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Abstract 

Sequential Monte Carlo Methods for Multi-Sensor Tracking with Applications To Radar 
Systems 

Alon Shalev Housfater 

M.A.Sc., Electrical Engineering, Ryerson University, 2006 

The aim of this thesis is to explore specific sequential Monte Carlo (SMC) methods 
arid their application to the unique demands of radar and bearing only tracking systems. 

Asynchronous radar networks are of special interest and a novel algorithm, the multi­
ple imputation particle filter (MIPF), is formulated to perform data fusion and estimation 
using asynchronous observations. Convergence analysis is carried out to show that the 
algorithm will converge to the optimal filter. Simulations are performed to demonstrate 
the effectiveness of this filter. 

Next, the problem of multi-sensor bearing only tracking is tackled. A particle based 
tracking algorithm is derived and a new filter initialization scheme is introduced for the 
specific task of multi-sensor bearing only tracking. Simulated data is used to study the 
efficiency and performance of the initialization scheme. 
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Chapter 1 

Introduction 

Radar systems are complex entities which are composed of several different subsystems 

such as target identification, track registration [1] and others [2]. One key subsystem is the 

tracking subsystem, this subsystem utilizes a tracking or filtering algorithm to estimate the 

position of the target from noisy radar measurements. The radar traditionally operates 

in a polar coordinate system due to the mechanics of the radar sensor [2] while the target 

motion is best modeled in cartesian coordinates. This fact makes the radar tracking prob­

lem a nonlinear one due to the coordinate system transition between measurements and 

state. Nonlinear filtering problems are notoriously difficult to solve due the analytically 

intractable mathematics. Several approximation schemes have been proposed to resolve 

this problem such as the extended Kalman filter (EKF) [3], Gaussian sums and numerical 

integration methods [4]. These approximation methods are often unreliable, prone to fil­

ter divergence and their rate of convergence decreases as the dimension of the problem 

increases. A relatively new approach to nonlinear estimation is the Sequential Monte Carlo 

(SMC) method. SMC methods, also known as particle filters (PF), are a set of powerful 

stochastic algorithms able to compute the optimal filter for a wide range of nonlinear sys­

tems. First suggested in [5] and [6], the particle filter uses a randomized or Monte Carlo 

sampling to approximately obtain the optimal state estimator. There exists significant lit­

erature on particle filters since they were first suggested, their performance was further 

enhanced by the development of the auxiliary particle filter [7] and Rao-Blackwellised 
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Particle Filter, refer to [8], [9], [10] for a detailed discussion of these topics. 

Another problem of fundamental importance is that of missing data. Handling miss­

ing data has always been a part of statistical analysis, which frequently occurs in various 

surveys and experiments [11], [12], [13]. Significantly, missing data behavior also ap­

pears in the context of data fusion as asynchronous sensors. This can occur in a radar 

network where the radars might be many miles apart, thus making it difficult to syn­

chronize their observations [1]. There are several standard approaches in dealing with 

missing data; one is to employ linear prediction techniques to align the data to the in­

stance of missing data, others include formulating a Kalman filter with a time-varying 

transition matrix that accounts for the missing observations [1]. Also, one can apply the 

Expectation-Maximization (EM) algorithm to resolve the missing data [12], These algo­

rithms either assume a linear system or ignore the often nonlinear state dynamics. Thus, 

available methods are either not applicable to nonlinear systems or fail to incorporate the 

knowledge of the state dynamics into the algorithm. Conversely, the particle filter does 

not account for the missing data behavior when performing data fusion and estimation. 

Therefore, one needs to confront the problem of performing fusion on a nonlinear system 

in the presence of missing data. 

Many radar systems can also operate in a passive mode, while in this mode the radar 

system measures only the bearing of the target. This type of tracking system is also known 

as an Electronic Warfare Device. Such systems are useful since while standard radar track­

ing can be detected by sensing the electromagnetic radiation emitted by the radar; the 

passive radar uses reflections of ambient radio signals to observe the target, thus the tar­

get is unaware that it is being tracked. This type of tracking environment is known as 

bearing only target tracking or target motion analysis (IMA). Similar to radar networks, 

bearing only tracking can be performed by multiple observation stations to increase the 

reliability and performance of the estimation. As in standard radar tracking, the bear­

ing only tracking is formulated as a nonlinear state space estimation problem. However, 

unlike radar tracking, bearing only estimation introduces additional problems such as 
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observability [14], initialization and tracker instability [15]. The problems of initializa­

tion and tracker stability are intertwined; sufficiently incorrect filter initialization may 

cause tracker divergence after a few time iterations. The standard solution to the bear­

ing only initialization problem is to apply the range parameterized extended Kalman filter 

(KPEKF) p6], [17], The RPEKF consists of a bank of EKFs; thus, there is always a risk 

of tracker divergence since the EKF is a linearized sub-optimal filter. Therefore, it is of 

great interest to formulate an initialization procedure that is equivalent to the RPEKF, but 

applied to the particle filter which, has no divergence problems due. to linearization. 

1.1 Motivation and Contributions 

Joint fusion and estimation for nonlinear multi-sensor networks are common tasks in 

many applications. These tasks can be performed by applying SMC methods, which are 

a set of powerful methods for nonlinear estimation. However, in many multi-sensor net­

works, sensors are not synchronized. Asynchronous sensors cause some observations to 

be missing at any given time instance. SMC methods do not directly account for such sys­

tem behavior; thus, it is of interest to resolve this dichotomy so one can apply SMC meth­

ods in the setting of asynchronous multi-sensor estimation. With these considerations 

in mind, the multiple imputation particle filter (MIPF) is introduced. The MTPF algorithm 

allows efficient multi-sensor tracking with incomplete observations. The algorithm oper­

ates as a bank of particle filters where the multiple imputations (MI) method is used to 

generate multiple complete observation, each complete observation set is fed to a particle 

filter. The output of the particle filters are then linearly combined. The problem domain 

of asynchronous radar networks is explored as an application for the MIPF. 

Another commonly encountered estimation problem is bearing only tracking. Many 

applications use a network of bearing only sensors for tracking uses. However, this prob­

lem cannot be solved using a straight forward application of SMC methods due to the 

inherent instability of the bearing only measurement model. This instability manifests 

itself as tracker divergence when the filter is initialized with values that are too "differ­
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ent" from the true initial state. Thus, a new initialization scheme for the particle filter 

is suggested, this scheme is applicable for a tracker operating in a multi-sensor bearing 

only environment. It utilizes several bearing measurements to obtain multiple position 

estimates using a least squares approach. These estimates are in turn used to construct an 

initial state distribution which can be used to initialize the particle filter. 

1.2 Organization 

The organization of this thesis is as follows: Chapter 2 presents a general mathematical 

c jlopment of relevant nonlinear estimation theory. In chapter 3, the discussion focuses 

on the application domain of radar and bearing only tracking from a nonlinear system 

perspective. Chapter 4 introduces a new filtering algorithm, the MIPF. Chapter 5 presents 

a new initialization scheme for multi-sensor bearing only particle filter. The thesis con­

cludes with final remarks and future directions of research. 
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Chapter 2 

Target Tracking - Theoretical Aspects 

Understanding sequential Monte Carlo methods require an array of mathematical tools; 

this section reviews the basic concepts involved in formulating and solving nonlinear es­

timation problems. First, a brief review of necessary mathematical theory and notation 

is presented. Next, these mathematical tools are used to formulate the general nonlinear 

estimation problem and its special case of Gaussian linear state space model. Solutions to 

the estimation problems such as the particle filter, Kalman filter and EKF are discussed. 

Finally, the particle filter is analyzed in an abstract setting in order to explore its conver­

gence. The material in this chapter was extracted from various mathematics and signal 

processing sources [8], [18], [19], [9], [20], [21], 

2.1 Mathematical Preliminaries 

2.1.1 Notation 

Let R denote the extended real number system, the symbol R+ denotes the set of all real 

positive numbers; 1R+ — {r G R: r > 0}. Similarly, N = {..., —2, —1,0,1,2,...} denotes 

t h e  s e t  o f  i n t e g e r s  w h i l e  N +  d e n o t e s  t h e  s e t  o f  n o n - n e g a t i v e  i n t e g e r s  N +  =  { 0 , 1 , 2 , . . . } .  

Bold faced letters such as X denote vector-valued variables. A variable's dimension is 

specified in the discussion. A sequence of values vi,v2,... ,v^ is written in shorthand as 

where i indexes the sequence. 
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2.1.2 Logic and Set Theory 

Let X be a set, then x G X indicates that X contains the element x. The symbol V denotes 

'for all', Vx E X means for all members of set X. Let Y be another set such that every 

member of Y is also in X, then write Y C. X, i.e. Y is a subset of X. Consider the two sets 

X and Y, their union X U Y is the set such that any member x E X and y E Y is contained 

inJuY. The intersection of the two sets X and Y is defined as the set of members of X 

and Y where each member is both in X and Y. 

2.1.3 Weak Convergence on Metric Spaces 

Topological Spaces 

A topological space is defined as the set X with a system of subsets r that contain the 

null set, the set X itself, the union of every one if its subsystems and the intersection of 

every one of its finite subsystems. The sets in. T are called the open sets of the topological 

space (X, r). A neighborhood of the point x € X is the set containing an open set which 

contains x. The member x E X is a limit point of a subset M C X if every neighborhood 

of x contains at least one point m E M different from x. Concluding this brief discussion 

of topological spaces, one notes that the critical notion of a topological space allows us to 

discuss the concept of limit and thus of convergence [20]. 

Metric Spaces 

Consider a set X where for any pair p,q E X, there is a function such that 

the following conditions hold, 

1. d(jp, q) > 0 and d(p, q) — Qiiip = q. 

