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Abstract 
Dual Core Ytterbium Doped Fiber as a Gain Medium for a High Powered Swept 

Source Laser for use in Multi-channel Optical Coherence Tomography  

 

Mark Krishna Harduar, Master of Applied Science, 2010 

Department of Electrical and Computer Engineering, Program of Electrical Engeering, 

Ryerson University 

 

Optical coherence tomography (OCT) is a novel imaging modality that provides 

volumetric in-vivo high-resolution (1-15µm) images in real-time. Multi-channel OCT 

(MOCT) imaging utilizes many imaging channels simultaneously yielding several 

advantages over single-channel OCT.  The benefits of MOCT are at the cost of the added 

requirement of several imaging beams, which demands high power output from the laser 

source.  Dual-core Ytterbium (Yb) doped fiber was used in two configurations to 

demonstrate its use as a MOCT light source gain medium: 1) within a ring cavity 

resonator and 2) in a post-amplification regime with a low powered seed-laser.  The 

amplification wavelength range was tailored to be centered at ~1060nm, where light 

absorption and scattering is at a minimum in water.  In the post-amplification 

configuration, the output power was increased from 5mW to >200mW, with the axial 

resolution reducing from 10µm to 12µm. We also present initial in-vivo MOCT imaging 

of a tadpole. 
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1 Introduction 

 

Medical imaging techniques are important in any field of medicine as they assist with the 

diagnosis and clinical management of many onset diseases that patients may suffer from.  

Minimally invasive imaging techniques have been essential in diagnostic medicine over 

the last half-century.  X-ray computed tomography (CT), magnetic resonance imaging 

(MRI), functional magnetic resonance imaging (fMRI), position emission tomography 

(PET), single-photon emission computed tomography (SPECT) and Ultrasound (US) are 

all well developed and widely accepted as standard 3-dimensional imaging modalities.  

However, the spatial resolutions of these technologies are all limited to a few millimeters 

[1].  An imaging modality that has a higher-resolution, in the sub-micron range, is 

confocal microscopy, however the image penetration is limited to only a few hundred 

micrometers.  Optical coherence tomography (OCT), a relatively new imaging technique, 

can achieve axial resolutions between 1 – 15µm and a penetration depth that is limited to 

2 – 3 mm.  In terms of imaging depth and resolution, OCT’s performance is 

complimentary to the coarser imaging modalities (US, CT, MRI, etc) and to the finer 

imaging modalities (confocal microscopy) [2] as it allows for higher resolution while 

maintaining a depth of field.  Figure 1-1 demonstrates how confocal microscopy, OCT and 

US are all complimentary to one another based on image resolution and image 

penetration.  Without OCT, there would exist a gap in imaging modalities in terms of 

resolution and depth. 
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Figure 1-1: Comparison of image resolution and penetration of US, OCT & confocal microscopy [2] 

Currently, the largest clinical application of OCT is in ophthalmology, within the 

eye, where it has been proven to provide information on retinal pathology, and ultrahigh-

resolution OCT has been proven to provide information on the intra-retinal properties [3].  

However OCT’s applications extend to other fields of medicine outside of the 

ophthalmology, one of which includes endoscopic imaging [4] [5] [6], where small optics 

are utilized for cathertization of image probes to image from within.  OCT has also been 

proven to help with in vivo pathology and catheter navigation in both the 

cardiovasculature system and the gastrointestinal tract [7] [8]. 

Multichannel OCT (MOCT) has previously demonstrated several unique 

advantages in OCT imaging where multiple light beams are used to image a single 

sample in parallel.  MOCT can then be used to increase the transverse (or lateral) 

resolution of the imaging by implementing multiple beams with a high numerical 
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aperture (NA) lens and have the light focused at several different depths of the tissue.  

MOCT has previously demonstrated uses in endoscopic imaging [5] while other 

advantages include faster image acquisition rates without an increase in swept-source 

laser speed and without increasing the detector bandwidth speed.  Faster imaging speed 

also helps to further reduce image artifacts on in vivo subjects, such as bulk tissue motion 

[9].  In Doppler OCT, blood flow quantifications are made based on the phase change of 

the backscattered wave.  With MOCT, because high scan rates are possible without an 

increasing the axial-scan rate of the source laser, the blood flow sensitivity is not 

compromised by the increase in image acquisition speed.  Relatively slower axial-scan 

rates are important in Doppler OCT as is allows for a larger phase built up time of the 

back reflected waves when detecting slow flow rates resulting in the higher sensitivity 

Doppler measurement.  To implement a MOCT system, the light source is split into 

several channels while the total output power per channel is reduced causing a 

degradation in the signal to noise ratio. 

In conventional OCT, the wavelengths that are utilized are either 1310nm or 

800nm, which are based on the equipment that was originally designed for 

communications in fiber optics.  Many have considered OCT light sources with a 

wavelength centered at 1060nm based on the optical properties of water.  A significant 

portion of biological tissue is made of up water, and this makes it important to know the 

absorption and scattering of light in water as a function of wavelength.  The absorption 

and scattering minimums have been previously demonstrated [10].  The absorption and 

scattering of broadband light in water occurs in this fashion based on the molecular 

structure of H2O. 
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Figure 1-2: Light absorption and scattering in water [10] 

Figure 1-2 demonstrates the light scattering of water in the dashed line and the light 

absorption of water is in solid black.  At 1060nm there is an ideal trade off between the 

absorption and scattering spectras.  With a 1060nm light source, deeper light penetration 

is possible as it further extends the visible depth window, compared to typical 1310nm 

and 800nm light sources in watery tissue [11]. 

