Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2007
Module-based kinetostatic analysis and
optimization of a modular reconfigurable robot

Richard P Mohamed

Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Mechanical Engineering Commons

Recommended Citation

Mohamed, Richard P,, "Module-based kinetostatic analysis and optimization of a modular reconfigurable robot" (2007). Theses and
dissertations. Paper 179.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.


http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/179?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

MODULE-BASED KINETOSTATIC ANALYSIS
AND OPTIMIZATION OF A MODULAR
RECONFIGURABLE ROBOT

Richard P. Mohamed
Bachelor of Engineering
Ryerson University
Toronto, Ontario, Canada

A thesis
presented to Ryerson University
in partial fulfillment of the
requirements for the degree of
Master of Applied Science
in the Program of
Mechanical Engineering

Toronto, Ontario, Canada, 2007

© Richard Mohamed, 2007

PROPERTY OF
RYERSON UNIVERSITY LIBRARY



Author’s Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

ii



Borrower’s Page

Ryerson university requires the signatures of all persons using or photocopying this thesis.

Please sign below, and give address and date.

Name Signature Address Date

iii




Abstract

Kinetostatic Analysis and Module-Based Optimization

of a Modular Reconfigurable Robot

Richard P. Mohamed

A thesis for the degree of
Master of Applied Science, 2007

Department of Mechanical Engineering, Ryerson University

In this thesis, a newly developed kinetostatic model for modular reconfigurable
robots (MRRs) is presented. First, a kinematic computational method was created to
allow for simple connectivity between modules which included the possibilities of
angular offsets. Then, a flexibility analysis was performed to determine the static and
dynamic flexibility of link and joint modules and the regions of flexibility were plotted to
determine exactly which of the components can be considered flexible or rigid,
depending on their sizes. Afterwards, the kinetostatic model was developed and
compared to a finite element model and results give essentially the same tip deflections
between the two models. This kinetostatic model was then used to determine the
maximum allowable payload and maximum deflection position for a given MRR.
Additionally, a direct method was created to determine the cross section properties of all

modules in a given MRR for a given payload and maximum desirable tip deflection.
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1. Introduction

This thesis describes the kinetostatic modeling, analysis and design optimization
of a serial (open-chain) modular reconfigurable robot. This chapter first introduces basic
concepts of modular reconfigurable robots, and then describes the objectives and
methodology of the thesis. Afterwards, a review of existing modular reconfigurable robot
designs is presented. Then, a literature review is presented for the topics covered in this
thesis. The final section in this chapter provides a brief outline of each of the following

chapters presented in this thesis.

1.1 Background and Objectives

A modular reconfigurable robot (MRR) consists of several interconnected
modules that can be assembled into different configurations in order to perform a desired
task and meet the requirements for a specified range of motion. These modules can then
be reconfigured to perform other tasks and obtain different ranges of motion. On the
other hand, traditional non-reconfigurable robots are designed and configured for only
one type of motion, thus their capabilities are limited. A typical MRR consists of separate
revolute or prismatic joint modules connected to link modules [1-3]. Each joint module is
connected to a link module usually by means of connection interfaces located at the ends
of the link and the joint outer casing. Furthermore, typical MRRs have larger joint
module sizes in comparison to conventional industrial robots because the joint casing
must be reasonably sized to act as a connection interface to other joint or link modules.
To simplify the reconfigurability of a MRR and reduce costs, separate joint modules
should have similar shapes and contain similar components. It is also important to include
a common connection interface to reduce the costs of designing and manufacturing
separate adapter plates to connect modules with different interfaces. In addition, MRRs
are easier to maintain than non-reconfigurable robots because each module can be easily
removed and inspected, and can be repaired and replaced if necessary. The operation of
the MRR is then limited to the number of working modules available until the
malfunctioned module is replaced. If vital component failure occurs in a typical non-

reconfigurable robot, the entire robot may become non-functional until the defective



component is repaired and replaced. This is especially true if the defective component is

the base joint of a serial non-reconfigurable robot.

In manufacturing, MRRs can be used to perform a number of operations and the
end-effector can be interchangeable, as well as the reconfigurable joint-link modules, in
order to obtain desirable ranges of motion. The use of MRRs in multi-task manufacturing
can also reduce the costs of purchasing several machines to perform specialized
operations such as riveting and polishing. Multiple MRRs can be used and their
individual modules can be changed to suit the type of assembly required in a production
line. As with all robots, positional accuracy is a main concern with MRRs, and accuracy
can be lost in the joints due to friction, backlash, wear and contamination. One of the
main factors affecting the positional accuracy is the flexibility (ability to deform under an
applied load) of the links and joints. The flexibility of reconfigurable link and joint
modules depend mainly on four factors: the type of material used, module shape, size and

the orientation of the module.

When considering the flexibility of MRR modules, there is a lot of work to be
done. Quite often, the links and joints are considered as rigid bodies, and a simple
kinematic analysis can be used to determine the position of the end-effector. However,
when there is a large payload applied at the tip of the robot, large elastic deformations
may occur, and the rigid body assumption may no longer be valid. Instead, the modules
can be modeled as flexible bodies and the effects of deformations on the flexible bodies
undergoing low-speed motion (quasi-static motion) can be studied using kinetostatic
analysis. This involves creating the appropriate kinematic model and incorporating the
stiffness or compliance parameters in order to solve for the tip deflections and ultimately,

the flexible tip position in the robot’s workspace.

With all MRRs, the number of different configurations can increase exponentially
with an increase in the number of modules. Thus, the generation of the necessary
kinematic equations can become increasingly difficult. Also, different configurations and

positions can yield different magnitudes of the tip deformation. Therefore, when



performing a kinetostatic optimization for MRRs, whether optimizing the workspace
volume, the shape of the modules, or the stiffness, it is highly favorable to account for all
possible configurations. However, only feasible configurations are considered in order to
reduce the total number of configurations, hence reducing the number of required

computations.

This thesis focuses on the kinetostatic analysis and optimization of an open-chain
MRR with any possible number of link and joint modules. To address the issues

mentioned above, the objectives of this thesis are summarized as follows:

o Develop an easy to use method for module connectivity for a given number of
links and joints. Afterwards, create a kinematic model that incorporates the
connectivity method to determine the position, velocity and acceleration of an
MRR in any given configuration.

o Investigate the effects of flexibility for reconfigurable joint-link modules under
static loading and dynamic conditions. Define structural parameters for each
component, and determine the type of flexibility based on their respective sizes.

o Create a kinetostatic model to obtain the tip deflections for a given configuration
and orientation of an MRR. Then use post-processing to obtain additional
information such as the local deflections, local forces and stresses of each module.

o Use the kinetostatic model to determine the maximum workspace boundary and
volume. Develop criteria for obtaining the workspace boundary. Afterwards, for a
given configuration, determine the position and orientation where the MRR has
the highest tip deformation. Then, determine the maximum payload that the MRR
can take.

o Optimize the cross section shape of the link and joint modules by using a genetic
algorithm, or by explicitly solving for the unknown shape variables for a given

payload and allowable tip deformation.



1.2 Existing Modular Reconfigurable Robot Designs

Reconfigurable robots can be classified depending whether or not their modules
are identical. According to Castano and Will [4], a homogeneous robot has identical
modules and the position of the module defines its function, whereas a heterogeneous
robot has different modules and the function of the module defines the position of the
robot. Also, lattice-based MRRs are usually homogeneous and require the modules to
reconfigure in order to move, while non-lattice MRRs can reconfigure while moving [4].
Furthermore, reconfigurable robots can be classified according to the types of module
reconfiguration they can undergo, namely: manual-reconfiguring, self-reconfiguring and

self-assembly [5].

Manual-reconfiguring robots are perhaps the simplest type of MRRs since their
modules can only be reconfigured and interchanged with manual assistance from a person.
Common types of manual-reconfiguring MRRs include separate joint and link modules
connected to each other to form an open-chain robot [2]. The joint modules are usually
revolute or prismatic joints and the link modules are usually square beams with a constant
square cross section. Li et al. [6] developed a self-reconfigurable robot consisting of
interconnected link-type modules with pitch and yaw revolute joints at the ends of each
link. Hamlin and Sanderson [7] developed the Tetrobot, a parallel reconfigurable robot
that utilizes configurations that resemble tetrahedral truss structures consisting of passive
and active joints and connector pins, where the passive joints do not have any motors or
motion input in the robot, and the active joints contain motors used to actuate the robot.
They tested manipulator, platform and walking configurations using only those three
mechanical parts. The joints used were spherical joints which enabled the truss structures
to move with a high number of degrees of freedom (DOF). Chen and Yang [8,9] used
revolute joint modules connected to link modules to assemble their MRR in a SCARA
configuration, as well as a “branched-tree” configuration, where the open chain robot has

more than one end link, as shown in Fig. 1-1.
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(@) ‘ (b)
Figure 1-1: (a) SCARA configuration (from [8]), (b) Branched configuration (from [9])

Self-reconfiguring robots are initially assembled manually in order to perform a
desired task. These robots can then automatically change their configuration without
manual assistance to obtain a different shape and range of motion. Hafez et al. [10]
developed modules that consist of a 3-DOF parallel stage connected to a rigid plate that
attaches to another module forming a serial connection, as shown in Fig.1-2. Each
module was driven using electromagnetic actuators and the modules connect to each
other using magnetic plates. The use of parallel platforms as modules enables the robot to
perform self-reconfiguration because the robot is hyper-redundant. In other words, there
are a large number of unnecessary extra joints available to perform a desired range of
motion. When the range of motion requirements change, the joints that were previously

static may become active and the previous active joints may become static.

Figure 1-2: Self-reconfigurable robot (from Hafez et al. [10])



Li et al. [11] developed a self-reconfigurable robot consisting of interconnected
link-type modules with pitch and yaw revolute joints at the ends of the link to form a
mobile MRR with stair climbing abilities for search and rescue operations. The robot
consists of three tracked modules, and reconfiguration occurs by the movement of the

pitch and yaw revolute joints located at the ends of the link as shown in Fig. 1-3.

i
)

Figure 1-3: Mobile robot in the process of self-reconfiguration (from Li et. al [11])

Yim et al. [12] developed Polybot, which was the first self-reconfiguring MRR
that demonstrated two distinct topologies for locomotion. The first configuration was a
closed loop of interconnected modules, and the second configuration simply involved
disconnecting one of the modules to form a snake-link chain. Wu et al. [13] designed a
homogeneous lattice self-reconfigurable MRR which consists of cube-shaped modules
that contain self-locking mechanisms. Each module can move its neighboring module by
rotating one of its joints. To provide locomotion, one module acts as a carrier to its
neighboring module (or passenger) and both the carrier and passenger modules must

release their connections at some point to prevent locking before the next motion occurs.



Perhaps the most versatile MRRs are those that can perform self-assembly. These
types of MRRs do not require manual assistance to assemble or reconfigure since their
modules are able to attach and detach from one another automatically. For instance,
Unsal and Khosla [14] developed self-reconfiguring modules that consist of links with
three revolute joints forming a 3-DOF manipulator that can connect to one of six faces on
a separate passive cube shaped module. The active link modules can detach from one of
the faces of a cube module and move to a different cube module, or can attach itself to a

separate cube module and move the cube module attached at the other end, as shown in
Fig. 1-4.
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Figure 1-4: I-Cubes robot developed by Unsal and Khosla [14]

Another example of a self-assembling MRR is the Conro robot developed by
Castano and Will [4]. The Conro modules consist of three interconnected cubes with one
yaw joint in between the first two modules and one pitch joint in between the second and
third module, forming a snake-like structure. Connection interfaces exist at the

extremities of the two end cubes, and each untethered module is entirely self-sufficient



and does not require another module to operate. Furthermore, the connection interfaces of
each Conro module contain self-locking spring mechanisms which provide an entirely
mechanical locking process. Tomita et al. [15] developed a self-assembling robotic
system with modules that used connecting surfaces with permanent magnets that can
attract and repel other modules by controlling the magnetic forces between modules. In
addition, Suh et al. [16] designed a 6-DOF reconfigurable cube-shaped module consisting
of six prismatic joints that expand each of the module’s connecting faces outwards in
order to provide motion. Utilizing the prismatic DOFs along with magnetic faces for
connection, each module is able to attach and detach to another module by expanding or

contracting one of its faces to form (or separate) a reconfigurable lattice structure.

Figure 1-5: Telecube module, designed by Suh et al. [16]

In this thesis, the modules are manually reconfigured by the user and the joints
can be either homogeneous or heterogeneous, depending on the size requirements and
functionality of the MRR. There are separate revolute joint modules, link modules and
possible prismatic joint modules. The revolute joint modules can be configured to rotate
about one of six possible axes, and the link modules can connect to one of three faces of a
joint module. After the modules are assembled, the joint-link connections can form a

serial robot. The system description is discussed in more detail in the following chapter.



1.3 Overview of Relevant Research

To aid in the objectives of this thesis, considerable research was conducted in
three categories. The first topic researched was about the different kinematic modeling
methods available for MRRs; the second topic was about the flexibility of links and joints
in typical robots; and the third topic researched was on the kinetostatic modeling and

optimization of robots.

1.3.1 Modular Reconfigurable Robot Kinematics

The kinematic equations of an MRR can become quite complicated for an
increasing number of modules. Also, with an increasing number of modules, the
coordinates and connectivity of each module using a relative body-fixed coordinate
system can become increasingly difficult to define. Therefore, computational methods are
needed to solve the kinematic equations. Kelmar and Khosla [2] derived a method for the
automatic generation of Denavit-Hartenberg kinematic parameters to obtain the forward
kinematics for a serial MRR consisting of revolute joint and link modules. Forward
kinematics solves for the position and orientation of a desired point along the robot given
the joint motion angles. Inverse kinematics solves for the joint angles given the tip
position and orientation in global Cartesian coordinates. Their model assumed that the
rotation axis of the joint module was aligned with the link’s z-axis, and the forward
kinematics were solved by multiplying successive transformation matrices that contained
the Denavit-Hartenberg parameters. However, MRR joint modules should be able to
align with other available axes of the link as well. Therefore, Denavit-Hartenberg

kinematic parameters are not sufficient for MRRs.

In addition, Kelmar and Khosla [2] connected each module using body-fixed
relative coordinates as shown in Fig. 1-6. The orientation of each module was predefined
using a rotation matrix. However, the D-H-parameters could not solve for all
configurations of the MRR because of different reference frames, and they needed to
create a transformation for the D-H parameters to coincide with the module coordinate
frame. Also, with a high number of modules, it can be increasingly difficult to configure

and connect each module using relative body-fixed coordinates. Fei and Zhao [17]



created the forward kinematics for link and joint modules in a similar fashion, but used
recursive methods instead of D-H parameters. Again, the method of connectivity for each
module was based on using body-fixed relative coordinate systems. The orientations of
the modules were predefined using transformation matrices and group theory to classify

the types of modules.
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Figure 1-6: Module connectivity used by Kelmar and Khosla [2].

Chen and Yang [1] developed the recursive forward kinematics of prismatic and
revolute joint and link modules using the Product-of-Exponentials formula. This forward
kinematics model was configuration dependent and the Product-of-Exponentials
formulation was uniform in representing revolute and prismatic joints for an open-chain
robot. Also, this type of formulation allows for configurations when the joint axes are
parallel and require no further modifications to the kinematic equations, such as those
needed using D-H parameters. Also, they used a zero reference position method where
each module is configured in terms of the joint axes directions and locations with respect
to the zero reference position. Afterwards, Chen et al. [9,18] used the Product-of-
Exponentials formula, along with a Newton-Raphson iterative method to solve for the
inverse kinematics of serial and tree-branch configured MRRs, along with a three-leg
parallel MRR.

In this thesis, the kinematic equations will be developed for an open-chain MRR
with prismatic and revolute joints. The kinematic equations will also take the revolute
joint length into account, and connectivity methods are presented to consider angular

offsets and include relative coordinate module connectivity as well as two global
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connectivity methods. Also, instead of defining each module’s initial position and
orientation by defining body vectors and rotation angles first, a simple method was
developed to allow the modules to be configured according to coordinate system

direction, in other words, configured according to the x, y or z direction.

1.3.2 The Flexibility of Joints and Links

Previously, flexible joint and link models were represented as torsional springs
and cantilever beams, respectively. A number of researchers used models with a flexible
link and rigid joint or flexible joint and rigid link, or both flexible links and joints.
Anderson [19] studied the stability of a 2D manipulator with rigid links and flexible
revolute joints by performing a free vibration analysis. The equations of motion were
derived using Lagrange’s equation. Tang and Wang [20] assessed the effects of link
deflections and joint compliance on the overall positioning of manipulators by calculating
the link displacements from classical beam theory, and approximating the joint
compliance with a torsional spring. Martins et al. [21] created a dynamic model for a
manipulator with flexible links and rigid joints by representing the links as Euler-
Bernoulli beams. Howell and Midha [22] modeled flexible links by using a pseudo-rigid
body model. This model assumes that large-deflection links follow a near-circular path at
the tip and is represented by two rigid links connected by a non-linear torsional spring
joint. Another pseudo-rigid body model that represents a flexible link contains up to six

pseudo-joints to allow the required link deflections found in MRRs [23].

The finite element method has been used to model flexible links and joints and
has proven to be accurate. Flexible revolute joints were not the only joint types to be
considered for flexibility. Torby and Kimura [24] derived the equations of motion for a
flexible link manipulator with prismatic links by representing each link as two 3-D finite
elements and applying moving boundary conditions to represent the motion of a prismatic
joint. Fallahi et al [25] developed a finite element to represent the flexible links of a
crank-slider mechanism at high speeds; however, the joint flexibility was ignored. Z.C.
Lin and D.T. Lin [26] studied the dynamic deflection of a two-link planar manipulator

using a beam developed from Timoshenko beam theory, and again, the joint flexibility
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was ignored. Shigang et al. [27] developed a flexible rotor beam element coupled with a
flexible link element to account for joint flexibility. Their flexible joint element

accounted for torsion in the joints only.

Yang and Sadler [28] studied the effect of joint flexibility on the dynamic
performance of a completely flexible manipulator by using a joint-link finite element that
consisted of two Euler beams connected to a shaft that allowed only torsional bending
and neglected joint and axial deformation. They noted that the ratio of joint to link
stiffness determines the overall deflection of the system and that there exists ranges
where the either the torsional, bending, or combined torsion and bending responses are
dominant. Also, the coupling effect of a flexible link and flexible joint was investigated
and the link to joint stiffness and mass moment of inertia ratios play a role in determining
the overall system flexibility, and there exists three regions of system softening,

stiffening, and mixed flexibilities [29].

The above papers did not mention when the joint or link is flexible for different
link and joint configurations. Also, the effects of possible joint bending and axial
stretching were ignored. This thesis addresses the issue of joint and link flexibility by
developing flexible link and joint models and comparing these models to rigid body
models over a range of joint and link sizes and different joint configurations to determine
when exactly the joint or link can be considered flexible. Details of the flexibility

analysis are given in Chapter 4 of this thesis.

1.3.3 Kinetostatic Modeling and Optimization

The kinetostatic modeling for an MRR is necessary to predict any deflections if
the link or joint modules elastically deform under an applied load for given positions and
orientations of each module. Also, the kinetostatic modeling can be used to assess the
kinetostatic performance of a manipulator by testing different positions in a given
workspace. Kim and Ryu [30] developed a kinetostatic Jacobian matrix to account for
dimensional inconsistencies found in velocity Jacobians, and then used the condition

number of the modified Jacobian to determine the optimal position for a 6-DOF Stewart
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platform. Similar work was done by Chablat et al. [31] for a 3-DOF parallel kinematic
machine to find the largest dextrous workspace (workspace enclosed in a cube, cylinder
or any other known 3-D shape). Chablat and Angeles [32] determined an index for the
kinetostatic performance of a revolute-coupled planar manipulator by comparing the
velocity Jacobian to a given isotropic matrix. Also, Khan and Angeles [33] optimized the
D-H parameters of a serial robotic manipulator by directly minimizing the condition
number of a dimensionally homogeneous Jacobian. It is important to note that the
methods used in [30-33] involved rigid-body kinematics and did not involve the inclusion

of any forces, stiffness terms, or displacements.

To account for link elastic deformations while a robot is undergoing quasi-static
motion, Xi and Fenton [34] created a kinetostatic model which was based on the algebra
of rotations. The links were modeled as Euler beams and the computational method
involved using three Jacobians (one for rigid body motion, one for initial link deflections,
and one for link bending variation). The proposed algorithm used two loops, one for
solving the joint motions, and the other for solving link deflections. The algorithm used
to solve the kinetostatic equations were then reduced to a single-loop problem and
utilized the Newton-Raphson method [35]. Kim and Choi [36] assessed the kinetostatic
capability of parallel and serial mechanisms to find the extreme magnitudes of the forces
(or velocities) acting on the joints. They derived the forward and inverse kinetostatic
capability equations, and solved the eigen-problem which yielded the force bounds. The
forward analysis finds the forces (or velocities) at the tip of the robot, and the inverse
analysis finds the forces (or velocities) at the robot joints. However, they did not include

any elastic link or joint deformations in their analysis.

