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ABSTRACT 

LINE-WISE POWER BALANCE EQUATIONS AND APPLICATIONS 

 

Amr Adel Fathy Mohamed 

Doctor of Philosophy 

Electrical and Computer Engineering 

Ryerson University, 2019 

 

Optimal power flow (OPF) refers to optimize power systems considering a chosen objective 

subject to a set of constraints. Existing OPF formulations used to settle electricity markets include 

a set of bus-wise power balance equations (PBE) that is comprised exclusively of high order terms 

which have sinusoidal components. Accordingly, such OPF formulations remain nonlinear and 

nonconvex optimization problems. Even though commercial OPF solvers are robust and efficient, 

they still cannot guarantee a global optimum. The US Federal Energy Regulatory Commission 

estimates that the best commercial OPF solvers are off by 10%, amounting to an annual loss of US 

$400 billion worldwide. For these motivating reasons, OPF remains a major research focus and 

forms the topic of this thesis. 

This thesis aims to: (1) develop new sets of PBE with lower order terms and lesser numbers 

of sinusoidal terms yielding better solution space, (2) build new OPF formulations using this new 

set of PBE, and (3) incorporate voltage stability constraints into the developed OPF formulations. 

The genesis of the new set of PBE stems from: (1) the fact that power of a constant impedance load 

is proportional to the square of voltage magnitude, and, (2) power flow in branches can be expressed 

in terms of square of voltage magnitude. Accordingly, a set of line-wise PBE is developed, both in 

polar and rectangular forms and are solved Newton-Raphson technique. Tests show that the 
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proposed line-wise power flow (LWPF) algorithms are accurate, provide monotonic convergence, 

and scale well for large systems. The algorithms are faster comparing to classical bus-wise power 

flow methods. Further, the ability to directly identify the set of critical lines that are the most 

susceptible to Voltage collapse.  

A novel line-wise optimal power flow (LWOPF) formulation is developed based on polar 

LWPF and solved using successive linear programming technique. Tests show that LWOPF 

consistently yields a better solution than that computed using bus-wise OPF, namely in half the 

time. LWOPF is extended to include voltage stability constraints and implemented using both linear 

and nonlinear optimization techniques. It demonstrates improved performance in achieving lower 

cost optimal solutions with better voltage-stable states.  
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CHAPTER 1: INTRODUCTION 

 Introduction 

Power flow (PF) is the most frequently performed analysis in power systems engineering. It represents the 

backbone of almost all the power system analysis studies in the academic, industrial and utility sectors. Any 

improvement in the PF formulation and solution methods is of immense value for several technical and 

economic reasons. The reasons for benefits are multifaceted. First, are its the economic ramifications. The 

non-convex nature of the space modeled by the existing power balance equations results in power system 

optimization formulations that are also non-convex. These non-convex power systems optimization 

formulations yield suboptimal solutions, each of which represents one of the several local optimum 

solutions. Second, there are technical considerations. The solution time for power balance equations depends 

on the formulation and the complexity of terms in the Jacobian of power balance equations (i.e., order and 

nonlinearity). Improvements in reducing complexity of the Jacobian terms of power balance equations will 

yield significant benefits in achieving faster and more accurate solutions for power balance equations. Third, 

interest in power balance equations arises from their attributes, such as indication of system voltage collapse. 

Their Jacobian can readily indicate the state of power systems and proximity to voltage collapse. However, 

attributes elicited from the Jacobian of power balance equations is very much dependent upon the 

formulation of power balance equations. Hence, development of simpler and faster power balance equations 

that directly indicate proximity to voltage collapse is very beneficial. 

In this context, the first topic of interest in this research work is to develop an efficient simple PF 

algorithm considering the lines instead of buses. The set of line-wise equations and the Jacobian matrix are 

developed and followed by a solution method using Newton Raphson (NR) technique. The developed 

formulations are in both rectangular and polar forms. As a by-product, voltage collapse (VC) analysis can 

be conducted by developing a suitable voltage collapse index. The proposed method can be used to reveal 

the critical lines most susceptible to VC and show that they are directly available in the Jacobian of the line-

wise NR method, without additional calculations.  

The second topic of interest in this work is the development of an OPF formulation based on the line-

wise power balance equations. The formulation may be explored for solution using classical linear and non-
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linear optimization techniques. These formulations, given the model of solution space, will be tested for 

improved solutions and possible advancement to global solutions. 

The third topic of interest is to ensure voltage stability. Several models for incorporating voltage 

stability are explored in conjunction with line-wise optimal power flow.  

 

 Survey of Recent work  

In this section, a brief literature survey is presented as follows. 

1.2.1 Bus-wise power flow 

Power flow (PF) analysis refers to solution of a set of equations that describe a power system, yielding 

bus-wise voltage solutions for the whole power system. PF analysis plays a vital role in many aspects of 

electrical power systems engineering. PF analysis constitutes the basis for studies in topics such as power 

systems optimization, power systems planning, voltage stability, etc. The most popular formulation for PF 

analysis considers a set of bus-wise power balance equations based on nodal analysis. The formulation is 

solved using numerical techniques, such as Gauss-Seidel, Newton-Raphson (NR), and their variants, such 

as fast-decoupled power flow. The solution yields bus-wise voltage values for the power system. Line flows 

are computed using impedance of the network elements and computed voltage values. 

Over the past several decades, an enormous effort has been devoted to the development of efficient 

and accurate solution methods for solving the set of bus-wise power balance equations. In 1935, an 

elementary solution for PF analysis was presented in [1]; then, it was followed by several attempts to solve 

the problem [2-7]. The first powerful procedure for solving the bus-wise PF problem based on the NR 

method was introduced in 1967 [8], and its variant, the fast decoupled method was presented later in 1974 

[9].  

This was followed by several studies concerning the singularity of the Jacobian matrix; the existence, 

uniqueness, convergence, and computational efficiency of PF solutions were also studied in [10-15]. In [10], 

the relation between multiple PF solutions and voltage instability was considered. A method to solve the PF 

for large weakly meshed power system is presented in [11]. Galiana et al. studied the effect of the Jacobian 

singularity on the solution of PF in [12]. It was followed by several attempts to improve the PF solution 

performance as in [13] and [14]. In [15], an adaptive preconditioner algorithm was developed and applied 

on PF calculation. The literature contains other PF studies considering three-phase unbalanced conditions 
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[16-18]. In [16], the sequence component frame was used to solve three-phase power flow. Zhang et al. 

developed a solution algorithm for unbalanced three-phase PF using symmetrical components. In [18], 

three-phase PF solution algorithm was presented and used for real-time distribution system. 

Recently, interest in meshed and radial distribution networks, especially with renewable energy 

resources and microgrids, have rekindled [19-23]. In [19], an algorithm of PF solution was developed for 

islanded microgrid based on newton trust region method. PF solution algorithm for distribution networks 

with high penetration of rooftop solar PV was presented in [20]. It was followed by numerous attempts to 

solve the PF problem on distribution level as in [21] based on Fortescue transformation. A method based on 

impedance bus was developed to solve the PF for large unbalanced distribution systems in [22]. Garces [23] 

presented a linear formulation and solution algorithm for three-phase PF of distribution systems. 

The literature shows that both polar and rectangular formulations of bus-wise power flow are 

considered. In [8] and [24], development and comparison between the two polar and rectangular PF 

formulations are performed based on NR solution method. Many research works have been pursued within 

the context of rectangular PF coordinates [25-28]. Stott presented a comprehensive review on the existing 

PF method up to 1975 including the rectangular PF formulations in [25]. In [26], a rectangular nonlinear 

formulation of PF was developed. A rectangular PF formulation is expressed using Taylor series including 

derivatives up to the second order in [27]. In 2002, interest in rectangular form of power flow was rekindled 

when Exposito et al. reformulated the existing of rectangular PF formulation in terms of bus voltage and 

currents in [28].  

 

1.2.1.1 Polar bus-wise power balance equations 

Hereunder, the conventional polar form of bus-wise power balance equations will be presented. Consider a 

power system with 𝑁𝐺 generator buses and 𝑁𝐿𝐵 load buses, such that the total number of buses 𝑁𝐵 =

𝑁𝐺 + 𝑁𝐿𝐵, and 𝑁𝑇 is the total number of transmission branches. The bus admittance matrix is 𝑌𝑁𝐵×𝑁𝐵. The 

total active and reactive power (PT and QT) at bus k can be expressed as follows: 

𝑃𝑇𝑘(𝑉, 𝛿) = 𝑃𝐺𝑘 − 𝑃𝐷𝑘 = 𝑉𝑘 ∙ ∑𝑉𝑖 ∙ 𝑦𝑖𝑘 ∙ cos( 𝛿𝑘 −  𝛿𝑖 − 𝜗𝑘𝑖)     

𝑁𝐵

𝑖=1

∀ 𝑘 ∈  𝑁𝐵                       (1.1) 

 

𝑄𝑇𝑘(𝑉, 𝛿) = 𝑄𝐺𝑘 − 𝑄𝐷𝑘 = 𝑉𝑘 ∙ ∑𝑉𝑖 ∙ 𝑦𝑖𝑘 ∙ sin( 𝛿𝑘 −  𝛿𝑖 − 𝜗𝑘𝑖)

𝑁𝐵

𝑖=1

     ∀ 𝑘 ∈  𝑁𝐵                       (1.2) 

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22A.G.%22&searchWithin=%22Last%20Name%22:%22Exposito%22&newsearch=true&sortType=newest
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It must be noted that the following are known: 

(1) voltage magnitude and phase angle at the slack bus; 

(2) real power injection (generation minus load) and bus voltage magnitudes at all generation busses; 

and  

(3) real and reactive power injections (negative of real and reactive power loads) at load busses.  

The unknowns are then:  

(1) real and reactive power injections at the slack bus;  

(2) bus voltage phase angles and reactive power injections at generator busses; and  

(3) voltage magnitudes and phase angles at load busses. 

 

Summarized in a tabular form below: 

 Knowns Unknowns 

Slack Bus 
𝑉 

𝛿 

𝑃𝑇 = 𝑃𝐺 − 𝑃𝐷 

𝑄𝑇 = 𝑄𝐺 − 𝑄𝐷 

Generator Bus 
𝑃𝑇 = 𝑃𝐺 − 𝑃𝐷 

𝑉 

𝑄𝑇 = 𝑄𝐺 − 𝑄𝐷 

𝛿 

Load Bus 
𝑃𝑇 = −𝑃𝐷 

𝑄𝑇 = −𝑄𝐷 

𝑉 

𝛿 

 

1.2.1.2 Rectangular bus-wise power balance equations 

In this subsection, the conventional rectangular form of bus-wise power balance equations will be presented. 

Consider a power system with NG generator buses and NLB load buses, such that the total number of buses 

𝑁𝐵 = 𝑁𝐺 + 𝑁𝐿𝐵, and NT is the total number of transmission branches. The bus admittance matrix is 

𝑌𝑁𝐵×𝑁𝐵. The off-diagonal element of admittance matrix  𝑦𝑖𝑘∠𝜗𝑖𝑘 =  𝑔𝑠𝑖𝑘 + 𝑗 ∙ 𝑏𝑠𝑖𝑘 

 

𝑃𝑇𝑘(𝑒, 𝑓) = 𝑃𝐺𝑘 − 𝑃𝐷𝑘 = ∑[𝑒𝑘 ∙ (𝑒𝑖 ∙ 𝑔𝑖𝑘 − 𝑓𝑖 ∙ 𝑏𝑠𝑖𝑘) + 

𝑁𝐵

𝑖=1

𝑓𝑘 ∙ (𝑒𝑖 ∙ 𝑏𝑖𝑘 + 𝑓𝑖 ∙ 𝑔𝑠𝑖𝑘)]                  

∀ 𝑘 ∈  𝑁𝐵          (1.3) 

 

𝑄𝑇𝑘(𝑒, 𝑓) = 𝑄𝐺𝑘 − 𝑄𝐷𝑘 = ∑[𝑓𝑘 ∙ (𝑒𝑖 ∙ 𝑔𝑖𝑘 − 𝑓𝑖 ∙ 𝑏𝑠𝑖𝑘) − 

𝑁𝐵

𝑖=1

𝑒𝑘 ∙ (𝑒𝑖 ∙ 𝑏𝑖𝑘 + 𝑓𝑖 ∙ 𝑔𝑠𝑖𝑘)]                 

 ∀ 𝑘 ∈  𝑁𝐵          (1.4) 
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It must be noted that the following are known: 

(1) real and imaginary terms of voltage at the slack bus; 

(2) real power injections (generation minus load) and bus voltage magnitudes at all generation busses; 

and,  

(3) real and reactive power injections (negative of real and reactive power loads) at load busses.  

The unknowns then are:  

(1) real and reactive power injections at the slack bus;  

(2) real and imaginary terms of voltage as well as the reactive power injections at generator busses; and,  

(3) real and imaginary terms of voltage at load busses.  

 

 

 

Knowns and unknowns are summarized in a tabular form below: 

 Knowns Unknowns 

Slack Bus 
𝑒 

𝑓 

𝑃𝑇 = 𝑃𝐺 − 𝑃𝐷 

𝑄𝑇 = 𝑄𝐺 − 𝑄𝐷 

Generator Bus 
𝑃𝑇 = 𝑃𝐺 − 𝑃𝐷 

𝑉𝑆𝐻 

𝑄𝑇 = 𝑄𝐺 − 𝑄𝐷 

𝑒 𝑎𝑛𝑑 𝑓 

Load Bus 
𝑃𝑇 = −𝑃𝐷 

𝑄𝑇 = −𝑄𝐷 

𝑒 

𝑓 

1.2.2 Voltage Collapse 

Voltage collapse (VC) is a localized dynamic phenomenon occurring across power lines due to a lack of 

reactive power; it is the most severe stage of voltage instability, leading to a low-voltage profile in a 

significant part of the power system. The event can propagate and eventually lead to a blackout [29, 30]. As 

reported in [31], steady state voltage stability analysis is more comprehensive and can provide much insight 

to the voltage collapse problem. In this context, several approaches have been employed in the literature for 

static analysis of voltage stability, such as P-V and Q-V curves, modal analysis, continuation power flow, 

minimum singular value based on the Jacobian matrix, bifurcation theory, and energy function, to name a 

few.  
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The P-V and Q-V curves are the most widely used methods of voltage stability analysis. To generate 

these curves, a sizeable number of power flow (PF) computations have to be executed. The curves are used 

to identify the “knee” point that represents the stability limit. However, such methods require a huge 

computational burden and, consequently, take a long time [29, 30]. Modal analysis is used in [31] for steady 

state voltage stability analysis based on the eigenvalues of the Jacobian matrix. Positive eigenvalues of the 

Jacobian matrix indicate a stable system, while a negative eigenvalue shows that the system is unstable. 

However, as the demand load is increased toward the maximum loading condition, the Jacobian matrix 

suffers from the singularity problem, which will prevent the PF solution from convergence [29-31]. 

As a solution for the singularity of Jacobian matrix, the continuation PF is presented in [32-34]. The 

solution of continuation power flow was based on homotopy techniques. The method is solved in a two-step 

process, with a predictor step and a corrector step. It considers an additional variable called the load-increase 

continuation parameter, which increases the size of the Jacobian matrix by one.  

As a result, the Jacobian matrix becomes non-singular with a suitable choice of the continuation 

parameter. However, the continuation PF still deals with the singular Jacobian matrix during the corrector 

step [35]. In [36], the minimum singular value of the Jacobian matrix was used for a proximity index for the 

voltage instability. The energy function concept was used to provide a localized measure of voltage security 

in [37]. Also, the the limitations and applications of saddle-node bifurcation theory in voltage collapse 

analysis were presented in [38]. 

Some other approaches utilize local measurements to develop a voltage collapse indicator [39-41]. In 

[42], a PF method to eliminate the Jacobian matrix singularity and compute the voltage stability margins is 

presented. However, bus-wise PF methods and the associated Jacobian matrix cannot readily point out the 

line, or a set of lines, that is the most susceptible to voltage collapse. This inability persists as a distinct 

shortcoming of voltage collapse assessment methods that rely on bus-wise PF methods. 

1.2.3 Optimal power flow 

Optimal power flow (OPF) is an optimization problem that aims at finding the optimal solution for an 

objective, such as minimizing the total generating cost, while satisfying constraints such as power balance 

equations, bus voltage limits, line flow limits, etc. The objective of OPF may vary depending on the nature 

of the study. Solving the OPF for a power system operator, every 5 minutes or in a similar time frame, 

remains a fundamental task. It has significant technical and economic importance and benefits. Technical 

important is due to its key role in maintaining a power system’s operation within feasible and safe zones, 
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observing all constraints. Economic importance is due to its key role in ensuring that the power system is 

operated in the most economic manner. 

The main applications of the OPF tool include: (1) scheduling the power system at a frequent interval, 

as often as every five minutes [43]; (2) dual variables of OPF formulation provide price signals for resources 

and equipment limits; (3) OPF and its variants are used as a basic tool for assessing various investment 

decisions; and; (4) OPF and its variants form a subset of formulations for unit commitment, optimal 

planning, and such other applications. 

The work devoted in the area of OPF could be mainly classified based on (1) the formulation type, 

which could be nonlinear or linear, considering power balance equations in its nonlinear form (AC 

formulation) or the linear form (DC formulations) respectively, and, (2) the solution algorithm which could 

be successive linear optimization or nonlinear optimization such as quadratic optimization, conic 

optimization or metaheuristic optimization techniques to name a few.  

The literature shows that many research efforts have been devoted to the development of efficient and 

accurate solution approaches for solving the OPF problem [44, 45]. The first formulation of the OPF 

problem was introduced in 1962 [46]. It was followed by several attempts to solve the problem [47-50]. A 

powerful solution algorithm for OPF based on a reduced gradient method is presented in [51]. In [52-55], 

the OPF was solved using quadratic programming approaches. Metaheuristic algorithms have also been 

applied to solve the OPF [56-60].   

Recently, several solution algorithms tried to convexify the classical formulation and solve the 

resultant relaxation using semidefinite programming (SDP) [61-68]. In addition, interests in distribution 

networks with OPF, especially with renewable energy resources, energy storage, and microgrids, have been 

presented in [69-72].  

The first application of SDP in power system analysis was presented in [73] as relaxations for economic 

dispatch and unit commitment problems. In [74], the hydrothermal coordination problem was solved using 

SDP. Jabr formulated the DC-OPF and the OPF of a radial distribution system as conic optimization 

problems in [75, 76] respectively. The OPF problem was presented and solved using SDP, with 

shortcomings on large systems [77]. In 2011, the graph partitioning technique was employed with SDP to 

solve the OPF problem with better computing performance, but it still cannot be applied for large systems 

[78]. In [63], the duality of the classical OPF problem was developed in an SDP model which considers the 

zero-duality-gap condition of global optimality. In a two-part paper [79, 80], the branch flow technique was 

used for convexification of the OPF problem for both radial and mesh networks. In addition, the global 
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optimality condition of OPF relaxation was derived from the Karush-Kuhn-Tucker (KKT) conditions in 

[62]. With a focus on structural properties rather than algorithms of SDP relaxation of OPF,  the two-part 

paper in [64, 81] provided conditions for the exactness of  OPF convex relaxations.  

Many other works have been devoted to improving the efficiency and performance of SDP relaxation 

of the OPF problem [65-68, 82-91]. Some other approaches employed SDP relaxation for optimal scheduling 

of energy storage units and renewable resources [92, 93]. Nevertheless, existing convex optimization solution 

algorithms still have limitations, which emphasizes the need to develop efficient global methods in solving 

OPF problems [94]. 

Although the first OPF problem was formulated 55 years ago [46], there is still no robust solution, due 

to the nonlinear and nonconvex nature of its formulation. Practical approaches to solving nonconvex 

problems do not yet exist, and even the SDP relaxations of OPF still have some limitations [94]. As a result 

of that, OPF is still a major research emphasis given its technical and economic importance in operation of 

modern power systems. 

The reliability, robustness and relative speed of linear programming (LP) techniques make its 

approaches among the most extensively used methods to solve the OPF formulation in the literature [95]. 

Successive linear programming (SLP) technique was employed for solving the power system scheduling 

problems in general and as one of the most popular approaches for OPF [96-108]. SLP was used for real 

and reactive power optimization in [95] - [97]. 

Literature shows that some SLP approaches have used the accurate AC power flow equations in a 

separate stage as in [102-105], while others have used the approximate DC power flow model such as [99-

101]. Some approaches employed the interior point methods (IPM) to solve the LP problem [104, 105], 

which demonstrated faster convergence than the Simplex algorithm.  

Recently, the interest in using SLP for solving OPF has been rekindled [106-108]. In [106], an OPF 

model with environmental constraints was developed and solved using SLP. Yang et al. presented an 

approximated OPF model which is based on the quasi-linear relationship of P–θ and solved by SLP [107]. 

The quadratic apparent branch flow limits were linearized and a method to recover the AC feasibility was 

provided.  The method is complicated and includes a lot of approximation.  

In [108], Castillo et al. developed an OPF model based on the ‘IV-ACOPF’ formulation. This 

formulation is based on a current injections approach that linearly couples the quadratic constraints at each 

bus. The method is associated with a great deal of approximation and penalty factors which may affect the 
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solution performance.  For the first few iterations, the high-quality initial points could be unavailable, which 

could make the approximation error relatively large.  

1.2.3.1 Classical formulations  

In this section, the bus-wise classical OPF formulation will be shown as follows. 

Objective Function           

Min       ∑ 𝐹(𝑃𝐺𝑘) =  𝑐𝑘2 ∙ 𝑃𝐺𝑘
2

 

𝑘∈𝑁𝐺

+ 𝑐𝑘1 ∙ 𝑃𝐺𝑘 + 𝑐𝑘0                                                     (1.5) 

Subject to: 

➢ Generator active power limit      

                                                                     

𝑃𝐺𝑘   ≤  𝑃𝐺𝑘 ≤ 𝑃𝐺𝑘                    ∀ 𝑘 ∈  𝑁𝐺                                (1.6) 

 

➢ Generator reactive power limit                                                                      

𝑄𝐺𝑘   ≤  𝑄𝐺𝑘 ≤ 𝑄𝐺𝑘                     ∀ 𝑘 ∈  𝑁𝐺                              (1.7) 

 

➢ Bus voltage limit                                                                                                  

𝑉𝑘   ≤  𝑉𝑘
 ≤ 𝑉𝑘

                                  ∀ 𝑘 ∈  𝑁𝐵                              (1.8) 

 

➢ Line power flow limit                                                                                       

|𝑆𝑙| ≤ 𝑆𝑙
𝑚𝑎𝑥                                ∀ 𝑙 ∈  𝑁𝑇                             (1.9) 

 

➢ Active power balance        

                                                                                

𝑃𝐺𝑘 − 𝑃𝐷𝑘 = 𝑉𝑘 ∙ ∑𝑉𝑖 ∙ 𝑦𝑖𝑘 ∙ cos( 𝛿𝑘 −  𝛿𝑖 − 𝜗𝑘𝑖)       

𝑁𝐵

𝑖=1

∀ 𝑘 ∈  𝑁𝐵                         (1.10) 
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➢ Reactive power balance   

  

𝑄𝐺𝑘 − 𝑄𝐷𝑘 = 𝑉𝑘 ∙ ∑𝑉𝑖 ∙ 𝑦𝑖𝑘 ∙ sin( 𝛿𝑘 −  𝛿𝑖 − 𝜗𝑘𝑖)     

𝑁𝐵

𝑖=1

    ∀ 𝑘 ∈  𝑁𝐵                          (1.11) 

 

1.2.4 Voltage stability constrained optimal power flow  

Power systems may operate under heavy loading conditions during emergencies, near to the stability margin, 

and often with a high penetration of renewable resources, and their intermittent nature [109-113]. The 

incorporation of voltage security into power system operation analysis therefore becomes an urgent demand. 

The literature shows that voltage security is considered in OPF formulation in two ways. First, the voltage 

collapse proximity indicator (VCPI) was employed as a constraint in the OPF problem [114-118]. The 

second approach was to incorporate VCPI as the objective function, where the objective was maximizing 

the minimum singular value of the Jacobian matrix, as in [119, 120]. In [121, 122], the maximization of the 

smallest eigenvalue of the non-singular Jacobian matrix has been used as the objective in reactive power 

dispatch. In addition, the L-index indicator has been used as the objective function in [123-125]. In [126], 

the improved bus voltage stability index was minimized as an objective function for the purpose of reactive 

compensation devices planning.  

A voltage collapse proximity factor (VCPF) was developed and employed in OPF to ensure the voltage 

stability. It was implemented in two ways; first, VCPF was incorporated with OPF as a voltage stability 

constraint and second, it was employed as an objective function [127]. 

Nevertheless, OPF enforces voltage magnitude and line flow limits. It is still inadequate to ensure the 

steady-state voltage stability without considering more specific voltage stability constraints [128]. In this 

context, several voltage stability constrained OPF (VSOPF) formulations have been developed. These VS-

OPF formulations include load margins and voltage collapse preventing constraints to ensure a secured 

operation for power systems [127, 129-131]. In [129], an algorithm to identify the maximum distance to 

voltage collapse was developed and incorporated with OPF.  

The previous work was extended to consider a multi-objective function in [130]. A VSOPF was 

developed as a market-clearing model and solved based on continuation power flow [131]. Chávez and et 

al. introduced a linear VSOPF model based on DC OPF formulation [132]. Recently, a condition for power 



 

11 

 

flow jacobian non-singularity was developed and incorporated with the second-order conic OPF relaxation 

[133]. 

 Motivations of the thesis 

Motivation #1: Develop a superior power flow method 

Improving the PF analysis, considering problem formulation and solution technique, is an important 

research exercise. The reasons for that are twofold. First, the nonlinearity and nonconvexity of the existing 

power balance equations are among the main challenges in solution speed and accuracy. Second, there is a 

need to improve the PF formulation such that solution space is better. 

In this direction, two different options for PF are developed: (1) a polar line-wise power flow 

formulation; and (2) a rectangular line-wise OPF formulation. 

Motivation #2: Develop a superior optimal power flow method 

In this work, the primary motivation is to develop a novel formulation for OPF that is scalable, efficient and 

yields optimal solutions closer to global optimum. In this direction, a novel line-wise power flow 

formulation is developed. 

 

Motivation #3: Online voltage stability assessment tool 

Guaranteeing adequate voltage security in power systems is an essential objective for power system 

operators. As mentioned in the introduction and literature survey sections, the voltage collapse and its 

consequences could have severe impact on power systems. This affirms the need for an online voltage 

stability assessment tool which can predict the contingencies and help the power system operators to prevent 

voltage collapse efficiently.  

In this work, the main motivation is to maintain voltage stability. The following elements need 

development: (1) a voltage collapse index which can reveal the critical lines susceptible to voltage collapse, 

and (2) suitable formulations and algorithms of voltage stability constrained OPF. 

 

 Objectives of the thesis 

The main objectives of this thesis are as follows.  

a) Explore and develop a polar formulation for line-wise power balance equations and a solution method. 

It is addressed in Chapter 2. 
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b) Explore the use of the line-wise PF method for voltage collapse analysis. It is addressed in Chapter 2. 

c) Explore and develop a rectangular formulation for line-wise power balance equations and a solution 

method. It is addressed in Chapter 3. 

d) Develop optimal power flow formulations, using the line-wise power flow method, to be solved using 

classical optimization techniques, such as linear optimization and nonlinear optimization. It is addressed 

in Chapter 4. 

e) Explore and develop the incorporation of voltage stability in the solution of the developed polar 

formulation of line-wise optimal power flow. It is addressed in Chapters 5 and 6. 

 Summary 

The structure of the developed work is as shown in Figure 1.1. The thesis is organized as follows. In chapter 

2, the mathematical formulation of the line-wise PF based on NR method in its polar form and the line 

voltage collapse index are developed. Further, results comparison with existing well-known methods is 

presented to show the performance of developed polar line-wise PF. Chapter 3 presents the line-wise PF 

based on NR in its rectangular form and compares with existing methods. In Chapter 4, a linearized 

incremental line-wise optimal power flow (LWOPF) is developed and solved based on successive linear 

programming (SLP).  

In Chapter 5, a nonlinear formulation for polar line-wise optimal power flow is developed and solved 

using classical nonlinear optimization technique considering voltage stability constraints. Chapter 6 shows 

the establishment of two developed linear models of incorporating the voltage stability in line-wise OPF. 

The solution algorithm for the developed two models using the SLP technique is presented and results are 

compared with exiting work to show the superior performance. Finally, the conclusions and suggestions for 

future work are drawn in Chapter 7. 
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Power 

Flow 

→ Chapter 2: Polar Line-wise Power Flow (LWPF) Formulation 

  

→ Chapter 3: Rectangular Line-wise Power Flow (LWPF) 

   

Optimal 

Power 

Flow 

→ Chapter 4: Line-wise Optimal Power Flow (LWOPF) 

  

→ Chapter 5: Nonlinear Optimization of Voltage Stability constrained OPF (VSC-

LWOPF) 

  

→ 
Chapter 6: Successive Linear Optimization of Voltage Stability constrained OPF 

(VSC-LWOPF) 

Figure 1.1 Structure of the thesis research work 
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CHAPTER 2: POLAR LINE-WISE POWER FLOW AND VOLTAGE COLLAPSE 

 

Voltage collapse (VC) is a phenomenon where voltage collapses at one or more busses due to lack of reactive 

power, characterized by a decrease in voltage with an increase in reactive power injection and voltage drop 

in connected lines due to large power flows. Bus-wise power balance equations, solved using Newton-

Raphson (NR) technique, are widely used to analyze power systems for VC. While a bus-wise power balance 

equation succinctly models a power system, it and its Jacobian do not readily point out the most critical set 

of lines without additional analysis. 

In this chapter, a line-wise set of equations for modeling a power system and its solution method using 

NR technique for power flow analysis are developed. Study results on 6-, 14-, 57- and 118-bus IEEE 

systems, a 582-bus real system, a 2383-bus Polish power system, and a 9241-bus PEGASE system show 

that the developed method is accurate, provides monotonic convergence, scales well for large systems and 

is consistently faster, up to twice the speed of the bus-wise NR method, while using sparse matrices. 