1.1 Objective 

The objective of this thesis was to create an OCT light source system that can make 

use of several channels for MOCT imaging while also having a center wavelength at 

1060nm to take advantage of the light absorption and scattering minimum.  Firstly a large 

enough output power to support several channels is needed and secondly to have a large 

enough bandwidth centered at 1060nm to provide an axial resolution that is comparable 

to other 1060nm light sources.  This project had to have yielded an OCT system with the 

highest documented optical output power and for the first time, demonstrate a multi-

channeled OCT system in the 1060nm range.  This project needed to be a direct 

replacement for multi-channeled laser sources, which currently uses a multiple SOA 
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design [9].  A through design process for the high powered laser needed to be outlined 

and its characteristics such as lasing and saturation needed to be well documented.  The 

laser source needed to be completely comprised of 1060nm components for optimal 

imaging.  A gain medium of Ytterbium (Yb) was used to achieve the required high 

optical power.  A methodology of designing a specific emission spectrum of Yb is also 

presented here.  The Yb gain medium was to be used to make both a swept source laser 

and a post amplifier for an SOA based seed laser.  To prove this laser’s ability as an OCT 

source, imaging was performed on a Xenopus Laevis tadpole. 
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2 Background 

2.1 Optical Coherence Tomography (Overview) 

Optical coherence tomography (OCT) is analogous to Ultrasound (US) in the fact 

that a wave propagates and interrogates the sample tissue and images are produced based 

on the backscattered and or back-reflected waves. However, in OCT, light waves are 

utilized as apposed to sound waves, direct contact between the wave source and the 

imaged sample is not necessary.  The wavelengths often used in OCT (~1.3µm) are much 

shorter than those of ultrasound (>50µm) allowing for a higher spatial resolution.  

However, the trade off of OCT’s excellent resolution comes at the cost of penetration, 

which is limited to 1-3mm due to optical scattering.  The major difference between OCT 

and US is the speed of the propagating wave.  The velocity of sound waves in water is 

~1.5x103m/s which is a slow enough speed for modern electronics to construct images 

based on the time delay of the backscatter or backreflected waves. However, the velocity 

of light is ~3x108 m/s, which is orders of magnitudes higher than that of sound and there 

are no existing electronic solutions to support the direct measurements for the time-delay 

of backscattered light.  For example, if the time delay measurement of light were used for 

a structural image with a resolution in the 10µm scale, this would correspond to a time 

resolution of 30 fs [2].  To over come this issue, correlation or interferometry techniques 

are employed [12] to gate the data acquisition and produce depth resolved reflectivity 

measurements of the sample of interest. The principals of interferometry are discussed in 

more detail in following section. 
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2.1.1 Interferometry 

Interferometry is a fundamental component in all OCT systems, which allows for 

measurement of the backscattered wave without measuring the direct time of flight 

difference of the light.  Figure 2-1 shows a Michelson interferometer setup in its simplest 

form.  The light that is emitted from the source can be represented by Et(t) = Eicos(ωt – 

kz), where Et is the electric field at position z at time t. k is the wave number given by 

2π/λ, where λ is the wavelength and ω is the angular frequency.  The light is divided into 

two paths by a beam-splitter (BS).  One path goes to a reference mirror while the other 

path goes to a sample, whose light will be denoted as Er(t) and Es(t) respectively.  After 

reflection, the beams travel back to the beam-splitter and are recombined together.  The 

output of the interferometer seen at the detector is ~Er(t)+Es(t).  The detector measures 

the intensity of the output beam, which is proportional to the square of the 

electromagnetic field.  If the distance traveled in the reference and sample lengths are 

represented by lr and ls respectively, the intensity seen at the detector is: 

€ 

I0 t( ) ~ 1
4
Er

2
+
1
4
Es

2
+
1
2
ErEs cos 2

2π
λ
Δl

 

 
 

 

 
 
      

Eq. 2-1 

Where ∆l is the path difference between lr and ls.  From Eq. 2-1, it can be seen that as the 

path difference varies, the output intensity will oscillate.  The bottom of Figure 2-1 shows 

the detected signal, Io(t) from the interference of a light source with a long coherence 

length (monochromatic) and the signal from a short coherence length (broad band).  The 

coherence length is inversely proportional to the bandwidth of light.  When a low 

coherence light source is used, interference is only observed when the reference and 

sample arms are matched within the coherence length [2]. 
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Figure 2-1: Michelson interferometer, interference of long and short coherence light [2] 

Figure 2-2 depicts the setup of a Michelson interferometer for use as an OCT system.  A 

fibre-coupler is used instead of a free space beam splitter.  The reference mirror can be 

translated back and forth for an OCT depth scan.  Three-dimensional imaging is achieved 

by a scanning mirror and a focusing lens that is directing the light onto the sample in a 

raster scanning fashion. The setup shown is known as a time domain OCT (TD-OCT) 

system.  More recent OCT systems take advantage of a frequency domain setup where 

translated mirror is eliminated. 
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Figure 2-2: OCT setup [13] and an OCT image of fingernail [14] 

Aside from interferometry, another difference between OCT and Ultrasound is the 

governing factors of image resolution. 

2.1.2 Transverse and Axial Resolutions  

In OCT, the resolutions of the systems are important specifications to indicate the 

quality of the image.  Unlike many other imaging modalities, such as Ultrasound, the 

axial and transverse resolutions are independent of one another.  The transverse 

resolution (lateral) is dependant on the imaging optics in the sample arm, such as the 

focusing lens.  Given a specific lens, the minimum spot size (Δx) that the sample beam 

can be focused is given by the equation: 

€ 

Δx =
4λ
π

f
d
 

 
 

 

 
           Eq. 2-2 

Where d is the spot size of the incident beam on the lens and f is the focal length of the 

lens.  Very high transverse resolution can be achieved by using a lens with a high 

numerical aperture (NA) however this will reduce the depth of focus (b) which changes 

as a function of the spot size from the following equation: 
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€ 

b =
πΔx 2

2λ
          Eq. 2-3 

Figure 2-3 visually depicts the trade-off between the spot size of the beam and the depth of 

focus [2].  If a high-resolution narrow Δx is desired the range in depth is reduced.  One 

advantage that MOCT has previously shown, was if multiple imaging beams with high 

NA are sequentially placed at several different depths (separated by a distance of b) the 

overall transverse resolution is increased. 

 
Figure 2-3: Trade-off between transverse resolution and depth of focus 

The coherence length of the light source determines the axial resolution, which is 

independent of the focusing optics.  The expected axial resolution of a light source can be 

calculated with the following formula: 

€ 

Δz = 2ln 2( ) λc
πΔλ

         Eq. 2-4 

Where λc is the center wavelength of the broadband light source and Δλ is the bandwidth 

of the light source at full-width half-maximum (FWHM).  For better resolution images, 
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shorter wavelengths and a wider bandwidth should be used [1].  Eq. 2-4 is an important 

parameter in light source design as it is an indicator of the achievable axial resolution. 