Kinetostatic methods that included the stiffness of the links and joints were
created also. Roy et al. [37] used the finite element method to design a two-link robotic
arm to have high static strength, high vibration frequencies and low weight. They tested a
few joint angles of the robot and obtained the natural frequencies, then compared them to
experimental results. Mroz and Notash [38] used finite element software to design a wire-

actuated robot, and tested various directions for the end-effector force to obtain the end-
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effector displacements. Xi et al. [39] used a compliance kinetostatic model instead of the
stiffness for a parallel kinematic machine. They then created two global compliance
indices to measure the compliance over the robot’s workspace. Afterwards, a genetic

algorithm was used to optimize the stiffness and the workspace of the same robot [40].

In this research, two kinetostatic models were presented to determine the tip
deformation with an applied payload at the tip for a given configuration, position and
orientation of a MRR. The first model uses the compliance and Jacobian for each module,
and this was compared to the second model, which used finite element method (FEM).
Post processing of both methods were also defined in order to solve for the local
displacements, forces, and stresses. Afterwards, the workspace of an MRR with a given
number of modules was determined for a number of configurations, along with the
maximum displacement position and configuration, and the maximum allowable payload.
After those design points were determined, an optimization was performed using a
genetic algorithm to determine the required thickness of the module casings. The design

problem was also solved using a direct method.

1.4 Outline of Thesis

Along with the introduction, this thesis is organized into eight chapters.

Chapter 2 contains a system description of the type of MRR used, and a description of the

revolute joint module design.

Chapter 3 presents the kinematic equations of the MRR and introduces a new
connectivity method for link and joint modules. In the initial configuration setup, the user
simply defines the directions of each module using one three frames of references. The
kinematic equations were then created to include revolute and prismatic joints as separate

modules, along with links.

Chapter 4 discusses the flexibility of joint and link modules. Three static models were

created to assess the flexibilities of each component. The first model is a hybrid FEM
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model where flexibilities in both the joint and link are accounted for. This model was
then compared to a rigid joint-flexible link model, and a rigid link-flexible joint model
using size ratios to determine the flexibility in each component. Afterwards, a dynamic
analysis was performed using the three flexibility models to determine the dynamic
flexibility of the link and joint. A set of graphs were then created for the static and

dynamic test cases to show the flexibility of the link or joint shaft over a range of sizes.

Chapter 5 discusses two kinetostatic models that can be used in performing a kinetostatic
analysis. The two models are developed to solve for the tip deformation for a given
configuration, position, orientation and applied tip load and compared to each other using

a test case.

Chapter 6 discusses the applications of the kinetostatic model. First, the maximum
deflection is determined using two methods. The first method involves searching the
workspace to obtain a workspace visualization for each configuration and storing the
maximum resultant tip deflection for an applied load. The second method involves
optimizing a performance index to obtain the maximum deflection position. Afterwards,
the maximum allowable payload can be determined at the maximum deflection position
using the bisection method. To avoid testing all possible configurations, an enumeration

scheme is presented to eliminate any infeasible configurations.

Chapter 7 involves using a genetic algorithm to optimize the thickness of the joint and
link module casings using different size constraints. The results were compared to a
direct method to solve for the thicknesses explicitly. The latter method involves using a

least-squares pseudoinverse to approximate the local module deflections.

Chapter 8 provides the conclusions and discusses the future work.
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2. System Description

This chapter describes the mechanical system description of the MRR. The type
of MRR used in this thesis consists of separate revolute joint, prismatic joint and link
modules. When the MRR is assembled, the system is driven by the joint modules. Each
revolute joint module can be manually reconfigured to provide rotation about one of three
possible axes (£Xx, £y, and +z). Successive revolute joint and link modules are connected
to each other by attaching one end of a link module to one of the flat faces of the previous
joint module. One of the connection interfaces of the subsequent joint module is then
connected to the free end of the previous link module, and so on, forming a serial robot.
Also, this type of MRR allows joint-joint serial connections instead of assembling joint-
link serial connections since the joints are longer than typical robot joints. The revolute

joint and link modules are discussed in further detail in the following sections.

2.1 Revolute Joint Module

The revolute joint module consists of two parts, the gear section and the motor
section. The main parts of the motor section consist of the motor, brake, encoder, motor
driver, and a square tube outer casing, as shown in Fig. 2.1. The brushless DC motor is
the component that drives the revolute joint and allows any subsequent modules to rotate.
This part was attached to the top of the motor casing. At the bottom end of the motor is a
brake that was attached to the lower shaft extrusion of the motor. Located below the
brake is an incremental encoder, which was used as a feedback device to measure the
angular position of the motor shaft. Also, a motor driver was attached to one of the flat
faces on the outside motor casing and was used to control the DC motor with feedback

from the motor and encoder.

The main parts in the gear section consist of the harmonic drive, bearing, shaft
extension and a cylindrical outer casing. The harmonic drive consists of a flexspline, a
circular spline and a wave generator. In Fig. 2.1, the flexspline was fixed to the bottom of
the gear casing, so the motor shaft drives the wave generator and output comes from the

circular spline. This harmonic drive configuration acts as a gear reducer to slow the speed
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of the motor shaft. The circular spline component of the harmonic drive was then
attached to a shaft extension, which was surrounded by a bearing that can take axial and
transverse forces. A top plate was then attached to the shaft extension which was used as
a connection interface to attach other modules. The top connector plate also protected the

bearing from possible interference from any large objects entering the gear casing.
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- Shaft Extension
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Bearing
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Motor Driver
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Figure 2-1: Major components of revolute joint module

Along with the top connector plate, the revolute joint module has two other
connection interfaces located on two sides of the motor casing as shown in Fig. 2-2. This
allows the joint to provide rotation output to the next module about one of three possible
axes (£x, =y, and £z). In other words, the axis of rotation of the joint can be either
parallel or perpendicular to the axis of rotation of the previous revolute joint module in
the open chain. Also, on the two connection interfaces located on the motor casing, there

are two identical input ports, which can be connected to the central controller and the
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motor drivers. Furthermore, there were two removable doors which covered the open
space on opposite ends of the square tube shaped motor casing. The doors allow for easy
inspection, maintenance, and possible removal of the motor components. Also, a DC fan
was installed on the front door, while the other door contained distributed holes for

sufficient cooling and ventilation of the motor components.

_ Top connection
interface

Rear door with
ventilation holes

.

Connection interfaces
on motor casing

Front door which
holds cooling fan

Figure 2-2: Revolute joint module showing the three connection interfaces

2.2 Link Module

The link modules are straight beams and have a hollow cross section area and the
revolute joint modules can be attached to either end of the link. At one end of the link
there exists an integrated connection interface, however, at the opposite end of the link, a
separate plate is required to act as a connection interface to connect other link or joint
modules. There is also a base link which can be connected to the ground or an experiment
table. A connection interface is attached to the top of the base link in order to allow
connectivity to other modules. In addition, the base link does not move and is assumed to

be a rigid body with no deformation. The link components are shown in Fig. 2-3.
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Figure 2-3: Base link and link module

2.3 MRR Assembly

To assemble the MRR, the base link is first attached to the ground, and the
corresponding revolute joint model is attached to the base using one of the connection
interfaces located on the sides of the motor casing, and is secured using bolts. Afterwards,
the tapered end of a corresponding link module can be secured to the top plate connection
interface of the joint module with four bolts as shown in Fig. 2-4. On the opposite end of
the link, a separate plate is first attached to the corresponding revolute joint module in the
open chain and is then attached to the end of the link, as shown in Fig. 2-5. Also, the
wires needed to supply power to and connect other revolute joint modules can pass
through the hollow link module. With the revolute joint modules, it is also possible to
connect two or more joint modules together without the need of a link in between since
the joints are longer than conventional joints. In addition, the size of different modules
can vary and can also be scaled relative to each other to allow for higher or lower module
weights and different payload capacities. Fig. 2-6 shows an assembled MRR in a spatial
motion configuration with three link and revolute joint modules. It is important to note
that this MRR design did not include prismatic joints at the time this thesis was written.
Furthermore, for this design, the links cannot be connected to the revolute joint to form
an axial joint-link configuration where the length of the link is aligned with the preceding

joint’s axis of rotation. However this type of configuration, along with prismatic joints,
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and solid rectangular links (instead of links with hollow cross sections) are accounted for

in the kinematic, flexibility and kinetostatic analyses in the following chapters.

Figure 2-4: Tapered end of link attaching to revolute joint module

Figure 2-5: Connector plate attaching to joint and then attaching to square end of link

20



Figure 2-6: Assembled MRR with three revolute joints and link modules
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3. MRR Kinematic Computational Method

This chapter describes the forward kinematics of an MRR with rigid bodies. The
kinematic analysis is concerned with the geometric motion of multibody systems, and not
the forces which cause that motion. The first step is the position analysis, where all the
positions and orientations of each body are determined for an initial and final position.
The next step is the velocity analysis, where the linear and angular velocities of each
body are determined. This can be done by differentiating the position equations with
respect to time. The last step is the acceleration analysis and is done by differentiating the
velocity equations with respect to time. However, since the kinetostatic analysis methods
presented in Chapter 5 assume that the MRR undergoes quasi-static motion, the velocity,

as well as the acceleration, can be neglected.

In the following sections, recursive methods (instead of the constraint equation
based method from Shabana [41]) are used to determine the position and orientation of a
MRR since it is easier to define module connectivity and computationally less expensive.
Also, the equations used in the following sections are left parameterized to allow for an
infinite number of joint and link module configurations. In addition, the lengths of the
joints are also taken into account since some MRRs have longer revolute joint module
sizes than typical robots. The longer joint sizes can create a noticeable difference in the
kinematics when the joint lengths are ignored and modeled as simple nodes that connect
links.

3.1 Rotation and Translation of a Single Body

This section first shows the equations for the position and orientation, often
referred to as the pose, of a single body in order to aid in the definition of the rotation
matrix, then the connectivity of MRR modules is explained and the forward position and
orientation equations are developed in the latter sections. For all robots, the main types of
motion are rotation and translation. The rotations are defined with respect to a coordinate
system, either global (space-fixed) or relative (body-fixed) coordinates. Thus, in robotics,

a rotation matrix is used to transform the coordinates of a body to a more convenient
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coordinate frame. An arbitrary body in 3-D space undergoing rotation and translation is

shown in Fig. 3-1.

Figure 3-1: Rotation and translation of a single body

The tip position vector of the body, P, shown in figure 3-1 is due to rotation and

translation of the body and is given by:
P=Rb'+h=h+Rb' (3.1)

where b’ is the local body vector, h is the translation vector and R is the rotation matrix
which transforms the body vector from the body-fixed frame to the desired global
coordinate reference frame. When h is equal to zero, there is no translation and the body

undergoes pure rotation. The position vector, P, can also be written as:
P=[x y z| =b (3.2)

where x, y and z are the Cartesian coordinates of the tip position of a single body after
movement and b is the body vector in terms of the desired global coordinate frame. To
transform a local body vector to global coordinates in terms of pitch, roll and yaw angles

the following equations can be used [42]:

1 0 0
R@#,)=|0 cosf, -sinb, (3.3)
0 sinf, cos6,
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[ cos 6’y 0 sin 9y
R(Qy) = 0 1 0 (3.4
—sin 6’y 0 cos 6’y

[cos@, -sin@, 0
R(@,)=|sinf, cosd, 0 (3.5)
0 0 1

where 0, ), and 6, are the rotation angles about the x, y and z axis, respectively.
Combining equations (3.3) to (3.5), the rotation matrix to convert a body in 3-D space

from local coordinates to global coordinates is given by:
R=R(6,)R(¢,)R(6,) (3.6)
Equation 3.6 can be written explicitly as:

cos @, cos O, —cos @, sind, sin@,
R=| sind, sind, cos@, +cosf, sinf, —sind,sin 6,sin6, +cosd, cosd, —siné, cosd,
—cos@,sind, cosd, +sind, sinf, cosd, sinf,sin 6, +sin6, cosd,  cosd, coso,

To convert global coordinates to local coordinates (body-fixed frame), the following

equation can be used:
R' =R"(4,)R” (6’y)RT (A (3.9)

Furthermore, the pitch, roll and yaw rotation angles can be obtained using the following

4 =
0, =cos™| —=
coso,

6, =cos™ () +()?) (3.9)

_ 7,
6, =cos™' | —1!
cosBy

where r33 is the third row, third column entry of the rotation matrix in equation (3.7).

equations:
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Similarly, 7,3 is the second row, third column entry of the rotation matrix in equation
(3.7). In the following sections, equation (3.6) is used to setup the initial configuration of

the modules, define angular offsets, and determine the final orientations of each module.

3.2 Initial Configuration Setup for Each Module

The first step in solving the kinematic equations for an MRR requires assembling
each module in its initial desired position and orientation called the initial configuration
setup. In this thesis, the concept of directional configurability is introduced. Here, instead
of entering the position and orientation of each module by manually defining the body
vectors for position and angles for orientation, each module can be initially setup simply
by entering the module length and the required direction of the length about a selected
reference frame. For example, in a kinematics computer program, if the length of the
module is to be aligned with the x-axis of a given reference Cartesian coordinate system,
the user simply enters the length of the module, then enters “x” for the direction of the
module. The length of the module will then be aligned with the x-axis of the reference
coordinate system in the same direction. Fig. 3-2 shows the directional configurability of

a link module with respect to a reference Cartesian coordinate system.
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Figure 3-2: Directional configurability for a single link
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The module’s x-direction initially corresponds to the length of the module, and
each of the six directional configurations are accomplished through the use of a
configuration rotation matrix with known angular rotations for each configuration. The
directional configurability is determined by using the rotation matrix found in equations

(3.6) or (3.7) to calculate the configuration rotation matrix.

R R(O

x,config

7

y.config

0, conig) (3.10)

config =

where Oy config, Oy,configs and 0; conpig are the known angles for each configuration. Each of
these angles for the six configurations shown in Fig. 3-2 are listed in the table below for a

space-fixed reference frame (using space-fixed rotations, equation (3.6)).

Table 3-1: Rotation input angles for each configuration

Configuration

Direction Ox,consig [deg] 0y,consig ldeg] 0., conpig [deg]
X 0 0 0
y 0 0 90
z 0 -90 0
-X 0 180 0
Sy 0 0 90
-Z 0 90 0

As shown in Fig. 3-2, the directional configurability method is ideal for modules
that have six directions of configurability, such as cube-shaped modules. However if the
modules do not have six orthogonal directions of configurability, or there exists angular
offsets such as a base module resting on an uneven table or uneven ground, or there are
connector plates that allow the modules to be at angular offsets, then these offset angles
must be accounted for in the initial configuration setup. Therefore it is necessary to
define three offset angles about the x, y and z axis of the selected reference coordinate
frame, and another rotation matrix must be used in the kinematic equations. This rotation

matrix is known as the initial configuration setup rotation matrix and is given as:
RICSU = R(ex,ojfset ’ ey,ojfset > ez,offset) (3 1 1)

where Oy opsers Oy oser, AN Oz oper are the offset angles about the X, y and z axis of the
reference coordinate system, respectively, and R is the rotation matrix found in equation
(3.6) or (3.7). Throughout this thesis, the revolute joint length is the aligned with its axis

of rotation for joint motion and can be taken as the length of the motor shaft, or the length
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of the joint casing. Also, the prismatic joint length is aligned with its direction of
extension (or retraction) and changes with motion. It is necessary to model the revolute
joints as separate bodies to take into account possible long joint lengths in the position
equations. To aid in the connectivity of the modules, a simple graphical representation for
module connectivity was created using MATLAB and is shown in Fig. 3-3. Here, the
user first inputs the base vector for the static base link, then inputs the configuration
direction (from Table 3-1) and any offset angles for use in equation (3.11) beginning with
the module connected to the base link, then continuing with the rest of the modules until

the end of the serial chain is complete.

MRR Position (Before and After Motion)

N T ==s== Base Vector
Pl | === Revolute Joint

7| o Link

=== Prismatic Joint

Link 1

Revolute
Joint 2

Revolute
Joint 1
Link 2 RN - L

i -.Final:Position
affer-Motion

Base Link Prismatic

Joint 1

(a

Figure 3-3: (a) CAD model of MRR, (b) Beam model of MRR in MATLAB

In Fig. 3-3 (b), each module is represented as a beam with two nodes and each
module connects to the other modules at the nodes. The base link is represented as a
black beam with dashed lines, revolute joint modules are represented as red beams,
prismatic joint modules are represented as green beams and link modules are represented
as blue beams. Also, the solid line model in Fig. 3-3 (b) represents the MRR at its initial
configuration and the dotted line model represents the MRR pose after joint motion. In
the following sections, three methods are described for MRR module connectivity and

the equations to determine the static and motion pose for each method is presented. While
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configuring each module, a plot like Fig. 3(b) can be created in MATLAB to show each

module’s local coordinate system using one of the three methods described below.

3.3 Position and Orientation using Relative Connectivity

The relative connectivity method assumes that each module has a fixed coordinate
system at its origin, where the length of each module always coincides with its local x-
direction. The next corresponding module is then connected to the previous module using
the directional configurability method with the reference frame located at the previous
module’s origin. In a kinematics program, it is necessary to visualize each module’s local
coordinate system in order to aid with the initial configuration setup, as shown in an

example in the figure below.

Initial Configuration Setup
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Figure 3-4: Schematic representation of initial configuration setup using relative connectivity
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The first step for module connectivity is to determine the number of link and joint
modules. The next step in setting up the initial configuration is to enter the base link body
vector in global coordinates, which is denoted as by throughout this thesis. The kinematic
equations in this thesis are for » number of bodies. As shown in Fig 3-4, the coordinate
system of the base link always coincides with the global coordinates. The next revolute
joint module (body vector b;) was then aligned in the “y” direction of the base link’s
reference frame. However, for whatever reasons, the first revolute joint was at an offset
angle of 10° about the z-axis of the base link, hence an offset angle of 6, oper = 10° was
entered, while all other offset angle inputs were zero for each module. Then, the next link

(13

(by) was entered in the “-y” direction of the previous joint module’s coordinates.
Afterwards, the next revolute joint (bs3) direction was entered as “-y” with reference to the
previous link’s coordinate frame. This pattern was continued until the complete MRR
was assembled and there were no more joint or link modules available for assembly. The
type of configuration setup shown in Fig. 3-4 can be classified as “y, -y, -y, y, -y” in
order to easily determine what configuration each module is in using relative connectivity.
Furthermore, the type of robot in Fig. 3-4 may be classified as “RLRLP”, where “R”

stands for revolute joint module, “L” is for link module and “P” stands for prismatic joint

module.
If there exists » modules, excluding the base link, where i is the i™ module in the
chain then each module’s static body vector in its local coordinate system is given by:
b,'=[Z 0 0] (3.12)

where L; is the length of each module along its local x-axis. For the static position (at the

initial configuration setup) a recursive method can be used [42]:

P =b,

P,=P +Rb,’

P, =P, +R,R;b,’ (3.13)
P =P +R,. b’

Also, the recursive orientation of each module is given by:
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Ry =RyRp ... R, =R R, (G.14)

Equations (3.13) and (3.14) hold true for the general motion of multiple bodies.
Now the next step is to include the offset angles and configuration matrix using equations
(3.10) and (3.11). Note that the pose calculation involves a static part and a motion part.
For the static part (when the robot does not move at the initial configuration setup) the

static rotation matrix for body i is defined as:

Rs,i =R RICSU,i (3.15)

config,i

The static recursive rotation matrix can then be defined as:
n
R,, =[IR., (3.16)
i=1

For the base link, the above equation is the unity matrix since the base vector is
defined in global coordinates. The above equation can determine the static orientation of
the tip and the rotation angles can be determined using equation (3.9). The tip position

can be determined using a recursive method as:
n
Ps,i+1 = Z ROi,sbs,i ' (317)
=0

where P, is the position vector for tip of the base link in global coordinates. The next
step is to determine the tip position of the MRR after it moves due to joint motion and the
only modules that produce active motion are the revolute and prismatic joints. The
revolute joints provide rotation with a joint input angle, and the prismatic joints provide
linear motion with a joint input displacement. A Boolean operator, #, is defined to
describe the type of motion each module undergoes. If the module is a prismatic joint, 7 =

1, otherwise # = 0. For a prismatic joint, the motion body vector can be defined as:
b =1y 0 0] (3.18)

where Gy is the local prismatic joint input for motion. Here, the prismatic joint is only

allowed to move along its local x-axis (in the direction of its length). Also, if the module
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is a link or a revolute joint, equation (3.18) becomes a zero-vector. The motion rotation

matrix for a revolute joint module with a known joint input angle is given by:

R,, =R((1-7,)9,

nput i

0, 0) (3.19)

where Gy is the local revolute joint input for motion and R is obtained from equation
(3.6) or (3.7) Here, the revolute joint module is only allowed to rotate about its local x-
axis. For each module, the local body vector that includes both the static and motion parts
is:

bi '= bs,i + bm,i ' (3.20)

and the rotation matrix for each body which includes both static and motion components
is defined by:

R, =R R, (3.21)

The recursive rotation matrix with motion included then becomes:

R,, = YR, (3.22)

i=1

The above equation will give the orientation of the MRR after joint motion occurs. The

tip position after motion can then be determined using:
P,1=2 Ry,b’ (3.23)
i=0

Equations (3.16), (3.17) and (3.21) to (3.23) are only valid if the relative
connectivity method is used. This method allows for directional configurability and the
use of angular offsets. Also, if the ground is uneven, then the offset angles only need to
be accounted for in the first module, while the offset angles are all zero for the successive
modules. On the other hand, if there is no way of visualizing the relative coordinates of
each body as shown in Fig 3-4, the connectivity of each module can become increasingly
difficult with an increasing number of modules, and can be prone to errors. Therefore, for

a large number of modules, it is easier to use a global reference frame for connectivity.
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3.4 Position and Orientation using ZRP Connectivity

The zero reference plane (ZRP) method for module connectivity is used to
configure each module with respect to a single global coordinate system. The initial
configuration setup for the system occurs at the zero reference plane and the joint motion
inputs are then entered afterwards. This method was first developed by Xi and Fenton
[34]; however, each module was initially configured by inputting the values for the
position and orientation manually and lacked directional configurability, which is much
easier to use. In this section, the ZRP equations were modified to include directional
configurability, as well as angular offsets. Therefore, by using the directional
configurability, each module is configured using a common Cartesian reference
coordinate plane and its six available directions with offsets occurring about the axes of
the ZRP. Fig. 3-5 shows the same MRR model example shown in Fig. 3-4 connected
using the modified ZRP method.
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Figure 3-5: Schematic representation of initial configuration setup using ZRP connectivity
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In Fig. 3-5, each module is configured and connected with respect to a common
set of global coordinates (ZRP), located at the bottom end of the base link. The user first
inputs the base link vector, and then enters the configuration direction for directional
module connectivity along with offset angles for each corresponding module. Using the
same example shown in Fig. 3-4, after the base link vector was entered, the next module
(b1) was a revolute joint in the “y” direction, with an offset angle of 10° about the z-axis
of the ZRP coordinate system (6,qpe = 10°). Afterwards, a link module (bz) was
configured in the “x” direction. However, unlike the relative connectivity method in the
previous section, an offset angle (6;4p5.: = 10°) was also required for this link module to
produce the same configuration shown in Fig. 3-4 since the connectivity reference frame
was fixed at the global coordinates. Otherwise, the link module would not be
perpendicular to the previous joint module. The next module entered (bs) was a revolute
joint in the “-y” direction, also with an offset angle of 10° about the global z-axis. Unlike
the relative connectivity method, the user must input offset angles for corresponding
modules once any preceding module is at an angular offset since a common global
reference frame is used to configure each module. The connectivity pattern continued
with the same offset angle applied to all modules until there were no link or joint modules
left. Using the ZRP method, the type of configuration setup shown in Fig. 3-5 can be
termed as “y, X, -y, X, -y”, and the robot can once again be classified as “RLRLP” since

the module types were not changed from the example shown in Fig. 3-4.