Secondly, a line-wise VC Index is derived and shown to be directly present in the Jacobian of the line-

wise NR method, identifying the susceptible set of lines without additional computation. The usefulness of 

the VC index as an online VC assessment tool is demonstrated for a critical loading condition on test 

systems. 

 Introduction 

Power flow (PF) analysis refers to the solution of a set of equations that describe a power system, 

yielding a bus-wise voltage solution for the whole power system. Power flows in transmission branches are 

computed using their impedance values and computed voltage solution. PF analysis plays a vital role in 

many aspects of electrical power systems engineering. PF analysis constitutes the basis for studies in 

fundamental topics such as Power Systems Optimization, Power Systems Planning, and Voltage Stability. 

The most popular formulation for PF analysis considers a set of bus-wise power balance equations based on 

modal analysis, expressed in polar and rectangular forms. The formulation is solved using numerical 

techniques such as Gauss-Seidel, Newton-Raphson (NR), and their variants such as the fast-decoupled PF.  

Chapter Two 
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However, the bus-wise NR method and the associated Jacobian matrix cannot readily (i.e., without 

additional computation) point out the critical line, or the set of critical lines, that connect busses that are the 

most susceptible to voltage collapse. This inability to directly identify the critical line or the set of critical 

lines that connect busses that are the most susceptible to voltage collapse remains a distinct shortcoming of 

voltage collapse assessment methods that rely on the bus-wise NR method. The proposed line-wise NR 

method does not suffer from this drawback as its Jacobian has terms that directly identify which set of 

critical lines connect busses that are the most susceptible to VC. 

In the first part of this chapter, a line-wise NR method for PF analysis is proposed. The formulation 

comprising a set of line-wise power balance equations is presented. The set of equations is formulated in 

terms of the square of magnitude of bus voltages. It is solved using the NR technique. The solution directly 

yields bus-wise voltage solution and line-wise real and reactive power flows. The formulation easily scales 

for larger systems, demonstrates numerical stability, lends itself to sparse matrix techniques, provides 

monotonic convergence and consistently converges at a faster speed, up to twice the speed in comparison 

to the bus-wise NR method for PF analysis.  

In the second part of the chapter, the voltage collapse index (VCI) that indicates the set of critical lines 

that connect busses that are the most susceptible to voltage collapse is developed. Thereafter, it is shown 

that VCI terms for all lines in the system are directly present in the Jacobian of the line-wise NR method. 

Hence, on completing PF analysis using the line-wise NR method, without additional computation, the 

critical line or the set of critical lines that connect the busses that are the most susceptible to voltage collapse 

can be directly identified. Analysis on IEEE 14, and 118-bus systems and a 582-bus real power system are 

completed, and results conclusively demonstrate the efficacy of the proposed line-wise NR method as a 

voltage collapse assessment tool. With the high computational speed of the line-wise NR method and its 

ability to directly identify the set of critical lines that connect the busses that are the most susceptible to VC, 

its use as an online VC assessment tool is proposed.  

 

 Developed polar line-wise PF system of equations 

In this section, the developed formulation of the set of line-wise power balance equations is presented. 

Considering only the series impedance element of the pi-model of a transmission line or a transformer 

between buses 𝑎 and 𝑏 , the circuit model is set out in Figure 2.1 Shunt elements of the pi-model are 

considered subsequently in (2.17) and (2.18), in the terms 𝐺𝑆 𝑎𝑛𝑑 𝐵𝑆. 
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Figure 2.1 Series impedance element of the pi-model of the lth transmission branch connecting buses a and b.  

 

Based on [134], using the voltage difference between busses 𝑎 and 𝑏, power flow in the first end can 

be expressed as: 

𝑉𝑎∠𝛿𝑎 − 𝑉𝑏∠𝛿𝑏 = (
𝑆𝑆𝑙∠∅𝑆𝑙

𝑉𝑏∠𝛿𝑏
)
∗

∙ 𝑍𝑙∠𝜃𝑙                                                     (2.1) 

 

Multiplying both sides of (2.1) by the conjugate of 𝑉𝑏∠𝛿𝑏:  

 

𝑉𝑎∠𝛿𝑎 ∙ (𝑉𝑏∠𝛿𝑏)
∗ − 𝑉𝑏

2 = (𝑆𝑆𝑙∠∅𝑆𝑙)
∗ ∙ 𝑍𝑙∠𝜃𝑙                                         (2.2) 

 

Separating the real and imaginary parts in (2.2) 

 

𝑉𝑎 ∙ 𝑉b ∙ cos(𝛿𝑎 − 𝛿𝑏) = 𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 + 𝑉𝑏
2                                      (2.3) 

 

𝑉𝑎 ∙ 𝑉b ∙ sin(𝛿𝑎 − 𝛿𝑏) = 𝑃𝑆𝑙 ∙ 𝑋𝑙 − 𝑄𝑆𝑙 ∙ 𝑅𝑙                                                 (2.4) 

 

Dividing (2.4) by (2.3) 

 

(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 + 𝑉𝑏
2) ∙ 𝑡𝑎𝑛(𝛿𝑎 − 𝛿𝑏) = 𝑃𝑆𝑙 ∙ 𝑋𝑙 − 𝑄𝑆𝑙 ∙ 𝑅𝑙                               (2.5)  

 

Summing the squares of (2.3) and (2.4), and rearranging yields, 

𝑉𝑎∠𝛿𝑎 𝑉b∠𝛿𝑏 

 

    𝑃𝐹𝑙 + 𝑗 𝑄𝐹𝑙 𝑃𝑆𝑙 + 𝑗 𝑄𝑆𝑙 

𝑍𝑙∠𝜃𝑙 = 𝑅𝑙 + 𝑗 𝑋𝑙  

𝑌𝑆𝑙∠𝛽𝑙  𝑌𝑆𝑙∠𝛽𝑙  
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𝑉𝑏
4 + 2 ∙ 𝑉𝑏

2  (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −
𝑉𝑎

2

2
) + 𝑆𝑆𝑙

2 ∙ 𝑍𝑙
2 = 0                                    (2.6) 

Similarly, for the second end: 

𝑉𝑏∠𝛿𝑏 − 𝑉𝑎∠𝛿𝑎 = (
𝑆𝐹𝑙∠∅𝐹𝑙

𝑉𝑎∠𝛿𝑎
)
∗

 𝑍                                                               (2.7) 

 

Multiplying both sides by the conjugate of 𝑉𝑎∠𝛿𝑎yields: 

 

𝑉𝑏∠𝛿𝑏 ∙ (𝑉𝑎∠𝛿𝑎)∗ − 𝑉𝑎
2 = (𝑆𝐹𝑙∠∅𝐹𝑙) ∙ 𝑍𝑙∠𝜃𝑙                                                (2.8) 

 

 

Separating the real and imaginary parts in (2.8) 

 

𝑉𝑏 ∙ 𝑉a ∙ cos(𝛿𝑏 − 𝛿𝑎) = 𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙  + 𝑉𝑎
2                                           (2.9) 

 

𝑉𝑏 ∙ 𝑉a ∙ sin(𝛿𝑏 − 𝛿𝑎) = 𝑃𝐹𝑙 ∙ 𝑋𝑙 − 𝑄𝐹𝑙 ∙ 𝑅𝑙                                                   (2.10) 

 

Dividing (2.10) by (2.9) 

 

(𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 + 𝑉𝑎
2) ∙ 𝑡𝑎𝑛(𝛿𝑏 − 𝛿𝑎) = 𝑃𝐹𝑙 ∙ 𝑋𝑙 − 𝑄𝐹𝑙 ∙ 𝑅𝑙                                   (2.11) 

 

Summing the squares of (2.9) and (2.10) and rearranging gets: 

 

𝑉𝑎
4 + 2 𝑉𝑎

2  (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 −
𝑉𝑏

2

2
) + 𝑆𝐹𝑙

2 ∙ 𝑍𝑙
2 = 0                                (2.12) 

 

Defining a matrix [𝑀], with a dimension of 𝑁𝐵 ×  2 ∙ 𝑁𝑇, it is constructed as below by using the 

concept of the bus incidence matrix 
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[𝑀]𝑎,𝑙 = 1 𝑖𝑓 𝑏𝑢𝑠 𝑎 𝑖𝑠 𝑡ℎ𝑒 𝒇𝒊𝒓𝒔𝒕 𝑏𝑢𝑠 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒 𝑙

[𝑀]𝑏,𝑁𝑇+𝑙 = 1 𝑖𝑓 𝑏𝑢𝑠 𝑏 𝑖𝑠 𝑡ℎ𝑒 𝒔𝒆𝒄𝒐𝒏𝒅 𝑏𝑢𝑠 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒 𝑙

[𝑀]𝑎,𝑙 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Using 𝑈 instead of 𝑉 and collating (2.5), (2.6), (2.11) and (2.12) to model the entire transmission 

system, the following equations can be written as below. Consider a power system with NG generator buses 

and NLB load buses, such that the total number of buses 𝑁𝐵 = 𝑁𝐺 + 𝑁𝐿𝐵 and NT is the total number of 

transmission branches. The set of line-wise equations is defined below. 

 

Using (2.12): 𝐹𝐹𝑙 = 

𝑈𝑎
2 + 2𝑈𝑎 ∙ (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 −

𝑈𝑏

2
) + 𝑆𝐹𝑙

2 ∙ 𝑍𝑙
2 = 0        ∀𝑙 = 1 𝑡𝑜 𝑁𝑇                                (2.13) 

Using (2.6): 𝐹𝑆𝑙 = 

𝑈𝑏
2 + 2𝑈𝑏 (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −

𝑈𝑎

2
) + 𝑆𝑆𝑙

2 ∙ 𝑍𝑙
2 = 0         ∀𝑙 = 1 𝑡𝑜 𝑁𝑇                                (2.14) 

Using (2.11): 𝐹𝐴𝑙 = 

(𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 + 𝑈𝑎) ∙ 𝑡𝑎𝑛(𝛿𝑏 − 𝛿𝑎) − 𝑃𝐹𝑙 ∙ 𝑋𝑙 + 𝑄𝐹𝑙 ∙ 𝑅𝑙 = 0        ∀𝑙 = 1 𝑡𝑜 𝑁𝑇       (2.15) 

Using (2.5): 𝐹𝐵𝑙 = 

(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 + 𝑈𝑏) ∙ 𝑡𝑎𝑛(𝛿𝑎 − 𝛿𝑏) − 𝑃𝑆𝑙 ∙ 𝑋𝑙 + 𝑄𝑆𝑙 ∙ 𝑅𝑙 = 0        ∀𝑙 = 1 𝑡𝑜 𝑁𝑇         (2.16) 

 

Further, the bus-wise power balance equations can be written in a matrix form as below. 

𝐹𝑃 = [𝑀] [
𝑃𝐹
𝑃𝑆

]  − 𝑈 ∙ 𝐺𝑆 = 𝑃𝐷 − 𝑃𝐺                                                      (2.17) 

 

𝐹𝑄 = [𝑀] [
𝑄𝐹
𝑄𝑆

] + 𝑈 ∙ 𝐵𝑆 = 𝑄𝐷 − 𝑄𝐺                                                      (2.18) 
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where the following is noted 

(1) Shunt elements of the pi-model of transmission lines and transformers are included 

into 𝐺𝑆 𝑎𝑛𝑑 𝐵𝑆, vectors of bus-wise conductance and susceptance elements, in (2.17) and 

(2.18).  

(2)  Constant power loads are modeled into 𝑃𝐷 𝑎𝑛𝑑 𝑄𝐷 of (2.17) and (2.18).  

(3) Constant impedance loads, if any, are included into 𝐺𝑆 𝑎𝑛𝑑 𝐵𝑆 , vectors of bus-wise 

conductance and susceptance elements, in (2.17) and (2.18).  

 

The set of equations (2.13) – (2.18) models a power system. The total number of variables in this set 

of equations is  (4 ∙ 𝑁𝑇 + 2 ∙ 𝑁𝐵) and it equals the number equations. While (2.13) – (2.16) have been 

developed in [134], the set of equations for line-wise power balance equations (2.13) – (2.18) representing 

a power system is developed in this thesis. Defining the solution vector 𝑤 = [𝑈 𝛿  PF PS  QF  QS], the set 

of equations may be compactly presented as below: 

[
 
 
 
 
 
𝐹𝐹(𝑤)

𝐹𝑆(𝑤)

𝐹𝐴(𝑤)

𝐹𝐵(𝑤)

𝐹𝑃(𝑤)

𝐹𝑄(𝑤)]
 
 
 
 
 

=

[
 
 
 
 
 

0
0
0
0

[𝑃𝐷 − 𝑃𝐺]
[𝑄𝐷 − 𝑄𝐺]]

 
 
 
 
 

                                  𝑜𝑟 

 

𝐹𝑇(𝑤) =   𝑆𝑇                                                                                                   (2.19) 

 

This set of nonlinear equations can be easily solved using Newton-Raphson technique. The following 

sections provide a solution method.  

 Polar-form Line-Wise Power Flow Algorithm 

The system of equations (2.19) can be solved to determine the voltage solution using NR technique. This 

section describes the proposed algorithm to solve a set of equations that describe a power system using a 

multivariate NR technique. The method readily scales for larger systems and demonstrates a stable 

performance. Figure 2.2 shows the flowchart of the developed technique. It should be noted that the solution 

steps are similar to the standard bus-wise NR method for PF analysis, except that the set of equations to be 
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solved is the set of line-wise power balance equations. In addition, there is no need to construct the bus 

admittance matrix for the line-wise NR method, which is a requirement for the bus-wise NR method. 

 

 

Figure 2.2 Flowchart of Polar-form Line-Wise Power Flow algorithm. 

Start 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (2.20𝑏): 

∆𝑤 =  ቈ
𝜕𝐹𝑇(𝑤)

𝜕𝑤
቉

−1

[ 𝑆𝑇 − 𝐹𝑇(𝑤)] 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛: ቈ
𝜕𝐹𝑇(𝑤)

𝜕𝑤
቉ 

𝑈𝑝𝑑𝑎𝑡𝑒 (2.21): 𝑤 =  𝑤 + ∆𝑤 

𝐼𝑓 𝑎 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑎 𝑙𝑖𝑚𝑖𝑡,  

𝑖𝑡 𝑖𝑠 𝑠𝑒𝑡 𝑡𝑜 𝑖𝑡 𝑎𝑛𝑑 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑎 𝑙𝑜𝑎𝑑 𝑏𝑢𝑠  

𝑃𝑟𝑖𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

Stop 

Read Power System Data, Max Iterations, 

Initial Values  (𝑤0) and Tolerance. Set  

𝑤 = 𝑤0 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒: 𝐹𝑇(𝑤) 

𝐼𝑠 |𝑆𝑇 − 𝐹𝑇(𝑤)| 

≥ 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑁𝑜 

𝑌𝑒𝑠 
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Using Taylor’s series expansion and limiting to the first order derivative while considering a solution 

𝑤, (2.19) can be expanded as below: 

 

[
 
 
 
 
 
𝐹𝐹(𝑤)

𝐹𝑆(𝑤)

𝐹𝐴(𝑤)

𝐹𝐵(𝑤)

𝐹𝑃(𝑤)

𝐹𝑄(𝑤)]
 
 
 
 
 

+

[
 
 
 
 
 
𝜕𝐹𝐹(𝑤) 𝜕𝑤⁄

𝜕𝐹𝑆(𝑤) 𝜕𝑤⁄

𝜕𝐹𝐴(𝑤) 𝜕𝑤⁄

𝜕𝐹𝐵(𝑤) 𝜕𝑤⁄

𝜕𝐹𝑃(𝑤) 𝜕𝑤⁄

𝜕𝐹𝑄(𝑤) 𝜕𝑤⁄ ]
 
 
 
 
 

∙ [∆𝑤] =

[
 
 
 
 
 

0
0
0
0

[𝑃𝐷 − 𝑃𝐺]

[𝑄𝐷 − 𝑄𝐺]]
 
 
 
 
 

     

𝑜𝑟  

𝐹𝑇(𝑤) + ቈ
𝜕𝐹𝑇(𝑤)

𝜕𝑤
቉ ∙ ∆𝑤 =   𝑆𝑇                                                            (2.20𝑎) 

where [
𝜕𝐹𝑇(𝑤)

𝜕𝑤
] is the Jacobian of the set of equations (2.13)- (2.18). In case 𝑤 does not satisfy the set 

of equations (2.19), then using (2.20a), an update for 𝑤 can be computed as below: 

∆𝑤 =  ቈ
𝜕𝐹𝑇(𝑤)

𝜕𝑤
቉

−1

∙ [ 𝑆𝑇 − 𝐹𝑇(𝑤)]          𝑜𝑟   

∆𝑤 = ቈ
𝜕𝐹𝑇(𝑤)

𝜕𝑤
቉

−1

∙ [ ∆𝐹𝑇(𝑤)]                                                             (2.20𝑏) 

 

𝑤ℎ𝑒𝑟𝑒 ∆𝐹𝑇 = [∆𝐹𝐹 ∆𝐹𝑆 ∆𝐹𝐴 ∆𝐹𝐵 ∆𝐹𝑃 ∆𝐹𝑄]𝑇  and ∆𝑤 =  [∆𝑈 ∆𝛿  ∆PF ∆PS ∆QF ∆QS] . On 

computing ∆𝑤, the solution vector can be updated as: 

 

𝑤 =  𝑤 + ∆𝑤                                                                                         (2.21) 

 

By repeating the computation of (2.20b) and (2.21) until the absolute value of all terms within 

[ 𝑆𝑇 − 𝐹𝑇(𝑤)] reduce to a zero or below an acceptably small value, the solution vector 𝑤 for the set of 

equations (2.19) is obtained. 

It must be noted that the following are known: 

(1) voltage magnitude and phase angle at the slack bus, 

(2) real power injections (generation minus load) and bus voltage magnitudes at all generation busses, 

and,  
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(3) real and reactive power injections (negative of real and reactive power loads) at load busses.  

 

The unknowns then are:  

(1) real and reactive power injections at the slack bus,  

(2) bus voltage phase angles and reactive power injections at generator busses, and,  

(3) voltage magnitudes and phase angles at load busses.  

 

Knowns and unknowns are summarized in a tabular form below: 

 Knowns Unknowns 

Slack Bus 𝑉 

𝛿 

𝑃𝑇 = 𝑃𝐺 − 𝑃𝐷 

𝑄𝑇 = 𝑄𝐺 − 𝑄𝐷 

Generator Bus 𝑃𝑇 = 𝑃𝐺 − 𝑃𝐷 

𝑉 

𝑄𝑇 = 𝑄𝐺 − 𝑄𝐷 

𝛿 

Load Bus 𝑃𝑇 = −𝑃𝐷 

𝑄𝑇 = −𝑄𝐷 

𝑉 

𝛿 

 

Hence, given that real power injection is unknown for the slack bus, (2.17), (i.e., 𝐹𝑃(𝑤) = 𝑃𝐷 − 𝑃𝐺), 

must be solved for all busses except the slack bus. Similarly, given that reactive power injections are 

unknown for the all generator busses (including the slack bus), (2.18), (i.e., 𝐹𝑄(𝑤) = 𝑄𝐷 − 𝑄𝐺), must be 

solved only for load busses. 

Equations (2.13) to (2.16) for 𝐹𝐹(𝑤), 𝐹𝑆(𝑤), 𝐹𝐴(𝑤), 𝑎𝑛𝑑 𝐹𝐵(𝑤) have 𝑁𝑇 equations each and all of 

them must be solved. Hence, the number of equations to be solved and unknowns are as below: 

 

Equations Number  Unknowns Number 

𝐹𝐹(𝑤) 𝑁𝑇  𝑃𝐹 𝑁𝑇 

𝐹𝑆(𝑤) 𝑁𝑇  𝑃𝑆 𝑁𝑇 

𝐹𝐴(𝑤) 𝑁𝑇  𝑄𝐹 𝑁𝑇 

𝐹𝐵(𝑤) 𝑁𝑇  𝑄𝑆 𝑁𝑇 

𝐹𝑃(𝑤) 𝑁𝐵 − 1  𝛿 𝑁𝐵 − 1 

𝐹𝑄(𝑤) 𝑁𝐿𝐵  𝑉 𝑁𝐿𝐵 
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The total number of equations is (4 ∙ 𝑁𝑇 + 𝑁𝐵 − 1 + 𝑁𝐿𝐵) . The total number of unknowns is 

(4 ∙ 𝑁𝑇 + 𝑁𝐵 − 1 + 𝑁𝐿𝐵). The result of the developed algorithm will be as follows:  

(1) the squares of voltage magnitudes at load busses,  

(2) voltage phase angles at all busses except the slack bus, and,  

(3) real and reactive powers on both ends for all branches (lines and transformers). 

Details of the Jacobian of the set of equations (2.13) – (2.18), [
𝜕𝐹𝑇(𝑤)

𝜕𝑤
], are provided in the following section.  

 Development of the Jacobian Matrix 

This section presents the mathematical development of the Jacobian matrix, which is the partial 

differentiation for the set of equations (2.13) – (2.18), with respect to the six unknown vectors 

[𝑈 𝛿  𝑃𝐹 𝑃𝑆  𝑄𝐹  𝑄𝑆]. The complete system Jacobian is presented below considering (2.20b). The size of 

the submatrices of the system Jacobian is also documented below: 

[
∂FF

∂U
] 

𝑁𝑇 × 𝑁𝐿𝐵 

[
∂FF

∂δ
] 

𝑁𝑇 × (𝑁𝐵 − 1) 

[
∂FF

∂PF
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕𝐹𝐹

𝜕𝑃𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂FF

∂QF
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕𝐹𝐹

𝜕𝑄𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂FS

∂U
] 

𝑁𝑇 × 𝑁𝐿𝐵 

[
𝜕𝐹𝑆

𝜕𝛿 
] 

𝑁𝑇 × (𝑁𝐵 − 1) 

[
𝜕𝐹𝑆

𝜕𝑃𝐹
] 

𝑁𝑇 × 𝑁𝑇 

[
∂FS

∂𝑃𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕𝐹𝑆

𝜕QF
] 

𝑁𝑇 × 𝑁𝑇 

[
∂FS

∂𝑄𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂FA

∂U
] 

𝑁𝑇 × 𝑁𝐿𝐵 

[
∂FA

∂δ
] 

𝑁𝑇 × (𝑁𝐵 − 1) 

[
∂FA

∂PF
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕FA

𝜕𝑃𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂FA

∂QF
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕FA

𝜕𝑄𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂FB

∂U
] 

𝑁𝑇 × 𝑁𝐿𝐵 

[
∂FB

∂δ
] 

𝑁𝑇 × (𝑁𝐵 − 1) 

[
𝜕FB

𝜕PF
] 

𝑁𝑇 × 𝑁𝑇 

[
∂FB

∂𝑃𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕FB

𝜕QF
] 

𝑁𝑇 × 𝑁𝑇 

[
∂FB

∂𝑄𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂FP

∂U
] 

(𝑁𝐵 − 1) × 𝑁𝐿𝐵 

[
𝜕𝐹𝑃

𝜕𝛿 
] 

(𝑁𝐵 − 1) × (𝑁𝐵 − 1) 

[
∂FP

∂PF
] 

(𝑁𝐵 − 1) × 𝑁𝑇 

[
∂FP

∂𝑃𝑆
] 

(𝑁𝐵 − 1) × 𝑁𝑇 

[
𝜕𝐹𝑃

𝜕QF
] 

(𝑁𝐵 − 1) × 𝑁𝑇 

[
𝜕𝐹𝑃

𝜕QS
] 

(𝑁𝐵 − 1) × 𝑁𝑇 

[
∂FQ

∂U
] 

𝑁𝐿𝐵 × 𝑁𝐿𝐵 

[
𝜕𝐹𝑄

𝜕𝛿 
] 

𝑁𝐿𝐵 × (𝑁𝐵 − 1) 

[
𝜕𝐹𝑄

𝜕PF
] 

𝑁𝐿𝐵 × 𝑁𝑇 

[
𝜕𝐹𝑄

𝜕𝑃𝑆
] 

𝑁𝐿𝐵 × 𝑁𝑇 

[
∂FQ

∂QF
] 

𝑁𝐿𝐵 × 𝑁𝑇 

[
∂FQ

∂𝑄𝑆
] 

𝑁𝐿𝐵 × 𝑁𝑇 
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The following are null submatrices in the Jacobian:  

[
∂FF

∂δ
] , [

∂FF

∂PS
] , [

∂FF

∂QS
] , [

𝜕𝐹𝑆

𝜕𝛿 
] , [

𝜕𝐹𝑆

𝜕𝑃𝐹
] , [

∂FF

∂QF
] , [

𝜕FA

𝜕PS
] , [

𝜕FA

𝜕QS
] , [

𝜕FB

𝜕PF
] , [

𝜕FB

𝜕QF
] , [

𝜕𝐹𝑃

𝜕𝛿 
] , [

𝜕𝐹𝑃

𝜕QF
] , [

𝜕𝐹𝑃

𝜕𝑄𝑆
] , [

𝜕𝐹𝑄

𝜕𝛿 
], 

[
𝜕𝐹𝑄

𝜕PF
] , 𝑎𝑛𝑑, [

𝜕𝐹𝑄

𝜕𝑃𝑆
]. 

 

The non-zero elements of partial differentiation of (2.13) with respect to 𝑈, 𝛿, PF, PS, QF, QS for 𝑙 ∈

{1, 2, . . , 𝑁𝑇} are as follows: 

𝜕𝐹𝐹𝑙

𝜕𝑈𝑎
=  2 ∙ 𝑈𝑎 + 2 ∙ (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙  ∙ 𝑋𝑙 −

𝑈𝑏

2
)                  ∀ {𝑎, 𝑏} ∈ 𝑙                     (2.22) 

 

𝜕𝐹𝐹𝑙

𝜕𝑈𝑏
= −𝑈𝑎                                                          ∀ {𝑎, 𝑏} ∈ 𝑙                        (2.23) 

 

𝜕𝐹𝐹𝑙

𝜕𝑃𝐹𝑙
=  2 (𝑈𝑎 ∙ 𝑅𝑙 + 𝑃𝐹𝑙 ∙ 𝑍𝑙

2)                           ∀ {𝑎, 𝑏} ∈ 𝑙                        (2.24) 

 

𝜕𝐹𝐹𝑙

𝜕𝑄𝐹𝑙
=  2 (𝑈𝑎  ∙ 𝑋𝑙 + 𝑄𝐹𝑙 ∙ 𝑍𝑙

2)                            ∀ {𝑎, 𝑏} ∈ 𝑙                         (2.25) 

 

The non-zero elements of partial differentiation of (2.14) with respect to 𝑈, 𝛿, PF, PS, QF, QS for 𝑙 ∈

{1, 2, . . , 𝑁𝑇} are as follows: 

𝜕𝐹𝑆𝑙

𝜕𝑈𝑎
=  −𝑈𝑏                                                             ∀ {𝑎, 𝑏} ∈ 𝑙                         (2.26) 

 

𝜕𝐹𝑆𝑙

𝜕𝑈𝑏
= 2 ∙ 𝑈𝑏 + 2 ∙ (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −

𝑈𝑎

2
)                       ∀ {𝑎, 𝑏} ∈ 𝑙                      (2.27) 

 

𝜕𝐹𝑆𝑙

𝜕𝑃𝑆𝑙
=  2 (𝑈𝑏 ∙ 𝑅𝑙 + 𝑃𝑆𝑙 ∙ 𝑍𝑙

2)                               ∀ {𝑎, 𝑏} ∈ 𝑙                          (2.28) 

 

𝜕𝐹𝑆𝑙

𝜕𝑄𝑆𝑙
=  2 (𝑈𝑏 ∙ 𝑋𝑙 + 𝑄𝑆𝑙 ∙ 𝑍𝑙

2)                                ∀ {𝑎, 𝑏} ∈ 𝑙                         (2.29) 
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The non-zero elements of partial differentiation of (2.15) with respect to 𝑈, 𝛿, PF, PS, QF, QS for ∀ 𝑙 ∈

{1, 2, . . , 𝑁𝑇} are as follows: 

𝜕𝐹𝐴𝑙

𝜕𝑈𝑎
= 𝑡𝑎𝑛(𝛿𝑏 − 𝛿𝑎)                                                             ∀ {𝑎, 𝑏} ∈ 𝑙                       (2.30) 

 

𝜕𝐹𝐴𝑙

𝜕𝛿𝑎
= −(𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 + 𝑈𝑎) ∙ 𝑠𝑒𝑐2(𝛿𝑏 − 𝛿𝑎)     ∀ {𝑎, 𝑏} ∈ 𝑙                       (2.31) 

 

𝜕𝐹𝐴𝑙

𝜕𝛿𝑏
=  (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 + 𝑈𝑎) ∙ 𝑠𝑒𝑐2(𝛿𝑏 − 𝛿𝑎)         ∀ {𝑎, 𝑏} ∈ 𝑙                      (2.32) 

 

𝜕𝐹𝐴𝑙

𝜕𝑃𝐹𝑙
= 𝑅𝑙 ∙ 𝑡𝑎𝑛(𝛿𝑏 − 𝛿𝑎) − 𝑋𝑙                                              ∀ {𝑎, 𝑏} ∈ 𝑙                     (2.33) 

 

𝜕𝐹𝐴𝑙

𝜕𝑄𝐹𝑙
= 𝑋𝑙 ∙ 𝑡𝑎𝑛(𝛿𝑏 − 𝛿𝑎) + 𝑅𝑙                                              ∀ {𝑎, 𝑏} ∈ 𝑙                     (2.34) 

 

The non-zero elements of partial differentiation of (2.16) with respect to 𝑈, 𝛿, PF, PS, QF, QS for ∀ 𝑙 ∈

{1, 2, . . , 𝑁𝑇} are as follows: 

𝜕𝐹𝐵𝑙

𝜕𝑈𝑏
= 𝑡𝑎𝑛(𝛿𝑎 − 𝛿𝑏)                                                             ∀ {𝑎, 𝑏} ∈ 𝑙                    (2.35) 

 

𝜕𝐹𝐵𝑙

𝜕𝛿𝑎
= (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 + 𝑈𝑏) ∙ 𝑠𝑒𝑐2(𝛿𝑎 − 𝛿𝑏)          ∀ {𝑎, 𝑏} ∈ 𝑙                   (2.36) 

 

𝜕𝐹𝐵𝑙

𝜕𝛿𝑏
= −(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 + 𝑈𝑏) ∙ 𝑠𝑒𝑐2(𝛿𝑎 − 𝛿𝑏)         ∀ {𝑎, 𝑏} ∈ 𝑙                  (2.37) 

 

𝜕𝐹𝐵𝑙

𝜕𝑃𝑆𝑙
= 𝑅𝑙 ∙ 𝑡𝑎𝑛(𝛿𝑎 − 𝛿𝑏) − 𝑋𝑙                                                ∀ {𝑎, 𝑏} ∈ 𝑙                  (2.38) 

 

𝜕𝐹𝐵𝑙

𝜕𝑄𝑆𝑙
= 𝑋𝑙 ∙ 𝑡𝑎𝑛(𝛿𝑎 − 𝛿𝑏) + 𝑅𝑙                                                   ∀ {𝑎, 𝑏} ∈ 𝑙                  (2.39) 
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The non-zero elements of partial differentiation of (2.17) with respect to 𝑈, 𝛿, PF, PS, QF, QS for ∀ 𝑎 ∈

{1, 2, . . , 𝑁𝐵} are below: 

𝜕𝐹𝑃𝑎

𝜕𝑈𝑎
= −𝐺𝑆𝑎                                                                               ∀ 𝑎 ∈ {1, 2, . . , 𝑁𝐵}               (2.40) 

 

And for 𝑙 ∈ {1, 2, . . , 𝑁𝑇} as below: 

 

𝜕𝐹𝑃𝑎

𝜕𝑃𝐹𝑙
= [𝑀]𝑎,𝑙                                                                                              ∀ {𝑎, 𝑏} ∈ 𝑙                (2.41) 

 

𝜕𝐹𝑃𝑏

𝜕𝑃𝑆𝑙
= [𝑀]𝑏,𝑁𝑇+𝑙                                                                                       ∀ {𝑎, 𝑏} ∈ 𝑙                 (2.42) 

 

The non-zero elements of partial differentiation of (2.18) with respect to 𝑈, 𝛿, PF, PS, QF, QS for ∀ 𝑎 ∈

{1, 2, . . , 𝑁𝐵} are below: 

𝜕𝐹𝑄𝑎

𝜕𝑈𝑎
= 𝐵𝑆𝑎                                                                                                 ∀ {𝑎, 𝑏} ∈ 𝑙                 (2.43) 

And for 𝑙 ∈ {1, 2, . . , 𝑁𝑇} as below: 

 

𝜕𝐹𝑄𝑎

𝜕𝑄𝐹𝑙
= [𝑀]𝑎,𝑙                                                                                            ∀ {𝑎, 𝑏} ∈ 𝑙                 (2.44) 

 

𝜕𝐹𝑄𝑏

𝜕𝑄𝑆𝑙
= [𝑀]𝑏,𝑁𝑇+𝑙                                                                                      ∀ {𝑎, 𝑏} ∈ 𝑙                 (2.45) 

 

The Jacobian matrix of the proposed set of equations is a sparse matrix leading to a low computation 

burden. The overall dimension of the matrix is (4 ∙ 𝑁𝑇 + 𝑁𝐵 − 1 + 𝑁𝐿𝐵) × (4 ∙ 𝑁𝑇 + 𝑁𝐵 − 1 + 𝑁𝐿𝐵). 

