
MODEL SELECTION IN STOCK CORRELATION NETWORKS

by

Narges Alipourjeddi

Bachelor of Science, Alzahra University, 2008

A thesis presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the program of

Applied Mathematics

Toronto, Ontario, Canada, 2018

c© Narges Alipourjeddi 2018

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF

A THESIS

I hereby declare that I am the sole author of this thesis. This is a true

copy of the thesis, including any required final revisions, as accepted by

my examiners.

I authorize Ryerson University to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by pho-

tocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the

public.

ii

Model Selection In Stock Correlation Networks

Master of Science, 2018

Narges Alipourjeddi

Applied Mathematics

Ryerson University

Abstract

In this research, we construct market networks to study correlation

between the price returns for all Dow Jones, NASDAQ-100 and S&P

100 indices that were traded over a period of time. We consider market

networks, which have stocks as nodes and edges corresponding to corre-

lated stocks. Specifically, a winner-take-all approach is used to determine

if two nodes are adjacent. We identify that all networks based on the

connecting stocks of highly correlated price returns display a scale-free

degree distribution.

Additionally, we use features for representing different aspects of the

network. The feature includes small connected sub-graphs with three and

four vertices. We use an algorithm to count frequently the number of the

graphlets for our mathematical models and our constructed networks.

Each network is assigned an 8-dimensional vector.

We present a model selection algorithm based on supervised learn-

ing. Our algorithm classifies our market networks with the best fitting

mathematical model.

iii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor

Dr. Anthony Bonato for the continuous support of my MSc study and

related research, and for his patience, motivation, and immense knowl-

edge. His guidance helped me throughout the research and writing of

this thesis.

Besides my supervisor, I would like to thank the faculty and staff in the

Department of Mathematics at Ryerson University for their support. In

particular, I would like to thank Dr. Dejan Delic and Dr. Alexey Rubstov

for being part of my thesis committee. I would also like to thank Dr.

Kathleen Wilkie for chairing my defense.

Finally, I must express my very profound gratitude to my parents and

my spouse, Hadi, for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process

of researching and writing this thesis. This accomplishment would not

have been possible without them. Thank you.

iv

Contents

Declaration ii

Abstract iii

Acknowledgements iv

List of Figures vii

Chapter 1. Introduction 1

1.1. Motivation 1

1.2. Graph theory 3

1.3. Probability theory and complex networks 10

1.4. Summary of Thesis 13

Chapter 2. Machine learning 15

2.1. Introduction 15

2.2. Machine learning methods 16

2.3. Programming languages used in machine learning 27

Chapter 3. Network models 28

3.1. Introduction 28

3.2. Erdős-Rényi model 29
v

3.3. Preferential Attachment model 32

3.4. Simulations 35

Chapter 4. Model selection in stock correlation network 40

4.1. Introduction 40

4.2. Data 41

4.3. Graphlet 52

4.4. Model selection and discussion 57

Chapter 5. Conclusion and Open Problems 61

5.1. Summary of results 61

5.2. Open problems 62

Appendices 64

Appendix A. List of Stocks 65

Appendix B. Codes 72

Appendix C. Correlation Networks 79

Bibliography 85

vi

List of Figures

1.1 An example of graph. 4

1.2 Examples of undirected and directed graphs. 5

1.3 Isomorphic graphs. 5

1.4 Non-isomorphic graphs. 6

1.5 An example of sub-graph, a spanning sub-graph, and an

induced sub-graph. 6

1.6 A disconnected graph. 7

1.7 An example of 3-regular graph. 8

1.8 Kn for n = 1, 2, 3, 4. 8

1.9 The graph P6. 9

1.10 The graph C4. 9

1.11 Trees with n=1,2,3,4. 9

1.12 An example describing the Erdős-Rényi model on a graph with

15 nodes, with p = 0.1 on the left and p = 0.2 on the right. 12

1.13 An example describing the preferential attachment process on

a graph with 15 nodes, with m = 1 on the left and m = 2 on

the right. 13
vii

2.1 Decision tree for a sample of Iris data set. 19

2.2 Binary classification problem with two features. 21

2.3 Decision line x1 − x2 = 0 as a classifier. 22

2.4 Margin of the classifier. 24

3.1 This Erdős-Rényi model is generated with n = 4 nodes with

p = 0.2, p = 0.5, p = 0.7, p = 1 from left to right, respectively. 30

3.2 Simulating the binomial distribution B(20, 0.5) with n = 20

and p = 0.5, B(20, 0.7) with n = 20 and p = 0.7, and B(40, 0.5)

with n = 40 and p = 0.5. 32

3.3 A sequence of four steps of the Preferential Attachment model

from left to right. Empty circles are the newly added node to

the network with m = 2. 34

3.4 A simulation of the Erdős-Rényi model with n = 100 and

p = 0.08. The darker nodes have higher degree. 36

3.5 The degree distribution of the above simulation of G(100, 0.08). 37

3.6 A simulation of the Preferential Attachment model with

n = 100 and m = 2. The darker nodes have higher degree. 38

3.7 The degree distribution of the above simulation of BA(100, 2). 39

4.1 The Dow Jones stock network with ρ = 0.7. 43

4.2 The Dow Jones stock network with ρ = 0.3. 44
viii

4.3 Network parameters from Dow Jones stock networks. 44

4.4 The degree distribution for a Dow Jones network with ρ = 0.7. 45

4.5 The degree distribution for a Dow Jones network with ρ = 0.3. 45

4.6 The S&P 100 stock network with ρ = 0.7. 46

4.7 The S&P 100 stock network with ρ = 0.3. 47

4.8 Network parameters from S&P 100 stock networks. 47

4.9 The degree distribution for a S&P 100 network with ρ = 0.7. 48

4.10 The degree distribution for a S&P 100 network with ρ = 0.3. 48

4.11 The NASDAQ-100 stock network with ρ = 0.7. 49

4.12 The NASDAQ-100 stock network with ρ = 0.3. 49

4.13 Network parameters From NASDAQ-100 stock networks. 50

4.14 The degree distribution for a NASDAQ-100 network with

ρ = 0.7. 50

4.15 The degree distribution for a NASDAQ-100 network with

ρ = 0.3. 51

4.16 Stock correlation networks with different AD(G). 52

4.17 Connected sub-graphs of order 3 (two non-isomorphic graphs)

and order 4 (six non-isomorphic graphs). 53

4.18 Number of graphlets for G(65, 0.05) and BA(65, 1) networks

with implementing each network model six times. 54
ix

4.19 Number of graphlets for G(65, 0.3) and BA(65, 12) networks

with implementing each network model six times. 54

4.20 Number of graphlets for G(102, 0.03) and BA(102, 1) networks

with implementing each network model six times. 55

4.21 Number of graphlets for G(102, 0.28) and BA(102, 17) networks

with implementing each network model six times. 55

4.22 Number of graphlets for G(107, 0.02) and BA(107, 1) networks

with implementing each network model six times. 56

4.23 Number of graphlets for G(107, 0.26) and BA(107, 15) networks

with implementing each network model six times. 56

4.24 Number of graphlets for our stock correlation networks with

varied threshold. 57

4.25 The SVM classifier results for stock correlation networks. 59

5.1 Outcomes for stock correlation networks. 62

C.1 Dow Jones stock correlation matrix. 80

C.2 S&P 100 stock correlation matrix part one. 81

C.3 S&P 100 stock correlation matrix part two. 82

C.4 NASDAQ-100 stock correlation matrix part one. 83

C.5 NASDAQ-100 stock correlation matrix part two. 84

x

CHAPTER 1

Introduction

1.1. Motivation

The study of networks appears in diverse disciplines through the anal-

ysis of complex relational data. The earliest known paper in this field

is the famous Seven Bridges of Königsberg written by Leonhard Euler

in 1736 [23]. Euler’s mathematical description of vertices and edges was

the foundation of graph theory, a branch of mathematics that studies the

properties of pairwise relations between objects. The field of graph the-

ory continued to develop and found applications in varied areas [13, 49].

In recent years, there has been a growing interest in financial net-

works. These networks not only help visualize the relationship between

different financial entities (such as stocks, companies and hedge funds)

they may also be used to predict future market conditions. We can con-

sider different types of financial networks. Networks based on company

ownership have been studied in the US stock market [18]. This study

showed how company ownership was a power law distribution with small

number of people controlling the mass of companies.

Another network studied involves board membership on companies

listed on the New York Stock Exchange (NYSE) [9]. If a person sits on

1

the board of two companies, then there is a connection between the com-

panies. Here also board membership satisfies a power law distribution

with a small number of board members sitting in most boardrooms. This

leads to a concentration of decision making in the hands of a few people.

Another type of financial network is based on stock price correlations

[19]. It is used for observing, analysing and predicting the stock mar-

ket dynamics. For studying the correlations of stock prices, the usual

approach involves a procedure of finding correlation between each pair

of time series of stock prices, and a subsequent procedure of construct-

ing a network that connects the individual stocks based on the levels of

correlation. The resulting networks are usually large and their analysis

is complex. For reducing the complexity, we may apply a criterion and

filtering process to connect the stocks based on their correlation [32].

In this thesis, we consider the full network of correlations based on the

return prices of stocks and constructed cross correlation networks using

a winner-take-all method for establishing edges of the network. In the

winner-take-all method, we make a binary decision on connecting two

stock prices according to the value of their cross correlation being larger

than a threshold value. In our networks, the nodes are stocks and we

study correlations between the return prices of all Dow Jones index, S&P

100 index and NASDAQ 100 index that were traded over the period of

October 2016 to September 2017.

2

After constructing our synthetic networks, we use machine learning

to determine which models on mathematics are close to the real-world,

financial networks. For mathematical models, we consider Erdős-Rényi

(ER) model and the Preferential Attachment model. We use a feature

known as a graphlet (or sub-graph isomorphism type) for implementing

a model selection method based on supervised learning. Linear Support

Vector Machine (SVM) algorithm is one way to define a good classifier for

the amount of separation between the two classes. The SVM algorithm

predicts which model fits best for our networks with varied thresholds.

We found that for large value of threshold, the stock correlation networks

are scale-free and the degree distributions follow a power-law. However,

for small value of the threshold, the networks tend to be fully connected

and do not exhibit power-law distributions.

1.2. Graph theory

1.2.1. Graphs. A graph G is a non-empty set of points, called ver-

tices that are connected by lines, called edges. Each edge is associated

with a set consisting of one or two vertices called its endpoints. An edge

with just one endpoint is called a loop. Two vertices that are connected

by an edge are called adjacent and we can say that the vertices are neigh-

bours. A vertex on which no edges are incident is called isolated. Let

G = (V,E) be a graph. We write V = V (G) for the vertices of G and

E = E(G) for the finite set of edges. A simple graph is a graph that does
3

not have any loops edges, and we denote set of edges by

E(G) = {(u, v)|u, v ∈ V, u 6= v}.

The figure below is a geometric representation of the sim-

ple graph G with V (G) = {v1, v2, v3, v4, v5, v6} and E(G) =

{v1v2, v1v3, v2v3, v2v4, v5v6}.

v1

v2

v3

v4 v5

v6

Figure 1.1. An example of graph.