For the ZRP method, the static body vector for each module can be defined using
equation (3.12), and the static rotation matrix for body i can be determined using equation
(3.15) which includes the configuration and angular offset (ICSU) matrices. For the static
part, there is no need for a recursive rotation matrix since all the modules can be defined
using the same global coordinates. Thus, the static body vector in global coordinates for

each module is given by:

b. =R b, ' (3.24)

S,i 8,0 8,0

where by is the global static body vector of a single body with respect to the ZRP (not to

be confused with by,;’, which is in local coordinates). There is no need for a recursive
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static rotation matrix since the rotations here are with respect to the global reference

coordinates. The static tip position vector with respect to the origin then becomes:
n
P =D, (3.25)
i=0

To determine the pose after motion occurs, the motion body vector for prismatic
joint modules can be determined using equation (3.18) and the motion rotation matrix for
revolute joint modules is given by equation (3.19), where the required joint input is about
the local x-axis in both cases. However, using equation (3.19) for the ZRP method, the
revolute joint in motion is constrained to rotate about the global x-axis only, thus the
recursive rotation matrix given in equation (3.22) is not valid for the ZRP method. From
equation (3.21), the rotation matrix with static and motion components for the first

module is:

R =R R (3.26)

s,15vm,1
For the second module, equation (3.26) can be written as:

Rz = Rs,lRm,le,IZRm,2 (3.27)

where Ry is the static rotation matrix from module 2 to module 1. At the initial
configuration setup with no motion parts, the equation for static rotation of module 2

becomes:

s’

R,,=R R, (3.28)

Solving equation (3.28) for R; > and then substituting into equation (3.27), along with R;
from equation (3.26), gives the following recursive rotation matrix with motion parts

included:
Rz = Rle,le,sz,z (3.29)

For n number of modules, equation (3.29) the recursive rotation matrix after joint motion

can be written for module 7 as:

Ry, =Ry R, R, (3.30)

0i,m s,i-1
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In equation (3.30), Ro.1),m is the recursive rotation matrix including joint motion

for the previous module. Also, the static parts Rf,,._l and R;; are rotations with respect to

the ZRP, and the motion parts Ro;m, Rog1m and R,,; are due to local joint motion.
Equation (3.30) can be used to determine the tip orientation, or the orientation at module
i. Afterwards, the tip position with motion included can be determined using equation
(3.23), with the local body vector (motion included) obtained from equation (3.20), with
b, ; obtained from equation (3.24).

The advantage of the ZRP method is that each module can be configured and
connected with respect to a common reference plane and the MRR does not need any
visualization of the coordinate systems of each module. However, the disadvantage is that
once there is one offset angle in the open chain, this offset angle needs to be included for
each successive module if the modules are to remain orthogonal to each other. Also, if
there are more than one modules with offset angles (for instance, the ground is uneven
and another module has a connector plate that is at an angle) then it becomes difficult to
keep the other modules orthogonal to the offset modules because all offset angles must be
accounted for. In other words, each module after the offset modules must include the

addition of any previous offset angles in the initial configuration setup.

3.5 Position and Orientation using Quasi-Global Connectivity

The quasi-global connectivity method assumes that the reference plane of global
coordinates shifts at each module according to each angular offset that is defined. Thus, if
an angular offset is defined for one module, the reference plane coordinate system
automatically shifts according to that angular offset for each consecutive module. Also,
when using directional configurability, each module is configured using the global
reference coordinate system until an angular offset occurs at a module. Once an angular
offset occurs in a chain, each successive module will automatically take that offset into
account and no more additional offset angles need to be defined for those modules. Fig.
3-6 shows the same MRR assembly shown in Fig. 3-4 and 3-5, but with quasi-global
connectivity used. Here, the reference coordinate system shifts at the first revolute joint

module since there is an angular offset, and every other module’s reference coordinate
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Figure 3-6: Schematic representation of initial configuration setup using quasi-global connectivity

In Fig. 3-6, the first revolute joint module (b;) was setup with respect to the

reference global coordinate system at the bottom end of the base vector in the “y”

direction of configurability, with an offset angle about the z-axis of 10°. Here, this

module has a shifted global coordinate system due to its offset angle. The next link

module (by) was then setup in the “x” direction, with no need to input any offset angles

due to the previous module’s angular offset. Then, the next revolute joint module (b3)

was configured in the “-y” direction, again without the need to input any offset angles

due to the previous shift in the reference global coordinate system. The same connectivity

pattern continued for the next link (bs) and prismatic joint modules (bs) without the need
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to further define the offset due to the angular offset found for the first revolute joint
module. Hence, all modules were orthogonal to each other when necessary. The robot

configuration in Fig. 3-6 can then be classified as “y, x, -y, X, -y”, and the type of robot is
“RLRLP”.

In the quasi-global connectivity method, each module’s static body vector is first

rotated with the configuration matrix from equation (3.10) and can be written as:

b,,'=Rey[L, 0 O] (3.31)

$,i

Therefore, the static rotation matrix for each body is only due to the offset angles, given
by:

R, = Ricsu, (3.32)

s,i,,ody

In the above equation, the subscript “body” means that this rotation matrix is used to
rotate the body vector given in equation (3.31) and does not define the actual static
orientation. Thus, the static recursive rotation matrix for each body can then be defined as

the following:

n

Ro:‘,s,,m,y = H RICSU,i (3.33)

i=1

and the static tip position can be determined using a recursive method as:

n

P..=> Ry, b (3.34)

i=0

Equation (3.34) gives the same result as the relative and ZRP connectivity
methods for the static tip position. However, the actual orientation of each module is
quite different from equation (3.33) when compared to the relative and ZRP connectivity
methods because this method first rotates the static body vector with the configuration
matrix included, as shown in equation (3.31). That is the reason why there is a “body”
subscript in equation (3.33). Thus, if there are no offset angles for the modules, the
orientation that can be calculated from equation (3.33) will simply be a zero vector since

each module was set up using body vectors first. In order to obtain the true static
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orientation of each module with respect to the global coordinates the following equation
holds:

ROi,s,,c,,,,,, = H Rconﬁg,iRICSU,i (3 35)
i=1

For the motion part, the prismatic joint module extends along its local length;
hence the configuration matrix was used to define the direction of extension for the

motion body vector as follows:

bm,i = Rconﬁg,i [niginput,i 0 O:IT (336)

where #; is 1 for prismatic joints, O for link and revolute joint modules, and Ginpus,; is the
local prismatic joint input for motion. The direction of the rotation angle for revolute
joint modules must also be defined. First, the revolute joint angle of motion needs to be
defined about an axis that is parallel to its length and in the same direction. This was done
by defining a vector of possible revolute joint input angles to transform the single joint

input to one of three axes (positive and negative directions included) as follows:

(1 // )einput,i é’x,i
input i = Rconﬁg,i O = gy,i (33 7)
O gz,i

A

where Ajypui is defined as the vector of joint motion rotations, and Gy, is the local
revolute joint input for motion. Also, &, Cyi» and (g are the transformed joint motion
angles to allow the revolute joint shaft to rotate at an axis parallel to its length in the same

direction. Then the motion rotation matrix for the revolute joint becomes:
Rm’ibody = R(C:x’iﬂ é’y,,'a ;z,i) (3.38)

Afterwards, the local body vector that includes both static and motion parts can be
calculated using equation (3.20) (with by, obtained from equation (3.31) and by, ; obtained
from equation (3.36)) and the rotation matrix with motion parts included for each body

can be defined as:

Ri = RICSU,iR (3.39)

m,ib,,dy
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The recursive rotation matrix with motion parts included then becomes.
n
Ry, = 2R, (3.40)
i=1

Equation (3.40) does not give the actual orientation of each body, since each module’s
body vector was rotated at the initial configuration using the configuration matrix in
equation (3.31). However, in the quasi-global method, the tip position vector calculation
is based on body vectors and since each body vector was initially rotated, the tip position

calculation (with motion) can use the above equation as:

n

P,.u=> Ry, b (3.41)

i=0

To correct the orientation of each module after motion and include the

configuration matrix, a static rotation matrix correction can be defined as:

R_. R (3.42)

Sslactual conﬁg i s ’ibady

Equation (3.42) gives the quasi-global method the same results as equation (3.21) for the
relative connectivity method and the ZRP method. Since the motion rotation matrix in
equation (3.39) involved initially transforming the revolute joint inputs by multiplying by
the configuration matrix, the configuration matrix needs to be removed. By doing so, the

same motion rotation matrix for each body in equation (3.19) can be obtained.

=R! =R

m =iaclual conﬁg K m ribody conﬁg 7i

(3.43)

Using equations (3.42) and (3.43), the rotation matrix for the first module with static and
motion parts that gives the actual orientation is given by equation (3.26) and can be

written as:

Sflaclual >*actual

R, =R Rt = (Rconﬁg,le,lbady )(RZonﬁg,lRm,lbady Rconﬁg,l ) (3.44)
For the second module, equation (3.29) can be written as:

- T
RZ_Rlel 5,2 m,2

»‘actual »“actual >“actual

(3.45)

Substituting equations (3.42) and (3.43) into equation (3.45) gives:
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R, =R, (Rconﬁg,le,],,ody )T (Rconﬁg,ZRs,Zbody )(RZonﬁg,ZRm,Z,mdy Rconﬂg,Z) (3.46)

Thus, the recursive rotation matrix after joint motion that gives the actual orientation can
be written for module i as:

RT R R

T
ROi sMactual = RO(i—-] )’maclual (Rconﬁg’i_lesi_lboay ) ( Rconﬁg,i Rsyibody ) ( conﬁg,t msibody conjig,i )

Equation (3.47) gives the same results as equation (3.22) when using the relative

connectivity method, and equation (3.30) when using the ZRP method.

When there are no module angular offsets, the quasi-global method of
connectivity has all of the same connectivity inputs as the ZRP method. However, when
there are multiple offsets, the ZRP method becomes difficult since each offset has to be
accounted for in each of the modules, whereas the quasi-global method allows for
multiple offsets and there is no need to include any previous module offsets during the
initial configuration setup. In other words, once offsets are entered for a module, the
global coordinate system automatically shifts according to all of the previous angular
offsets, so the next model can be configured using this shifted coordinate system. The
position and orientation of the robot can then be determined for the original global

coordinate reference plane.

40




4. Flexibility Analysis of MRR Joint-link Modules

In this chapter, an effective method of determining the tip deformation and
vibration properties of a joint-link module for MRRs is presented based on flexibility
analysis. A typical MRR module consists of a motor, joint and link, and a FEM-based
joint-link model is applied to consider the joint and link flexibility. Since the joint
modules found in most MRRs are large, instead of modeling the joint as a torsional
spring, the joint is modeled as a finite element beam where the length of the joint shaft is
taken into account to justify possible joint bending and axial deformation. Furthermore,
the flexibility of the finite element beam depends on the beam length and cross section
properties; hence two ratios are defined. The first ratio is the length of the link to the
length of the joint shaft, and the second ratio is area moment of inertia of the link to that
of the joint. By utilizing these two ratios, each joint-link module can be categorized into
three cases: a rigid joint-flexible link model, a rigid link-flexible joint model, or a hybrid
model of flexible joint-link. A static analysis was conducted using each of the three
models by varying joint-to-link length and inertia ratios to determine the tip deflection
and then identify exactly which model is appropriate to use for a given size and
configuration. Afterwards, a free vibration analysis was performed to assess the

flexibility of the joint-link module under dynamic conditions for the same purpose.

4.1 Static Flexibility Analysis

To determine the flexibility of a single joint-link module under an applied static
load, three models were used to determine the tip deflection for each possible
configuration, and then compared. The hybrid FEM model consists of two 3D finite
element beams connected to eéch other where one beam represents the joint shaft (length
of exposed motor shaft after the bearing) and the other beam represents the link. This
model assumes complete flexibility of both the joint and link components, namely, with
bending in two planes as well as axial and torsional deformation along the length of the
beam element. Therefore, the hybrid FEM model takes into account all possible modes of
joint deformation, including bending which is found in MRRs with longer joint shafts.

The flexible link model is a simple cantilever beam and uses the same stiffness found in
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the hybrid FEM model with boundary conditions applied to make the joint totally rigid
and allow for flexibility in the link alone. Conversely, the flexible joint model assumes

the link is a straight rigid beam and allows only joint flexibility.

4.1.1 Static Hybrid FEM Model

The method used in this model is the displacement-based finite element method
proposed by Bathe [43]. A single MRR joint-link module is idealized as two
interconnected 3D finite element beams, and the system is solved by formulating the
force balance equations corresponding to the unknown displacements at the ends of each
element. As shown in Fig. 4-1, it can be proven that the use of a single finite element
over the beam length leads to the same tip deformation using beam theory. Hence, a

single finite element beam is used in this thesis to represent a single module.
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Figure 4-1: Comparison of Beam Theory with single FEM beam

The potential energy due to strain along a single beam element is given by:
L 2 2 2 2 2 2
PE=* EA(@j vEL| 22 v mL |22 v6a[ 22 4.1)
25 ox ox 7\ ox ox
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Where L, E, A4, L, I,, G and J are the length, modulus of elasticity, cross section area, area
moment of inertia about the z-, and y-axis, shear modulus and torsion constant of the
beam element, respectively. The terms u, v, w and € in equation (4.1) refer to the axial
displacement, bending displacements about the y- and z-axis, and torsional deformation
about the x-axis, respectively. Equation (4.1) assumes that the beam element has a
constant uniform cross section and the material has linear-elastic properties. Discretizing

equation (4.1) using shape functions with respect to the elastic displacements will lead to:

e [(u.J'[B] BV, @2

l\)l'—‘

where {U,} is the local vector of displacements for a beam element with two nodes, i and

j, as shown in Fig. 4-2 and is written as:
{Ue} = {ui Vi W 9, ¢i v, u; v, w; Qj ¢j Wj} (4'3)

where 6’ is the local torsional displacement angle about the x-axis, ¢’ and y’ are the

bending angles about the y-axis and z-axis, respectively.
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Figure 4-2: Local displacements and forces at each node in a finite element beam

From equation (4.2), the local stiffness matrix for a single element can be

expressed as:
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[k.]= [[B] [D][B] s »,

The matrix [D] in equation (4.4) relates the cross section and material properties

pertaining to the type of deformation and is given by:

AE 0 0 0

o< ¢ - 0 0
0 0 EI, 0
0 0 0 GJ

4.5)

The matrix [B] in equation (4.4) contains the first derivatives of the shape functions with
respect to x for the axial and torsional displacements, along with the second derivatives

of the bending shape functions with respect to x and is given by:

0 0 0 0 0 0 0 0 0 0
A
= 0 -

[B]-

dx? dx?

AN,
dx

0 d*N, 0 d*Ns 0 0 0 d*Ng
0

0 0 Zu 9 0

0
d*N, 0 d*Ng
11
dx

o o o &

In equation (4.6), N; and N; are shape functions for the axial displacements. A
linear displacement function is assumed since this type of deformation acts along a single
axis with only two DOFs (one axial displacement at each of the two nodes). The axial

displacement shape functions are given by:

IN]L.. =[¥M> N]=[1-%, %] 4.7)

=

The shape functions due to bending in the x-y plane assume a cubic displacement
function since there are four DOFs (one transverse and one rotational displacement at
each node) associated with this type of bending. The shape functions for bending about

the z-axis are obtained from a Hermitian cubic polynomial and are given by:
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[N]bend,zz[N3’ N,, N, Ns]

2 3 2 3 (48)
=[1—3(%)2+2(%)3, x-22 42 3(x) -2(z), —xT+z—2]

Similarly, the shape functions for bending in the x-z plane (about the y-axis) can be

determined using a cubic displacement function and are given by:
[N]bend,z =[N, Ny N, Nyo]

2 3 2 3 (49)
=13 +2()'s —w+28-5 300 -2() T

For torsional deformation along the length of the beam element, a linear torsion angle

variation is assumed, hence the shape functions can be determined as:
[N]torsion = [Nll’ N12]=|:1_%’ %:I (410)

Upon substitution of equations (4.7) to (4.10) into equation (4.6), then substituting
equations (4.5) and (4.6) into equation (4.4), the stiffness matrix for a single 3D beam
element is created with two nodes and six displacement DOFs at each node; therefore,

equation (4.4) is a 12 x 12 matrix and is shown explicitly in Appendix A.

For a single MRR joint-link module with a flexible joint and flexible link, the
joint and link components are represented by two interconnected finite element beams in
the hybrid FEM model. Fig. 4-2 shows the hybrid FEM model with the local coordinate
systems for the link and the joint for three different joint configurations. Assuming the
joint has a uniform circular cross section with flat ends and the link has a uniform
rectangular cross section, one flat end of the joint can be reconfigured about one of the
five flat faces at the end of the link to provide the necessary shaft rotation about the x-,
y-, or z-axis of the link’s local coordinate origin in order to actuate the entire link, as

shown in Fig. 4-2.

The reconfigurability of the joint relative to the link is accomplished using a
transformation matrix to align the joint shaft rotation axis (which is the joint’s local x-
axis) with the local x-, y-, or z-axis of the link. So for each joint-link module, a body-

fixed coordinate system is used with the frame of reference originating at the link’s local
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coordinate system origin. In this chapter, the rotation matrix used for body-fixed rotations

is given by equation (3.8) from the previous chapter.

Ve joint
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Link element
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Fixed end Joint element
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Figure 4-3: MRR Joint-link module in three different body-fixed joint configurations

Each joint configuration can be configured about the link using the directional
configurability method presented in Chapter 3.2. Note that the local input torque for the
joint elemént is positive counter clockwise about its local x-axis. For the configurations
shown in Fig 4-3(b) and (c), the local positive input torque from the joint will become
negative in the global coordinate system since the local x-axis of the joint is in the
opposite direction of the link’s positive y- and z-axes, respectively. The transformation
matrix used to orient the displacement DOFs for the joint configuration relative to the
link consists of four identical body-fixed rotation matrices from the configuration matrix

(equation (3.10)) and is given by:

[Tz = 402 ([ Rz ), (4.11)

Assuming that the link’s local coordinates coincide with the system’s global coordinates,

the joint stiffness can be transformed relative to the link stiffness using:

[k], =[T] [k.],[T] 4.12)
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Where [k.]; is the joint local stiffness and can be calculated using equation (4.4). The link
local stiffness is also calculated using equation (4.4) but no transformation to global

coordinates is necessary.

After the joint is transformed to represent one of the five joint configurations
relative to the link, the hybrid FEM joint-link element can be assembled using the direct
stiffness method given by Logan [44]. Here, the system global stiffness, [K]g, is created
by adding terms in the transformed joint and link stiffness matrices ([k]; and [k])
associated with the same nodal DOFs, and directly placing these added terms into the
corresponding DOF locations in [K]g. By doing so, the assembled hybrid FEM joint-link

stiffness is an 18 x 18 matrix with no boundary conditions applied.