2.1.3 Fourier Domain OCT (FD-OCT) 

In Fourier domain (FD) OCT imaging the translating reference mirror used for 

depth scanning has been replaced by either a wavelength tuning light source or a CCD 

(charged-couple device) camera for either swept source OCT or spectral domain OCT, 

respectively.  As FD-OCT does not require a translating reference mirror, the image 

acquisition speed can be increased substantially.  The method for resolving depth without 

a translating mirror is described below.   

Let the backscattered light from the sample be represented by U with different depths, z: 

€ 

U z( ) =U0e
− ik0nz

€ 

Uz =U0e
−ik0nz  

Where U0 is the amplitude, k0 = 2π/λ0 is the wave number, λ0 is the wavelength, n is the 

index of refraction.   

If the light source was comprised of single monochromatic light, the interference seen by 

the photodetector can be represented by IΔz(k0): 

€ 

IΔz k0( ) = Ur +Us( )
2

IΔz k0( ) = U0 e
−ik0nz + e−ik0n z+2Δz( )( )

2

IΔz k0( ) =U0
2 e− ik0nz + e− ik0n z+2Δz( )( ) eik0nz + eik0n z+2Δz( )( )

IΔz k0( ) =U0
2 2 + eik0n2Δz + e−ik0n2Δz( )

IΔz k0( ) =U0
2 1+ cos(k02Δz)( )

     Eq. 2-5 

Where Ur and Us represent the light from reference and sample arms respectively which 
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are equal in magnitude.  2Δz represents the path difference that the light travels between 

the two arms.  The reflectivity of the imaged sample is depth dependent, let a(z) represent 

that reflectivity profile at any given beam position then Ur can be replaced by Uoa(z).  

Given this, the intensity from many different depths can be summarized as: 

€ 

I k0( ) = 2I0 1+ a z( )cos 2k0nz( )dz
0

∞

∫
 

 
 

 

 
  

If a broadband light source is used instead of a monochromatic light the interference 

signal can be represented by: 

€ 

I k( ) = 2I0 1+ a z( )cos 2knz( )dz
0

∞

∫
 

 
 

 

 
  

It can now be seen that the depth information is encoded in the cosine argument.  By 

definition of the Fourier transform, an intensity profile based on depth can be resolved: 

€ 

I z( ) = FT 2I0 1+ a z( )cos 2k0nz( )dz
0

∞

∫
 

 
 

 

 
 

 
 
 

 
 
       

Eq. 2-6 

 

2.1.3.1 Spectral Domain OCT (SD-OCT) 

In Spectral Domain OCT, a wide bandwidth super-luminescent diode (SLD) is 

utilized as the light source.  The light source interrogates the tissue after it passes through 

an interferometer similar to one described in Figure 2-2.  Instead of the interference signal 

being read by a high-speed detector, the light is collimated onto a high-density groove 

grating and onto a high-speed CCD detector array.  This configuration separates the 
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wavelengths so the spectrum of the interference can be determined.  After a Fourier 

transform, the depth profile can be deciphered.  Although a large improvement over TD-

OCT is seen, the high-speed CCD detector array is still seen as limiting factor due to the 

discharge time in an individual CCD detector and is slow in comparison to swept-source 

OCT (SS-OCT). 

2.1.3.2 Swept Source OCT (SS-OCT) 

With swept source OCT, the laser source is made up of a small filtered linewidth 

(Δλ), which is swept linearly in wavelength over time.  The entire sweep range is 

considered as the spectral width.  A high-speed photodetector is used as apposed to a 

CCD detector array.  The combination of a high-speed photodetector and a wavelength-

sweeping source creates a time resolved spectrometer.  As a photodetector only registers 

photons, regardless of the wavelength, it has a reduced data acquisition time compared to 

CCD detector’s relative longer discharge time.  During imaging with an SS-OCT each 

wavelength sweep through the entire spectral bandwidth corresponds to a single axial 

scan. 

2.1.4 Raster Scanning for Three-Dimensional OCT Imaging 

The aforementioned sections describe OCT imaging along a one‐dimensional 

axis (axial‐scan).  The achieve a full three‐dimensional volumetric OCT image, the 

imaging beam needs to be translated laterally to a different position.  After 

successive axial scans the imaging beam is swept in a single direction to create a 

two‐dimensional (b‐mode) image.  Obtaining successive b‐mode images at different 

positions a three‐dimensional OCT image is constructed through a raster scanner 
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mechanism.  There are several implementations to achieve volumetric imaging 

though the use of small‐catheterized MEMS devices [6] or through physically 

rotating the sample arm [14].  
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3 Experimental Setup 

 

All experimental setups use a dual core Yb doped fiber as the gain medium.  

Three main regimes for amplification were tested: a short cavity, a long cavity and post 

amplifier.  Several configurations were tested for each of the three regimes. 

3.1 Ytterbium (Yb) 

Ytterbium (Yb3+) ion, atomic number 70, is a rare-earth metal used as a dopant in 

many fiber-lasers (YDFAs).  The purpose of using Yb for OCT imaging is directly 

related to its fluorescence spectrum.   To understand the concept of fluorescence, the rare-

earth metal must be looked at an on atomic level.  The ground state of this atom has a 

given energy E1.  When the atoms absorb an energy in the form of light, with a frequency 

v31, its electrons are excited to a higher energy level, E3.  The elevation of the atom’s 

energy can be calculated as: E3 – E1 = hv31, where h is Planck’s constant.  This process is 

known as pumping, as shown in Figure 3-1(P).  The next transition (R) is the one from E3 

down to E2.  In order for the energy level to be dropped to E2, energy is release in a 

radiationless form, usually emitted as vibrational motion.  The transition (L) from E2 to 

E1 is a longer process and this energy is released as a photon.  The photon that is released 

can be calculated as E2 – E1 = hv21, where v21 is the frequency of the emitted photon [15]. 
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Figure 3-1: Transitions of energy levels during fluorescents 

Because frequency and wavelength are inversely proportional, when the smaller hv21 

energy is emitted, it is emitted as a longer wavelength.  In the case of Yb, the ground 

state manifold of the atom is 2F7/2 while the excited state manifold is at 2F5/2.   