Generally, we consider simple graph in this research and when we say

“graph” we assume that the graph is simple unless otherwise specified.

Vertices are also called nodes.

For a graph G, the number of vertices is order of graph and we denote

by |V (G)| and the size of graph is the number of edges and we indicate

by |E(G)|. For instance, in Figure 1, the order of graph is |V (G)| = 6,

and the size of graph is |E(G)| = 5.

An undirected graph is a graph in which edges have no orientation,

the edge (v1, v2) is identical to the edge (v2, v1). A directed graph or

digraph is a graph in which edges have orientations. An arrow (v1, v2) is
4

considered to be directed from v1 to v2; v2 is called the head and v1 is

called the tail of the arrow.

v1 v2

v3

v4 v5

v6

Figure 1.2. Examples of undirected and directed graphs.

Suppose that G and H be graphs and f is a bijective function,

f : V (G) −→ V (H), we say that G and H are isomorphic if for all

u, v ∈ V (G), uv is an edge in G if and only if f(u)f(v) is an edge in H.

If G and H are isomorphic, then we write G ∼= H. For example, the

following graphs are isomorphic.

Figure 1.3. Isomorphic graphs.

Two graphs that are not isomorphic are said to be non-isomorphic.

Figure 4 is a example of non-isomorphic graphs.
5

Figure 1.4. Non-isomorphic graphs.

A sub-graph S of a graph G is a graph such that V (S) ⊆ V (G), and

E(S) ⊆ E(G). A sub-graph S ⊆ G is a spanning sub-graph of G if

V (S) = V (G). An induced sub-graph S of a graph G has vertices S and

E(S) = E(G)∩E(V (S)). In an induced sub-graph S ⊆ G, the set E(S)

of edges consists of all edges belong to G such that the both endpoints of

that edges are in S. We denote the sub-graph induced by S in G by 〈S〉G.

Figure 1.5. An example of sub-graph, a spanning sub-graph, and an
induced sub-graph.

A graph G is called connected if there is a path between every pair of

vertices. If the graph has an isolated vertex (a vertex with no incident

edges), then graph is not connected. When the graph is not connected,

it is called disconnected graph.
6

In Figure 6, the graph has two connected components. A connected

component is a maximal (with respect to inclusion) connected induced

subgraph.

Figure 1.6. A disconnected graph.

Let G = (V,E) be the graph and v ∈ V the degree of a vertex v,

written deg(v) is the number of edges that incident with v. The following

theorem, due to Euler (1736) [23], tells that if several people shake hands,

then the number of hands shaken is even. We may write the sum of the

degrees in two equivalent forms. Let d1, d2, ... be the degrees of vertices in

G and ni be the number of vertices with degree i. Then d1 +d2 +d3 + ... =

n1 + 2 · n2 + 3 · n3 + ...; the Handshaking theorem tells us that each is

equal to twice the number of edges. In particular, both sums are even.

Theorem 1. (Handshaking theorem) For each graph G

(1.1)
∑

v∈V (G)

deg(v) = 2|E(G)|.

Moreover, the number of vertices of odd degree is even.

Proof. When we sum the degrees, each edge is counted twice. �
7

1.2.2. Important classes of graph. A graph G = (V,E) is called

regular graph if are vertices have the same degree. A regular graph with

vertices of degree k is called a k-regular graph. See Figure 7.

Figure 1.7. An example of 3-regular graph.

When any two vertices are adjacent and every pair of distinct vertices

is connected by a unique edge, the graph is called complete graph and

the complete graph with n nodes is denoted by Kn. Complete graphs

are sometimes called clique graphs. The number of edges in complete

graph is
(
n
2

)
= n(n−1)

2 . Note that all complete graphs with n nodes are

regular graph of degree n− 1.

Figure 1.8. Kn for n = 1, 2, 3, 4.

8

The path Pn is the graph on n vertices that can be listed in the order

v1, v2, v3, ..., vn and with edges v1v2, v2v3, v3v4, ..., v(n−1)vn. The graph Pn

has n vertices and n− 1 edges.

v1 v2 v3 v4 v5 v6

Figure 1.9. The graph P6.

The cycle Cn is a graph with n vertices and n edges obtained from

Pn by adding an edge between the two ends; it is the graph of a polygon

with n sides. In a cycle graph, every vertex has degree 2.

Figure 1.10. The graph C4.

A tree is a connected graph by a unique path with no cycles. If G is

a tree, then G is connected and the size of the graph is |V (G)| − 1 . A

forest is a graph with each connected component a tree.

Figure 1.11. Trees with n=1,2,3,4.

9

1.3. Probability theory and complex networks

1.3.1. Degree distribution. The information from the degrees of

nodes gives important clues into the structure of a network. The key

concept for us is the distribution of degrees. This concept can be math-

ematically presented in terms of probability density function. The prob-

ability of a node having a degree k is p(k) and if we plot p(k) against k,

then we obtain a distribution function.

In the simplest types of networks, we can find that most nodes in the

network had similar degrees. For example, the random graph, in which

each of n nodes is connected (or not) with independent probability p, has

a binomial distribution of degrees k [11]:

(1.2) p(k) =

(
n− 1

k

)
pkpn−1−k.

However, in many real-world networks most nodes have a relatively

small degree, but a few nodes will have very large degree. In a graph

G of order n, let Nk be the number of nodes of degree k. The degree

distribution of G follows a power law degree distribution if Nk is propor-

tional to k−b, for some range of k and for a fixed exponent b > 2 [14]. In

particular, we have that

Nk ∼ k−bn.

10

1.3.2. Complex networks. A complex network is a graph that

arises in real world networks such as computer networks, social, biologi-

cal and also financial networks. There are general properties in complex

networks. In this part, we describe briefly some features that appear to

be common to complex networks.

(1) Large scale relative to order and size.

(2) Evolving over time.

(3) Have a power law degree distribution.

(4) Have the small world property, introduced by Duncan J. Watts

and Steven Strogatz in 1998 [46]. The small world property in

a graph of order n demands a low diameter of O(log n) and a

higher clustering coefficient than a binomial random graph with

same expected degree.

1.3.3. Models of networks. Models for networks uncover their hid-

den reality and can explain the generative mechanisms underlying them.

There are existing models for complex networks but our focus is on two

models:

i) Erdős-Rényi model,

ii) Preferential attachment model.

Erdős-Rényi
11

In 1959, Erdős and Rényi published an article in which they intro-

duced the concept of a random graph [22]. First, take some positive in-

teger n. Fix a positive integer n and real number p ∈ (0, 1). We consider

a set of n nodes. For each pair of nodes, we add an edge, independently

and with probability p. The Erdős-Rényi model is denoted G(n, p).

Figure 1.12. An example describing the Erdős-Rényi model on a graph
with 15 nodes, with p = 0.1 on the left and p = 0.2 on the right.

Preferential attachment model

In 1999 Barabási and Albert proposed the application of preferential

attachment to the growth of the World Wide Web [5]. First at time t = 0

we have n = n0 initial vertices then we add a vertex on every step with
12

m edges such that m < n0, that are preferentially attached to existing

nodes with high degree. More precisely, we have n0 + t nodes and mt

edges after t steps. The Barabási-Albert model denoted BA(n,m).

Figure 1.13. An example describing the preferential attachment pro-
cess on a graph with 15 nodes, with m = 1 on the left and m = 2 on the
right.

1.4. Summary of Thesis

The main goal of this thesis is to analyse stock correlation networks

and survey best fit mathematical models for the networks. The thesis

is composed of five chapters. Chapter 1 was introductory and reviewed
13

basic terminology of graph theory and networks. Chapter 2 considers ma-

chine learning that is a useful tool for model selection. Machine learning

consists of algorithms that learn patterns in existing data and then pre-

dicts similar patterns in new data. We will explain machine learning

methods and algorithms in this chapter. Chapter 3 consists of two parts

and explains the mathematical models: Part 1 illustrates the Erdős-

Rényi model and implements the model with Python. Part 2 analyses

the Barabási-Albert model and we provide simulations of that model.

Chapter 4 is divided into three parts and provides an outline of se-

lecting the best fit model for our networks. Part 1 describes that how

to construct stock correlation networks and how extracted network in-

formation from Yahoo Finance. Part 2 focuses on a feature known as

graphlet and the distribution of graphlet counts. We consider graphlets

with three and four vertices. There are two possible non-isomorphic con-

nected graphs on 3 vertices and six possible non-isomorphic connected

graphs on 4 vertices. By counting that how many times every graph

appears as an induced sub-graph in a network, we have a vector in 8-

dimensional space. The final part recommends the SVM algorithm for

finding the best model. The SVM algorithm chooses the hyperplane so

that the distance from it to the nearest data point on each side is maxi-

mized. In the final chapter, we provide our conclusions and a set of open

problems.

14

CHAPTER 2

Machine learning

2.1. Introduction

In 1959, Arthur Samuel, who worked in the field of computer gam-

ing and artificial intelligence at IBM, was the first to use the term ma-

chine learning [42]. Machine learning is a field of study that gives com-

puter systems the ability to learn with data, without being explicitly

programmed [30, 43]. In 1990, machine learning became its own field

and in 1997, Tom Mitchell gave a well-posed, more formal definition of

the algorithms studied in the machine learning field: “A computer pro-

gram is said to learn from experience E with respect to some class of

tasks T and performance measure P if its performance at tasks in T , as

measured by P , improves with experience E.” See [33].

Over the past two decades, machine learning has become one of the

fundamental areas of computer science. The goal of machine learning is

to understand the structure of data and fit that data into models that

can be understood and utilized by users. With the increasing amounts

of data becoming available, data analysis is a necessity for technological

progress. Finding patterns in data up to now, was only possible by hu-

mans. If the data is massive, then the time taken to compute is increased,

15

and this is where machine learning is most powerful. In traditional com-

puting, algorithms are sets of explicitly programmed instructions used by

computers to calculate or problem solve. Machine learning algorithms

instead allow for computers to train on data inputs and use statistical

analysis in order to output values that fall within a specific range. Be-

cause of this, machine learning facilitates computers in building models

from sample data in order to automate decision-making processes based

on data inputs.

Fraud detection, on-line recommendation systems such as those from

Amazon and Netflix, and even self-driving cars are examples of machine

learning applications. Each of these applications perform complex math-

ematical calculations to perform their tasks.

In this chapter, we present the requisite background on the common

machine learning methods, including supervised, semi-supervised and un-

supervised learning, and common algorithmic approaches in supervised

learning, including support vector machines. Also, we will explore which

programming languages are typically used in machine learning.

2.2. Machine learning methods

In machine learning, tasks are generally classified into broad cate-

gories. These categories are based on how learning is received or how

feedback on the learning is given to the system developed. The common

machine learning methods are:
16

(1) Reinforcement learning.

(2) Supervised learning.

(3) Semi-supervised learning.

(4) Unsupervised learning.