For a single beam element with nodes i and j as shown in Fig. 4-2, the vector of

local element forces with two nodes, i and j, is:

T
{fe} = {f;,x ﬂ,y f;‘,z mi,x mi,y mi,z f‘j,x »fj,y sf:/',z mj,x mj,y mj,z}

When the hybrid FEM model is assembled for a given joint configuration, a tip load, P, at
the end of the link, i.e. node 3, is applied in the negative y-direction (in the direction of
gravity) to represent the weight of an end-effector, as shown in Fig. 4-3. Also, for each
configuration, the weights of the joint and link elements are lumped at the end nodes of
each element and replaced by equivalent nodal forces and moments, as shown in Fig. 4-4

where the joint is configured to align with the -z axis.
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Figure 4-4: Lumped weights at nodes of joint and link for the configuration in Fig. 3(c)
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Since the joint element configuration is oriented with respect to the link, the
vector of local forces in equation (4.13) for the joint must be transformed to the link,
keeping in mind that the forces due to the weight of the joint at the end nodes of the joint
element must always act in the negative y-direction. The local joint input torques can be
transformed to global coordinates and added to the forces due to the weight of the joint in

the direction of gravity using:
{8}, =TT {Leoome}, + B, (4.14)

Here, the subscript j denotes joint. The local force vector for the link requires no
transformation since its local coordinate system coincides with the global coordinates.
Afterwards, the global force vector {F}¢ is assembled by adding the forces and moments
from each element with associated global DOFs at each node. When the global force
vector is assembled, the boundary conditions can then be applied to the entire joint-link
model. As shown in Fig. 4-3, one end of the joint is fixed at node 1. Therefore, in the

global displacement vector, {U}g:
u=v=w=0=¢=y,=0 (4.15)

After the boundary conditions are applied, the system of equations can be solved for the

unknown global displacements using:

{u}, =[K]; {F}, (4.16)

4.1.2 Static Flexible Link Model

The flexible link model assumes that the link is flexible and the joint is totally
rigid. Thus, the same global system of equations found in equation (4.16) can be used
with the exception that the boundary conditions are fixed at joint nodes 1 and 2,
consequently immobilizing the joint entirely to create a simple cantilever beam model.
Hence, the displacements associated with nodes 1 and 2 in the global displacement vector

are set to zero.

w=v=wm=0=¢=y=u=v,=w=0,=¢=y,=0 (4.17)
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With the boundary conditions applied to make the joint totally rigid, the unknown tip
displacements at the end of the flexible link then can be solved using equation (4.16).

4.1.3 Static Flexible Joint Model

The static flexible joint model assumes that only the joint is flexible and the link
is relatively rigid, so only the joint stiffness in equation (4.12) is considered. When the
joint is configured about the + x- or £ y-axis with the tip load applied in the negative y-
direction, as shown in Fig 4-3(a) and (b), the joint experiences axial stretching and
bending with minimal torsion; while the link remains rigid as shown in Fig. 4-5(a) and
(b). In these two configurations, the applied tip load, P, and the weight of the link at its

centroid are lumped to node 2 of the joint element as a single force and couple.

y Rigid Link lp
\
A L/ 1%
 I— A = ; X
a Y T = _T ‘:.ﬁ>~ I I
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Figure 4-5: Flexible joint models in three different joint configurations

Therefore, when the local joint forces are transformed to global coordinates using
equation (4.14), the force and couple replacement due to the loads acting on the link are
added to the force in the y-direction and the moment about the z-axis at node 2 of the

joint element to form the system global force matrix.
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By = foy +(P+)
WILI) (4.18)

M,,=m,, +(PL, +

Where the subscript / denotes link and the terms in the brackets are the force and moment
replacements due to the link loads.

If the link is in a position where the joint will experience no torsional deformation
along its local x-axis, and if bending occurs only in the global x-y plane, the flexible joint
model can be simplified to a 2D problem. Therefore, with the joint fixed at node 1, the

boundary conditions for the joint stiffness in equation (4.12) become:
u=v=w=0=¢=y,=w,=0,=¢,=0 (4.19)

The unknown displacements at the end of the joint at node 2 are then solved using
equation (4.16). Afterwards, when the global vertical displacement and bending angle
about the z-axis are determined for the joint, the vertical tip deflection of the link can be

calculated using geometry for the configurations shown in Fig. 4-5(a) and (b):
v, =V, + L, siny, (4.20)

When the joint shaft is aligned about the + z-axis of the link, as shown in Fig. 4-
3(c), it undergoes high torsional deformation. In this configuration, the joint can be
modeled as a torsional spring with negligible bending and axial deformation as shown in
Fig. 4-5(c). Thus, all of the displacement DOFs become zero with the exception of .

Equation (4.16) then reduces to a single equation, which resembles a general torque-twist

L\, (L WL,
W3—(GVJ‘]T—(G'J'](PL,+ : ) @21

J7J JoJ

equation:

where T is the external torque acting on the joint shaft. Assuming that the link is totally

rigid, the tip deflection can once again be calculated from geometry:

v, =L, siny, (4.22)
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4.1.4 Static Flexibility Simulation and Results

In a single MRR joint-link module, to determine if the joint or link is either
flexible or rigid under static loading conditions, a flexibility analysis is performed by
varying joint and link sizes for each configuration shown in Fig. 3. Yang and Sadler [28]
noted that the ratio of joint to link stiffness determines the overall deflection of the
system and that there exists ranges where either the joint torsion, link bending, or
combined torsion and bending responses are dominant. Also, Xi and Fenton [29] showed
that the link to joint stiffness and mass moment of inertia ratios play a role in determining
the overall system flexibility, and there exists three regions of system softening, stiffening,

and mixed flexibilities.

In the hybrid FEM model, the stiffness of the beam element described in equation
(4.4) depends on the length (L), material properties (E and G) and cross section properties
(4, I, I, and J) of the component. Rather than test the flexibility of each component by
varying the material properties, or the stiffness ratio as a whole, the length and cross
section properties were varied to show the effect of link and joint sizing on the flexibility
of MRR joint-link modules. Thus, the length ratio (Ry) is defined as the length of the link
to the length of the joint in a single joint-link module:

R ==L (4.23)

where L; and L; are the lengths of the link and joint shaft, respectively. The length of the
revolute joint element can be interpreted as the joint casing since it carries the motor, gear
drive, and bearing, or the length of the joint element can be taken as the length of the
joint shaft that is exposed after the bearing if the bearing is assumed to take the majority
of the load. In this thesis, the latter assumption is made. Define the inertia ratio (R;) as the

area moment of inertia of the link to that of the joint:

I

R ==L 424
77 (4.24)
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where J; and J; are the area moment of inertias of the link and joint, respectively. Note that
if the link has a uniform square cross section, f,; = I;; = I;, and if the joint has a solid

uniform circular cross section, 1,; = I,; = J; = I,.

For the static flexibility analysis, R; and R; were varied to represent joint and link
sizes ranging from a smaller desktop-sized robot to a larger industrial-sized MRR. This
was done in order to determine the flexibility of a single joint-link module and the tip
deflection in the positive y-direction for different link and joint sizes for each of the
configurations, as shown in Fig. 3. The link tested was made of aluminum and the joint
shaft was alloy steel. The material properties of the link and joint components are shown

in table 4-1 below.

Table 4-1: Material properties of link and joint shaft

. E G p o,
Component Material [GPa] [GPa] [ke/m’] [MPa]
Link Al-6061 69 26 2700 55.1485
Joint Alloy Steel 210 79 7700 620

The link was assumed to have a hollow square cross section and the joint shaft
was assumed to have a solid circular cross section. A tip load at the end of the link (at
node 3) of P = 100 N was applied in the negative y-direction to simulate the load of a
heavy end-effector attached to the free end of the link. Furthermore, the length of the
joint shaft was fixed to 0.02 m, and the area moment of inertia of the link was fixed to
7.6945x10° m*. The length ratio, R;, was varied from 1 to 100, thus varying the link
length from 0.02 m to 2 m. Also, R; was varied from 0.01 to 100, thus the joint area
moment of inertia (which is equal to the torsion constant in this case) and cross section
area also changed. With the sizes of the joint and link components changing, the weight
of each component was also updated. The static tip deflection in the positive y-direction
was then determined using the static hybrid FEM model, flexible link model and flexible

joint model for different joint and link sizes that varied with the given ranges of R; and R,

For all three configurations tested in Fig. 4-3, a large value of R;, indicates that the
link is much longer than the joint. When R, equals 1, the link is of the same length as the

joint shaft. Also, when R; is very small, the joint has a larger cross section area than the
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link, and a larger value of R; means that the link has a larger cross section area than the
joint. It is interesting to note that when the joint is configured to provide shaft rotation
about the link’s negative y-axis (or z-axis), the results of the static deflection analysis are
exactly the same when the joint is configured about the link’s positive y-axis (or z-axis)

due to symmetry.

Figs. 4-6 to 4-9 show the results of the tip displacement by varying R, and R; for
each of the configurations tested. Fig. 4-6(a) shows the comparison between the flexible
link and FEM hybrid model when the joint is configured for shaft rotation about the
link’s x-axis. When R; increases, the link becomes much longer than the joint shaft, thus
becoming more flexible in comparison to the joint. When R; decreases, the joint cross
section becomes much larger than the link, thus the joint becomes more rigid and
experiences minimal static deflection. Also, when R; increases, and Ry, remains less than
10, the joint cross section becomes much smaller than that of the link and the joint is
more flexible in terms of bending deformation. Fig 4-6(b) shows the comparison between
the flexible joint and FEM hybrid model for the same configuration used in Fig. 4-6(a).
Here, when R;, is less than 10 and R; is less than 1, the link exhibits low flexibility and the
joint is relatively rigid. However, when R; increases to 100 and R; is less than 1, the joint

becomes more flexible in bending and the link becomes relatively rigid.

Comparison of Flexible Link Model (Meshed Surface) Comparison of Flexible Joint Model (Meshed Surface)
to FEM Hybrid Model (Shaded Surface) to FEM Hybrid Model (Shaded Surface)
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Figure 4-6: Static analysis results when the joint is configured about the link’s x-axis
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Similar results are shown in Fig. 4-7(a) and (b) when the joint is configured to
provide shaft rotation about the link’s y-axis, with the exception that the link is flexible
and the joint is relatively rigid over a smaller range of R, and R; values because both the
axial and bending displacements at the joint-link interface determined from the hybrid

FEM model are rather large.

Comparison of Flexible Link Model (Meshed Surface) Comparison of Flexible Joint Model (Meshed Surface)
to FEM Hybrid Model (Shaded Surface) to FEM Hybrid Model (Shaded Surface)
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Figure 4-7: Static analysis results when the joint is configured about the link’s y-axis

Fig. 4-8(a) shows the comparison between the hybrid and flexible link models
when the joint is configured to provide shaft rotation about the link’s z-axis. Here, when
R; is less than 0.03 and when R; is between 1 and 100, the joint cross section is much
larger than that of the link and the joint is torsionally rigid. In Fig. 4-8(b), when R, is
increased to 100 and when R; is between 1 and 10, the joint cross section becomes much
smaller than the link’s and the joint becomes more flexible in torsion while the link is
rigid in comparison. In all static cases shown, when both Ry and R; increase to 100, both
the joint and link become fully flexible, and the maximum tip deflection occurs in that
region. The configuration that has the highest calculated tip deflection is when the joint
shaft is positioned to rotate the link’s z-axis. Here, the dominant mode of deformation for
the joint is torsion, which is combined with the link’s high bending flexibility when R,
and R; are equal to 100.
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Comparison of Flexible Link Model (Meshed Surface) Comparison of Flexible Joint Model (Meshed Surface)
to FEM Hybrid Model (Shaded Surface) to FEM Hybrid Model (Shaded Surface)
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Figure 4-8: Static analysis results when the joint is configured about the link’s z-axis

Afterwards, the regions of static flexibility were graphed for the given ranges of
R; and R; to show the flexibility of the joint and link for different sizes. Each contour plot
was created to show the differences between the flexible joint and flexible link models to
the hybrid FEM model. For reconfigurable link-joint modules of different sizes, graphs
like Figs. 4-9 to 4-11 can be plotted and the user can simply calculate ratios of R; and R,
to determine the flexibility of modules with different link and joint sizes and determine
exactly which model is appropriate to use depending on the link or joint static flexibility.
Fig. 4-9 shows the regions of static flexibility when the joint is configured to rotate the
about the link’s x-axis. Here, the flexible link model can be used for a majority of R, and
R; regions, specifically, when R, increases from 1 to 100 and R; increases from 0.04 to
100. The flexible joint model can be used when Ry, is increased from 1 to 6 and Ry is
increased from 4 to 100. In Fig. 4-10, the regions of static flexibility are shown when the
joint is aligned to rotate the link’s y-axis. When Ry, is a bit larger than 1 and is increased
to 100, and R; is increased from 0.01 to 11, the flexible link model can be used. When R,
increases from 1 to 5, and R; is increased from 4 to 100, the flexible joint model can be

used.
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Figure 4-9: Regions of static flexibility when the joint is configured about the link’s x-axis
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Figure 4-10: Regions of static flexibility when the joint is configured about the link’s y-axis
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Fig. 4-11 shows the regions of static flexibility when the joint is positioned to

rotate about the link’s z-axis. When Ry is increased from 1 to 100, and R; is increased

from 0.03 to 3, the flexible link model can be used. Also, when R; is increased from just

above 1 to 13, and R; is increased from 12 to 100, the flexible joint model can be used.

Figs. 4-9 to 4-11 represent the flexibility regions for the joint-link module in a specified

configuration; however, they do not represent the entire flexibility regions of the joint-

link module for all configurations combined.
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Figure 4-11: Regions of static flexibility when the joint is configured about the link’s z-axis

The respective flexibility regions that are valid for all configurations are the

regions where each of the flexibility models in Figs. 4-9 to 4-11 intersect each other.

Thus, the regions of static flexibility for all configurations combined were plotted in a

single graph in Fig. 4-12, and the regions where the joint, link, or both components are

flexible for all configurations are shown. In the flexible link model region on the left

hand side of Fig. 4-12, the joint can be considered rigid and the link flexible for all three
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configurations. Similarly, the flexible joint region in Fig. 4-12 shows where the link can

be considered rigid and the joint flexible for all three configurations.

Flexible
Link
Model

FEM Hybrid

Model /

@0.32)

Figure 4-12: Regions of combined static flexibility for all configurations tested

4.2 Dynamic Flexibility Analysis

In order to understand the behaviour of the reconfigurable joint-link module under
dynamic conditions, a free-vibration analysis is conducted to determine the natural
frequencies for the system. The lowest natural frequency, or fundamental frequency, can
be used as a means to estimate the dynamic flexibility of the system. In addition, a lower
fundamental frequency means that the system is more flexible and a higher fundamental
frequency means that the system is more rigid. Three dynamic models were compared to
each other to determine the dynamic flexibility of the joint and the link: the hybrid FEM
model (where both components are flexible), the flexible link model (where only the link

is flexible) and the flexible joint model (where only the joint is flexible).
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4.2.1 Dynamic Hybrid FEM Model

For the dynamic analysis, a single joint-link module can be idealized as two finite
element beams in a similar fashion used in the static hybrid FEM model described in
section 3.1. According to Thomson and Dahleh [45], using a single finite element gives
good results for the lowest mode shape because the static deflection curve is close to the
lowest dynamic mode shape. The same stiffness matrix used in equation (4.4) can be used
for each element and the joint element can be configured about the link using equation
(4.12). Thus, the same assembled global stiffness matrix derived in equation (4.16) can
also be used. The dynamic hybrid FEM model uses a consistent mass matrix that
coincides with the 12 DOFs found in equation (4.3). A consistent mass matrix was used
instead of a lumped mass matrix because consistent mass matrices usually tend to have
more accurate results for beams because the rotary inertial effects are not ignored as in

lumped mass matrices. The kinetic energy for a single beam element is:
L

1 N2 . +N2 N2
KE = [(p4Giy + pAGY + pAGH +1,(6) Jox (4.25)

0

where p is the density of the material used in the beam element and I, is the polar mass

moment of inertia. The shape functions along the local x-axis of the beam are given by:
u(x) =[N|{U,} (4.26)

where [N] is a matrix containing the shape functions N; to Ni2 used in the stiffness

derivation in section 4.1.1, and is arranged as:

NN O 0 0 0 O N, 0 0 0 0 0
O NN 0O 0 0 N, 0O N, 0O 0 0 N,

[N]= } ¢ ’ 6 (4.27)
o 0 N, O N O 0 O N, O Ny O
o 0 0 N, O 0 O O O N, 0 0

1 12

In equation (4.27), the shape functions N; to N;; are given by equations (4.7) to (4.10).
Taking the first time derivative of equation (4.26) and substituting into equation (4.25)
will yield:
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KE = %pl]'{Ue}T [N]" [C][NJ{U,} ax (4.28)

0

where the matrix [C] contains the cross section properties relating to the type of inertial

forces found in equation (4.25) for each mode of deformation and can be written as:

(4.29)

SO O O
S O O
N o o o

Thus, in equation (4.28) the local mass matrix for a single beam element is given by:
y T
[M,]=p [[N]' [C][N]dx (4.30)
0

This mass matrix is given in its explicit form in Appendix A. For the joint, the mass
matrix in equation (4.30) can be transformed to global coordinates by using the
transformation matrix in equation (4.11) according to the joint configuration about the

link, and the global mass matrix for the joint element is:
[M], =[] [M.],[T] 31

Afterwards, the global mass matrix, [M]g, can be assembled in using the direct stiffness
method described at the end of section 4.1.1. The equations of motion for the assembled

joint-link element can be written as:
[M]G {U}G +[K]G {U}G = {F}G (4.32)

where {F}¢ is the vector of generalized moments and forces, and for free-vibration {F}g
is equal to {0}. If the joint-link element is in harmonic motion, equation (4.32) takes the

following form:
(K], -’ [M],){0} =0 (4.33)
where {U} is the vector containing the natural mode shapes and w is the natural

frequency. The characteristic equation for the system in free-vibration becomes:
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K], -0’ [M],|=0 (4.34)

The same boundary conditions used in equation (4.15) are used for the dynamic
hybrid FEM model for the stiffness, as well as the mass matrices. After the boundary
conditions are applied, the total number of DOFs for the hybrid FEM element will reduce
to 12, and equation (4.34) will give 12 roots of the characteristic equation and the

corresponding natural frequencies can then be determined.

4.2.2 Dynamic Flexible Link Model

The flexible link model used for the dynamic analysis uses the same boundary
conditions found in equation (4.17), thus simplifying the system to a cantilever beam
model attached to a rigid joint. Equation (4.34) is then solved for its eigenvalues and the

natural frequencies can then be found.

4.2.3 Dynamic Flexible Joint Model

The dynamic flexible joint model assumes the joint is flexible and the link is rigid.
In this model, which is shown in Fig. 4-5, the mass terms of the rigid link are lumped to
the end of the joint and the joint acts as a spring with possible bending about the joint’s
local z-axis, axial, and torsional displacements. Assuming that the nodal displacements
for the three modes deformation are the generalized coordinates, Lagrange’s equation can

be written as:

d[ OKE ]_ OKE _ OPE

a5{u]) oy oy 4

Using equation (4.35) the equations of motion for axial, bending and torsional modes of

deformation then become:

myii, +k, u; =0
mi, +k, v, =0 (4.36)

v.J

1,0,+k.6,=0

t,j"J

where m; is the mass of the link; u, v;, and 6; are the local axial, transverse and torsional

displacements of the joint, respectively. I,; is the polar mass moment of inertia for the
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link and is taken about the link’s x-axis for the configuration shown in Fig. 4-3(a) at the
centroid of the link. For the configuration in Fig. 4-3(b) and 4-3(c) I, is taken about the
link’s z- and y-axis, respectively. The natural frequencies for equation (4.36) can be

determined as:

a)n,bending = o (439)

n.torsion
" A\IL

In equation (4.39), the dominant flexible mode of deformation will have the lowest

natural frequency, and the stiffest mode will have the highest.

4.2.4 Dynamic Flexibility Simulation and Results

For the dynamic flexibility analysis of a single reconfigurable joint-link module,
R; and R; from equations (4.23) and (4.24) were used to vary the length of the link and
cross section area of the joint, thus fixing the link inertia and joint length to the values
defined in section 4.1.4. The values of R; and R; were varied from 1 to 100 and 0.01 to
100, respectively. Also, the same material properties used in the static analysis were
applied to the joint and the link. A free vibration analysis was then performed using the
hybrid FEM, flexible link, and flexible joint models for the given range of link and joint
sizes for each of the configurations shown in Fig. 4-3. The lowest natural frequency was
determined, based on which the flexible link and flexible joint models were each
compared to the fully flexible hybrid FEM model. The results were then used as a basis

for determining the dynamic flexibility of the link or joint components.