3.1.1 Yb Emission and Absorption 

The cross-sectional absorption and spontaneous emission spectrums of Yb have 

previously been demonstrated [16].  The absorption spectrum in Figure 3-2 (left, solid) was 

obtained by fully saturating a given length of Yb doped fiber with white light and 

observing the un-absorbed light.  Re-absorption is when a photon is initially absorbed and 

emitted as a longer wavelength and this longer wavelength itself is absorbed again and 

emitted as a successively longer wavelength.  To avoid complications of re-absorption 

when monitoring the spontaneous emission, the measurement was taken along the side of 

the fiber as apposed to the fiber end.  The assumption was made that the peak of the 

absorption spectrum was equal to the peak of the emission spectrum. 
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Figure 3-2: The absorption (solid) and emission (dotted) Spectrums of Yb Doped Fiber [16] 

For the absorption there exists a broad peak centered at 915nm with a bandwidth of 

~65nm and a narrow peak at 975nm with a bandwidth of ~15nm.  The narrow peak at 

975nm can absorb about 3.3 times more than the shorter peak at 915nm. The emission 

gave almost a mirror image, with a large peak at 975nm with a bandwidth of ~15nm, and 

a broader smaller peak at 1030nm.  Overlaying both the absorption and emission 

spectrum, it can be seen that there is a large overlap between the two.  In Figure 3-2 (right) 

the absorption spectrum is showing that absorption exists for wavelengths as long as 

1100nm.  This is an important figure, as it is an indicator as to what wavelengths are 

susceptible to re-absorption in the Yb doped fiber and their relative re-emission as a 

longer wavelengths.  This re-absorption is a key contributor in the spectral shaping of the 

ASE as the shorter wavelengths have a higher probability of being re-absorbed and 

emitted as longer wavelengths when there is more re-absorption present.  The amount of 

re-absorption can be controlled in three ways, i) increasing the Yb doping concentration 

in the fiber and ii) increasing the length of the fiber effectively shifts the center 

wavelength of the ASE spectrum to longer wavelengths and iii) the driving pump power 

can be increased to saturate a larger potion of the doped fiber, which generally widens the 
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spectrum.  Additionally, the output ASE spectrum can be shifted by varying the input-

pumping wavelengths [17].  The affect of several different pumping wavelengths has 

previously been shown as well [16] and will not be covered extensively in this thesis.  

Both 915nm (SP-915-5-1015-7.5, Sheaumann, MA) and 975nm (SP-975-5-1015-7.5, 

Sheaumann, MA) pump laser diodes were used in this experimental setup.  Both of these 

pump laser diodes provided a bandwidth (<5nm FWHM) and a high maximum optical 

power output of 7.5W into a multi-mode fiber with a core diameter of 105µm.  The 

915nm and 975nm wavelengths were chosen because of the discussed absorption 

efficiencies in Figure 3-2.   The change in emission spectrum was experimented for 20m, 

4m and 1m Yb doped fiber lengths. 

3.1.2 Dual Core Fiber 

There are a few ways to pump rare earth-metal doped cores for a desired emission 

spectrum.  Core pumping is the least complex, where the pump-light directly propagates 

through the doped single-mode core.  This is generally accepted for lower power 

pumping due to the smaller cross section of the single-mode core.  Cladding pumping is 

where the pump light is propagating through the cladding and allows for a higher-

powered pumping scheme due the larger cross-sectional area of the cladding.  The novel 

dual-core Yb doped fiber (YBF, Prime Optical Fiber Corporation, Taiwan) was the 

chosen method of cladding pumping. The dual-core fiber consisted of two cores who are 

kept in optical contact.  A multi-mode core with a diameter of 105µm is used for high-

powered pumping, while the second core is Yb doped with a diameter of 5.2µm.  When 

the multi-mode core is pumped from a laser diode, the high optical power from the multi-

mode core leaks into the cladding with a Yb-doped core to provide cladding. There exists 
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other methods for cladding pumping such as side pumping the cladding via V-groove, but 

the dual-core fiber produces more efficient results. 

3.2 Laser Setup 

The type of emission described in Section 3.1 is known as spontaneous emission.  

For the Yb to be used as a laser, stimulated emission must occur with population 

inversion in an optical cavity. In Figure 3-1, the upper state E2 is a long-lived state and this 

allows for a large build up of electrons in E2 until the number of electrons in the E2 state 

exceeds the number of electrons in E1 state, this is known as population inversion.  

During simulated emission, an incoming photon forces an electron to drop from E2 to E1 

and this process creates a 2nd photon to be emitted with the exact same frequency as the 

incoming photon.  Population inversion is important during stimulated emission, as it 

requires a higher probability that the incoming photon will stimulate an electron from E2 

to E1 and emit a photon, as apposed to an incoming photon causing an electron to be 

excited from E1 to E2.  The setup proposed here is that the pump diode will pump 

electrons to E3, and fast transition down to E2 will occur to have a large population built 

up at this level.  Stimulated emission is then possible because of population inversion.  

To complete the laser, a cavity must be used to allow photon travel through the gain 

medium for stimulated emission.  Several cavity designs are presented. 

3.2.1 Ring Cavities 

Given a cavity and with the presence of population inversion, a laser can be made.  

4 different ring cavities were designed and tested to judge the dual core Yb-doped fiber’s 
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ability as a gain medium and to determine an efficient lasing mechanism.  The 

unidirectional propagation of the light in a ring cavity allowed for data measurements 

before and after the gain medium along a single path of light as apposed to a more 

difficult multi pass regime that a linear cavity would produce.  For all 4 schematics, 

shown in Figure 3-3 and Figure 3-4, a single 976nm laser diode was used to optically pump 

20m of Yb-doped dual core fiber with 1.2W of pump power.  The remainder of the ring 

was made up of HI1060 fiber to allow for single-mode propagation in the 1060nm range.  