2. d(p,'q) = d(q,p). 

3. d{p, q) < d(jp, I) + d(q, I) where I £ X. 

One can think of d  as a distance measure between a pair of points p , q  E X .  Call the 

set (E,d) a metric space [20], where d is the metric function and E is the ambient space. 
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Note that a metric space is also a topological space since a metric function d to induces a 

topology in the following way: Let x0 £ X,r £ R+ and-associate with those two members 

a set iS^rco", T) = -[x E X: d{x, x0) < r}, this set is the open sphere with center XQ and radius 

r. It can be shown [20] that the collection of sets S = r) : x0 £ X,r £ R+} forms a 

system of open sets and thus (_£?, S) is a topological space. 

Continuous Functions 

The symbol / : X —•» Y denotes a function whose domain is the set X and range is 

the set Y, for every x G X, assign a corresponding element fix) G Y. Consider two 

functions, f : X Y and g : Y —> Z, then the composite mapping g o f is defined 

as (g o f)(x) = g(f{x)). Let (X, dx), (Y, dy) be two metric spaces and define the function 

f : X Y. The function / is continuous at point c 6 X if for every positive real number 

e G there exists a positive real number 5 £ R+ such that for all x G X satisfying 

dx(x, c) < 5 will also satisfy dy(f(x), /(c)) < e. The function / is said to be continuous if it 

continuous at every point in its domain. 

Weak Convergence 

A specialized kind of convergence known as weak convergence [21] is commonly defined 

on metric spaces. Consider a metric space (E, d) and a sequence of points in this space 

{en G then the sequence en weakly converges to the point e, limn^00 en = e if and 

only if lim^oo d(en, e) = die, s) for all e G E. 

2.1.4 Probability Theory 

A probability space [19] is written as the set triplet (Q, T, P) where Q is the sample space, 

T is a cr-algebra [21] containing all possible events and P is the probability measure, P : 

T —> R . The cr-algebra T is typically taken to be the Borel cr-algebra, i.e. the a-algebra 

generated by the open sets, of the sample space VL when possible and is written B(Q). The 
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density function of X, when it exists, is defined as a function satisfying the relation 

P( B )  —  I  f x ( x ) d x  for any B  e F ,  
Jb 

where B is an arbitrary Borel set in T. A random variable is a function X with the domain 

Q and whose range is contained in R, then write X : Q —> M. The expectation of the random 

variable X is defined as 

E(X) = [  X ( w ) F ( d w ) .  
Jo. 

X is P-integrable, i.e. with respect to the probability measure P, if and only if the integral 

above exists and is finite. Consider the collection of random variables defined 

on the probability space (fi, JF, P), they are said to be independent if and only if for any 

collection of Borel sets {Bj e 

P ( e Bs) e Bj). 
\j=1 J j=1 

A probability measure of special interest in this work is the Gaussian distribution. Let the 

event space be the n-dimensional Euclidean space, f2 = Mn with the cr-algebra, T = 

then the Gaussian distribution is defined 

F ( X  e B )  =  ^27r^/2|Sji/2 exP ~ m)T } dx for 311y  Borel set B e ̂  

where S is a symmetric, positive definite covariance matrix and m is the mean vector. It is 

standard shorthand notation to write this Gaussian distribution as J\f(m, X)). 

2.2 The Nonlinear Dynamic Estimation Problem 

The first component of any estimation' problem is the state equation, this equation relates 

the system's current state to its past state using a stochastic difference equation. Consider 

an n^-dimensional discrete-time dynamic system whose time evolution can be described 

by a vector equation of the form 

Xn  = /n(Xn_i,Vn),  (2.1) 

8 



where Xn is the nx-dimensional state vector, / is the nonlinear system transition function 

and Vn is the state noise term. Note that by only considering the past state Xn_i, Equa­

tion 2.1 makes the implicit assumption that the state sequence {Xn; n E N+} is a Markov 

process. Also, let the process's initial state be described by an initial probability distrib­

ution fi (Xn). Assume there exists a state transition probability density, p (Xn|Xn_i), which 

is the conditional density of the probability measure that describes how likely is for the 

current state value to be Xn given the past state is Xn_i. A sensor takes noisy observa­

tions of the dynamic system (2.1) described above, these measurements are related to the 

dynamic system's state by the measurement equation of the form, 

where Yn is the n^-dimensional observation vector, gn is the nonlinear measurement func­

tion and Wn is the observation noise component. Note that in Equation 2.2 the observa­

tion sequence {Yn; n E N+} is conditionally independent given Xn. Assume there exists 

a probability density p (Yn|Xn), which is the density of the probability measure that de­

scribes how likely is the measurement Yn given that the current state is Xn. Our aim 

is to estimate recursively in time the filtering distribution p (Xn| Yn) so that one may take 

various expectations of the form 

for any p (Xn| Yn)-integrable h : Rn= —> R. Common choices for the function h are the min­

imum mean squared error (MMSE) estimator /z(Xn) = Xn and the maximum a posteriori 

(MAP) estimator 

f ( 1 / p  (Xn|Yn)) S  (Xn) where p(Xn|Yn) is maximized 
^ \ 0 for all otherXn 

where 5 is the dirac delta function. The general solution for this estimation problem can 

be written as the following recursive formula, 

Yn — gn (Xn, Wn) (2.2) 

(2.3) 

p(X„lY„)=p(X„_1|Y„_1) 
p(Y„|X„)p(Xn|Xn_1) 

P (YJYo.^0 
(2.4) 
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However, the denominator of equation 2.4 above cannot usually be evaluated analytically. 

As a result, one must resort to approximation and numerical integration methods as will 

be discussed later on in this chapter. 

2.3 Linear Gaussian State Space Models: Kalman Filter 

Assume that the state transition function f and measurement function g, defined in sec­

tion 2.2, are linear functions while the noise terms in the state space model are additive 

Gaussian random processes. Thus, one can rewrite equations 2.1-2.2 as follows 

where Fn is a nx x n.x matrix, Gn is an ny x nx matrix and Vn ~ jV(0, Rn), Wn ~ -A/"(0, Qn) 

are the independent identically distributed (i.i.d.) Gaussian state noise and observation 

noise respectively. Given the assumptions of the linear Gaussian state space model, it can 

be shown [22] that the filtering probability density function p (Xn|Y0:n) is also Gaussian. 

Since the filtering density is Gaussian, it is characterized by its first and second moments 

[19], which can be written 

where Xn|n is the estimate of the state at time n and ~Pn\n is its associated covariance 

matrix. In order to obtain these estimates one can apply the well known Kalman filter [3] 

in two stages; first predict the state using information from time instance n — 1, 

Xn — FnXn-.! + Vn 

Yn = GnXn + Wn, 
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then update these prediction estimates with the current measurement at time n as follows 

= Pnln-lG^GnPnln-iG^ + Rn 

Xn,n = Xnln_! + Kn (yu — GnXn|n_i 

Pn|n = (I — KnGn) Pn|n_!. 

Note that under the linear Gaussian assumptions above, the Kalman filter is the optimal 

MMSE state estimator [22]. 

2.3.1 Extended Kalman Filter 

While the Kalman filter is optimal for linear target dynamics, it is not applicable for non­

linear system dynamics. One approach to filter nonlinear systems is to linearize the state 

space model and then apply the standard Kalman filter on the linearized model. This 

approach is known as the extended Kalman filter (EKF) [2]. Consider a state space model 

of the following form, 

xn  = /n(Xn_x)+Vn  (2.5) 

Yn  -  ̂ (Xn)+Wn ,  (2.6) 

where all symbols are as defined in previous sections. Define the jacobians of the state 

and observation transition functions, 

J f A 

Jt A 

cbc 

dgn 

dx. x—X-n\n—l 

then by taking a vector Taylor series expansion of model 2.5-2.6 one obtains the linearized 

state space model 

X„ = /„ (x^-i) + (x>_, - X^,^) + V„ (2.7) 

Y„ = g„ (x„,„_a) + J» (X„ - X^-i) . (2.8) 

Clearly, equations 2.7 - 2.8 are a linear Gaussian state space model and therefore the 

Kalman filter can be applied. 
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2.4 Sequential Monte Carlo Methods 

Due to the problems associated with the EKF, an alternative approach was suggested in 

the form of the particle filter. A particle filter adopts a Monte Carlo sampling strategy 

in order to approximate the filtering distribution p (X0;n.|Yn). It is approximated by a set 

of N particles, or possible values of the state, {a4}il=i with associated weighting coeffi­

cients where i indexes the particles at time n. The filtering distribution's particle 

approximation can be written as the sum, 

N 

P (X0:„|Y0;„) ~ J2 (Xo,„ - 4 J • (2-9) 
i=l 

Thus one can take expectations as in Equation 2.3, 

N 

E (Jl (X0:n|Y0;n)) = h (X0:n)p (X0:n|Y0:„) dX0:n ~ (X0:n) " 
i=l 

The particles are sampled from an Importance Function which is denoted ir (Xo;n|Yo:n)-

This Monte Carlo technique of Importance Sampling works by sampling N states from the 

importance function TT (X0;t1| Yo;n.), 

4 .-n~ ^ ( X o :n|Y0:n), (2-10) 

and evaluate the i-th particle's weighting coefficient using the formula 

p(Y0:n|X0:n)p(X0:n) Wn f-xT- \ " (2.11) 
^ (,X.0:n| l0:nj 

Note that the weighting coefficient wl
n is un-normalized. It is normalized using the for­

mula w\ = w\/ ^ order to make the approximate density a probability mea­

sure. The procedure is discussed so far generates an approximation of the distribution 

p (X0;n|Yo;n), however this is not a recursive procedure. In other words, one must sample 

the entire-state trajectory XQ.n to obtain the approximation given in equation 2.9. In order to 

turn this procedure into a sequential Monte Carlo filter, assume the importance function 

has the following decomposition 
72 

7T (X0:„|Y0:n) = TT (X0|Y0) H TV (XfclXo*-!, Yo*) . (2.12) 
k=1 
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Using this assumption, one can modify the Monte Carlo approximation 2.10-2.11 into a 

recursive procedure where at time n it operates as follows, 

x\ ~ 7T Y0;n) 

~i =  p("y" n i 4 ) p ( 4 i 4-i) 
7r«|4:n-nYo:n) 

and then normalize the weights wl
n = wl

n/ JZjLi to obtain the particle set {a,'o;n, 

The importance function itself may be any function that obeys the condition 2.12, how­

ever there are several standard choices. One is the -prior importance function where one uses 

the state transition density as the importance function, n (Xo:n[Y0;n) = p The 

optimal importance function is the function which minimizes the variance of the importance 

weights, it can be shown [8] that this function is p (Xn|a:^_1, Yn). The particle filter can be 

written in algorithm notation as follows. 