Figure 4-13(a) shows a comparison of the lowest natural frequencies obtained
from the hybrid model and the flexible link model. When R; decreases to below 0.1, there
are small differences between the natural frequencies for both models, because the joint

becomes rigid. When R; decreases to 1 and R; increases to 100, there exists a larger
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difference between the two models since the joint is no longer rigid in that region. Figure
4-13(b) shows the comparison of the lowest natural frequencies obtained from the hybrid
and flexible joint models. When R; decreases to 0.01 and R; decreases to 1, there exist
large differences between the two models. In this region, the joint is rigid because of a
higher joint inertia, and the link is more rigid because its length is shorter. When R is
increased to 100, and R; is increased to 10, the link becomes more rigid, and the joint is
relatively flexible. However, when both R; and R;are increased to 100, some bending

deformation occurs in the link, and the joint remains flexible in comparison to the link.

Comparison of Flexible Link Model (Meshed Surface) Comparison of Flexible Joint Model (Meshed Surface)
to FEM Hybrid Model (Shaded Surface) to FEM Hybrid Model (Shaded Surface)

154.

1st Natural Frequency
1st Natural Frequency
[rad/s]

R, 10° 10 R,
(a)

Figure 4-13: Dynamic analysis results when the joint is configured about the link’s X-axis

The same pattern for the flexible link and flexible joint models exist when the
joint is configured about the link’s y- or z-axis as shown in Fig. 4-14 with the exception
that when R; equals 1 and R; approaches 0.01, there is less discrepancy between the
flexible link and hybrid models. The y- and z- configurations give the exact same results
because the configurations are orthogonal to each other, hence they will have the same
natural frequencies. Also, since the link has a square cross section, the bending modes in

the y- and z- direction yield the same results.
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Comparison of Flexible Link Model (Meshed Surface) Comparison of Flexible Joint Model (Meshed Surface)
to FEM Hybrid Model (Shaded Surface) to FEM Hybrid Model (Shaded Surface)

1st Natural Frequency
1st Natural Frequency

10°

Figure 4-14: Dynamic analysis results when the joint is configured about the link’s y- or z-axis

To coincide with the static flexibility analysis, the regions of dynamic flexibility

were then graphed for the reconfigurable joint-link module with varying link and joint
sizes. Fig. 4-15 shows the regions of dynamic flexibility with varying values of R; and R,
when the joint rotation axis is aligned with the link’s x-axis. In the flexible link model
region, the zigzag area in the dividing curve is due to the change in lowest natural
frequencies corresponding to different DOFs in the link-joint hybrid model. When R; is
greater than 10, and R; is close to 1, the lowest fundamental frequency dominates due to
link bending. When R; is less than 10, and R, is close to 1, the lowest natural frequency is
due to another DOF, such as link torsion, or bending about the x-z plane. In this graph,
the flexible link model can be used when R; increases from 1 to 100, and R; increases
from 0.01 to 10. When R;, increases from 1 to 9, and R; increases from 12 to 100, the joint
is flexible and the link becomes rigid, thus the flexible joint model can be used. Fig. 4-16
shows the dynamic flexibility results when the joint is configured to rotate about the
link’s y-axis. Again, the results are the same when the joint is configured about the link’s
z-axis since both configurations are axisymmetric about the link’s x-axis. In Fig. 4-16 the
zig-zag area in the dividing line of the flexible link model region is more profound than

that of Fig. 4-15. Here, when R, is increased from 1 to 100, and R; is increased from 0.2

to 2, the link is more flexible than the joint, thus the flexible link model can be used.

When R; is increased from 2 to 30, and Ry is increased from 10 to 100, the link becomes

rigid relative to the joint, thus the flexible joint model can be used.
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Figure 4-15: Regions of dynamic flexibility when the joint is aligned with the link’s x-axis
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Figure 4-16: Regions of dynamic flexibility when the joint is aligned with the link’s y- or z-axis
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Afterwards, Fig. 4-15 and 4-16 were plotted together and the regions where all of
the configurations can use either the flexible link, flexible joint or hybrid FEM models
are shown in Fig. 4-17. Here, the flexible link model region is where the link is
dynamically flexible and the joint is rigid for all configurations tested. Similarly, the
flexible joint model region is where the joint is dynamically flexible and the link is rigid

in all configurations tested.
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/
/ FEM Hybrid
Flexible Model
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7 .
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Figure 4-17: Regions of combined dynamic ﬂexibility for all configurations tested

@032}

By knowing the flexibility of each component, the appropriate model can be used
and the overall positional accuracy of the joint-link module can be improved by including
the effects of static and dynamic flexibility. Flexibility contours like those in Figs. 4-12
and 4-17 can be plotted for static and dynamic test cases and designers can simply
determine the flexibility of the joint and link modules based for a range of joint and link
sizes. This method can aid in the design and control of link-joint modules by accounting
for joint and/or link flexibility. Furthermore, the flexibility of the joint-link models
presented in this chapter can be used as a basis to perform the kinetostatic analysis of an
entire MRR.
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5. Kinetostatic Analysis

This chapter explains the kinetostatic analysis of reconfigurable revolute joint,
prismatic joint and link modules. The modules described in Chapter 3 were rigid body
models. Here, the applied loads on the robot are accounted for and the orientation
equations described in Chapter 3 are used in conjunction with the flexibility (compliance
and stiffness) to determine the effects of the tip deformation in any possible robot
position. Chapter 4 showed that both revolute joint and link modules could become more
flexible for a certain range of sizes. Also, it becomes necessary to model the revolute
joint lengths since the revolute joints may become flexible under torsion, axial
deformation and bending. Thus, in this chapter, the flexibility of each module is taken
into account in order to determine the elastic deformation under an applied load. The
flexible modules are assumed to be undergoing low-speed (quasi-static) motion with
negligible acceleration, thus the dynamic inertia effects may be ignored. Therefore,
kinetostatic analysis can be facilitated, and the robot tip deflections can be determined
along with the flexible tip position in the robot’s workspace. The kinetostatic modeling in
this thesis includes the flexibility of each component and can later be used to determine
the flexible tip workspace, and other factors such as the maximum allowable payload a

robot can take, and the position of the robot that gives the maximum deflection.

In the following sections, two kinetostatic models are presented. The first model
uses the compliance and Jacobian in order to solve for the global tip deflections of the
end module for a given pose of the MRR. The second model is based on the finite
element model described in Chapter 4 and is used in conjunction with the recursive
rotation matrices found in Chapter 3 in order to determine the global deflections at the
end nodes of each module. A solid body with lower compliance, or higher stiffness, will
undergo less deformation. This is important for robotic applications such as automated
manufacturing, where accuracy is a main concern. Thus, it is important to include the
flexibility of reconfigurable robot modules. In this chapter, the Compliance-Jacobian

method was first developed, and compared to a modified finite element kinetostatic
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method. For both models, post-processing methods were also defined in order to solve for

the local forces, displacements and stresses of each module.

5.1 Compliance-Jacobian Method

The Compliance-Jacobian method can be used to solve for the tip deflection of an
assembled MRR. The compliance is a measure of the ability of a solid body to deform
under applied loads, whereas the stiffness is a measure of the ability of a solid body to
resist deformation under applied loads. This method was used in references [39-40] to
perform a kinetostatic analysis of a flexible parallel kinematic machine. In this thesis, this
method was modified to facilitate the kinetostatic analysis of a serial MRR. The method
first involves determining the appropriate compliance matrix, based on Euler beam theory,
to determine the tip deformation of each module with allowable local axial displacement,
bending about the local y- and z- axes, and torsional deformation. Afterwards, a Jacobian
matrix can be used to transform each module’s local forces and displacements to global
coordinates. Unlike the finite element used in Chapter 4, each element does not need to
be transformed before the global system equations are assembled. However, this method
initially does not solve for the global tip deformations for the modules before the tip
module (last module in the open chain), but these global as well as local deformations can
be determined after the last module’s tip deformation is solved during the post-processing

stage.

5.1.1 Local Compliance Derivation

A second-order method for determining the tip deformation at one end of a beam
with an applied force and moment [46] was used in order to determine the compliance
terms for bending about the y- and z- axis. Chapter 4 demonstrated that a single finite
element beam is suitable to determine the tip deformation of a single beam. Thus a single
beam will also be used in this model, and the results can also be compared to beam theory.
Consider a cantilever beam of length L, with a single transverse load f; in the positive y-

direction and a moment m, about the z-axis at one end, as shown in Fig. 5-1(a).
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Figure 5-1: Sign conventions for beam theory

For the cantilever beam in Fig. 5-1(a), taking the sum of moments for a small

increment of the beam about the z-axis gives:
m,(x)— f,(L—x)—-m,=0 5.1
Thus the Moment-Curvature equation is given by:

ELLY )= £(L

z;l;c-z——mz(x)—fy( +x)+m, (5.2)
where E is the modulus of elasticity for the material. Integrating equation (5-2) once, and
then twice gives the following:

_Civ_ 2

x
EI, o =y(x)= mzx+fny—fy—2—-+c1 (5.3)

x° x’ x’
EIzv=mz—2—+fyL—z——fy——6—+clx+c2 (5.4)
Since the beam in Fig 5-1(a) is fixed at one end, it is subject to the boundary conditions

d—fii(’—)= 0 and v(0) = 0. Thus, both constants become zero in equations (5.3) and (5.4) and

the angular and transverse deflections due to bending at the tip of the beam (where x = L)

can be written as:

1 r
1 r r
V(L) = ———E]z [mz ——2— + fy —é—) (57)
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The stiffness can be defined as a ratio of the load to the deflection. Thus, the compliance
is the ratio of the deflection to the load, and a single compliance term is the inverse of the
corresponding stiffness term. Therefore, the deflections at the tip of a single beam can be

related to the force and compliance as:
Cj;i;; = Utip (58)

In equations (5-6) and (5-7), when the applied moment about the z-axis is set to zero, the

equations become:

L2

= 5.9
ZEszy % (5.9)
L3

= 5.10
3L =" -10)

Also, in equations (5-6) and (5-7), when the applied force in the y-direction is set to zero,

the equations become:

L
= m = 5.11
" v (5.11)
2
L m,=v (5.12)
2EI

Using the definition in equation (5-8) the compliance terms that contribute to the
transverse deflection in the y-direction v and angular bending deflection about the z-axis

w in equations (5-9) and (5-10) are:

L2

C'bend,y/l = 2EI (513)
3

B (5.14)

Chogs =——
bend v, 3EIZ

Also, the compliance terms that contribute to the transverse deflection in the y-direction v

and angular bending deflection about the z-axis y in equations (5.11) and (5.12) become:
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L

bend,y, '—E}—' (5 15)
LZ
Chena,v, = SH (5.16)

The second order method used in equations (5.1) to (5.16) to determine the tip
deflection can also be applied to determine the compliance terms for bending about the y-
axis shown in Fig. 5-1(b). When the applied moment about the y-axis m, is set to zero,
the compliance terms that contribute to the transverse deflection in the z-direction w and

angular bending deflection about the y-axis ¢ become:

L2
Coena g, = EYa (5.17)
y
3
L (5.18)

C,py =——
bend ,w; 3Ely

The negative sign in equation (5-17) is because the sign convention in the x-z plane is
different from that in the x-y plane. When the applied force along the y-axis f, is set to
zero, the compliance terms that contribute to the transverse deflection in the z-direction w

and angular bending deflection about the y-axis ¢ are:

L
bendy, — E (519)
Yy
2
L (5.20)

C'berwl,w1 == 2EI

y

For the axial compliance terms, a linear displacement function is assumed since this type
of deformation acts along a single axis. The axial compliance term becomes:

L

C ., =— 5.21
axial ,u AE ( )

Also, for torsional deformation along the length of the beam element, a linear torsion

angle variation is assumed and the torsion compliance term is:
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Clorsion,a = Ej (5 22)

Writing out equation (5-8) in matrix form, and substituting the compliance

components from equations (5-13) to (5-22) will give the tip deformation for a single

beam:

i L ] ( 3 3
L 0 0 0 0 0 7. (u
0o L 0 0 0 L

3EI, i . 2EI, fy v

77 =78 (5.23)

0 0 0 L 0 0 ||m, 0
0 0 - 0 4  0|m ¢
0 s 0 o0 0 4 (U, Wi,

The 6x6 matrix in equation (5.23) is the local compliance matrix for a single module,
denoted as [C,];. This beam compliance can be used to represent the compliance of each
of the modules described in Chapter 3. To check the validity of the compliance model,
equation (5.23) was solved for a single beam with force applied to the tip, and the results

were compared to beam theory as shown in Fig. 5-2 below.

Beam Theory

#*  Compliance-Jacobian

Displacement (m)

_7 1| 1 1 1 1 1 1 1

1
0 0.1 02 03 04 05 06 07 08 09 1
Length (x/L)

Figure 5-2: Comparison of Compliance model with Beam Theory
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Fig. 5-2 shows that the tip deformation at x = L was the same for the compliance
model and beam theory, and the results also agree with Fig. 4-1 in Chapter 4 for the finite
element beam. Therefore, a single compliance beam model can accurately predict the tip
deformation of a single module. Here, the revolute and prismatic joint modules can be
represented as beams with hollow or solid circular cross sections and the link modules
can be represented as beams with hollow or solid rectangular cross sections. For
prismatic joint modules, the length terms in equation (5.23) can be taken as the final
length of the prismatic joint after extension. Now that the local compliance matrix was
defined for a single module, the next step was to transform the compliance matrix from

local to global coordinates.

5.1.2 Deformation Jacobian

The deformation Jacobian matrix is used to transform the local module forces and
displacements to the global frame of reference. This Jacobian matrix also accounts for
reconfigurability since the rotation matrices which define the configuration of each
module (found in Chapter 3) are included. Furthermore, since the interest is only in the
tip deformations of each module, the tip forces and moments on one module must be
converted backwards to the tips of the previous modules. This was done by the use of a
rotation matrix and moment vector within the Jacobian matrix to convert the forces to
moments where appropriate, and convert the local variables to global variables. For a

single module the deformation Jacobian matrix is given by:

[J ]= Z,, Z,; Z;; 1y X(Pn+1 "Pi+1) Zy; X(Pn+1 —Pi+1) Z;, X (Pn+1 —Pi+1)
4 0o 0 0 z, z, z, ot

i o+ o

where z;; z,; and z3; are the first, second and third columns, respectively, of the
recursive rotation matrix after motion occurs (Ry;) given in equations (3.22), (3.30) and
(3.47) in Chapter 3 for the relative, ZRP, and quasi-global connectivity methods,
respectively. This Jacobian matrix is different from a velocity J acobian for the fact that it
transforms the deformations backwards from the tip of the 7 module to the tip of the i

module, where a velocity Jacobian matrix transforms velocities from the i™ module to the
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n™ module. Also, the deformation Jacobian allows infinitesimal motion in three linear
directions and three axes of rotation, where the velocity Jacobian allows infinitesimal
motion in three linear directions and only one axis of rotation for each module. The z
terms in equation (5.24) are the unit directional vectors to transform linear displacements
and the cross-product terms are the moment vectors to transform angular displacements.
The (Py+1 - Pi+1) terms in the moment vectors denote the position vector from the tip of
the end module to the tip of the /™ module. Note that equation (5.24) holds only for a

single module and the deformation Jacobian for an entire robot with # total modules is:

[Jd,n] = [Jd,l Jd,z Jd,3 """"" Jd,n (5.25)

6x6n

Equation (5.25) can be used to determine the vector of local forces for all modules
given the force at the tip of the last (or »™) module. However, if it is required to transform
a vector such as the local displacements at the tip of module i in an open chain of
modules, equation (5.24) cannot be used alone for any module after the first module.
Instead, equation (5.25) should be modified with the exception that » = i, so that the size

of the Jacobian becomes 6x6i. This modified Jacobian can be referred to as:

5 [Jd,(ltoi)]=|:Jd,l Jag oz oo Jd,i]6x6i (5.26)

where the subscript (1 7o i) means that the Jacobian is taken from module 1 to module i.

5.1.3 System Equations and Assembly

In this chapter, the system equations were created in order to use the space-fixed
reference frame rotations, given in equation (3.6). The equation that relates the local
forces at the tips of each module to the known global forces at the tip of the n™ module

can be determined as:
{0} =[3] {F,} | (5.27)

where {f.;,} is the vector containing the local forces at the tip of each module in the
body-fixed frame and {F,,} is the vector containing the known global forces acting on
the tip of the »™ module in the global coordinate frame. Also, the global to local

displacement relation is given by:
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{U,}, =[3.1{U..} (5.28)

where {U,,} is a vector containing the local displacements at the tip of each module in
the body-fixed coordinate frame and {Ug}c is the vector containing the global
displacements at the tip of the n™ module in the global coordinate frame. Equation (5.23)

can be written in terms of the assembled compliance for » modules as:

{Ueﬁp} = [C] {fe,tip} (529)

where [C] is the assembled compliance for 7 total modules and can be written as:

(€, =i ([C} €] [C.]) (530)

Unlike the finite element method stiffness matrix, the assembled compliance in
this method requires no transformations from local to global coordinates for each module
before the compliance matrix is assembled for the system. Also, since this method is
based at one of the end tips of each module, whereas the finite element method is node-
based at both end tips, there is no overlapping of any individual local compliance terms
required for the global compliance assembly; unlike the finite element method, where
there are stiffness terms that overlap for each element at a common node. In addition, no
further boundary conditions need to be applied to the compliance matrix before solving
for the unknown tip displacements. In the Compliance-Jacobian method presented, the
assembled compliance matrix is created first, and then transformed while solving for the

unknown displacements. Substituting equation (5.29) into (5.28) gives:

{u,} =[3]Cl{L. .} (5.31)

To determine the global displacements at the tip of the n™ module, given the applied
global forces at tip of the n™ module, equation (5.27) can be substituted into equation
(5.31) to convert the local forces to global forces, along with the Jacobian in equation
(5.25) to give:

(U} =[3,]C]30] (), (5.32)

75



i?

where {Ugpn}c is a 6x1 vector containing the global displacements at the tip of the
assembled MRR where the payload is applied, [J4n] is the 6x6n deformation Jacobian
from equation (5.25), [C] is the 6nx6n assembled compliance assembled compliance
matrix given in equation (5.30) and {Fy,,}¢ is the 6x1 global force vector containing the

applied forces at the tip of the ™ module.

If it is necessary to include the weights of each module, along with the weights of

each joint’s motor, equation (5.32) can be modified as:

(Uil o =030 1[0 T (B # 8o} +{E ) (5:33)

where {fyeign} is the vector containing the lumped weights at the tips of each module in
local coordinates, and {f, 00r} is the vector containing the weights of the prismatic and
revolute joint motors in local coordinates. Since the Compliance-Jacobian model is based
on only one node for each module, the weight of one module is located at the tip node in
the negative y-direction in global coordinates, and that node also includes the weight of
the next consecutive module. Also, the motor weights for the prismatic and joint modules
are located at the first node, or base node, of each element. However, since no first node
exists in this method, motor weights are placed at the tip nodes of the preceding modules.
Furthermore, since the self-weights and motor weights are known in global coordinates, it
is necessary to convert the weight vectors to local coordinates in order to use equation
(5.33). The local weight vector containing the self-weights of all modules, and the vector

that contains the weights of the joint motors can be written as:

Boagi} =2 [Faion | {Fros ) (5.34)

i=1

where [J41 1 ] is obtained from equation (5.26) and {fweigni} is the vector containing the
lumped global weights for module i and module i+/. Note that the summation in
equation (5.34) does not imply a simple summation because the vectors produced are not
equal length. For example, when i = ] the vector is 6x1, and then i = 2 the vector is 12x1.

Thus, the first six rows of the first vector are added to the first six rows of the second
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vector, and so on until the »™ module is reached. The self-weight vector for each module

can be written in global coordinates as:
T
oo} ={0 ~%-% 0 0 0 0] (5.35)

The vector containing the weights of each motor in the local frame can be written

as follows:

n

{fe,motor} = Z I:Jd,(l toi) ]T {fmotor,i+1 } (5 36)

i=1

where {f,o0ri+1} is the vector containing the global motor weights for module i+/. In
other words, since the motor weight is located at the base node instead of the tip node of
each joint element, if module i+ is a joint, the motor weight will be transferred to the tip
of module i since this method has single tip nodes for each element. Also, the summation

rule is the same used for equation (5.34).

5.1.4 Post-Processing

The post-processing stage can be used to determine the local unknowns such as
local forces, displacements, and stresses. After the global tip displacements are solved
using equations (5.32) or (5.33), the next step is to determine the vector of local tip forces

for all modules, which is given by:

{fe,tip} = [Jd,n ]T {Ftip}G + {fe,weight} + {fe,motor} (537)

If the self-weights of each module and the motor weights are to be ignored, equation
(5.37) reduces to equation (5.27). If it is required to determine the global displacements at

the tip of the i™ module, equation (5.31) can be modified as:

(Ui} =[Taaen [Caron {fen) (5.38)

Afterwards, the local tip displacements can be calculated using equation (5.28) rewritten

as:

{Ue,tip,i} = [Jd,i ]T {Utip,i}G (5.39)
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The next step is to calculate the local stresses at the base of each module. There are six
stress cases considered: axial, bending in the x-y plane, bending in the x-z plane, shear in
the y-direction, shear in the z-direction and torsion stresses. This means that one end of
each module undergoes stresses due to the combined loads. The axial stress at one end of

module i is given by:

25 (5.40)

i

axial j —

N P

The stresses due to bending about the z-axis and y-axis at one end of module i

respectively, can be written as:

m. .