Figure 2.3 shows the sparsity patterns of Jacobian matrix for a 6-bus. 
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Figure 2.3 Plot of 6-bus System Jacobian with 40 rows and 40 columns. 

 

 Voltage Collapse Index  

In this section, the VCI is derived which identifies the critical set of lines [41]. It will be shown that 

the Jacobian of the line-wise NR method directly provides VCI values identifying the critical set of lines 

without further computation. 

The solution of (2.14), as a quadratic equation in 𝑈𝑏, yields the two roots given in (2.46), where the 

solution will physically exist if 𝑈𝑏 values are: (1) real and unequal before voltage collapse, and, (2) real and 

equal at voltage collapse. 

 

𝑈𝑏 = −(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −
𝑈𝑎

2
) ± √(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −

𝑈𝑎

2
)

2

− 𝑆𝑆𝑙
2 ∙ 𝑍𝑙

2                       (2.46) 
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At the VC point, the two roots of 𝑈𝑏 are equal and the second term of (2.46) inside the square root 

reduces to a zero. Thus, at VC condition: 

 

       𝑈𝑏 = −(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −
𝑈𝑎

2
)        𝑜𝑟    𝑈𝑏 + (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −

𝑈𝑎

2
) = 0                   (2.47) 

 

The partial differentiation of 𝐹𝑆𝑙 𝑖𝑛 (2.14)  with respect to 𝑈𝑏 is given in (2.27) and is an element of 

[
𝜕𝐹𝑆

𝜕𝑈
] submatrix of the Jacobian of line-wise NR method. It can be seen that the VC condition in (2.47) 

appears as the right-hand side of (2.27). Hence, on VC this Jacobian element of the line-wise NR method 

corresponding to the submatrix [
𝜕𝐹𝑆

𝜕𝑈
] will reduce to a zero, identifying that the lth line suffers a VC. 

Considering 𝐹𝐹𝑙  𝑖𝑛 (2.13), at VC, its solution for 𝑈𝑎 leads to: 

 

𝑈𝑎 = −(𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 −
𝑈𝑏

2
)           𝑜𝑟      𝑈𝑎 + (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 −

𝑈𝑏

2
) = 0                  (2.48) 

 

The partial differentiation of 𝐹𝐹𝑙 𝑖𝑛 (2.13) with respect to 𝑈𝑎 is given in (2.22) and is an element of 

the [
𝜕𝐹𝐹

𝜕𝑈
] submatrix of the Jacobian of the line-wise NR method. It can be seen that the VC condition in 

(2.48) appears as the right-hand side of (2.22). Hence, on VC the Jacobian element of the line-wise NR 

method corresponding to the submatrix [
𝜕𝐹𝐹

𝜕𝑈
] will reduce to a zero, identifying that the lth line suffers a VC. 

From the above, it can be seen that at the end of the line-wise NR method for PF, without any additional 

computation, the set of critical lines that connect busses that are the most susceptible to VC can be 

determined by examining Jacobian submatrices [
𝜕𝐹𝐹

𝜕𝑈
] and [

𝜕𝐹𝑆

𝜕𝑈
].  

The right-hand sides of (2.22) and (2.27) are defined as VC indices 𝑉𝐶𝐼𝑎 and 𝑉𝐶𝐼𝑏 respectively: 

 

 𝑉𝐶𝐼𝑎 =
𝜕𝐹𝐹𝑙

𝜕𝑈𝑎
=  2 ∙ 𝑈𝑎 + 2 ∙ (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 −

𝑈𝑏

2
)                                (2.49) 

 

𝑉𝐶𝐼𝑏 =
𝜕𝐹𝑆𝑙

𝜕𝑈𝑏
=  2 ∙ 𝑈𝑏 + 2 ∙ (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −

𝑈𝑎

2
)                                (2.50) 
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It is important to note that conditions (2.49) and (2.50) were reported in [32]; however, their direct 

existence in the Jacobian of line-wise NR method is reported here. On loading a power system, indices 𝑉𝐶𝐼𝑎 

and 𝑉𝐶𝐼𝑏 reduce to a zero at VC as shown in the next section. 

 Results of System Studies 

In this section, test results of the proposed line-wise NR method are reported and compared with those 

from the bus-wise NR method. The proposed algorithm is coded in MATLAB (version R2016a). The bus-

wise NR method is taken from the MATPOWER software package [135]. All tests are done on a 64-bit i7 

Intel Core laptop (2.6 GHz, 16 GB of RAM) with the Windows 10 operating system. Sparse matrix 

implementations are considered where possible. 

Table 2.1 reports test results such as the number of iterations and the execution times for both line-

wise and bus-wise NR methods at a tolerance of 10-5 per-unit. It is seen that the proposed line-wise NR 

method is computationally equal or up to twice as fast as the bus-wise NR method.  

 

Table 2.1 Number of Iterations and Execution Times at 10-5 per unit tolerance 

 

Traditional 

bus-wise NR (MATPOWER) 

Proposed method 

(Line-wise NR) 

Execution time of 

line-wise method as 

percentage of bus-

wise method 

Execution Time 

(milliseconds) 

# of 

Iterations 

Execution Time 

(milliseconds) 
# of Iterations 

6-bus 4.0 3 4.0 4 100.00% 

14-bus 9.0 2 4.0 3 44.44% 

57-bus 22.0 3 8.0 4 36.36% 

118-bus 31.0 3 15.0 3 48.39% 

582-bus 332.0 6 152.0 6 45.78% 

2383-bus 1579.0 4 936.0 4 59.28% 

9241-bus 4618.9 6 2639.6 6 57.15% 
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Loads are modeled as constant MVA loads, and lines and transformers are modeled as pi-models 

considering their shunt admittance elements. Convergence tolerance is set to 10-5 per-unit. 

 To illustrate the quality of solution from the line-wise NR method, the differences in results between 

the bus-wise NR method and the line-wise NR method for bus voltage magnitudes and angles are determined 

and quantified as Root Mean Square Error (RMSE) values. These RMSE values are reported in Figure 2.4 

for the 6, 14, 57, and 118-bus IEEE systems and the 582-bus real system.  With very low RMSE values, the 

comparison shows that the proposed method has an accurate performance in terms of solution accuracy.  

 

 

Figure 2.4 The Root Mean Square Error (RMSE) of bus voltage magnitudes and angles for difference in 

results between PF solutions of the traditional bus-wise NR method and the proposed line-wise NR method. 

 

 

The convergence characteristics of the line-wise NR method for 6-, 14-, 57- and 118-bus IEEE systems, 

a 582-bus real system, 2383-bus Polish power system, and a 9241-bus PEGASE system are shown in Figure 

2.5. The results establish that the proposed method shows consistent monotonic convergence properties for 

all the systems studied. 
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Figure 2.5 Convergence characteristic of the proposed method for different test systems. 
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 Discussion on Power Flow 

The proposed line-wise NR method for PF is consistently equal or faster than bus-wise NR method, 

up to twice the speed. The reasons for the faster speed of the line-wise NR method are discussed here. The 

use of 𝑈, square of voltage magnitude in the formulation, instead of voltage magnitude by itself, makes 

power relations linear in FP(w) and FQ(w), (2.17) and (2.18). In contrast, the bus-wise PF method uses 

voltage magnitudes, making power relations quadratic. To elaborate, a comparison is drawn between the 

number of Jacobian terms of the line-wise NR method and the bus-wise NR method in Table 2.2. The bus-

wise NR method also has a lower number of products computed each time the mismatch vector is computed. 

That said, for the bus-wise method each of those products has a sine or a cosine function. Whereas, in the 

case of the line-wise NR method, only about 15% of the terms involve a cosine or a sine function.  

Table 2.2 Comparison of Non-zero Terms of the Line-wise NR and Bus-wise NR method formulations 

 Method 

Number 

Of 

Equations 

Number of Terms Number of Products 

4th Order 3rd Order 2nd Order 1st Order 

With Sine 

or Cosine 

Terms 

Without Sine 

or Cosine 

Terms 

6-Bus 
Line-wise 37 0 0 168 40 56 320 

Bus-wise 9 44 9 0 0 203 0 

14-bus 
Line-wise 102 0 0 480 108 160 908 

Bus-wise 22 130 22 0 0 586 0 

57-bus 
Line-wise 426 0 0 1,920 434 640 3,634 

Bus-wise 106 562 106 0 0 2,566 0 

118-bus 
Line-wise 925 0 0 4,464 980 1,488 8,420 

Bus-wise 181 1,034 181 0 0 4,679 0 

582-bus 
Line-wise 4,878 0 0 23,160 5,024 7,720 43,624 

Bus-wise 1,018 5,140 1,018 0 0 23,614 0 

2383-bus 
Line-wise 16,022 0 0 69,504 16,350 23,168 132,190 

Bus-wise 4,438 22,408 4,438 0 0 102,946 0 

9241-bus 
Line-wise 81,232 0 0 385,176 82,678 128,392 724,638 

Bus-wise 17,036 86,017 17,036 0 0 395,175 0 
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Table 2.3 Comparison of Jacobian Computations of Line-wise and Bus-wise PF methods using Newton 

Raphson technique for Non-zero Terms 

 Method 

Number 

of 

Jacobian 

Elements 

Number 

of 

Fourth Order 

Terms 

Number 

of 

Cubic 

Terms 

Number 

of 

Quadratic 

Terms 

Number 

of 

Linear 

Terms 

Number of 

Products 

6- Bus 
Line-wise 136 0 0 56 336 448 

Bus-wise 49 145 17 0 0 631 

14-bus 
Line-wise 381 0 0 160 960 1,280 

Bus-wise 146 464 40 0 0 1,976 

57-bus 
Line-wise 1,678 0 0 640 3840 5,120 

Bus-wise 718 2,254 206 0 0 9,634 

118-

bus 

Line-wise 3,310 0 0 1488 8928 11,904 

Bus-wise 1,049 3,269 309 0 0 14,003 

582-

bus 

Line-wise 20,916 0 0 7720 46320 61,760 

Bus-wise 6,740 21,284 1,892 0 0 90,812 

2383-

bus 

Line-wise 56,393 0 0 23,168 139,008 185,344 

Bus-wise 27,783 87,147 7,747 0 0 371,830 

9241-

bus 

Line-wise 332,302 0 0 128,392 770,352 1,027,136 

Bus-wise 128,689 337,947 30,041 0 0 1,441,914 

  

On reviewing Table 2.1, the number of products required to compute a Jacobian in the bus-wise NR 

method is about 1.5 times (ranging from the lowest of 1.15 times to the highest of 1.88 times) that of line-

wise NR method. Further, except for the diagonal terms, every term of Jacobian for the bus-wise NR method 

requires computation of a sine or a cosine function. However, for the line-wise NR method, only Jacobian 

terms corresponding to equations FA(w) and FB(w), (i.e. (2.15) and (2.16)), have cosine or sine functions. 

These aspects make the computation of Jacobian terms for the line-wise NR method much faster in 

comparison with the bus-wise NR method. In an iterative algorithm, such as the PF analysis, these 

differences add up and make the line-wise NR method appreciably faster than the bus-wise NR method.  
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Further, to compare the characteristics of the Jacobian matrices of the line-wise NR method and the 

bus-wise NR method, the Condition number and Sparsity factors are reported in Table 2.4. For the line-wise 

NR method, the dimension of the Jacobian matrix is computed using details provided at the end of section 

2.4, where the total number of equations and unknowns equal (4 ∙ 𝑁𝑇 + 𝑁𝐵 − 1 + 𝑁𝐿𝐵).  Condition 

numbers of line-wise NR and bus-wise NR methods are well-behaved. Sparsity factors also remain similar. 

 

Table 2.4 Comparison of Size and Condition Number of Jacobian Matrix for Both Line-wise NR and Bus-

wise NR methods 

Number of 

Busses 

Traditional bus-wise Jacobian matrix Proposed line-wise Jacobian matrix 

Size 
Condition 

Number 

Sparsity 

Factor 
Size 

Condition 

Number 

Sparsity 

Factor 

6 9X9 5.3 ∙ 101 39.50 37X37 3.4 ∙ 102 90.10 

14 22X22 2.4 ∙ 102 69.80 102X102 1.9 ∙ 103 96.30 

57 106X106 2.9 ∙ 103 93.60 422X422 1.8 ∙ 104 99.10 

118 181X181 5.7 ∙ 103 96.80 925X925 9.0 ∙ 104 99.60 

582 1018X1018 6.5 ∙ 106 99.30 4878X4878 7.1 ∙ 107 99.90 

2383 4438X4438 1.1 ∙ 106 99.86 16022X16022 1.8 ∙ 107 99.98 

9241 17036X17036 1.6 ∙ 107 99.96 81232X81232 6.8 ∙ 108 99.99 

 

 Benefits of the Proposed Method 

To envisage the benefits of using the developed polar LWPF on real-time power system operation, a 

numerical example for the province of Ontario is provided. The Independent Energy System Operator 

(IESO) schedules Ontario’s power system a day-ahead and provides the optimal hourly power dispatch 

schedule for all generators. Each of these 24 sets of optimal generation schedules should be checked for 

transmission system feasibility by conducting N-1 contingency analysis, for each hour, considering that N 

elements comprise the power system. An N-1 contingency analysis requires N power flow solutions, one 

each considering an outage of one of the N elements. Considering Ontario’s power system comprising 

10,000 elements, PF analysis should be conducted 10,000 times for each hour and 240,000 times for a day. 

As can be seen in Table 2.1, a 10,000-element power system shall take about four (4) seconds per power 

flow analysis using BWPF and two (2) seconds using LWPF. Therefore, for Ontario’s power system 
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comprising 10,000 elements, BWPF will take 960,000 seconds (266 hours) for N-1 contingency analysis 

considering a 24-hour schedule, whereas LWPF will only take 480,000 seconds (133 hours). Thus, using 

LWPF instead of BWPF will enable a system operator such as the IESO to assess the health of the 

transmission system in a reduced time, facilitating the initiation of remedial actions in reduced time where 

required, thereby reinforcing operation of the power system in the most safe and stable manner. Finally, it 

can be discerned that the line-wise NR method scales very well for larger systems without any difficulty 

and hence is suitable for commercial-grade applications. 

 Performance of Voltage Collapse Index  

In this section, the performance of indices 𝑉𝐶𝐼𝑎 and 𝑉𝐶𝐼𝑏 are reported for the 14-bus and 118-bus 

IEEE systems and for a 582-bus real system for brevity. As the load modeling is very important for VC 

analysis, the proposed study considers the constant power (constant MVA) model, which is the most 

conservative load model for voltage stability studies [29, 136]. 

Figure 2.6 shows the values of VCI taken directly from the Jacobian of the line-wise NR method for 

all the twenty lines at both ends of the IEEE 14-bus system at VC when bus loads are scaled by 3.83 times. 

It shows that the fifth line is the most critical as it connects busses that are susceptible to VC, where 𝑉𝐶𝐼𝑎 

and 𝑉𝐶𝐼𝑏 values are 4.70E-01 and 0.0 respectively.  
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Figure 2.6 𝑉𝐶𝐼𝑎 and 𝑉𝐶𝐼𝑏 for the 20 lines of the 14-bus system at VC. 

 

 

Similarly, the Jacobian of the line-wise NR method yields VCI values at both ends of lines for the 

IEEE 118-bus system when the bus loads are scaled by 4.23 times as shown in Figure 2.7. It indicates VC 

at line 108 between busses 49 and 69 where 𝑉𝐶𝐼𝑎 and 𝑉𝐶𝐼𝑏 values are 2.35E-03 and 2.30E-02 respectively.   
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Figure 2.7 VCIa and VCIb for the 186 lines of 118-bus system at VC. 

 

For the 582-bus real power system, Figure 2.8 shows the values of VCI at both ends of lines where the 

line 198 between busses 415 and 109 will collapse when the bus loads are scaled by 2.253 times, where 

𝑉𝐶𝐼𝑎 and 𝑉𝐶𝐼𝑏 values are 6.37E-03 and 2.50E-01 respectively. Again, this determination is directly made 

by reviewing the Jacobian of the line-wise NR method. 
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Figure 2.8 VCIa and VCIb for the 965 lines of 582-bus system at VC. 

 

Table 2.5 Value of Worst VCI and Computation Times for All the VCIs 

 

Worst VCI 

(minimum VCI at both sides) 

Computation time 

(milliseconds) 

Bus-wise NR 

method 

Line-wise NR 

method 
Difference 

Bus-wise NR 

method 

Line-wise NR 

method 

14-

bus 

VCIa 0.277 0.274 0.003 
13.0 4.0 

VCIb 0.0 0.0 0.0 

118-

bus 

VCIa 0.00195 0.00235 0.0004 
39.0 15.0 

VCIb 0.029 0.023 0.006 

582-

bus 

VCIa 0.006 0.0064 0.0004 
421.0 152.0 

VCIb 0.2512 0.2499 0.0013 
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From the foregoing description, it is evident that VC indices 𝑉𝐶𝐼𝑎 and 𝑉𝐶𝐼𝑏 are directly available in 

the Jacobian of the line-wise NR method that helps to identify the set of critical lines that connect busses 

that are the most susceptible to VC without additional computation. 

Table 2.5 provides the worst VCI values and times to compute hem for both the bus-wise NR method 

and the line-wise NR method. For all tested systems, first, the difference between the computed worst values 

of VCI for bus-wise NR versus line-wise NR methods is very low. It demonstrates the accuracy of the 

proposed method. Second, comparing the computational time to tally VCIs shows that the line-wise NR 

method is computationally equal or up to twice as fast as the bus-wise NR method. This data considers time 

to compute the voltage solution.  

 Voltage Stability Contingency Analysis 

This section examines voltage stability contingency analysis. VC indices based upon the proposed line-

wise NR method are used to quantify the proximity to VC and rank several contingency states. Table 2.6 

compares the traditional bus-wise NR method and the proposed line-wise NR method, measuring the total 

computation time required to solve power balance equations for each single line outage for 14-, 118-, and 

300-bus IEEE systems and a 2383-bus Polish power system. The results show the superiority of the proposed 

line-wise NR method, which is computationally up to twice as fast as the bus-wise NR method. It is noted 

that the bus-wise NR method and the line-wise NR method produce VCI values very close to each other, as 

reported in Section  2.5, Table 2.6. Hence, the two methods rank the same set of contingencies as the most 

severe. 

Table 2.6 Computation Times for All Single Line Outage 

System 

Number of 

contingency cases 

(number of lines) 

Traditional 

bus-wise NR 

method 

(seconds) 

Proposed 

Line-wise NR 

method 

(seconds) 

Computation time 

of line-wise method 

as percentage of 

bus-wise method 

14-bus 20 0.26 0.080 30.77% 

57-bus 80 2.24 0.988 44.11% 

118-bus 186 7.254 4.185 57.69% 

300-bus 411 49.32 22.194 45.00% 

2383-bus 2896 6081.8 2710.700 44.57% 
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As an example, single line outage contingency analysis is performed on a 2383-bus Polish power 

systems. The results of the twenty most severe line outages are summarized in Table 2.7.  

 

Table 2.7 Twenty Most Severe Single Outage Contingency Cases for Polish 2383-bus System 

Contingency 

case/outage branches 

(rank) 

 

Worst VCI 

Most critical line 

(connects buses 

most susceptible to 

VC) 

Execution time 

(seconds) 

Bus-wise NR 

method 

Line-wise NR 

method 

169 (1) 0.1341 L152-66 1.60 1.02 

2058 (2) 0.2081 L1987-1981 1.57 0.90 

469 (3) 0.2113 L437-188 1.57 1.02 

2761 (4) 0.2837 L2209-2351 1.54 1.00 

2144 (5) 0.2906 L2096-1912 1.54 1.01 

405 (6) 0.2927 L434-188 1.57 1.03 

467 (7) 0.2981 L431-229 1.47 1.04 

404 (8) 0.3261 L431-229 1.57 1.04 

2030 (9) 0.3323 L1822-1758 1.57 1.01 

777 (10) 0.3328 L1999-1744 1.55 0.99 

966 (11) 0.3350 L630-601 1.57 1.02 

5 (12) 0.3395 L431-229 1.57 1.02 

2767 (13) 0.3460 L2310-2289 1.54 1.01 

2881 (14) 0.3487 L2137-2348 1.57 1.03 

501 (15) 0.3503 L466-230 1.57 1.03 

296 (16) 0.3552 L1906-145 1.57 1.01 

513 (17) 0.3554 L352-253 1.57 1.07 

292 (18) 0.3583 L129-148 1.60 1.03 

2396 (19) 0.3587 L1992-1663 1.57 0.99 

2401 (20) 0.3658 L1945-1850 1.57 1.00 
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 Summary 

Bus-wise power balance equations and its solution using NR technique and its variants are numerically 

proven as powerful PF analysis tools, possessing high degrees of accuracy and speed. However, the bus-

wise NR method is computationally intensive and does not readily lend itself to identifying the set of critical 

lines that connect the busses that are susceptible to VC. 

In this chapter, a new line-wise set of power balance equations and its solution using NR technique is 

proposed. The formulation uses square of voltage magnitude instead of using voltage magnitudes alone.  

The use of square of voltage magnitude leads to linear terms for real and reactive powers, considering 

constant impedance type elements in certain portion of power balance equations. Coupled with this fact and 

the use of real and reactive line-wise power flows as variables, the set of line-wise equations and its solution 

using NR technique is faster for all tested systems, up to two times, compared with bus-wise NR methods. 

Numerical analysis of the Jacobians of bus-wise and line-wise NR methods shows that the number of 

calculations to be completed by line-wise NR method is much less, resulting in the higher speed of the line-

wise NR method. 

The proposed line-wise NR method is tested and compared for performance with the bus-wise NR 

method on 6-, 14-, 57- and 118-bus IEEE systems, a 582-bus real power system, a 2383-bus Polish power 

system, and a 9241-bus PEGASE system. The line-wise NR method demonstrates a stable numerical 

performance, monotonic convergence and solution accuracy. It scales well, as shown, for larger systems. 

The active and reactive line power flows result directly from the solution, with no further need for 

computation. The need to construct the system admittance matrix is eliminated. Development of the system 

Jacobian is straightforward and requires no knowledge of the system topology. 

Another significant benefit of the proposed line-wise NR method is the ability to directly identify the 

set of critical lines that connect busses that are the most susceptible to VC. VCI terms appear directly in the 

Jacobian of the line-wise NR method. The method is both fast for PF analysis and for use as an online tool 

for voltage stability assessment. Summarizing, the benefits of the proposed line-wise NR method are: 

(1) It is superior to the bus-wise power method as it solves faster up to 2 times. 

(2) It demonstrates a stable numerical performance, monotonic convergence, solution accuracy and 

scales well for larger systems.  

(3) It provides active and reactive line power flows with no further need for computation.  

(4) It doesn’t need the system admittance matrix.  
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(5) Its system Jacobian construction is straightforward and requires no knowledge of the system 

topology. 

(6) It provides VCI values without additional computation. 

(7) It is very effective and time saving for voltage stability assessment analysis and ranking contingency 

scenarios according to their proximity to VC.  
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CHAPTER 3: RECTANGULAR LINE-WISE POWER FLOW 

In the preceding chapter, it is shown that polar-form of line-wise power flow is better in several respects 

such as reduced computational burden, faster execution speed, better ability to report on voltage stability 

indices, etc. This work is now extended to development of line-wise power flow methods for other forms. 

Accordingly, in this chapter, a set of line-wise of equations in rectangular form for modeling a power 

system and its solution method using NR technique for power flow analysis are proposed. Study results on 

several IEEE benchmark systems, as well as several real systems, up to a 9000-bus system, show that the 

proposed method is accurate, provides monotonic convergence, scales well for large systems and is 

consistently faster, up to thrice the speed of rectangular bus-wise NR method, while using sparse matrices. 

In the previous chapter, a novel line-wise PF is reported. The formulation is derived in the polar form which 

is based on the square of bus voltage magnitudes. In this chapter, a rectangular line-wise PF algorithm is 

proposed. The formulation comprising a set of rectangular line-wise power balance equations is presented. 

The set of equations is formulated in terms of the real and imaginary terms of bus voltages. It is solved using 

the NR technique. The solution directly yields bus-wise voltage solution and line-wise real and reactive 

power flows. The formulation easily scales for larger systems, demonstrates numerical stability, lends itself 

to sparse matrix technique, provides monotonic convergence, and consistently converges at a faster speed 

up to thrice the speed in comparison to the bus-wise NR method for PF analysis.  

 Proposed line-wise PF system of equations 

In this section, the proposed rectangular formulation of the set of line-wise power balance equations is 

presented. Considering only the series impedance element of the pi-model of a transmission line or a 

transformer between buses 𝑎 and 𝑏, the circuit model is shown in Figure 3.1.  

Chapter Three 
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Figure 3.1 Series impedance element of the pi-model of the lth transmission branch connecting busses a and b.  