2.2.1. Reinforcement learning. In reinforcement learning, the

learning system repeatedly observes the environment, performs an action

and receives a reward. The goal is to choose the actions that maximize

the future rewards. For example, consider teaching a dog a new trick;

you cannot tell it what to do, but you can either reward or punish it if

it does the right or wrong thing. It has to figure out what it did that

made it get the reward or punishment, which is known as the credit as-

signment problem. We can use a similar method to train computers to

do many tasks, such as playing backgammon or chess, scheduling jobs,

and controlling robot limbs [29, 34, 47].

2.2.2. Supervised Learning. In the majority of supervised learn-

ing applications, the computer is provided with example inputs that are

labelled with their desired outputs. The set of labelled examples used

for learning is called training data. The training set consists of (fea-

ture, label) pairs, denoted by {(x1, y1), ..., (xn, yn)}. The goal of effective

machine learning algorithms is to be able to recognize y for any new

example with feature x. A supervised learning task is called regression

when y ∈ R and called classification when y takes a set of discrete values.
17

There is a famous Iris flower data set that is an example of supervised

classification machine learning problem [3]. We want to identify what

type of flower we have based on different measurements, like the length

and width of the petal. The data set includes three different types of

flowers that all are species of Iris: Setosa, Versicolor and Virginia. Given

50 examples of each type, then we have a total of 150 examples. There

are four features that describe each example: length and width of the

sepal and petal.

Our goal is to find some function that maps data item in X to a label

in Y summarized in a function f : X −→ Y . The predictor f(x) use the

training examples. For each training example, we have an input value

x-train, for which a corresponding output, y, is known in advance. In

practice, if the sepal length is x1, sepal width is x2, petal length is x3

and petal width is x4, then for each example the value of f(x-train) is

given with the label y which is one of the species of Iris flowers. With

enough training examples, we identify the function f(x) that best maps

the input to the desired output.

18

Petal length < 1.5cm

Setosa

Tru
e

Petal width < 1.7cm

Versicolor

Tru
e

Virginia

False

Figure 2.1. Decision tree for a sample of Iris data set.

Sample of Iris data set

Data

set

order

Sepal

length

(x1)

Sepal

width

(x2)

Petal

length

(x3)

Petal

width

(x4)

Species

(y)

1 5.1 3.5 1.4 0.2 Setosa

3 5 3.3 1.4 0.2 Setosa

4 7 3.2 4.7 1.4 Versicolor

5 5.7 2.8 4.1 1.3 Versicolor

6 6.3 3.3 6 2.5 Virginia

7 5.9 3 5.1 1.8 Virginia

To explain how this works, we include the above table and figure.

The table describes measurements of the six training examples randomly

from the Iris flower data set. Figure 2.1 exhibits the simple algorithm of
19

how the function f(x) can predict the label for our new data from our

training data.

There are many supervised learning algorithms that scientists have

developed. These algorithms can be used to estimate the function f

from the training data. We will examine the support vector machine

algorithm next.

Support vector machine

Support vector machines (SVMs, also support vector networks) are

supervised learning models with associated learning algorithms that

analyse data used for classification and regression analysis. For clas-

sifying data in support vector machine, a data point is viewed as a

p-dimensional vector and we want to know whether we can separate

such points with a (p − 1)-dimensional hyperplane. This is called a

linear classifier. We have a training dataset of n points of the form

(x1, y1), (x2, y2), ..., (xn, yn). Each xi be a p-dimensional real vector and

yi be 1 or −1 that indicate the class of point xi. We explain how the

algorithm works in the below sample binary classification problem with

two informative features.

20

−4 −2 0 2 4

−2

0

2

4

x1

x
2

Figure 2.2. Binary classification problem with two features.

In Figure 2.2, we have a binary problem that has two different classes

y, and where each data is represented by two informative features,

x1 and x2. We will explain how we can predict the class of a new

data. The linear classifier defined by computing a linear function of

x1 and x2. It means that we input x −→ f −→ y and for output

we have two class values (1 or −1). For example, the equation can be

f(x,w, y) = sign(wx+ b) such that the w is vector of weights and b is a

bias term that gets added in. For this example, we define the equation

x1 − x2 = 0. This corresponds to w = (1,−1) and b = 0.

21

−4 −2 0 2 4

−2

0

2

4

x1

x
2

Figure 2.3. Decision line x1 − x2 = 0 as a classifier.

This line can be used as a decision rule for the classifier. Suppose that

we want to classify the point (−1.8,−2.5). We substitute these values

into the function, and then apply the weights and the bias term that

describes the decision boundary.

f = ((−1.8,−2.5), w, b)

= sign(1 · (−1.8) + (−1) · (−2.5) + 0)

= sign(−1.8 + 2.5)

= sign(+0.7)

= 1.

(2.1)

22

Therefore, in this case, because 0.7 is greater than zero, the output

from the decision function would be 1 and the point classify the class one.

If we consider a different point, such as (−3.4, 0.2) and then substitute

these values into the function, then we obtain the following:

f = ((−3.4, 0.2), w, b)

= sign(1 · (−3.4) + (−1) · (0.2) + 0)

= sign(−3.4− 0.2)

= sign(−3.6)

= −1.

(2.2)

The classifier predicts a class −1 for the point. We observe that by

applying a simple linear formula, we have been able to produce a class

value for any point in this two dimensional feature space. That is one of

the rules that we use for converting a data with its features to an output

prediction.

One way to define a good classifier is to reward a classifier for the

amount of separation that can provide between the two classes. We need

to define the concept of classifier margin. For our given classifier, the

margin is the width that the decision boundary can be increased before

hitting a data point.

23

−4 −2 0 2 4

−4

−2

0

2

4

x1

x
2

Figure 2.4. Margin of the classifier.

For every classifier that we have considered so far, we can do the same

calculation or simulation to find the margin. Among all possible classi-

fiers that separate these two classes, we can define the best classifier that

has the maximum amount of margin. This maximum margin classifier is

called the linear support vector machine (SVM).

SVMs can be used to solve various real world problems such as the

following.

(1) SVMs are helpful in text and hypertext categorization as their

application can significantly reduce the need for labelled training
24

instances in both the standard inductive and transductive settings

[1].

(2) Classification of images can also be performed using SVMs. Ex-

perimental results show that SVMs achieve significantly higher

search accuracy than traditional query refinement schemes after

just three to four rounds of relevance feedback. This is also true

of image segmentation systems, including those using a modified

version SVM that uses the privileged approach as suggested by

Vapnik [6].

(3) Hand-written characters can be recognized using SVM [21].

In Chapter 4 of the thesis, we will use the SVM algorithm to predict a

best fitting mathematical model for the stock correlation networks with

varied thresholds.

2.2.3. Semi-supervised learning. Semi-supervised learning (SSL)

methods use small amounts of labelled data along with large amounts of

unlabelled data to train the prediction system. Because unlabelled data

is available everywhere and labelling the data is expensive and more

rare, the semi-supervised learning method has gained widespread usage

in recent years. We are given a set of labelled examples x1, . . . , xl ∈ X

with corresponding labels y1, . . . , yl ∈ Y . Additionally, we are given

u unlabelled examples xl+1, . . . , xl+u ∈ X, where usually l is taken as

much smaller than u. Semi-supervised learning attempts to make use of
25

this combined information to predict labels for all data points. There

are methods for SSL algorithm such as generative models, low-density

separation and graph-based method.

Recently, graph-based semi-supervised learning methods have received

a lot of attention [4, 10, 28]. These methods start with a graph where

the nodes are the labelled and unlabelled data points, and weighted edges

reflect the similarity of nodes. Graph-based methods based on label prop-

agation work by using class labels associated with each labelled node,

and each node propagates its label to its neighbours and the process is

repeated until we have the desired coverage. The recognition of hand-

written digits is one of the examples of this algorithm [50].

2.2.4. Unsupervised Learning. This learning system observes an

unlabelled set of items, represented by their features {x1, x2, . . . , xn}.

The goal is to organize the items. Typical unsupervised learning tasks

include finding relationships within data. There are no training exam-

ples used in this process. Instead, the system is given data and tasked

with finding patterns and correlations. Unsupervised learning is com-

monly used for transactional data. For an example, we may have a large

dataset of customers and their purchases, but we can not determine what

similar attributes can be drawn from customer profiles and their types

of purchases. With this data, unsupervised learning algorithms may be

used to determine that women of a certain age range who buy soaps
26

are likely to be pregnant, and therefore a marketing campaign related to

pregnancy and baby products can be targeted to this audience in order

to increase their number of purchases [41].

2.3. Programming languages used in machine learning

There are various languages that can be used for machine learning

processes, such as Python, Java, R and C++. After considering each

of these and the libraries available for them, we choose Python for our

thesis. Python’s popularity may be due to the increased development of

deep learning frameworks available for this language recently, including

TensorFlow, PyTorch, and Keras. As a language that has readable syntax

and the ability to be used as a scripting language, Python proves to be

powerful and straightforward both for preprocessing data and working

with data directly. The Scikit-learn machine learning library is built

on top of several existing Python packages that Python developers may

already be familiar with, namely NumPy, SciPy, and Matplotlib [45].

27

CHAPTER 3

Network models

3.1. Introduction

The study of networks has emerged in diverse disciplines as a means

of analyzing relational data. Many of real-world networks are large, and

some with upwards of trillions of nodes and edges [44]. To explore them,

it is helpful to use mathematical models to identify the structural pat-

terns and correlations within a network. Models for networks give insight

into the underlying generative properties of networks and can serve as

a predictive tool in their evolution. Network models help as a founda-

tion for understanding interactions within networks. Various random

graph generation models produce network structures that may be used

in comparison to real-world networks.

In this chapter, we will explain two models of networks including the

Erdős-Rényi model and the Preferential Attachment model, and explain

the properties and characteristics of the networks. We will use Python

3 and the NetworkX library to simulate these models. Also, we will

simulate the models with the Gephi application for visualizing networks.

28

3.2. Erdős-Rényi model

Network science aims to build models that reproduce the properties of

real-world networks. Random network models incorporate randomness

in their design to better simulate real-world networks. The Erdős-Rényi

model is used for generating random graphs. We use G(n, p) to denote

the undirected random graph with n nodes, where each node pair is

connected with probability p. A closely related model is G(n,m). Of

all possible graphs with n nodes and exactly m edges, one is uniformly

randomly selected. The two models have very similar properties. We will

be mostly focusing on the Erdős-Rényi model. To construct a random

network we follow these steps:

(1) Start with n isolated nodes.

(2) Select a node pair and generate a random number between 0 and

1. If the number exceeds p, then connect the selected node pair

with an edge; otherwise, leave them disconnected.

(3) Repeat step (2) for each of the
(
n
2

)
node pairs.

The network obtained after this procedure is called a binomial random

graph. Paul Erdős and Alfréd Rényi, have played an important role

in understanding the properties of these networks. In their honour, a

random network is called the Erdős-Rényi network.

3.2.1. Properties of Erdős-Rényi model. Let eij ∈ {0, 1} be a

Bernoulli random variable indicating the presence of the edge {i, j}. For
29

the Erdős-Rényi model, the random variables eij are independent and we

have that:

eij =

1 with probability p,

0 with probability 1− p.

The expected number of edges in G(n, p) is

m = E(
∑
i6=j

eij) =

(
n

2

)
p

=
n(n− 1)

2
p.