The Particle Filter Algorithm 

• Initialize the particles X Q /x(X0) and set W Q —  1 / N  for i  =  1 , . . . ,  N .  

• For n = 1, 2,... 

• For i  =  1,. . . ,  N  Sample the importance function x \  ~ 7r (Xn|Y0:ri) 

• Evaluate the importance weights: wl
n = /" ,7 " and normalize w\ = wl

n/ Xw=i 

• Sample the index d ( i )  distributed according to discrete distribution 
such that P(d(£) = I) = wl

n for I = 1,..., N. 

• Set x\ = and wl
n = 1/iV for i  —  1,. . . ,  N .  

2.5 Convergence of Sequential Monte Carlo Methods 

In the previous section, a particle filtering scheme was discussed, this method uses a 

large number of particles to approximate the filtering distribution. However, the issue 
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of convergence remains; more explicitly, let N be the number of particles, then one is in­

terested in exploring whether the distribution approximation converges as N increases; 

these questions of convergence are discussed in this section. The particle filter is refor­

mulated to make it more amendable to convergence analysis. Next, its almost sure weak 

convergence is analyzed and proved. 

2.5.1 Nonlinear Estimation Formulation in Probability Space 

Following the development in [18] let (Q, T, P) be a probability space where T = £>(Mnx) 

is the Borel set of Rnx. On this probability triple define a vector-valued stochastic process 

X = {Xn, n 6 N+} where nx is the dimension of the state space of X. The process X is 

Markov with initial distribution /J, and probability transition kernel K(xn|a;n-i) 

The process X can be viewed as hidden state process to be estimated. Next, define a 

stochastic process Y — {Yn,n £ N+} where ny is the dimension of the state space of Y. 

The process Y is conditionally independent of X 

The stochastJc process Y can be considered a noisy observation of the hidden Markov 

process X. Define the family of probability distributions, 

P(Xn <E A\Xn-1 = a:n_i) = f K{xn\xn-1)dx , A <= 
J A 

F(Yn G B\Xn = xn) - [ g{yn\xn)dwn , B G 
JB 

P {xkd\yi:m) = P (Xk 6 dxk, Gdxi 1^1,..., Ym) . 

Bayes' theorem lets use write the joint distribution of the state at time n, 

n 

P (xou) = AT (ICQ) JJ K (rcfclrcfc—I) g (yk\xk), 
k=l 

and the recursive equations 

) g(y. i\xn)p(x0:n\yi:n-i). (2.14) 

(2.13) 
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As mentioned in section 2.2, one is typically interested in the marginal distributionp (xn\yn), 

using the equations 2.13-2.14 one can write, 

p(xn\yn-i) = / p (xn-i\yn^) K (x^x^) dxn^ (2.15) 
J  R"x 

P ( x n \ y n )  

R": 
i -1 

9 (VNLXN) P  (X N \YN-L)  
.J Rn* 

9 (yrx\Xn) V (^vlz/n-l) • (2.16) 

It will prove useful to rewrite the equations above in a different way, let ^bea function 

defined as ip : Rnx —> M and v a measure, then using the standard notation, 

0, <p) = J <pv, 

one can rewrite 2.15-2.16, 

(P On|z/n-i) ,<p) = (P (xn\yn), Kip) 

(p (xn\yn) ,tp) = (p (xn|yn_x) , g)~1 (p (xn\yn-y) , tpg) . 

2.5.2 Particle Filter Formulation in Probability Space 

As discussed in section 2.4, the particle filtering method recursively approximates the fil­

tering distribution p (xn\yn) at time n. The approximation is done by generating a "cloud" 

of N particles that generate an empirical measure pN (xn\yn) as follows 

1 N 

P N  (XNLVN) =  5  {X N  -  <)  ,  
i=1 

where 5 denotes the dirac delta function. The algorithm is recursive in the sense that the 

particles at time n — 1, are used to generate the particles at time n, 

and thus obtain the empirical measure pN {xn\yn). The basic algorithm proceeds as fol­

lows; assume that at time n there are N particles distributed approximately according to 

p (xn-i\yn-i). Then one samples xl
n ~ K These new particles are distributed 

approximately according to p (xn\yn_x) [3]. The empirical distribution can be written, 

N 

N PN (Xn\Vn-l) = Tf X) <* (*n - , 

i=l 
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which is an approximation oip (xn\yn-j). Substituting the empirical measure pN (a;n|t/n_i) 

to Equation 2.16, one obtains the Monte Carlo approximation, 

P N  (a?n|2/n) = 

the empirical distributionpN (xn\yn) approximates the desired filtering distributionp (xn\yn), 

N N 

P N  On Iyn) = wx
n5 {xn - x l

n) ,  ̂  v?n = 1, 
t=l i=l 

where vfTL oc g (?yn|^n) are the importance weights. The particle filter performs a resampling 

procedure to obtain an un-weighted empirical distribution, 

1 N 

pN (xn\yn) = 6 (Xn _  > 
t=i 

by removing particles with low weights and propagating particles with high weight. 

The resampling is typically done by sampling the weighted empirical distribution, xz
n ~ 

pN (xn\yn). It turns out that the resampling stage is a critical algorithmic step that stabi­

lizes the algorithm so that increasing number of particles are not necessary as time pro­

gresses [8]. 

2.5.3 Almost Sure Convergence 

Preliminaries 

Consider a metric space (E, d) and let {an}^=1, be two sequences of continuous 

functions indexed by n G N+, write these sequence of functions an,bn : E —> E. Moreover, 

let there be two other sequences of functions kn/ki:n as follows 

kn = ano bn 

k\-n — knO kn-1 o . . . ki, 

the functions kn and /c]:n are perturbed by the function cN : E —> E, 

k£ = cN o a t  o cN o b t  

hN — kN o kN o kN 
l:n — n Kn-1 ° " • • K1 • 
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2J3 W^n) 
t=l 
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Assume that as N increases, the perturbation becomes smaller, i.e. lim;v_oo cN = I where 

I is the identity function on E. One wishes to know whether given that cN will converge 

in a predefined manner, will k^_t converge to ki-t. It turns out that in order for k^t to 

converge, the perturbation function cN must converge in a uniform manner [18], [20]. 

Thus, cN needs to satisfy the following condition 

lim eyy = e lim cN (ejv) = e, (2.17) 
JV-voo JV-»oo V J 

for all sequences e^r, e 6 E. Assuming condition 2.17, one can prove [18] the following 

lemma 

Lemma 1 Let an,bn/kn,ki:n and cN be as defined above, then if cN satisfies condition 2.17, the 

following is true, 

lim k^f — kn and lim k?.„ — kVn. 
N—too N-+oo 1-n 

Convergence of the Particle Filter 

We discussed some convergence properties of functions on abstract spaces. We now relate 

these abstract concepts with the particle filter in order to establish its convergence. Let 

E = V (M™*) be the space of probability measures over the nx-dimensional Euclidean 

space R™*. We endow the space with the topology of weak convergence. In this topology, 

the convergence on the space is defined as follows, consider a sequence of probability 

measures {vN e V (K"^) : N — 1,..., oo}, then we say the sequence vN <E V (Mnx) weakly 

converges to v (lini/v-,00 uN = v) if and only if, for any continuous bounded function tp £ 

lim ( isN ,  ip)  = O, <p),  
N—»oo 

where is the space of all continuous bounded functions on I"1. In other words, 

lim vN = v weakly lim (uN, <p) = (v, cp) V <p € 
N—*oo N—KX> 

For the sake of completeness, note that it is a well known result that one can choose a 

countable set A = so that it completely determines convergence. Thus, 
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one can write 

lim vx = v weakly lim (vn, (f>i) — {y, <p) V </?£ £ A. 
N—too N—> oo 

Using the countable set -A, one can define the metric d associated with this space and 

topology, 
7/ l(a> ^i) — (&> <P)| 

d(a'6) = S"~~2f|M ' 
where || [| is defined as the supremum norm of ipi on Cb (K™*). 