 

 

Based on [134, 137], using the voltage difference between busses 𝑎 and 𝑏, power flow in the first end 

can be expressed as: 

 

(𝑒𝑎 + 𝑗 𝑓𝑎) − (𝑒𝑏 + 𝑗 𝑓𝑏) =  (
𝑆𝑆𝑙∠∅𝑆𝑙

(𝑒𝑏 + 𝑗 𝑓𝑏)
)

∗

∙ 𝑍𝑙∠𝜃𝑙                                        (3.1) 

 

 

Multiplying both sides of (3.1) by the conjugate of (𝑒𝑏 + 𝑗 𝑓𝑏):  

 

(𝑒𝑎 + 𝑗 𝑓𝑎) ∙ (𝑒𝑏 − 𝑗 𝑓𝑏) − (𝑒𝑏
2 + 𝑓𝑏

2) =  (𝑆𝑆𝑙∠∅𝑆𝑙)
∗ ∙ 𝑍𝑙∠𝜃𝑙                            (3.2) 

 

Separating the real and imaginary parts in (3.2) 

 

(𝑒𝑏
2 + 𝑓𝑏

2) − (𝑒𝑎 ∙ 𝑒b + 𝑓𝑎 ∙ 𝑓b) + 𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 = 0                               (3.3) 

 

 (𝑓𝑎 ∙ 𝑒b − 𝑒𝑎 ∙ 𝑓b) − 𝑃𝑆𝑙 ∙ 𝑋𝑙 + 𝑄𝑆𝑙 ∙ 𝑅𝑙 = 0                                                (3.4) 

 

Similarly, for the second end: 

(𝑒𝑏 + 𝑗 𝑓𝑏) − (𝑒𝑎 + 𝑗 𝑓𝑎) =  (
𝑆𝐹𝑙∠∅𝐹𝑙

(𝑒𝑎 + 𝑗 𝑓𝑎)
)
∗

∙ 𝑍𝑙∠𝜃𝑙                                          (3.5) 

 

Multiplying both sides of (3.5) by the conjugate of (𝑒𝑎 + 𝑗 𝑓𝑎):  

 

(𝑒𝑏 + 𝑗 𝑓𝑏) ∙ (𝑒𝑎 − 𝑗 𝑓𝑎) − (𝑒𝑎
2 + 𝑓𝑎

2) =  (𝑆𝐹𝑙∠∅𝐹𝑙)
∗ ∙ 𝑍𝑙∠𝜃𝑙                               (3.6) 

𝑒𝑎 + 𝑗 𝑓𝑎 

𝑍𝑙∠𝜃𝑙 = 𝑅𝑙 + 𝑗 𝑋𝑙  

𝑒𝑏 + 𝑗 𝑓𝑏 

 

𝑆𝐹𝑙∠∅𝐹𝑙  
= 𝑃𝐹𝑙 + 𝑗 𝑄𝐹𝑙 

𝑆𝑆𝑙∠∅𝑆𝑙 
= 𝑃𝑆𝑙 + 𝑗 𝑄𝑆𝑙 
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Separating the real and imaginary parts in (3.6) 

(𝑒𝑎
2 + 𝑓𝑎

2) − (𝑒𝑎 ∙ 𝑒b + 𝑓𝑎 ∙ 𝑓b) + 𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 = 0                              (3.7) 

 (𝑓𝑏 ∙ 𝑒a − 𝑒𝑏 ∙ 𝑓a) − 𝑃𝐹𝑙 ∙ 𝑋𝑙 + 𝑄𝐹𝑙 ∙ 𝑅𝑙 = 0                                             (3.8) 

Defining a matrix [𝑀] with a dimension of 𝑁𝐵 ×  2 ∙ 𝑁𝑇, it is constructed as below by using the 

concept of bus incidence matrix: 

 

[𝑀]𝑎,𝑙 = 1 𝑖𝑓 𝑏𝑢𝑠 𝑎 𝑖𝑠 𝑡ℎ𝑒 𝒇𝒊𝒓𝒔𝒕 𝑏𝑢𝑠 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒 𝑙

[𝑀]𝑏,𝑁𝑇+𝑙 = 1 𝑖𝑓 𝑏𝑢𝑠 𝑏 𝑖𝑠 𝑡ℎ𝑒 𝒔𝒆𝒄𝒐𝒏𝒅 𝑏𝑢𝑠 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒 𝑙

[𝑀]𝑎,𝑙 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Collating (3.3), (3.4), (3.7) and (3.8) to model the entire transmission system, the following equations 

can be written as below. Consider a power system with 𝑁𝐺 generator buses and 𝑁𝐿𝐵 load buses such that 

the total number of buses 𝑁𝐵 = 𝑁𝐺 + 𝑁𝐿𝐵 and 𝑁𝑇 is the total number of transmission branches, the set of 

line-wise equations are defined below. 

Using (3.3): 𝐹1𝑙 = 

(𝑒𝑏
2 + 𝑓𝑏

2) − (𝑒𝑎 ∙ 𝑒b + 𝑓𝑎 ∙ 𝑓b) + 𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 = 0          ∀𝑙 = 1 𝑡𝑜 𝑁𝑇                   (3.9) 

Using (3.7): 𝐹2𝑙 = 

(𝑒𝑎
2 + 𝑓𝑎

2) − (𝑒𝑎 ∙ 𝑒b + 𝑓𝑎 ∙ 𝑓b) + 𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 = 0          ∀𝑙 = 1 𝑡𝑜 𝑁𝑇                 (3.10) 

        Using (3.4): 𝐹3𝑙 = 

(𝑓𝑎 ∙ 𝑒b − 𝑒𝑎 ∙ 𝑓b) − 𝑃𝑆𝑙 ∙ 𝑋𝑙 + 𝑄𝑆𝑙 ∙ 𝑅𝑙 = 0              ∀𝑙 = 1 𝑡𝑜 𝑁𝑇                 (3.11) 

Using (3.8): 𝐹4𝑙 = 

(𝑓𝑏 ∙ 𝑒a − 𝑒𝑏 ∙ 𝑓a) − 𝑃𝐹𝑙 ∙ 𝑋𝑙 + 𝑄𝐹𝑙 ∙ 𝑅𝑙 = 0            ∀𝑙 = 1 𝑡𝑜 𝑁𝑇                 (3.12) 

Further, the bus-wise power balance equations, can be written in a matrix form as below: 

𝐹5 = [𝑀] [
𝑃𝐹
𝑃𝑆

]  − (𝑒2 + 𝑓2) ∙ 𝐺𝑆 = 𝑃𝐷 − 𝑃𝐺     for all busses except the slack bus         (3.13) 

𝐹6 = [𝑀] [
𝑄𝐹
𝑄𝑆

] + (𝑒2 + 𝑓2) ∙ 𝐵𝑆 = 𝑄𝐷 − 𝑄𝐺          for all load busses         (3.14) 

In addition, the square of voltage magnitudes of generation buses can be written as in (15): 

𝐹7 = (𝑒2 + 𝑓2) = 𝑉𝑆𝐻
2         for all non − slack generator busses          (3.15)  

where the following are noted. 
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(1) Shunt elements of pi-model of transmission lines and transformer are included into 𝐺 𝑎𝑛𝑑 𝐵, vectors 

of bus-wise conductance and susceptance elements, in (3.13) and (3.14).  

(2) Constant power loads are modeled into 𝑃𝐷 𝑎𝑛𝑑 𝑄𝐷 of (3.13) and (3.14).  

(3) Constant impedance loads, if any, are included into 𝐺𝑆 𝑎𝑛𝑑 𝐵𝑆, vectors of bus-wise conductance 

and susceptance elements, in (3.13) and (3.14).  

The set of equations (3.9) to (3.15) models a power system. The total number of variables in this set of 

equations is  4 ∙ 𝑁𝑇 + 2 ∙ 𝑁𝐵 − 2 and it equals the number of equations.  

Defining the solution vector  𝑤𝑤 = [𝑒 𝑓  𝑃𝐹 𝑃𝑆  𝑄𝐹  𝑄𝑆], the set of equations may be compactly 

presented as below: 

[
 
 
 
 
 
 
 
𝐹1(𝑤𝑤)

𝐹2(𝑤𝑤)

𝐹3(𝑤𝑤)

𝐹4(𝑤𝑤)

𝐹5(𝑤𝑤)

𝐹6(𝑤𝑤)

𝐹7(𝑤𝑤)]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

0
0
0
0

[𝑃𝐷 − 𝑃𝐺]
[𝑄𝐷 − 𝑄𝐺]

𝑉𝑆𝐻
2 ]

 
 
 
 
 
 

                                  𝑜𝑟 

 

𝐹8(𝑤𝑤) =   𝑆𝑅                                                                                                  (3.16) 

 

This set of nonlinear equations can be easily solved using Newton-Raphson technique. The following 

section provides a solution method.  

 Proposed algorithm 

The system of equations (3.16) can be solved to determine the voltage solution using NR technique. This 

section describes the proposed algorithm to solve a set of equations that describe a power system using a 

multivariate NR technique. The method readily scales for larger systems and demonstrates a stable 

performance. Figure 3.2 shows the flowchart of the proposed technique.  
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Figure 3.2 Flowchart of proposed algorithm. 

It should be noted that the solution steps are similar to the standard bus-wise NR method for PF 

analysis, except that the set of equations to be solved is the set of rectangular line-wise power balance 

equations. In addition, there is no need to construct the bus admittance matrix for the line-wise NR method, 

which is required for the bus-wise NR method. 

  

Start 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (3.17𝑏): 

∆𝑤𝑤 = ቈ
𝜕𝐹8(𝑤𝑤)

𝜕𝑤𝑤
቉

−1

[ 𝑆𝑅 − 𝐹8(𝑤𝑤)] 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛: ቈ
𝜕𝐹8(𝑤𝑤)

𝜕𝑤𝑤
቉ 

𝑈𝑝𝑑𝑎𝑡𝑒 (3.18): 𝑤𝑤 =  𝑤𝑤 + ∆𝑤𝑤 

𝐼𝑓 𝑎 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑎 𝑙𝑖𝑚𝑖𝑡, 𝑖𝑡 𝑖𝑠 𝑠𝑒𝑡 𝑡𝑜 𝑖𝑡 𝑎𝑛𝑑 𝑐ℎ𝑎𝑛𝑔𝑒𝑑  

𝑡𝑜 𝑏𝑒 𝑎 𝑙𝑜𝑎𝑑 𝑏𝑢𝑠  

 

𝑃𝑟𝑖𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

Stop 

Read Power System Data, Max Iterations, Initial 

Values  (𝑤𝑤0) and Tolerance. Set ww=𝑤𝑤0 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒: 𝐹8(𝑤𝑤) 

𝐼𝑠 |𝑆𝑅 − 𝐹8(𝑤𝑤)| 

≥ 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑁𝑜 

𝑌𝑒𝑠 
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Using Taylor’s series expansion and limiting to the first order derivative while considering a solution 

𝑤𝑤, (3.16) can be expanded as below: 

[
 
 
 
 
 
 
 
𝐹1(𝑤𝑤)

𝐹2(𝑤𝑤)

𝐹3(𝑤𝑤)

𝐹4(𝑤𝑤)

𝐹5(𝑤𝑤)

𝐹6(𝑤𝑤)

𝐹7(𝑤𝑤)]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
𝜕𝐹1(𝑤𝑤) 𝜕𝑤𝑤⁄

𝜕𝐹2(𝑤𝑤) 𝜕𝑤𝑤⁄

𝜕𝐹3(𝑤𝑤) 𝜕𝑤𝑤⁄

𝜕𝐹4(𝑤𝑤) 𝜕𝑤𝑤⁄

𝜕𝐹5(𝑤𝑤) 𝜕𝑤𝑤⁄

𝜕𝐹6(𝑤𝑤) 𝜕𝑤𝑤⁄

𝜕𝐹7(𝑤𝑤) 𝜕𝑤𝑤⁄ ]
 
 
 
 
 
 
 

∙ [∆𝑤𝑤] =

[
 
 
 
 
 
 

0
0
0
0

[𝑃𝐷 − 𝑃𝐺]
[𝑄𝐷 − 𝑄𝐺]

𝑉𝑆𝐻
2 ]

 
 
 
 
 
 

     

𝑜𝑟  

𝐹𝑅(𝑤𝑤) + ቈ
𝜕𝐹𝑅(𝑤𝑤)

𝜕𝑤𝑤
቉ ∙ ∆𝑤𝑤 =   𝑆𝑅                                                         (3.17𝑎) 

where [
𝜕𝐹𝑅(𝑤𝑤)

𝜕𝑤𝑤
] is the Jacobian of the set of equations (3.9) – (3.15). In case 𝑤𝑤 does not satisfy the 

set of equations (3.16), then using (3.17a), an update for 𝑤𝑤 can be computed as below: 

 

∆𝑤𝑤 = ቈ
𝜕𝐹𝑅(𝑤𝑤)

𝜕𝑤𝑤
቉

−1

∙ [ 𝑆𝑅 − 𝐹𝑅(𝑤𝑤)]          𝑜𝑟   

∆𝑤𝑤 =  ቈ
𝜕𝐹𝑅(𝑤𝑤)

𝜕𝑤𝑤
቉

−1

∙ [ ∆𝐹𝑅(𝑤𝑤)]                                                            (3.17𝑏) 

 

𝑤ℎ𝑒𝑟𝑒 ∆𝐹𝑅 = [∆𝐹1 ∆𝐹2 ∆𝐹3 ∆𝐹4 ∆𝐹5 ∆𝐹6 ∆𝐹7]𝑇  and ∆𝑤𝑤 =  [∆𝑒 ∆𝑓 ∆𝑃𝐹 ∆𝑃𝑆 ∆𝑄𝐹 ∆𝑄𝑆] . On 

computing ∆𝑤𝑤, the solution vector can be updated as: 

 

𝑤𝑤 =  𝑤𝑤 + ∆𝑤𝑤                                                               (3.18) 

 

By repeating computation of (3.17b) and (3.18) until the absolute value of all terms within 

[𝑆𝑅 − 𝐹8(𝑤𝑤)] reduce to a zero or below an acceptably small value, the solution vector 𝑤𝑤 for the set of 

equations (3.16) is obtained. 
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It must be noted that the following are known: 

(1) real and imaginary terms of voltage at the slack bus, 

(2) real power injections (generation minus load) and bus voltage magnitudes at all generation busses, 

and,  

(3) real and reactive power injections (negative of real and reactive power loads) at load busses.  

The unknowns then are:  

(1) real and reactive power injections at the slack bus,  

(2) real and imaginary terms of voltage as well as the reactive power injections at generator busses, and  

(3) real and imaginary terms of voltage at load busses.  

Knowns and unknowns are summarized in a tabular form below: 

 

 Knowns Unknowns 

Slack Bus 
𝑒 

𝑓 

𝑃𝑇 = 𝑃𝐺 − 𝑃𝐷 

𝑄𝑇 = 𝑄𝐺 − 𝑄𝐷 

Generator Bus 
𝑃𝑇 = 𝑃𝐺 − 𝑃𝐷 

𝑉𝑆𝐻 

𝑄𝑇 = 𝑄𝐺 − 𝑄𝐷 

𝑒 𝑎𝑛𝑑 𝑓 

Load Bus 
𝑃𝑇 = −𝑃𝐷 

𝑄𝑇 = −𝑄𝐷 

𝑒 

𝑓 

 

Hence, given that real power injection is unknown for the slack bus, (3.13), i.e., 𝐹5(𝑤𝑤) = 𝑃𝐷 − 𝑃𝐺, 

must be solved for all busses except the slack bus. 

Similarly, given that reactive power injections are unknown for the all generator busses (including the 

slack bus), (3.14), i.e., 𝐹6(𝑤𝑤) = 𝑄𝐷 − 𝑄𝐺, must be solved only for load busses. 

Equations (3.9) to (3.12) for 𝐹1(𝑤𝑤), 𝐹2(𝑤𝑤), 𝐹3(𝑤𝑤), 𝑎𝑛𝑑 𝐹4(𝑤𝑤)  have 𝑁𝑇  equations each. 

Hence, the number of equations to be solved and the number of unknowns are as below: 
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Equations Number  Unknowns Number 

𝐹1(𝑤𝑤) 𝑁𝑇  𝑃𝐹 𝑁𝑇 

𝐹2(𝑤𝑤) 𝑁𝑇  𝑃𝑆 𝑁𝑇 

𝐹3(𝑤𝑤) 𝑁𝑇  𝑄𝐹 𝑁𝑇 

𝐹4(𝑤𝑤) 𝑁𝑇  𝑄𝑆 𝑁𝑇 

𝐹5(𝑤𝑤) 𝑁𝐵 − 1  𝑒 𝑁𝐵 − 1 

𝐹6(𝑤𝑤) 𝑁𝐵 − 𝑁𝐺  𝑓 𝑁𝐵 − 1 

𝐹7(𝑤𝑤) 𝑁𝐺 − 1    

 

The total number of equations is (4 ∙ 𝑁𝑇 + 2 ∙ 𝑁𝐵 − 2) . The total number of unknowns is  

(4 ∙ 𝑁𝑇 + 2 ∙ 𝑁𝐵 − 2).  

The result of the proposed algorithm will be:  

(1) real and imaginary terms of voltage at load busses,  

(2) voltage phase angles at all busses except the slack bus, and,  

(3) real and reactive powers on both ends for all branches (lines and transformers). 

Details of the Jacobian of the set of equations (3.9) to (3.15), [
𝜕𝐹8(𝑤𝑤)

𝜕𝑤𝑤
], are provided in the next section.  

 Development of the Jacobian Matrix 

This section presents the mathematical development of the Jacobian matrix, which is the partial 

differentiation for the set of equations (3.9) – (3.15) with respect to the six unknown vectors 

[𝑒 𝑓 𝑃𝐹 𝑃𝑆  𝑄𝐹  𝑄𝑆]. The complete system Jacobian is presented below considering (3.17b). The size of the 

submatrices of the system Jacobian is also documented below. 
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[
∂F1

∂e
] 

𝑁𝑇 × 𝑁𝐿𝐵 

[
∂F1

∂f
] 

𝑁𝑇 × (𝑁𝐵 − 1) 

[
∂F1

∂PF
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕𝐹1

𝜕𝑃𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂F1

∂QF
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕𝐹1

𝜕𝑄𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂F2

∂e
] 

𝑁𝑇 × 𝑁𝐿𝐵 

[
𝜕𝐹2

𝜕𝑓 
] 

𝑁𝑇 × (𝑁𝐵 − 1) 

[
𝜕𝐹2

𝜕𝑃𝐹
] 

𝑁𝑇 × 𝑁𝑇 

[
∂F2

∂𝑃𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕𝐹2

𝜕QF
] 

𝑁𝑇 × 𝑁𝑇 

[
∂F2

∂𝑄𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂F3

∂e
] 

𝑁𝑇 × 𝑁𝐿𝐵 

[
∂F3

∂f
] 

𝑁𝑇 × (𝑁𝐵 − 1) 

[
∂F3

∂PF
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕F3

𝜕𝑃𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂F3

∂QF
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕F3

𝜕𝑄𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂F4

∂e
] 

𝑁𝑇 × 𝑁𝐿𝐵 

[
∂F4

∂f
] 

𝑁𝑇 × (𝑁𝐵 − 1) 

[
𝜕F4

𝜕PF
] 

𝑁𝑇 × 𝑁𝑇 

[
∂F4

∂𝑃𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
𝜕F4

𝜕QF
] 

𝑁𝑇 × 𝑁𝑇 

[
∂F4

∂𝑄𝑆
] 

𝑁𝑇 × 𝑁𝑇 

[
∂F5

∂e
] 

(𝑁𝐵 − 1)

× 𝑁𝐿𝐵 

[
𝜕𝐹5

𝜕𝑓
] 

(𝑁𝐵 − 1) × (𝑁𝐵

− 1) 

[
∂F5

∂PF
] 

(𝑁𝐵 − 1)

× 𝑁𝑇 

[
∂F5

∂𝑃𝑆
] 

(𝑁𝐵 − 1)

× 𝑁𝑇 

[
𝜕𝐹5

𝜕QF
] 

(𝑁𝐵 − 1)

× 𝑁𝑇 

[
𝜕𝐹5

𝜕QS
] 

(𝑁𝐵 − 1)

× 𝑁𝑇 

[
∂F6

∂e
] 

𝑁𝐿𝐵 × 𝑁𝐿𝐵 

[
𝜕𝐹6

𝜕𝑓 
] 

𝑁𝐿𝐵 × (𝑁𝐵 − 1) 

[
𝜕𝐹6

𝜕PF
] 

𝑁𝐿𝐵 × 𝑁𝑇 

[
𝜕𝐹6

𝜕𝑃𝑆
] 

𝑁𝐿𝐵 × 𝑁𝑇 

[
∂F6

∂QF
] 

𝑁𝐿𝐵 × 𝑁𝑇 

[
∂F6

∂𝑄𝑆
] 

𝑁𝐿𝐵 × 𝑁𝑇 

[
∂F7

∂e
] 

𝑁𝐺 × 𝑁𝐿𝐵 

[
𝜕𝐹7

𝜕𝑓 
] 

𝑁𝐿𝐵 × (𝑁𝐵 − 1) 

[
𝜕𝐹7

𝜕PF
] 

𝑁𝐿𝐵 × 𝑁𝑇 

[
𝜕𝐹7

𝜕𝑃𝑆
] 

𝑁𝐿𝐵 × 𝑁𝑇 

[
∂F7

∂QF
] 

𝑁𝐿𝐵 × 𝑁𝑇 

[
∂F7

∂𝑄𝑆
] 

𝑁𝐿𝐵 × 𝑁𝑇 

 

It can be noted that out of 42 submatrices, there are 16 null submatrices. The following are null 

submatrices in the Jacobian:  

[
∂F1

∂PF
] , [

∂F1

∂QF
] , [

∂F2

∂PS
] , [

∂F2

∂QS
] , [

∂F3

∂PF
] , [

∂F3

∂QF
] , [

∂F4

∂PS
] , [

∂F4

∂QS
] , [

∂F5

∂QF
] , [

∂F5

∂QS
] , [

∂F6

∂PF
] , [

∂F6

∂PS
] , [

∂F7

∂PF
] , [

∂F7

∂QF
], 

[
∂F7

∂PS
] , and, [

∂F7

∂QS
]. 
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The non-zero elements of partial differentiation of (3.9) with respect to 𝑒, 𝑓, PF, PS, QF, QS for 𝑙 ∈

{1, 2, . . , 𝑁𝑇} are as follows: 

𝜕𝐹1

𝜕𝑒𝑎
= −𝑒𝑏                        ∀ {𝑎, 𝑏} ∈ 𝑙                     (3.19) 

𝜕𝐹1

𝜕𝑒𝑏
=  2 ∙ 𝑒𝐵 − 𝑒𝑎           ∀ {𝑎, 𝑏} ∈ 𝑙                     (3.20) 

𝜕𝐹1

𝜕𝑓𝑎
= −𝑓𝑏                        ∀ {𝑎, 𝑏} ∈ 𝑙                     (3.21) 

𝜕𝐹1

𝜕𝑓𝑏
=  2 ∙ 𝑓𝑏 − 𝑓𝑎              ∀ {𝑎, 𝑏} ∈ 𝑙                     (3.22) 

𝜕𝐹1

𝜕𝑃𝑆
=  𝑅𝑙                            ∀ {𝑎, 𝑏} ∈ 𝑙                     (3.23) 

𝜕𝐹1

𝜕𝑄𝑆
= 𝑋𝑙                             ∀ {𝑎, 𝑏} ∈ 𝑙                     (3.24) 

The non-zero elements of partial differentiation of (3.10) with respect to 𝑒, 𝑓, PF, PS, QF, QS for 𝑙 ∈

{1, 2, . . , 𝑁𝑇} are as follows: 

𝜕𝐹2

𝜕𝑒𝑎
=  2 ∙ 𝑒𝑎 − 𝑒𝑏              ∀ {𝑎, 𝑏} ∈ 𝑙                    (3.25) 

𝜕𝐹2

𝜕𝑒𝑏
= −𝑒𝑎                          ∀ {𝑎, 𝑏} ∈ 𝑙                    (3.26) 

𝜕𝐹2

𝜕𝑓𝑎
=  2 ∙ 𝑓𝑎 − 𝑓𝑏               ∀ {𝑎, 𝑏} ∈ 𝑙                    (3.27) 

𝜕𝐹2

𝜕𝑓𝑏
= −𝑓𝑎                            ∀ {𝑎, 𝑏} ∈ 𝑙                   (3.28) 

𝜕𝐹2

𝜕𝑃𝐹
=  𝑅𝑙                               ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.29) 

𝜕𝐹2

𝜕𝑄𝐹
= 𝑋𝑙                                ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.30) 

 

The non-zero elements of partial differentiation of (3.11) with respect to 𝑒, 𝑓, PF, PS, QF, QS for ∀ 𝑙 ∈

{1, 2, . . , 𝑁𝑇} are below: 

𝜕𝐹3

𝜕𝑒𝑎
= −𝑓𝑏                              ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.31) 
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𝜕𝐹3

𝜕𝑒𝑏
= 𝑓𝑎                                    ∀ {𝑎, 𝑏} ∈ 𝑙                   (3.32) 

𝜕𝐹3

𝜕𝑓𝑎
= 𝑒𝑏                                   ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.33) 

𝜕𝐹3

𝜕𝑓𝑏
= −𝑒𝑎                                ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.34) 

𝜕𝐹3

𝜕𝑃𝑆
=  𝑋𝑙                                    ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.35) 

𝜕𝐹3

𝜕𝑄𝑆
= −𝑅𝑙                                  ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.36) 

 

The non-zero elements of partial differentiation of (3.12) with respect to 𝑒, 𝑓, PF, PS, QF, QS for ∀ 𝑙 ∈

{1, 2, . . , 𝑁𝑇} are below: 

𝜕𝐹4

𝜕𝑒𝑎
= 𝑓𝑏                                       ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.37) 

𝜕𝐹4

𝜕𝑒𝑏
= −𝑓𝑎                                     ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.38) 

𝜕𝐹4

𝜕𝑓𝑎
= −𝑒𝑏                                    ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.39) 

𝜕𝐹4

𝜕𝑓𝑏
=  𝑒𝑎                                       ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.40) 

𝜕𝐹4

𝜕𝑃𝐹
= −𝑋𝑙                                     ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.41) 

𝜕𝐹4

𝜕𝑄𝐹
= 𝑟𝑙                                         ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.42) 

The non-zero elements of partial differentiation of (3.13) with respect to 𝑒, 𝑓, PF, PS, QF, QS for ∀ 𝑎 ∈

{1, 2, . . , 𝑁𝐵} are below: 

𝜕𝐹5 

𝜕𝑒 
= −2 ∙ 𝑒 ∙ 𝐺𝑆𝑎             ∀ 𝑎 ∈ {1, 2, . . , 𝑁𝐵}             (3.43) 

𝜕𝐹5 

𝜕𝑓 
= −2 ∙ 𝑓 ∙ 𝐺𝑆𝑎              ∀ 𝑎 ∈ {1, 2, . . , 𝑁𝐵}             (3.44) 
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And for 𝑙 ∈ {1, 2, . . , 𝑁𝑇} as below: 

𝜕𝐹5 

𝜕𝑃𝐹
= [𝑀𝐹]𝑎,𝑙                           ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.45) 

𝜕𝐹5 

𝜕𝑃𝑆
=  [𝑀𝑇]𝑏,𝑁𝑇+𝑙                     ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.46) 

 

The non-zero elements of partial differentiation of (3.14) with respect to 𝑒, 𝑓, PF, PS, QF, QS for ∀ 𝑎 ∈

{1, 2, . . , 𝑁𝐵} are below: 

 

𝜕𝐹6 

𝜕𝑒 
= 2 ∙ 𝑒 ∙ 𝐵𝑆𝑎                      ∀ {𝑎, 𝑏} ∈ 𝑙                   (3.47) 

𝜕𝐹6 

𝜕𝑓 
= 2 ∙ 𝑓 ∙ 𝐵𝑆𝑎                      ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.48) 

And for 𝑙 ∈ {1, 2, . . , 𝑁𝑇} as below: 

𝜕𝐹6 

𝜕𝑄𝐹
= [𝑀𝐹]𝑎,𝑙                            ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.49) 

𝜕𝐹6𝑏

𝜕𝑄𝑆
=  [𝑀𝑇]𝑏,𝑁𝑇+𝑙                    ∀ {𝑎, 𝑏} ∈ 𝑙                  (3.50) 

 

The non-zero elements of partial differentiation of (3.15) with respect to 𝑒, 𝑓, PF, PS, QF, QS for ∀ 𝑎 ∈

{1, 2, . . , 𝑁𝐵} are below: 

𝜕𝐹7 

𝜕𝑒 
=  2 ∙ 𝑒                                                                        (3.51) 

𝜕𝐹7 

𝜕𝑓 
=  2 ∙ 𝑓                                                                        (3.52) 

The Jacobian matrix of the proposed set of equations is a sparse matrix leading to a low computation 

burden. The overall dimension of the matrix is (4 ∙ 𝑁𝑇 + 2 ∙ 𝑁𝐵 − 2) × (4 ∙ 𝑁𝑇 + 2 ∙ 𝑁𝐵 − 2).  

Figure 3.3 and Figure 3.4 show the sparsity patterns of Jacobian matrix for a 6-bus and 118-bus systems 

respectively. 



 

55 

 

 

Figure 3.3 Plot of 6-bus System Jacobian matrix. 

 

Figure 3.4 Sparse matrix of 118-bus System Jacobian matrix. 
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 Results of System Studies 

In this section, test results of the proposed line-wise NR method are reported and compared with those 

from the bus-wise NR method. Both proposed rectangular line-wise and rectangular bus-wise NR method 

algorithms are coded in MATLAB (version R2016a). All tests are done on a 64-bit i7 Intel Core laptop (2.6 

GHz, 16 GB of RAM) with Windows 10 operating system. Sparse matrix implementations are considered 

where possible. 

Loads are modeled as constant MVA loads, and lines and transformers are modeled as pi-models 

considering their shunt admittance elements. Convergence tolerance is set to 10-5 per-unit. 

To demonstrate the quality of solution from the proposed rectangular line-wise NR method, the 

difference in results between the traditional rectangular bus-wise NR method and the line-wise NR method 

for real and imaginary voltage terms are determined and quantified as Root Mean Square Error (RMSE) 

values. These RMSE values are reported in Figure 3.5 for the 6-, 14-, 57-, 118-bus IEEE systems,  a  582-

bus real system, a 2383-bus Polish power system, and a 9241-bus PEGASE system.  With very low RMSE 

values, the comparison shows that the proposed method has an accurate performance in terms of solution 

accuracy.  

 

 

Figure 3.5 The Root Mean Square Error (RMSE) of bus real and imaginary voltage terms for difference in 

results between PF solutions of the traditional rectangular bus-wise and the proposed rectangular line-wise NR 

methods. 
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The convergence characteristics of line-wise NR method for 6-, 14-, 57- and 118-bus IEEE systems, 

and a 582-bus real system are shown in Figure 3.6. It can be seen that the proposed method shows consistent 

monotonic convergence property for all the systems studied.  

 

 

Figure 3.6 Convergence characteristic of the proposed method for different test systems. 

 

Table 3.1 reports test results such as the number of iterations and the execution times for the proposed 

rectangular line-wise PF as well as the rectangular bus-wise NR methods at a tolerance of 10-5 per-unit. It 

can be noticed that the proposed rectangular line-wise NR method is computationally equal or up to thrice 

as fast as the rectangular bus-wise NR method.  

