[nindex].num pins - num driver [nindex];

/* num driver is the number of signal drivers of this net. *
* should always be zero or 1 unless the netlist is bad. */
if (j >= temp num pins[nindex]) {
printf ("Error: Net #%d (%s) has no driver and will cause\n",
nindex, ptr);
printf ("memory corruption.\n");

exit (1)

}
net [nindex] .pins[Jj] = bnum;
return (nindex);
}
prev_ptr = h ptr;
h ptr = h ptr->next;
}
/* Net was not in the hash table. */

57

if (doall == 1) {
printf ("Error in add net: the second (load) pass could not\n");
printf ("find net %s in the symbol table.\n", ptr);
exit (1) ;
}
/* Add the net (only counting pass will add nets to symbol table). */

num nets++;

h ptr = (struct hash nets *) my malloc (sizeof (struct hash nets));
if (prev_ptr == NULL) {
hash[index] = h ptr;
}
else {

prev_ptr->next = h ptr;
}
h ptr->next = NULL;
h ptr->index = num nets - 1;
h ptr->count = 1;
h ptr->name = (char *) my malloc((strlen(ptr)+l)*sizeof (char));
strcpy (h_ptr->name, ptr) ;
return (h ptr->index);
}
static int hash value (char *name) {
int i, k;
int val=0, mult=1;
i = strlen(name);
k = max (i-7,0);
for (i=strlen(name)-1;i>=k;i--) {
val += mult* ((int) name[i]);
mult *= 10;
}
val += (int) name[0];
val %= HASHSIZE;
return(val);
}
void echo_input (char *blif file, int lut size, char *echo file) {
/* Echo back the netlist data structures to file input.echo to *
* allow the user to look at the internal state of the program *
* and check the parsing. */
int i, Jj, max pin;
FILE *fp;
printf ("Input netlist file: %s Model: %s\n", blif file, model);

58

printf ("Primary Inputs: %d. Primary Outputs: %d.\n", num p inputs,
num _p_ outputs);

printf ("LUTs: %d. Latches: %d.\n", num_luts, num latches);

printf ("Total Blocks: %$d. Total Nets: %d\n", num blocks, num nets);
fp = my fopen (echo file,"w",0);

fprintf (fp, "Input netlist file: %s Model: %$s\n",blif file,model);
fprintf (fp, "num p inputs: %d, num p outputs: %d, num luts: %d,"

" num_ latches:
%d\n",num p inputs,num p outputs,num luts,num latches);

fprintf (fp, "num blocks: %d, num nets: %d\n",num_blocks,num_nets);

fprintf (fp, "\nNet\tName\t\t#Pins\tDriver\tRecvs.\n");
for (i=0;i<num nets;i++) {
fprintf (fp, "\n%d\t%s\t", i, net[i].name);
if (strlen(net[i].name) < 8)
fprintf (fp, "\t"); /* Name field is 16 chars wide */
fprintf (fp, "%d", net[i].num pins);
for (j=0;j<net[i].num pins;j++)
fprintf (fp, "\t%d",net[i].pins([]J]);
}
fprintf (fp, "\n\n\nBlocks\t\t\tBlock Type Legend:\n");
fprintf (fp, "\t\t\tINPAD %$d\tOUTPAD = %d\n", INPAD, OUTPAD);
fprintf (fp, "\t\t\tLUT = $d\t\tLATCH = %d\n", LUT, LATCH);
fprintf (fp, "\t\t\tEMPTY = %d\tLUT AND LATCH = %d\n\n", EMPTY,
LUT AND LATCH) ;

fprintf (fp, "\nBlock\tName\t\tType\t#Nets\tOutput\tInputs") ;
for (i=0;i<lut size;i++)
fprintf (fp, "\t");

fprintf (fp, "Clock\n\n") ;
for (i=0;i<num blocks;i++) {

fprintf (fp, "\n%d\t%s\t", i, block[i].name) ;

if (strlen(block[i] .name) < 8)

fprintf (fp, "\t"); /* Name field is 16 chars wide */
fprintf (fp, "%$d\t%d", block[i].type, block[i].num nets);
/* I'm assuming EMPTY blocks are always INPADs when I print

* them out. This is true right after the netlist is read in, and again
* after ff packing and compression of the netlist. It's not true after
* ff packing and before netlist compression.

*/

if (block[i].type == INPAD || block[i].type == OUTPAD ||
block[i].type == EMPTY)

59

max pin = 1;
else
max pin = lut size+2;

for (j=0;Jj<max pin;j++) {
if (block[i].nets[]j] == OPEN)
fprintf (fp, "\tOPEN") ;
else

fprintf (fp, "\t%d",block[i] .nets[]]);

}
fprintf (fp, "\n") ;
fclose (fp) ;
}
static void check net (int lut size) {
/* Checks the input netlist for obvious errors. */

int i, error, iblk;

error = 0;
if (ilines !'= 1) {
printf ("Warning: found %d .inputs lines; expected 1.\n",
ilines) ;
error++;
}
if (olines != 1) {
printf ("Warning: found %d .outputs lines; expected 1.\n",
olines);
error++;
}
if (model lines != 1) {
printf ("Warning: found %d .model lines; expected 1.\n",
model lines);
error++;
}
if (endlines != 1) {
printf ("Warning: found %d .end lines; expected 1.\n",

endlines) ;
error++;
}
for (i=0;i<num nets;i++) {
if (num driver([i] != 1) {
printf ("Warning: net %s has"
" %d signals driving it.\n",net[i].name,num driver[i]);

error++;

60

}
if ((net[i].num pins - num driver[i]) < 1) {
/* If this is an input pad, it is unused and I just remove it with *

* a warning message. Lots of the mcnc circuits have this problem. */

iblk = net[i].pins[0];

if (block[iblk].type == INPAD) ({
printf ("Warning: Input %s is unused; removing it.\n",
block[iblk] .name) ;
net[i].pins[0] = OPEN;

block[iblk].type = EMPTY;

else {
printf ("Warning: net %s has no fanout.\n",net[i].name);

error++;

}
if (strcmp(net[i].name, "open") == 0) {
printf ("Warning: net #%d has the reserved name %s.\n",i,net[i].name);

error++;

}
for (i=0;i<num blocks;i++) {
if (block[i].type == LUT) {
if (block[i].num nets < 2) {
printf ("Warning: logic block #%d with output %s has only %d

pin.\n",
i,block[i] .name,block[i] .num nets);
/* LUTs with 1 pin (an output) can be a constant generator. Warn the *
* user, but don't exit. */
if (block[i].num nets != 1) {
error++;
}
else {
printf ("\tPin is an output -- may be a constant generator.\n");

printf ("\tNon-fatal error.\n");

}
if (block[i].num nets > lut size + 1) {
printf ("Warning: logic block #%d with output %s has %d pins.\n",

i,block[i] .name,block[i].num nets);

61

error++;

}
else 1if (block[i].type == LATCH) {
if (block[i].num nets != 3) {
printf ("Warning: Latch #%d with output %s has %d pin(s).\n",
i, block[i].name, block[i].num nets);

error++;

else {
if (block[i].num nets != 1) {
printf ("Warning: io block #%d with output %s of type %d"
"has %d pins.\n", 1, block[i].name, block[i].type,
block[i] .num nets);

error++;

}
if (error != 0) {
printf ("Found %d fatal errors in the input netlist.\n",error);

exit (1) ;

}
static void free parse (void) {
/* Release memory needed only during blif network parsing. */
int 1i;
struct hash nets *h ptr, *temp ptr;
for (i=0;i<HASHSIZE;i++) {
h ptr = hash[i];
while (h ptr != NULL) {
free ((void *) h ptr->name);
temp ptr = h ptr->next;
free ((void *) h ptr);
h ptr = temp ptr;

free ((void *) num driver);
free ((void *) hash);

free ((void *) temp num pins);

62

//Adding Truth Table Function
static void add_truth table(char *input,char *buffer)

{

char *output;

if ((output = my strtok (NULL, TOKENS,blif,buffer))

output = input

I

if (strcmp (output,"1") == 0)
fill_table(1); //Char to Int
else if (strcmp (output,"0") == 0)

fill table(0);

}else //If there are more than one values in truth table

//Decode charaters

int address[16

int 1i;

17

(Binary)

for (1 = 0; i < 16; i++)

address |

i]

== NULL)

{

into dec address(array Index)

decode_address (input, address) ;

for (1 = 0; i < 16; 1i++)

{

if (address[i] == 1)

{

if (strcmp (output,"1") == 0)
block[num blocks-1].truth table[i]
else if (strcmp (output,"0") == 0)

}

return;

}

block[num blocks-1].truth table[i]

//F1i1ll the whole truth table with input

static void fill table(int wvalue)

{

int n = 0;
for (n = 0; n < 16; n++)
block[num blocks-1].truth table[n] = value;

return;

}

//Decode Address Function

static void decode_ address (char *input,

{

63

int *address)

if (address_valid(input) == 1)
address[bin2dec (atoi (input))] =

else if ((strcmp (input,"-1")) == 0)

{
address[bin2dec(l)] = 1;
address[bin2dec(11l)] = 1;

}

else if ((strcmp (input,"1-")) == 0)

{
address [bin2dec (10)]
address[bin2dec(11)]

[
= e
~Ne ~e

}
else if ((strcmp (input,"--1")) == 0)
{

bin2dec(1)] = 1;
bin2dec(11)] = 1;
bin2dec(101)] = 1;
bin2dec (111)] = 1

address |
address |
address |
address|[
}

else if ((strcmp (input,"-1-")) == 0)
{

bin2dec
bin2dec
bin2dec

bin2dec

Il
—
~e

address
address
address
address

[
[
[
[

}
else if ((strcmp (input,"1--")) == 0)
{

bin2dec
bin2dec
bin2dec
bin2dec

100
101
110
111

address
address

address

II
N

[()1
[()1 =
[()1
address | ()1
}
else if ((strcmp (input,"---1")) == 0)
{
bin2dec ;
bin2dec)yl = 1;
bin2dec (101)] = 1;
1

address | (1
[(1
[(
address[bin2dec(111)] =
[(
[(
[(

)] =1

address

address

bin2dec (1001)] =1
bin2dec (1011)] = 1;
bin2dec (1101)] =1

address
address

address

address[bin2dec (1111)] =

}

else if

{

address
address
address
address
address
address
address

address

}

else if

{

address
address
address
address
address
address
address

address

}

else if

{

address
address
address
address
address
address
address

address

}

else if

{

address
address
address

address

((strcmp (input,

bin2dec
bin2dec
bin2dec
bin2dec
bin2dec
bin2dec
bin2dec

[
[
[
[
[
[
[
[bin2dec

(1
(1
(
(
(
(
(
(

((strcmp (input,

bin2dec
bin2dec
bin2dec
bin2dec
bin2dec
bin2dec
bin2dec

(
(
(
(
(
(
(
bin2dec (

[
[
[
[
[
[
[
[

((strcmp (input,

bin2dec
bin2dec
bin2dec
bin2dec
bin2dec
bin2dec
bin2dec

[
[
[
[
[
[
[
[bin2dec

(
(
(
(
(
(
(
(

((strcmp (input,

bin2dec
bin2dec
bin2dec

[
[
[
[bin2dec

(1
(
(
(

"——1—"))

01 =
1l =
110)]
111)]
1010)
)

)

)

1011
1110
1111

]
]
]
]

"—1——"))

100)] =
101)]
110)]
111)]
1100)] =
1101)]
1110)] =
1111)]

Il
L e e

"l———"))

1000)]
1001)]
1010)]
1011)] =
1100)]
1101)]
1110)]
1111)]

"——11"))

)1 = 1;
111)] =1
1011)] =
1111)] =

O = T = S S S S S G

~.