Now that the convergence space is established, let us proceed by identifying the ab­

stract function sequences an,bn with particle filtering operations. Let the sequence of func­

tions bn : V (Mnx) —> V (Mna:) be the mappings 

bn(y) = / K{xn\xn^1)vdxn- l l  (2.18) 
,/RTII 

for arbitrary v e *P (R™*). Thus, the following formula is true 

P (®n|2/n-l) = K (V («n-l|2/n-l)) , 

since p (xn_i\yn_i) e V (Rnj:). Recall from section 2.5.3 the sequence of functions, bn, is 

defined as a sequence of continuous functions, thus to ensure that the mapping (2.18) 

is continuous one assumes that the transition kernel of the signal, K(xn\xn-i), is Feller 

[19]. The property of a kernel being Feller is defined as that for any continuous bounded 

function <p, Kip is also continuous, i.e. 

cp e C6(Rna0 =* K<p e 0,(Knx)-

Given the assumption of Feller property and the definition 2.18, one can show that the 

sequence of functions bn have the following convergence property, 

lim {bn(vN), ip) = (&n(f), <p), G C&(Rn*). 
N—•oo 

Define the sequence of functions an be the mappings an : V (Mnx) —• V (Rnx) such that 

K M ,  <p) = 0, g)~x{v, <pg) for any ip e C^R"*). (2.19) 
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This definition implies 

p{xn\yn) = ClnCpOCnlZ/n-l)) = an O bn (p{xn-X\yn-l) ) . 

In order to ensure that the mapping an is continuous, assume that the function g{yn\') is a 

continuous bounded strictly positive function 

9(yn\') e C6(Rn»), g(yn\xn) > 0 V xn e Rn«. (2.20) 

The positivity assumption is necessary so that the term (V, g) in Definition 2.19 is never 

zero. If the function g(yn|-) satisfies condition 2.20 and liniAr_»oo vN = u, it implies 

lim (an(vN),(p) = (on(v),(p). 
N-* oo 

In the context of particle filtering, cN is a stochastic perturbation that occurs due to the 

sampling of the importance function as discussed in section 2.5.2. Define the random 

perturbation function cN as follows 

*"("> = 

i=l 

where {VjYj=\ is a collection of random variables with common distribution u and N > 0 

is an integer. The following lemma can be shown to be true: 

Lemma 2 If cN is defined as above, then it satisfies condition 2.17 almost surely. 

Given the definitions for an/bn and cN, one can see that the following formula are true 

PN On|yn) = CN oanocN obn (p (^n-i|yn-i)) = kn (p On-i|yn-i)) 

PN O'n | yn) = k£nO CN {jl) = k£n ( (flN) , 

where \iN = cN{ji). Knowing this result and using lemmas 2 and 1, the following theorem 

can be proven 

Theorem 1 Assuming the transition kernel K is Feller and that the likelihood function g is 

bounded, continuous and strictly positive, then limAr_>00p^ (xn\yn) = p (rcn |t/n) almost surely. 
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In conclusion, a result is obtained that indicates the particle filter will convergence with 

the true optimal filtering distribution with probability 1 as the number of particles in­

creases toward infinity. However, one must note that this is a weak result since there is 

no guarantee that a. finite number of particles will convergence or nor does it guarantee 

that the particle filter will generate an approximation with bounded error. Thus, this con­

vergence results suggests the particle filter is well behaved but more work is necessary to 

understand the behavior of the true particle filter. It turns out stronger assumptions are 

needed in order to guarantee the strong convergence of the particle filter (in the sense of 

bounded error for finite number of particles). Refer to the work at [23] for a complete and 

in-depth discussion of convergence results for particle filters. 
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Chapter 3 

Target Tracking for Radar Systems 

In this chapter, the radar and bearing only tracking are discussed from the nonlinear 

system perspective. Due to the significant nonlinearities of the radar tracking and bear­

ing only problems, classical approximation techniques must pay special consideration 

to issues such as observability and tracker initialization. First, the problems of radar 

and bearing only tracking are formulated. Next, well known strategies such as the EICF 

and RPEKF are discussed. The material in this chapter was taken chiefly from refer­

ences [16], [24], [8], [1], [25], 

3.1 Problem Formulation 

Assume the target motion is well modeled by linear state dynamics. These dynamics 

are obtained by considering the target's state in cartesian coordinates. A common target 

motion model is the near constant velocity model [1]. For this model, the state transition 

equation can be written as the matrix equation, 

Xn = $nXn_x + TnVn, 

/I Atn 0 0 \ 
0  1 0  0  
0 0 1 Atn ' 

\0 0 0 1 

•where 

$ n 
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and 
/Ai£/2 0 \ 

r _ Atn 0 
0 Atl/2 " 

V 0 AtJ 

The state vector Xn is defined as Xn = [xn, x'n, yn, y'n]T where xn, yn are the cartesian co­

ordinates of the target's position and x'n, y'n are associated velocity components. The two-

dimensional system noise Vn ~ J\f(0, S^) is assumed to be Gaussian i.i.d. process. The 

symbol Atn denotes the time difference between two measurements at time n. Note the 

distinction between the integer n £ N+ which indexes the state sequence and the "ana­

log" time difference Atn e R+. The timing difference between successive measurements, 

Atn is assumed to be a time varying model parameter. It is clear that the state transition 

matrix 3?n uses Newton's laws of motions in a straightforward manner to transition from 

the past state to the current one. More interesting, note that the matrix Tn turns the state 

process into a non-homogenous Markov process by making the noise variance time vary­

ing. The noise transition matrix models the phenomena that as more time passes between 

successive measurements, the less deterministic and more random the state trajectory be­

comes. 

Assume the radar is located at (xs>n, ys,n) where xSin,ySjTl  are the cartesian coordinates 

of the sensor location at time n. The sensors observations Yn are traditionally taken in 

polar coordinates [25], these sensor coordinates cause the state model to become nonlinear 

due to this coordinate change. The observation model is written, 

Yn . ( M = ( ~%d ) +W„, (3.1) 
V n J \ (.O^n Z-s,n) ~t~ (y-n Vsj-a) ) J 

where 9n,rn e R are the bearing and range measurements at time n, respectively. The 

system noise Wn ~ J\f(0, is a Gaussian i.i.d. process. 

In bearing only tracking, the bearing 0 is available to perform tracking with. Therefore, 

one rewrites the observation model 3.1 as follows, 

Yn = 6n = arctan {yn - yS)Tl) / (xn - xSi7l) + Wn. (3.2) 
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Where the noise Wn is a Gaussian random variable and Yn denotes the noisy bearing 

observation. Note that the bearing only problem is far more difficult than the standard 

radar tracking problem. Indeed, if the sensor is stationary, (i.e. ySiTl = ys,m, xs,n = xs,m 

for all n, m e N+), the state Xn is not observable [26]. It can be shown that problem is 

observable if and only if the sensor's motion has at least one more non-zero derivative 

compared to the target's motion; in the case of near constant velocity, this implies that 

the sensor must maneuver in an accelerating manner. This problem of observability for a 

single sensor disappears if multiple sensors observe the target, i.e., the state space system 

is always observable assuming multiple bearing readings [26]. The model above 3.2 can 

be easily extended to K multiple sensors by stacking the multiple observations 

sensor's cartesian coordinate at time n. 

3.2 Classical Algorithms 

3.2.1 Extended Kalman Filter 

Since the tracking problems discussed above are nonlinear, the standard Kalman filter 

cannot be used directly. Instead, the Kalman filter ( [24], [27]) operates on a linearized 

version of the observation model 3.1, this filtering strategy is known as the EKF ( [24], 

arctan 

arctan 

\Y« J 

where denotes observation made by sensor i at time n and ^s,n) denotes the z-th 
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[27]). Using notation introduced in section 2.3.1, calculate the Jacobians 

J' = 

( 

J'n 

~Vn —ys,rx 
( j / n  y  s  ^ { p ^ n  2 Z s , n ) 2  

0 
(yn. y.3,rt)2 

*Es,n ~f~ 

V 
In *Es, n 

0 

,n) ""t"~ (Z/n Z/s,n) ) ^ *£s,rc 
0 

'  '  2 -S ,N)  "I"  (J /N US^TL)  )  ^  (Z/N 2/S , '  
0 

-v 

-1 

/ 

and obtain the linearized observation model, 

xn = ^nxn_i + rn vn 

arctan (JJTL\TI—1 2/s,n) / {^n\ri—1 2<s,n) 

2  .  \ 2 \  1 / 2  I  +  J n  (  X n  —  X n | n _ i  )  ,  Y, 
•En\n—1 -Es,ri) (z/n|n—1 Us,n) 

where Xn|n_i = [a;n|n_i, rc^n-u 2/^|n-i]T is state prediction at time n as discussed 

in section 2.3.1. Applying the standard Kalman filter, the prediction stage is, 

-Xnin_x j£X n-^-n—l|n—1 

Pn|„-1 = J£Pn-l|„-l ( J i f  + rjs„r„, 

paired with the estimation update stage, 

K„ = P„|„_! (Jjf J»P„|„_! (J»f + R* 

Xnin = Xnin_i + Kn {~Y n — J9
nxnln^ 

Pn|n = (I — KnJ^) Pn|n_l-

Similarly, one can derive the EKF for bearing only tracking 3.2, 

JI = 

((yn— 
—yn ys, n 

!/s,n)2 + (xn-Is,n)2 0 ( Xn ZEs.n ~)~~ (l/n ys,n)^ 
S'n Xn—XS ,T .  

-1 
0 , 

with a linearized state space model 

xn - $nxn_! + rnvr 

~^~n arctail (jJn\n—\ Us,n) / 1 ^s,n) ""f" J72 f-^-n X! nln—1 
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The EKF for bearing only tracking is similar to the one discussed above where one sub­

stitutes the radar problem's measurement Jacobian, Jft, with the Jacobian associated with 

the bearing only measurement model. 