  

0.0E+0

5.0E+0

1.0E+1

1.5E+1

2.0E+1

2.5E+1

3.0E+1

3.5E+1

4.0E+1

0 1 2 3 4 5 6

M
ax

im
u

m
 e

rr
o
r

Iteration number

6-bus

14-bus

57-bus

118-bus

582-bus

2383-bus

9241-bus



 

58 

 

Table 3.1 Number of Iterations and Execution Times at 10-5 per unit tolerance 

System 

Traditional Rectangular bus-

wise NR 

Proposed Rectangular line-wise 

NR 

Execution times of 

rectangular line-wise 

as percentage of  

rectangular bus-wise 

Time 

(m.seconds) 

No. of 

Iterations 

Time 

(m.seconds) 
No. of Iterations 

IEEE 6-bus 6.0 3 4.0 4 66.67 % 

IEEE 14-bus 9.0 2 5.0 3 55.56 % 

IEEE 57-bus 24.0 3 8.0 3 33.33 % 

IEEE 118-bus 35.0 3 14.0 4 40.00 % 

Real 582-bus 338.0 6 139.0 4 41.12 % 

POLISH 2383-bus 1592.0 4 936.0 4 58.79% 

PEGASE 9241-bus 4815.4 6 2618.2 6 54.37% 

 

 

 Discussion on Power Flow 

The proposed rectangular line-wise NR method for PF is consistently equal or faster than bus-wise NR 

method, up to triple the speed. To elaborate, a comparison is drawn between the number of terms in each 

formulation of rectangular line-wise NR and rectangular bus-wise NR algorithms in Table 3.2. Nevertheless, 

the number of equations of the proposed rectangular line-wise PF is higher than that of traditional 

rectangular bus-wise PF. It can be noticed that the proposed rectangular line-wise NR method has a lower 

number of products computed each time the mismatch vector is computed comparing to the high number of 

products of rectangular bus-wise PF, which is 170 times on average base (lowest was 1.3 times and highest 

was 828.4 times) the products of proposed method. Further, almost all the terms of rectangular bus-wise PF 

method are cubic. However, in the case of the proposed rectangular line-wise NR method, there are no cubic 

terms, only quadratic and linear terms. 
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Table 3.2 Comparison of formulations of Rectangular Forms of Line-wise NR method and Bus-wise NR 

method for Non-zero Terms 

 Method 

Number 

Of 

Equations 

Number of terms 

Number of 

Products 

Ratio 

between  # of 

Products in 

rectangular 

bus-wise to 

that of 

rectangular 

line-wise 

Cubic Terms 
Quadratic 

Terms 

Linear 

Terms 

IEEE 6-

bus 

Rectangular 

line-wise 
38 0 86 83 255 

1.3 
Rectangular 

bus-wise 
10 99 2 0 321 

IEEE 14-

bus 

Rectangular 

line-wise 
106 0 248 226 722 

1.8 
Rectangular 

bus-wise 
26 418 8 0 1,322 

IEEE 57-

bus 

Rectangular 

line-wise 
432 0 972 958 2,902 

6.9 
Rectangular 

bus-wise 
112 6,572 12 0 19,964 

IEEE 

118-bus 

Rectangular 

line-wise 
978 0 2,338 2,031 6,707 

10.1 
Rectangular 

bus-wise 
234 22,263 106 0 67,469 

Real 582-

bus 

Rectangular 

line-wise 
5,022 0 11,868 10,774 34,510 

52.0 
Rectangular 

bus-wise 
1,162 597,566 288 0 1,795,598 

POLISH 

2383-bus 

Rectangular 

line-wise 
16,348 0 35404 36482 107,290 

296.4 
Rectangular 

bus-wise 
4,764 10,597,944 652 9,528 31,804,664 

PEGASE 

9241-bus 

Rectangular 

line-wise 
82,676 0 195,476 179,500 570,452 

828.4 
Rectangular 

bus-wise 
18,480 157,514,856 2,888 36,960 472,587,304 
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On reviewing Table 3.3, it is clear that the number of products required to compute a Jacobian in the 

rectangular bus-wise NR method is about 266 times on average base (lowest was 1.2 times and highest was 

1298.1 times) that of the line-wise NR method.  

Table 3.3 Comparison of Jacobian Computation of Rectangular Forms of Line-wise and Bus-wise PF using 

Newton Raphson for Non-zero Terms 

 Method 

Number 

of 

Jacobian 

Elements 

Number of terms 
Number of 

Products 

Ratio between  # 

of Products in 

rectangular bus-

wise to that of 

rectangular line-

wise 

Quadratic 

Terms 
Linear Terms 

IEEE 6-

bus 

Rectangular 

line-wise 
170 24 128 246 

1.2 
Rectangular 

bus-wise 
56 102 2 206 

IEEE 14-

bus 

Rectangular 

line-wise 
519 56 568 680 

2.0 
Rectangular 

bus-wise 
146 678 8 1,364 

IEEE 57-

bus 

Rectangular 

line-wise 
2,179 228 2,252 2,708 

9.3 
Rectangular 

bus-wise 
772 12,546 12 25,104 

IEEE 

118-bus 

Rectangular 

line-wise 
5,127 472 5,314 6,258 

17.5 
Rectangular 

bus-wise 
1,484 54,758 106 109,622 

Real 582-

bus 

Rectangular 

line-wise 
20,916 2,328 27,308 31,964 

84.5 
Rectangular 

bus-wise 
6,559 1,350,246 288 2,700,780 

POLISH 

2383-bus 

Rectangular 

line-wise 
5,127 9,532 81,740 100,804 

450.3 
Rectangular 

bus-wise 
1,484 22,695,698 652 45,392,048 

PEGASE 

9241-bus 

Rectangular 

line-wise 
5,127 36964 452,260 526,188 

1298.1 
Rectangular 

bus-wise 
1,484 341,510,402 2,888 683,023,692 
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These aspects make the computation of Jacobian for the line-wise NR method much faster in 

comparison with the bus-wise NR method. In an iterative algorithm, such as the PF analysis, these 

differences add up and make the line-wise NR method faster than the bus-wise NR method. 

Further, to compare the characteristics of the Jacobian matrices of the line-wise NR method and the 

bus-wise NR method, the Condition number and Sparsity factors are reported in Table 3.4. The dimension 

of the Jacobian matrix of the proposed rectangular line-wise NR method is computed using details provided 

at the end of section 3.3, where the total number of equations and unknowns equal (4 ∙ 𝑁𝑇 + 2 ∙ 𝑁𝐵 − 2). 

Condition numbers of both rectangular line-wise NR and bus-wise NR methods are well-behaved. Sparsity 

factors also remain similar. Finally, it can be seen than the line-wise NR method scales very well for larger 

systems without any difficulty and hence is suitable for commercial-grade applications. 

 

Table 3.4 Comparison of Size and Condition Number of Jacobian Matrix for Both Rectangular Forms of Line-

wise NR method and Bus-wise NR method  

 

Traditional rectangular bus-wise Jacobian 

matrix 

Proposed rectangular line-wise Jacobian 

matrix 

Size 
Condition 

Number 

Sparsity 

Factor 
Size 

Condition 

Number 

Sparsity 

Factor 

IEEE 6-bus 10 X 10 2.85 · 101 44 38 X 38 6.68 · 101 88.23 

IEEE 14-bus 26 X 26 7.01 · 102 78.40 106 X 106 2.78 · 102 95.38 

IEEE 57-bus 112 X 112 7.01 · 102 93.85 432 X 432 1.24 · 103 98.83 

IEEE 118-bus 234 X 234 3.01 · 103 97.29 978 X 978 4.55 · 103 99.46 

Real 582-bus 1,162 X 1,162 4.60 · 106 99.51 5,022 X 5,022 8.9 · 105 99.92 

POLISH 2383-bus 4,764 X 4,764 7.9 · 107 99.88 16,348 X 16,348 4.2 · 107 99.98 

PEGASE 9241-

bus 
18,480 X 18,480 8.6 · 108 99.94 82,676 X 82,676 3.4 · 108 99.99 
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 Benefits 

As discussed in Section 2.8, LWPF can complete power flow analysis in a reduced amount of time. 

While the fastest is up to three times that of BWPF formulation, it is shown to be twice as fast for larger 

systems, as reported Table 3.1. Accordingly, as described in Section 2.8, power flow analysis has very real 

and practical applications such as contingency analysis in operating power systems. As reported in Section 

2.8, using the proposed rectangular formulation of LWPF, these practical benefits can be realized. 

 Summary 

Rectangular bus-wise power balance equations and their solution based on the NR method and its 

variants are numerically proven as powerful PF analysis tools, possessing high degree of accuracy and speed.  

In this chapter, a new line-wise set of power balance equations in rectangular form and its solution 

using NR technique are proposed. The formulation uses real and imaginary terms of bus voltage. It mainly 

considers the voltage difference for the transmission branches. 

The proposed line-wise NR method is tested and compared for performance with the bus-wise NR 

method on 6-, 14-, 57- and 118-bus IEEE systems, a 582-bus real power system, a 2383-bus Polish power 

system, and a 9241-bus PEGASE system. As usual in rectangular coordinates, the use of real and imaginary 

terms of voltage leads to elimination of trigonometric functions, i.e. sine and cosine terms. Coupled with 

this fact and the use of real and reactive line-wise power flows as variables, the set of rectangular line-wise 

equations and its solution using NR technique is faster for all tested systems, up to three times, compared 

with bus-wise NR method. Numerical analysis of the Jacobians of bus-wise and line-wise NR methods 

shows that the number of calculations to be completed by rectangular line-wise NR method is much lower, 

resulting in the higher speed of the rectangular line-wise NR method. 

The rectangular line-wise NR method reveals a stable numerical performance, monotonic convergence 

and solution accuracy. It scales well, as shown, for larger systems. The active and reactive line power flows 

result directly from the solution with no further need for computation. The necessity to construct the system 

admittance matrix is eliminated. Development of the system Jacobian is straightforward and requires no 

knowledge of the system topology. 

Summarizing, the advantages of the proposed rectangular line-wise NR method are: 

(1) It is superior to the bus-wise power method as it solves faster up to three times. 
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(2) It demonstrates a stable numerical performance, monotonic convergence, solution accuracy and 

scales well for larger systems.  

(3) It provides active and reactive line power flows with no further need for computation.  

(4) It does not need the system admittance matrix.  

(5) Its system Jacobian construction is straightforward and requires no knowledge of the system 

topology. Further, almost all terms are linear. 
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CHAPTER 4: LINE-WISE OPTIMAL POWER FLOW USING SUCCESSIVE 

LINEAR OPTIMIZATION TECHNIQUE 

Optimal power flow (OPF) is an important Power Systems Optimization tool. OPF optimizes a chosen 

objective and satisfies power balance equations amongst other equalities and inequalities. The set of bus-

wise power balance equations are most popularly used in this exercise. However, due to its inherently 

nonlinear solution space, OPF may yield a local optimal solution leading to economic loss. For this reason, 

it remains a major research topic. Changing the set of power balance equations changes the solution space, 

and hence time and the chance of reaching a better solution. Line-wise power balance equations are shown 

to provide a faster solution, up to twice the speed of bus-wise power balance equations, and have a better 

solution space due to the use of square of voltage magnitudes. 

In this chapter, a new simple line-wise optimal power flow (LWOPF) formulation is proposed using 

line-wise power balance equations and solved using successive linear programming (SLP) technique. The 

study results on nine systems, up to one of 9,000 busses, show that the proposed method is accurate, provides 

monotonic convergence, scales well for large systems and is consistently faster, up to twice the speed of 

MATPOWER and other proven bus-wise SLP approaches to solve OPF. 

 Introduction 

Optimal power flow (OPF) is an optimization tool that finds the best operating schedule to optimize 

power system operation considering an objective while satisfying power balance equations and other 

constraints. The objective function of OPF is formulated according to the objective of the study, such as 

minimizing the total generation cost. There are several important applications of the OPF tool, which cannot 

be enumerated exhaustively. A few important applications of the OPF tool include: (1) power system 

operators schedule their system at a frequent interval using the OPF tool, as often as every five minutes [1]; 

(2) dual variables of OPF formulation provide price signals for resources and equipment limits; (3) OPF and 

Chapter Four 
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its variants are used as a basic tool for assessing various investment decisions; and; (4) OPF and its variants 

form a subset of formulations for unit commitment, optimal planning, and such other applications. 

 

The reliability, robustness and relative speed of linear programming (LP) techniques make its 

approaches among the most extensively used methods to solve the OPF formulation in the literature [95]. 

As mentioned before in section 1.2.3, Successive linear programming (SLP) technique was employed for 

solving the power system scheduling problems in general and used as one of the most popular approaches 

for solving the OPF problem. The SLP approach basically involves three main steps.  

Step 1: A set of power balance equations is solved (power flow) to compute current point for the power 

system.  

Step 2: A linear incremental OPF model is developed at the current operating point and is solved using 

the chosen linear optimization technique to determine optimal change in the control vector.  

Step 3: The control vector is updated using the optimal changes determined in Step 2.  

The SLP algorithm repeats the set of steps 1, 2 and 3 successively until a near optimal solution is 

computed based on the stopping criterion. 

4.1.1 Rationale for the developed LWOPF formulation  

In most cases, if not all, a power system is represented using a bus-wise set of power balance equations. 

While the bus-wise formulation is succinct in its representation, all its Jacobian terms contain a sinusoidal 

term and it is developed in terms of bus voltages. For large power systems, particularly for ill-conditioned 

systems, OPF is problematic, due to nonlinearity and the poor state of the Jacobian matrix. 

In recent research developments, it is shown that a line-wise power flow formulation uses far fewer 

sinusoidal terms and is developed in terms of squares of bus voltage, resulting in lower order terms as shown 

in Chapter 2. Further, the polar line-wise power balance equations use square of the voltage magnitude 

instead of voltage magnitude itself. Using square of voltage magnitude brings in the benefit of having a 

linear relationship between power and square of voltage magnitude for impedance loads. Due to these 

reasons, it is shown that the line-wise power flow method is superior to the bus-wise power flow method 

and is up to twice as fast. Hence, it is hypothesized that by replacing bus-wise power balance equations by 

line-wise power balance equations in an OPF formulation, its speed will improve and also yield a better 

solution space due to the modeling using the square of voltage magnitudes. 
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The main Contributions of developed LWOPF method 

Benefitting from the improved speed and a better solution space of the polar line-wise power flow 

method reported in chapter two, a new OPF method is developed in this chapter. A line-wise OPF (LWOPF) 

formulation is proposed that uses a set of line-wise power balance equations. A linear incremental model of 

LWOPF formulation is created and solved using SLP technique. The main contributions of this work are 

summarized below: 

1. A novel nonlinear OPF formulation based on a set of line-wise power balance equations is 

developed. 

2. A linear incremental model of the nonlinear LWOPF model is developed. 

3. Using a linear incremental model of LWOPF and SLP technique, a new OPF algorithm is 

developed and implemented. 

LWOPF method is tested upon nine different systems from 6 busses to 9000 busses. Performance of 

LWOPF is compared with conventional bus-wise OPF (BWOPF).  It establishes the superiority of the 

proposed LWOPF algorithm, as it converges up to two times faster and provides a better solution space, 

resulting in better optimal solutions. The speed of the proposed method is due to the lower order and simpler 

terms, and better solution is due to the improved solution space. 

 Line-wise Optimal Power Flow Formulation 

This section details the development of the line-wise optimal power flow (LWOPF) based on a set of 

line-wise power balance equations.  

The typical OPF can be expressed as in (4.1) – (4.3) 

 

min𝑓𝑜(𝑾)                                                                       (4.1) 

subject to: 

 

𝑓𝑔(𝑾) = 𝑑                                                                      (4.2) 

 

ℎ ≤ 𝑓ℎ(𝑾) ≤ ℎ                                                              (4.3) 



 

67 

 

where 𝑾 is the problem vector. The function 𝑓𝑜(𝑾) is the objective function in (1). The functions 

𝑓𝑔(𝑾) and 𝑓ℎ(𝑾) are the set of functions for equality and inequality constraints respectively. In (4.2), 𝑑 

is the target vector. In (4.3), ℎ and ℎ are the lower and upper limits on the inequality constraint.  

4.2.1 Objective function 

The optimization problem is stated in terms of the problem vector 

𝑾 = [𝑈, 𝛿, 𝑃𝐹, 𝑃𝑆, 𝑄𝐹, 𝑄𝑆, 𝑃𝐺, 𝑄𝐺]𝑇 , and comprises control and dependent vectors of  

𝑾𝑪 = [𝑈, 𝑃𝐺]𝑇     and        𝑾𝑫 = [𝛿, 𝑃𝐹, 𝑃𝑆, 𝑄𝐹, 𝑄𝑆, 𝑄𝐺]𝑇 respectively. 

Based on the available data for the considered tested systems, the study uses the second-order 

generation cost function as follows. The proposed method can be easily adapted to other nonlinear 

continuously differential objective functions as well. 

 

𝑓𝑜(𝑾) = ∑ 𝑐1𝑔 + 𝑐2𝑔 ∙ 𝑃𝐺𝑔 + 𝑐3𝑔 ∙ 𝑃𝐺𝑔
2

𝑁𝐺

𝑔=1

                                          (4.4) 

4.2.2 Equality constraints  

As reported in section 2.2, the following set of equations comprise the line-wise power balance 

equations, (4.5) to (4.10), and can model the entire power system. This set of equations will be used in the 

proposed OPF formulation to model power balance equality constraints. 

 

Figure 4.1 Series impedance element of the pi-model of the lth transmission branch connecting buses a and b. 

 

Considering a pi-model of a transmission line as shown in Figure 4.1, the square of sending and 

receiving end voltages may be related as below in (4.5) and (4.6). A detailed derivation is provided in 

Chapter 2. 

 

𝑉𝑎∠𝛿𝑎 𝑉b∠𝛿𝑏 

 
𝑃𝐹𝑙 + 𝑗 𝑄𝐹𝑙 𝑃𝑆𝑙 + 𝑗 𝑄𝑆𝑙 

    𝑍𝑙∠𝜃𝑙 = 𝑅𝑙 + 𝑗 𝑋𝑙  

𝑌𝑆𝑙∠𝛽𝑙  𝑌𝑆𝑙∠𝛽𝑙  
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𝐹𝐹(𝑾) = 𝑈𝑎
2
+ 2𝑈𝑎 ∙ (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 −

𝑈𝑏

2
) + 𝑆𝐹𝑙

2 ∙ 𝑍𝑙
2 = 0            ∀𝑙 = 1 𝑡𝑜 𝑁𝑇            (4.5) 

 

𝐹𝑆(𝑾) =  𝑈𝑏
2 + 2𝑈𝑏 ∙ (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −

𝑈𝑎

2
) + 𝑆𝑆𝑙

2 ∙ 𝑍𝑙
2 = 0           ∀𝑙 = 1𝑡𝑜 𝑁𝑇            (4.6) 

Considering the phase angles of the sending and receiving end voltages, the relationships in (4.7) and 

(4.8) may be written: 

 

𝐹𝐴(𝑾) = (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 + 𝑈𝑎) ∙ 𝑡𝑎𝑛(𝛿𝑏 − 𝛿𝑎) − 𝑃𝐹𝑙 ∙ 𝑋𝑙 + 𝑄𝐹𝑙 ∙ 𝑅𝑙 = 0        ∀𝑙 = 1𝑡𝑜 𝑁𝑇        (4.7) 

 

𝐹𝐵(𝑾) = (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 + 𝑈𝑏) ∙ 𝑡𝑎𝑛(𝛿𝑎 − 𝛿𝑏) − 𝑃𝑆𝑙 ∙ 𝑋𝑙 + 𝑄𝑆𝑙 ∙ 𝑅𝑙  = 0         ∀𝑙 = 1𝑡𝑜 𝑁𝑇      (4.8) 

Further, the bus-wise power balance equations can be written in a matrix form as below: 

 

𝐹𝑃(𝑾) = 𝑃𝐺 + [𝑀] [
𝑃𝐹
𝑃𝑆

]  − 𝑈 ∙ 𝐺𝑆 =  𝑃𝐷                                                     (4.9) 

 

𝐹𝑄(𝑾) = 𝑄𝐺 + [𝑀] [
𝑄𝐹
𝑄𝑆

] + 𝑈 ∙ 𝐵𝑆 =  𝑄𝐷                                                   (4.10) 

 

where the shunt elements of lines in the pi-model and shunt loads are included in the GS and BS terms. 

Further, the constant loads are modeled in PD and QD in (4.9) and (4.10) respectively. 

 

 

4.2.3 Inequality constraints  

The limits on the control variables are as follows. 

• Limits on Bus Voltages and Generators outputs are as below: 

                            𝑈𝑖 ≤ 𝑈𝑖  ≤  𝑈𝑖            ∀ 𝑖 ∈ 𝑁𝐵                                           (4.11)   

 

                        𝑃𝐺𝑔 ≤ 𝑃𝐺𝑔  ≤  𝑃𝐺𝑔       ∀ 𝑔 ∈ 𝑁𝐺                                          (4.12)   

 

                        𝑄𝐺𝑔 ≤ 𝑄𝐺𝑔  ≤  𝑄𝐺𝑔      ∀ 𝑔 ∈ 𝑁𝐺                                          (4.13)  
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Limits on MVA line power flows are as below: 

𝑃𝐹𝑙
2 + 𝑄𝐹𝑙

2   ≤  (𝑆𝐿𝑙)
2
             ∀ 𝑙 ∈ 𝑁𝑇                                        (4.14) 

 

𝑃𝑆𝑙
2 + 𝑄𝑆𝑙

2 
 ≤  (𝑆𝐿𝑙)

2
             ∀ 𝑙 ∈ 𝑁𝑇                                        (4.15) 

 

4.2.4 Generic form of nonlinear LWOPF optimization formulation 

Succinctly, the formulation (4.4) – (4.13) can be stated below. 

 

Using (4.4), the objective is: 

min: 𝑓𝑜(𝑾)  = ∑ 𝑐1𝑔 + 𝑐2𝑔 ∙ 𝑃𝐺𝑔 + 𝑐3𝑔 ∙ 𝑃𝐺𝑔
2

𝑁𝐺

𝑔=1

                               (4.16) 

subject to: 

the equality constraints in (4.5) – (4.10) are stated as: 

 

𝑓𝑔(𝑾) = 𝑑                                                              (4.17) 

 

the inequality constraints in (4.11) – (4.15) are stated as: 

 

ℎ ≤ 𝑓ℎ(𝑾) ≤ ℎ                                                          (4.18) 

 

In (4.15), the 𝑑 = [0 0 0 0 𝑃𝐷 𝑄𝐷]𝑇 . In (16), the ℎ = [𝑈    𝑃𝐺    𝑄𝐺  (𝑆𝐿𝑙)
2
(𝑆𝐿𝑙)

2
]
𝑇

 and ℎ =

[𝑈   𝑃𝐺    𝑄𝐺   0 0]
𝑇

. 

 

The LWOPF formulation (4.16) - (4.18) is a nonlinear optimization formulation. It can be solved using 

SLP technique as described below. 
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 Incremental Formulation for SLP Method  

The optimization problem stated in (4.16) to (4.18) can be solved by SLP technique using the following 

steps. The algorithm starts with the initial values of the control vector 𝑾𝑪°. 

• Step 1: Compute the state of the power system 𝑾° by solving the set of line-wise power balance 

equations (4.17) considering current values of the control vector 𝑾𝑪°.  

• Step 2: Linearize the objective function (4.16) and set of nonlinear constraints (4.17) – (4.18) around 

an operating point 𝑾°. Set up the linear optimization formulation and solve to determine optimal 

incremental changes ∆𝑾.  

• Step 3: Update the problem vector 𝑾 and go to step (1) successively until convergence is reached 

based on the stopping criterion.  

 

In step 2, an incremental model is required and it is presented below. The problem vector ∆𝑾 

comprises control and dependent vectors of  ∆𝑾𝑪 = [∆𝑈, ∆𝑃𝐺]𝑇  and  

∆𝑾𝑫 = [∆𝛿, ∆𝑃𝐹, ∆𝑃𝑆, ∆𝑄𝐹, ∆𝑄𝑆, ∆𝑄𝐺]𝑇  respectively. The linearized problem vector will be:  

∆𝑾 = [∆𝑈, ∆𝛿, ∆𝑃𝐹, ∆𝑃𝑆, ∆𝑄𝐹, ∆𝑄𝑆, ∆𝑃𝐺, ∆𝑄𝐺]𝑇. 

 

4.3.1 The linearized objective function 

The linearized objective function from (4.16) will be as follows. 

 

min∆𝑓𝑜(𝑾) =  ቈ
𝑑𝑓𝑜(𝑾)

𝑑𝑾
቉ ∙ ∆𝑾                                                          ( 4.19a)  

or 

min   ∆𝑓𝑜(∆𝑾) = ∑[(𝑐2𝑔 + 2 ∙ 𝑐3𝑔 ∙ 𝑃𝐺𝑔) ∙ ∆𝑃𝐺𝑔]

𝑁𝐺

𝑔=1

                                    ( 4.19b) 

4.3.2 The linearized set of equality constraints 

The objective of the incremental formulation is subject to the following constraints. The linearized set 

of equality constraints (4.17) is as below:  

 

∆f𝑔(𝑾) = [ 𝑱 𝑫 ]  ∆𝑾 = ∆𝑑                                                              ( 4.20) 
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where J is the Jacobian matrix of the set of line-wise power balance equations (4.17), as derived in 

Chapter 2 section 2.4, and shown below in (4.21), and D is a submatrix includes two vectors for the partial 

differentiation of the set (4.5) to (4.10) with respect to PG and QG respectively as follows in (22). More 

details on the terms of (4.20) are available in Appendix A. 

 

J  =   

[
 
 
 
 
 
 
 
 
 
 [

𝜕𝐹𝐹

𝜕𝑈
] [

𝜕𝐹𝐹

𝜕𝛿
] [

𝜕𝐹𝐹

𝜕𝑃𝐹
]

[
𝜕𝐹𝑆

𝜕𝑈
] [

𝜕𝐹𝑆

𝜕𝛿 
] [

𝜕𝐹𝑆

𝜕𝑃𝐹
]

[
𝜕𝐹𝐴

𝜕𝑈
] [

𝜕𝐹𝐴

𝜕𝛿
] [

𝜕𝐹𝐴

𝜕𝑃𝐹
]

[
𝜕𝐹𝐹

𝜕𝑃𝑆
] [

𝜕𝐹𝐹

𝜕𝑄𝐹
] [

𝜕𝐹𝐹

𝜕𝑄𝑆
]

[
𝜕𝐹𝑆

𝜕𝑃𝑆
] [

𝜕𝐹𝑆

𝜕𝑄𝐹
] [

𝜕𝐹𝑆

𝜕𝑄𝑆
]

[
𝜕𝐹𝐴

𝜕𝑃𝑆
] [

𝜕𝐹𝐴

𝜕𝑄𝐹
] [

𝜕𝐹𝐴

𝜕𝑄𝑆
]

[
𝜕𝐹𝐵

𝜕𝑈
] [

𝜕𝐹𝐵

𝜕𝛿
] [

𝜕𝐹𝐵

𝜕𝑃𝐹
]

[
𝜕𝐹𝑃

𝜕𝑈
] [

𝜕𝐹𝑃

𝜕𝛿 
] [

𝜕𝐹𝑃

𝜕𝑃𝐹
]

[
𝜕𝐹𝑄

𝜕𝑈
] [

𝜕𝐹𝑄

𝜕𝛿 
] [

𝜕𝐹𝑄

𝜕𝑃𝐹
]

[
𝜕𝐹𝐵

𝜕𝑃𝑆
] [

𝜕𝐹𝐵

𝜕𝑄𝐹
] [

𝜕𝐹𝐵

𝜕𝑄𝑆
]

[
𝜕𝐹𝑃

𝜕𝑃𝑆
] [

𝜕𝐹𝑃

𝜕𝑄𝐹
] [

𝜕𝐹𝑃

𝜕𝑄𝑆
]

[
𝜕𝐹𝑄

𝜕𝑃𝑆
] [

𝜕𝐹𝑄

𝜕𝑄𝐹
] [

𝜕𝐹𝑄

𝜕𝑄𝑆
]]
 
 
 
 
 
 
 
 
 
 

                               (4.21) 

 

𝐷 = 

[
 
 
 
 
𝜕𝐹𝐹

𝜕𝑃𝐺

𝜕𝐹𝑆

𝜕𝑃𝐺

𝜕𝐹𝐴

𝜕𝑃𝐺

𝜕𝐹𝐴

𝜕𝑃𝐺

𝜕𝐹𝑃

𝜕𝑃𝐺

𝜕𝐹𝑄

𝜕𝑃𝐺

𝜕𝐹𝐹

𝜕𝑄𝐺

𝜕𝐹𝑆

𝜕𝑄𝐺

𝜕𝐹𝐵

𝜕𝑄𝐺

𝜕𝐹𝐵

𝜕𝑄𝐺

𝜕𝐹𝑃

𝜕𝑄𝐺

𝜕𝐹𝑄

𝜕𝑄𝐺 ]
 
 
 
 
𝑇

                                   (4.22) 

 

The vector ∆𝑑 = [0 0 0 0 0 0]𝑇                            
 

4.3.3 The linearized set of inequality constraints 

Moreover, the set of limits on the control variables in (4.11) to (4.15) could be linearized as follows. 

Considering the current operating value 𝑾° and a step size of 𝛼: 

 

∆𝑈𝑖 ≤ ∆𝑈𝑖  ≤ ∆𝑈𝑖                  ∀ 𝑖 ∈ 𝑁𝐵                                           (4.23)   

 

where   ∆𝑈𝑖 = 𝛼 ∙ (𝑈𝑖 − 𝑈𝑖
0)    and     ∆𝑈𝑖 = 𝛼 ∙ (𝑈𝑖 − 𝑈𝑖

0). 

 

∆𝑃𝐺𝑔 ≤ ∆𝑃𝐺𝑔  ≤  ∆𝑃𝐺𝑔                  ∀ 𝑔 ∈ 𝑁𝐺                                   (4.24)   
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where  ∆𝑃𝐺𝑔 = 𝛼 ∙ (𝑃𝐺𝑔 − 𝑃𝐺𝑔
0)   and    ∆𝑃𝐺𝑔 = 𝛼 ∙ (𝑃𝐺𝑔 − 𝑃𝐺𝑔

0). 

 

∆𝑄𝐺𝑔 ≤ ∆𝑄𝐺𝑔  ≤  ∆𝑄𝐺𝑔                                ∀ 𝑔 ∈ 𝑁𝐺                                 (4.25)   

 

where  ∆𝑄𝐺𝑔 = 𝛼 ∙ (𝑄𝐺𝑔 − 𝑄𝐺𝑔
0)    and     ∆𝑄𝐺𝑔 = 𝛼 ∙ (𝑄𝐺𝑔 − 𝑄𝐺𝑔

0). 