~e ~e ~e ~. ~. ~.

~e

65

0)

else if ((strcmp (input,"-1-1"))
{

address [bin2dec (101)] = 1;
address [bin2dec (111)] =
address [bin2dec (1101)] =
address [bin2dec (1111)] =

}

else if ((strcmp (input,"1--1"))

{

bin2dec (1001)

bin2dec (1011)
()
()

address

address
1101
1111

[]
[]
address [bin2dec]
[]

address [bin2dec

}
else if ((strcmp (input,"1-1-"))
{

bin2dec (1010

address ()
bin2dec (1011)
()
()

address

bin2dec (1110
bin2dec (1111

address

address

[]
[]
[]
[]
}

else if ((strcmp (input,"11--"))
{

bin2dec
bin2dec
bin2dec
bin2dec

1100
1101
1110
1111

address

address

[()1
[()1
address | ()]
address| ()]
}
else if ((strcmp (input,"-111"))
{
address[bin2dec (111)] =1
address[bin2dec (1111)] =
}
else if ((strcmp (input,"1-11"))
{
address [bin2dec (1011)] =
address[bin2dec(1111)] =
}
else if ((strcmp (input,"11-1"))
{
address[bin2dec (1101)] =

address [bin2dec (1111)]

l.

1;
1;

)

)

)

}
else if ((strcmp (input,"111-")) == 0)
address[bin2dec(1111)] = 1;
}
//Check if the address doesn't contain "-"(don't care)
static int address valid(char *input)
{
while (*input != '\0'")
{
if (*input == '-")
return 0;
else

input++;

return 1;

67

util.c:

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include "util.h"

/* This file contains utility functions widely used in *

* my programs. Many are simply versions of file and *

* memory grabbing routines that take the same *
* arguments as the standard library ones, but exit *
* the program if they find an error condition. */

int linenum; /* Line in file being parsed. */
FILE *my fopen (char *fname, char *flag, int prompt) {
FILE *fp; /* prompt = 1l: prompt user. prompt=0: use fname */
while (1) {
if (prompt)
scanf ("%s", fname) ;
if ((fp = fopen(fname, flag)) != NULL)
break;
printf ("Error opening file %s for %s access.\n", fname, flag);
if (!prompt)
exit(1l);
printf ("Please enter another filename.\n");
}
return (fp);

}

int my atoi (const char *str) {

/* Returns the integer represented by the first part of the character
* string. Unlike the normal atoi, I return -1 if the string doesn't
* start with a numeric digit.

*/
if (str[0] < 'O" || str[0] > '9")

return (-1);
return (atoi(str)):;

}

void *my calloc (size t nelem, size t size) {
void *ret;
if ((ret = calloc (nelem,size)) == NULL) {

fprintf (stderr, "Error: Unable to calloc memory. Aborting.\n");
exit (1);
}

return (ret);

68

}
voi
Vo

if

}

re
}
voi

VO

if

}

re

}

voi

/*

*/
/*
*
*
*

*

d *my malloc (size t size) {
id *ret;
((ret = malloc (size)) == NULL) {
fprintf (stderr, "Error: Unable to malloc memory. Aborting.\n");
abort ();
exit (1);

turn (ret);

d *my realloc (void *ptr, size t size) {
id *ret;
((ret = realloc (ptr,size)) == NULL) {
fprintf (stderr,"Error: Unable to realloc memory. Aborting.\n");
exit (1);
turn (ret);

d *my chunk malloc (size t size, struct s linked vptr **chunk ptr head,
int *mem avail ptr, char **next mem loc ptr) {

This routine should be used for allocating fairly small data

structures where memory-efficiency is crucial. This routine allocates

large "chunks" of data, and parcels them out as requested. Whenever

it mallocs a new chunk it adds it to the linked list pointed to by

chunk ptr head. This list can be used to free the chunked memory.

If chunk ptr head is NULL, no list of chunked memory blocks will be kept

-- this is useful for data structures that you never intend to free as

it means you don't have to keep track of the linked lists.

Information about the currently open "chunk" must be stored by the

user program. mem avail ptr points to an int storing how many bytes are

left in the current chunk, while next mem loc ptr is the address of a

pointer to the next free bytes in the chunk. To start a new chunk,

simply set *mem avail ptr = 0. Each independent set of data structures

should use a new chunk.

To make sure the memory passed back is properly aligned, I must *

only send back chunks in multiples of the worst-case alignment *

restriction of the machine. On most machines this should be *
a long, but on 64-bit machines it might be a long long or a *
double. Change the typedef below if this is the case. */

typedef long Align;

#de

fine CHUNK SIZE 32768

69

#define FRAGMENT THRESHOLD 100

char *tmp ptr;

int aligned size;

if (*mem avail ptr < size) { /* Need to malloc more memory. */

if (size > CHUNK SIZE) { /* Too big, use standard routine. */

tmp ptr = my malloc (size);

/*#ifdef DEBUG
printf ("NB: my chunk malloc got a request for %d bytes.\n",

size);

printf ("You should consider using my malloc for such big
requests.\n") ;

#endif */
if (chunk ptr head != NULL)
*chunk ptr head = insert in vptr list (*chunk ptr head, tmp ptr);
return (tmp ptr);

if (*mem avail ptr < FRAGMENT THRESHOLD) { /* Only a small scrap left.
*/

*next mem loc ptr = my malloc (CHUNK SIZE);

*mem_avail ptr = CHUNK SIZE;

if (chunk ptr head != NULL)

*chunk ptr head = insert in vptr list (*chunk ptr head,
*next mem loc ptr);

}

/* Execute else clause only when the chunk we want is pretty big, *

* and would leave too big an unused fragment. Then we use malloc *
* to allocate normally. */
else {

tmp ptr = my malloc (size);
if (chunk ptr head != NULL)

*chunk ptr head = insert in vptr list (*chunk ptr head, tmp ptr);
return (tmp ptr);

}

/* Find the smallest distance to advance the memory pointer and keep *

* everything aligned. */
if (size % sizeof (Align) == 0) {
aligned size = size;
}
else {
aligned size = size + sizeof (Align) - size % sizeof (Align);

}

tmp ptr = *next mem loc ptr;

70

*next mem loc ptr += aligned size;
*mem_avail ptr -= aligned size;
return (tmp ptr);
}
void free chunk memory (struct s linked vptr *chunk ptr head) {
/* Frees the memory allocated by a sequence of calls to my chunk malloc. */
struct s linked vptr *curr ptr, *prev ptr;
curr ptr = chunk ptr head;
while (curr ptr != NULL) {
free (curr ptr->data vptr); /* Free memory "chunk". */
prev_ptr = curr ptr;
curr ptr = curr ptr->next;
free (prev ptr); /* Free memory used to track "chunk". */
}
}

struct s linked vptr *insert in vptr list (struct s_linked vptr *head,void
*vptr to add) {

/* Inserts a new element at the head of a linked list of void pointers. *
* Returns the new head of the list. */
struct s linked vptr *linked vptr;
linked vptr = (struct s linked vptr *) my malloc (sizeof (struct
s_linked vptr));
linked vptr->data vptr = vptr to add;
linked vptr->next = head;
return (linked vptr); /* New head of the list */
}
t linked int *insert in int list (t linked int *head, int data, t linked int

* %

free list head ptr) {

/* Inserts a new element at the head of a linked list of integers. Returns
*

* the new head of the list. One argument is the address of the head of

*

* a list of free ilist elements. If there are any elements on this free
*

* list, the new element is taken from it. Otherwise a new one is malloced.
*/
t linked int *linked int;
if (*free list head ptr != NULL) {
linked int = *free list head ptr;
*free list head ptr = linked int->next;
}
else {

linked int = (t_linked int *) my malloc (sizeof (t_ linked int));

71

}

linked int->data = data;
linked int->next = head;
return (linked int);

}

void free int list (t linked int **int list head ptr) {

/* This routine truly frees (calls free) al

* on the linked list pointed to by *head,

t linked int *linked int, *next linked int;

linked int = *int list head ptr;
while (linked int != NULL) {
next linked int = linked int->next;
free (linked int);
linked int = next linked int;
}
*int list head ptr = NULL;
}
void alloc_ivector and copy int list (t lin
int num items, struct s ivec *i
**free list head ptr) {

/* Allocates an integer vector with num ite

1 the integer list elements

and sets head = NULL.

’

ked int **list head ptr,

vec, t linked int

ms elements and copies the

* integers from the list pointed to by list head (of which there must be

* num items) over to it. The int list is
* the list head ptr is set to NULL.
*/
t linked int *linked int, *list head;
int i, *list;
list head = *list head ptr;
if (num_items == 0) { /* Empty list. */
ivec->nelem = 0;
ivec->1list = NULL;
if (list_head != NULL) {

then put on the free list,

and

printf ("Error in alloc ivector and copy int list:\n Copied %d "

"elements, but list at %p contains more.\n", num items,

list head);
exit (1);
}

return;
}
ivec->nelem = num_items;
list = (int *) my malloc (num items * sizeof (int));
ivec->1list = list;
linked int = list head;

72

*/

*

*

for (i=0;i<num items-1;i++) {
list[i] = linked int->data;
linked int = linked int->next;
}
list[num items-1] = linked int->data;
if (linked int->next != NULL) {

printf ("Error in alloc ivector and copy int list:\n Copied %d elements,

"but list at %p contains more.\n", num items, list head);
exit (1);
}
linked int->next = *free list head ptr;
*free list head ptr = list head;
*list head ptr = NULL;
}
static int cont; /* line continued? */
char *my fgets(char *buf, int max size, FILE *fp) {
/* Get an input line, update the line number and cut off *
* any comment part. A \ at the end of a line with no *
* comment part (#) means continue. x/
char *val;
int 1i;
cont = 0;
val = fgets(buf,max size, fp);
linenum++;

if (val == NULL) return(val);

/* Check that line completely fit into buffer. (Flags long line *
* truncation). */

for (i=0;i<max size;i++) {

if (buf[i] == '\n"')
break;
if (buf[i] == '\0") {
printf ("Error on line %d -- line is too long for input buffer.\n",

linenum) ;
printf ("All lines must be at most %d characters long.\n",BUFSIZE-2);
printf ("The problem could also be caused by a missing newline.\n");

exit (1);
}

for (i=0;i<max size && buf[i] != '"\0';i++) {
if (buf[i] == "#") {

73

buf[i] = "\0';

break;

}

if (i<2) return (val);

if (buf[i-1] == '\n' && buf[i-2] == "\\") {
cont = 1; /* line continued */
buf[i-2] = '\n'; /* May need this for tokens */

buf[i-1] = '\0"';
}
return(val);
}
char *my strtok(char *ptr, char *tokens, FILE *fp, char *buf) {
/* Get next token, and wrap to next line if \ at end of line. *
* There is a bit of a "gotcha" in strtok. It does not make a *