O =2 (5.41)
IZ,I

_iE 5.42

O-bend,z - 1— ( . )

Vi

Usually the transverse shear stresses due to bending loads have negligible
contributions to the failure of the beams as compared to the bending, axial and torsional
stresses. However, they are included in this thesis in order to provide a more conservative
model. For modules with a circular (solid or hollow) cross section, such as prismatic and

revolute joints, the transverse shear stress is given by [46]:

2,

Tshear,y = A}’, (543)
2f.,

Tshear,z = f;’l (5 44)

i

If the link modules are assumed to have a hollow rectangular cross section, the transverse
shear stresses in the y- and z- directions can be determined from:

_ 58

Tshear,y - It
zVi

(5.45)
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(5.46)

where Q; is the first moment of the area with respect to the neutral axis above the level y’
or z’ [46], and ¢ is the thickness of the member. If the link modules are assumed to have a
solid cross section, the maximum transverse shear stresses in the y- or z- direction can be

calculated using [46]:

31,

Tshear,y = 2;1, (547)
3.

Tshear,z = 2A, (548)

4

The stress due to torsion for a solid, or hollow joint module with circular cross section is

given by:

m._.r .
— X,i" outer i (5.49)
1

Ttorsion N

where Fouzr,i is the outer radius of the joint module, and / = I, = L. If the link modules

have a hollow rectangular cross section, the stress due to torsion is:

e (5.50)
Toi o = > .
torsion ! 2t’ lm ’i

where A4,,; is the area within the median curve defined in [46]. If the link modules have a

solid rectangular cross section, the stress due to torsion is:

mx,i
Ttarsion,i = a b h2 (551)

i~ outer,i” “outeri

where boyser; and Aoy are the outer base length and height of the module’s solid cross
section, respectively, and a; is a dimensionless torsional stress constant found in [46].
Using equations (5.40) to (5.51) the stress resultants can be determined for each module

and the Von Mises equivalent stress can be calculated using the following equation [47]:
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Oy i =%[(O'x -0, )2 +(0'y —az)2 +(0'z -0, )2 +6(z‘fy +T;Z +72, )T (5.52)

Afterwards, a factor of safety based on the Von Mises yield criterion can be determined

for each module as:

O .. .
FS,, =—X=L (5.53)
Oy i

where oy;14; is the yield stress of the module’s material. If FS,; is less than 1, the module

structurally fails.

5.2 Finite Element Kinetostatic Method

The finite element system equations in this chapter differ from those of Chapter 4
because space-fixed rotations instead of body-fixed rotations were used in order to be
compatible with the kinematic equations presented in Chapter 3, and coincide with the
Compliance-Jacobian method presented in the previous section. Unlike the Compliance-
Jacobian method, the finite element method is node-based with each beam element
having two nodes, and information such as global displacements are obtained at each
node instead of just the tip node alone. Here, the link modules are modeled as solid or
hollow rectangular beams, and the joint modules are modeled as solid or hollow circular
beams. Also, the length of the prismatic joint is taken as the final length after joint

extension.

5.2.1 System Equations and Assembly

This method uses the same stiffness matrix which was derived in Chapter 4, using
equation (4.4). For convenience, this stiffness matrix is shown in its explicit form in
Appendix A. The transformation matrix presented in equation (4.11) can be modified to
include the rotation matrices found in equations (3.22), (3.30) and (3.47) in Chapter 3 for
the relative, ZRP, and quasi-global connectivity methods in order to use space-fixed

rotations. Thus, the transformation matrix used in this chapter is:

[T],., =diag([Ra,, ], ,) (5.54)
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For a single module, the local force vector can be written using space-fixed rotations

found in equation (5.54) as:
{t.}=[T] {£} (5-55)

where {f;} is a vector containing the global forces at each node of module i. Also, the

relation between the local and global displacements for a single module can be written as:
{v.}=[T] {u} (5-56)

where {U;} is a vector containing the global displacements found at both nodes of the

module. The local force-displacement relation can be determined using:
{f.} =k, {U..} (5.57)

where {k.;} is the local stiffness matrix for a single module, obtained from equation (4.4).

Substituting equation (5.55) and (5.56) into (5.57) gives:
[T] {t}=[k. ][T] {U} (5.58)

Since the transformation matrix in equation (5.54) is orthogonal, equation (5.58) can be

written as:
{£}=[t][., JIT] {u} (5.59)

Consequently, the transformed stiffness matrix using space-fixed rotations for a single

module is given by:
[ki] = [’E][kEI][’I‘I ]T (5.60)

Like the FEM hybrid model in Chapter 4, each stiffness matrix can be assembled using
the direct stiffness method [44] to obtain the system global stiffness equation, [K]g.

Afterwards, the system of equations in global coordinates can be solved using:
(U}, =[K]; {F}, (5-61)

where {U}g and{F}¢ are of the size (6+6mn)x1, and [K]s is (6+6n)x(6+6n). Equation
(5.61) is subject to the boundary conditions in equation (4.15). Computationally, the
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boundary conditions can be applied by replacing the first six diagonal terms in the global
stiffness equation with a large number such as 10%, and replacing the corresponding rows
and columns with zeros. Also, {U}g gives the global displacements at each node along
the assembly, unlike the Compliance-Jacobian method where the global displacements
must be calculated afterwards. If the self-weights of each module along with the motor

weights are to be included, equation (5.61) becomes:

{0}, =KL (), + (B o * () (5.62)

where {f}yeign and {} moror are vectors containing the global forces due to self-weight and
joint motor weights. The forces due to self-weight for each module are lumped at the two
end nodes as shown in Fig. 4-4 in Chapter 4. Also, the weights due to the joint motors
can be placed at the first node of each joint module instead of placing them at the tips of
the previous modules like the Compliance-Jacobian method. Furthermore, the global tip

displacements can be found in the last six rows of {U} in equations (5.61) or (5.62).

5.2.2 Post-Processing

Once the global displacements are determined, the local displacement vector for
each module can be determined using equation (5.56). Afterwards, the local forces can be
obtained using equation (5.57). The nodal stresses given in equations (5.40) to (5.51) can
then be applied to the first node of each element in this model, and the Von Mises
equivalent stress along with the factor of safety for each module can be calculated using
equations (5.52) and (5.53).

5.3 Simulation and Results

To compare the two kinetostatic methods described in the previous sections in this
chapter, a kinetostatic analysis was performed on a MRR at a single position and
configuration after moving from its initial configuration setup. The goal of this analysis
was to determine the tip deflection at the end module in order to test the validity of the
two models. The robot tested consisted of three revolute joint modules and three links
and was configured according to the quasi-global method presented in Chapter 3. Two of

revolute joint and link modules were equal sized, and the revolute joint and link located
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near the base of the robot were larger than the other two joint and link modules. Also, the
base link, which was considered as a rigid body, had a height of 0.9 m.

The sizes of each module are shown in table 5-1. Using the notation provided in
Chapter 3.3, the robot can be specified as “RLRLRL” and its configuration can be
classified as “y, x, z, X, -y, X”. Also, there were no angular offsets defined for each of the
modules at their initial configuration setup. Furthermore, all modules were made of
aluminum, with the material properties listed in table 4-1 in Chapter 4. In this simulation,
each revolute joint casing, instead of the motor shaft, was modeled as a hollow cylinder
and each link was modeled as a straight, hollow beam with a uniform square cross

section.

Table 5-1: Module sizes and joint input angles for kinetostatic test case

Wall Joint
Inner cross Inner thickness Motor Jom
. Length, . . . input
Module | Configuration L; [m] section base | radius, going mass anele
i length, b; [m] | r;[m] | outwards, [kg] g
: [deg]
Z; [m]
Revolute
Joint 1 y 0.3 - 0.15 0.005 3 40
Link 1 X 0.5 0.13 - 0.004 - -
Revolute z 0.23 - 0.1 0.004 15 30
Joint 2
Link 2 X 04 0.09 - 0.003 - -
Revolute
Joint 3 -y 0.23 - 0.1 0.004 1.5 -20
Link 3 X 0.4 0.09 - 0.003 - -

After the initial configuration setup, the first, second and third joint modules were
moved with local input angles of 30°, 40° and -20°, respectively, and the link module
furthest from the base was loaded with a force of -7/00 N in the global y-direction to
simulate the weight of a payload at the end of the robot. The flexible tip position vector

includes the effects of the displacements and can be defined as:

T
Pi+1,ﬂex = Pm,i+l + [utip,n Vtip,n Wtip,n] (563)
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Where P,,;+1 is the rigid body position vector after motion obtained from the position
analysis in Chapter 3, wpn, Vipnand wyp, are the linear deflections in the x, y and z
directions, respectively. The kinetostatic analysis was conducted to determine and
compare the tip deflections and flexible tip position vectors for both methods, with and
without the inclusion of each module’s self-weight. Fig. 5-3 shows the schematic beam

representation of the MRR in its initial and final position after motion.

==smm Hase Vector
=== Revolute Joint
i | ink

T === Prismatic Joint

L. (@ Final Position

R S

o2y A “Initial Posiion ..
/l\ L Tl (atiesy)
: 0

1.2 0.2

Figure 5-3: Schematic beam diagram of MRR tested at final position after motion

Table 5-2 shows the results of the kinetostatic analysis using the Compliance-

Jacobian method as well as FEM for with each module’s self-weight included.
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Table 5-2: Results of the kinetostatic analysis with module self-weight included

Flexible tip position vector,

; Tip deflections at end of n™ module, Usp,c
Pi+l,ﬂex

Method 7

u v w U4 v
x [m] y[m] | z[m] 10° 10° 10° 10° 10° 10°
[m] [m] [m] [rad] [rad] [rad]

Compliance 1.04581 1.38833 | -0.75588 | 0.06460 | -0.41817 | -0.04318 | -0.39769 | -0.01612 | -0.37413

FEM 1.04581 1.38833 | -0.75588 | 0.06460 | -0.41817 | -0.04318 | -0.39769 | -0.01612 | -0.37413

From table 5-2, both the Compliance-Jacobian and FEM kinetostatic methods
give the same results. Upon further inspection in MATLAB, the results differ by about
107, which is close to the computer’s epsilon accuracy. Hence, both methods give
essentially the same results. In the test case where the motor and module weights were
included, the highest deflection occurs in the y-direction, which is -0.41817 mm. This is
mostly due to the large payload applied at the tip of the MRR and the weights of the
modules and motors which are all applied in the same direction. Large deflections are a
concern for robots with high accuracy requirements, such as those that perform precision

manufacturing operations, because this deflection is too large.

Both kinetostatic methods presented in this chapter have their advantages and
disadvantages. To begin, the assembly of the compliance matrix for the total number of
modules in the Compliance-Jacobian method is much easier than the assembly process of
the stiffness matrix in finite element method. This is because each module’s compliance
matrix has terms pertaining to the tip of the module and is not based on two nodes like
the finite element method, and there is no overlapping of compliance terms within the
assembled compliance matrix. However, since the Compliance-Jacobian method is based
on first determining the tip deflections at the »™ module in global coordinates, the other
module global deflections must be determined during the post-processing stage; whereas

the FEM model determines all global deflections simultaneously.

In both methods, the local forces can be determined simultaneously once the

global forces are known. However, the local displacements must be solved individually
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for each module and involves using the Jacobian or transformation matrices for each
individual module. Furthermore, it is more difficult to include the weights of each
component in the Compliance-Jacobian method because they must first be transformed to
local coordinates, while on the contrary, the finite element method can directly use the
component weights in global coordinates to solve the system equations. In addition, if the
lengths of the revolute joints are negligible, the compliance terms can accept zero-length
modules, but the stiffness terms in the FEM model cannot accept zero-length modules
since it will lead to division by zero. Hence, a small number such as 102 must be
entered, which will lead to almost zero deflections for the zero-length member.
Moreover, the Jacobian used in the compliance method can also be used to assess the

kinetostatic performance of a MRR, which is discussed in the next chapter.
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6. Applications of Kinetostatic Analysis

In the previous chapter, two kinetostatic models were introduced. In this chapter,
the kinetostatic models were applied to determine the maximum payload that a given
MRR can withstand. Before the maximum payload can be determined, the MRR position
where the maximum deflection exists must be determined. This can be done in two ways.
‘The first method is to conduct a forward workspace search for given ranges of joint
angles and store the maximum deflection and the joint angles where the maximum
deflection occurs. This method can be rather tedious, especially for small increments of
joint angles and a large number of MRR configurations. However, using this brute force
method, a forward workspace visualization can be obtained, along with the volume (or
area for planar motions) of the workspace boundary. Also, the number of configurations
can be drastically reduced using an enumeration process, where only the feasible
configurations are considered. The other method involves determining parameters related

to the Jacobian matrix in the Compliance-Jacobian method presented in Chapter 5.

Since the deformation Jacobian can be used to transform the local forces and
infinitesimal displacements to global coordinates and vice-versa, it must be capable of
assessing when the forces and infinitesimal displacements are at a maximum for given
module configurations and orientations. Once the position and orientation of an MRR
that gives the maximum deflection is determined, the maximum payload that the robot
can carry for a given tip deflection can be found using the bisection method. Furthermore,
it is shown that the maximum deflection position of an MRR does not change for
different values of the payload, as long as the payload forces are acting in the same

direction.

6.1 Maximum Deflection Position and Orientation

The determination of the position and orientation that gives the maximum
deflection of an MRR with a payload applied at the tip of the robot is necessary in order

to determine the maximum possible payload that robot can carry. The following sub-
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sections describe two methods to determine the maximum deflection position and

orientation.

6.1.1 Workspace Search Method

This method involves searching the entire workspace in order to find the
maximum deflection position for a given MRR configuration. This is done using forward
kinematics for a given range of joint input angles for each joint, while the other method
involves enclosing the allowable movement of the robot’s tip position within a given
volume and determining the range of motion within that volume using inverse
kinematics. The first step in searching the workspace using forward kinematics is to enter
the range of motion and the number of angular increments for each joint. Smaller
increments lead to higher computational times. Next, the position and orientation
equations (presented in Chapter 3) and the tip deflections (from Chapter 4) must be
determined for each possible set of joint input angles. Since the norm of a vector can be
used to determine its length, for each iteration the highest norm of the linear deflections
of the tip of the robot can be stored. Thus, the maximum linear deflection is represented
by:

Uppo =[@ v )], e (6.1)

It is important to note that only the linear deflections are considered in the vector
norm, and not the angular deflections because of unit inconsistency. The joint input
angles, position, orientation, and deformation Jacobian are also stored once the maximum
deflection is determined. If the current iteration has a higher tip displacement than the
previous maximum, then the current maximum displacement and its pose are stored. The
main drawback of this method is that it takes considerable computation times, especially
for small joint angular increments. However, if the flexible tip positions obtained from
the kinetostatic analyses are also stored, a workspace visualization can be created, and the

volume (or area) of the forward workspace can be determined.

There exist several methods of representing the workspace volume. Two methods

are the dextrous workspace and the reachable workspace [48]. The dextrous workspace
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point in any orientation. The reachable workspace consists of the Cartesian points that are
reachable by at least one orientation of the robot’s end-effector. Agrawal et al. determine
the dextrous workspace of a MRR by partitioning the robot chain and finding the
workspaces for each part of the chain. Then, there is a search within the known local
dextrous workspaces to determine if there are any common points, which means that the
robot can reach that common point while satisfying all joint limits. Botturi and Fiorini
[49] described a method of creating the workspace by successively sweeping the curves
made by successive joint angular motions, which represent the individual joint
workspaces. Each of the smaller workspaces were then combined and the boundary of the

workspace can be determined using software such Mathematica and MATLAB.

In this thesis, the workspace outer boundary is determined for an open-chain
MRR. This workspace is the outer boundary in which the robot’s end-effector is
constrained to move within. Consequently, the robot’s end-effector cannot move outside
of the workspace outer boundary. For spatial robot motion, the workspace outer boundary
is represented by a volume, and for planar motion it is an area. This is essentially
important for determining the size of the room needed to allow the robot to undergo its
full range of motion. Since all of the end-effector points can be stored while performing
the search for the maximum deflection for a given MRR configuration, the outer
workspace boundary can be represented as the boundary containing the outermost points.
This can be represented by determining the convex hull for the set of end-effector points

gathered during the workspace search.

A convex hull of a set of points § is the smallest convex set that contains those
points [50]. In other words, the convex hull of set S is the smallest polygon (for planar
points) or polyhedron (for spatial points) that contains S. The convex hull can be
imagined as a rubber band that surrounds § that contains planar points, or a balloon in
tension that encloses a solid object in 3-D space. Also, the convex hull is the smallest
area (or volume) that encloses S. The difference between a convex hull and a polygon
enclosing a set of points is shown below. Barber et al. [50] created the Quickhull

algorithm to determine the convex hull for a set of 2-D, 3-D and 4-D points. This
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algorithm searches for the extreme points and creates facets, or ridges of the convex hull.
If a point is outside of the facet boundaries, it is an extreme point; otherwise it is not part
of the convex hull. The code has been implemented in MATLAB and is used to
determine the set of points which represents the convex hull, which is taken as the outer
workspace boundary in this thesis. The MATLAB function convhull finds the convex
hull points for a set of 2-D points and calculates its area, and convhulln determines the
convex hull for a set of 3-D points along with its volume. These two functions were used
to compute the convex hull of the gathered flexible tip points, hence determining the

workspace outer boundary areas or volumes.

./ Simple Polygon
Convex
Hull

Figure 6-1: Simple polygon and convex hull surrounding a set of points

6.1.2 Jacobian Index Method

The second method to determine the maximum deflection position and orientation
involves using the deformation Jacobian matrix in of Chapter 5 in order to assess when
the global tip displacements are at the highest for a given range of joint input angles. It is
well known that higher forces give larger displacements; thus, when the robot is fully
extended to a point that is furthest from the base of the robot, the largest deflection due to
the payload can occur, as opposed to any other points, since the moment arm that is

created is the longest.

Previously researchers created performance indices using the velocity Jacobian to

assess the kinematic performance of a robot. Yoshikawa [51] determined the
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manipulability index for a redundant manipulator by taking the product of the singular
values of the velocity Jacobian which is the same as taking the square root of the product
of the Jacobian and transpose of the Jacobian. A redundant manipulator has a higher
number of DOFs required to perform a certain range of motion, so the extra joints are
redundant. For non-redundant manipulators, the manipulability index is simply the
determinant of the velocity Jacobian. Afterwards, Yoshikawa [51] showed that his
manipulability index was proportional to the manipulability ellipsoid volume which
represents the distance between the manipulator configuration and a kinematic singularity.
When the manipulability index approaches zero, the manipulator approaches a singular
position, so the manipulability is a measure of the robot’s ability to move freely in any
direction. Another performance index using the velocity Jacobian is the dexterity [52].
This is the reciprocal of the velocity Jacobian condition number, or the maximum to
minimum singular value ratio. The dexterity gives an indication of the shape of the
manipulability ellipsoid because the maximum and minimum singular values of the
Jacobian correspond the major and minor axis of the ellipsoid. When the condition
number is equal to one, the ellipsoid shape becomes a circle and the end-effector of the
robot can move with the same performance in any direction. On the other hand, a larger

condition number means that the robot is closer to a singular configuration.

Although the two previously mentioned velocity performance measures use
different Jacobians than deformation Jacobian described in Chapter 5, they can still be
used to determine when the deformation Jacobian allows the robot to be at a fully
stretched position in a direction perpendicular to the payload force, where the maximum
displacement is most likely to occur. Referring to the deformation Jacobian in equations
(5.24) and (5.25), the cross product terms in the upper right hand part of the Jacobian are
used to transform the moments and forces from the tip of the robot to the tip of the i™
module. When the distance from the tip to the i module becomes larger, the forces
become higher, consequently increasing the tip displacement. The phenomenon is similar
to a single cantilever beam in bending with a load applied at the tip in the direction of
gravity. If the beam is tested at its full length along with another similar beam, but with

half the original length, under the same applied load, the beam with the longer length will
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have the higher deflection because it has the largest moment arm. Since the dexterity can
measure the ability of a robot to arbitrarily change its position and orientation, it can be
used as a means to measure a robot’s ability to apply forces in arbitrary directions. Define

the kinetostatic manipulability index as:

w, =det(J,,7,) (6.2)

Alternatively, equation (6.2) can be re-written as the product of the singular values of the

deformation Jacobian for » modules:

W, = Ahy ey (6.3)

In a similar scenario with the kinematic manipulability index, the kinetostatic
manipulability index gives the shape of an ellipsoid, but it has no indication of its size
[52]. However, the dexterity can give an idea of shape of the ellipsoid. Thus, using a form

of the dexterity, the kinetostatic dexterity can be defined as:

y)
K, = —l—“ﬂ (6.4)

‘min

where Apgy is the maximum and A, are the maximum and minimum singular values of
the deformation Jacobian matrices for modules i to n. When the reciprocal of the
kinetostatic dexterity is larger, the manipulator approaches a singular configuration.
Therefore, to find the maximum deflection position, equation (6.4) can be minimized for
a given range of joint input angles. The minimum value of the kinetostatic dexterity can
occur at the maximum deflection position, because the robot will be stretched out furthest
from its base, closer to a singular position. However, if a robot has a large number of
joints, there may be more than one singular position, hence the solution that gives the

longest reach perpendicular to the direction of the payload force should be used.