For Rings A-C, the coupler (FOBC-2-64-100-50-B-1-H-0, AFW, Australia), (Coupler 1) 

immediately following the gain medium is used as the output reading of the gain 

medium.  PC1 (PLC-006-S25, PolaRITE, USA), the polarization controller is used to 

align the polarization state of the light for higher efficiency when reflecting onto the 

blazed grating (GR50-1210, Thorlabs, USA).  The custom built circulator, C1 (1064 +/-

50nm, Aglitron, USA), had a double role as it was a means to insert the grating filter into 

the ring cavity and acted as an optical isolator to ensure unidirectional photon travel.  The 

Input 1 (FOBC-1-64-100-10-B-1-H-0, AFW, Australia) coupler was used to calculate the 

low power going into the gain medium.  The grating was adjusted from a well aligned 

vertically position to a misaligned position to incrementally decrease the efficiency of the 

filter to have a varied input into the gain medium.  Once this measurement was done for 

several powers, it was repeated several times for different wavelengths to observe the 

gain seen over a broader spectrum.  The several wavelengths that the grating was aligned 

to produce includes: 1057nm, 1065nm, 1075nm, 1085nm, 1095nm, 1105nm and 1115nm.  

Ring A was designed to test very low power input as the Input coupler added a 10dB loss 

(10%) while Ring B tested a higher input power with only a .46dB loss (90%).  It is 



  21 

expected that Ring B and Ring C will have very similar lasing characteristics, as the only 

difference is that Coupler 1 and Coupler 2 splitting ratios have been swapped.  This 

allowed for a higher optical power to go through the filter and the 50/50 output will have 

a more spectrally filter output.  Lastly, Ring D performed similar tests as Rings A-C with 

the optical circulator being replaced by a 50/50 coupler and optical isolators (ISOS-64-B-

1-0, AFW, Australia).  This setup was tested for its design trade-off.  The custom built 

optical circulator had a relatively high insertion loss where the transmission from port 1 

to port 2 suffered from a 0.75dB loss and port 2 to port 3 suffered from a 0.80 dB loss.  

Also, this component has a high cost compared to its replacement of a 50/50 coupler. 

  

Figure 3-3: Ring cavities (A and B) setups to test the dual core Yb doped fiber as a gain medium 
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Figure 3-4: Ring cavities (C and D) setups to test the dual core Yb doped fiber as a gain medium 

 

After the demonstrated use of Yb-doped fiber as a gain medium, Ring B was 

modified to be a swept source OCT laser.  Two key components were added, a rotating 

polygon mirror and a swappable fiber spool (1.5 or 2.0km), to allow operation in both a 

short cavity and a long cavity. 

 
Figure 3-5:  Wavelength sweeping ring cavity laser 
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The polygon filter selects a specific wavelength that is linearly ramped over time.  

The unfiltered (notch) light is used for stimulated emission on the Yb gain medium.  The 

additions of a 1.5km or a 2km spool of HI1060 fiber onto port 2 of the optical circulator 

(OC) created effective lengths of 3km or 4km respectively due to the double pass in that 

fiber.  The lengthening of the optical path in the ring cavity was necessary for Fourier 

Domain Mode Locked (FDML) operation. 

3.2.1.1 Fourier Domain Mode Locking (FDML) 

Fourier Domain Mode Locking (FDML) allows for a narrow bandwidth swept 

laser source to operate at a high scanning frequency without a loss to the signal to noise 

ratio.  In a non-swept laser in a short cavity configuration (ex: Rings A through D), a 

single wavelength completes an infinite number of round trips within the cavity until the 

gain medium is saturated and the output power is at its maximum.  In swept lasers in a 

short cavity, the amount of time allotted for photon round trip build up is not infinite, but 

is limited by the sweeping speed of the filter and the length of the cavity.  If the filter 

sweep speed is increased, the build up time per wavelength is further reduced, which then 

becomes a limiting factor when trying to achieve faster OCT imaging.  The length of the 

total cavity also governs the short cavity efficiency, as less fiber material in the cavity 

results in a shorter photon travel distance.  A shorter distance corresponds to a faster 

photon round-trip time and allows for more photon build-up.  In FDML, an optical delay 

is added by inserting a fiber spool into the cavity.  The optical filter’s repetition rate is 

tuned to have a period equal to the long cavity’s photon round-trip time.  This produces a 

quasi-station mode of operation.  Light from an instantaneous position of the filter 

propagates through out the long cavity and when that specific wavelength of light re-
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enters the filter, the filter will once again be tuned to that exact wavelength.  Light from 

the previous round-trip is coupled back into the gain medium and stimulated emission of 

that specific wavelength is produced as well.  An entire wavelength sweep from shortest 

to longest wavelength is stored within the entire span of the spool.   

For FDML operation to occur, the following criterion must be met [18]: 

          Eq. 3-1 

Where fdrive is the repetition rate of the optical filter, c is the speed of light in a vacuum, 

lfiber is the total length of the cavity and n is the index of refraction of the fiber.  The total 

length of the cavity used in this thesis was either 3km or 4km while the index of 

refraction of HI1060 fiber is 1.46.  Using Eq.3-1, the repetition rate of the optical filter 

was calculated to be 51.4kHz and 68.5kHz for 3km or 4km lengths respectively. 

3.2.1.2 Polygon Mirror Filter 

In swept source OCT there are 2 popular sweeping filter configurations.  The 

piezo-tunable filter can achieve high speed tuning with a sinusoidal bi-directional scan, 

where the wavelengths are swept from short to long and long to short [19]. Where as the 

polygon scanner is a saw-tooth uni-directional scan where the wavelengths are swept 

only from short to long.  The unidirectional sweeping scheme has been shown to produce 

better OCT images [20].  The polygon configuration described in Figure 3-6 [17,21], had 

coupled the light into a collimator (HPUCO-23A-1300/1550-S-8AS-SP, OZ optics, 

Ottawa) to have a 1/e2 beam waist of 2mm to hit a 72-facet gold platted polygon mirror 

(SA34, Lincoln Laser, USA).  The rotating polygon mirror provided a 10° sweep on a 
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high-groove density blazed grating (GR50-1210, Thorlabs, NJ).  With the grating 

positioned at the Littrow angle, the 1st order would be reflect a specific defracted 

wavelength back to the polygon and back into the collimator.  As the polygon rotated a 

different incident beam hit the grating causing a different defracted wavelength to be 

reflected.  The Littrow angle was calculated using the grating equation [22]: 