* copy of the character array which you pass by pointer on the

* first call. Thus, you must make sure this array exists for *
* as long as you are using strtok to parse that line. Don't *
* use local buffers in a bunch of subroutines calling each *

* other; the local buffer may be overwritten when the stack is *

* restored after return from the subroutine. */

char *val;
val = strtok(ptr, tokens);
while (1) {

if (val != NULL || cont == 0) return(val);
/* return unless we have a null value and a continuation line */
if (my fgets(buf,BUFSIZE, fp) == NULL)

return (NULL) ;
val = strtok (buf, tokens);

}

void free ivec vector (struct s _ivec *ivec vector, int nrmin, int nrmax)
/* Frees a 1D array of integer vectors. */
int 1i;
for (i=nrmin;i<=nrmax;i++)
if (ivec vector[i].nelem != 0)
free (ivec vector[i].list);
free (ivec vector + nrmin);

}

void free ivec matrix (struct s _ivec **ivec matrix, int nrmin, int nrmax,

int ncmin, int ncmax) {

74

{

/* Frees a 2D matrix of integer vectors (ivecs).
int i, 3J;
for (i=nrmin;i<=nrmax;i++) {
for (j=ncmin;j<=ncmax;j++) {
if (ivec matrix[i][j].nelem != 0) {

free (ivec matrix[i][j].list);

}

*/

free matrix (ivec matrix, nrmin, nrmax, ncmin, sizeof (struct s _ivec));

}

void free ivec matrix3 (struct s ivec ***ivec matrix3, int nrmin,
int ncmin, int ncmax, int ndmin, int ndmax) {
/* Frees a 3D matrix of integer vectors (ivecs).
int i, 3, k;
for (i=nrmin;i<=nrmax;i++) {
for (j=ncmin;j<=ncmax;j++) {
for (k=ndmin;k<=ndmax;k++) {
if (ivec matrix3[i] [j][k].nelem != 0) {

free (ivec matrix3[i][j][k].list);

}

free matrix3 (ivec matrix3, nrmin, nrmax, ncmin, ncmax, ndmin,

sizeof (struct s ivec));

}

void **alloc matrix (int nrmin, int nrmax, int ncmin, int ncmax,

size t elsize) {

/* allocates an generic matrix with nrmax-nrmin + 1 rows and ncmax -

* ncmin + 1 columns, with each element of size elsize. i.e.

* returns a pointer to a storage block [nrmin..nrmax][ncmin..ncmax].

* Simply cast the returned array pointer to the proper type.
int i;

char **cptr;

int nrmax,

*/

*/

cptr = (char **) my malloc ((nrmax - nrmin + 1) * sizeof (char *));

cptr -= nrmin;

for (i=nrmin;i<=nrmax;i++) {

cptr[i] = (char *) my malloc ((ncmax - ncmin + 1) * elsize);
cptr(i] -= ncmin * elsize / sizeof (char); /* sizeof (char) =
}
return ((void **) cptr);

75

1 %/

}
/* NB: need to make the pointer type void * instead of void ** to allow *
* any pointer to be passed in without a cast. */
void free matrix (void *vptr, int nrmin, int nrmax, int ncmin, size t elsize)
{
int i;
char **cptr;
cptr = (char **) vptr;
for (i=nrmin;i<=nrmax;i++)
free (cptr[i] + ncmin * elsize / sizeof (char));
free (cptr + nrmin);
}
void ***alloc matrix3 (int nrmin, int nrmax, int ncmin, int ncmax,
int ndmin, int ndmax, size t elsize) {
/* allocates a 3D generic matrix with nrmax-nrmin + 1 rows, ncmax - *
* ncmin + 1 columns, and a depth of ndmax-ndmin + 1, with each *
* element of size elsize. i.e. returns a pointer to a storage block *
* [nrmin..nrmax] [ncmin. .ncmax] [ndmin..ndmax]. Simply cast the *
* returned array pointer to the proper type. */
int i, 3J;
char ***cptr;
cptr = (char ***) my malloc ((nrmax - nrmin + 1) * sizeof (char **));
cptr -= nrmin;
for (i=nrmin;i<=nrmax;i++) {
cptr[i] = (char **) my malloc ((ncmax - ncmin + 1) * sizeof (char *));
cptr[i] -= ncmin;

for (j=ncmin;j<=ncmax;j++) {

cptr[i] [J] = (char *) my malloc ((ndmax - ndmin + 1) * elsize);
cptr[i][j] -= ndmin * elsize / sizeof(char); /* sizeof(char) = 1) */
}
}
return ((void ***) cptr);

}
void free matrix3 (void *vptr, int nrmin, int nrmax, int ncmin, int ncmax,
int ndmin, size t elsize) {
int i, 3J;
char ***cptr;
cptr = (char ***) vptr;
for (i=nrmin;i<=nrmax;i++) {
for (j=ncmin;j<=ncmax;j++)
free (cptr[i]l[Jj] + ndmin * elsize / sizeof (char));

free (cptr[i] + ncmin);

76

}

free (cptr + nrmin);
}

/* Portable random number generator defined below. Taken from ANSI C by

* K & R. Not a great generator, but fast, and good enough for my needs.

#define IA 1103515245u
#define IC 12345u
#define IM 2147483648u
#define CHECK RAND
static unsigned int current random = 0;
void my srandom (int seed) {
current random = (unsigned int) seed;
}

int my irand (int imax) {

/* Creates a random integer between 0 and imax, inclusive. i.e. [0..imax]

int ival;

/* current random = (current random * IA + IC) % IM; */

current random = current random * IA + IC; /* Use overflow to wrap */
ival = current random & (IM - 1); /* Modulus */

ival = (int) ((float) ival * (float) (imax + 0.999) / (float) IM);

#ifdef CHECK_ RAND

if ((ival < 0) || (ival > imax)) {
printf ("Bad value in my irand, imax = $%d ival = %d\n",imax,ival);
exit (1) ;
}
#endif

return (ival) ;

}
float my frand (void) {

/* Creates a random float between 0 and 1. i.e. [0..1). */
float fwval;

int ival;

current random = current random * IA + IC; /* Use overflow to wrap */

ival = current random & (IM - 1); /* Modulus */

fval = (float) ival / (float) IM;

#ifdef CHECK RAND

if ((fval < 0) || (fval > 1.)) {
printf ("Bad value in my frand, fval = %g\n", fval) ;
exit(1l);

}

#endif

return (fval) ;

77

*/

*/

}
//Binary to Decimal Conversion
int bin2dec (int n)
{
int dec = 0, i = 0, rem;
while (n != 0)
{
rem = n % 10;
n /= 10;
dec += rem*pow(2,i++);
}
if (dec >=0 && dec <= 15)
return dec;
else return -1;
}
int measure data mem(struct s node* head, int num nodes)
{
int x = 1;
//moving the current pointer to the last block
struct s node* n ptr = head;
while (n_ptr->n node != NULL)
{
n ptr = n ptr->n node;
X++;
}
printf ("num nodes: %d, x: %d\n",num nodes,x);
int life = num nodes;
int 1 = 0;
//Fill all the nodes with their life times
while (n_ptr->p node != NULL)
{
for (1 = 0; i < 4; i++)
{
if (n_ptr->inputs[i] != NULL)
{
if ((n_ptr->inputs[i])->life time < life)
{
(n_ptr->inputs[i])->life time = life;

}
n ptr = n ptr->p node;

78

life--;
}
//Now calculate data memory by counting the maximum number
//of variables alive at any perticular time durin simulation
n_ptr = head;
life = 1;
struct 1 node* 1 head = NULL;
struct 1 node* 1 tail = NULL;
struct 1 node* 1 ptr = NULL;
int data mem = 0;
while (n ptr != NULL)
{
if (n_ptr->life time > 0 && n ptr->life time > life)
{
1 ptr = (struct 1 node*)malloc(sizeof(struct 1 node));
1 ptr->num = n ptr->life time;

1 ptr->p node = 1 tail;

1 ptr->n node = NULL;
if (1_head == NULL)
{

1 head = 1 ptr;

1 tail = 1 ptr;
}else
{
1 tail->n node = 1 ptr;

1 tail = 1 tail->n node;

}
//Cleaning the list
1 ptr = 1 head;
while (1 ptr != NULL)
{
if (1 _ptr->num <= life)
{
if (1 _ptr == 1 head && 1 ptr == 1 tail)
{
1 ptr = NULL;
1 head = NULL;
1 tail = NULL;
}else if (1 ptr == 1 head && 1 ptr != 1 tail)
{

79

}

1 ptr =
1 head =

1 ptr->n node;
1 ptr;

free (1 ptr->p node);

1 ptr->p node = NULL;

}else if (1 ptr != 1 head &&
{
1 ptr = 1 ptr->p node;
1 tail = 1 ptr;

free (1l ptr->n node);

1 ptr->n node = NULL;
}else if (1 ptr != 1 head &&
(1 ptr->p node)->n node
(1 ptr->n node)->p node
struct 1 node* tmp =
1 ptr = 1 ptr->n node;
free (tmp) ;

lelse

1 ptr = 1 ptr->n node;
}
life++;
int tmp num = measure size(l head);
if (tmp num >= data mem)

data mem = tmp num;
n ptr = n ptr->n node;
}

printf ("Data Mem size: %d\n",data mem);

return data mem;

int measure size(struct 1 node* head)

{

int size = 0;
while (head != NULL)
{
sizet+;
head = head->n_node;

}

return size;

80

1 ptr == 1 tail)

1 ptr != 1 tail)

1 ptr->n node;

1 ptr->p node;

1 ptr;

graph.c:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "vpack.h"
//List of Functions

struct s node* generate graph(struct s block*, struct s net*, int num blocks,
int num p outputs, int graph size);

struct s node* generate schedule (struct s node*, struct s block* blocks,
struct s net* nets);

void print schedule(struct s node*,char*,struct s net*);

void push(struct s node**,struct s node**, struct s node*);

struct s node* pop(struct s node**,struct s node**);

int search(struct s node*,struct s node*);

int empty(struct s node*, struct s node*); //returns TRUE if queue empty

void cp node block(struct s node*,struct s block*,struct s node*,struct
s _node*,struct s node*,int,int,int);

void cp node node(struct s node*, struct s node*); //output, input

void add node (struct s node*, struct s node*, struct s node*); //node to be
added, head of list and position in array

void swap node(struct s _node*, struct s node¥*);

struct s node* find position(struct s node*, struct s node*, int graph size);
//returns the position of node in main array

void print graph(struct s _node*,int,int, char¥*);

void print node to file(FILE*, struct s node*, int);
void count inputs(struct s node*,int);

void free graph(struct s node*,int);

void free list (struct s node*);

//Searches the list, input arguments: Head Pointer to list, Block Name;
Returns a pointer to the node

struct s node* search list(struct s node*, char*);
//Generates a graph and return root

struct s node* generate graph(struct s block* blocks, struct s net* nets, int
num blocks, int num p outputs, int graph size)