(3.1)

In summary, because the expected value is determined by n and p,

the network becomes denser by increasing p. It means that the average

number of edges increases linearly with n.

Figure 3.1. This Erdős-Rényi model is generated with n = 4 nodes
with p = 0.2, p = 0.5, p = 0.7, p = 1 from left to right, respectively.

According to the definition of the degree of nodes, if the ki denotes

the degree of node i in a graph G, then we obtain the average degree

of a random graph in the Erdős-Rényi model by using the Handshaking

theorem:
30

AD(G) =
1

n

∑
i

ki =
2m

n

=
2

n

n(n− 1)

2
p

∼ pn.

(3.2)

In the Erdős-Rényi random graph, the probability that node i has

exactly k edges is the product of three terms [12, 36].

(1) The probability that k of its edges are present, or pk.

(2) The probability that the remaining (n− 1− k) edges are missing,

or (1− p)n−1−k.

(3) The number of ways we can select k edges from n − 1 potential

node can have, or
(
n−1
k

)
.

Consequently, the degree distribution of a random network follows a

binomial distribution:

(3.3) pk =

(
n− 1

k

)
pk(1− p)n−1−k.

The shape of this distribution depends on the system size n and the

probability p.
31

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

k

p k

B(20, 0.5)
B(20, 0.7)
B(40, 0.5)

Figure 3.2. Simulating the binomial distribution B(20, 0.5) with n =
20 and p = 0.5, B(20, 0.7) with n = 20 and p = 0.7, and B(40, 0.5) with
n = 40 and p = 0.5.

3.3. Preferential Attachment model

In real networks, new nodes tend to link to the more connected nodes.

For example, on Twitter, we would expect that popular users gather more

new followers than less popular ones. At each time-step, we add a new

node with m edges that connect to nodes already existing in the net-

work. Preferential attachment is thought to be one mechanism behind

the generation of complex networks. A model that incorporates pref-

erential attachment is named after its inventors Albert-László Barabási

and Réka Albert. The Preferential Attachment model or Barabási-Albert

model, which can generate scale-free networks is also known as the BA

model or the scale-free model [5]. A scale-free network is a network

whose degree distribution of the network follows a power law. Thus, the

proportion of nodes of degree k is:
32

(3.4) pk ∼ k−b.

If a graph satisfies (3.4), then we say that it has a power law degree

distribution with exponent b > 2. If we take logarithm of equation (3.4),

then we obtain

log pk ∼ −b log k.

The log pk term is linearly dependent on log k and the slope of the line

is the degree exponent −b.

3.3.1. Properties of Preferential Attachment model. Prefer-

ential attachment is a probabilistic mechanism. A new node is free to

connect to any node in the network, whether it is high or low degree

node. The network begins with m0 nodes. New nodes are added to the

network one at a time. Each new node is connected to m ≤ m0 existing

nodes with a probability that is proportional to the number of edges that

the existing nodes already have [2]. The probability pi that a link of the

new node connects to node i depends on the degree ki is given by:

(3.5) pi =
ki∑
j kj

.

33

For example, the equation (3.5) implies that if a new node has a choice

between a degree-two and a degree-four node, then it is twice as likely

that it connects to the degree-four node.

Figure 3.3. A sequence of four steps of the Preferential Attachment
model from left to right. Empty circles are the newly added node to the
network with m = 2.

After t time steps, the Barabási-Albert model generates a network

with n = t + m0 nodes and e0 + mt edges, where e0 is the number of

edges of the initial graph. As Figure 3 indicates, due to preferential

attachment, new nodes are more likely to connect to the more connected

nodes than to the low degree nodes. Hence, the high degree nodes have

more edges. The networks contain few nodes with unusually high degree

as compared to the other nodes, and these nodes are called hubs of the

network.

According to the definition of the degree of nodes, if the ki be a degree

of node i, then we obtain the average degree of a Preferential Attachment

model by using the Handshaking theorem:
34

AD(G) =
1

n

n∑
i=1

ki

=
2|E|
n

=
2(e0 +mt)

t+m0
.

(3.6)

3.4. Simulations

3.4.1. Simulating the Erdős-Rényi model with Python. To

generate graphs via the Erdős-Rényi model, we use the NetworkX library

[25] for simulating graphs using Python. The G(n, p) graph algorithm

chooses each of the
(
n
2

)
undirected possible edges with probability p. This

algorithm runs in O(n + m) time, where m is the expected number of

edges, which equals
(
n
2

)
p [8].

The graph below is a visualization of a simulation of the Erdős-Rényi

model with n = 100 and p = 0.08. For the visualization, we use Gephi

which is an open-source network analysis and visualization software pack-

age [7].

35

Figure 3.4. A simulation of the Erdős-Rényi model with n = 100 and
p = 0.08. The darker nodes have higher degree.

We obtain the expected number of edges and average degree as follows:

(3.7) m = E(
∑
ij

eij) =

(
n

2

)
p =

n(n− 1)

2
p =

100 · 99

2
0.08 ∼ 400.

(3.8) AD(G) =
1

n

∑
ki ∼ pn ∼ 0.08 · 100 ∼ 8.

The degree distribution for the graph simulated from G(100, 0.08)

looks like a binomial distribution according to Figure 3.5.
36

Figure 3.5. The degree distribution of the above simulation of G(100, 0.08).

3.4.2. Simulating Preferential Attachment model with

Python. We use the NetworkX package for simulating the Preferential

Attachment model in Python. A graph of n nodes is grown by attaching

new nodes each with m edges that are preferentially attached to exist-

ing nodes with high degree [5]. The initialization is a graph with m

nodes and no edges. The BA(n,m) graph is an algorithm for generating

random scale-free networks using a preferential attachment mechanism.

The graph below is the visualization of the Preferential Attachment

model with n = 100 and m = 2. We use Gephi for the visualization.
37

Figure 3.6. A simulation of the Preferential Attachment model with
n = 100 and m = 2. The darker nodes have higher degree.

We obtain the average degree as follows:

AD(G) =
1

n

∑
i

ki =
2|E|
n

=
2(e0 +mt)

t+m0

=
2(0 + 2 · 98)

100
∼ 3.9.

(3.9)

The degree distribution for our simulation of BA(100, 2) looks like a

power law distribution according to Figure 3.7.

38

Figure 3.7. The degree distribution of the above simulation of BA(100, 2).

39

CHAPTER 4

Model selection in stock correlation network

4.1. Introduction

In the last decade, financial networks have garnered a lot of inter-

est from researchers as a way of visualizing the relationships between

financial entities. This makes them useful in assessing current market

dynamics and in predicting future market conditions. The stock mar-

ket is a kind of multi-factor financial network. Fluctuations in stock

prices are not independent but are highly inter-coupled with strong cor-

relations with the business sectors and industries to which the stocks

belong. Recently, analyses based on network models have been proposed

for studying the correlations of stock prices [15, 16, 17, 35, 37, 48].

For constructing a stock correlation network, nodes represent the dif-

ferent stocks and edges are formed between the stocks based on the level

of correlation between each pair of time series of stock prices. The result-

ing networks are usually large and their analysis is complex. A filtering

process helps us to reduce the complexity and have a small size network

for analysis.

40

In this chapter, we consider full networks of positive correlation of the

return stock prices of all Dow Jones index, S&P 100 index and NASDAQ-

100 index that were traded over a period of October 2016 to September

2017. We calculate the cross correlation values for each pair of stocks in

each index, and we use a winner-take-all approach in establishing edges of

the networks. After constructing the networks, we use machine learning

to determine which models on mathematics are close to our networks.

We use a feature known as graphlets (or sub-graph isomorphism types)

for implementing a model selection method based on supervised learning.

The SVM algorithm predicts which model fits best for our networks with

varied thresholds.

4.2. Data

First of all, we consider a network of Dow Jones stock prices of 65

nodes. Then, we constructed a network for the S&P 100 index with 102

nodes and the NASDAQ-100 index with 107 nodes. Each node corre-

sponds to one of the stocks traded between October 2016 to September

2017. We will evaluate the cross correlation of the time series of their

monthly price returns.

Let pi(t) be the adjusted close price which is the closing price of the

stock after accounting for any dividends and stock splits, and let i be the

stock on month t. Then the price return of stock i on month t, denoted

by ri(t), is defined as
41

ri(t) =
pi(t)

pi(t− 1)
− 1.

Suppose xi(t) and xj(t) are the monthly price returns of stock i and

stock j, respectively, over the period t = 0 to N−1. We now compare the

two time series with no relative time shift. The cross correlation between

xi and xj with no time shift is given by [20]:

Cij =

∑
t [(xi(t)− x̄i)((xj(t)− x̄j))]√∑

t (xi(t)− x̄i)2
√∑

t (xj(t)− x̄j)2
,

where x̄i and x̄j are the means of the time series and the summations

are taken over t = 0 to N − 1.

In the winner-take-all method, we need to apply a criterion to add

edges between the stocks based on their correlation. In defining our

criterion for connecting a pair of nodes, we need a threshold value for

the cross correlation. Since cross correlation is a measure of similarity

and its value is between 0 and 1, we choose a positive fractional value as

the threshold. Suppose the threshold is ρ. Then the connection criterion

for stock i and stock j is

Cij > ρ.

For our networks, we consider two thresholds for finding the best

fit model for networks. We suppose that ρ = 0.7 for a large value of

42

threshold and ρ = 0.3 for a small value of the threshold. We use Gephi

for finding the average degree and to visualize the networks.

4.2.1. Dow Jones network. We begin with the Dow Jones Index.

Dow Jones index keeps track of the performance of 30 large the United

States Industrial companies, 15 prominent utility companies and 20 com-

panies of the transportation sector. We examine values ρ = 0.7 and

ρ = 0.3 to construct stock networks that reflect connections of correlated

stock price time series. We calculate the number of edges and average

degrees for both networks. Figures 1 and 2 visualize the networks with

ρ = 0.7 and ρ = 0.3, respectively. Figure 4.3 shows various key parame-

ters of our networks.

Figure 4.1. The Dow Jones stock network with ρ = 0.7.

43

Figure 4.2. The Dow Jones stock network with ρ = 0.3.

Dow Jones networks
Parameters ρ = 0.7 ρ = 0.3
Number of nodes, N 65 65
Number of edges, E 99 626
Average degree, AD 3.05 19.26

Figure 4.3. Network parameters from Dow Jones stock networks.

We found that the degree distributions display scale-free charac-

teristics when ρ is large. Figure 4 illustrates the power-law degree

distribution for ρ = 0.7.

44

Figure 4.4. The degree distribution for a Dow Jones network with ρ = 0.7.

With the smaller value of ρ, the degree distribution does not show

clear scale-free characteristics and the network tends to be randomly

connected. Figure 5 shows the degree distribution for ρ = 0.3.

Figure 4.5. The degree distribution for a Dow Jones network with ρ = 0.3.

45

4.2.2. S&P 100 network. The S&P 100 Index is a stock market

index of United States stocks maintained by Standard and Poor’s. The

S&P 100 includes 102 leading U.S. stocks. For constructing the stock

networks, we examine values ρ = 0.7 and ρ = 0.3. We also calculate the

number of edges and average degrees for both networks. Figures 6 and

7 visualize the networks with ρ = 0.7 and ρ = 0.3, respectively. Figure

8 shows parameters of our networks.