€ 

d(sinθm ± sinθi) = mλ

        Eq. 3-2 

Where d (0.83µm) was the period of the grating, θm is the diffraction angle, θi is the 

incidence angle normal to the grating, λ (1085nm) is the center wavelength and m is the 

order number.  For a the first order (m=1) in Littman configuration, the incident angle is 

the same as the defracted beam, θm = -θi, which reduces the grating equation to: 

€ 

2d sinθm _ i = λ           Eq. 3-3 

With a center wavelength of 1085nm, the Lithrow angle was found to be 40.8º from the 

normal of the grating.  Given a 10º sweep from the spinning polygon, the achievable 

bandwidth is calculated as ~219nm (971-1190nm).  A total spectral width of 219nm was 

not seen, as the ASE of the gain medium did not cover that large spectral range.  As a 

result, when the filter was tuned to a wavelength that was outside the ASE range, the 

output of the cavity was dead, as the Yb can not lase at these wavelengths. 
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Figure 3-6: Polygon filter configuration, conceptual (left), actual (right) 

3.2.2 Linear Cavity with Post Amplification 

An alternative to the ring cavities for OCT swept source lasers is the linear cavity 

design with post amplification.  The linear cavity will be known as the seed, and it 

provided a low powered sweeping source with an SOA gain medium, while the Yb was 

used for post amplification.  No lasing occurs in the Yb doped fiber, but a single pass 

occured for stimulated emission. 

 
Figure 3-7: Linear cavity using Yb doped fiber as post amplifier 
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Figure 3-7 shows how the seed laser and the post-amp are used together.  In the seed, the 

optical filter served as a “100%” reflective end of the laser while the two outputs on the 

opposite side of the 50/50 splitter was spliced together to create a the effect of a 100% 

reflective mirror.  The coupler provided an output from the cavity while maintain 50% of 

the light for further lasing.  An SOA gain medium (BOA-5391, Covega, USA) was 

placed in the middle of the cavity and a polarization controller (PC) was used to align the 

polarization states for higher lasing efficiency within the cavity.  An isolator (ISO) was 

inserted between the seed stage (A) and the post-amp stage (B) to ensure that the high-

powered gain medium does not burn any of the laser components.  A similar pumping 

regime from P1 in the ring cavities in Figure 3-3 was used on the Yb.  Various lengths of 

Yb doped fiber (20m, 4m, and 1m) were tested in this configuration. 

3.2.3 Imaging Optics / Electronics 

The imaging optics were configured in a standard OCT setup.  An initial 90/10 

splitter was used to tap 10% of the optical power for a clock signal.  For the clock, the 

light was split into two separate paths via a 1x2 50/50 splitter and recombined by the 2x2 

coupler for interference.  The path difference in the two paths was ~2.5mm.  A dual 

balanced photodetector (1817FC, Newport, USA) with a bandwidth of 80MHz converted 

the optical interference signal to an electronic signal.  The remaining 90% of the coupler 

was sent to a Michelson interferometer.  This was a fiber-based version of the 

interferometer presented in Figure 2-1, with an added circulator (C).  In Figure 2-1 

(interferometer), only 50% of the interference signal is sent to the detector while the other 

50% is sent back to laser source.  By inserting the optical circulator, the interference 

signal sent back to the light source was used with a dual balanced photodetector.  
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Although one interference signal from the interferometer would suffice, the signal to 

noise ratio can be increased by using the two signals.  Both sample and reference arms 

collimated the beam and were reflected back with a matched path difference.  The sample 

arm was reflected off of a computer controlled 2D scanning galvo mirror (6210H, 

Cambridge Tech., USA), through a focusing lens (AC254-030-C, Thorlabs, USA) and 

focused on to a sample.  The scanning galvo mirror is used to position the focused beam 

at different sections of the sample; this provided a raster scanning mechanism.  Figure 3-8 

shows the imaging optics with the electronic interfaces.  Blue lines are indicators of fiber 

optic mediums, red is an indicator of optics in free space, while black lines are indicators 

of electrical mediums. 

 
Figure 3-8: System diagram of imaging optics 

The in-vivo sample that was imaged was a Xenopus laevis tadpole that has been matured 

for about 3 weeks.  This sample was chosen as it is relatively optically transparent and its 

heart is located close to the surface of its body. The sample was anesthetized with 
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~0.01% Tricane until it became unresponsive to touch or vibrations.  It was placed into a 

Petri dish with a sponge and shallow water with the ventral side up.  The purple dashed 

box in Figure 3-8 represents the portion of the OCT setup where the high powered output is 

split into several output channels with multiple sample and reference arms.   
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4 Results 

4.1 Amplified Spontaneous Emission Spectrums 

Figure 4-1 shows the normalized ASE spectras in a dB scale of the dual-core Yb 

doped fiber for 3 different doped fiber lengths: 20m, 4m and 1m being pumped with a 

976nm pump diode.  Shortening the lengths of the doped fiber shifted the ASE peak 

wavelength down to shorter wavelengths while the edge-to-edge bandwidth was widened.  

Widening of the ASE spectrum is generally desired, as it allows fore a wider lasing 

spectrum, which in turn would increase the axial resolution as described by Eq.2-4.  The 

highest tested output ASE power seen in the 1m of Yb was only ~7mW, while 

lengthening it to 4m and beyond allow for higher than 200mW.  These results are 

summarized in Table 1. 

 
Figure 4-1: Amplified spontaneous emission of various Yb doped fiber lengths 

 1m 4m 20m 
Pump power 2.5W 2.5W 1W 
Output power 7mW >200mW >200mW 
Peak Wavelength 1036nm 1043nm 1076nm 
Edge-to-edge 
bandwidth 119nm 102nm 95nm 

Table 1: Summary of 3 Yb-doped fiber lengths 
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Another method for spectral shaping is by varying the pump wavelengths, two of 

which have been tested for in this study.  Figure 4-2 shows an overlap of the two ASE 

spectrums.  976nm pumping provided an ASE with peak wavelength at 1075nm while a 

915nm pump shifted the ASE peak wavelength to 1083nm. Overall, there was not a 

significant widening of the spectrum and it was not further investigated.  Both of these 

spectrums were outputs of 20m of Yb doped fiber and it is projected that if the lengths of 

the Yb doped fiber are varied as well these ASE spectrums will be influenced in a similar 

fashion as in Figure 4-1. 