{
struct s block* my blocks = blocks;
}

printf ("Everything Copied to Parent\n");fflush(stdout);
//sorting array, moving LATCH and Primary INPAD up in the system
for (i = 0; i < (graph size-2); i++)
{

ptr = parent+l;

81

struct s node* next ptr = parent+2;
int j = 0;

for (j = 0; j < (graph size-2); j++)
{

if (((next ptr->block)->type == INPAD || (next ptr->block)-
>type == LATCH))

if ((ptr->block)->type != INPAD && (ptr-
>block) ->type != LATCH)

swap node (ptr,next ptr);

}
ptr++, next ptr++;

}

printf ("Everthing Sorted and LUT and INPAD are on TOP
now\n") ; fflush (stdout) ;

//adding root node
ptr = parent + 1;

root->block = NULL; root->array position = root; root->n node = NULL;
root->p node = NULL;

root->num_inputs = 0; root->scheduled = 0; root->visited = 0;

printf ("\nparent:%p,ptr:%p,end:%p,graph size:%d,parent+graph size:%p",p
arent,ptr,end, graph size,parent+graph size);fflush (stdout);

i=0;
while (ptr != end)
{
if ((ptr->block)->type == INPAD || (ptr->block)->type == LATCH)
{
struct s node* tmp = (struct s node*)malloc(sizeof (struct
s _node));
cp_node node (tmp, ptr) ;
add node (tmp, root, ptr) ;
}
ptr++;

}

printf ("Rooted Added Successfully\n");fflush (stdout);
//creating rest of graph

ptr = root + 1;

0;

for (jJ = 1; j < graph size; j++)

{

int 3 =

82

int num blks = nets|[(ptr->block)->nets[0]].num pins;
//number of blocks connected to this block output

for (i = 1; 1 < num blks; i++)
{

if ((blocks[nets[(ptr->block)->nets[0]].pins[i]]) .type !=
OUTPAD)

//create an empty new node

struct s node* tmp node = (struct
s _node*)malloc(sizeof (struct s _node)) ;

tmp node->block = &blocks[nets[(ptr->block) -
>nets[0]].pins[i]];

ptr->p node = NULL;

while (ptr->n node != NULL)
ptr = ptr->n node;

ptr->n node = tmp node;

tmp node->p node = ptr;

tmp node->n node = NULL;

tmp node->array position =
find position(parent, tmp node,graph size);

tmp node->scheduled = 0;
tmp node->visited = 0;
tmp node->num_inputs = 0;
while (ptr->p node != NULL)
ptr = ptr->p node;
//generate schedule and return head pointer for the list

struct s node* generate schedule(struct s node* root, struct s block* blocks,
struct s net* nets)

{

//creating a queue and schedule list

struct s node* g head = NULL;

struct s node* g tail = NULL;

struct s node* v_head = NULL;

struct s node* v tail = NULL;

struct s node* ptr = NULL;

struct s node* g tmp = NULL;

push (&g head, &g _tail, root);

(root->array position)->scheduled = 1;

while (empty (g head,g tail) != 1)

{
g_tmp = pop (&g head, &q_tail);
(g_tmp->array position)->visited++;
if (g_tmp->block != NULL)
{

83

if (((g_tmp->block)->type == INPAD) || (g_tmp->block)->type

== LATCH)
{
(g_tmp->array position)->visited = 0;
(g_tmp->array position)->num inputs = 0;
}
}
ptr = (g_tmp->array position)->n node;
if ((g_tmp->array position)->scheduled == 0 && ((g_tmp-
>array position)->visited >= ((g_tmp->array position)->num inputs)))

{
push (&v_head, &v_tail, g tmp);
(g_tmp->array position)->scheduled = 1;
}
while (ptr != NULL)
{
if ((ptr->block)->type == LATCH)
{

if ((ptr->array position)->num inputs > (ptr-
>array position)->visited)

{
push (&g head, &g _tail,ptr);

}else

if ((ptr->array position)->num_inputs >= (ptr-
>array position)->visited)

{
push (&g head, &g _tail,ptr);

}

ptr = ptr->n node;

}
//F1i11 all list nodes with its inputs
ptr = v_head;
int 1 = 0;
while (ptr != NULL)
{

for (i = 0; i < MAXLUT; i++)

ptr->inputs[i] = NULL;
for (i = 0; 1 < ((ptr->block)->num nets)-1; i++)

{

84

if ((ptr->block)->type != INPAD)

ptr->inputs[i] = search list(v_head, nets[(ptr-
>block)->nets[i+1]] .name);

}
ptr = ptr->n node;
}
free list (g head);
return v_head;
}
//printing the graph into a file

void print graph(struct s node* root, int num blocks, int graph size, char*
output file)

{
struct s node* col = root;
struct s node* row = col->n node;
FILE *fptr;
fptr = fopen (output file,"w");
if (fptr == NULL)
{
printf ("\nCan't Open File to Print Graph");
exit(1l);
}
fprlntf(fptr, "**************Prj_ntj_ng Graph***************\n") ;
int 1 = 0;
for (i = 0; i1 < graph size; i++)
{
fprintf (fptr, "\nParent Array Node : %d",i+1);
print node to file(fptr,col,i+l);
fprintf (fptr, "\n");
int 3 = 1;
while (row != NULL)
{
fprintf (fptr, "\nList Node : %d",7Jj);
print node to file(fptr,row,j++);
fprintf (fptr, "\n-———---------————- ") ;
row = row->n_node;
}

fprlntf(fptr, "\n******************END Of
List*****************\n") ;

col++; row = col->n node;

fprintf (fptr, "\nEnd of Graph");

85

fclose (fptr);

}

//copy a block information into node

void cp node block(struct s node* node,
struct s block* block,
struct s node* position,
struct s node* n,
struct s node* p,
int inputs,
int scheduled,

int visited)

node->block = block;
node->array position = position;
node->n node = n;
node->p node = p;
node->num_inputs = inputs;
node->scheduled = scheduled;
node->visited = visited;
}
//copy a node into another node
void cp node node(struct s node* output node, struct s node* input node)
{
output node->block = input node->block;
output node->array position = input node->array position;
output node->n node = input node->n node;
output node->p node = input node->p node;
output node->num_inputs = input node->num_inputs;
output node->scheduled = input node->scheduled;
output node->visited = input node->visited;
}
//add a new to the end of the list

void add node(struct s node* node, struct s node* head, struct s node*
position)

{
while (head->n node != NULL)
{
head = head->n_node;

}

head->n_node

node;
node->p node = head;

node->n node = NULL;

86

node->block = position->block;
node->array position = position;
node->num_inputs = 0;
node->scheduled = 0;
node->visited = 0;
}
//swap two nodes into eachother
void swap node (struct s node* nodel, struct s node* node2)
{
struct s node* tmp = (struct s node*)malloc(sizeof (struct s node));
cp_node node (tmp, nodel) ;
cp_node node (nodel,node?2) ;
cp_node node (nodeZ2, tmp) ;
free (tmp) ;
}

struct s node* find position(struct s node* head, struct s node* node, int
size)

{
struct s node* tmp = head;
int 1 = 0;
for (1 = 0; 1 < size; 1i++)
{
if (tmp->block == node->block)
{
return tmp;
}else tmp++;
}
return NULL;
}
//printing a node to the file
void print node to file(FILE* fptr, struct s node* tmp, int i)
{
fprintf (fptr, "\nNode [%d] Add:%p",i,tmp);
fprintf (fptr, "\nblock Add:%p", tmp->block) ;
if (tmp->block != NULL)
{
fprintf (fptr, "\nblock name:%s", (tmp->block) ->name) ;
if ((tmp->block)->type == INPAD)
fprintf (fptr, "\nblock type: INPAD");
else if ((tmp->block)->type == OUTPAD)
fprintf (fptr, "\nblock type: OUTPAD");
else 1if ((tmp->block)->type == LUT)

87

lelse

fprintf (fptr, "\nblock
else if ((tmp->block)->type
fprintf (fptr, "\nblock
else if ((tmp->block)->type
fprintf (fptr, "\nblock
else if ((tmp->block)->type
fprintf (fptr, "\nblock

if (tmp->block == NULL)

fprintf (fptr, "\nblock name:

fprintf (fptr, "\narray positi

type: LUT");

== LATCH)

type: LATCH");

== EMPTY)

type: EMPTY");

== LUT AND LATCH)
type: LUT AND LATCH");

root") ;

on:%p", tmp->array position);

fprintf (fptr, "\nnext node:%p", tmp->n node) ;

fprintf (fptr, "\nprevious node:%p", tmp->p node) ;

d", tmp->num_inputs) ;

fprintf (fptr, "\nscheduled:%d", tmp->scheduled) ;

(
(
(
fprintf (fptr, "\nnum inputs:%
(
fprintf (fptr, "\nvisited:%d",
fprintf (fptr, "\nTruth Table:
int n = 0;

n < 16;

for (n = 0; n++)

fprintf (fptr, "\nAdd[%d]:

>truth table[n]);

}

//traverse the whole graph and update num inputs in each node in parent

void count inputs(struct s node* head, 1

{

}

void push(struct s node** head,

{

struct s node* col

struct s node* row =

int i

for

{

(1

head + 1;
_ col->n node;
= 0;

= 0; 1 < (size-1); i++)
while (row != NULL)

{
(row->array position)-
row = row->n_node;

}col++; row = col->n node;

struct s

_node** tail,

tmp->visited);

")

%d",n, (tmp->block) -

nt size)

>num_inputs++;

struct s node* node)

struct s node* ptr =

cp _node node (ptr,node) ;

88

(struct s node*)malloc(sizeof (struct s node));

ptr->n node
if(*tail
{

NULL;

ptr->p node =
*head = ptr;
*tail = ptr;

lelse

ptr->p node

(*tail) ->n _node

*tail = ptr;

}

struct s node* pop (struct s node**

{

NULL && *head

NULL)

NULL;

*tail;

ptr;

head, struct s node**

struct s node* ptr = *head;
if (*head == *tail)
{
*head = NULL;
*tail = NULL;
lelse
{
*head = (*head)->n node;
(*head) ->p node = NULL;
}
ptr->p node = NULL;
ptr->n node = NULL;

return ptr;
}
int search(struct
{

struct s node* ptr

while = NULL)

{

(ptr

if (ptr ==

return

ptr
}

return 0;

}

int empty(struct s node*

{

s_node* head,

key)

1;

ptr->n node;

head,

struct s node* key)

head;

struct s node* tail)

89

tail)

if (head == NULL && tail == NULL)
return 1;
else return O0;

}

void print schedule(struct s node* head, char* output file, struct s net*
net)

{

struct s node* ptr = head;

FILE *fptr;

fptr = fopen (output file,"w");

if (fptr == NULL)

{
printf ("\nCan't Open File to Print Graph");
exit (1) ;

}

fprlntf(fptr, "**************Schedule***************\n\n") ;

int 1 = 0;

while (ptr != NULL)