6.2 Maximum Allowable Payload

The maximum allowable payload is the largest payload that the MRR can hold at
its end-effector. Once the maximum deflection position is determined, the maximum

allowable payload can be determined at this position and orientation, since this position
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will not change for different magnitudes of loads applied in the same direction. For a
given deflection, the maximum allowable payload can be determined using a number of
optimization methods. In this thesis, a modified bisection method is used. Usually, the
bisection method is used to determine the roots of a function at x = 0. Here, the function
is given by equation (5.33) to solve for the maximum allowable force in the negative y-
direction at a constrained tip deflection in the same direction. Thus, the “zero” line in the
original bisection method is shifted to the constrained tip deflection. After choosing the
maximum allowable displacement, v,,,, the next step in the bisection method involves
choosing an initial guesses for the upper and lower limit to the maximum allowable
payload, F, and F;. In this version of the bisection method, it is quite safe to assume a
large positive number and a large negative number for the upper and lower initial force
bounds, respectively. Afterwards, the upper and lower limits are bisected using:

FE +F
Fy,ﬁnal= 2 :

(6.5)

Then, equation (6.5) is substituted into equation (5.33) to determine the tip deflections.
The calculated tip deflection, v(F;, sina)), is then used to check for the following bisection
conditions:

ifv(F

¥, final ) _vmax > O

thenset £, = F, ;.
else if v(F,

Y. final

then set F, = F,

v, final
else v(Fy,ﬁna, ) Ve =0

and F, , , is the maximum allowable force.

) -V, <0
(6.6)

The algorithm in equation (6.6) is repeated until a specified absolute maximum error (g)

is obtained. The absolute maximum tolerance can be written as:

LB q00% 6.7)
F, +F,

gabs
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6.3 Module Enumeration

For an increasing number of modules, the number of configurations can increase
exponentially. For the example, an MRR with three links and three joints each with six
possible configurations, the total number of configurations is 6° = 46656. Although this is
a large number of total configurations, not all of them are feasible. The purpose of the
enumeration is to eliminate infeasible configurations with regards to certain criteria in
order to reduce the total number of configurations required to analyze. Chen and Burdick
[53] created an enumeration method which was based on the geometric symmetry
properties of a set of modules and a graphical approach to represent the robot’s topology

in order to eliminate configurations that represent symmetric kinematics.

In this thesis, the enumeration was performed by using the ZRP and quasi-global
connectivity methods presented in Chapter 3 to represent the configurations of the joints
and links. A number of steps were created to enumerate the revolute joint modules, but
not the link modules. This is because each link module is constrained to be in a
configuration with a positive direction perpendicular to the previous joint in order to
reduce the chances of module collision. For example, if a revolute joint is configured in
the “x”, “y”, “z”, “-x”, “-y” or “-z” direction, the next link will either be in the “z” or ”x”
directions only. The following MRR assembly constraints are the basis for the
enumeration. First, the total possible number of joint configurations can be determined

and placed in a table, and then the infeasible configurations can be eliminated with the

use of the following rules:

1. No two configurations can have a symmetric topology about the same plane.

This rule implies that no two configurations can have symmetric shapes about the
same plane because two symmetric configurations not only give the same kinematic
results during motion, but they also produce the same maximum deflection position. For
example, consider an “RLRL” type MRR in the “z, x, z, X” and “-z, X, -z, X~
configurations. Both cases give the same position and orientation about the plane of
symmetry after movement and the same magnitude of the tip deflection is also obtained.

The same results are obtained for “y, x, -y, X and “-y, X, y, X configurations. Although
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the directions of some of the displacement terms can be different between the two

configurations, their magnitudes remain equal.

2. The first joint can have only positive-axis configurations.

This rule is because once the first joint has negative directional configurations,
there are high possibilities that symmetric configurations about the base link can be
formed. Also, referring to the system described in Chapter 2, the first joint cannot have
any “-y” configurations because it will clash with the base link. This brings forth the

constraint to prevent module clashing for all other modules.

3. Each module cannot be configured in the negative direction of the previous module.
This enumeration constraint relates most to the connectivity of both link and joint
modules. Since the link modules are assumed to be configured in only the “x” or “z”
configurations, special attention must be made to the configurations of the joints and link
modules to ensure that the following modules do not clash or overlap with the previous
modules. If a joint is in the “y” configuration, the next joint cannot be in the “-x”
direction, since the preceding link after the first joint is automatically configured in the

“x” direction. The following table shows the possible configurations a joint and a

preceding link.
Table 6-1: Joint and successive link configuration directions
Joint Direction ll\l)eix)fetclgiicl)lrll(
X z
y X
z X
-X z
-y X
-Z X

4. Each module must be perpendicular to each other.
As shown for the MRR in Chapter 2, each link is configured with the axis of its

length perpendicular to the preceding revolute joint’s axis of rotation. Therefore, no two
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successive modules can be configured in the same direction. This can produce axial joint-
link modules and for the system used in this thesis, there are no available connection

interfaces to allow these types of configurations.

Using these four rules, a table with the total number of configurations can be
drastically reduced to contain only feasible configurations. Additionally, configurations
that allow redundant planar motion can also be removed. However it can be shown that
some planar configurations can give higher tip displacements than some spatial
configurations. It is important to note that when these enumeration rules are carried out in
the above order, the smallest set of feasible configurations are produced. If the rules are
carried out in the reverse order, they produce a larger set of feasible configurations,
which can be more time consuming to perform analyses, but is a more conservative path

to take when the known number of feasible configurations are higher.

6.4 Simulation and Results

A simulation was conducted to determine the maximum deflection position and
maximum allowable payload for the example robot given in Chapter 5. The workspace
search method was used in order to provide a visualization of the workspace outer
boundary and determine its volume using the convhulln function in MATLAB and also
check the kinetostatic dexterity using equation (6.4). Unlike the analysis in Chapter 5, the
module self-weights and motor weights were ignored because equation (6.4) does not
include the possibilities of loads applied elsewhere from the tip. With three revolute
joints and three link modules, there are 6> = 216 possible joint configurations. Using the
enumeration rules from the previous section, the smallest number of feasible joint
configurations is 18. These unique feasible configurations are listed in Table 6-2. All

configurations undergo spatial motion except configurations 3, 7, 14, and 18.

For each configuration, the MRR initially moved from the initial configuration
setup position and a payload force of P = 100 N was applied in the negative y-direction.
The robot was kinematically positioned using the quasi-global connectivity method

presented in Chapter 3. Each joint had a range of motion from -90° to +90° in increments
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of 10°, so there were 6859 total positions tested for each of the configurations. For each
position tested, the tip deflection vector was calculated using equation (5.32) and the

kinetostatic dexterity was calculated and stored also.

Table 6-2: Enumeration table for an MRR with three revolute joints and link modules

Config. Joint 1 Link 1 Joint 2 Link 2 Joint 3 Link 3
# Configuration Configuration Configuration Configuration Configuration Configuration
1 X z X z y X
2 X z y X y X
3 y X y X y X
4 z X y X y X
5 X z -X z y X
6 X z -y X y X
7 y X -y X y X
8 z X -y X y X
9 y X -z X y X

10 X z y X z X
11 y X y X z X
12 z X y X z X
13 y X z X z X
14 z X z X z X
15 y X -y X z X
16 z X -y X z X
17 y X -z X z X
18 z X -Z X z X

Once the tip deflections were determined, they were added to the rigid-body tip
position vector obtained from the kinematics (as in equation (5.63)) and stored to later
calculate the workspace. Also, for each iteration, the calculated tip displacement vector
was compared to the maximum tip displacement vector. If the calculated vector was
higher than the maximum, it was stored as the maximum displacement vector, along with
the corresponding Jacobian and recursive rotation matrices, rigid-body tip position and
local body vectors, along with the joint input angles for the maximum deflection position.

Afterwards, when the maximum deflection position was determined for each
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configuration, the maximum allowable payload for a maximum deflection constraint of
0.0001 m was determined, with an error tolerance of 10'°, Table 6-3 shows the maximum
deflection position results and Table 6-4 shows the workspace, minimum dexterity and

maximum allowable force for a tip deflection in the y-direction of -0.0001 m.

Table 6-3: Joint angles, maximum tip deflection and maximum allowable payload results

Local Joint Input Angles Maximum
for Maximum Deflection Global Maximum Tip Deflections Allowable
Config Position Payload

# | Joint1 | Joint2 | Joint3 u ¥, " (for v=-0.1

ldeg] | [deg] | [deg] 1 0 10 ey

[m] [m] [m] [N]
1 0 20 -50 0.01304 -0.37392 -0.00560 -26.74306
2 30 -20 -20 0.02278 -0.36317 0.00248 -27.53525
3 -90 0 0 -0.06249 -0.31468 0.11430 -31.77777
4 -30 -70 20 0.00248 -0.36317 0.02278 -27.53525
5 0 -20 -90 0.002742 -0.35828 -0.01441 -27.91109
6 20 20 -20 -0.00994 -0.32903 -0.00710 -30.39158
7 -90 0 0 0.04182 -0.31468 0.12216 -31.77777
8 -20 70 20 -0.00710 -0.32903 -0.00994 -30.39158
9 0 20 40 -0.00467 -0.36337 -0.01334 -27.52000
10 10 -20 10 0.02972 -0.37384 0.01251 -26.74923
11 -90 20 20 -0.00283 -0.32399 0.08978 -30.86497
12 -10 70 10 0.01251 -0.37228 -0.02958 -26.86147
13 60 0 0 0.00061 -0.39214 -0.00052 -25.50058
e 0 0 406l | 0 | -24.77600

15 -40 -20 -20 -0.06574 -0.32399 -0.05894 -30.86497
16 10 -70 -10 -0.01251 -0.37228 0.02958 -26.86147
17 -70 0 0 0.00026 -0.34772 0.00071 -28.75874
18 0 0 0 0 -0.35865 0 -27.88230

From Table 6-3 above, the maximum tip deflection occurs for configuration #14
which also has the lowest allowable payload for the given deflection constraint. Also, this
configuration has zero deflections in the x- or z-directions because the maximum
deflection position is perpendicular to the payload force. The maximum deflection
position for configuration #14 occurs at its initial setup position and is shown in Fig. 6-2.
On the other hand, configurations #3 and #7 have the lowest maximum deflections in the
negative y-direction and they can take the highest allowable payloads, as expected. These
two configurations undergo planar motion and configuration #3 is shown in Fig. 6-3.
Although these configurations have the highest y-deflections, they do not have the
highest resultant deflection. Instead, configurations #6 and #8 have the highest resultant

deflections and configuration #8 is shown in Fig 6-4. Furthermore, it is worth noting that
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two configurations undergo planar motion and configuration #3 is shown in Fig. 6-3.
Although these configurations have the highest y-deflections, they do not have the
highest resultant deflection. Instead, configurations #6 and #8 have the highest resultant
deflections and configuration #8 is shown in Fig 6-4. Furthermore, it is worth noting that
for configuration #13 (shown in Fig. 6-5), the same displacement values occur when joint
1 is rotated from -90° to 90° and the other two joints remain at 0°. The same kinetostatic
dexterity values were also present at those positions. The result is most likely due to the

machine precision used in MATLAB.
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Figure 6-2: Maximum deflection position and workspace for configuration #14
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Figure 6-5: Maximum deflection position and workspace for configuration #13

For each configuration, the point where the maximum deflection position occurs
intersects the workspace outer boundary. Interestingly, the tip position of configuration
#14 had the furthest reach away from the base vector, so this was the configuration with
the highest moment about the tip of the base vector, thus producing the maximum
deflection. Table 6-4 shows the coinciding workspace and kinetostatic dexterity results.
The maximum workspace volume occurs in configurations #9, #12 and #16. In each of
their initial setup configurations, the middle joint is perpendicular to the other two joints.
The smallest workspace volume occurs for configurations #1 and #5 because the first
joints have collinear axes of rotation, and the third joint has an axis of rotation that is
perpendicular to the first two joints during the initial configuration setup. Configuration
#5 is shown in Fig. 6-6.
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Table 6-4: Workspace volume (or area) and kinetostatic dexterity results

Configuration W"[‘$§}’ ?::sgztngzgg:gary Kinetostatic Dexterity,
# [m?] for planar motion K
1 1.62927 m° 0.54553
2 3.72052 m’° 0.55165
3 4.44140 m” 0.55439
4 451160 m° 0.55165
5 1.62927 m’ 0.55044
6 2.86361 m°
7 444140 m’ 0.55439
8 324709 m’°  0.57054
9 0.54553
10 3.54744 m 0.55165
11 3.25854 m’ 0.56010
12 13303 m 0.55204
13 451160 m’ 0.53413
14 444140 m” 0.53413
15 3.25854 m’ 0.56010
16 0.55204
17 3.24709 m 0.55044
18 444140 m* 0.55044

As expected, configurations #13 and #14 have the lowest kinetostatic dexterity which
coincide with the highest deflections and lowest allowable payload results from Table 6-
3. Configurations #6 and #8 have the highest minimum kinetostatic dexterity parameters,
but they do not have the lowest deflection in the negative y-direction. However, their
resultant deflections, obtained from equation (6.1), are the lowest of all configurations.
Also, configurations #13 and #14 have the two lowest kinetostatic dexterities, and the
highest tip deflections, proving that the kinetostatic dexterity can be used to determine the
positions and configurations with the highest deflections. Furthermore, The maximum
allowable and maximum deflection position can be tested by applying the maximum
allowable payload for a y-deflection of -0.0001 mm and performing the workspace search
once again. When this was conducted, all maximum deflections were -0.0001 m and the

maximum deflection positions remained the same.
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7. Module-Based Optimization

In this chapter, the kinetostatic equations from Chapter 5 and the maximum
deflection position methods from Chapter 6 were used to optimize individual module
sizes, namely their cross sections. As shown in Chapter 2, this type of MRR is manually
reconfigured and the modules can get quite heavy for an individual to lift. Thus, the
objective function is to minimize the mass of each module. The design variables in this
chapter are the cross section thicknesses for each module, assuming that the links are
hollow and the joint casings are modeled instead of the joint shafts. Also, the constraints
acting on this design optimization include the tip deflections, stress safety factors and
bounds on the cross section design variables. These constraints are non-linear and are
implicitly solved since the deflections and compliance (or stiffness) are dependent on the
cross section design variables. There are a number of optimization methods that can be
used to solve this problem, but in this chapter a genetic algorithm (GA) will be used since
it can be applied to a majority of optimization problems. The results obtained from the
GA were compared to a simple, yet effective, direct method to solve for the thicknesses
of each module for known deflection constraints. This method involved solving the
compliance terms directly and approximating the local deflections using a pseudoinverse

form for the inverse of the deformation Jacobian matrix.

7.1 Optimization using a Genetic Algorithm

There are several advantages to using a genetic algorithm for a given optimization
problem. First, GAs only use function values in the search process to progress toward a
solution with disregards as to how the functions are evaluated [54]. Also, it does not
matter whether or not the functions are differentiable or continuous because the GA does
not consider this. Also, GAs can be applied to a variety of problems with any kind of
objective functions and constraints, and they determine global optima instead of local
optima. However, the main drawbacks are possible large computational times and there is

no absolute guarantee that the global optimal solution has been obtained [55].
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7.1.1 Steps involved in the Genetic Algorithm

Genetic algorithms start with an initial set of solutions, called the initial
population. Within the population, there is a set of individual chromosomes. These
chromosomes are usually real or binary bit-strings, expressed as a sequence of genes. The
objective function, usually called the fitness, is then evaluated for each chromosome in
the population and a new population is created with the hopes that this new population
will be better than the old one. This step is called reproduction and begins the iterative
process for the GA. The first stage of reproduction is called selection, where designs from
‘Ehe from the current population are selected according to the selection process used, such
és the roulette wheel method, where each chromosome is assigned an area and the
chromosomes with the highest fitness have larger areas, hence they have a better chance

of being chosen when a random number is used to select the chromosome [55].

Afterwards, the crossover stage occurs, where designs are selected with a
specified crossover probability and random sites on each of fhe bit-strings are swapped.
The next step in the process is called mutation where a mutation probability is chosen for
the newly selected chromosomes and a randomly selected position on the bit string is
switched, thus changing the fitness of the chromosome. Afterwards, the newly created
offspring are placed into the population and the process is repeated until an end condition
is met. Each iteration is called a generation and usually, the end condition is a specified
tolerance between the past few successive generations, such as a very small change in the
fitness function between generations. If the progress towards the best fitness is too slow,
completely new designs can be introduced into the population after a set number of

iterations in order to increase the diversity in a process called migration [54].

7.1.2 MRR Implementation

Genetic algorithms can be applied to a number of problems addressed in this
thesis, for example, the search for the maximum deflection position in Chapter 6. For that
problem, the upper and lower bounds for the joint input angles can act as constraints, and
the fitness function would be to maximize the deflection in the negative y-direction with

the design variables being the joint input angles. In this chapter, the configuration and
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position of the MRR with the highest maximum tip deflection from Chapter 6 was used
as a design point in order to minimize the tip deflections incurred under the applied
payload of -700 N. 1t is also necessary to reduce the mass of the entire MRR in order to
easily lift and position the modules during manual reconfiguration. Therefore, the fitness

function to minimize is given by:
My = PAL + AL +...... +p,4,L, (7.1)

In order to decrease the mass of the MRR, the cross sections of each module can
be modified to have the smallest cross section area possible. Here, it is assumed that the
links as well as the joint casings are hollow and the thickness of each module (¢ .... #,,) are
the design variables. The design variables also act as constraints since they can have

upper and lower bounds and are given by:

t, <t <t (7.2)

lower i upper

Also, some robot designers prefer to have some equal-sized links and joints, while others
simply do not care. Thus, there exists some preferred size ratios and the first link and first
joint in the open-chain can act as a reference size to the consecutive links and joints.
Define the size ratio for the sizes of each link relative to the first link as R; and the size
ratio for the sizes of each joint after the first joint as Ry;;. The size ratio constraints can

then be written as:

For links:
t,, = (known), PR Rs,l,ltl,l’ 5= Rs,l,3tl,1’ e, S Rs,l,n,tl,l
‘i (7.3)
For joints:
(knOWl’l), jZSRSjljl’ 13—Rs1311’ stn Jsl

where #;; and #;; are the link and joint thicknesses for the i™ module. Thus, a size ratio for
each successive module can be defined with reference to the first module of its kind. Also,
there are structural constraints involved, such as the maximum tip deflection and the
stress factors of safety which are given by:

<]

i < | (7.4)
FS,,>FS

y,min
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where Vmaxsp is the maximum allowable tip deflection in the y-direction, ES,; can be
calculated for each module from equation (5.53) in Chapter 5, and FS), 4y is the minimum

allowable factor of safety.

7.1.3 Simulation and Results

Using the three-link and three-joint MRR provided in sections 5.3 and 6.4, each
link and joint module was optimized in order to reduce the system weight at the
maximum deflection position and configuration found in section 6.4, which was
configuration #14 with all joint input angles of 0°. However, it is desirable to load the
robot with a payload of -100 N instead of using the maximum allowable payload forces
determined in section 6.4. Also, the maximum allowable tip deflection in the y-direction
was constrained to -0.000/ m. The upper and lower bound thickness constraints from
equation (7.2) for each module were 0.03 m and 0.003 m, respectively and the minimum
allowable factor of safety for each module was 1.5. Furthermore, the size ratios for joints
2 and 3 were relative to the first joint were both R 7= 0.75, so these joints could not have
a thickness of more than 75% of the first joint’s thickness. Similarly, the size ratios for
links 2 and 3 relative to the first link were both 0.8. Another test case was conducted
without the size ratio constraints to test the effectiveness of the GA. Typically, the
module thicknesses should get larger going from the tip of the robot to the base, because
the local displacements on each module decrease down the chain in that direction. The
GA was implemented using the Genetic Algorithm and Direct Search toolbox from
MATLAB with the parameters listed in Table 6-1 below.

Table 7-1: Parameters used in the genetic algorithm

Parameter Value
Initial population size 30
Crossover fraction 0.85
Crossover function Two point method
Fitness scaling function Rank method
Maximum number of generations 100
Migration fraction 0.1
Migration interval 10
Selection Function Roulette wheel method
Maximum number of stall generations 15
Tolerance for fitness 10
Feasibility with respect to non-linear constraints 107"




The initial population size was chosen as 30 because if it was too small or too
large, the GA would take longer to converge to a final solution. The crossover fraction
was chosen to be 0.85, because typically, the crossover probability ranges from 0.8 and
0.95 for most studies [40]; and the crossover function chosen was the two point method,
which first selects two random integers from 1 to the number of design variables, then
selects a range of genes between those two integers from the first chromosome to replace
the same range of genes in the second chromosome. The fitness scaling used was the rank
method, which ranks the chromosomes in order according to their fitness [55]. Also, a
migration function was used for this optimization because it can prevent the GA from
having stalled iterations, where the fitness does not change after a few iterations. The

migration interval was therefore set to 10 iterations.

In MATLAB, the migration scheme chooses the best individuals from one sub-
population to replace the worst set of individuals from another sub-population, with a
specified fraction of individuals allowed to migrate. Also, the maximum population size
was chosen to be 100 in order to prevent the GA from running too long, and the fitness
and convergence tolerances were each set to 10!, Table 6-2 below shows the final
results of the optimization for the test cases with and without the size constraints and

Figure 7-1 shows the fitness statistics for the optimization.