 

2 ∙ 𝑃𝐹𝑙
 ∙  ∆𝑃𝐹𝑙 + 2 ∙ 𝑄𝐹𝑙

 ∙  ∆𝑄𝐹𝑙 
  ≤ ∆𝑆𝐿𝑙                      ∀ 𝑙 ∈ 𝑁𝑇                                (4.26) 

 

2 ∙ 𝑃𝑆𝑙
 ∙  ∆𝑃𝑆𝑙 + 2 ∙ 𝑄𝑆𝑙

 ∙  ∆𝑄𝑆𝑙 
  ≤ ∆𝑆𝐿𝑙                        ∀ 𝑙 ∈ 𝑁𝑇                               (4.27) 

 

where  ∆𝑆𝐿𝑙 = 𝛼 ∙ (𝑆𝐿𝑙 − 𝑆𝐿𝑙
0). 

4.3.4 Generic form of linearized LWOPF optimization problem 

 The linear optimization formulation for the LWOPF is completely described in (4.19) – (4.27), where 

the objective is (4.19) and constraints are in (4.20) – (4.27). This incremental LWOPF problem can be 

collated into a generic formulation as below: 

From (4.19): 

min∆𝑓𝑜(𝑾) =  𝐶𝑇 ∙ ∆𝑾                                                                   (4.28) 

Subject to: from (4.20) – (4.27): 

𝑏  ≤ 𝐴 ∙ ∆𝑾 ≤  𝑏                                                                            (4.29) 

where equality constraints will have the same lower and upper limit values. It can be solved using any 

linear optimization method such as Simplex, interior point algorithm, etc. The proposed successive linear 

programming algorithm is presented in the next section. 

 Successive Linear Programming Algorithm  

This section describes the proposed algorithm to solve the LWOPF formulation using SLP technique 

as shown in Figure 4.2. The algorithm includes two main steps in each iteration: first, solving the line-wise 

power flow; second, linearization of the nonlinear LWOPF formulation around the operating point obtained 

from the first step, then solving the resultant linear optimization problem using a chosen LP technique. The 

entire procedure, the two steps, will be repeated successively till convergence based on the stopping criterion 
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is reached. It may be useful here to note that the algorithm to solve the set of polar line-wise power flow, 

the (4.5) to (4.10) formulation, was explained before in [64] based on Newton-Raphson method.  

 

Figure 4.2 Flowchart of proposed LWOPF based on SLP. 

 

The stopping criterion of the SLP algorithm is based on checking for the satisfaction of the set of 

constraints (4.5) – (4.15), then satisfying the condition in (4.30), or reaching the maximum number of 

iterations [104]. 

 

No 

k = k+1; Update the Vector of control vector W 

𝐖𝒌 = 𝐖𝒌−𝟏 + ∆𝐖𝒌 

 

Stop 

Solve the line-wise power flow and obtain the 

operating point Wk 

Check the stopping criterion in 

(4.30) & set of constraints (4.5) 

- (4.15) 

Start 

Yes 

Build the linearized model of LWOPF based on the set of 

(4.19) to (4.27) then solve it using LP 

 

Read Power System Data 

set k = 0 
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|𝑓𝑜(𝑾𝑘) − 𝑓𝑜(𝑾𝑘−1)|

|𝑓𝑜(𝑾𝑘)|
 ≤ 𝛾                                                                (4.30) 

 

 Results of System Studies 

In this section, test results of the proposed line-wise OPF method are reported and compared with those 

from the bus-wise OPF method. The proposed algorithm and the SLP algorithm of the classical bus-wise 

method in [104] are implemented in the Matlab® R2016a environment and solved using the Mosek 7.0 

solver. All tests are done on a 64-bit i7 Intel Core laptop (2.6 GHz, 16 GB of RAM) with the Windows 10 

operating system. Sparse matrix implementations are considered where possible. The line flow limits for the 

tested power systems are obtained from [108]. In addition, the proposed mathematical formulation is 

implemented in AMPL [138] and solved using CPLEX [139] and GUROBI [140]. 

 

4.5.1 Performance of the LWOPF method– Objective Function Value and Execution Time 

 

This subsection compares the OPF solutions of the MATPOWER (with default interior-point ACOPF 

solver (MIPS)) [65] and the proposed LWOPF based on SLP solution using three different solvers, MOSEK, 

CPLEX and GUROBI. The proposed SLP based LWOPF formulation considers the constraints of line flow 

limits. Table I presents results of these tests as percentage of results from MATPOWER. The proposed 

LWOPF-SLP method is tested on 6-, 14-, 30-, 57- and 118-bus IEEE systems, a 582-bus real power system, 

a 2383-bus Polish power system, and a 9241-bus PEGASE system. 

It can be noticed from Table 4.1 that the proposed LWOPF obtains better solutions for all tested 

systems, namely lower generation costs than those obtained by MATPOWER. In terms of execution time, 

the proposed LWOPF method is up to twice as fast as MATPOWER. 

 

 

 

 

 

 



 

75 

 

Table 4.1 Comparison of Proposed LWOPF Method using three solvers with MATPOWER − Objective 

Function Value and Execution Time 

System 

MOSEK CPLEX GUROUBI 

Time 

ratio 

(%) 

Iter 

# 

Objective 

function ratio 

(%) 

Time 

ratio 

(%) 

Iter 

# 

Objective 

function ratio 

(%) 

Time 

ratio 

(%) 

Iter 

# 

Objective 

function ratio 

(%) 

6-bus 40.6% 2 98.56% 47.8% 2 99.99% 53.6% 2 98.56% 

14-bus 58.8% 2 98.64% 70.0% 2 99.98% 82.5% 2 99.89% 

30-bus 49.0% 2 98.3% 49.0% 2 99.84% 52.0% 2 99.62% 

57-bus 84.8% 3 99.72% 133.3% 3 100.00% 187.9% 3 100.0% 

118-bus 42.5% 4 97.58% 45.7% 4 99.81% 53.3% 4 97.14% 

300-bus 76.1% 3 95.90% 94.0% 3 98.05% 98.3% 3 98.12% 

582-bus 82.1% 4 97.77% 85.3% 4 100.00% 85.3% 4 97.95% 

2383-bus 56.4% 3 99.46% 65.1% 3 99.98% 65.1% 3 99.48% 

9241-bus 62.3% 6 97.52% 111.5% 6 99.84% 154.5% 6 99.86% 

 

It is evident that the proposed LWOPF method using MOSEK solver is up to twice as fast as 

MATPOWER and consistently provides a better solution while satisfying all constraints. The reason for the 

improved solution is due to improved solution space as square of the voltage magnitude is used in the 

LWOPF formulation. The speed considerably improves due to simplicity of the LWOPF formulation and it 

is explained in section 4.6. 

4.5.2  Convergence characteristics of proposed algorithm 

This subsection presents the performance of the proposed LWOPF method as shown in Fig. 4.3. It can 

be noted that the proposed algorithm has a good monotonic convergence characteristic for different test 

systems at mismatch tolerance of 𝛾 = 10−6. The graphs in Fig. 4.3 are generated using the MOSEK solver 

since it performs the best as per Table 4.1. The Y-axis in Fig. 4.3 presents the deviation of the objective 

function, which refers to the difference between the value of the objective function determined by the 

proposed algorithm and the best-known value evaluated using MATPOWER, expressed as a percentage of 

the best-known value evaluated using MATPOWER. 

 

From Figure 4.3, it is evident that irrespective of the system size, LWOPF provides monotonic 

convergence at up to twice the speed of MATPOWER while respecting all constraints. It is important to 

state that selection of step size influences performance of LWOPF method and it is acquired by experience 

for each system. 
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Figure 4.3 Convergence characteristics of the proposed method for different test systems. 

 

4.5.3 Comparison between the proposed algorithm with an existing SLP algorithm of classical bus-

wise method 

In this subsection, a comparison is developed between the results of the proposed SLP based LWOPF 

and the classical SLP based BWOPF [104]. The results of Table 4.2 show the superiority of the proposed 

formulation in terms of the solution quality, better objective function value, and faster execution time. In 

both of these implementations, same objective function, constraints (except for the set of power balance 

equations) and MOSEK solver was used to ensure that the comparison was fair. 

From the results, it clear that the proposed method consistently provides a better solution in terms of 

objective function value. As before, it is because the solution space of the LWOPF method is simpler than 

that of the BWOPF method. 

The reason for faster execution speed is primarily due to the simplicity of the LWOPF power balance 

equations and is better presented in Section 4.6. 
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Table 4.2 Comparison between SLP based LWOPF and SLP Based BWOPF 

N
o
. 
o
f 

B
u
ss

es
 

Objective: Generation Cost ($) Execution Time (seconds) Objective 

function ratio 

LWOPF as % 

of BWOPF 

Ratio of 

execution times 

LWOPF as % 

of BWOPF 

SLP Based 

BWOPF 

SLP Based 

LWOPF 

SLP Based 

BWOPF 

Iter 

# 

SLP 

Based 

LWOPF 

Iter 

# 

6 3,142.0 3,094.7 0.069 2 0.028 2 98.49% 40.58% 

14 5,198.9 5,120.5 0.080 2 0.047 2 98.64% 58.75% 

30 583.3 573.4 0.100 4 0.049 2 98.30% 49.00% 

57 41,760.0 41,582.0 0.165 4 0.140 3 99.57% 84.85% 

118 129,890.7 126,521.0 0.920 6 0.391 4 97.41% 42.50% 

300 719,753.6 690,226.0 1.170 4 0.890 3 95.90% 76.07% 

582 334,044.4 326,596.0 3.187 6 2.615 4 97.77% 82.05% 

 

4.5.4 Sensitivity to step size 

This section shows the effects of step size on the solution quality in terms of convergence 

characteristics and the execution time to obtain the optimal solution. The Y-axis in Fig. 4.4 presents the 

deviation of the objective function from the best-known MATPOWER solution. It refers to the difference 

between the value of the objective function determined by the proposed algorithm and the best-known value 

evaluated using MATPOWER, expressed as a percentage of the best-known value calculated using 

MATPOWER. 

A large step size makes the algorithm advance faster to the optimal solution but can result in 

oscillations when closer to the optimal solution, whereas a small step size will preclude oscillations but take 

more steps and hence more time to reach the optimal solution.  

The step size in this work is the factor that scales the available margin for the control variables to move 

within the nonlinear bounds. It is defined by the value of 𝛼 in (4.23) to (4.27). Hence, the step size in this 

work is a scalar. 

Analysis is performed on the IEEE 118-bus power system. The convergence characteristics curves of 

the proposed LWOPF-SLP solution of the 118-bus system for various step sizes are shown in Fig. 4.4. It 

reports the deviation of the objective function resulting from the proposed LWOPF-SLP method at each 

iteration as a percentage compared to the best-known objective function value computed using 
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MATPOWER. In the first couple of iterations, it can be observed that the solutions of the small step sizes, 

steps of 0.1 and 0.3, are much better than those of the relatively large step sizes of 0.5 and 0.75. At the step 

of 0.1, an acceptable accurate solution can be obtained in only two iterations. On the other hand, it can be 

noticed that employment of the larger step sizes can yield better results.  For instance, the final solution 

achieved by using a step size of 0.75 can yield a result that is better than the MATPOWER solution by 

almost 3% in the fourth iteration.  

 

Figure 4.4 Convergence characteristics of proposed LWOPF-SLP solution for IEEE 118-bus power system for 

several step sizes. 

4.5.5 Sensitivity for load model 

In this subsection, several static load models are considered to investigate its effect on the solution 

performance of the proposed algorithm of LWOPF. Based on the two set of power balance equations of 

(4.8) and (4.9) the active and reactive demand power PD and QD can be can be written as follows [29], 

[141]. 

• Exponential form: 

𝑃𝐷 = 𝑃𝐷0 ∙ (
𝑉

𝑉0
)𝑛𝑝                                                                      (4.31) 

𝑄𝐷 = 𝑄𝐷0 ∙ (
𝑉

𝑉0
)𝑛𝑞                                                                      (4.32) 

 

-3.0%

2.0%

7.0%

12.0%

17.0%

22.0%

27.0%

0 1 2 3 4 5

D
ev

ia
ti

o
n
 o

f 
o
b
je

ct
iv

e 
fu

n
ct

io
n

 f
ro

m
 

th
e 

b
es

t 
w

el
l-

k
n
o
w

n
 s

o
lu

ti
o

n
  
(%

)

Iteration # 

STEP = 0.75

STEP = 0.5

STEP  = 0.3

STEP = 0.1



 

79 

 

It can noted here that static constant power model is special case of ZIP model if 𝑛𝑝 and 𝑛𝑞 equal zero. 

It can be constant current if 𝑛𝑝 and 𝑛𝑞  equal one. It can be constant impedance if 𝑛𝑝 and 𝑛𝑞 equal two. 

• Polynomial form (ZIP model): 

𝑃𝐷 = 𝑃𝐷0 ∙ [𝑝1 ∙ (
𝑉

𝑉0
)2   +  𝑝2(

𝑉

𝑉0
) + 𝑝3]                                                   (4.33) 

𝑄𝐷 = 𝑄𝐷0 ∙ [𝑞1 ∙ (
𝑉

𝑉0
)2   +  𝑞2(

𝑉

𝑉0
) + 𝑞3]                                                   (4.34) 

 

It can noted here that static constant power model is special case of ZIP model if 𝑝1, 𝑝2, 𝑞1and 𝑞2 equal 

zero. It can be constant current if 𝑝1, 𝑝3, 𝑞1and 𝑞3 equal zero. It can be constant impedance if 𝑝2, 𝑝3, 𝑞2and 

𝑞3 equal zero. 

Each model of PD and QD is considered in concert. Each time, the Jacobian matrix in (4.21) is updated 

according to the considered model in (4.31) – (4.34). Three systems, 6-bus, 57-bus, and 118-bus systems, 

are tested to study the effects of load models on the performance of the proposed method, based on the 

available data of load models in [29] and [141]. Table 4.3 reports the results of these tests and compares 

performance of the proposed method for these load models. On reviewing Table 4.3, the performance of 

SLP based LWOPF is established to be consistent and reliable. It is not seen to be susceptible to changes in 

load models.  
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Table 4.3 Performance Comparison between SLP based LWOPF Solutions with Various Load Models 

System Load model 

Objective: 

Generation 

Cost ($) 

Execution 

time 

(seconds) 

Iteration 

    # 

6
-b

u
s 

Constant Power (CP) 3,094.7 0.028 2 

Constant Current (CC) 3,094.7 0.028 2 

Constant Impedance (CI) 3,094.5 0.029 2 

ZIP Model (40% CP, 30% CC and 30% CI) 3,095.2 0.032 2 

5
7
-b

u
s 

Constant Power (CP) 4,1582.0 0.140 3 

Constant Current (CC) 4,1598.0 0.144 3 

Constant Impedance (CI) 4,1622.0 0.149 3 

ZIP Model (40% CP, 30% CC and 30% CI) 4,1654.0 0.152 3 

1
1
8

-b
u
s 

Constant Power (CP) 126,521.0 0.391 4 

Constant Current (CC) 126,578.0 0.416 4 

Constant Impedance (CI) 126,674.0 0.428 4 

ZIP Model (40% CP, 30% CC and 30% CI) 126,988.0 0.460 4 

Error! Reference source not found. 

4.5.6 Sensitivity for considering the LWPF solution in each iteration of SLP 

As mentioned before in section 4.4, the main loop of the proposed algorithm considers the solution 

line-wise PF (LWPF) in each iteration SLP. This section investigates the effects of considering or ignoring 

the step of LWPF solution on the performance of proposed algorithm. 
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Table 4.4 Comparison between SLP based LWOPF with and without Considering the LWPF Step 

N
o
. 
o
f 

B
u
ss

es
 

Execution Time (seconds) Ratio of execution 

times 

with LWPF % and 

without LWPF step 

SLP Based 

LWOPF 

with LWPF step 

Iteration 

# 

SLP Based LWOPF 

without LWPF step 

Iteration 

# 

6 0.028 2 0.037 3 75.68% 

14 0.047 2 0.056 3 80.36% 

30 0.049 2 0.063 3 77.78% 

57 0.140 3 0.151 4 92.72% 

118 0.391 4 0.512 6 76.37% 

300 0.890 3 1.1 4 80.91% 

582 2.615 4 2.826 5 92.53% 
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Table 4.4 shows the comparison between the execution times and number iterations for the solution of 

proposed SLP based LWOPF with and without considering the LWPF calculation step. Considering the 

LWPF step could increase the execution time of each iteration. Nevertheless, it will reduce the total number 

of iterations and the total execution time. 

 

4.5.7 Sensitivity for initialization methods 

As mentioned before in section 4.4, the proposed algorithm considers the AC start based on line-wise 

PF as an initialization method before solving the SLP of LWOPF. In this section, two initialization methods: 

(1) flat start and (2) Line-wise power flow (LWPF) start are considered to show the effect of AC start. The 

analysis is done at different step sizes.  

The ratio between the execution times of AC start to that of flat start is reported in Figure 4.5 for both 

14- and 118-bus systems at several step size. 

 

Figure 4.5 Ratio between execution times of LWPF start to flat start in percentage at different step sizes for 

both 14- and 118-bus systems. 
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 Discussion on Optimal Power Flow  

The proposed solution algorithm of LWOPF which employs the SLP technique is consistently equal 

or faster than existing SLP algorithms of traditional BWOPF, up to twice the speed. The reasons for the 

faster speed of LWOPF are discussed here.  

In order to compare and provide a numerical justification, Table 4.5 has been created, reporting on a 

number of relevant elements of the matrices in the formulation. 

Upon analyzing Table 4.5, it is evident that LWOPF method has far fewer higher order terms in the A 

matrix and C vector compared with the BWOPF method. A higher order term is a product of two or more 

variables and/or constants. For example, a fourth order term, a higher order term, refers to the product of 

four variables and/or constants. Further, the number of sinusoidal terms in the A matrix is much less in the 

LWOPF method in comparison with the BWOPF method. Further, in comparing the A matrix for the two 

methods, it is evident that LWOPF method has less sinusoidal elements.  

This significantly reduced need to compute sinusoidal terms immensely reduces the computational 

burden, making the LWOPF method much superior to the BWOPF method. 
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Table 4.5 Comparison of SLP Formulations of SLP Based LWOPF and SLP Based BWOPF Algorithms  

S
y
st

em
 

M
et

h
o
d

 

A Matrix 

Number of 

Constraints in the 

Problem 

Number of higher order terms in 

A matrix and C vectors 

Number of products 

in A matrix and  
C vectors 

Size 

Number 

of 

nonzero 

terms 

Equality Inequality 4th 3rd 2nd 1st 

With 

Sine or 

Cosine 

Terms 

Without 

Sine or 

Cosine 

Terms 

6
 

b
u
s LW 40 X 44 140 40 10 0 0 56 340 56 396 

BW 12 X 16 53 12 10 145 17 0 0 631 0 

1
4
 

b
u
s LW 108 X 118 391 108 24 0 0 160 970 160 1,130 

BW 28 X 38 156 28 24 464 40 0 0 1,976 0 

3
0
 

b
u
s LW 224 X 236 917 224 42 0 0 328 1,980 328 2,308 

BW 60 X 72 373 60 42 958 101 0 0 4,135 0 

5
7
 

b
u
s LW 434 X 448 1,692 434 71 0 0 640 3,854 640 4,494 

BW 114 X 128 732 114 71 2,254 206 0 0 9,634 0 

1
1
8
 

b
u
s LW 980 X 1088 3,418 980 226 0 0 1488 9,036 1,488 10,524 

BW 236 X 344 1,157 236 226 3,269 309 0 0 14,003 0 

3
0
0
 

b
u
s LW 2244 X 2382 9,465 2,244 438 0 0 3288 19,866 3,288 23,154 

BW 600 X 738 3,874 600 438 7,867 992 0 0 34,444 0 

5
8
2
 

b
u
s LW 5024 X 5314 21,206 5,024 872 0 0 7720 46,610 7,720 54,330 

BW 1164 X 1454 7,030 1,164 872 21,284 1,892 0 0 90,812 0 

2
3
8
3
 

b
u
s LW 16350 X 17004 57,047 16,350 3,037 0 0 23168 139,662 23,168 162,830 

BW 4766 X 5420 28,437 4,766 3,037 87,147 7,727 0 0 371,828 0 

9
2
4
1
 

b
u
s LW 82678 X 85568 335,192 82,678 12,131 0 0 128,392 773,242 128,392 901,634 

BW 18482 X 21372 131,579 18,482 12,131 337,947 30,041 0 0 1,441,911 0 

 

Further, since after each LP solution, a power flow must be solved, the proposed method using the 

line-wise power flow is significantly faster compared to the bus-wise power flow method, adding to the 

speed of the proposed method as shown in Chapter 2. 
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 Benefits 

The benefits of using the proposed LWOPF can be showcased with a real numerical example. The 

Ontario electricity market is used as an example. The benefits may be classified into technical and economic. 

Technical Benefit: To settle Ontario’s electricity market, OPF is solved every five minutes. Using the 

proposed LWOPF method, assuming that the model for Ontario’s power system has 300 busses and taking 

data from Table 4.2, the reduction in the time to optimize Ontario’s electricity market is 25% (from 1.2 

seconds to 0.9 seconds). Thus, LWOPF will enable Ontario’s power system to operate at a better optimal 

state for 0.3 seconds, every five minutes (300 seconds). 

 

Economic Benefit: Ontario’s electricity system distributed energy worth $16,663,743,668 in the year 2017 

as per the 2017 Yearbook of the Electricity Distributors Association of Ontario [142]. Referring to Table 

4.2 and using the value of a 4% reduction in operating costs for a 300-bus system, the results produce an 

annual saving of $666,549,746 or $76,090 per hour for the province of Ontario. It is acknowledged that the 

amounts computed here include other charges in addition to the costs of the energy charges as well. 

However, it provides a measure for the potential benefit for this proposed LWOPF. 

 

 Summary  

In this chapter, a new formulation for optimal power flow based on a set of line-wise power flow 

equations is proposed. The line-wise optimal power flow (LWOPF) formulation is linearized and solved 

using successive linear programming technique (SLP). The proposed LWOPF-SLP method is tested on 6-, 

14-, 30-, 57- and 118-bus IEEE systems, a 582-bus real power system, a 2383-bus Polish power system, and 

a 9241-bus PEGASE system and compared for performance with traditional bus-wise OPF (BWOPF) 

implemented in MATPOWER and the best known SLP implementation in the literature.  

 

Benefits: The LWOPF method demonstrates the benefits of  

(1) stable numerical performance when scaled to large power systems,  

(2) higher speed up to two times than that of BWOPF method,  

(3) provides a monotonic convergence, and,  

(4) a better optimal solution due to improved solution space modeling using square of voltage 

magnitudes.  
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Contributions: Summarizing, the contributions of the proposed LWOPF-SLP method are:  

(1) The developed method provides a novel and simple formulation for OPF based on the line-wise power 

flow formulation.  

(2) Furthermore, it offers a simple SLP based solution algorithm for solving the proposed OPF formulation. 

The proposed LWOPF method, due to its simplicity in implementation, higher speed of execution, 

monotonic convergence characteristics, and, the ability to obtain a better optimal solution, it is well suited 

for commercial power systems application.  
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CHAPTER 5: VOLTAGE STABILITY CONSTRAINED LINE-WISE OPTIMAL 

POWER FLOW 

In last chapter, first, a new simple line-wise optimal power flow (LWOPF) formulation was proposed 

based on line-wise power balance equations. Thereafter, a maximum loadability factor (MLF), as an 

indicator for voltage collapse, is derived and combined with the constraints of LWOPF to form a voltage 

stability constrained LWOPF (VSCLWOPF) model. As the line-wise power balance equations are based 

upon square of bus voltage magnitudes, it results in significant improvement in the solution space and lower 

order terms in all the computational steps. The purpose of this exercise is to examine the benefit of extending 

LWPF and LWOPF methods to VC and optimizing consider VC constraints. 

The LWOPF and VSCLWOPF formulations, solved using nonlinear optimization technique, are tested 

on several IEEE benchmark systems as well as a real power system. The results show that the proposed 

LWOPF method is accurate, provides monotonic convergence, and scales well for large systems. It provides 

a better solution due to improved solution space and is consistently faster, up to twice the speed of 

MATPOWER, due to reduced computational needs. The results of VSCLWOPF shows that, for the same 

level of voltage stability, the solution costs less than that obtained by an OPF formulation with bus-wise 

power balance equations. 

 Introduction  

In most cases, if not all, a power system is represented using a bus-wise set of power balance equations. 

While the bus-wise formulation is succinct in its representation, all its Jacobian terms contain a sinusoidal 

term and it is developed in terms of bus voltages. In Chapter 2, it is shown that a polar line-wise power flow 

formulation uses far fewer sinusoidal terms and is developed in terms of squares of bus voltage, resulting in 

lower order terms. Further, the polar line-wise power balance equations use square of the voltage magnitude 

instead of voltage magnitude itself. Using square of voltage magnitude brings in the benefit of having a 

linear relationship between power and square of voltage magnitude for impedance loads. Due to these 

reasons, it is shown that the line-wise power flow method is superior to the bus-wise power flow method 

and is up to twice as fast. Hence, it is hypothesized that by replacing bus-wise power balance equations with 

Chapter Five 
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line-wise power balance equations in an OPF formulation, this will improve its speed and yield a better 

solution space due to the modelling using the square of voltage magnitudes. Moreover, it will meet the need 

to ensure the steady-state voltage stability of power system operation.  

This chapter presents a novel and simple OPF algorithm based on the polar line-wise power balance 

formulation of Chapter 2. A maximum loadability factor is derived for branches and incorporated with the 

proposed Line-wise OPF (LWOPF) as a set voltage stability constraint. Two main issues are considered: 

first, the formulation of the proposed LWOPF and its performance in terms of solution space and execution 

time; and second, development of the maximum loadability factors of branches and how it could be 

incorporated with the proposed LWOPF. Both proposed formulations are tested on several power systems: 

6-bus, 14-bus, 57-bus and 118-bus benchmark systems and the actual 582-bus system. The results show that 

the proposed method is accurate, provides monotonic convergence, scales well for large systems and is 

consistently faster, up to twice the speed of MATPOWER. The results of voltage stability constrained 

LWOPF shows the impacts of MLF on the objective cost function. 

 

 Line-wise Optimal Power Flow Formulation 

 This section details the development of the line-wise optimal power flow (LWOPF) based on a set of 

line-wise power balance equations.  

The typical OPF can be expressed as in (5.1) – (5.3) 

 

min 𝑓𝑜(𝑾)                                                                            (5.1) 

subject to: 

 

𝑓𝑔(𝑾) = 𝑑                                                                             (5.2) 

 

ℎ ≤ 𝑓ℎ(𝑾) ≤ ℎ                                                                             (5.3) 

 

where 𝑾 is the problem vector. The function 𝑓𝑜(𝑾) is the objective function in (5.1). The functions 

𝑓𝑔(𝑾) and 𝑓ℎ(𝑾) are the set of functions for equality and inequality constraints respectively. In (5.2), 𝑑 

is the target vector. In (5.3), ℎ and ℎ are the lower and upper limits on the inequality constraint.  
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5.2.1 Objective function 

 

In this formulation 𝑾 = [𝑈, 𝛿, 𝑃𝐹, PS, QF, QS, PG, QG]𝑇, and comprises control and dependent vectors 

of 𝑾𝑪 = [U, PG]𝑇 and 𝑾𝑫 = [𝛿, 𝑃𝐹, PS, QF, QS, QG]𝑇 respectively. 

 

Based on the available data for the considered tested systems, the study uses the second-order 

generation cost function as follows. The proposed method can be easily adapted to other nonlinear 

continuously differential objective functions as well. 

𝑓𝑜(𝑾) = ∑ 𝑐1𝑔 + 𝑐2𝑔 ∙ 𝑃𝐺𝑔 + 𝑐3𝑔 ∙ 𝑃𝐺𝑔
2

𝑁𝐺

𝑔=1

                                                  (5.4) 

 

5.2.2 Equality Constraints  

 

As reported in section 2.2, the following set of equations comprise the line-wise power balance 

equations, (5.5) – (5.10), and can model the entire power system. This set of equations will be used in the 

proposed OPF formulation to model power balance equality constraints. 

Considering a pi-model of a transmission line as shown in Figure 5.1, the square of sending and 

receiving end voltages may be related as below in (5.5) and (5.6). A detailed derivation is provided in section 

2.2.  

 

 

Figure 5.1 Series impedance element of the pi-model of the lth transmission branch connecting buses a and b. 

 

𝐹𝐹(𝑾) = 𝑈𝑎
2
+ 2𝑈𝑎 ∙ (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 −

𝑈𝑏

2
) + 𝑆𝐹𝑙

2 ∙ 𝑍𝑙
2 = 0          ∀𝑙 = 1 𝑡𝑜 𝑁𝑇              (5.5) 

𝑉𝑎∠𝛿𝑎 𝑉b∠𝛿𝑏 

 

  𝑃𝐹𝑙 + 𝑗 𝑄𝐹𝑙 𝑃𝑆𝑙 + 𝑗 𝑄𝑆𝑙 

   𝑍𝑙∠𝜃𝑙 = 𝑅𝑙 + 𝑗 𝑋𝑙  

𝑌𝑆𝑙∠𝛽𝑙   𝑌𝑆𝑙∠𝛽𝑙  
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𝐹𝑆(𝑾) =  𝑈𝑏
2 + 2𝑈𝑏 (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −

𝑈𝑎

2
) + 𝑆𝑆𝑙

2 ∙ 𝑍𝑙
2 = 0            ∀𝑙 = 1𝑡𝑜 𝑁𝑇               (5.6) 

 

Considering the phase angles of the sending and receiving end voltages, the relationships in (5.7) and 

(5.8) may be written: 

 

𝐹𝐴(𝑾) = (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 + 𝑈𝑎) ∙ 𝑡𝑎𝑛(𝛿𝑏 − 𝛿𝑎) − 𝑃𝐹𝑙  ∙ 𝑋𝑙 + 𝑄𝐹𝑙 ∙ 𝑅𝑙 = 0        ∀𝑙 = 1𝑡𝑜 𝑁𝑇     (5.7) 

 

𝐹𝐵(𝑾) = (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 + 𝑈𝑏) ∙ 𝑡𝑎𝑛(𝛿𝑎 − 𝛿𝑏) − 𝑃𝑆𝑙 ∙ 𝑋𝑙 + 𝑄𝑆𝑙 ∙ 𝑅𝑙  = 0         ∀𝑙 = 1𝑡𝑜 𝑁𝑇   (5.8) 

 

Further, the bus-wise power balance equations can be written in a matrix form as below: 

 

𝐹𝑃(𝑾) = 𝑃𝐺 + [𝑀] [
𝑃𝐹
𝑃𝑆

]  − 𝑈 ∙ 𝐺𝑆 =  𝑃𝐷                                                    (5.9) 

 

𝐹𝑄(𝑾) = 𝑄𝐺 + [𝑀] [
𝑄𝐹
𝑄𝑆

] + 𝑈 ∙ 𝐵𝑆 =  𝑄𝐷                                                   (5.10) 

 

where the shunt elements of lines in the pi-model and shunt loads are included in the GS and BS terms. 