{
if ((ptr->block)->type == INPAD)

fprintf (fptr, "Prev:%p\tBlock
No.%d:%p, \tBlock:%s, \tType: INPAD\tNext:%p\n",ptr->p node,i++,ptr, (ptr-
>block) ->name, ptr->n node) ;

else if ((ptr->block)->type == OUTPAD)

fprintf (fptr, "Prev:%$p\tBlock
No.%d:%p, \tBlock:%s, \tType:OUTPAD\tNext:%$p\n",ptr->p node, i++,ptr, (ptr-
>block) ->name, ptr->n node) ;

else if ((ptr->block)->type == LUT)
{

fprintf (fptr, "Prev:%$p\tBlock
No.%d:%p, \tBlock:%s, \tType:LUT\tNext:%p\n",ptr->p node, i++,ptr, (ptr->block) -
>name, ptr->n node) ;

fprintf (fptr, "Truth Table:\n");
int n = 0;
for (n = 0; n < 16; n++)

fprintf (fptr, "Add[%d]: %d\n",n, (ptr->block) -
>truth table[n]);

fprintf (fptr, "\n");
for (n = 0; n < MAXLUT; n++)
{
if (ptr->inputs[n] != NULL)

fprintf (fptr, "Input Pointers([%d]:
%$s\n",n, ((ptr->inputs[n])->block) ->name) ;

}

90

fprintf (fptr, "\n") ;
}
else if ((ptr->block)->type == LATCH)
{

fprintf (fptr, "Prev:%$p\tBlock
No.%d:%p, \tBlock:%s, \tType:LATCH\tNext:%p\n",ptr->p node, i++,ptr, (ptr-
>block) ->name, ptr->n node) ;

int n = 0;
for (n = 0; n < MAXLUT; n++)
{
if (ptr->inputs[n] != NULL)

fprintf (fptr, "Input Pointers[%d]:
%s\n",n, ((ptr->inputs[n])->block)->name) ;

}
fprintf (fptxr, "\n");
}
else if ((ptr->block)->type == EMPTY)

fprintf (fptr, "Prev:%p\tBlock
No.%d:%p, \tBlock:%s, \tType:EMPTY\tNext:%p\n",ptr->p node, i++,ptr, (ptr-
>block) ->name, ptr->n node) ;

else if ((ptr->block)->type == LUT AND LATCH)

fprintf (fptr, "Prev:%p\tBlock
No.%d:%p, \tBlock:%s, \tType:LUT AND LATCH\tNext:%p\n",ptr-
>p_node, i++,ptr, (ptr->block) ->name, ptr->n node) ;

int x = 0;
for (x = 0; x < ((ptr->block)->num nets); x++)

{

if (x == 0)
fprintf (fptr, "Output using net: %s\n",net[((ptr-
>block)->nets[x])] .name) ;
else

fprintf (fptr, "Input using net[%d]: %$s\n",x,net[((ptr-
>block)->nets[x])] .name) ;

}
fprintf (fptr,"\n");
ptr = ptr->n node;
}
fprintf (fptr, "Total Blocks scheduled: %d\n",1i);
fprlntf(fptr, "\n***************the end****************\n\n\n") ;
fclose (fptr);
}
void free graph(struct s node* head, int size)

{

int 1 = 0;

91

struct s node* tmp NULL;
struct s node* col = head;

struct s node* row = col->n node;

for (1 = 0; 1 < size; i++)
{
while (row != NULL)
{
tmp = row->n_node;

free(row) ;
row = tmp;
}
tmp = col++;
free(col);

col = tmp; row = col->n node;

}
void free list(struct s _node* head)
{
struct s node* tmp = NULL;
while (head != NULL)
{
tmp = head->n_node;
free (head) ;
head = tmp;

}
struct s node* search list(struct s node* head, char* block name)
{
if (block name == NULL)
return NULL;
else {
while (head != NULL)
{
if (strcmp ((head->block)->name,block name) == 0)
{
return head;

}
head = head->n_node;
}

return NULL;

92

simulation.c:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <math.h>

#include "simulation.h"

#include "util.h"

long double C u = 0.0000000000000000064;
long double A bit = 140;

long double F = 0.000000032;

void simulate (struct s node*, int,int,int,float,int,int, float,float);
int evaluate block(struct s node*, int);
long double fpga pwr (unsigned long, float);
long double rand mem cap (int,int);

long double seq mem cap(int,int);

//Memory Capacitances (Energies)

long double data energy = 0.0;

long double instruction energy = 0.0;

long double Total Data Mem Access = 0.0;
0.0;

long double Total Inst Mem Access
//Capacitance to evaluate 4LUT
long double LUT Cap = 0.0;

long double Data Mem Cap per Access = 0.0;
long double Inst Mem Cap per Access = 0.0;
long double Functional Unit Cap = 0.0;
//FPGA Total LUT Evaluation Cap

long double FPGA LUT Eval Cap = 0.0;

void simulate(struct s node* head, int sim cycles, int num luts, int num latches,
float area clb, int data mem, int data bits, float inst comp, float data comp)

{
srand (time (NULL)) ;

struct s node* c ptr = head;

unsigned long FPGA wire len = 0;
//First time fill everything with random 0 or 1
//This will remove any value other than 0 or 1 even for first evaluation
while (c_ptr != NULL)
{
c_ptr->current value = (rand()32);
c ptr = c_ptr->n node;
}
int tmp val = -1;
//Total CPU Cap
long double mp pwr = 0.0;

93

//Values for W and M for Data and Instruction Memory

int W I = 16+5*%(ceil(log2((num luts+num latches))));

int M I = num luts*inst comp;

int W D = data bits;

int M D = data mem*data comp;

//Measure Data and Instruction Memory Cap per Access

Data Mem Cap per Access = rand mem cap(W D,M D);

Inst Mem Cap per Access = seq mem cap(W I,M I);

//Measure Total Instruction Memory Access

Total Inst Mem Access = inst comp* (sim cycles* (num luts+num latches));

//Measure 4LUT Cap first

LUT Cap = rand mem cap(l,16);

//Measure Total 4LUT Evaluation Cap FPGA

FPGA LUT Eval Cap = sim cycles*data bits*num luts*LUT Cap;

c ptr = head;

int 1 = 0;

for (i = 0; i < sim cycles;

{

i++)

//Fill Primary input nodes with random values

while

{

}

(((c_ptr->block)->type) == INPAD)

int rand num =

if
{

}

rand () %$2;

(c_ptr->current value != rand num);

FPGA wire len += c _ptr->net length;

c _ptr->current value = rand num;

c ptr = c ptr->n node;

//Do one simulation cycle

while

{

(c_ptr != NULL)

if ((c_ptr->block)->type == LUT)

{
tmp val = evaluate block(c ptr,1);
if (tmp _val != c ptr->current value)

{

c_ptr->current value = tmp val;

Total Data Mem Access += (c_ptr->block)->num nets;

FPGA wire len += c_ptr->net length;

lelse

Total Data Mem Access += ((c_ptr->block)->num nets) -
}else i1f ((c_ptr->block)->type == LATCH)
tmp val = evaluate block(c ptr,O0);

94

}

if (tmp _val != ¢ ptr->current value)

{

c ptr->current value = tmp val;

Total Data Mem Access += ((c_ptr->block)->num nets) -

}
c ptr = c ptr->n node;
}
c ptr = head;
}
//Measure Total FPGA Cap

long double FPGA Routing Cap = (data bits)* (fpga pwr (FPGA wire len,area clb));

long double fp pwr = FPGA Routing Cap + FPGA LUT Eval Cap;

//Measure Total Data Memory Cap (CPU)

data energy = Data Mem Cap per Access* (Total Data Mem Access*data comp) ;
//Measure Total Inst Memory Cap (CPU)

instruction energy = Inst Mem Cap per Access*Total Inst Mem Access;
//Measure Total Functional Unit Cap (CPU)

Functional Unit Cap = fp pwr/14;

//Measure Total CPU Cap

mp_pwr = Functional Unit Cap + data energy + instruction energy;
printf ("My Data Instruction: %Lf ",instruction energy);

printf ("Data: %Lf ",data energy);
printf ("Funt Unit: $Lf ",Functional Unit Cap);
printf ("Processor: %Lf ",mp pwr);// fflush (stdout);
printf ("Routing: %Lf ",FPGA Routing Cap);
printf ("LUT: 3Lf ",FPGA LUT Eval Cap);
printf ("FPGA: SLf ", fp pwr);
if (mp pwr > fp pwr)
{
float mp x fp = mp pwr/fp pwr;
printf ("uP is %$fx times more than FPGA",mp x fp);
}
else if (fp pwr > mp pwr)
{
float fp x mp = fp pwr/mp pwr;
printf ("FPGA is $fx times more than uP",fp x mp);

//Calculate FPGA Power consumed

long double fpga pwr(unsigned long wire len, float area clb)

{

long double cap = wire len*sqrtl (area clb*12*8*3);

return cap;

95

}
//Calcualte Random Access Memory Capacitance
long double rand mem cap (int W,int M)
{
long double tmp log = (logl(M))/(logl(2));
long double cap = (tmp log+ (2* (2*W+2)))* (sqrtl (W*M)) ;
return cap;
}
//Calculate Seq Access Memory Capacitance
long double seq mem cap(int W, int M)
{
long double cap = ((2* (2*W+1)) *sgrtl (W*M)) ;
return cap;
}
//Evaluate current block value based on its input values
int evaluate block(struct s node* c ptr, int type)

{

int n = 0;
if (type == 0)
{
//If LATCH
return (c_ptr->inputs[0])->current value;
}
else if (type == 1) //For LUT

{
char zerol[2];
strcpy(zero,"0");
char one[2];
strcpy (one,"1");
char address [MAXLUT+2];
strcpy (address, "0") ;
for (n = 0; n < ((c_ptr->block)->num nets)-1; n++)
{
if ((c_ptr->inputs[n])->current value == 0)
{
strcat (address, zero) ;
}else if ((c_ptr->inputs[n])->current value == 1)
{

strcat (address, one) ;

}
return (c_ptr->block)->truth table[bin2dec(atoi (address))];

}

return -1;

96

read_route.c:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "vpack.h"
#define BUFSIZE 100
#define TOKENS " \t\n"
#define FOUND O
#define NOT FOUND 1
struct node
{
char *name;
struct node* p node;
struct node* n node;
}i
//Add a node to the end of list
void add node r(struct node*,char*);
//Create a list
struct node* create list r();
//Remove a list
void remove list r(struct node*);
//Search list
int search list r(struct node*,char *);
//Clean the charater array
void clean char r(char*);
//Search schedule
struct s node* search schedule r(struct s node*, char¥*);

void update net lengths(struct s node* schedule, char* input file, char*
output file)

{
char buffer [BUFSIZE];
FILE *fp in, *fp out;
fp in = fopen(input file,"r");
fp out = fopen (output file,"w");
unsigned long total wire length = 0;
unsigned long net length = 0;

unsigned long blah wire = 0;

char NET[BUFSIZE];
clean char r(NET);
char p word[BUFSIZE];

clean char r(p word);

97

struct node* channel list = NULL;
struct s node* ptr = NULL;
//Read a single line from file
while (fgets (buffer,BUFSIZE,fp in) != NULL)
{
//Break the line into tokens
char *word = strtok(buffer, TOKENS) ;
if (word != NULL)
{
//If the first Token is Net
if (strcmp(word, "Net") == 0)
{

ptr = search schedule r (schedule,NET) ;

if (ptr != NULL)

ptr->net length = net length;
fprintf (fp_out, "Net Length: %lu\n\n",net length);

clean char r (NET) ;
net length = 0;
fprintf (fp_out,"%s ",word);

if (channel list == NULL)
channel list = create list r();
else if (channel list != NULL)