Figure 4.6. The S&P 100 stock network with ρ = 0.7.

46

Figure 4.7. The S&P 100 stock network with ρ = 0.3.

S&P 100 networks
Parameters ρ = 0.7 ρ = 0.3
Number of nodes, N 102 102
Number of edges, E 158 1474
Average degree, AD 3.1 28.9

Figure 4.8. Network parameters from S&P 100 stock networks.

According to the Figures 9 and 10, the degree distribution for the

networks with ρ = 0.7 exhibits that the network is scale-free and has

the power law distribution. However, with a small value of ρ = 0.3, the

degree distribution does not show clear scale-free characteristics and the

network tends to be connected.

47

Figure 4.9. The degree distribution for a S&P 100 network with ρ = 0.7.

Figure 4.10. The degree distribution for a S&P 100 network with ρ = 0.3.

4.2.3. NASDAQ-100 index. The NASDAQ-100 is a stock market

index made up of 107 equity securities issued by the largest non-financial

companies listed on the NASDAQ. We calculate the number of connec-

tions and average degrees for both networks with ρ = 0.7 and ρ = 0.3 in

Figure 13, and also we use Gephi to visualize the networks in Figures 11

and 12.
48

Figure 4.11. The NASDAQ-100 stock network with ρ = 0.7.

Figure 4.12. The NASDAQ-100 stock network with ρ = 0.3.

49

NASDAQ-100 networks
Parameters ρ = 0.7 ρ = 0.3
Number of nodes, N 107 107
Number of edges, E 98 1483
Average degree, AD 1.8 27.72

Figure 4.13. Network parameters From NASDAQ-100 stock networks.

The degree distribution for the NASDAQ-100 stock correlation

networks with thresholds ρ = 0.7 and ρ = 0.3 are in Figures 14 and 15,

respectively. With small threshold ρ = 0.3, the network distribution

looks like the binomial distribution.

Figure 4.14. The degree distribution for a NASDAQ-100 network with
ρ = 0.7.

50

Figure 4.15. The degree distribution for a NASDAQ-100 network with
ρ = 0.3.

To perform our experiments on networks of different orders, we built

six stock correlation networks. Recall that AD(G) is the average degree

of a network. For the Erdős-Rényi model, we have that AD(G) ∼ np.

Also, according to the NetworkX package, because the initial graph has

m nodes and no edges, the AD(G) a graph generated by the PA model

is AD(G) = 2m(n − m)/n. By finding AD(G), we can calculate the

probability (p) of G(n, p) model and also solve the quadratic equation for

gaining the number of edges (m) in each step for Preferential Attachment

model, BA(n,m). For example, suppose that G is Dow Jones with ρ =

0.7, then we find that AD(G) = 3.05:

p ∼ AD(G)/n = 3.05/65 ∼ 0.05.
51

The probability of the Erdős-Rényi model is 0.05 and we have that

G(65, 0.05). To find the value of m for Preferential Attachment model,

we need to solve the quadratic equation:

m(65−m) = AD(G) · n/2 =
3.05 · 65

2
∼ 99.

Hence, the number of edges (the parameter m) in each step for Pref-

erential Attachment model is 1 and we have BA(65, 1). We do the same

process for all six networks and find the mathematical models parameters

for each one. Figure 4.16 shows results of all networks.

Networks Average degree G(n, p) BA(n,m)
Dow Jones with ρ = 0.7 3.05 G(65, 0.05) BA(65, 1)
Dow Jones with ρ = 0.3 19.26 G(65, 0.3) BA(65, 12)
S&P 100 with ρ = 0.7 3.1 G(102, 0.03) BA(102, 1)
S&P 100 with ρ = 0.3 28.9 G(102, 0.28) BA(102, 17)
NASDAQ-100 with ρ = 0.7 1.8 G(107, 0.02) BA(107, 1)
NASDAQ-100 with ρ = 0.3 27.72 G(107, 0.26) BA(107, 15)

Figure 4.16. Stock correlation networks with different AD(G).

4.3. Graphlet

Decomposition of networks is a widely used an approach in network

analysis to factorize the complex structure of real-world networks into

small sub-graph patterns of order k nodes. These patterns are called

graphlets [40]. Graphlets are small connected non-isomorphic induced

subgraphs of a large network [39, 40]. The number of appearances of

graphlets in the network provides a description of the networks structural
52

properties. Such analysis is usually limited to the 30 graphlets between

two and five nodes [39]. On a local level, counting how many graphlets

in the network gives a significant information about the local network

structure in a variety of domains [24, 26]. In this thesis, we work with

undirected connected sub-graphs with 3 and 4 nodes as our graphlets.

This is a set of eight graphs shown in Figure 17.

G1 G2 G3 G4 G5 G6 G7 G8

Figure 4.17. Connected sub-graphs of order 3 (two non-isomorphic
graphs) and order 4 (six non-isomorphic graphs).

By counting that how many times every graph appears as an induced

sub-graph in a network, we have a vector on 8-dimensional space as

(G1, G2, G3, G4, G5, G6, G7, G8). We use a fast and efficient algorithm

for counting graphlets with 3 and 4 nodes [31]. The performance of the

algorithm gives us the number of each graphlet in each network. The

tables 18, 19, 20, 21, 22 and 23 illustrate the number of graphlets for

graphs. Figure 24 shows us the number of graphlets for our constructed

financial networks.
53

G(65, 0.05)
Graphlets 2-star Triangle 3-

star
4-
path

4-tailed
triangle

4-
cycle

4-chordal
cycle

4-
clique

Description G1 G2 G3 G4 G5 G6 G7 G8

Data 1 231 3 153 554 17 7 0 0
Data 2 293 1 254 798 8 9 0 0
Data 3 344 9 277 967 74 12 2 0
Data 4 249 6 179 617 37 7 2 0
Data 5 464 11 590 1516 120 31 1 0
Data 6 208 5 133 436 65 5 1 0

BA(65, 1)
Data7 229 0 713 416 0 0 0 0
Data8 268 0 1069 506 0 0 0 0
Data9 407 0 2691 679 0 0 0 0
Data10 323 0 1816 516 0 0 0 0
Data11 272 0 881 365 0 0 0 0
Data12 244 0 698 427 0 0 0 0

Figure 4.18. Number of graphlets for G(65, 0.05) and BA(65, 1) net-
works with implementing each network model six times.

G(65, 0.3)
Graphlets 2-star Triangle 3-

star
4-
path

4-tailed
triangle

4-
cycle

4-chordal
cycle

4-
clique

Description G1 G2 G3 G4 G5 G6 G7 G8

Data 1 8459 1144 26269 78011 32129 8631 6596 403
Data 2 7402 1001 20935 67652 26508 6150 5176 316
Data 3 8194 1160 24568 75357 31503 7867 6553 470
Data 4 8126 1162 23908 74896 31638 7518 6524 464
Data 5 7882 1007 24726 71339 28022 7666 5562 318
Data 6 8039 1140 24084 73364 30589 7644 6572 480

BA(65, 12)
Data7 8609 1854 35235 59260 47128 6287 15749 2466
Data8 8589 1671 30834 66036 42876 7668 13035 1803
Data9 8698 1804 34904 61594 46640 6925 15164 2106
Data10 8703 1703 32782 64787 44255 7723 13816 1924
Data11 8704 1826 35188 61479 46651 6683 15404 2357
Data12 8766 1887 37282 59273 48053 6606 16388 2526

Figure 4.19. Number of graphlets for G(65, 0.3) and BA(65, 12) net-
works with implementing each network model six times.

54

G(102, 0.03)
Graphlets 2-star Triangle 3-

star
4-
path

4-tailed
triangle

4-
cycle

4-chordal
cycle

4-
clique

Description G1 G2 G3 G4 G5 G6 G7 G8

Data 1 493 2 454 1399 14 8 0 0
Data 2 470 7 442 1367 53 7 1 0
Data 3 504 1 501 1473 7 8 0 0
Data 4 394 8 458 1009 61 6 1 0
Data 5 531 6 484 1589 54 8 0 0
Data 6 341 2 275 840 12 4 0 0

BA(102, 1)
Data7 573 1 3078 1028 0 0 0 0
Data8 353 0 791 633 0 0 0 0
Data9 572 0 3524 1243 0 0 0 0
Data10 367 0 1085 887 0 0 0 0
Data11 350 0 817 653 0 0 0 0
Data12 393 0 1313 797 0 0 0 0

Figure 4.20. Number of graphlets for G(102, 0.03) and BA(102, 1) net-
works with implementing each network model six times.

G(102, 0.28)
Graphlets 2-star Triangle 3-star 4-

path
4-tailed
triangle

4-
cycle

4-chordal
cycle

4-
clique

Description G1 G2 G3 G4 G5 G6 G7 G8

Data 1 30692 4244 147137 443014 183485 44969 37824 2667
Data 2 30379 4026 148616 437373 176509 44588 35302 2235
Data 3 29260 3763 141731 419983 163123 41149 31708 2081
Data 4 29764 3867 141284 433599 166990 42254 32227 2042
Data 5 28254 3548 135698 403637 152819 38493 29120 1753
Data 6 28329 3634 134549 405107 155490 38458 29813 1893

BA(102, 17)
Data 7 29537 5493 169850 350376 220804 35734 65485 9171
Data 8 29647 5673 175337 344861 229352 34509 68340 9525
Data 9 30276 5963 198541 329994 242134 34255 76276 11459
Data 10 30097 5706 186242 342314 234033 35986 70474 9841
Data 11 30254 5636 191474 343405 231715 36697 70579 9549
Data 12 30192 5783 193241 337368 236092 35227 72457 10526

Figure 4.21. Number of graphlets for G(102, 0.28) and BA(102, 17)
networks with implementing each network model six times.

55

G(107, 0.02)
Graphlets 2-star Triangle 3-

star
4-
path

4-tailed
triangle

4-
cycle

4-chordal
cycle

4-
clique

Description G1 G2 G3 G4 G5 G6 G7 G8

Data 1 231 0 133 447 0 1 0 0
Data 2 214 2 172 437 7 5 0 0
Data 3 257 3 170 532 16 7 1 0
Data 4 184 0 96 306 0 0 0 0
Data 5 219 1 130 397 6 0 0 0
Data 6 146 0 70 214 0 2 0 0

BA(107, 1)
Data 7 446 0 1727 1039 0 0 0 0
Data 8 465 0 2013 744 0 0 0 0
Data 9 453 0 1493 886 0 0 0 0
Data 10 428 0 1487 753 0 0 0 0
Data 11 444 0 2184 731 0 0 0 0
Data 12 432 0 1555 886 0 0 0 0

Figure 4.22. Number of graphlets for G(107, 0.02) and BA(107, 1) net-
works with implementing each network model six times.