3.2.2 Range Parameterized Extended Kalman Filter 

A significant issue with the EKF is the problem of divergence due to incorrect initializa­

tion. The EKF must be initialized with an initial range estimate, however, this estimate can 

be highly inaccurate since only the bearing information is available. As a consequence, 

the EKF can diverge after a few time iterations regardless of the accuracy of the bearing 

observations [15]. Researchers attempted to resolve this range initialization problem by 

introducing the RPEKF [16], [17]. This filter is constructed as a filter bank of N indepen­

dent EKFs, where each EKF is initialized with a different range estimate. After a few 

time iterations one can apply convergence diagnostics to determine which EKF is non-

divergent and eliminate the diverging filters. This is done by first picking a coefficient of 

variation CR for each EKF which governs the stability of the associated filter. Usually the 

initial range is known to be between two limits, 0 < rmin < rmaa;. One can compute a 

sequence of ranges that progresses from rrnin to rmax and assign a sequence mem­

ber to each EKF. The standard way of obtaining this range sequence [16] is to use the 

geometric progression 

where is the range used to initialize the i-th EKF. Also, define a coefficient of variation 

CR for each EKF to obtain the associated standard deviation o~i — r\/CR. Given an initial 

bearing measurement 0Qr initialize the EKF bank as follows 

the initial covariance matrix P i%0 is also initialized using 60 and r£.At time n, the results 

of each EKF are combined by keeping track of a weighting coefficient jiiTl that is updated 

mm 

min 

(Ti sin OQ \ 
TICOS OQ 
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recursively 

Tz,n = Ti.n—lP(2/n|fc) j 

initially, it is assumed that all EKFs are equally valid and set all weighting coefficients 

7i)0 = 1/N. The EKF likelihood density function p(yn\i) is evaluated by assuming a 

Gaussian distribution 

11 cr* 
p{yn\i) / . n =Y eXP 77 (jjri /n(^i,n|n—l)) îtn (jJn fn(%i,n\n— 1)) 

yj det(6i)nJ 

Si,n — Hi tnPi>nln-iIi^n + Rn, 

once the weighting coefficients are obtained, the estimation and covariance matrix are 

calculated 

|n / 1 ^Yi,n-Ei,n\n 

Pn\n == 5Z/£=1 Ti,n "1" ('̂ n\n î,n|n) (-̂ n|n  ̂-

Simulations in [16] show that the RPEKF outperforms the EKF under most situations, es­

pecially during initialization and low observability conditions such as very high or near 

zero bearing rate. This enhanced performance comes with an increase in computational 

complexity since the RPEKF is a collection of EKFs with the ad ditional overhead of com­

puting the filter weighting coefficients. 
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Chapter 4 

Multiple Sensor Tracking with 
Non-Response 

In this section we present a new method of fusing multiple observations in a nonlinear 

system while accounting for missing data. This is done by combining particle filtering 

with the multiple imputations (MI) technique. The MI method replaces the missing data 

with imputations, i.e. randomly drawn values, to form multiple complete data sets. Each 

data set is then particle filtered, the results of those multiple particle filtering operations 

are then combined as a weighted sum. The problem domain of data fusion in an asyn­

chronous radar network is used to test the performance of this algorithm. 

4.1 Problem Formulation 

Consider a time-varying stochastic system with Xn denoting the state at time instance 

n, It is assumed that Xn behaves according to a non-homogenous Markov chain with 

transition probabilities as described by the recurrence equation 

Xn = ^n(Xn_1,Wn), (4.1) 

where Wn is random evolution noise, assumed to be an i.i.d. stochastic process and ipn 

is the non-homogenous evolution transformation. Also, let the system be observed by K 
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sensors .where the measurement is modeled 

u n =  :  

V^(xn;Kz,/c)y 
let Un denotes the noisy observation of the state Xn such that VTlj- is an i.i.d noise process 

and tpk is the measurement transformation for sensor k, respectively. Let C/n,/= denote the k-

entry of the K-dimensional vector Un. At each time instance n, some sensor observations 

may not be available or missing. In order to handle this missing data,, consider the random 

indicator variable Rn,fc which corresponds to observation Unjc/ this variable indicates if 

observation U* is available or not 

Next, define the missing information set Zn as the collection of observations at time 

instance n for all observers k — 1,..., K such that = 0. Similarly, the available 

information set Yn is the collection of for all k = such that = 1. It is 

assumed that the missing data mechanism is independent of the missing observations 

given the available observations, this can be written as 

This standard statistical assumption is known as Missing at Random (MAR) [11]. Our 

objective is to obtain the posteriori probability density function of the state given all past 

and present observations, written as p(Xri| Y0;71) where Y0;Ti. denotes all observations from 

the initial time instance to time instance n. 

The technique of MI was developed by Rubin [11] to deal with missing data in surveys. 

Missing data can introduce bias into the statistical estimation process, the existence and 

severity of the missing data bias depends on the missing data mechanism. Unfortunately, 

Rn,fc : 

1 observation is available from sensor k at time n 
0 observation is missing from sensor k at time n 

P(Rn,fc|Zn, Yn) = PCR^IY,,) for all k, n. (4.2) 

4.2 Multiple Imputations 
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the structure of the missing data mechanism is almost never available for analysis. How­

ever, under the condition of MAR (4.2), it can be shown [11] that one does not need to 

know the structure of the missing data mechanism. Consider K sensors all observing the 

same hidden state X, let Y denote the set of all available observations from the sensors 

and Z denote the set of all missing observations. Moreover, let R — [Rj,..., R/<~]T be the 

J<"-dimensional indicator vector for the response of the sensors. Note that this problem 

is not time dependent and there is no state space model (4.1). The probability density 

p(X| Y, R) can be written by the integral equation, 

p(X|Y, R) = Jp(X|Y, Z, R) p(Z|Y, R)dZ, (4.3) 

using the condition of MAR, it can be shown [11] that equation 4.3 reduces to 

p(X|Y, R) = y*p(X|Y, Z)p(Z\Y)dZ. 

This simplication implies that one does not need to know the statistical structure of the 

missing information mechanism. One can approximately compute the density p(X|Y, R) 

by the Monte Carlo approximation 

M 

p(X|Y) = Jim - £>(X|Y, ZJ), (4.4) 
i=i 

where Zj ~ p(Z|Y) are the multiple imputations indexed by j = 1,..., M. See Figure 4.1 

for a diagram of these imputations, it is easy to see that given a single partial measure­

ment, the ME algorithm creates N likely full measurements. 

Notice that MI does not use the past observations and the state transition equation 

in estimating the density p(X|Y). This is significant since many real world problems 

are well modeled by a Markov structure, which does use past values to determine the 

present ones. Thus, in such application, it is expected that the performance of the MI be 

non-optimal. 
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Imputations 

Imputation 1 Imputation 2 Imputation N 
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Data Data Data 

Figure 4.1: Multiple Imputation - Imputation Diagram. 

4.3 Multiple Imputation Particle Filter 

A new algorithm to resolves the mentioned deficiencies in the particle filtering and mul­

tiple imputations algorithms is presented. This algorithm performs the fusion using both 

the state and observation dynamics while accounting for the missing data. 

4.3.1 Approximation of the Imputing Function 

The MI method draws imputations from the missing data probability density p(Zn|Y0:n) 

as shown by Equation 4.4. However, in the context of a state space model with missing 

information, this density is unknown. In similar applications with unknown missing data 

probability density, a common solution is to draw the imputations using Markov Chain 

Monte Carlo (MCMC) methods [12]. These MCMC methods are iterative in nature and 

may not be applicable in some problem domains such as real time systems. In this section 
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a new approach is presented to performing the imputation process by utilizing particle 

approximation techniques. The imputing probability density p(Zn|Y0:ri) can be written 

p(Zn|Y0:n) = J p(Zn|Xn)p(Xn|Y0:n)dXn. (4.5) 

Note that the filtering density p(Xn|Y0:n) appears inside the integral, since one does not 

know this density p(Zn|Y0:n) cannot be sampled from directly. However, equation 4.5 

suggests the following approximation. First, find a discrete density p(Xn|Y0;n) that ap­

proximate the true filtering density well. Then using relationship 4.5, one can obtain the 

discrete density p^Z^IYo^), which will approximate the desired density p(Zn|Y0:n). Then 

one can write the approximate filtering density p(Xn|Y0;n) using a particle approximation 

N 
p(X„!Y0;„) = S'J(Xn - x„,i), (4.6) 

i=1 

where the particle set {w^, X^}^ is obtained by performing the particle filtering with no 

regard for missing data. Substituting this approximation into equation 4.5 one obtains the 

approximate proposal function 0(Zn|Yo:n) 

N 
f>(Zn|Y0:n) « ̂ (Z„|Y0:n) = ̂ ^>(ZnlX",0-

i=l 

Assume p(Zn|Xnji) = p(Yn[Xnii) then this mixture of densities is known and can be sam­

pled from in a straightforward procedure. 

4.3.2 Multiple Imputations Particle Filter Algorithm 

First, the filter draws random observations or imputations, from a proposal function <fi 

zj
n ~ 0(Zn|YO:n) for j = 1, . . . , M, 

where each imputation zj
n has an associated weight wj

n as in section 4.3.1. Note that the 

filtering probability density p(Xn|Y0:n) can be written [13] 

p(Xn|Y0;n) = J p(Xn|U0:ra_i, Yn)p(Zn|Y0:rl)<2Zn. (4.7) 

31 



The Multiple Imputations Particle Filter Algorithm 

• Initialize particle sets xj'1 ~ fi(X.o) arid set WQ 1 = 1/N for i — 1,. . . ,  N , j  =  1,. . . ,  M .  

• For times n = 1, 2,... 

• Impute additional measurements 4 ~ 0(Zn|Yn) and setZV£ = {4,Yn} 

• For j  =  1 , . . . ,  M  

• Sample the importance function x^1 ~ TC (Xn|iU£) For i  =  1 , . . . ,  N  

• Evaluate the importance weights: — P1 ) and normalize w%
n = wl

TJ 4̂ 

F o r  i  =  1 , . . . ,  i V  

• For i — 1,..., iV Sample the index dj(i) distributed according 
to discrete distribution such that ¥(d(i) = I) — w^1 for I — 1,..., N. 