{

free (channel list);

channel list = create list r();

}

int done = 0;

while ((word = strtok (NULL, TOKENS))

{

if (word != NULL && done ==

{
int len = strlen(word);
int 1 = 0;

for (i = 1; 1 < len-1;

NET[i-1] = word[i];

fprintf (fp_out, "%s",NET) ;

}
done = 1;
}
fprintf (fp_out, "\n");
}
//If the first Token is CHANX or CHANY

98

else if (strcmp (word, "CHANX") == | | strcmp (word, "CHANY")

== 0)

int done = 0;
clean char r(p word);
strcpy (p_word,word) ;
while ((word = strtok (NULL, TOKENS))
{
if (word != NULL && done == 0)
{
strcat (p_word," ");

strcat (p_word,word) ;

if (search list r(channel list,p word) =

NOT _FOUND)

net length++;

total wire length++;

!'= NULL)

add node_r(channel list,p word);

}
blah wire++;

fprintf (fp_out, "%s\n",p word);

(
done = 1;

}
ptr = search schedule r (schedule,NET) ;

if (ptr != NULL)
ptr->net length = net length;

fprintf (fp _out, "Net Length: %lu\n\nTotoal Wire Length:

%1lu\n",net length, total_wire_length,blah_wire);
fclose (fp_in)
fclose (fp_out) ;

printf ("Net Length: %lu\n",net length);

printf ("Total wire length: %$lu\nBlah wire:
$lul\n",total wire length,blah wire);

}
//Adding a node to list

void add node_ r (struct node* head,char *name)

{

(
(
(
(

%1lu\nBlah wire:

struct node* n ptr = (struct node*)malloc(sizeof (struct node));

99

n _ptr->name = (char*)malloc(10);
while (head->n node != NULL)
head = head->n node;
strcpy (n_ptr->name, name) ;
n _ptr->p node = head;
head->n node = n ptr;
n _ptr->n node = NULL;
while (head->p node != NULL)
head = head->p node;
}
//Create list

struct node* create list r()

{

struct node* ptr = (struct node*)malloc(sizeof (struct node));
ptr->name = (char*)malloc(5);
strcpy (ptr->name, "Net") ;
ptr->p node = NULL;
ptr->n node = NULL;
return ptr;
}
//Remove list
void remove list r(struct node* head)

{
while (head->n node != NULL)

{
free (head->name) ;
head = head->n node;
}
free (head->name) ;
head = head->p node;
while (head->p node != NULL)
{
free (head->n node);
head = head->p node;
}
free (head);
}
//Search list
int search list r(struct node* head, char *name)
{
while (head != NULL)

{

100

if (strcmp (head->name, name) == FOUND)
return FOUND;
head = head->n node;
}
return NOT FOUND;
}
//Clean charater array
void clean char r(char* word)
{
int 1 = 0;
for (i = 0; i1 < BUFSIZE; i++)
word[1i] = '\O0';
}
//Search Schedule
struct s node* search schedule r(struct s node* schedule, char *Net name)

{
struct s node* ptr = schedule;

while (ptr !'= NULL)
{

if (strcmp(((ptr->block)->name),Net name) == 0)
return ptr;
ptr = ptr->n node;
}
return NULL;

101

H-Files:

globals.h:

/* Netlist description data structures. */
extern int num nets, num blocks;

extern int num p inputs, num p outputs;
extern int graph size;

extern struct s net *net;

extern struct s block *block;

/* Number in original netlist, before FF packing. */

extern int num luts, num latches;

/* Graph Nodes. */

extern struct s node* graph;

/* Queue Variables

extern struct s node* g head;
extern struct s node* g tail;
extern struct s node* v_head;

extern struct s node* v_tail;*/
graph.h:

#ifndef GRAPH H
#define GRAPH H

#include "vpack.h"

extern struct s node* generate graph(struct s block*, struct s net*, int
num blocks, int num p outputs, int graph size);

extern void print graph(struct s node*, int num blocks, int graph size,
char*);

extern struct s node* generate schedule(struct s node*, struct s block¥*,
struct s net*);

extern void print schedule(struct s node*,char*,struct s net*);
extern void free graph(struct s node*,int);
#endif

read blif.h:

void read blif (char *blif file, int lut size);

102

void echo_input (char *blif file, int lut size, char *echo file);

read route.h

#ifndef READ ROUTE H

#define READ ROUTE H

#include "vpack.h"

extern void update net lengths(struct s _node*, char*, char*);
#endif

simulation.h:

#ifndef SIMULATION H

#define SIMULATION H

#include "vpack.h"

void simulate (struct s node*, int, int, int, float, int, int, float, float);
#endif

util.h:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "vpack.h"

[rFHFFF KK KAk x* KKKk Global variables exported by this module
********************/

extern int linenum; /* line in file being parsed */

[xFFA LK F KA A x KA AxxKk* Types and defines exported by this module
‘k‘k*‘k‘k*‘k‘k*/

#ifndef TRUE /* Some compilers predefine TRUE, FALSE */
typedef enum {FALSE, TRUE} boolean;
#else

typedef int boolean;

#endif

#define BUFSIZE 300 /* Maximum line length for various parsing proc. */
#define max(a,b) (((a) > (b))? (a) : (b))

#define min(a,b) ((a) > (b)? (b) : (a))

#define nint(a) ((int) floor (a + 0.5))

103

/* Linked lists of void pointers and integers, respectively.

*/
struct s linked vptr {void *data vptr; struct s linked vptr *next;};
struct s linked int {int data; struct s linked int *next;};

typedef struct s linked int t linked int;

/* Integer vector. nelem stores length, 1list[0..nelem-1] stores list of

* integers.

*/

struct s _ivec {int nelem; int *list;};

/************************ Memory allocation routines
*k*k***********************/

void *my calloc (size t nelem, size t size);
void *my malloc (size t size);

void *my realloc (void *ptr, size t size);

void *my chunk malloc (size t size, struct s _linked vptr **chunk ptr head,

int *mem avail ptr, char **next mem loc ptr);

void free chunk memory (struct s linked vptr *chunk ptr head);

JFRFF Ik k KKKk Kk kkxkKkk**x [inked list, matrix and vector utilities
****************/

void free ivec vector (struct s _ivec *ivec vector, int nrmin, int nrmax);

void free ivec matrix (struct s _ivec **ivec matrix, int nrmin, int nrmax,

int ncmin, int ncmax);

void free ivec matrix3 (struct s_ivec ***ivec matrix3, int nrmin, int nrmax,

int ncmin, int ncmax, int ndmin, int ndmax);

void **alloc matrix (int nrmin, int nrmax, int ncmin, int ncmax,

size t elsize);

104

void ***alloc matrix3 (int nrmin, int nrmax, int ncmin, int ncmax, int ndmin,

int ndmax, size t elsize);

void free matrix (void *vptr, int nrmin, int nrmax, int ncmin, size t
elsize);

void free matrix3 (void *vptr, int nrmin, int nrmax, int ncmin, int ncmax,

int ndmin, size t elsize);

struct s linked vptr *insert in vptr list (struct s_linked vptr *head,

void *vptr to add);

t linked int *insert in int list (t linked int *head, int data, t linked int
* %

free list head ptr);
void free int list (t linked int **int list head ptr);
void alloc_ivector and copy int list (t linked int **1list head ptr,

int num items, struct s ivec *ivec, t linked int

**free list head ptr);

[FHRFFAxF A KK AxFAxx%k*x File and parsing utilities
********k***********************/

FILE *my fopen (char *fname, char *flag, int prompt);

char *my strtok(char *ptr, char *tokens, FILE *fp, char *buf);

char *my fgets(char *buf, int max size, FILE *fp);

int my atoi (const char *str);

[rRFIFFIF KKK A A kK KKk Ax KKk Kkkx*x Portable random number generators
*******************/

void my srandom (int seed);

int my irand (int imax);

float my frand (void);

105

extern int bin2dec (int);

extern int measure data mem(struct s node*,int);

int measure size(struct 1 node¥*);
vpack.h:

#ifndef VPACK H

#define VPACK H

#define MAXLUT 7 /* Maximum number of inputs per LUT */
#define HASHSIZE 4095

#define NAMELENGTH 16 /* Length of the name stored for each net */
#define DEBUG 1 /* Echoes input & checks error conditions */
/*#define VERBOSE 1*/ /* Prints all sorts of intermediate data */

#define NO CLUSTER -1
#define NEVER CLUSTER -2
#define NOT VALID -10000 /* Marks gains that aren't valid */
/* Ensure no gain can ever be this negative! */

#define UNDEFINED -1

#define DRIVER 0 /* Is a pin driving a net or in the fanout? */
#define RECEIVER 1

#define OPEN -1 /* Pin is unconnected. */

#define TABLESIZE 16 /* Truth Table Size */

enum block types {INPAD = -2, OUTPAD, LUT, LATCH, EMPTY, LUT AND LATCH};

enum e cluster seed {TIMING, MAX INPUTS};

struct hash nets { char *name;
int index;
int count;
struct hash nets *next; };

/* count is the number of pins on this net so far. */

struct s net { char *name;
int num pins;
int *pins; };

/* name: ASCII net name for informative annotations in the output. *

106

* num pins: Number of pins on this net.

* pins[]: Array containing the blocks to which the pins of this

* connect

. Output in pins|[0],

struct s block {char *name;

enum block types type;

int num nets;
int nets[MAXLUT+2];
int truth table[TABLESIZE]; i

/* name: Taken from the net which it drives.
* type: LUT, INPAD, OUTPAD or LATCH.

* num nets: number of nets connected to this block.

* nets([]: List of nets connected to this block. Net[0] is the

* output

, others are inputs, except for OUTPAD.

* only have an input, so this input is in net([O0].

struct s node {
struct
struct
struct

struct

struct s block *block;

s_node
s_node
s_node

s_node

*array position;
*n_node;
*p_node;
*inputs [MAXLUT] ;

int num_ inputs;

int scheduled;

int vi

sited;

int current value;

unsigned long net length;

int life time;

}i

/* block: Pointer to block contained by this node

* n node: Pointer to next node

//This structure will be used in different small operations

struct 1 node { int num;

struct 1 node* n node;

struct 1 node* p node; }i

#endif

107

inputs in other entries.