G(107, 0.0.26)
Graphlets 2-star Triangle 3-star 4-

path
4-tailed
triangle

4-
cycle

4-chordal
cycle

4-
clique

Description G1 G2 G3 G4 G5 G6 G7 G8

Data 1 30495 3633 151125 453893 161781 40405 29008 1717
Data 2 30476 3587 152525 452347 161086 40692 28532 1701
Data 3 27872 3108 135646 407767 135409 33750 22715 1282
Data 4 29062 3299 144815 427537 146425 36845 25202 1427
Data 5 28200 3063 138203 414850 135647 35006 22060 1108
Data 6 29203 3469 142474 429951 152390 36974 26868 1666

BA(107, 15)
Data 7 27752 4459 169964 331513 189512 28933 49126 6417
Data 8 28068 4509 174899 334345 193606 30020 50344 6166
Data 9 28210 4571 185548 327297 197510 28780 52556 6621
Data 10 27972 4467 173826 334500 191344 29300 49671 6318
Data 11 28219 4707 187988 322242 203423 27663 54778 6877
Data 12 28164 4474 183348 329688 195043 29316 50847 6147

Figure 4.23. Number of graphlets for G(107, 0.26) and BA(107, 15)
networks with implementing each network model six times.

56

Graphlets 2-star Triangle 3-
star

4-
path

4-tailed
triangle

4-
cycle

4-chordal
cycle

4-
clique

Description G1 G2 G3 G4 G5 G6 G7 G8

Dow Jones
ρ = 0.7

188 116 100 159 30 3 154 120

Dow Jones
ρ = 0.3

4545 2575 5342 27216 25803 1220 11994 6560

S&P 100
ρ = 0.7

435 153 322 1012 783 21 248 136

S&P 100
ρ = 0.3

18667 9015 40856 190256 169258 8851 73830 35847

NASDAQ-
100
ρ = 0.7

138 20 142 183 54 5 8 1

NASDAQ-
100
ρ = 0.3

21996 7140 59033 268323 188857 11565 60806 17825

Figure 4.24. Number of graphlets for our stock correlation networks
with varied threshold.

4.4. Model selection and discussion

We use the support vector machine algorithm (SVM) based classifica-

tion tool from Scikit-learn [38] that models best fit out data. Our model

selection method follows three steps. First, we generate the training

data, consisting of the number of graphlets in Erdős-Rényi (ER) model

and the Preferential Attachment model. Next, we use the training data

to build a classifier with SVM algorithm. By labelling the −1 for Erdős-

Rényi model and label 1 for the Preferential Attachment model, we build

the classifier between the two classes. Finally, we predict the fit model

for our stock correlation networks as testing data. For example, we con-

sider the number of graphlets for the Erdős-Rényi model with average
57

degree 3.05 as an 8 dimension vector. Hence, we represent our graphs by

eight features in a vector representation. We implement the algorithm

six times, so we have six vectors for G(65, 0.05) as testing data.

Another testing set comes from the the number of graphlets for the

Preferential Attachment model. So, we have six vectors for BA(65, 1) as

well. We label −1 for the vectors for Erdős-Rényi model and label 1 for

the Preferential Attachment vectors. We then predict the fit model for

our Dow Jones networks with threshold ρ = 0.7.

The results of our experiments show that the networks with threshold

ρ = 0.7 for Dow Jones, S&P 100 and NASDAQ-100 fit with the Erdős-

Rényi (ER) model. Otherwise, the Dow Jones, S&P 100 and NASDAQ-

100 networks with ρ = 0.3 are in the Preferential Attachment class.

This result is not our expected result according to our average degree

as showing in Figures 4, 5, 9, 10, 14 and 15. The hypothesis was that

the result should, in fact, be exactly the opposite, based on the degree

distributions. In particular, when ρ = 0.3, we would expect the Erdős-

Rényi model and when ρ = 0.7, the network fit with the Preferential

Attachment model.

We can conclude that considering graphlets may be not sufficient to

separate the models for financial networks. Another feature that we can

consider in future work to separate the models is degree distribution

percentiles [27]. In this method, we measure the spread of the degree

58

Networks Predicted label
Dow Jones with ρ = 0.7 -1
Dow Jones with ρ = 0.3 1
S&P 100 with ρ = 0.7 -1
S&P 100 with ρ = 0.3 1
NASDAQ-100 with ρ = 0.7 -1
NASDAQ-100 with ρ = 0.3 1

Figure 4.25. The SVM classifier results for stock correlation networks.

distribution. We consider the percentiles of the distribution formed by

breaking it evenly into eight different pieces. This gives us seven features,

called deg1, deg2, deg3, deg4, deg5, deg6 and deg7.

Another observation is that the variation of stock prices is strongly

influenced by a relatively small number of stocks. Because power law

distributions have been found in the stock correlation networks with a

large threshold (ρ = 0.7), this means that the stocks corresponding to

nodes of high degrees are leaders of the entire market. Our analysis shows

that in Dow Jones network with ρ = 0.7, the high degree is 13 and it

belongs to a node number 36 and the node 36 corresponding to the Duke

energy company. The Duke energy company stock is a leader stock for

Dow Jones correlation network. For our S&P 100 correlation network

with ρ = 0.7, the node number 69 has high degree and it is 14. The node

number 69 represent the Morgan Stanley stock. And our last network,

NASDAQ-100 correlation network with ρ = 0.7, suggest that the stock

number 98 is a leader stock; note that is the media company Viacom

Incorporation. As a result, by identifying leaders, investors can predict
59

the trend of stocks and market movements and also they can use the

leader stocks to compose a new index that can naturally and adequately

reflect the market variation.

60

CHAPTER 5

Conclusion and Open Problems

In our final chapter, we summarize our results and present some open

problems collected from the entire thesis. The main goal of the thesis

was to analyse stock correlation networks and determine the best fitting

mathematical models for the networks.

5.1. Summary of results

We introduced the terminology of graph theory and networks in Chap-

ter 1. In Chapter 2, we explained machine learning that is a subset of

artificial intelligence. We described how machine learning explores the

study and construction of algorithms that can learn from and make pre-

dictions based on real-world data. We also explained how the support

vector machine algorithm worked in the supervised learning system. In

Chapter 3, we recalled two mathematical models for networks, focusing

on the Erdős-Rényi (ER) model and the Preferential Attachment (BA)

model. Both models were implemented and simulated in Python.

In Chapter 4, we explained how to construct the stock correlation

networks for the Dow Jones index, the S&P 100 index and the NASDAQ

100 index that were traded over a period of October 2016 to September

2017. We visualized the degree distribution of networks for small and
61

large thresholds. In addition, we represented our networks by graphlets

counts for the connected sub-graphs of size 3 and size 4 in a vector

representation. With the SVM algorithm, we predicted which model fits

best for our networks. The result is shown in Figure 5.1.

Networks Degree distribution SVM Predicted label
Dow Jones with ρ = 0.7 BA ER
Dow Jones with ρ = 0.3 ER BA
S&P 100 with ρ = 0.7 BA ER
S&P 100 with ρ = 0.3 ER BA
NASDAQ-100 with ρ = 0.7 BA ER
NASDAQ-100 with ρ = 0.3 ER BA

Figure 5.1. Outcomes for stock correlation networks.

This result is not our expected result. We expected the SVM predic-

tions would match the observed degree distributions. We can conclude

that either graphlets do not separate the models for financial networks,

or the small size of the networks involved influences the output. In future

work, we will determine which feature is the most appropriate for model

selection in financial networks.

5.2. Open problems

In what follows, we discuss problems left open by this thesis.

(1) Another feature that should be examined for financial networks

is the degree distribution percentile. This is a logical feature to

use that would measure the “shape” of the degree distribution.

What is the result if we use these features?
62

(2) Our method compared two mathematical models. We will con-

sider additional models for comparison in future work.

(3) In this thesis, we consider the positive correlation and thresholds

for networks, and it would be interesting also to analyse them

from the perspective of negative correlation.

(4) We used the threshold ρ = 0.3 as a small threshold and ρ = 0.7

for a large threshold. What about the other numbers between 0

and 1? Which model fits best for other thresholds?

(5) We can examine another period of time for our networks. Would

the results differ if we take different intervals of time?

63

Appendices

64

APPENDIX A

List of Stocks

We present the list of stocks we used from the indices Dow Jones,

S&P 100 and NASDAQ-100.

Dow Jones Stocks
Id Label Industry
0 AAPL Apple Inc.
1 AXP American Express Company
2 BA The Boeing Company
3 CAT Caterpillar Inc.
4 CSCO Cisco Systems, Inc.
5 CVX Chevron Corporation
6 DWDP DowDuPont Inc.
7 DIS The Walt Disney Company
8 GE General Electric Company
9 GS The Goldman Sachs Group, Inc.
10 HD The Home Depot, Inc.
11 IBM International Business Machines
12 INTC Intel Corporation
13 JNJ Johnson & Johnson
14 JPM JPMorgan Chase Co.
15 KO The Coca-Cola Company
16 MCD McDonald’s Corporation
17 MMM 3M Company
18 MRK Merck & Co., Inc.
19 MSFT Microsoft Corporation
20 NKE NIKE, Inc.
21 PFE Pfizer Inc.
22 PG The Procter & Gamble Co.
23 TRV The Travelers Companies, Inc.
24 UNH UnitedHealth Group
25 UTX United Technologies Corp.

65

Dow Jones Stocks
Id Label Industry
26 V Visa Inc.
27 VZ Verizon Communications Inc.
28 WMT Wal-Mart Stores, Inc.
29 XOM Exxon Mobil Corporation
30 AES The AES Corporation
31 AEP American Electric Power
32 AWK American Water Works Co.
33 CNP CenterPoint Energy, Inc.
34 ED Consolidated Edison Inc.
35 D Dominion Energy Inc.
36 DUC Duke Energy
37 EIX Edison International
38 EXC Exelon
39 FE FirstEnergy Corp
40 NEE NextEra Energy
41 NI NiSource Inc.
42 PCG PG&E
43 PEG Public Service Enterprise Group
44 SO Southern Co
45 ALK Alaska Air Group, Inc.
46 AAL American Airlines Group Inc.
47 CAR Avis Budget Group, Inc.
48 CHRW C.H. Robinson Worldwide, Inc.
49 CSX CSX Corp.
50 DAL Delta Air Lines
51 EXPD Expeditors International
52 FDX FedEx Corporation
53 JBHT JB Hunt Inc.
54 JBLU JetBlue Airways Corp.
55 KSU Kansas City Southern
56 KEX Kirby Corp.
57 LSTR Landstar System, Inc.
58 MATX Matson, Inc.
59 NSC Norfolk Southern Corp.
60 R Ryder System, Inc.
61 LUV Southwest Airlines, Inc.
62 UNP Union Pacific Corp.
63 UAL United Continental Holdings
64 UPS United Parcel Service, Inc.