. • Set xif — and =  1/iV for i  =  1 , . . . ,  N .  

By forming the imputed data sets = {Z^ Yn} and taking a Monte Carlo approxima­

tion, rewrite equation 4.7 ; _ • • ' . -

M 

p(X„|Y0;„) « wip(X„|U0;„_i, Ui). (4.8) 
3=1 

Next, the algorithm performs particle filtering on each data set U7{ to obtain the approxi­

mation 
N 

- <•'), (4.9) 
i=1 

where x̂ 1 is the i particle for the j imputation at time instance n and w%% is its associated 

weight. Finally, the algorithm combines the multiple particle filtering results by substi­

tuting equation 4.9 into equation 4.8 to obtain an approximation of the desired density 

M N 

p(X„|Y0;„) » £ £ «'i5(X„ - a#). 
3=1 i=l 
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See Figure 4.2 for a diagram of the full MIPF algorithm. It is clear from the diagram that 

the MIPF is eqx^valent to a bank of particle filters where each particle filter processes a 

single imputation. The results of each particle filter are then combined as a weighted sum 

to obtain a single approximation of the filtering probability density. 

Observation K Observation 1 Observation 2 

Imputation N Imputation 1 Imputation 2 

Draw 
Imputations 

Observer 2 

Estimator 

Observer K 

Particle 
Filter 2 

Particle 
Filter N 

Particle 
Filter 1 

Weighted 
Sum 

Approximate 
Imputation 

Density 

Observer 1 

Figure 4.2: Multiple Imputation Particle Filter - Diagram. 
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4.4 Iterative Multiple Imputation Particle Filter 

One can increase the approximation accuracy of the MTPF algorithm by introducing an 

iterative version of the algorithm; this modification allows us to refine the approximation 

of the imputation proposal function. Let m denote the iteration number of the algorithm, 

one can rewrite equation 4.5, 

where pm(Zn|Y0;n) denotes the missing data density obtained atiteration m andpm_1(XnjY0;n) 

the a posteriori density function obtained at iteration m — 1. For the initial iteration, set 

p1(Xn|Y0;n) to be the approximation obtained by following the algorithm described in 

sections 4.3.1,4.3.2. Thus, the iterative algorithm is a feedback particle filter where the 

feedback data at iteration m is the estimated density pm(Xn| Y0:n). 

4.5 Convergence Analysis 

4.5.1 Filter Formulation in Probability Space 

Let (5T2, JF, P) be a probability space where T — B(Rna:) is the Borel set of Mnx, the Borel 

set is the standard set of ail possible probability events on Mn:c. On this probability triple 

define a vector-valued stochastic process X = {Xn, n e N+} where nx is the dimension 

of the state space of X. The process X is Markov with initial distribution XQ ~ /J, and 

probability transition kernel K(x^xn^) 

The process X can be viewed as the hidden state process to be estimated, for example in 

a radar tracking problem domain, X would represent be the true object position. Next, 

define a stochastic process W — {Wn, n e N+} where Wn = ..., W^} and is an 

n^-dimensional vector for 1 < i < k. The process W is conditionally independent of X 

(4.10) 

P(Xn e A\Xn-i — xn-{) — [ Kixnlx^dXsAeBiW1*) 
J A 

P(Wn e B\Xn = xn) I g(wn\xn)dwn , B e B(M.nwXk). (4.11) 
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The process W can be regarded as k noisy observations of the hidden markov process 

X, in our application these observations would represent all observations from multiple 

radars. Let the density of W conditional on X have the following factorization 

k 
g(wn\xn) = ]~fpi(iu^|a;n). (4.12) 

i=i 

This factorization can be regarded as the requirement that given an array of k sensors, 

each sensor's observation is independent of all others. Thus, combining the statements 

4.12 and 4.11, one arrives at 

P ( W i e C \ X n  =  X n ) =  [  s ( < | a ; n ) d < , C e £ ( R ^ ) .  
J c  

Consider the non-response vector-valued stochastic process R — {Rn, n £ where R is 

a n^-dimensional vector. Let {rz
n G (0, 1)}™^ be indicator variables. Define the following 

sets, 

2:n = {w l
n\rz

n = 0 for 0 < i < 

yn = {wx
n\r l

n  = 1 for 0 < i < nw} , 

and let the probability density h(zn\ro:n, yo:n) be 

h(^zn\vQ:n} yo-.Ti) = P(^Zn £ dzn\R^:m — TQ:rn^YQ:m yo-.m)• 

Clearly, the probability density h represents our knowledge of the non-response mecha­

nism. 

Consider the following probability densities of interest 

P (%i\yk:j) = P{Xi G dXi\Yk = yk,...,Yj = yj) (4.13) 

P (p^m |2/0:rri! ^*0:m) R(,Xm (E 2/0:mj RQ-.TTI ?~0 :rn) • (4-14) 

The probability density p r0:7n) can be thought of as the posterior probability den­

sity which combines the data from observations and non-response while the family of 

probability densities p (Xi\yk:j) describe the probability distribution of the state given only 
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a set of observations. Traditionally, one is interested in obtaining the probability density 

P (xn\yn, rn) to compute estimates such as MAP and MMSE. The distributions p (xn\yn, rn) 

and p (xn\yn) are related by the following expression 

P {xn\yn, rn) = J p (xn\yn) h(zn\y0:n)dzn. (4.15) 

Standard Bayesian filtering theory gives us the equation 

g(wn\xn)p On\yn-i) 
P Sp^nYUn) r , i \ r i i 

J g{wn\xn)p (icn|yn_i) 

substituting this expression into 4.15, 

t \ ^ f u r  1 \ f  g iwnMp i xn l y ^ )  \  
P\Xn \yn,rn) = / tU0:n-l,2/n) -7—7 j 7 j T dzn. (4.16) 

J \J g{wn\xn)p {Xr^yn^) J 

This equation cannot be generally solved except for very specific models such as lin­

ear Gaussian. Thus, one must resort to approximation strategies. Consider a set of val­

ues or particles distributed approximately according to p (x7l-i\yn-i), then sample xl
n ~ 

K{xn\xl
n_1) using the standard bootstrap procedure. The particles are distributed approx­

imately according to p (xn\yn-i) [18], they construct the empirical distributions, 

1 N 

pN (xn\yn„i) = — 
i=1 

N 

PN {xn\yn) = X>n<^> 
i=l 

where 
i = g(^nK) 

n 

The additional knowledge of the non-response can be incorporated into the estimation 

by substituting the empirical distribution pN (xn\yn) into Eq. 4.15 in place of the true 

distribution p (xn\yn). Having done so, one arrives at the Monte Carlo approximation 

PN (^n|yn, rn) = / h(zn\wQ:n-x, yn)pN {Xn\yn) dzn. 
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The integral above cannot be evaluated explicitly so a naive Monte Carlo procedure is 

adopted to approximate the integral. Let the imputation set {z° }^0 be sampled from the 

nonresponse density, z3
n ~ h(zn\w0:n_iy yn), then one arrives at the relation 

1 M 

pN>M (xn\yn,rn) = pN (xn\yn,rn) — ̂ ^4-
i=1 

Therefore, the empirical density pN>M (xn\yn, rn) approximates the desired probability den­

sity p (xn\yn, rn) in terms of two sets {to*, and {z j
n}jL±. 

4.5.2 Almost Sure Convergence 

The integral expression 4.16 can be thought of as a sequence of three transformations 

whose overall result is taking a probability density pN>M (a:n_i [yn_i, rn_ 1) to the next one 

in time p (xn\yn, rn). One can write this sequence of maps as p (£n |yn_i) —> p (xn\yn) —> 

P (xn\yn, rn) where p (xn\yn-i) and p (xn\yn) are intermediate distributions due to the par­

ticle filtering. In order to prove the convergence of this sequence of mappings, let us 

begin with an abstract argument and later on show how it is related to the algorithm at 

hand. Consider a metric space (E, d) and let {an}^!=1, and be sequences 

of continuous functions an,bn,dn : E —*• E indexed by n 6 N+. Also, let 

In ~ dn O CLn O bn. 

Define two, not necessarily continuous, perturbation functions fM, cN : E —> E in the 

following way. Let us assume that as N and M increase, cN and fM will converge to the 

identity function. Now, perturb kn using these two functions 

ln'M  =  fM  0 d no c N  o  a n o  C N  O  b n .  