 
Figure 4-2: Amplifies spontaneous emission of a 915nm and a 976nm pump 

4.2 Ytterbium’s Ability to Lase 

The ytterbium provided lasing for several different wavelengths, which generally 

spanned the whole ASE spectrum.  All of the cavities presented here are expected to have 

very similar linewidths as the exact same filter configuration and gain medium is used.  

The spectrums demonstrated in this section appear to have large linewidths (>1nm), but 

this is due to the resolution settings on the optical spectrum analyzer (86142A, Hewlett 
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Packard, USA) at the time of the measurement.  An accurate depiction of the linewidth is 

shown in Figure 4-3 where the grating in the filter allowed the linewidth to have a 3dB 

bandwidth as narrow as 0.19nm. 

 
Figure 4-3: Linewidth of the filter 

4.2.1 Ring A 

Ring A tested the Yb-doped fiber’s ability to lase with a low power input.  Only 

two wavelengths were tested for, 1069nm and 1090nm and the outputs of Coupler 1 are 

shown in Figure 4-4.  Both of these wavelengths provided expected lasing while the rest of 

the ASE spectrum was suppressed.  Based in the results from Rings B through D, it is 

expected that if the filter’s wavelength were to be changed to one that was towards the 

edge of the ASE spectrum (~1050nm or ~1120nm), there would not be as much 

suppression of the ASE.  Figure 4-5 shows the gain of these 2 wavelengths as a function of 

input.  As the power prior to the gain medium increased, it’s gain decreased, showing that 

the gain medium is reaching a saturation state. 
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Figure 4-4: Lasing of different wavelengths in the Ring A configuration 

 
Figure 4-5: Gain of different wavelengths in the Ring A configuration 

4.2.2 Ring B 

Ring B’s configuration was designed to test the Yb doped fiber’s ability to lase 

with a higher power input compared to Ring A.  A wide range of wavelengths was tested, 

which include 1057nm, 1065nm, 1075nm, 1085nm, 1095nm, 1105nm and 1115nm.  

Three of these wavelengths the output of Coupler 1 are shown lasing in Figure 4-6 with 

complete suppression of the ASE occurs during1085nm lasing and only partial ASE 

suppression occurs during lasing at the ASE edges, 1057nm and 1115nm.  Figure 4-7 

shows the gain as a function of input.  Wavelengths 1065nm to 1105nm exhibited 

saturation as the gain started to dramatically decrease as input slowly increased.  For 
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1057nm and 1115nm saturation was not present and in comparison to the rest of the 

spectrum, a lower gain was seen. 

 
Figure 4-6: Lasing of different wavelengths in the Ring B configuration 

 
Figure 4-7: Gain of different wavelengths in the Ring B configuration 

4.2.3 Ring C 

As expected, Ring C’s gain with several wavelengths (Figure 4-9) was very similar 

to that of Ring B’s (Figure 4-7).  The saturation of the gain medium was still seen, as the 

only difference was the order of components in the ring cavity.  Figure 4-8 shows the 

output at Coupler 2 and the advantage of Ring C.  A cleaner spectrum is seen as the 

unsuppressed ASE components of the spectrums have been optically filtered out due to 

the fact that the high-powered output is after the polygon mirror filter, as apposed to 

before the filter. 
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Figure 4-8: Lasing of different wavelengths in the Ring 3 configuration 

 
Figure 4-9: Gain of different wavelengths in the Ring 3 configuration 

4.2.4 Ring D 

Ring D was designed to test the lasing ability in a ring cavity that did not utilize a 

circulator to insert the optical filter.  It was expected that the linewidths would have 

similar ASE suppression as in Ring B.  It was uncertain of the efficiency of using a 50/50 

splitter as a means to insert the filter as apposed to the circulator.  Test results showed 

that the 50/50 splitter was not as efficient as the circulator, as there was a small reduction 

in output power.  With a 50/50 splitter, the back reflected light from the polygon got split 

into two directions into the ring.  One direction is amplified by the Yb doped fiber while 

an optical isolator attenuates any light propagating in the opposite direction. 
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Figure 4-10: Lasing of different wavelengths in the Ring D configuration 

 
Figure 4-11: Lasing of different wavelengths in the Ring D configuration 

4.3 Noise & Gain Figures, Polarization Extinction Ratio (PER) 

Figure 4-12 demonstrates a narrow bandwidth output before Yb doped pumping and 

after Yb doped pumping in a single pass amplification scheme.  There was a gain of 

6.36dB, however, this is not the absolute maximum gain that can be achieved, and 

higher gain is possible if free space components are used with higher pumping 

regime.  The burning threshold of the fiber optic component limited this gain.  The 

polarization extinction ratio between the linearly polarized component and the 

horizontally polarized component 130.92 before a single pass amplifier and a ratio 

of 104.11 after the amplifier. 
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Figure 4-12: Gain and noise measurement data 

 

4.4 Wavelength Sweeping Laser Source 

Two regimes were designed and tested for the wavelength-sweeping source.  A 

short cavity design was tested along with a long cavity with a delay fiber spool added to 

achieve FDML operation as described in Section 3.2.1.1.  Both configurations generated 

very similar lasing bandwidths.  The lasing bandwidth demonstrated in Figure 4-13 are the 

results from a 20m Yb doped fiber the Ring B configuration (Figure 3-3B) and was 

achieved by manually tuning the wavelength of the optical filter at a slow rate to allow 

for lasing at every possible wavelength.  This measurement was done to set an indicator 

of the widest achievable bandwidth of the system.  This measurement provided a known 

achievable standard when tuning the system for both short and long cavities. 
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Figure 4-13: Lasing bandwidth seen from the Yb-doped fiber 

The edge-to-edge lasing bandwidth ranged from 1057nm to 1121nm.  A relatively flat top 

was achieved in the spectrum, which is generally desired in OCT light source design.  