66

S&P 100 Stocks
Id Label Industry
0 AAPL Apple Inc.
1 ABBV AbbVie Inc.
2 ABT Abbott Laboratories
3 ACN Accenture plc
4 AGN Allergan plc
5 AIG American International Group
6 ALL Allstate Corp.
7 AMGN Amgen Inc.
8 AMZN Amazon.com
9 AXP American Express Inc.
10 BA Boeing Co.
11 BAC Bank of America Corp.
12 BIIB Biogen Idec
13 BK The Bank of New York Mellon
14 BLK BlackRock Inc.
15 BMY Bristol-Myers Squibb
16 BRK-B Berkshire Hathaway
17 C Citigroup Inc
18 CAT Caterpillar Inc.
19 CELG Celgene Corp.
20 CHTR Charter Communications
21 CL Colgate-Palmolive Co.
22 CMCSA Comcast Corporation
23 COF Capital One Financial Corp.
24 COP ConocoPhillips
25 COST Costco
26 CSCO Cisco Systems
27 CVS CVS Health
28 CVX Chevron
29 DHR Danaher
30 DIS The Walt Disney Company
31 DUK Duke Energy
32 DWDP DowDuPont
33 EMR Emerson Electric Co.
34 EXC Exelon
35 F Ford Motor
36 FB Facebook
37 FDX FedEx
38 FOX 21st Century Fox
39 FOXA 21st Century Fox
40 GD General Dynamics
41 GE General Electric Co.
42 GILD Gilead Sciences

67

S&P 100 Stocks
Id Label Industry
43 GM General Motors
44 GOOG Alphabet Inc.
45 GOOGL Alphabet Inc.
46 GS Goldman Sachs
47 HAL Halliburton
48 HD Home Depot
49 HON Honeywell
50 IBM International Business Machines
51 INTC Intel Corporation
52 JNJ Johnson & Johnson Inc.
53 JPM JP Morgan Chase & Co
54 KHC Kraft Heinz
55 KMI Kinder Morgan Inc/DE
56 KO The Coca-Cola Company
57 LLY Eli Lilly and Company
58 LMT Lockheed-Martin
59 LOW Lowe’s
60 RMA MasterCard Inc.
61 MCD McDonald’s Corp.
62 MDLZ Mondelz International
63 MDT Medtronic Inc.
64 MET Metlife Inc.
65 MMM 3M Company
66 MO Altria Group
67 MON Monsanto
68 MRK Merck & Co.
69 MS Morgan Stanley
70 MSFT Microsoft
71 NEE NextEra Energy
72 NKE Nike
73 ORCL Oracle Corporation
74 OXY Occidental Petroleum Corp.
75 PCLN Priceline Group Inc.
76 PEP Pepsico Inc.
77 PFE Pfizer Inc.
78 PG Procter & Gamble Co
79 PM Phillip Morris International
80 PYPL PayPal Holdings
81 QCOM Qualcomm Inc.
82 RTN Raytheon Company
83 SBUX Starbucks Corporation
84 SLB Schlumberger
85 SO Southern Company

68

S&P 100 Stocks
Id Label Industry
86 SPG Simon Property Group, Inc.
87 T AT& T Inc.
88 TGT Target Corp.
89 TWX Time Warner Inc.
90 TXN Texas Instruments
91 UNH UnitedHealth Group Inc.
92 UNP Union Pacific Corp.
93 UPS United Parcel Service Inc.
94 USB US Bancorp
95 UTX United Technologies Corp.
96 V Visa Inc.
97 VZ Verizon Communications Inc.
98 WBA Walgreens Boots Alliance
99 WFC Wells Fargo
100 WMT Wal-Mart
101 XOM Exxon Mobil Corp.

NASDAQ-100 Stocks
Id Label Industry
0 AAL American Airlines Group Inc.
1 AAPL Apple Inc.
2 ADBE Adobe Systems Inc.
3 ADI Analog Devices Inc.
4 ADP Automatic Data Processing Inc.
5 ADSK Autodesk Inc.
6 AKAM Akamai Technologies Inc.
7 ALGN Align Technology Inc.
8 ALXN Alexion Pharmaceuticals Inc.
9 AMAT Applied Materials Inc.
10 AMGN Amgen Inc.
11 AMZN Amazon.com Inc.
12 ATVI Activision Blizzard Inc.
13 AVGO Broadcom Inc.
14 BIDU Baidu Inc.
15 BIIB Biogen Inc.
16 BMRN Biomarin Pharmaceutical Inc.
17 CA CA Inc.
18 CELG Celgene Corp.
19 CERN Cerner Corp.
20 CHKP Check Point Technologies

69

NASDAQ-100 Stocks
Id Label Industry
21 CHTR Charter Communications Inc.
22 CMCSA Comcast Corp.
23 COST Costco Wholesale Corp.
24 CSCO Cisco Systems Inc.
25 CSX CSX Corp.
26 CTAS Cintas Corp.
27 CTRP Ctrip.Com International Ltd
28 CTSH Cognizant Technology Solutions
29 CTXS Ctrip.Com International Ltd
30 DISCA Discovery Inc.
31 DISCK Discovery Inc.
32 DISH DISH Network Corp.
33 DLTR Dollar Tree Inc.
34 EA Electronic Arts
35 EBAY eBay Inc.
36 ESRX Express Scripts Holding Co.
37 EXPE Expedia Group Inc.
38 FAST Fastenal Co
39 FB Facebook
40 FISV Fiserv Inc.
41 FOX Twenty-First Century Fox Inc.
42 FOXA Twenty-First Century Fox Inc.
43 GILD Gilead Sciences Inc.
44 GOOG Alphabet Class C
45 GOOGL Alphabet Class A
46 HAS Hasbro Inc.
47 HOLX Hologic Inc.
48 HSIC Henry Schein Inc.
49 IDXX IDEXX Laboratories Inc.
50 ILMN Illumina Inc.
51 INCY Incyte Corp
52 INTC Intel Corp
53 INTU Intuit Inc.
54 ISRG Intuitive Surgical Inc.
55 JBHT J.B. Hunt Inc.
56 JD JD.com Inc.
57 KHC Kraft Heinz Co.
58 KLAC KLA-Tencor Corp.
59 LBTYA Liberty Global PLC
60 LBTYK Liberty Global PLC
61 LILA Liberty Latin America Ltd.
62 LILAK Liberty Latin America Ltd.
63 LRCX Lam Research Corp.

70

NASDAQ-100 Stocks
Id Label Industry
64 MAR Marriott International Inc.
65 MAT Mattel Inc.
66 MCHP Microchip Technology Inc.
67 MDLZ Mondelez International Inc.
68 MELI MercadoLibre Inc.
69 MNST Monster Beverage Corp.
70 MSFT Microsoft Corp.
71 MU Micron Technology Inc.
72 MXIM Maxim Integrated Products Inc.
73 MYL Mylan NV
74 NCLH Norwegian Cruise Line Holdings
75 NFLX Netflix Inc.
76 NTES NetEase Inc.
77 NVDA NVIDIA Corp.
78 ORLY O’Reilly Automotive Inc.
79 PAYX Paychex Inc.
80 PCAR PACCAR Inc.
81 PCLNX PIMCO Commodities
82 PYPL PayPal Holdings Inc.
83 QCOM Qualcomm Inc.
84 QVCA Liberty Interactive Corp.
85 REGN Regeneron Pharmaceuticals Inc.
86 ROST Ross Stores Inc.
87 SBUX Starbucks Corp.
88 SHPG Shire PLC
89 SIRI Sirius XM Holdings Inc.
90 STX Seagate Technology PLC
91 SWKS Skyworks Solutions Inc.
92 SYMC Symantec Corp.
93 TMUS T-Mobile US Inc.
94 TSCO Tractor Supply Co.
95 TSLA Tesla Inc.
96 TXN Texas Instruments Inc.
97 ULTA Ulta Beauty Inc.
98 VIAB Viacom Inc.
99 VOD Vodafone Group PLC
100 VRSK Verisk Analytics Inc.
101 VRTX Vertex Pharmaceuticals Inc.
102 WBA Walgreens Boots Alliance Inc.
103 WDC Western Digital Corp.
104 WYNN Wynn Resorts Ltd
105 XLNX Xilinx Inc.
106 XRAY Dentsply Sirona Inc.

71

APPENDIX B

Codes

B.0.1. Graphlet count code. We customized the graphlet count

code that we mentioned in Chapter 4. The original source code did not

count the number of four vertices graphlets, so we add the code below

for counting.

print(”number of total four path: %d” % len(self.total˙four˙path))

print(”number of totla three star: %d” % len(self.total˙three˙star))

print(”number of totla four cycle: %d” % len(self.total˙four˙cycle))

print(”number of totla four tailed˙triangle: %d” %

len(self.total˙four˙tailed˙triangle))

print(”number of totla four chordal˙cycle: %d” %

len(self.total˙four˙chordal˙cycle))

print(”number of totla four clique: %d” % len(self.total˙four˙clique))

Also, we generate another source code for the Random Graph model

and the Preferential Attachment model for getting different results in

each implementation.

G = nx.barabasi albert graph(n,m, seed = None)

72

G = nx.fast gnp random graph(n, p, seed = None)

B.0.2. SVM code. We present the code discussed in Chapter 4.

The SVM algorithm predicted the best fit model based on the graphlet

count for our networks.

In [1]: from sklearn.svm import SVC

X = [[231,3,153,554,17,7,0,0],

[293,1,254,798,8,9,0,0],

[344,9,277,967,74,12,2,0],

[249,6,179,617,37,7,2,0],

[464,11,590,1516,120,31,1,0],

[208,5,133,436,65,5,1,0],

[229,0,713,416,0,0,0,0],

[268,0,1069,506,0,0,0,0],

[407,0,2691,679,0,0,0,0],

[323,0,1816,516,0,0,0,0],

[272,0,881,365,0,0,0,0],

[244,0,698,427,0,0,0,0]]

y = [-1,-1,-1,-1,-1,-1,1,1,1,1,1,1]

svclassifier = SVC(kernel=’linear’)

svclassifier.fit(X, y)

svclassifier.predict

[[188,116,100,159,30,3,154,120]])

73

Out[1]: array([-1])

In [2]: from sklearn.svm import SVC

X=[

[8459,1144,26269,78011,32129,8631,6596,403],

[7402,1001,20935,67652,26508,6150,5176,316],

[8194,1160,24568,75357,31503,7867,6553,470],

[8126,1162,23908,74896,31638,7518,6524,464],

[7882,1007,24726,71339,28022,7666,5562,318],

[8039,1140,24084,73364,30589,7644,6572,480],

[8609,1854,35235,59260,47128,6287,15749,2466],

[8589,1671,30834,66036,42876,7668,13035,1803],

[8698,1804,34904,61594,46640,6925,15164,2106],

[8703,1703,32782,64787,44255,7723,13816,1924],

[8704,1826,35188,61479,46651,6683,15404,2357],

[8766,1887,37282,59273,48053,6606,16388,2526]]

y = [-1,-1,-1,-1,-1,-1,1,1,1,1,1,1]

svclassifier = SVC(kernel=’linear’)

svclassifier.fit(X, y)

svclassifier.predict ([

[4545,2575,5342,27216,25803,1220,11994,6560]])

Out[2]: array([1])