Let eM and eN be a sequence of elements in the metric space E indexed by M and N 

respectively and let e E E denote a single element of E. It is assumed that fM, cN satisfy 

the following conditions for all such sequences eM,eN/ 

lim e/vr = e =4> lim cN (e^) — e (4.17) 
N-* 00 N—^oo 

lim CM = e =4> lim /M(e^) = e, (4.18) 
M—> 00 M—»oo 
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then the following lemma can be shown true [18] 

Lemma 3 Let an,bn, kn and cN be as defined above. Then if c/v satisfies condition 4.17, 

Moreover, satisfies 

lim k£ = kn. 
N-> oo n 

lim e^r = e lim (ew) = kn(e). 
N—TOO N—>OO 

Then one can prove the following lemma 

Lemma 4 Let dn, an, 6n and /M, &e as defined above, then if conditions 4.17-4.18 are satisfied, 

lim eN = e =4> lim /M( lim (dn o k„)(eN)) = Z„(e). 
jV—too M—too TV—too 

Proof Let l^'M — fM ° dn o where k% — cN o an o cN o bn and kn = an o bn. Then by-

Lemma 3, 

lim e^r — e =£- lim kn (ejy) = kn{e), 
N—tco TV—too 

since dn is continuous 

lim (eN) = kn(e) => lim (dn o k^)(eN) = (d„ o fcn)(e). 
TV—too iV—too 

Now set e — (dn o kn){e) and &M = ]imjV_+00(dn ° kn)(&N) for all M then clearly, e, &M G E 

and limM-too Using condition 4.18, the argument follows 

lim eM = e =4> lim fM(fiM) = e 
M—too M—too 

=> lim fM ( lim (dn o k^)(eN)) = (dn o kn)(e) = ln{e). 
M—too N—too 

Specializing this abstract discussion to the domain of MIPF, let E — V™* be the space of 

probability measures endowed with the topology of weak convergence as described in 
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section 2.1.3. Let v E Vnx be an arbitrary probability measure and ip is any continuous 

bounded function, define the mappings 

(an(i/),^) = I / g{yn\xr i)v{dxn) ) / ip(xn)g(yn\xn)v{dxn) 
\jRnx J J]R"x 

(bn(v),ip) = / / ip(xn)K(dxr i\xn- l)u(dxn_1). 
JJRNX 

Assuming K is Feller (i.e. and the function g is continuous bounded strictly positive then 

an, bn can be shown to be continuous. Also, let the sequence of functions dn be mappings 

dn : Vn* —> "P71* such that 

dn i y )  = / v(dxn\zn,yn )H (dzn), (4.19) 
Jw-

which implies 

(dn( v),tp) = / <p{zn)v(dxn\zn,yn)H(dzn) 
JR"I 

= • 

It is convenient for the mappings dn to be a continuous operator, this is quite reasonable 

since one can interpret that requirement as the fact that adding or removing observers 

will influence the observations in a continuous manner (where the continuity is in the 

function space sense). Moreover, define the perturbation functions cN  and fM  

c" = ^Pv' 
= lit*** 

j=l 

where Vi, Wj are i.i.d. random variables with common distributions vc, vj respectively. 

One arrives at the following lemma, 

Lemma 5 IfcF and fM are as defined above, then they satisfy conditions 4.17-4.18 almost surely. 

Consider the empirical measurepN'M {xn\yn, rn), it is easy to see that 

PN , M  (zn |yn ,  rn) = fM°dnocNoanocNobn(pN 'M  (rcn_i|yn-i ,  ̂ n-i)) = k^M{jpN M  (a;n_i|yn_i, rn_! 

Thus, one obtains the following theorem: 
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Theorem 2 Assuming the transition kernel K is Feller and g is bounded, continuous and strictly 

positive, then almost surely 

lim lim pN M  {xn \yn i  rn) = p (:xn \yn , rn), N—> oo M —>co 

where the convergence is in the zveak sense 

Proof Using the definitions above, 

PN  (xn \yn) = (cN O an  O CN  o bn)(pN  (rEn-llS/n-l)) = KN (PN  (®n-l|2/n-l))} 

and if lim^ooP^ (a?n_i|yn_i) = p (:cn_i|yn_i) then lim^^p^ (xn[?/n) = p(xn \yn).  Also, 

note that 

pN*M  (xn \yn ,  rn) = (fM  o dno k^)(pN  

then by lemmas 4 and 5, the argument follows 

lim ( f M  lim (dn  o k^)(pN  (a;„_i|2/n-i))) = dn  o an  o bn  = p (xn|yn ,  rn),  
M—>oo N—>-oo 

which implies 

lim lim pN 'M  (xn \yn ,  rn) = p (xn \yn ,  rn).  
N—*-oo M—>oo 

• 

The convergence theorem 2 above indicates that the MIPF will convergence in the weak 

sense with probability 1 (almost surely) as the number of particles approaches infinity. 

However, this result does not guarantee that this convergence will happen with a finite 

number of particles nor that the squared error will be bounded. 

4.6 Performance Analysis 

4.6.1 Radar Network Data Fusion 

Many radar systems are implemented using a radar network in order to cover a large 

area and increase reliability, these radars transmit observations asynchronously due to the 
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large distances between the radars. The radar network's state space model is formulated 

and then simulated in order to examine the performance of the MIPF as compared against 

the EM algorithm. 

Multiple Radars Model 

Consider K radars measuring a common target. The target motion is described by a 

simple near constant velocity state model [1] 

the matrices and Tn+i have been defined in section 3.1. The state vector Xn is defined 

as Xn = [x(n)> vx(n), y(n), vy(n)]T, and the system noise Vn ~ A/^O, E„) is assumed to be a 

Gaussian i.i.d. process. Let ip denote the cartesian to polar transformation 

where Wn ~ vV"(0, T,J
W) denotes the system noise, which is assumed to be a Gaussian 

i.i.d. process. It is also assumed that the system and observation noises are mutually 

independent. 

4.6.2 Simulation Results 

Two radar network configurations are simulated: a network of two asynchronous radars 

and a network of three asynchronous radars. The performance of the MIPF is compared 

against the standard EM fusion algorithm [12].The two radar network is simulated for 

twenty time units where at each time instance, the observations are repeated thirty times 

to obtain performance results. Similarly, the three radar network is simulated for twelve 

time units where at each time instance, the observations are repeated ten times. Both 

-^n+1 — + rn+1V^, 

Also let the radar observation model be given by 

Yl = <p(X„) + Wi, 
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simulation configurations use a particle filter with N = 250 and M = 40. The perfor­

mance results for the two radar network are shown in Figure 4.3, the error metric is mean 

squared error. It is clear that the MIPF offers significant performance improvement over 

the EM algorithm. Figure 4.4 shows some performance gains by the MIPF for the three 

radar configuration. However, the performance gain is not as significant as for the two 

radar network. This discrepancy can be explained as follows, one expects that the more 

dominant the missing data behavior of the system, the more performance gains we will 

realize from the multiple imputation particle filter, which is designed to deal with miss­

ing data, as compared to the EM algorithm. Due to the nature of the simulation, the ratio 

of missing to available information for the simulated two radar network is 50% while the 

missing information ratio for the simulated three radar network is almost always 25%. 

Then, as expected, the multiple imputation particle filter shows significant performance 

gain for the more aggressive missing data pattern of the two radar network. 
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Figure 4.3: Performance of MDPF and EM for Two Radars - Missing Data Ratio of %50 
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Figure 4.4: Performance of MEPF and EM for Three Radars - Missing Data Ratio of %25 
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Chapter 5 

Sequential Monte Carlo Methods for 
Multi-Site Bearing Only Tracking 

Bearing-only tracking is a highly nonlinear problem that can be effectively tackled using 

SMC methods presented in Chapters 2 and 3. However, a direct application of the particle 

filter to the bearing only problem is problematic since incorrect filter initialization can 

cause divergent behavior. A new method for particle filter initialization is presented in 

this chapter, this approach is applicable for the situation of multiple bearing only sensors. 

It operates by resolving the initial state using a least squares approach. 

5.1 Problem Formulation 

Consider a target moving in two dimensional space, for simplicity we'll assume that the 

target does not maneuver and follows a near constant velocity model [1]. Thus, one has 

state dynamics equation 

xn = $nxn_1 + rnvn) (5.1) 

the matrices 3?„ and Tn have been defined in section 3.1, the state vector is written Xn == 

[x(n),y(n),vx(n), vy{n)]T and Vn ~ A/"(0, S„) is the state transition noise. Assume that I< 

sensors are taking noisy bearing measurements of the target. These sensors are modeled 
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using the standard bearing only measurement model 

Yn = 

/ Yi \  
y2 

/ 

RF J 

arctan ( Vn y\'n ^ \xn-x^nj 
arctan ( ) xs,ri J 

V 
arctan f yn-y*n ̂  

\xn-xj<n J 

+ w„. (5.2) 

J 
Let the symbols yx

s n, x1 denote the cartesian position of the z-th sensor at time n. The 

observation noise is a K-dimensional Gaussian noise distribution, Wn ~ ̂ (M^, S,u). 

5.2 Least Squares Initialization 

As discussed in the previous section, tracker initialization is a major consideration in any 

bearing only tracking systems. Therefore, a new initialization technique is proposed; it 

uses previous work done by Don Koks [28] and combines it with particle filtering tech­

niques. Consider the probability distribution /_/,(Xo) which describes the statistical behav­

ior of the target's initial state and assume that its initial velocity components are known. 

Therefore, one needs to generate the particles' position entries using the initial bearing 

measurements Y0. The idea is to apply a least squares procedure to obtain multiple esti­

mates of the target position. Next, assume the initial distribution is Gaussian and estimate 

its statistics using the multiple estimates. Finally, one can draw the particles from this ini­

tial distribution. 

Following [28], write the initial range and bearing of the target as r{ and 0{ respectively, 

where the index i denotes that these range and bearing are taken by the ?>th sensor. The 

following trigonometric relations are true, 

Ti COS = Xq — 

rt- sin#! = yo-y l
s,o, 

for all sensors 1 < i < K. By writing these relations for all sensors, one can eliminate 

the unknown initial coordinates [x0, y0] and rewrite the trigonometric equations in matrix 
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form, 

where 

A[r!r2 • • - rK]T = B, (5.3) 

A 

( COS #1 
sin 61 

0 
0 

0 

V 0 

— COS 02 

— sin 62 

COS 62 

sin 02 

0 
0 

0 0 
0 0 

— cos 03 0 
— sin 03 0 

\ 

cos 9 K- 1 
sin 0K-I 

0 
0 
0 
0 

cos 6 K 
• sin 0K j 

(5.4) 

and 

B 

-x s,0 ^ ^5,0 
yl,o + -Vs, 0 

,3 

\ 

"®s,0 + -X s,0 

V 

-Vs,  0 + -Vs, 0 

_Jf-l _1_ xs, 0 ^s, 0 
1 , _..K 

Vs,0 + Vs,0 / 

(5.5) 

This is an over-determined matrix equation since A is not a square matrix, a single solu­

tion does not exist so one may opt for the standard least squares solution which minimizes 

the squared error. Let the symbol fi denote the range estimate at the coordinate system of 

the i-th sensor, then write the least squares solution as, 

[rx, r2 • • - rK]T = (AtA) 1ATB. 