Further, the constant loads are modelled in PD and QD in (5.9) and (5.10) respectively. The set of equations 

(4.5) – (4.10), which model the entire power system, are considered as the set of equality constraints in the 

proposed LWOPF. 

 

5.2.3 Inequality Constraints  

 

In addition, the limits on the control variables are as follows. 

 

Limits on Bus Voltages and Generators outputs are as below: 

                            𝑈𝑖 ≤ 𝑈𝑖  ≤  𝑈𝑖        ∀ 𝑖 ∈ 𝑁𝐵                                                  (5.11)  
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                        𝑃𝐺𝑔 ≤ 𝑃𝐺𝑔  ≤  𝑃𝐺𝑔       ∀ 𝑔 ∈ 𝑁𝐺                                                 (5.12)  

  

                        𝑄𝐺𝑔 ≤ 𝑄𝐺𝑔  ≤  𝑄𝐺𝑔      ∀ 𝑔 ∈ 𝑁𝐺                                                 (5.13)  

 

Limits on MVA line power flows are as below: 

𝑃𝐹𝑙
2 + 𝑄𝐹𝑙

2   ≤  (𝑆𝐿𝑙)
2
      ∀ 𝑙 ∈ 𝑁𝑇                                                   (5.14) 

 

𝑃𝑆𝑙
2 + 𝑄𝑆𝑙

2 
 ≤  (𝑆𝐿𝑙)

2
      ∀ 𝑙 ∈ 𝑁𝑇                                                   (5.15) 

 

The optimization problem stated in (5.4) – (5.15) is in terms of the problem vector that includes the 

square of voltage at each bus, the voltage angle at each bus, the active sending and receiving end powers for 

each branch, the reactive sending and receiving end powers for each branch, in addition to the active and 

reactive power generated at each generator bus. 

 

Succinctly, the formulation (5.4) – (5.15) can be stated below. 

 

Using (5.4), the objective function 

𝑓𝑜(𝑾) = ∑ 𝑐1𝑔 + 𝑐2𝑔 ∙ 𝑃𝐺𝑔 + 𝑐3𝑔 ∙ 𝑃𝐺𝑔
2

𝑁𝐺

𝑔=1

                                                  (5.4) 

subject to: 

the equality constraints in (5.5) – (5.10) are stated as: 

 

𝑓𝑔(𝑾) = 𝑑                                                                             (5.16) 

 

the inequalities in (5.11) – (5.15) are stated as: 

 

ℎ ≤ 𝑓ℎ(𝑾) ≤ ℎ                                                                             (5.17) 

 

In (16), the 𝑑 = [0 0 0 0 𝑃𝐷 𝑄𝐷]𝑇.  
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In (17), the ℎ = [𝑈    𝑃𝐺    𝑄𝐺  (𝑆𝐿𝑙)
2
(𝑆𝐿𝑙)

2
]
𝑇

 and ℎ = [𝑈   𝑃𝐺    𝑄𝐺   0 0]
𝑇

. 

 

The LWOPF formulation could be summarized as the typical quadratic objective generation cost of 

(5.4), subjects to the sets of constraints of (5.16) and (5.17). The proposed LWOPF formulation is a 

nonlinear optimization problem.  

 The Maximum loadability Factor (MLF) of branches 

 

This section includes the derivation of permissible maximum loadability factor of branches before the 

occurrence of the voltage collapse (VC) then discusses its effect on the solution of LWOPF.  

 Based on (5.6), its solution as a quadratic equation of 𝑈𝑏 will be as below in (5.18).  

 

𝑈𝑏
1,2 = −(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 − 𝑈𝑎 2⁄ ) ± √(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 − 𝑈𝑎 2⁄ )2 − (𝑃𝑆𝑙

2 + 𝑄𝑆𝑙
2) ∙ 𝑍𝑙

2    

= 𝛽1 ± 𝛽2                                       (5.18) 

 

where 

 

𝛽1 = −(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 − 𝑈𝑎 2⁄ )                                                    (5.19𝑎) 

 

𝛽2 = √(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 − 𝑈𝑎 2⁄ )2 − (𝑃𝑆𝑙
2 + 𝑄𝑆𝑙

2) ∙ 𝑍𝑙
2                              (5.19𝑏 ) 

 

The solution exists mathematically if the square of the term 𝛽2 in (5.19b) is greater than or equal to 

zero as in (5.20). 

 

(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 − 𝑈𝑎 2⁄ )2 − (𝑃𝑆𝑙
2 + 𝑄𝑆𝑙

2) ∙ 𝑍𝑙
2 ≥ 0                                        (5.20) 

 

To determine the permissible MLF of each branch in the system, the existing term of power (𝑃𝑆𝑙  +

𝑗 ∙ QS𝑙) in (5.20) can be replaced by  𝑀𝐿𝐹𝑆𝑙 ∙ (𝑃𝑆𝑙  + 𝑗 ∙ QS𝑙) as follows in (5.21). 

 

(𝑀𝐿𝐹𝑆𝑙 ∙ 𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑀𝐿𝐹𝑆𝑙 ∙ 𝑄𝑆𝑙 ∙ 𝑋𝑙 − 𝑈𝑎 2⁄ )2 
− 𝑀𝐿𝐹𝑆𝑙

2 ∙ (𝑃𝑆𝑙
2 + 𝑄𝑆𝑙

2) ∙ 𝑍𝑙
2 

= 0                    (5.21) 
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By solving (5.21) as a quadratic equation of MLF, the maximum loadability factor of branches at 

receiving ends (MLFS) can be obtained as follows. 

 

𝑀𝐿𝐹𝑆𝑙 =
𝑈𝑎 ∙ (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 − (𝑃𝑆𝑙

2 + 𝑄𝑆𝑙
2) ∙ 𝑍𝑙

 )

2 ∙ [(𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙)2 − (𝑃𝑆𝑙
2 + 𝑄𝑆𝑙

2) ∙ 𝑍𝑙
2 
]
                  ∀𝑙 = 1 𝑡𝑜 𝑁𝑇              (5.22) 

 

Similarly, for the other side, the maximum loadability factor of branches at sending ends (MLFF) can 

be obtained as follows. Based on (5.5), its solution as a quadratic equation of 𝑈𝑏 will be as below in (5.23).  

 

𝑈𝑎
1,2 = −(𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 − 𝑈𝑏 2⁄ ) ± √(𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 − 𝑈𝑏 2⁄ )2 − (𝑃𝐹𝑙

2 + 𝑄𝐹𝑙
2) ∙ 𝑍𝑙

2    

= 𝛽3 ± 𝛽4                                          (5.23) 

where 

 

𝛽3 = −(𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 − 𝑈𝑏 2⁄ )                                                    (5.24𝑎) 

 

𝛽4 = √(𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 − 𝑈𝑏 2⁄ )2 − (𝑃𝐹𝑙
2 + 𝑄𝐹𝑙

2) ∙ 𝑍𝑙
2                              (5.24𝑏 ) 

 

The solution exists mathematically if the square of the term 𝛽4 in (5.24b) is greater than or equal to zero as 

in (5.25). 

(𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 − 𝑈𝑏 2⁄ )2 − (𝑃𝐹𝑙
2 + 𝑄𝐹𝑙

2) ∙ 𝑍𝑙
2 ≥ 0                            (5.25) 

 

To find out the permissible MLF of each branch in the system, the existing term of power (𝑃𝐹𝑙  + 𝑗 ∙ 𝑄𝐹𝑙) 

can be replaced by  𝑀𝐿𝐹𝐹𝑙 ∙ (𝑃𝐹𝑙  + 𝑗 ∙ 𝑄𝐹𝑙) in (5.26). 

 

(𝑀𝐿𝐹𝐹𝑙 ∙ 𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑀𝐿𝐹𝐹𝑙 ∙ 𝑄𝐹𝑙 ∙ 𝑋𝑙 − 𝑈𝑏 2⁄ )2 
− 𝑀𝐿𝐹𝐹𝑙

2 ∙ (𝑃𝐹𝑙
2 + 𝑄𝐹𝑙

2)
 
∙ 𝑍𝑙

2 
= 0                    (5.26) 

 

 

𝑀𝐿𝐹𝐹𝑙 =
𝑈𝑏 ∙ (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 − 𝑆𝐹𝑙

 ∙ 𝑍𝑙
 )

2 ∙ [(𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙)2 − 𝑆𝐹𝑙
2 

∙ 𝑍𝑙
2 
]
                 ∀𝑙 = 1 𝑡𝑜 𝑁𝑇           (5.27) 

 

For each branch, there are two values for the maximum loadability factor which can be obtained from 

(5.22) and (5.27) at both sides of the branch. To ensure a secured operation, the maximum values of the two 

MLFs should not exceed the rated thermal limit of each branch.   
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Based on the two sets of equations (5.22) and (5.27), the set of voltage security constraints can be 

written as follows.  

 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (𝑀𝐿𝐹𝐹𝑙  
, 𝑀𝐿𝐹𝑆𝑙  

)  ≤  𝜏       ∀𝑙 = 1 𝑡𝑜 𝑁𝑇                                      (5.28)  

where 𝜏 is a rated loadability value of branches and it is obtained from power flow calculation at base 

loading case [43]. 

 

The proposed voltage stability constrained LWOPF can be collated into a generic formulation as the 

typical objective function of (5.4). Subject to the set of constraints in (5.16) and (5.17). In addition to, the 

set of constraints of (5.28).  

 

From (5.4): 

min𝑓𝑜(𝑾) =  𝐶𝑇 ∙ 𝑾                                                                   (5.29) 

 

Subject to: from (5.16) – (5.17) and (5.28): 

 

𝑏  ≤ 𝐴 ∙ 𝑾 ≤  𝑏                                                                            (5.30) 

 Results of System Studies ( VSCLWOPF) 

The proposed VSCLWOPF is implemented in the Matlab® R2016a environment and solved using the 

FMINCON solver. All tests are done on a 64-bit i7 Intel Core laptop (2.6 GHz, 16 GB of RAM) with the 

Windows 10 operating system. Sparse matrix implementations are considered where possible.  

The maximum loadability factor constraints of (5.28) are considered to ensure a secured operation of 

power systems in terms of voltage stability. Then the formulation becomes a voltage stability constrained 

LWOPF as stated in (5.4), (5.16), (5.17), and (5.28). The proposed VSCLWOPF is tested on 6-bus, 14-bus, 

57-bus and 118-bus IEEE test systems and a 582-bus real power system data. 

To illustrate the method, the proposed VSCLWOPF is tested with the 2-bus sample system shown in 

Figure 5.2.  This simple two-bus system includes two generators G1, G2, and a demand load of PD connected 

to bus 2. The load demand is less than the generated capacity of each generator.  
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Figure 5.2 Simple two bus system. 

 

The power (PGC) of generator G1 at the first bus is cheaper than the generated power (PGE) of generator 

G2 at the second bus. By applying the proposed LWOPF, it can be noted that the load demand (PD) will be 

completely supplied by G1 which means cheaper generation cost. To demonstrate the effects of MLF on the 

operation of the power systems the proposed VSCLWOPF is applied to the same simple system as follows.   

Fig. 5.3. shows the effect of increasing the loadability factor (LF) on: (1) the total cost of generation 

of the system, and (2) the active generated power of each generator. The LF represents additional powers 

that can be transported through the transmission system before voltage collapse. With increasing LF, power 

flowing through the transmission lines that are connected to busses that are susceptible to voltage collapse 

will reduce, thus making those busses less susceptible. 
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Figure 5.3 Total generation cost, PGC, and PGE values with increasing of MLF. 

Accordingly, initially, the system delivers all of its load of active power from the cheaper generator 

“G1” at unity LF for the transmission lines. Gradually, with increasing of LF of the branch between bus 1 

and bus 2, an increasing amount of power is reserved in the branch, and as a result the generated power of 

G1 (PGC) will be decreased, while the active generated power of G2 (PGE) will be increased to offset the 

reduction of PGC and maintain power balance between the total generation and total demand of the system. 

As a result, the cost of generation will keep growing as the LF increases.  

The total cost ratio between the objective cost function before and after considering the voltage stability 

constraints is summarized in Fig. 5.4.  

To demonstrate the effects of considering the voltage stability constraints on the solution performance, 

Fig. 5.4. Shows the change of objective cost function before and after inclusion of MLF constraints in the 

OPF for 6-bus, 14-bus, 57-bus and 118-bus benchmark systems and a real 582-bus system. Fig. 5.4 presents 

the percentage reduction in the generation cost, expressed in terms of the cost determined by the Voltage 

Stability Constrained BWOPF, required for each system to ensure the same safe operation with respect to 

voltage stability. This shows that by using the line-wise power flow equations in voltage stability constrained 

OPF, the solution domain is better (less complex and less nonlinear). This results in a lower cost solution, 
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for the same voltage stability, in comparison with the same voltage stability constrained OPF with BWPF 

equations. 

 

 

Figure 5.4 Percentage change of the objective cost function after and before considering of MLF constraints in 

the LWOPF for several power systems. 

 

 

 Summary  

In this chapter, the Line-wise OPF formulation is augmented, incorporating the voltage stability 

constraints to create a voltage stability constrained LWOPF (VSCLWOPF) method. It shows that while 

ensuring safe operation for power systems with better voltage stability, generation cost is reduced in 

comparison with the bus-wise power flow based voltage stability constrained OPF formulation. The better 

solution space, stemming from the formulation based upon square of voltage magnitudes, yields a lower 

costing optimal solution for small and large sized power systems. The main contributions of this chapter can 

be summarized as follows: 

(1) It presents a voltage collapse indicator for branches in terms of branch maximum loadability factors 

(MLF) which can be used for voltage stability assessment. 

(2) It presents a novel voltage stability constrained line-wise optimal power flow (VSCLWOPF) with 

MLF as a voltage stability constraint. 
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(3) The proposed formulation VSCLWOPF is tested on several power systems: 6-bus, 14-bus, 57-bus 

and 118-bus benchmark systems and a real 582-bus system. The results of VSCLWOPF provide a 

lower cost solution in less time while ensuring the same voltage stability. 
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CHAPTER 6: SUCCESSIVE LINEAR OPTIMIZATION - VOLTAGE STABILITY 

INCORPORATION WITH LINE-WISE OPTIMAL POWER FLOW 

Ensuring the voltage stability of power systems is one of the main goals of operators and researchers. The 

incorporation of voltage stability with optimal power flow (OPF) has received a great deal of attention in 

the past few years, as in Chapter 5. In this chapter, two novel linear models of voltage stability incorporation 

with line-wise optimal power flow are proposed based on the set of line-wise power balance equations and 

its line voltage collapse index. The difference between the two models are based on the way of using the 

VCI. In the first model, VCI are employed as a set of voltage stability constraints while the second model is 

based on using VCI as an objective function. The two models are solved using successive linear 

programming (SLP) technique, which is in contrast to Chapter 5 where nonlinear optimization technique 

was used. The study results on several IEEE benchmark systems demonstrates the effectiveness of the 

proposed two models in getting a higher voltage stable system at lower cost. 

 

 Introduction 

Profiting from the new line-wise power flow formulation and its line voltage collapse index (VCI) 

reported in chapter two, a voltage stability constrained optimal power flow (VSCOPF) method is developed 

in this chapter. A voltage stability constrained line-wise OPF (VSCLWOPF) formulation is proposed that 

employs a set of line-wise power balance equations to model the entire system.  

As well as the VCIs are considered as a set of voltage stability constraint. Two models for the proposed 

linear voltage stability constrained LWOPF are presented. Both models are dependent on the linearized 

voltage collapse indices to incorporate the voltage stability in the OPF study. The main difference between 

the two models is the way of using the VCIs which could be either an objective function or a set of 

constraints.  

 

Chapter Six 
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In this chapter, the two proposed linear voltage stability incorporation with LWOPF method are 

implemented and solved by SLP. The two models are tested and compared on 6-, 14-, 30- and 118-bus IEEE 

systems.  

 

 Nonlinear Line-wise Optimal Power Flow Formulation and the Line Voltage 

Collapse Index 

In this section, the main line-wise set of power balance are used to model the entire power system. As well,, 

the two sets of voltage collapse indices are employed as an indication factor for the proximity to voltage 

collapse (VC). The two optimization problems are stated in terms of the problem vector  

𝑾 = [𝑈, 𝛿, 𝑃𝐹, PS, QF, QS, PG, QG]𝑇, and comprises control and dependent vectors of 𝑾𝑪 = [U, PG]𝑇 and 

𝑾𝑫 = [𝛿, 𝑃𝐹, PS, QF, QS, QG]𝑇 respectively. 

6.2.1 Line-wise power flow formulation (LWPF) and Related Constraints 

As reported in chapter two, the following set of equations comprise the polar line-wise power balance 

equations, (6.1) to (6.6), and can model the entire power system. This set of equations will be used in the 

proposed OPF formulation to model power balance equality constraints. 

Considering a pi-model of a transmission line as shown in Figure 6.1, the square of sending and 

receiving end voltages may be related as below in (6.1) and (6.2). A detailed derivation is provided in section 

2.2. 

 

 

 

 
 

Figure 6.1 Series impedance element of the pi-model of the lth transmission branch connecting buses a and b. 

 

𝑉𝑎∠𝛿𝑎 𝑉b∠𝛿𝑏 

 

𝑃𝐹𝑙 + 𝑗 𝑄𝐹𝑙 𝑃𝑆𝑙 + 𝑗 𝑄𝑆𝑙 

𝑍𝑙∠𝜃𝑙 = 𝑅𝑙 + 𝑗 𝑋𝑙  

𝑌𝑆𝑙∠𝛽𝑙  𝑌𝑆𝑙∠𝛽𝑙  
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𝐹𝐹(𝑾) = 𝑈𝑎
2
+ 2𝑈𝑎 ∙ (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 −

𝑈𝑏

2
) + 𝑆𝐹𝑙

2 ∙ 𝑍𝑙
2 = 0        ∀𝑙 = 1 𝑡𝑜 𝑁𝑇                          (6.1) 

 

𝐹𝑆(𝑾) =  𝑈𝑏
2 + 2𝑈𝑏 (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −

𝑈𝑎

2
) + 𝑆𝑆𝑙

2 ∙ 𝑍𝑙
2 = 0          ∀𝑙 = 1𝑡𝑜 𝑁𝑇                          (6.2) 

 

Considering the phase angles of the sending and receiving end voltages, the relationships may be 

written as follows in (6.3) and (6.4): 

 

𝐹𝐴(𝑾) = (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 + 𝑈𝑎) ∙ 𝑡𝑎𝑛(𝛿𝑏 − 𝛿𝑎) − 𝑃𝐹𝑙 ∙ 𝑋𝑙 + 𝑄𝐹𝑙 ∙ 𝑅𝑙 = 0        ∀𝑙 = 1𝑡𝑜 𝑁𝑇        (6.3) 

 

𝐹𝐵(𝑾) = (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 + 𝑈𝑏) ∙ 𝑡𝑎𝑛(𝛿𝑎 − 𝛿𝑏) − 𝑃𝑆𝑙 ∙ 𝑋𝑙 + 𝑄𝑆𝑙 ∙ 𝑅𝑙  = 0          ∀𝑙 = 1𝑡𝑜 𝑁𝑇      (6.4) 

 

Further, the bus-wise power balance equations can be written in a matrix form as below: 

𝐹𝑃(𝑾) = 𝑃𝐺 + [𝑀] [
𝑃𝐹
𝑃𝑆

]  − 𝑈 ∙ 𝐺𝑆 =  𝑃𝐷                                                     (6.5) 

𝐹𝑄(𝑾) = 𝑄𝐺 + [𝑀] [
𝑄𝐹
𝑄𝑆

] + 𝑈 ∙ 𝐵𝑆 =  𝑄𝐷                                                     (6.6) 

 

where the shunt elements of lines in the pi-model and shunt loads are included in the GS and BS terms. 

Further, the constant loads are modeled in PD and QD in (6.5) and (6.6) respectively. 

6.2.2 Inequality Constraints 

In addition, the limits on the control variables are as follows. Limits on Bus Voltages and Generators 

outputs are as below: 

                            𝑈𝑖 ≤ 𝑈𝑖  ≤  𝑈𝑖        ∀ 𝑖 ∈ 𝑁𝐵                                                  (6.7)   

 

                        𝑃𝐺𝑔 ≤ 𝑃𝐺𝑔  ≤  𝑃𝐺𝑔       ∀ 𝑔 ∈ 𝑁𝐺                                                 (6.8)   

 

                        𝑄𝐺𝑔 ≤ 𝑄𝐺𝑔  ≤  𝑄𝐺𝑔      ∀ 𝑔 ∈ 𝑁𝐺                                                 (6.9)  



 

102 

 

 

 

Limits on MVA line power flows are as below: 

 

𝑃𝐹𝑙
2 + 𝑄𝐹𝑙

2   ≤  (𝑆𝐿𝑙)
2
      ∀ 𝑙 ∈ 𝑁𝑇                                                   (6.10) 

 

𝑃𝑆𝑙
2 + 𝑄𝑆𝑙

2 
 ≤  (𝑆𝐿𝑙)

2
      ∀ 𝑙 ∈ 𝑁𝑇                                                   (6.11) 

6.2.3 Voltage Collapse Index 

As reported in section 2.5, for each branch in the power system, there are two line voltage collapse 

indices 𝑉𝐶𝐼𝑎 and 𝑉𝐶𝐼𝑏 in (6.12) and (6.13). On loading the power system, the two indices reduce to zero at 

voltage collapse (VC). In other words, the lower the value of the line voltage collapse index, the closer the 

line to the voltage collapse. 

 

 𝑉𝐶𝐼𝑎 =  2 ∙ 𝑈𝑎 + 2 ∙ (𝑃𝐹𝑙 ∙ 𝑅𝑙 + 𝑄𝐹𝑙 ∙ 𝑋𝑙 −
𝑈𝑏

2
)    > 0                                     (6.12) 

 

𝑉𝐶𝐼𝑏 =  2 ∙ 𝑈𝑏 + 2 ∙ (𝑃𝑆𝑙 ∙ 𝑅𝑙 + 𝑄𝑆𝑙 ∙ 𝑋𝑙 −
𝑈𝑎

2
)    >  0                                    (6.13) 

6.2.4 Full Non-linear Formulation of Voltage stability incorporation with LWOPF– model #1 

Based on the available data for the considered tested systems, the study uses the second-order 

generation cost function as follows. The proposed method can be easily adapted to other nonlinear 

continuously differential objective functions as well. Succinctly, the nonlinear voltage stability constrained 

LWOPF formulation can be stated below. 

The objective, 

min: 𝑓(𝑾)  = ∑ 𝑐1𝑔 + 𝑐2𝑔 ∙ 𝑃𝐺𝑔 + 𝑐3𝑔 ∙ 𝑃𝐺𝑔
2

𝑁𝐺

𝑔=1

                                          (6.14) 

 

subject to: 

the equality constraints in (6.1) – (6.6) are stated as: 
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𝑓𝑔(𝑾) = 𝑑                                                                             (6.15) 

 

the inequalities in (6.7) – (6.11) are stated as: 

 

ℎ ≤ 𝑓ℎ(𝑾) ≤ ℎ                                                                        (6.16) 

 

Further, the voltage stability constraints of (6.12) – (6.13) are stated as: 

 

𝑀𝑖𝑛 (𝑉𝐶𝐼𝑙)  ≥  𝑉𝐶𝐼𝑙𝑖𝑚𝑖𝑡                       ∀ 𝑙 ∈ 𝑁𝑇                                         (6.17) 

 

In (6.15), the 𝑑 = [0 0 0 0 𝑃𝐷 𝑄𝐷]𝑇 .In (6.16), the ℎ = [𝑈    𝑃𝐺    𝑄𝐺  (𝑆𝐿𝑙)
2
(𝑆𝐿𝑙)

2
]
𝑇

 and ℎ =

[𝑈   𝑃𝐺    𝑄𝐺   0 0]
𝑇

. 

 

 

6.2.5 Full Non-linear Formulation of Voltage stability incorporation with LWOPF– model #2 

This subsection presents the second option of proposed nonlinear voltage stability incorporation with 

LWOPF. The objective function is to maximize the sum of all voltage collapse indices.  

 

𝑀𝑎𝑥.        ∑𝑉𝐶𝐼𝑎𝑙
 + 𝑉𝐶𝐼𝑏𝑙

𝑁𝑇

𝑙=1

                                                       (6.18) 

subject to same equality and inequality sets of equations mentioned in (15) and (16): 

the equality constraints in (6.1) – (6.6) are stated as: 

 

𝑓𝑔(𝑾) = 𝑑                                                                             (6.19) 

 

the inequalities in (6.7) – (6.11) are stated as: 
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ℎ ≤ 𝑓ℎ(𝑾) ≤ ℎ                                                                      (6.20) 

 Development of Linear Models of Objective Function, Equality Constraints, 

Inequality Constraints and VCI indices – models 1 and 2. 

In this section, a linear incremental model is presented below. The problem vector ∆𝑾 comprises 

control and dependent vectors of ∆𝑾𝑪 = [∆𝑈, ∆𝑃𝐺]𝑇  and ∆𝑾𝑫 = [∆𝛿, ∆𝑃𝐹, ∆𝑃𝑆, ∆𝑄𝐹, ∆𝑄𝑆, ∆𝑄𝐺]𝑇 

respectively. The linearized problem vector is:  

 

∆𝑾 = [∆𝑈, ∆𝛿, ∆𝑃𝐹, ∆𝑃𝑆, ∆𝑄𝐹, ∆𝑄𝑆, ∆𝑃𝐺, ∆𝑄𝐺]𝑇. 

6.3.1 Linearized Objective Function – model #1 

The linearized objective function from (6.14) will be as follows. 

 

Min.        ∆𝑓𝑜(𝑾) =  [
𝑑𝑓𝑜(𝑾)

𝑑𝑾
] ∙ ∆𝑾                                                         (6.21𝑎)                

or 

Min.     ∆𝑓𝑜(∆𝑾) = ∑[(𝑐2𝑔 + 2 ∙ 𝑐3𝑔 ∙ 𝑃𝐺𝑔) ∙ ∆𝑃𝐺𝑔]

𝑁𝐺

𝑔=1

                                 ( 6.21𝑏) 

6.3.2 Linearized Objective Function – model #2 

This objective function is to maximize the sum of all voltage collapse indices. 

𝑀𝑎𝑥.        ∑∆𝑉𝐶𝐼𝑎𝑙
 +  ∆𝑉𝐶𝐼𝑏𝑙

𝑁𝑇

𝑙=1

                                                       (6.22 a) 

 

where  

 

∆ 𝑉𝐶𝐼𝑎𝑙 
=

𝜕 𝑉𝐶𝐼𝑎𝑙

𝜕𝑈 
 ∆𝑈 +

𝜕 𝑉𝐶𝐼𝑎𝑙

𝜕𝑃𝐹 
 ∆𝑃𝐹 +  

𝜕 𝑉𝐶𝐼𝑎𝑙

𝜕𝑄𝐹 
 ∆𝑄𝐹           ∀ 𝑙 ∈ 𝑁𝑇             (6.22 b) 

 

∆ 𝑉𝐶𝐼𝑏𝑙 
=

𝜕 𝑉𝐶𝐼𝑏𝑙

𝜕𝑈 
 ∆𝑈 +

𝜕 𝑉𝐶𝐼𝑏𝑙

𝜕𝑃𝑆 
 ∆𝑃𝑆 +  

𝜕 𝑉𝐶𝐼𝑏𝑙

𝜕𝑄𝑆 
 ∆𝑄𝑆            ∀ 𝑙 ∈ 𝑁𝑇             (6.22 𝑐) 
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6.3.3 Linearized Set of Equality Constraints 

The linearized set of equality constraints (6.15) is as below: 

 

∆f𝑔(𝑾) = [ 𝑱 𝑫 ]  ∆𝑾 = ∆𝑑                                                             ( 6.23) 

 

where J is the Jacobian matrix of the set of line-wise power balance equations (6.15), as derived in [10], and 

shown below in (6.24), and D is a submatrix includes two vectors for the partial differentiation of the set 

(6.1) to (6.6) for to PG and QG respectively as follows in (6.25). 