The Genetic Algorithm and Direct Search Toolbox allowed for quick solutions for
both cases with only eight generations each. When the size ratio constraint was active, the
results show that the entire weight of the MRR was slightly higher than the results
produced when the size ratio constraint was ignored. Furthermore, the factor of safety for
each module was much larger than the minimum recommended. Upon determining the
new tip deflections, both cases had transverse deflections in the negative y-direction

slightly less than the known deflection constraint.

108



Table 7-2: Module thicknesses obtained from GA

Module: Joint 1 Link 1 Joint 2 Link 2 Joint 3 Link 3

t; [m]
(using “<” | 0.00703 0.01571 0.00527 0.01226 0.00350 0.00523

size ratios)

4 [m] L
(ignoring | 0.00626 0.01442 0.00747 0.01261 0.00358 0.00481 | 28.79922 |

size ratios)

- Best: 28.6012 Mean: 29.6012 Best: 28.7892 Mean: 28.7992
Y ST PR . BB ey b Seeresnregteamntyreyseterpunianas serenrararieniare :
) : + Bestfiness |: +  Best fithess |}
60 : —&— Mean fitness |: —&— Mean fitness |
: : T T T PO SO S S SO O SO TRE
BEE N ....................................................
o 50F B P TETS RTINS ° :
§ : : g :
© A5 F A : A0k N JUT SUUUTROE SOPPPPPRE SR
£ 4ol : £ :
: : T S S P P PP PP
35k
L] R N S O S P PP P PP ,
25 1 i i i ; ; ; B
1 2 3 4 5 5} 7 8 9 10 % 1 2 3 4 5 6 7 8 9 10

Generation Generation
(a) (b)

Figure 7-1: Fitness statistics for test case (a) using size ratios, (b) ignoring size ratios

7.2 Direct Module-Based Method

Instead of using an optimization algorithm, this method can solve for the module
cross section sizes by directly using the compliance equations developed in Chapter 5 for
a given payload and global tip deflection vector. However, if the module weights are
included, than an iterative process is necessary. This involves solving for each module’s
cross section properties explicitly using the local compliance matrix from equation (5.23)
in expanded form and rearranging the equations to determine the unknown variables for
each mode of deformation, and the largest thickness or cross section area for each case

can be chosen as the final module size. Consequently, the solutions are obtained in the
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local frame for each module. This is a conservative approach, but should yield results that

satisfy the constrained deflections since the unknown variables are solved directly.

7.2.1 System Equations

After the maximum deflection position and configuration are determined using
one of the methods in Chapter 6, the next step is to specify a global tip displacement
vector which will act as the maximum deflection constraints, along with known allowable
payload. Then, the following step includes determining the local forces using equation
(5.27) instead of equation (5.39) because the global tip forces for each individual module
cannot be determined due to the unknown compliance terms. Afterwards, the local
displacements must be determined. This can be done using equation (5.28), however,
since the inverse of the deformation Jacobian for » modules cannot be found, an

approximation must be applied.

Previously, the pseudoinverse of the Jacobian was applied to solve robot
kinematic equations [56, 57]. Here, the pseudoinverse will be utilized to determine an
approximation for the inverse of the deformation Jacobian for » modules. In equation
(5.26) the Jacobian is an m x n matrix, where m < n. Thus, the pseudoinverse of the

deformation Jacobian can be written as:
J:i,n = J;,n (Jd,ng,n )_1 (75)

The above equation provides the least-squares solution to the system of linear equations

in found in equation (5.28), and its modified form then becomes:

{Ue,tip} = Jg,n (Jd,nJZ,n )_1 {Utip}G (76)

Equation (7.6) is used to determine the unknown local displacement vectors using only
the global tip displacement vector, which must be specified beforehand. A good estimate
of the tip displacement vector can be obtained from performing a kinetostatic analysis of
the original model with known compliance terms and obtaining the tip displacement
vector. Then, using this known tip displacement vector, another set of tip displacements,

which can act as the maximum allowable, can be specified using the same directions of
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the displacements found in the kinetostatic analysis. Equation (7.6) distributes the
allowable global tip displacement vector to local coordinates for each module, and once
each allowable local tip displacement vector is determined, the local compliance
equations for each module can be expanded from equation (5.23) and the cross section

variables can be determined. The axial force-displacement relation can be rewritten as:

= f =, (1.7)

Assuming the link is a hollow rectangular beam with a known inner cross section base
length of bjne, and cross section height of 4., the thickness due to axial forces can be

determined using equation (7.7) as:

Li

- f =4+ b +2th (7.8)

i~inner,i i"inner,i
i~

Since equation (7.8) provides more than one solution, the largest real number should be
chosen for the thickness. If the joint casing is a hollow cylinder, equation (7.7) can be

rewritten to solve the thickness as:

_uL_li; x,i = 2ﬂ'tl (rinner,i +ti) (79)

i~

To determine a module’s thickness due to torsional deformations, the torsion relation can

be written as:

—m, =6 (7.10)

If the module is a hollow rectangular link, its thickness can be solved using the following

equation:

2 2
L‘m = 2ti (ti +binner,i) (tl + hinner,i)
Go, (21,45, +h,

inner i inner i )

(7.11)

Similarly, if the module is a joint, the thickness of its casing can be determined from:
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"(‘;%T mx,i = Z2ZI—|:("'inner,i + t,' )4 - r;':ner,i i| (7 1 2)

s

The terms due to bending in the x-y plane can be written directly from equation (5.23) as:

L L
! .+ ! m.. = vt
3EI, Ty 2EI, *
. L (7.13)
! .+ f m. .= '
2‘Ei]z,i f;,l Ei‘[z,i “ ¢l

In equation (7.13) there are two terms due to the coupling of the forces, hence two terms
had to be determined to solve for the thicknesses of both the link and joint modules. For a

hollow link module, the thickness can be determined using:

r I 1 1 3
S g o= By +28 ) (B, 20, ) —b,,, B }
(3E’ -f;/,l 2E' z,l ] vi 12 [( Inner,i 4 )( inner 1 1 ) Inner,l” “Inner !
, (7.14)
L L 1 1 [ 3 3

S f i, = (B, +26 ) (B, +28) =By }

(2E[ fy,l Ei z,lj¢i 12 ( inner,l 1)( inner,i1 l) inner,l” “inner i

The upper term in equation (7.14) is due to the linear displacement in the y-direction and
the lower term is due to angular displacement about the z-axis, therefore two distinct
thickness values are to be determined. For a hollow joint module, equation (7.14)

becomes:

r I I [ 4, }
—f  +——m_, |—==—|\r, . .+t ) -r .
(3 Ei f:v,t 2 E,- z,:) v 2 ( inner i i ) inner i

) (7.15)
if‘i-,‘-'éi—rnzi l'=£|:(rinneri-'_ti)4—'r}t‘:neri:l
2E7 E Y4 2 ’ ’
For bending in the x-z plane the force-displacement relations can be written as:
3 2
L Joi— L m,;= W;'
3E1,,"™ 2EI, ”
] ’ (7.16)
L Fat, oy
2 Ei Iy,,- z,i E,- Iy,,- Vi Wi
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Using equation (7.16) for a hollow link, the thicknesses due to the linear displacement in

the z-direction and rotational displacement about the y-axis can be determined as:

i

[;12— zi 2—LE12'— my,ij.;"lT B 113[( h"nner,i + 2ti )(blhﬁéf," + 2ti )3 - hi""er’ibliner’i:’

r . o (7.17)
X . 3
“seSlat—m, | —==—|(h,.. +2t) (b +2tY -k B} :}
( 2EI f;,l EI_ p s J l//l_ 12 [( nner i 7 )( nner,1 1 ) inner 1~ inner i
Correspondingly, for a hollow joint module, equation (7.17) becomes:
3 2
Li f;i - Li myi l'='zl:(]:'nneri +ti)4 —r;‘:neri]
3E,°" 2E )4 2 ’ ’
(7.18)

2
__‘L;u/;i-kimi i'=Zl.—l:(rinneri_’_tz’)“—’;’:neri:l
2E7 E M) g 2 ’ ’

1

Therefore, once the local displacements are determined, equations (7.7) to (7.18)
can be used to determine the recommended thickness for each module for the six
different types of local tip deformations. When the components are assumed to be hollow,
each equation gives more than one solution for the thickness, so the highest positive real
thickness should be chosen for each module. Afterwards, the highest thicknesses from
each solution can be compared and the overall highest thickness can be chosen for the

final module design in order to produce a more conservative global tip deflection result.

7.2.2 Simulation and Results

Using the MRR from the example in section 7.2.1, with the same maximum
deflection position and applied payload, the recommended thickness of each module was
determined by using the Direct Module-Based Method. However, instead of constraining
the vertical displacement alone, this method required that the entire maximum allowable
global tip displacement vector is defined. It is worth noting that some of the allowable
local displacement vectors determined using equation (7.6) might have zero terms, and in
order to prevent division by zero, if any of the local displacements found in equations
(7.7) to (7.18) are zero, the corresponding equation is not calculated. Also, the module
and motor weights were neglected, and if they were included, equations (7.7) to (7.18)

must be solved iteratively since the component weights change with different thicknesses.
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For configuration #14 in section 6.4, the linear global displacement in the y-direction was
negative and the other linear global displacements were zero. Also, it was determined that
the rotational displacement about the x-axis was positive, and the rotational displacement
about the z-axis was negative, while there was no rotational displacement present about
the y-axis. Thus, for this example the same directions were used and the constrained

global tip displacement vector for the n™ module in equation (5.28) is defined as:

{U,}.={0 -0.0001 0 0.00007 0 -0.0001}" (7.19)

For each module, the maximum thickness required for each mode of deformation was

calculated and listed in the following table.

Table 7-3: Module thicknesses obtained from Direct Module-Based Method

Maximum thicknesses for each mode of deformation Dominant
Thickness | Thickness | Thickness | Thickness | Thickness | Thickness
Module mode of
due to f, due to f; duetof, | duetom, | duetom due to m, .
y y deformation
[m] [m] [m] [m] [m] '

Joint 1 0 0.00065 0 0 0.00100 Torsion.
4 about x-axis

. Transverse

Link 1 0 0 0 0.019493 bending in

. y-direction

. Torsion

Joint 2 0 0.00075 0 0.00153 about x-axis

- Transverse

Link 2 0 0.02420 0 0.02174 0 0.02221 bending in

. y-direction

Joint 3 0 0.00030 0 0.00335 0 0.000ss |  rorsion
) . about x-axis

’ . Transverse

Link 3 0 0 0 0 0.01122 bending in

y-direction

From the each of the six possible thickness choices for each module, the final
design will include the highest possible thickness in order to satisfy the deflection
constraints. For the link modules, the highest thickness was due to the local transverse
force in the y-direction and the dominant mode of deformation was due to the linear
displacement in the local y-directions. For all of the joint modules, the highest
thicknesses are due to the torsional deformation. Using the maximum thickness values

available for each of the modules in Table 7-3, the overall mass can be calculated as
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46.1271 kg. Comparing the results to the GA used in Chapter 7.1.3, the Direct Module-
Based method gives much higher component weights, due to the conservative choices of
module thicknesses and the pseudoinverse approximation of the allowable local
displacements. However, since the thicknesses were higher, the tip displacements can be
much lower than those obtained from the GA and lower than the maximum allowable
deflections. Afterwards, a kinetostatic analysis was performed to determine the tip
deflections and all of the absolute values of tip deflections were indeed considerably
lower than the constrained tip deflections in equation (7.19), due to the higher thickness
values, which made each component stiffer. In addition, the factors of safety based on
equation (5.53) for each module were well over the recommended factor of safety of 1.5.
Also, the maximum deflection position for configuration #14 was tested using the new
thicknesses determined using the GA and the Direct Module-Based method, and the
position at maximum deflection remained the same for all cases. While the Direct
Module-Based method does not provide the optimal solution, designers can simply select
different feasible thickness values once they are solved in order to provide different

flexibility requirements.
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8. Conclusions and Future Work

8.1 Conclusions

This thesis presented a kinetostatic model of a modular reconfigurable robot,
which was implemented to perform a module-based kinetostatic analysis and
optimization of an MRR. But before the model was developed, kinematic models were
created to simplify the connectivity of MRR modules to form an open-chain robot, and a
flexibility analysis was performed to determine the static and dynamic flexibilities of

joint and link modules.

A method based on relative coordinates was created for those who prefer to
connect modules relative to a body-fixed coordinate system found on another module.
The modified zero reference plane method allowed the modules to connect using a single
global coordinate system, and the quasi-global method allowed the global coordinate
frame to be shifted according to any possible offset angles. In each of these methods, the
possibilities of angular offsets were accounted for, and it can be shown that the quasi-
global method allows for the easiest connectivity and reconfiguration of modules since
the global coordinate system is shifted for the connectivity of each module after any
angular offsets are present. However, this method requires an extra set of calculations to
determine the true orientations of each module since it configures the body vectors using
the configuration matrix, unlike the other two methods where the configuration matrix is
implemented in the static rotation matrix calculation. When there are no offsets present,

the quasi-global connectivity method is the same as the ZRP method.

A flexibility analysis of a link connected to a reconfigurable joint model was
conducted based on varying joint and link sizes. Three models were created for the static
and dynamic cases to represent a flexible link-rigid joint module, a flexible joint-rigid
link module, and a hybrid flexible link-flexible joint module. Also, the effects of joint
bending and axial deformation were included in the hybrid model to account for larger
joints most commonly found in MRRs. Since the flexibility of each component is

dependent on its size, two ratios (R, and R;) were defined to show the effect of flexibility
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on joint and link sizing for different configurations. For various joint and link sizes, one
of the components may become flexible while the other becomes rigid, or both
components can be considered flexible. For this reason, the regions of flexibility for
varying joint and link sizes are plotted for each configuration of the joint-link module,
from which the type of flexibility can easily be identified for a specified joint or link size.
By knowing the flexibility of each component, the appropriate model can be used and the
overall positional accuracy of the joint-link module can be improved by including the
effects of static and dynamic flexibility. This method can aid in the design and control of
link-joint modules by accounting for joint and/or link flexibility. Furthermore, the
flexibility of the joint-link models presented in this thesis were used as a basis to perform

the kinetostatic analysis of an entire MRR.

Two kinetostatic models were then developed based on the flexible joint and link
modules and compared to test their relative accuracies against each other. Both models
incorporated the forward kinematics and connectivity methods developed in Chapter 3.
The Compliance-Jacobian model used the compliance of each module and the
deformation Jacobian, which transforms global forces and deformations to each module’s
local coordinate frame. Therefore, this model easily determines the global displacements
at the tip of the end module for a given kinematic position and orientation. On the other
hand, the Compliance-Jacobian model requires extra steps if the module and motor
weights are to be accounted for in the deflection calculations, and the global tip
deflections for each module can only be solved once the global tip deflection at the end
module is determined. The other method was a finite element method with modified
equations to account for the space-fixed kinematic equations previously developed. The
stiffness matrix used in this method was more difficult to assemble, but the system
assembly allows for all of the global tip deflections to be solved simultaneously. Also, if
the joint modules are assumed to have a negligible length, the finite element model
equations cannot solve stiffness terms with zero lengths or else the stiffness matrix
becomes singular, whereas the Compliance-Jacobian method can still be solved with
some zero-length terms. When the two models were compared, the results show

negligible differences.
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Afterwards, the Compliance-Jacobian kinetostatic model was utilized to
determine the position and configuration of the robot where the tip deflection is the
largest. This was done using an iterative process to search for the joint positions that
contained the highest tip deflections for each configuration of a MRR between the known
joint ranges of motion. By performing the forward workspace search, the workspace
boundary can be visualized by determining the outermost points using a convex hull. It
can also be shown that by using a dexterity index, called the kinetostatic dexterity, the
joint positions that give the highest tip deflections have the lowest index, and vice-versa.
Therefore, this index can be used in an optimization scheme to determine the position and
configuration where the highest tip deflection occurs. However, since the equation is
based on the singularity of the deformation Jacobian matrix, there can be more than one
optimal kinetostatic dexterity index, so the robot position where the longest reach away
from the base in a direction perpendicular to the payload force should be chosen. After
the maximum deflection position and configuration was determined, the maximum
allowable payload for a given deflection constraint can be easily calculated and it can
also be shown that the maximum deflection position does not change if the magnitude of
the payload force changes. In addition, an enumeration method was developed to test
only the feasible configurations, drastically reducing the total number of configurations

that requires testing.

The Compliance-Jacobian kinetostatic model was also used in an optimization
scheme in order to determine the best cross section properties for a given number of
modules in order to reduce the weight of each module ant the maximum deflection
position and configuration. For this problem, a genetic algorithm in MATLAB was
implemented and was proven useful in determining the cross section thicknesses of each
module tested. The results from the optimization were then compared to the Direct
Module-Based Method, which involves a direct solution to determining the cross
sectional properties of each module once the global tip deformation at the free end of the

robot is known.
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8.2 Contributions

The contributions presented in this thesis are summarized as follows:

1.

Directional Configurability and Connectivity

The concept of directional configurability was introduced to allow for the simple
initial configuration setup and reconfiguration for each MRR module in kinematics
programs by simple entering the length of each module and the direction that length
goes relative to a coordinate frame of reference. There were three methods of
connectivity presented to allow for directional configurability: the relative
connectivity method, zero reference plane, and quasi-global method. Each method

included the possibilities of angular offsets such as an uneven base link.

Flexibility Analysis of Reconfigurable Modules

A method to determine the static and dynamic flexibility of link and joint modules
was presented to show that for various sizes of modules, rigid-body assumptions are
not applicable. Two size ratios were define and three models were created to
determine the flexibilities of either the joint and link in different configurations. Then,
the three regions of static and dynamic flexibility can be plotted and designers can use
these graphs to determine which component is more flexible based on its length and

cross section area.

Compliance-Jacobian Kinetostatic Method for MRRs

This method was developed to determine the tip deflections at the end module of a
MRR. Reconfigurability was incorporated by using one of the three connectivity
methods, and equations were developed to enable each unknown variable to be
determined. The Compliance-Jacobian model was then applied to determine the
maximum payload a MRR can take, along with a typical structural optimization
problem. The Jacobian used in this method can also be utilized in the kinetostatic
dexterity index to determine the maximum deflection position and configuration for

an MRR.
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4. Direct Module-Based Method to Determine Unknown Compliance Variables
This method was created to directly determine the cross section properties of an MRR
under a given payload with a constrained global tip deflection vector. It was shown
that the equations present in the Compliance-Jacobian Method can be directly solved
to determine any unknown geometric variables, and can be used to produce

conservative MRR designs with lower deflections, but higher module weights.

8.3 Future Work

The kinetostatic modeling presented in this thesis deals with simple-shaped
modules such as cylindrical-shaped joints and rectangular links with uniform cross
sections, but in reality, not all MRR components have such simple shapes. Thus, it is
recommended that three-dimensional finite elements with higher-order shape functions,
such as tetrahedral and hexahedral elements, be used to create meshed 3-D models of
MRR modules which can better represent complicated shapes. The only downside to this
is the large computational times required to perform the kinetostatic analysis, especially
when searching the entire workspace of a robot, but with computing advancements

increasing rapidly, this can become a realization in the near future.

In this thesis, it was assumed that the robot moves at a quasi-static speed and the
dynamics can be ignored, however, many MRRs can move at high speeds. Hence, the
dynamic effects should also be considered. In addition, a method to determine the inverse
kinematics for MRRs should be investigated and used in the determination of the MRR
dynamics. Furthermore, a better graphical representation of each module can be created
for kinematics programs, and instead of representing the modules as simple beams, solid
models can be visualized. This can give way to more accurate kinematic equations
because the solid geometric models can include the possibility of module collisions more
accurately. Also, beam finite element models can be derived using Timoshenko beam
theory to account for shear deformation in beams with low aspect ratios (length to
thickness). Another future task is to verify the results of the kinetostatic models with

experiments.
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Appendix A - FEM Stiffness and Mass Matrices

The local stiffness equation for a single beam element that can be calculated using
equation (4.4) in Chapter 4 can be explicitly expressed as:
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The local consistent mass matrix for a single beam element that can be calculated using
equation (4.30) in Chapter 4 can be explicitly expressed as:
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Appendix B - Cross section Properties for Common
Shapes

1) Solid Rectangular Beam

y

N

Area moment of inertia about the y- and z-axis:

h,b, b,h,
L= 74 (A1)

Torsion constant:
J = pbi’ (A-2)

Where f is a dimensionless constant and can be determined from Craig [46].

2) Hollow Rectangular Beam with Constant Thickness

y

z« hinner ho
—> t j—
z *—— Diner—>
- ==

(4]
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Area moment of inertia about the y- and z-axis:

_ 1 3 3 _ 1 3 3
1 y - E(hobo - hinnerbinner ) H I z l_i(boho - binnerhinner ) (A—3 )
Torsion constant:
26(b —t) (h —t)
J - ( [4 ) ( (4 ) ( A_4)
b,+h, -2t
3) Solid Circular Shaft

y

—
NG

Area moment of inertia about the y- and z-axis, and torsion constant:

I =1 =20 -yJ (A-5)

4) Hollow Circular Shaft
y

rﬂ

A Na»:
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