Transfering these estimates to the target's coordinate system, 

Xx = (ri cos 0x + XQ s, r1 sin 01 + y^a)T 

X2 = (r2 cos 02 + r2 sin 02 + yjs) T 

(5.6) 

(5.7) 

Xx  = (rK COS 0K + xgs  , RK sin 0K + 7Jo, s)T  

Therefore, there are K estimates of the initial position of the initial target. One can com-

47 



pute the sample mean and variance of these estimates, 

1 K 
— 

M„ = <5'8) 
j=l 

SM = (5.9) 
i=i 

Let us make the assumption that the initial state distribution //(X0) is Gaussian, since the 

initial distribution is Gaussian, one can use the sample mean (Eq. 5.8) and variance (Eq. 

5.9) to estimate the distribution's parameters and let /x(X0) ~ Xm). Finally, we've 

obtained an approximate form of the initial position's probability density function. 

5.3 Bearing only Target tracking with Monte Carlo Algo­
rithms 

As discussed in section 2.4, one is interested in approximating the probability density 

distribution p(Xn|Yn), this is done by using a set of particles and their associated 

weights where N is the number of particles and j  indexes the particle set. The 

particles are initialized by sampling from the initial state distribution /i,(X0), 

<  =  1 /N ,  

where the initial distribution £i(X0) is obtained by the least squares procedure. At every 

time iteration, the particles are sampled from an importance function, 

Xn ~ 7r(Xn|x^_1, Yn), (5.10) 

where 7r(Xn|x^_1, Yn) denotes the importance function that is yet to be specified. A parti­

cle's weight is evaluated up to a normalizing constant by the following recursive formula 

,.J =,J KY»k-.)p(4k-i) ,5 n> 
" "-1 ^(X^xi^.Yn) 

The coefficients are then normalized by dividing the given coefficient by the sum of all 

weighting coefficients. 
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5.3.1 Particle Filter for Bearing Only Tracking 

A straight forward application of the particle filter algorithm to the bearing only track­

ing application uses the prior importance function (See section 2.4 for more information) 

and computes the weight using the likelihood function. The prior importance function 

p(Xn|Xn_i) can be written 

P(x„l4-i) = 4̂ 2|rrsj„|V2exp (x" - (r̂ sj,)"1 (x„ - j, 
(5.12) 

and weighting formula 

W°n = ̂ -xXYnlx^), (5.13) 

where the likelihood function p(Yn|x^_1) is 

POfnWn-i) ~^/'(axctan(xi_1), !],„). (5.14) 

As noted in chapter 2, the prior importance function does not use any measurement in­

formation in drawing the particle and thus may require more particles as compared to 

the optimal importance function. In order to incorporate the measurement into the im­

portance function, let us first linearize the state space model and then derive its optimal 

importance function. Such an approach to importance functions is known as the linearized 

optimal importance function (See [8] and section 2.4), note that this idea is conceptually sim­

ilar to the EKF. Following the derivation in 2.4, let the function g : R4 —» R^ denote the 

observation transformation (Eq. 5.2) and / : R4 —> R4 denote the state transition equation 

(Eq. 5.1) 

Xn = /(Xn_1)+Vn (5.15) 

Yn = g(Xn) 4-Wn, (5.16) 

then the linearized state space model's observation equation is written 

Y„ ~ 9(/(X„_i)) + d9
g
<x") (x» " /(X„-i)) . (5.17) 
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Calculating the measurement equation's Jacobian, 

( (—y+yl n) 

dg (Xn) 
5Xn 

A = 

V 

(x-;cin)2+(y-virl)2 

(~y+y2 n )  

(a:-a:i1n)2+(y-y2,n)2 

(-y+yjfn) 
(^-^T*)2+(y-y£n)2 

/•_ __1 \ i yi,n)2 

1 
fx—rr2 1 1 ty~ys,".)2 ^ X '.n)+ 

Cx J**" 'I I ( ^ (*-=£n) 

0 o\ 

0 0 

0 0 

(5.18) 

J 
Then the optimal importance function of the linearized state space model consisting of 

equations 5.17 and 5.1 can be written as 

7r(Xn|<_1;Yn) ~.A/-(Mn>Sn), (5.19) 

where 

. S"1 = (rjs„r„) i+Ar2^1A (5.20) 

M„ = £„ ((rJSvr„)"1/(X^1)+ArS^1 x (Yn - 9(/(X„_!)) + A/(X„_0))(5.21) 

Using this importance function, the full algorithm can be formed by combining the parti­

cle filter derived above with the least squares initialization scheme. 

5.4 Performance Analysis 

5.4.1 Simulation Results 

The simulation scenario consists of three bearing only observation stations, each one ob­

serving the same target. The target dynamics obey the state space model (5.1) described 

in the beginning of this chapter. Two tracking algorithms are compared, the EKF and the 

particle filter. The EKF's initial state is initialized with the ground truth position and its 

initial covariance matrix is the zero matrix. Thus the EKF will have no divergent behav­

ior associated with an incorrect initialization. In contrast, the particle filter is initialized 

using the least squares initialization technique described in section 5.2. Figure 5.1 shows 
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Bearing Only Particle Filter Algorithm with Least Squares Initialization 

• Compute Mm, and initialize the particle set x~ J\T{Sm), let wl
0 = 1/N for z = 1,..., iV. 

• For times n = 1,2,... 

• Sample the importance function xl
n ~ 7V(Mn, Sn) For i = 1,..., iV 

• Evaluate the importance weights: wl
n = and normalize wi, = wl/T)1?-, wl 

r On 7r(i|l|iJ:n_1,Yo:nj 71 n/ 

For i  =  1,. . . ,  N  

• For £ = 1,..., N Sample the index dii) distributed according 
to discrete distribution such that P(d(i) = /) = ivl

n for I = 1,..., N. 

• Set xl
n = Xn^ and wl

n = 1/N for i = 1,..., TV. 

the mean square error performance associated with the EKF and particle filter. From Fig­

ure 5.1, one notes that the particle filter's initial estimation performance is worse than the 

EKF since the EKF uses the ground truth for initialization while the particle filter uses the 

least squares approach. However, the crucial observation is that the particle filter's per­

formance improves after a few time iterations and does not diverge. Indeed, the particle 

filter's performance exceeds that of the EKF in spite of the EKF's initialization advantage. 

Additional simulations were performed using the same sensor configuration. These sim­

ulations were performed by generating 50 Monte Carlo tracks with identical initial state 

and model parameters. Each track was then recursively filtered using both an EKF and 

a particle filter. The root mean square error (RMSE) between each track's ground truth 

and estimated position is computed. The errors of all tracks at a given time are averaged 

to produce an overall initial performance graph which is shown in Figure 5.2. The first 

tracker is a particle filter initialized using the new scheme developed above. This algo­

rithm is compared against an extended Kalman filter which is initialized with the true 

initial position of the target. In other words, the EKF's initialization is optimal while the 

particle filter uses the non-perfect initialization. It is clear from Figure 5.2 that on average, 
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the initialization of the particle filter produces the same initial performance as that of the 

EKF initialized with the true state. These simulation results allow one to conclude that the 

initialization technique is successful since it enables the particle filter to rapidly converge 

to its optimal estimation without any loss of initial performance. 
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Figure 5.1: Performance of the EKF and Particle filter in Bearing Only Tracking. 
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Figure 5.2: Average performance of the EKF and Particle filter in Bearing Only Tracking 
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Chapter 6 

Concluding Remarks 

6.1 Conclusions 

The work presented largely deals with the application of Monte Carlo methods to the 

problem of multi-site radar and bearing only target tracking. While radar and bearing 

only tracking are well studied problems, the particle filtering framework introduces new 

flexibilities and issues that need to be resolved. First, the problem of target tracking in 

asynchronous sensor networks is considered. This problem is identified as the problem 

of fusing multiple sensor measurements in the presence of missing data. The MIPF is 

introduced to systematically deal with such problems of estimation with missing data. 

Hie MIPF algorithm draws imputations using a new particle based method, it then com­

bines the multiple imputations with a particle filtering technique. Some convergence 

properties are derived for the MIPF, these theoretical results suggest that the algorithm 

converges in a desirable manner. Simulated data is used to demonstrate the effectiveness 

and performance of the proposed algorithm. Next, a new multi-site bearing only initial­

ization scheme for a particle filter-based tracking algorithm is proposed. The initializa­

tion schemes utilizes a least squares approach to resolve the initial state of the target. The 

particle filter is tested with the initialization scheme using simulated data and compared 

against a standard EKF. The initialization scheme is shown to perform well and allows 

the Monte Carlo algorithm to rapidly converge to the optimal filter. 

54 



6.2 Future Research 

The weak convergence of the Multiple Imputations Particle filter has been studied in 

Chapter 4. Additional research is required to explore whatever the algorithm's error is 

bounded and in what sense. Also, the utilization of asynchronous measurements in en­

hancing the performance of model learning and system identification deserves additional 

study; especially in the context of particle based system identification methods. Indeed, 

model learning schemes are a major consideration for all mode based tracking algorithms 

such as the particle filter, ha much of the tracking literature, tracker initialization is rel­

egated to the realm of the practitioner, however the research in this thesis demonstrates 

that filter initialization is a significant problem that bears some relation to model selection 

and learning. Therefore, initialization schemes and their theoretical effect on the stability 

of sequential Monte Carlo algorithms require additional research, especially in the context 

of filters that use a slightly inaccurate model in their derivation. 
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