OUTPADs

net *
*/
*
*
*
*
*
*/

*

*/

Blif files:

8 bit_compressor_tree:

.model top

.inputs a0 al a2 a3 a4 a5 a6 a7 b0 bl b2 b3 b4 b5 b6 b7 cO0 cl c2 c3 c4 c5 c6
c7 d0 dl d2 d3 d4 d5 d6 d7 e0 el e2 e3 ed e5 e6 e7 f0 f1 f2 £3 f4 £5 f6 £7 g0
gl g2 g3 g4 g5 g6 g7 cin 1 cin 2

.outputs s0 sl s2 s3 s4 s5 s6 s7 s8 s9 s10 sll sl12 s13 sl1l4 sl1l5 cout 0 cout 1
cout 6 4

.names a0 b0 c0 cout 0 1
000 O

001
010
011
100
101
110
111 1

0
0
1
0
1
1

.names a0 b0 c0 sum 0 1
000 O

001 1
010 1
011 0
100 1
101 0
110 0
111 1

.names d0 e0 f0 cout 0 2
000 O

001 O
010 O
011 1
100 O
101 1
110 1
111 1

.names d0 e0 f0 sum 0 2
000 O

001 1
010 1
011 0

108

100 1
101 0
110 ©
111 1

.names sum 0 1 sum 0 2 g0 cout 0 3
000 O

001 ©
010 ©
011 1
100 ©
101 1
110 1
111 1

.names sum 0 1 sum 0 2 g0 sum 0 3
000 ©

001
010
011
100
101
110
111 1

1
1
0
1
0
0

.names cout 0 1 cout 0 2 cout 0 3 cout 0 4
000 0O

001
010
011
100
101
110
111 1

0
0
1
0
1
1

.names cout 0 1 cout 0 2 cout 0 3 sum 0 4
000 ©

001 1
010 1
011 0
100 1
101 0
110 0
111 1

.names sum 0 3 cin 1 cin 2 sl
000 ©

109

001
010
011
100
101
110
111

.names sum_0 3 cin 1 cin 2 s0

000
001
010
011
100
101
110
111

.names al bl cl cout 1 1

000
001
010
011
100
101
110
111

.names al bl cl sum 1 1

000
001
010
011
100
101
110
111

.names dl el fl1 cout 1 2

000
001
010
011
100
101
110

R PO P O O

1

0
1
1
0
1
0
0
1
0
0
0
1
0
1
1

1

0
1
1
0
1
0
0
1
0

0
0
1
0
1
1

110

111 1

.names dl el fl sum 1 2
000 O

001 1
010 1
011 0
100 1
101 0
110 0
111 1

.names sum 1 1 sum 1 2 gl cout 1 3
000 O

001 0
010 ©
011 1
100 0
101 1
110 1
111 1

.names sum 1 1 sum 1 2 gl sum 1 3
000 O

001 1
010 1
011 0
100 1
101 0
110 0
111 1

.names cout 1 1 cout 1 2 cout 1 3 cout 1 4
000 O

001 0
010 0
011 1
100 0
101 1
110 1
111 1

.names cout 1 1 cout 1 2 cout 1 3 sum 1 4
000 O

001 1
010 1
011 0

111

100 1
101 O
110 0
111 1

.names sum 1 3 sum 0 4 cin 1 s3
000 O

001 O
010 0
011 1
100 O
101 1
110 1
111 1

.names sum 1 3 sum 0 4 cin 1 s2
000 O

001
010
011
100
101
110
111 1

1
1
0
1
0
0

.names a2z b2 c2 cout 2 1
000 0O

001
010
011
100
101
110
111 1

0
0
1
0
1
1

.names a2z b2 c2 sum 2 1
000 0O

001 1
010 1
011 0
100 1
101 O
110 O
111 1

.names d2 e2 f2 cout 2 2
000 O

112

001
010
011
100
101
110
111 1

.names d2 e2 f2 sum 2 2
000 ©

001
010
011
100
101
110
111 1

P B O BB O O

1
1
0
1
0
0

.names sum 2 1 sum 2 2 g2 cout 2 3
000 O

001 O
010 O
011 1
100 O
101 1
110 1
111 1

.names sum 2 1 sum 2 2 g2 sum 2 3
000 O

001 1
010 1
011 0
100 1
101 O
110 O
111 1

.names cout 2 1 cout 2 2 cout 2 3 cout 2 4
000 O

001 O
010 O
011 1
100 O
101 1
110 1

113

111 1

.names cout 2 1 cout 2 2 cout 2 3 sum 2 4
000 O

001 1
010 1
011 0
100 1
101 0
110 0
111 1

.names sum 2 3 sum 1 4 cout 0 4 s5
000 O

001 0
010 O
011 1
100 0
101 1
110 1
111 1

.names sum 2 3 sum 1 4 cout 0 4 s4
000 O

001 1
010 1
011 0
100 1
101 0
110 0
111 1

.names a3 b3 c¢3 cout 3 1
000 0

001 0
010 0
011 1
100 0
101 1
110 1
111 1

.names a3 b3 ¢3 sum 3 1
000 O

001 1
010 1
011 0

114

100 1
101 O
110 0
111 1

.names d3 e3 f3 cout 3 2
000 O

001 O
010 0
011 1
100 O
101 1
110 1
111 1

.names d3 e3 f3 sum 3 2
000 O

001
010
011
100
101
110
111 1

1
1
0
1
0
0

.names sum 3 1 sum 3 2 g3 cout 3 3
000 O

001
010
011
100
101
110
111 1

0
0
1
0
1
1

.names sum 3 1 sum 3 2 g3 sum 3 3
000 O

001 1
010 1
011 0
100 1
101 0
110 0
111 1

.names cout 3 1 cout 3 2 cout 3 3 cout 3 4
000 0

115

001
010
011
100
101
110
111 1

.names cout 3 1 cout 3 2 cout 3 3 sum 3 4
000 ©

001
010
011
100
101
110
111 1

P B O BB O O

1
1
0
1
0
0

.names sum 3 3 sum 2 4 cout 1 4 s7
000 O

001 O
010 O
011 1
100 0O
101 1
110 1
111 1

.names sum 3 3 sum 2 4 cout 1 4 s6
000 O

001 1
010 1
011 0
100 1
101 0
110 0
111 1

.names a4 b4 c4 cout 4 1
000 O

001 O
010 O
011 1
100 O
101 1
110 1

116

111

.names a4 b4 c4 sum 4 1

000
001
010
011
100
101
110
111

.names d4 e4 f4 cout 4 2

000
001
010
011
100
101
110
111

.names d4 e4 f4 sum 4 2

000
001
010
011
100
101
110
111

.names sum 4 1 sum 4 2 g4 cout 4 3

000
001
010
011
100
101
110
111

.names sum 4 1 sum 4 2 g4 sum 4 3

000
001
010
011

1
0
1
1
0
1
0
0
1
0
0
0
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
0
1
0
1
1
1

0

1
1
0

117

100 1
101 O
110 0
111 1

.names cout 4 1 cout 4 2 cout 4 3 cout 4 4
000 O

001 O
010 0
011 1
100 O
101 1
110 1
111 1

.names cout 4 1 cout 4 2 cout 4 3 sum 4 4
000 O

001
010
011
100
101
110
111 1

1
1
0
1
0
0

.names sum 4 3 sum 3 4 cout 2 4 s9
000 O

001
010
011
100
101
110
111 1

0
0
1
0
1
1

.names sum 4 3 sum 3 4 cout 2 4 s8
000 O

001 1
010 1
011 O
100 1
101 O
110 O
111 1

.names a5 b5 ¢5 cout 5 1
000 O

118

001
010
011
100
101
110
111

.names a5 b5 ¢5 sum 5 1

000
001
010
011
100
101
110
111

.names d5 e5 f5 cout 5 2

000
001
010
011
100
101
110
111

.names d5 e5 f5 sum 5 2

000
001
010
011
100
101
110
111

.names sum 5 1 sum 5 2 g5 cout 5 3

000
001
010
011
100
101
110

P B O BB O O

1

0
1
1
0
1
0
0
1
0
0
0
1
0
1
1

1

0
1
1
0
1
0
0
1
0

0
0
1
0
1
1

119

111 1

.names sum 5 1 sum 5 2 g5 sum 5 3
000 O

001 1
010 1
011 0
100 1
101 0
110 ©
111 1

.names cout 5 1 cout 5 2 cout 5 3 cout 5 4
000 O

001 0
010 O
011 1
100 ©
101 1
110 1
111 1

.names cout 5 1 cout 5 2 cout 5 3 sum 5 4
000 ©

001 1
010 1
011 ©
100 1
101 0
110 0
111 1

.names sum 5 3 sum 4 4 cout 3 4 sll
000 ©

001 ©
010 ©
011 1
100 0
101 1
110 1
111 1

.names sum 5 3 sum 4 4 cout 3 4 sl10
000 O

001 1
010 1
011 0

120

100 1
101 0O
110 0
111 1

.names a6 b6 c6 cout 6 1
000 O

001 O
010 O
011 1
100 O
101 1
110 1
111 1

.names a6 b6 c6 sum 6 1
000 O

001
010
011
100
101
110
111 1

.names d6 e6 f6 cout 6 2
000 0O

001
010
011
100
101
110
111 1

1
1
0
1
0
0

0
0
1
0
1
1

.names d6 e6 f6 sum 6 2
000 O

001 1
010 1
011 0
100 1
101 0
110 0
111 1

.names sum_6 1 sum 6 2 g6 cout 6 3
000 0

121

001
010
011
100
101
110
111 1

.names sum_6 1 sum 6 2 g6 sum_6_ 3
000 ©

001
010
011
100
101
110
111 1

P B O BB O O

1
1
0
1
0
0

.names cout 6 1 cout 6 2 cout 6 3 cout 6 4
000 O

001 O
010 O
011 1
100 0O
101 1
110 1
111 1

.names cout 6 1 cout 6 2 cout 6 3 sum 6 4
000 O

001 1
010 1
011 0
100 1
101 0
110 0
111 1

.names sum_6 3 sum 5 4 cout 4 4 sl13
000 O

001 O
010 O
011 1
100 O
101 1
110 1

122

111

.names sum_6 3 sum 5 4 cout 4 4 sl2

000
001
010
011
100
101
110
111

.names a’ b7 c7 cout 7 1

000
001
010
011
100
101
110
111

.names a’ b7 c¢7 sum 7 1

000
001
010
011
100
101
110
111

.names d7 e7 f£7 cout 7 2

000
001
010
011
100
101
110
111

.names d7 e7 f7 sum 7 2

000
001
010
011

1
0
1
1
0
1
0
0
1
0
0
0
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
0
1
0
1
1
1