74

In [3]: from sklearn.svm import SVC

X = [[493,2,454,1399,14,8,0,0],

[470,7,442,1367,53,7,1,0],

[504,1,501,1473,7,8,0,0],

[394,8,458,1009,61,6,1,0],

[531,6,484,1589,54,8,0,0],

[341,2,275,840,12,4,0,0],

[573,1,3078,1028,0,0,0,0],

[353,0,791,633,0,0,0,0],

[572,0,3524,1243,0,0,0,0],

[367,0,1085,887,0,0,0,0],

[350,0,817,653,0,0,0,0],

[393,0,1313,797,0,0,0,0]]

y = [-1,-1,-1,-1,-1,-1,1,1,1,1,1,1]

svclassifier = SVC(kernel=’linear’)

svclassifier.fit(X, y)

svclassifier.predict

([[435,153,322,1012,783,21,248,136]])

Out[3]: array([-1])

In [4]: from sklearn.svm import SVC

X = [

[30692,4244,147137,443014,183485,44969,37824,2667],

75

[30379,4026,148616,437373,176509,44588,35302,2235],

[29260,3763,141731,419983,163123,41149,31708,2081],

[29764,3867,141284,433599,166990,42254,32227,2042],

[28254,3548,135698,403637,152819,38493,29120,1753],

[28329,3634,134549,405107,155490,38458,29813,1893],

[29537,5493,169850,350376,220804,35734,65485,9171],

[29647,5673,175337,344861,229352,34509,68340,9525],

[30276,5963,198541,329994,242134,34255,76276,11459],

[30097,5706,186242,342314,234033,35986,70474,9841],

[30254,5636,191474,343405,231715,36697,70579,9549],

[30192,5783,193241,337368,236092,35227,72457,10526]]

y = [-1,-1,-1,-1,-1,-1,1,1,1,1,1,1]

svclassifier = SVC(kernel=’linear’)

svclassifier.fit(X, y)

svclassifier.predict ([

[18667,9015,40856,190256,169258,8851,73830,35847]])

Out[4]: array([1])

In [5]: from sklearn.svm import SVC

X = [[231,0,133,447,0,1,0,0],

[214,2,172,437,7,5,0,0],

[257,3,170,532,16,7,1,0],

[184,0,96,306,0,0,0,0],

76

[219,1,130,397,6,0,0,0],

[146,0,70,214,0,2,0,0],

[446,0,1727,1039,0,0,0,0],

[465,0,2013,744,0,0,0,0],

[453,0,1493,886,0,0,0,0],

[428,0,1487,753,0,0,0,0],

[444,0,2184,731,0,0,0,0],

[432,0,1555,886,0,0,0,0]]

y = [-1,-1,-1,-1,-1,-1,1,1,1,1,1,1]

svclassifier = SVC(kernel=’linear’)

svclassifier.fit(X, y)

svclassifier.predict

([[138,20,142,183,54,5,8,1]])

Out[5]: array([-1])

In [6]: from sklearn.svm import SVC

X =[

[30495,3633,151125,453893,161781,40405,29008,1717],

[30476,3587,152525,452347,161086,40692,28532,1701],

[27872,3108,135646,407767,135409,33750,22715,1282],

[29062,3299,144815,427537,146425,36845,25202,1427],

[28200,3063,138203,414850,135647,35006,22060,1108],

[29203,3469,142474,429951,152390,36974,26868,1666],

77

[27752,4459,169964,331513,189512,28933,49126,6417],

[28068,4509,174899,334345,193606,30020,50344,6166],

[28210,4571,185548,327297,197510,28780,52556,6621],

[27972,4467,173826,334500,191344,29300,49671,6318],

[28219,4707,187988,322242,203423,27663,54778,6877],

[28164,4474,183348,329688,195043,29316,50847,6147]]

y = [-1,-1,-1,-1,-1,-1,1,1,1,1,1,1]

svclassifier = SVC(kernel=’linear’)

svclassifier.fit(X, y)

svclassifier.predict ([

[21996,7140,59033,268323,188857,11565,60806,17825]])

Out[6]: array([1])

78

APPENDIX C

Correlation Networks

In Chapter 4, we present the networks with ρ = 0.3 and ρ = 0.7 for our

stocks. To create the networks, first, we compute the cross correlation

for all the stocks and create a cross correlation matrix. We built cross

correlation matrices for three indices.

(1) Dow Jones stock correlation matrix.

(2) S&P 100 stock correlation matrix.

(3) NASDAQ-100 stock correlation matrix.

79

Dow Jones stock correlation matrix.

80

S&P 100 stock correlation matrix part one.

81

S&P 100 stock correlation matrix part two.

82

NASDAQ-100 stock correlation matrix part one.

83

NASDAQ-100 stock correlation matrix part two.

84

Bibliography

[1] J. Aitchison, The Bibliographic Classification of H. E. Bliss as a source of thesaurus terms and

structure, Journal of Documentation 42 (1986) 160–181.

[2] R. Albert, A. L. Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics

74 (2002) 47–97.

[3] E. Anderson, The species problem in Iris, Annals of the Missouri Botanical Garden 23 (1936)

45–509.

[4] X. Argyriou, M. Herbster, M. Pontil, Combining Graph Laplacians for Semi-Supervised Learning,

Neural Information Processing Systems, 2005.

[5] A. L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509–512.

[6] L. Barghout, Spatial-taxon information granules as used in iterative fuzzy-decision-making for

image segmentation, Granular Computing and Decision-Making, Springer 2015 pp. 285–318.

[7] M. Bastian, S. Heymann, M. Jacomy, Gephi : An Open Source Software for Exploring and Manip-

ulating Networks, AAAI Publications, 2009.

[8] V. Batagelj, U. Brandes, Efficient generation of large random networks, Phys. Rev. E. 71 (2005)

036–113.

[9] S. Battiston, M. Catanzaro, Statistical properties of corporate board and director networks, Springer

2004 pp. 345–352.

[10] A. Blum, T. Mitchell, Combining Labelled and Unlabelled Data with Co-Training, Computational

Learning Theory 1998 pp. 92–100.

[11] B. Bollobás, Probabilistic Combinatorics and Its Applications, American Mathematical Society,

1991.

[12] B. Bollobás, Random Graphs, Cambridge University Press, 2001.

[13] A. Bonato, A Course on the Web Graph, American Mathematical Society Graduate Studies Series

in Mathematics, Providence, Rhode Island, 2008.

[14] A. Bonato, A. Tian, Complex Networks and Social Networks, Social Networks, Springer 2011 pp.

280–291.

85

[15] G. Bonnanno, G. Caldarelli, F. Lillo, R. N. Mantegna, Topology of correlation-based minimal

spanning trees in real and model markets, Phys. Rev. E. 68 (2003) 046–103.

[16] G. Bonanno, G. Caldarelli, F. Lillo, S. Micciche, N. Vandewalle, R. N. Mantegna, Networks of

equities in financial markets, Euro. Phys.J. B. 38 (2004) 363–371.

[17] G. Bonanno, F. Lillo, R. N. Mantegna, High-frequency cross correlation in a set of stocks, Quantit.

Finance 1 (2001) 96–104.

[18] A. Chapelle, Separation of ownership and control where do we stand, Corp. Ownersh. Control 15

(2005) 91–101.

[19] K. Tse. Chi, Liu. Jing, C.M. Francis, A. Lau, Network perspective of the stock market, Journal

of Empirical Finance 17 (2004) 659–667.

[20] J. Cohen, P. Cohen, S. G. West, L. S. Aiken, Applied Multiple Regression/Correlation Analysis

for the Behavioural Sciences, Third Edition, 2003.

[21] D. DeCoste, Training Invariant Support Vector Machines, Machine Learning 46 (2002) 161–191.

[22] P. Erdős, A. Rényi, On Random Graph, Publications Mathematica 6 (1959) 290–297.

[23] L. Euler, Solutio problematis ad geometriam situs pertinentis, Comment. Acad. Sci. U. Petrop 8,

1736.

[24] O. Frank, Triad count statistics, Annals of Disc. Math. (1988) 141–149.

[25] A. Hagberg, A. Schult, J. Swart, Exploring network structure, dynamics, and function using

NetworkX, In: Proceedings of the 7th Python in Science Conference, Editors: G. Varoquaux, T.

Vaught, J. Millman, 2008.

[26] P. W. Holland, S. Leinhardt, Local structure in social networks, Sociological Methodology 7 (1976)

1–45.

[27] J. Janssen, M. Hurshman, N. Kalyaniwalla, Model selection for social networks using graphlets,

Internet Math 8 (2012) 338–363.

[28] T. Joachims, Transductive Learning via Spectral Graph Partitioning, Machine Learning 2003 pp.

290–297.

[29] P. Kaelbling, L. Littman, W. Moore, Reinforcement Learning: A Survey, Journal of Artificial

Intelligence Research 4 (1996) 237–285.

[30] C. Koza, J. Bennett, F. Andre, D. Keane, A. Martin, Automated design of both the topology

and sizing of analogue electrical circuits using genetic programming, Artificial Intelligence in Design,

Springer 1996 pp. 151–170.

86

[31] X. Liu, Graphlet counting, GitHub repository, https://github.com/liuxt/graphlet counting, 2017.

[32] E. Mandere, Financial Networks and their applications to the stock Market, 2009.

[33] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[34] V. Mnih, Human-level control through deep reinforcement learning, Nature 518 (2015) 529–533.

[35] R. N. Mantegna, Hierarchical structure in financial markets, Euro. Phys. J. B. 11 (1999) 193–197.

[36] M. Newman, S. H. Strogatz, D. J. Watts, (2001), Random graphs with arbitrary degree distribu-

tions and their applications, Physical Review E. 64 (2009) 026–118.

[37] J. P. Onnela, A. Chakraborti, K. Kaski, Dynamics of market correlations: taxonomy and portfolio

analysis, Phys. Rev. E. 68 (2003) 056–110.

[38] F. Pedregosa, Scikit-learn: Machine Learning in Python,Journal of Machine Learning Research

12 (2011) 2825–2830.

[39] N. Prźulj, Biological Network Comparison Using Graphlet Degree Distribution, Bioinformatics

2007.

[40] N. Prźulj, DG. Corneil, I. Jurisica, Modeling Interactome, Scale-Free or Geometric, Bioinformatics

2004.

[41] S. Rajagopal, Customer data clustering using data mining technique, International Journal of

Database Management Systems 3, 2011.

[42] A. Samuel ,Computer Games I, Springer 1998 pp. 335–365.

[43] A. Samuel, Some studies in machine learning using the game of checkers, IBM Journal of Research

and Development 3, 1959.

[44] B. Schwartz, Google search knows about over 130 trillion pages,

https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents, 2016.

[45] Scikit-learn, Machine Learning in Python, Pedregosa et al., Journal of Machine Learning Research

12 (2011) 2825–2830.

[46] S. H. Strogatz, D. J. Watts, Collective dynamics of small-world networks, Nature 393 (1998)

440–442.

[47] S. Sutton, G. Barto, Reinforcement Learning, MIT Press, Cambridge 1998 Chapter 11.

[48] N. Vandewalle, F. Brisbois, X. Tordoir, Self-organized critical topology of stock markets, Quantit.

Finan. 1 (2001) 372–375.

[49] D. B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.

87

[50] X. Zhu, J. Kandola, Z. Ghahramani, J. Lafferty, Non-parametric Transforms of Graph Kernels

for Semi-Supervised Learning, Neural Information Processing Systems, 2005.

88