 

J  =   

[
 
 
 
 
 
 
 
 
 
 [

𝜕𝐹𝐹

𝜕𝑈
] [

𝜕𝐹𝐹

𝜕𝛿
] [

𝜕𝐹𝐹

𝜕𝑃𝐹
]

[
𝜕𝐹𝑆

𝜕𝑈
] [

𝜕𝐹𝑆

𝜕𝛿 
] [

𝜕𝐹𝑆

𝜕𝑃𝐹
]

[
𝜕𝐹𝐴

𝜕𝑈
] [

𝜕𝐹𝐴

𝜕𝛿
] [

𝜕𝐹𝐴

𝜕𝑃𝐹
]

[
𝜕𝐹𝐹

𝜕𝑃𝑆
] [

𝜕𝐹𝐹

𝜕𝑄𝐹
] [

𝜕𝐹𝐹

𝜕𝑄𝑆
]

[
𝜕𝐹𝑆

𝜕𝑃𝑆
] [

𝜕𝐹𝑆

𝜕𝑄𝐹
] [

𝜕𝐹𝑆

𝜕𝑄𝑆
]

[
𝜕𝐹𝐴

𝜕𝑃𝑆
] [

𝜕𝐹𝐴

𝜕𝑄𝐹
] [

𝜕𝐹𝐴

𝜕𝑄𝑆
]

[
𝜕𝐹𝐵

𝜕𝑈
] [

𝜕𝐹𝐵

𝜕𝛿
] [

𝜕𝐹𝐵

𝜕𝑃𝐹
]

[
𝜕𝐹𝑃

𝜕𝑈
] [

𝜕𝐹𝑃

𝜕𝛿 
] [

𝜕𝐹𝑃

𝜕𝑃𝐹
]

[
𝜕𝐹𝑄

𝜕𝑈
] [

𝜕𝐹𝑄

𝜕𝛿 
] [

𝜕𝐹𝑄

𝜕𝑃𝐹
]

[
𝜕𝐹𝐵

𝜕𝑃𝑆
] [

𝜕𝐹𝐵

𝜕𝑄𝐹
] [

𝜕𝐹𝐵

𝜕𝑄𝑆
]

[
𝜕𝐹𝑃

𝜕𝑃𝑆
] [

𝜕𝐹𝑃

𝜕𝑄𝐹
] [

𝜕𝐹𝑃

𝜕𝑄𝑆
]

[
𝜕𝐹𝑄

𝜕𝑃𝑆
] [

𝜕𝐹𝑄

𝜕𝑄𝐹
] [

𝜕𝐹𝑄

𝜕𝑄𝑆
]]
 
 
 
 
 
 
 
 
 
 

                                          (6.24) 

 

𝐷 =   

[
 
 
 
 
𝜕𝐹𝐹

𝜕𝑃𝐺

𝜕𝐹𝑆

𝜕𝑃𝐺

𝜕𝐹𝐴

𝜕𝑃𝐺

𝜕𝐹𝐴

𝜕𝑃𝐺

𝜕𝐹𝑃

𝜕𝑃𝐺

𝜕𝐹𝑄

𝜕𝑃𝐺

𝜕𝐹𝐹

𝜕𝑄𝐺

𝜕𝐹𝑆

𝜕𝑄𝐺

𝜕𝐹𝐵

𝜕𝑄𝐺

𝜕𝐹𝐵

𝜕𝑄𝐺

𝜕𝐹𝑃

𝜕𝑄𝐺

𝜕𝐹𝑄

𝜕𝑄𝐺 ]
 
 
 
 
𝑇

                                        (6.25) 

 

The vector ∆𝑑 =  [0 0 0 0 0 0]𝑇                            

 

6.3.4 Linearized Set of Inequality Constraints 

Further, the set of limits on the control variables in (6.7) to (6.11) could be linearized as follows. Considering 

the current operating value 𝑾° and a step size of 𝛼: 

 

∆𝑈𝑖 ≤ ∆𝑈𝑖  ≤ ∆𝑈𝑖                ∀ 𝑖 ∈ 𝑁𝐵                                                     (6.26)   

where  ∆𝑈𝑖 = 𝛼 ∙ (𝑈𝑖 − 𝑈𝑖
0)  and     ∆𝑈𝑖 = 𝛼 ∙ (𝑈𝑖 − 𝑈𝑖

0). 
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∆𝑃𝐺𝑔 ≤ ∆𝑃𝐺𝑔  ≤  ∆𝑃𝐺𝑔     ∀ 𝑔 ∈ 𝑁𝐺                                                    (6.27)   

where ∆𝑃𝐺𝑔 = 𝛼 ∙ (𝑃𝐺𝑔 − 𝑃𝐺𝑔
0)  and   ∆𝑃𝐺𝑔 = 𝛼 ∙ (𝑃𝐺𝑔 − 𝑃𝐺𝑔

0). 

 

∆𝑄𝐺𝑔 ≤ ∆𝑄𝐺𝑔  ≤  ∆𝑄𝐺𝑔     ∀ 𝑔 ∈ 𝑁𝐺                                                    (6.28)   

where ∆𝑄𝐺𝑔 = 𝛼 ∙ (𝑄𝐺𝑔 − 𝑄𝐺𝑔
0)  and    ∆𝑄𝐺𝑔 = 𝛼 ∙ (𝑄𝐺𝑔 − 𝑄𝐺𝑔

0). 

 

2 ∙ 𝑃𝐹𝑙
 ∙  ∆𝑃𝐹𝑙 + 2 ∙ 𝑄𝐹𝑙

 ∙  ∆𝑄𝐹𝑙 
  ≤ ∆𝑆𝐿𝑙              ∀ 𝑙 ∈ 𝑁𝑇                            (6.29) 

 

2 ∙ 𝑃𝑆𝑙
 ∙  ∆𝑃𝑆𝑙 + 2 ∙ 𝑄𝑆𝑙

 ∙  ∆𝑄𝑆𝑙 
  ≤ ∆𝑆𝐿𝑙             ∀ 𝑙 ∈ 𝑁𝑇                            (6.30) 

where  ∆𝑆𝐿𝑙 = 𝛼 ∙ (𝑆𝐿𝑙 − 𝑆𝐿𝑙
0). 

 

 

6.3.5 Linearized Voltage Collapse Indices for Model #1 only 

In this section, two options for the proposed linear voltage stability constrained LWOPF are presented. 

Both options depend on the linearized voltage collapse indices to incorporate the voltage stability in the 

OPF study. The main difference between the two options is the way of using the voltage collapse indices 

which could be either an objective function or a set of constraints.   

 

The two sets of linearized voltage collapse indices could be developed as follows. 

 

∆ 𝑉𝐶𝐼𝑎𝑙 
=

𝜕 𝑉𝐶𝐼𝑎𝑙

𝜕𝑈 
 ∆𝑈 +

𝜕 𝑉𝐶𝐼𝑎𝑙

𝜕𝑃𝐹 
 ∆𝑃𝐹 +  

𝜕 𝑉𝐶𝐼𝑎𝑙

𝜕𝑄𝐹 
 ∆𝑄𝐹               ∀ 𝑙 ∈ 𝑁𝑇              (6.31 a) 

 

∆ 𝑉𝐶𝐼𝑏𝑙 
=

𝜕 𝑉𝐶𝐼𝑏𝑙

𝜕𝑈 
 ∆𝑈 +

𝜕 𝑉𝐶𝐼𝑏𝑙

𝜕𝑃𝑆 
 ∆𝑃𝑆 +  

𝜕 𝑉𝐶𝐼𝑏𝑙

𝜕𝑄𝑆 
 ∆𝑄𝑆               ∀ 𝑙 ∈ 𝑁𝑇              (6.31 𝑏) 
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 Two proposed Linear Models of Voltage Stability incorporation with LWOPF 

 

In this section, the two models of linear voltage stability incorporation with LWOPF are developed.  

6.4.1 Linear Voltage Stability incorporation with LWOPF- Model #1 (VCI as set of constraints) 

 

In this subsection, the first option of linear voltage stability constrained LWOPF is developed. The 

proposed formulation includes the normal linear LWOPF and the linearized voltage stability constraints.   

 

 

The two sets of voltage stability constraints are employed as follows. 

 

𝑀𝑖𝑛 (∆𝑉𝐶𝐼𝑙)  ≥  ∆𝑉𝐶𝐼𝑙𝑖𝑚𝑖𝑡                                ∀ 𝑙 ∈ 𝑁𝑇            (6.32) 

 

∆𝑉𝐶𝐼𝑙𝑖𝑚𝑖𝑡 ∶ Threshold value of voltage collapse indices. 

 

 

The linear voltage stability constrained LWOPF formulation can be collated into a generic formulation 

as below: 

 

From (6.21b): the objective function 

Min.      ∆𝑓𝑜(𝑾) =  𝐶𝑇 ∙ ∆𝑾                                                         (6.33) 

 

Subject to the set of constraints from (6.23) – (6.30): 

𝑏  ≤ 𝐴 ∙ ∆𝑾 ≤  𝑏                                                                  (6.34) 

 

In addition to the linearized voltage stability constraints from (6.32) 

𝑀𝑖𝑛 (∆𝑉𝐶𝐼𝑙)   ≥  ∆𝑉𝐶𝐼𝑙𝑖𝑚𝑖𝑡                 ∀ 𝑙 ∈ 𝑁𝑇                          (6.35) 
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6.4.2 Linear Voltage Stability incorporation with LWOPF- Model #2 (VCI as an objective function) 

 

This subsection presents the second option of proposed linear voltage stability incorporation with 

LWOPF. The linear voltage stability incorporation with LWOPF formulation can be collated into a generic 

formulation as below: 

 

 

From (6.22 a) – (6.22 c): the objective function 

𝑀𝑎𝑥.        ∑∆𝑉𝐶𝐼𝑎𝑙
 +  ∆𝑉𝐶𝐼𝑏𝑙

𝑁𝑇

𝑙=1

                                                         (6.36) 

 

Subject to the set of constraints from (6.22) – (6.29): 

𝑏  ≤ 𝐴 ∙ ∆𝑾 ≤  𝑏                                                                  (6.38) 

 

As noted before, both proposed linear voltage stability incorporation with LWOPF formulations can 

be solved using any linear optimization method such as Simplex, interior point algorithm, etc. In this study, 

the successive linear optimization is employed to solve the two proposed formulation as can be shown in 

the following section. 

 Successive Linear Programming Algorithm  

This section describes the proposed algorithm to solve the voltage stability constrained LWOPF 

formulation using SLP technique as shown in Figure 6.2. The algorithm includes two main steps in each 

iteration: first, solving the line-wise power flow; second, linearization of the nonlinear LWOPF formulation 

including the voltage collapse indices around the operating point obtained from the first step, then solving 

the resultant linear optimization problem using a chosen LP technique. The entire procedure, the two steps, 

will be repeated successively till convergence based on the stopping criterion is reached. It may be useful 

here to note that the algorithm to solve the set of line-wise power flow, the (6.1) to (6.6) formulation, was 

explained before in [10] based on Newton-Raphson method. The stopping criterion of the proposed 

algorithm is as below in (6.39) which is similar to that of [104]. 
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Figure 6.2 Flowchart of proposed LWOPF based on SLP. 

 

The stopping criterion of SLP algorithm is based on satisfy the condition in (6.39) and all the set of 

constraints (6.1) – (6.13) including that all VCI for all branches are greater than zero. 

 

|𝑓𝑜(𝑾𝑘) − 𝑓𝑜(𝑾𝑘−1)|

|𝑓𝑜(𝑾𝑘)|
 ≤ 𝛾                                                           (6.39) 

 

 Results of system studies 

In this section, test results of the two proposed linear models of voltage stability incorporation with 

line-wise OPF are presented and compared for several IEEE bench mark systems. The proposed algorithm 

No 

k = k+1; Update the Vector of control vector W 

𝐖𝒌 = 𝐖𝒌−𝟏 + ∆𝐖𝒌 

     Stop 

Solve the line-wise power flow and obtain the operating 

point Wk and the voltage collapse indices 

Check if the stopping criterion 

is met (6.39) & set of 

constraints (1) – (13) and all  

VCIL > 0  

Start 

Yes 

Build the linearized model of voltage stability constrained LWOPF 

based on selection between models 1 & 2 

 

Read Power System Data 

set k = 0 
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is implemented in the Matlab® R2016a environment and solved using the Mosek 7.0 solver. All tests are 

done on a 64-bit i7 Intel Core laptop (2.6 GHz, 16 GB of RAM) with the Windows 10 operating system. 

Sparse matrix implementations are considered where possible. Solutions are obtained for all case studies at  

mismatch tolerance of 𝛾 = 10−6. 

To demonstrate the effectiveness of the proposed two linear models for incorporation of voltage 

stability with the line-wise OPF, the tested systems are stressed by scaling the load buses by a loading factor 

(LF) greater than one or assuming a contingency case such as line outage.   

 

6.6.1  Stressed system studies 

In this subsection, the results of solving several IEEE systems based on the two proposed linear models 

of incorporation of the voltage stability with the LWOPF are compared with the solution of normal linear 

LWOPF to demonstrate the impacts of considering the voltage stability on the operation performance. The 

systems are stressed by scaling their load bused by a LF up to the loading at which collapse will occur based 

on results reported in chapter two section 2.9. 

Figure 6.3, Figure 6.5, and Figure 6.7 show the comparison between the cost function value for the 

solutions of the normal LWOPF and the two proposed models of incorporating the voltage stability with 

LWOPF at several LF for Ward-Hale 6-bus, IEEE 14- and 118-bus systems respectively. It can be shown 

that incorporation the voltage stability may lead to extra cost to ensure secured operation. In Figure 6.4, 

Figure 6.6, and Figure 6.8, the minimum VCI at several LF are compared for the solution of normal LWOPF 

and the two proposed linear models at several LF for Ward-Hale 6-bus, IEEE 14- and 118-bus systems 

respectively. It can be noted that the second model which considers the VCI as an objective function has 

higher minimum VCI than the first model. 

 

a) Ward-Hale 6-bus system 
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Figure 6.3 Comparison between cost function value of the two proposed models and the normal LWOPF of 

Ward-Hale 6-bus system at several loading factors (stressed). 

 

 

 

Figure 6.4 Comparison between the value of minimum VCI of the solution of the two proposed models and 

the normal LWOPF of Ward-Hale 6-bus system at several loading factors (stressed). 

 

b) IEEE 14-bus system  
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Figure 6.5 Comparison between the cost function value of the solution of the two proposed models and the 

normal LWOPF of 14-bus system at several loading factors (stressed). 

 

 

Figure 6.6 Comparison between the value of minimum VCI of the solution of the two proposed models and 

the normal LWOPF of 14-bus system at several loading factors (stressed). 

c) IEEE 118-bus system 
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Figure 6.7 Comparison between the cost function value of the solution of the two proposed models and the 

normal LWOPF of 118-bus system at several loading factors (stressed). 

 

 

 

 

Figure 6.8 Comparison between the value of minimum VCI of the solution of the two proposed models and 

the normal LWOPF of 118-bus system at several loading factors (stressed). 
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6.6.2 Outage system studies 

In this subsection, the results of applying the proposed models of voltage stability incorporation with 

OPF to systems under contingency are presented. The contingency analysis considers an outage of one of 

the system branches as follows.   

For Ward-Hale 6-bus system, an outage case of line (L4-6) between buses 4 and 6 is tested and 

comparison is reported in Table 1. The results show that applying the proposed models of voltage stability 

incorporation with OPF is combined with an increase in the cost function, however, the system performance 

is improved in terms of better voltage stability conditions, lower losses. In addition, the enhancement of the 

bus voltage magnitudes is shown in Figure 6.9.  

Table 6.1 Comparison between the results of two proposed models and normal LWOPF for a line outage of 

Ward-Hale 6-bus system. 

 Normal LWOPF Model #1 Model #2 

Cost ($) 5963.30 5976.51 6068.89 

Minimum Voltage 

Collapse Index 
0.2208 0.2495 0.2642 

Losses (p.u.) 0.12 0.096 0.078 

Reactive Power 

Generation (p.u.) 
0.388 0.368 0.372 

 

 

 

Figure 6.9 Enhancement of bus voltages of the two proposed models compared to the normal LWOPF of 

Wald-Hale 6-bus system with a line outage contingency. 
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6.6.3 Comparison with an existing well-known voltage stability constrained OPF (IEEE 30-bus 

system) 

To emphasize the quality and performance of the proposed two models, a comparison is accomplished 

between the results of two proposed models of incorporation the voltage stability with LWOPF and the 

results of an existing algorithm of voltage stability constrained OPF in [127]. Comparison study considers 

the IEEE 30-bus system in two conditions; first, stressed system by scaling load buses by a LF of 1.4 and 

second, a line outage for line (L2-5) between buses 2 and 5.  

Table 6.2 and Table 6.3 present the superiority of the proposed models voltage stability incorporation 

with LWOPF over the one of the well-known VSCOPF which based on the voltage collapse proximity factor 

(VCPF). To ensure a fair comparison, the voltage collapse proximity indicator (VCPI), which presents the 

ratio between the receiving end  active power to the maximum allowable power transfer through the branch, 

of [127] is calculated for the solution of each model as shown in Table 6.2 and Table 6.2  

 

Table 6.2 Comparison between the results of two proposed models and normal LWOPF with best results of an 

existing VSCOPF in [127] for a stressed IEEE 30-bus system at 1.4 load factor. 

 

Proposed models based on LWOPF 
Existing VSCOPF 

of [127] 
LWOPF Model #1 Model #2 

Cost ($) 1259.91 1294.91 1297.46 1403.04 

Losses 

(MW) 
13.14 5.73 11.54 8.616 

Reactive 

Power 

Generation 

(Mvar) 

176.48 154.02 123.25 158.76 

VCPIMAX 
0.367 0.258 0.254 0.260 

VCPIT 4.664 4.165 4.159 4.166 
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Table 6.3 Comparison between the results of two proposed models and normal LWOPF with best results of an 

existing VSCOPF in [127] for a IEEE 30-bus system with line outage for (L2-5). 

 

Proposed models based on LWOPF 
Existing VSCOPF of 

[127] 
LWOPF Model#1 Model#2 

Cost ($) 833.75 935.56 928.80 1174.91 

Losses 

(MW) 
11.77 8.34 9.13 9.518 

Qgen 

(Mvar) 
138.50 126.94 68.514 134.17 

VCPIMAX 0.330 0.222 0.220 0.222 

VCPIT 4.391 3.765 3.762 3.769 

 

It can be noted form the comparisons of tables 6.2 and 6.3 that the two proposed models have better 

performance in terms of generation cost, losses, and reactive power generation compared to the existing 

algorithm of [127].  

    

 Summary  

In this chapter, two new linear models for incorporating the voltage stability with the optimal power 

flow based on a set of line-wise power flow equations and line voltage collapse index are proposed. The 

line-wise optimal power flow (LWOPF) formulation is linearized and incorporated with the set of linearized 

voltage collapse indices in two ways; first, VCIs are considered as a set of constraints, second, sum of VCIs 

is considered as an objective function. The two proposed models are solved using successive linear 

programming technique (SLP). The two linear proposed models for incorporation the voltage stability with 

LWOPF are tested on 6-, 14-, and 118-bus IEEE systems and compared with the solution of linearized line-

wise OPF (LWOPF).  

The results show the effectiveness of the proposed models to enhance the voltage stability for power 

systems even under severe contingency conditions such as line outage or stressed loading. The proposed 

models are compared with an existing voltage stability constrained optimal power flow methods and show 

a better performance in terms of minimizing the cost function and getting a better voltage stable system. 
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CHAPTER 7: CONCLUSION 

 

 General 

Power flow has a closer relationship to square of the magnitude of voltage than to magnitude of voltage 

itself. Hence, power balance equations developed using square of voltage magnitude yield simpler (less 

complex) equations, a lower number of higher order terms and a better solution space. This thesis is about 

exploiting this understanding to create power balance equations and optimal power flow methods based 

upon this new set of power balance equations. The benefits include faster power flow algorithms, faster 

optimal power flow algorithms, better optimal solution using OPF, and more voltage stable solutions. 

The work done in this thesis can be summarized as follows; In Chapter 2, the mathematical formulation 

of the polar line-wise PF based on NR method and the line voltage collapse index are developed. Further, 

the comparison of results with existing well-known methods is presented to show the superiority of the 

developed polar line-wise PF. Chapter 3 presents line-wise power flow in the rectangular form. The 

rectangular version of line-wise PF formulation is solved based on NR technique and compared with existing 

methods.  

In Chapter 4, benefiting from the developed polar line-wise PF of Chapter 2, a linearized incremental 

line-wise optimal power flow (LWOPF) is developed and solved based on successive linear programming 

(SLP). The results show better performance in terms of solution space and execution time compared to well-

known existing methods. In Chapter 5, a nonlinear formulation for polar line-wise optimal power flow is 

developed considering maximum loadability factors (MLF) for the transmission branches. The MLF is 

employed to create a nonlinear voltage stability constrained optimal power flow. Chapter 6 shows the 

development of two proposed linearized models of incorporating the voltage stability with the linearized 

LWOPF based on the polar line-wise PF and the VCI developed in Chapter 2. The solution algorithm for 

the proposed two models is based on the SLP technique and results are compared with existing work to 

show the superior performance.  

Chapter Seven 
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 Contribution and main benefits of thesis 

The main contributions and benefits of the thesis can be summarized as follows.  

Chapter 2: In chapter 2, the polar line-wise set of power balance equations and its solution using NR 

technique is developed. The formulation uses square of voltage magnitude instead of using voltage 

magnitudes as such. The use of square of voltage magnitude leads to linear terms for real and reactive 

powers, considering constant impedance type elements in certain portions of power balance equations. 

Coupled with this fact and the use of real and reactive line-wise power flows as variables, the set of line-

wise equations and its solution using NR technique is faster for all tested systems, up to two times, compared 

with bus-wise NR method. Numerical analysis of the Jacobians of bus-wise and line-wise NR methods show 

that the number of calculations to be completed by the line-wise NR method is much less, resulting in the 

higher speed of the line-wise NR method. Further, another significant benefit of the polar line-wise PF 

method is the ability to directly identify the set of critical lines that connect busses that are the most 

susceptible to VC. VCI terms appear directly in the Jacobian of the line-wise NR method. The method is 

both fast for PF analysis and for use as an online tool for voltage stability assessment. Summarizing, the 

benefits of the developed line-wise NR method are: 

1. It is superior to the bus-wise power method as it solves faster up to 2 times. 

2. It demonstrates a stable numerical performance, monotonic convergence, solution accuracy and 

scales well for larger systems.  

3. It provides active and reactive line power flows with no further need for computation.  

It does not need the system admittance matrix.  

4. Its system Jacobian construction is straightforward and requires no knowledge of the system 

topology. 

5. It provides VCI values without additional computation. 

6. It is very effective and time saving for voltage stability assessment analysis and ranking contingency 

scenarios according to their proximity to VC.  

 

Chapter 3: In Chapter 3, a rectangular line-wise PF is developed which uses of real and imaginary voltage 

terms and leads to avoiding trigonometric functions. The set of rectangular line-wise equations and its 

solution using NR technique is faster for all tested systems, up to three times, compared with the bus-wise 

NR method. Numerical analysis of the Jacobians of rectangular bus-wise and line-wise NR methods show 
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that the number of calculations to be completed by the rectangular line-wise NR method is much lower, 

resulting in the higher speed of the rectangular line-wise NR method. 

The rectangular line-wise PF method is tested and compared for performance with existing polar and 

rectangular bus-wise PF methods respectively on 6-, 14-, 57- and 118-bus IEEE systems, a 582-bus real 

power system, a 2383-bus Polish power system, and a 9241-bus PEGASE system. The results show that the 

rectangular form line-wise NR method demonstrates a stable numerical performance, monotonic 

convergence, up to thrice the speed in computation, and solution accuracy. It scales well, as shown, for 

larger systems. The active and reactive line power flows result directly from the solution with no further 

need for computation. The need to construct the system admittance matrix is eliminated. Development of 

the system Jacobian is straightforward and requires no knowledge of the system topology. 

 

Chapter 4: In Chapter 4, a new formulation for optimal power flow based on a set of line-wise power flow 

equations is proposed. The line-wise optimal power flow (LWOPF) formulation is linearized and solved 

using successive linear programming technique (SLP). The proposed LWOPF-SLP method is tested on 6-, 

14-, 30-, 57- and 118-bus IEEE systems, a 582-bus real power system, a 2383-bus Polish power system, and 

a 9241-bus PEGASE system and compared for performance with traditional bus-wise OPF (BWOPF) 

implemented in MATPOWER and the best known SLP implementation in the literature.  

The benefits of the LWOPF method include: (1) stable numerical performance when scaled to large power 

systems, (2) higher speed, up to two times than that of the BWOPF method, (3) it provides a monotonic 

convergence, and, (4) a better optimal solution results due to improved solution space modeling using square 

of voltage magnitudes. The proposed LWOPF method, due to its simplicity in implementation, higher speed 

of execution, monotonic convergence characteristics, and, the ability to obtain a better optimal solution, is 

well suited for commercial power systems application.  

 

Chapter 5: In Chapter 5, a novel simple nonlinear formulation for optimal power flow based on a set of 

line-wise power flow equations is proposed. The line-wise optimal power flow (LWOPF) formulation is 

developed and solved using the FMINCON nonlinear solver. The proposed LWOPF formulation is tested 

on 6-, 14-, 57- and 118-bus IEEE systems, and a 582-bus real power system and compared for performance 

with traditional bus-wise OPF (BWOPF) using MATPOWER. 

 Results of proposed LWOPF formulation demonstrate the stable numerical performance when scaled 

to large power systems, its higher speed, up to two times than that of the BWOPF method, and, a better 
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optimal solution due to improved solution space modelling using square of voltage magnitudes. Further, the 

Line-wise OPF formulation is augmented, incorporating the voltage stability constraints to create a voltage 

stability constrained LWOPF (VSCLWOPF) method. It shows that while ensuring safe operation for power 

systems with better voltage stability, generation cost is reduced in comparison with the bus-wise power flow 

voltage stability constrained OPF formulation. The better solution space, stemming from the formulation 

based upon square of voltage magnitudes, yields a lower costing optimal solution for small and large sized 

power systems. 

 

Chapter 6: Finally, in Chapter 6, two novel linearized models for incorporating the voltage stability with 

the optimal power flow based on a set of line-wise power flow equations and line voltage collapse index are 

developed. The line-wise optimal power flow (LWOPF) formulation is linearized and incorporated with the 

set of linearized voltage collapse indices in two ways; first, VCIs are considered as a set of constraints, 

second, the sum of VCIs is considered as an objective function. The two developed models are solved using 

successive linear programming technique (SLP). The two developed linear models for incorporation of 

voltage stability with LWOPF are tested on 6-, 14-, and 118-bus IEEE systems and compared with the 

solution of linearized line-wise OPF (LWOPF).  

The results show the effectiveness of the developed models for enhancing the voltage stability for 

power systems, even under severe contingency conditions such as line outage or stressed loading. The 

developed models are compared with an existing voltage stability constrained optimal power flow method 

and show better performance in terms of minimizing the cost function and achieving a better voltage stable 

system. 
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 Future recommendations 

Many future works could be recommended based on the developed formulations and algorithms of this 

thesis. To name a few, the two developed polar and rectangular line-wise PF methods could be modified to 

solve unbalanced three-phase distribution systems. Moreover, they can be reformulated to be employed for 

solution of AC/DC PF for AC/DC microgrids.  The developed nonlinear and linearized LWOPF methods 

could be modified to be a reactive power planning problem and could be implemented in multi-objective 

optimization problems. Further, the developed voltage stability incorporation with LWOPF formulations 

could be easily combined with other stability constraints such as the transient stability or the small signal 

stability. 
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APPENDIX  

 This appendix provides more details about the set of equation in (4.20) that can be written with the 

non-zero terms, as follows: 

∆f𝑔(𝑾) =  

[
 
 
 
 
 
∆𝐹𝐹
∆𝐹𝑆
∆𝐹𝐴
∆𝐹𝐵
∆𝐹𝑃
∆𝐹𝑄]

 
 
 
 
 

                                                                              (𝐴. 1)  

∆𝐹𝐹 =
𝜕𝐹𝐹

𝜕𝑈 
∙ ∆𝑈 + 

𝜕𝐹𝐹

𝜕𝑃𝐹
∙ ∆𝑃𝐹 +  

𝜕𝐹𝐹

𝜕𝑄𝐹
∙ ∆𝑄𝐹 = 0                                                                         (A. 2) 

 

∆𝐹𝑆 =
𝜕𝐹𝑆

𝜕𝑈 
∙ ∆𝑈 + 

𝜕𝐹𝑆

𝜕𝑃𝑆
∙ ∆𝑃𝑆  +  

𝜕𝐹𝑆

𝜕𝑄𝑆
∙ ∆𝑄𝑆 = 0                                                                         (A. 3) 

 

∆𝐹𝐴 =
𝜕𝐹𝐴

𝜕𝑈 
∙ ∆𝑈 + 

𝜕𝐹𝐴

𝜕𝛿 
∙ ∆𝛿 +

𝜕𝐹𝐴

𝜕𝑃𝐹
∙ ∆𝑃𝐹 +  

𝜕𝐹𝐴

𝜕𝑄𝐹
∙ ∆𝑄𝐹 = 0                                                  (A. 4) 

 

∆𝐹𝐵 =
𝜕𝐹𝐵

𝜕𝑈 
∙ ∆𝑈 + 

𝜕𝐹𝐵

𝜕𝛿 
∙ ∆𝛿 +

𝜕𝐹𝐵

𝜕𝑃𝑆
∙ ∆𝑃𝑆 +  

𝜕𝐹𝐵

𝜕𝑄𝑆
∙ ∆𝑄𝑆 = 0                                                  (A. 5) 

 

∆𝐹𝑃 =
𝜕𝐹𝑃

𝜕𝑈 
∙ ∆𝑈 +

𝜕𝐹𝑃

𝜕𝑃𝐹
∙ ∆𝑃𝐹 +  

𝜕𝐹𝑃

𝜕𝑃𝑆
∙ ∆𝑃𝑆 + 

𝜕𝐹𝑃

𝜕𝑃𝐺
∙ ∆𝑃𝐺 = 0                                                (A. 6) 

 

∆𝐹𝑄 =
𝜕𝐹𝑄

𝜕𝑈 
∙ ∆𝑈 +

𝜕𝐹𝑄

𝜕𝑄𝐹
∙ ∆𝑄𝐹 +  

𝜕𝐹𝑄

𝜕𝑄𝑆
∙ ∆𝑄𝑆 + 

𝜕𝐹𝑄

𝜕𝑄𝐺 
∙ ∆𝑄𝐺 = 0                                             (A. 7) 

 

All the terms in the set of equations (A.2) – (A.7) are derived in the Jacobian section 2.4. The two 

terms 
𝜕𝐹𝑃

𝜕𝑃𝐺 
 and  

𝜕𝐹𝑄

𝜕𝑄𝐺 
 equals to one at generation buses, and otherwise their values are zeros. 
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