0

1
1
0

123

100 1
101 0
110 0
111 1

.names sum_7 1 sum 7 2 g7 cout 7 3
000 O

001 0
010 0
011 1
100 0
101 1
110 1
111 1

.names sum_7 1 sum 7 2 g7 sum_7 3
000 O

001
010
011
100
101
110
111 1

1
1
0
1
0
0

.names cout 7 1 cout 7 2 cout 7 3 cout 1
000 0O

001
010
011
100
101
110
111 1

0
0
1
0
1
1

.names cout 7 1 cout 7 2 cout 7 3 cout 0
000 0

001 1
010 1
011 ©
100 1
101 0
110 0
111 1

.names sum_7 3 sum 6 4 cout 5 4 sl5
000 O

124

001
010
011
100
101
110
111

.names sum_7 3 sum 6 4 cout 5 4 sl4

000
001
010
011
100
101
110
111

.end

P B O BB O O

1

0

1
1
0
1
0
0
1

125

8 Full_Adders:
.model top

.inputs x1 x2 x3 x4 x5 x6 x7 x8 yl yv2 y3 y4 y5 y6 y7 y8 z1 22 23 z4 z5 z6 z7
z8

.outputs sl s2 s3 s4 s5 s6 s7 s8 cl c2 c3 c4 c5 c6 c7 c8
.names x1 yl zl1 cl

000 O

001 O
010 O
011 1
100 O
101 1
110 1
111 1

.names x2 y2 z2 c2
000 O

001
010
011
100
101
110
111 1

0
0
1
0
1
1

.names x3 y3 z3 c3
000 O

001 O
010 O
011 1
100 O
101 1
110 1
111 1

.names x4 y4 z4 c4
000 O

001 O
010 O
011 1
100 O
101 1
110 1

126

111 1

.names x5 y5 z5 cb5
000 O

001 O
010 O
011 1
100 O
101 1
110 1
111 1

.names x6 y6 z6 c6
000 O

001 O
010 O
011 1
100 0O
101 1
110 1
111 1

.names x7 y7 z7 c7
000 O

001 0O
010 O
011 1
100 0O
101 1
110 1
111 1

.names x8 y8 z8 c8
000 0O

001 0O
010 0O
011 1
100 O
101 1
110 1
111 1

.names x1 yl zl sl
000 O

001 1
010 1
011 O

127

100 1
101 0O
110 0O
111 1

.names x2 y2 z2 s2
000 O

001 1
010 1
011 0
100 1
101 O
110 0O
111 1

.names x3 y3 z3 s3
000 O

001
010
011
100
101
110
111 1

1
1
0
1
0
0

.names x4 y4 z4 s4
000 O

001
010
011
100
101
110
111 1

1
1
0
1
0
0

.names x5 y5 z5 sb5
000 0O

001 1
010 1
011 O
100 1
101 O
110 O
111 1

.names x6 y6 z6 s6
000 O

128

001
010
011
100
101
110
111 1

.names x7 y7 z7 s7
000 O

001
010
011
100
101
110
111 1

o O B O =

1
1
0
1
0
0

.names x8 y8 z8 s8
000 O

001 1
010 1
011 O
100 1
101 O
110 O
111 1

.end

Full Adder:

.model top

.inputs a b c
.outputs sum carry
.names a b ¢ carry
000 0O

001 O
010 O
011 1
100 O
101 1
110 1
111 1

.names a b ¢ sum
000 O

129

001 1

010 1

011 0

100 1

101 O

110 0

111 1

.end

Makefile:

This makefile is written for gcc running under SLinux 6.0 on x86 arch.
To compile T-VPack on other systems, you may have to change:

(1) CC to the name of your C compiler.

(2) OPT_FLAGS should be changed to whatever options turn on maximum
optimization in your compiler.

CC = gcc

#CC = purify gcc

#CC = g++

Overly strict flags line below. Lots of useless warnings, but can
let you look for redudant declarations.

To avoid redundant declarations here I use -D_STDC instead of

-D_USE FIXED PROTOTYPES, but that means some prototypes are missing.

#FLAGS = -Wall -Wpointer-arith -Wcast-qual -Wstrict-prototypes -O -D_ STDC
-ansi -pedantic -Wredundant-decls -Wmissing-prototypes -Wshadow -Wcast-align
-D_POSIX_SOURCE

#Flags to be passed to the compiler. First is for strict warnings,

#second for interactive debugging and third for optimization.
#-D_POSIX SOURCE stops extra declarations from being included in math.h

#and causing -Wshadow to complain about conflicts with yl in math.h

(Bessel function 1 of the second kind)

130

WARN FLAGS = -Wall -Wpointer-arith -Wcast-qual -Wstrict-prototypes -0 -
D USE FIXED PROTOTYPES -ansi -pedantic -Wmissing-prototypes -Wshadow -
Wcast-align -D_ POSIX SOURCE

DEBUG_FLAGS = -g -Wall
#OPT_FLAGS = -02

FLAGS = $ (DEBUG_FLAGS)
#FLAGS = $(OPT_FLAGS)
#FLAGS = $ (WARN FLAGS)

#Useful flags on HP machines.

#DEBUG_FLAGS = -Aa -g
#OPT_FLAGS = -Aa +03

EXE = t-vpack

OBJ

main.o util.o read blif.o graph.o simulation.o read route.o

SRC = main.c util.c read blif.c graph.c simulation.c read route.c

H = util.h vpack.h globals.h read blif.h graph.h simulation.h read route.h

LIB = -1m

Add purify in front of CC below to run purify on the code.

S(EXE) : $(OBJ)
$(CC) S (FLAGS) $(OBJ) -o $(EXE) S$(LIB)

main.o: main.c $(H)

$(CC) -c S$(FLAGS) main.c

read blif.o: read blif.c $(H)
$(CC) -c S (FLAGS) read blif.c

graph.o: graph.c $(H)
$(CC) -c S$(FLAGS) graph.c

131

simulation.o: simulation.c $(H)
S(CC) -c S$(FLAGS) simulation.c

util.o: util.c $(H)
$(CC) -c S$(FLAGS) util.c

read route.o: read route.c $(H)
$(CC) -c $(FLAGS) read route.c

132

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J. Rose, A. E. Gamal and A. S. Vincentell, "Architecture of Field-Programmable Gate
Arrays," Proceedings of the IEEE, vol. 81, no. 7, pp. 1013-1029, 1993.

J. Fowers, G. Brown, P. Cooke and G. Stitt, "A Performance and Energy Comparison of
FPGAs, GPUs, and Multicores for Sliding Window Applications,” in Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate Arrays, 2012.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips, "GPU
Computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899, 2008.

Technologies, Qualcomm, "Qualcomm Snapdragon 820 Processor,” [Online]. Available:

https://www.qualcomm.com/documents/snapdragon-820-processor-product-brief.

J. Rose, "Hard vs. Soft: The Central Question of Pre-Fabricated Silicon," in Proceedings of
the 34th International Symposium on Multiple-Valued Logic (ISMVL 04), 2004.

I. Kuon and J. Rose, "Measuring the Gap Between FPGAs and ASICs,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007.

A. Dehon, "Wordwidth, Instructions, Looping, and Virtualization The Role of Sharing in
Absolute Energy Minimization," in FPGA '14 Proceedings of the 2014 ACM/SIGDA
international symposium on Field-programmable gate arrays, 2014.

N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, P.-C. Huang, M.
Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson and M. B. Taylor, "The GreenDroid Mobile
Application Processor: An Architecture for Silicon's Dark Future," IEEE Micro, vol. 31, no.
2, pp. 86-95, 2011.

Altera Corporation, "Standard Cell ASIC to FPGA Design Methodology and Guidelines,"
Altera Corporation, 2009.

133

[10] A. Marquardt, V. Betz and J. Rose, "Using cluster-based logic blocks and timing-driven
packing to improve FPGA speed and density,"” in FPGA '99 Proceedings of the 1999
ACM/SIGDA seventh international symposium on Field programmable gate arrays, 1999.

[11] V. Betz and J. Rose, "Cluster-based logic blocks for FPGAs: area-efficiency vs. input sharing
and size," in IEEE 1997 Custom Integrated Circuits Conference, 1997.

[12] J. Rose, R. J. Francis, D. Lewis and P. Chow, "Architecture of Field Programmable Gate
Arrays: The Effect of Logic Block Complexity on Area Efficiency,” IEEE Journal of Soild
State Circuits, vol. 25, no. 5, pp. 1217-1225, 1990.

[13] D. Chen, J. Cong and P. Pan, "FPGA Design Automation: A Survey," Foundations and
Trends in Electronic Design Automation, vol. 1, no. 3, pp. 139-169, 2006.

[14] K. E. Murray, "Divide-and-Conquer Techniques for Large Scale FPGA Design," University
of Toronto, 2015.

[15] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson, S. Brown and T.
Czajkowski, "LegUp: high-level synthesis for FPGA-based processor/accelerator systems,"
in Proceedings of the 19th ACM/SIGDA international symposium on Field programmable
gate arrays, 2011.

[16] Altera Corporation, "Implementing FPGA Design with the OpenCL Standard," 2012.

[17] J. Lamoureux and S. J. Wilton, "On the Interaction Between Power-Aware FPGA CAD
Algorithms," in Proceedings of the 2003 IEEE/ACM international conference on Computer-
aided design, 2003.

[18] A. Marquardt, V. Betz and J. Rose, "Timing-Driven Placement for FPGAs," in Proceedings
of the 2000 ACM/SIGDA eighth international symposium on Field programmable gate
arrays, 2000.

[19] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, "Optimization by Simulated Annealing,"
Science, vol. 220, no. 4598, pp. 671-680, 13 May 1983.

134

[20] F. Rubin, "The Lee Path Connection Algorithm," IEEE Transactions on Computers, Vols.
c-23, no. 9, pp. 907-914, 1974.

[21] S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice, World
Scientific Publishing Co. Pte. Ltd., 1999.

[22] E. Bozorgzadeh, S. Ogrenci-Memik and M. Sarrafzadeh, "RPack: Routability-Driven
packing for cluster-based FPGAs," in Proceedings of the 2001 Asia and South Pacific Design
Automation Conference, 2001.

[23] A. Singh, G. PARTHASARATHY and M. MAREK-SADOWSKA, "Efficient Circuit
Clustering for Area and Power Reduction in FPGAs,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 7, no. 4, pp. 643-663, 2002.

[24] A. W. Burks, H. H. Goldstine and J. v. Neumann, "Preliminary Discussion of The Logical
Design of an Electronic Computing Instrument,” Princeton, 1946.

[25] M. D. Blasi, Computer Architecture, Addison Wesley, 1990.

[26] J. P. Hayes, Computer Architecture and Organization, McGraw-Hill, 1998.
[27] W. Wolf, Computers as Components, Morgan Kaufmann Publishers, 2008.
[28] I. Koren, Computer Arithmatic Algorithms, Universities Press, 2002.

[29] N. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and Systems Perspective,
Addison-Wesley, 2011.

[30] V. Betz and J. Rose, "VPR: A New Packing, Placement and Routing Tool for FPGA

Research," in International Workshop on Field Programmable Logic, London, UK, 1997.

[31] B. University of California, "Berkeley logic interchange format (BLIF),” Tool Distribution,
vol. 2, pp. 197-247, 1992,

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, The
MIT Press, 2009.

135

[33] A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques and
Tools, Pearson: Addison-Wesley, 2007.

[34] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs,
Kluwer Academic Publishers, 1999.

[35] F. F. Khan and A. Ye, "Measuring the Accuracy of Minimum Width Transistor Area in

Estimating FPGA Layout Area,” in IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, 2015.

[36] I. Kuon, R. Tessier and J. Rose, "FPGA Architecture: Survey and Challenges,” Foundations
and Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135-253, 2008.

136

Glossary

FPGA
LUT
GPU
DSP
CPU
ASIC
MCNC
IC
NRE
BRAM
DFF
BLE
LB
HDL
CAD
HLS
FA
BLIF
PE
VPR
SOC

Field Programmable Gate Array

Look up Table

Graphics Processing Unit

Digital Signal Processor

Central Processing Unit

Application Specific Integrated Circuits
Microelectronics Centre of North Carolina
Integrated Circuit

Non-Recurring Engineering

Block Random Access Memory

D-Flip Flop

Basic Logic Element

Logic Block

Hardware Description Language
Computer Aided Design

High Level Synthesis

Full Adder

Berkeley Logic Interchange Format
Processing Element

Versatile Place and Route

System on Chip

137