The noise component, such as the one seen at ~1060nm, is a measurement error as the 

filter was not manually set to those particular wavelengths for as sufficient amount of 

time for the OSA to completely observe it.  It is expected that if the filter were tuned 

more slowly during the measurement the spectrum would create a smoother shape.  A 

similar result was seen with 4m of Yb doped fiber where the lasing bandwidth extended 

lower than 1045nm.  This result is expected based on the results seen in Figure 4-1 where 

the ASE spectrums for the different Yb doped lengths are shown.  A spectrum with this 

type of bandwidth and power can generate good OCT images provided it maintains this 

shape when the light source is swept 

4.4.1 Short Cavity 

The ring cavity in Figure 3-5 was used without the fiber spool for the short cavity 

design, while utilizing a 4m segment of Yb doped fiber.  The total length of the short 

cavity was ~5m and a relatively low sweep rate was tested.  Typical short cavity polygon 

scanning systems with an SOA gain medium provides sufficient lasing with a 36kHz 
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sweep rate.  Using the Yb doped fiber as a gain medium, required a slower sweeping rate 

as sufficient lasing was only seen when the sweep rate was less than 1kHz.  Figure 4-14 

shows the output spectrum as the source was sweeping slowly.  Edge-to-edge lasing 

bandwidth spanned from 1049nm to 1131nm.  During faster sweeps, drastic reductions in 

the bandwidth side lobes were seen.    Although the bandwidth was larger enough it was 

deemed that the slow sweep rate of 1kHz was not fast enough for real-time imaging. 

 
Figure 4-14: Output spectrum using 4m of Yb doped fiber in a short cavity 

4.4.2 Long Cavity – FDML 

The long cavity with a 1.5km spool that is described in Figure 3-5 was used for 

FDML operation.  Because of the quasi-stationary state that the cavity exists in, as 

described in Section 3.2.1.1, the signal to noise ratio is much improved at high sweeping 

speeds.  During FDML operation, the system was lasing fully for only a small section of 

the edge-to-edge bandwidth.  When the sweep rate of the polygon was slightly increased, 

the lasing bandwidth was shifted to a lower frequency.  Figure 4-15 demonstrates the 

output spectrum for three different sweeping frequencies; f1 = 67.176kHz, f2 = 

67.428kHz, f3 = 67.680kHz.  f1 and f3 appear to be reciprocals of one another.  When the 

two spectrums are overlaid on one another, the lasing bandwidth is from 1045nm to 
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1102nm, however separately half of the spectrum has been drastically reduced, but not 

completely.  The 3dB bandwidths of either of the spectrums were not wide enough to 

obtain high resolution OCT imaging.  Improvement to these spectrum shapes can be 

included in the future to implement this configuration for imaging. 

 
Figure 4-15: Output spectrum in FDML operation at 3 different sweeping frequencies 

4.5 Yb doped fiber in Post Amplification Configuration 

In a post amplification configuration, two different lengths of Yb-doped fibers 

were tested.  20m of doped fiber provided higher gain with re-absorption narrowing the 

spectrum. 4m of doped fiber provided a wider spectrum with less gain and lower re-

absorption due to the reduced amount of Yb material. 

4.5.1 20 Meters of Yb Doped Fiber 

A 1060nm swept OCT laser source was constructed utilizing an SOA to create a seed 

laser.  The output power was 5.4mW with an edge-to-edge bandwidth from 1038nm to 

1098nm.  The output spectrum of the seed laser is shown in Figure 4-16 in black.  The seed 

laser had bi-directional wavelength sweeping (from 1038nm to 1098nm then 1098nm to 

1038nm) at a rate of 8000 Hz.  This light was passed through 20m of Yb doped fiber 
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where absorption occurred.  With no external pumping to the Yb doped fiber, a 

significant portion of the bandwidth was lost due to absorption; this spectrum is shown in 

red and has a total output power of 0.5mW.  The blue spectrum represents the spectrum 

when the Yb doped fiber is excited with the 976nm pump, which gave an output power in 

excess of 200mW.  The output of the Yb doped fiber had both spectral amplification and 

broadening due to the external pumping.  The bandwidth reduction caused by the 

absorption was an undesired artifact.  To overcome the absorption issues, the seed laser 

could be pumped harder to reduced the overall effect of re-absorption, however a simpler 

solution would be to shorten the Yb doped fiber length. 

 
Figure 4-16: SS-OCT seed laser spectrum before and after 20 m of Yb doped fiber 

4.5.2 4 Meters of Yb Doped Fiber 

In comparison to Figure 4-16, it can be seen in Figure 4-17 that the shorter length of 

Yb doped fiber allowed for a 20nm larger bandwidth to pass through the gain medium 

without suffering from complete absorption.  Given a very similar seed laser source, it 

can be seen that using 4m of Yb doped fiber over 20m of the same fiber provided a 

noticeably smaller spectral loss.  This gain bandwidth is further expanded when the Yb 

doped fiber is pumped with a 976nm pump laser diode.  A significant portion of the 
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entire edge-to-edge bandwidth was recovered by pumping the Yb with are large amount 

of power.  Although the bandwidth of pre-amp and post-amp of the edge-to-edge 

bandwidth are very similar, spectral shaping occurred, causing the 3dB bandwidth to be 

drastically reduced in the post amp configuration.  The seed laser demonstrated a 

relatively flat spectrum with a 3dB bandwidth of ~57nm, while in a post amp 

configuration, the spectrum had a slightly curved top, causing the 3dB bandwidth to be 

reduced to ~35nm which subsequently affects the axial resolution governed by Eq. 2-4. 

 
Figure 4-17: SS-OCT seed laser spectrum before and after 4m of Yb doped fiber 

4.5.2.1 Point Spread Function 

To further characterize this as a swept laser source for OCT imaging, the point 

spread function measurement was performed.  A fiber optic Michelson interferometer is 

used with two gold platted mirrors located at matched distances in both the sample and 

reference arms.  The reference mirror’s length is varied for several distances and the back 

reflected interference signal is measured as a function of depth.  A frequency oscilloscope 

took the measurement of the interference signal and it was saved for post processing.  

This is an excellent indicator of the range in depth that the laser source can provide.  
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Simply put, this is an OCT image of a mirror at several depths.  Figure 4-18 demonstrates 

the setup used. 

 
Figure 4-18: Interferometer setup for point spread function 

By physically adjusting the position of the mirror, measurements were taken with 

a path difference of 0.0mm to 3.5mm with increments of 0.5mm while using the three 

configurations: 1) seed laser, 2) seed laser with 4m of Yb doped fiber with no pumping 

and 3) the seed laser with 4m of Yb doped fiber with high pumping (~4W). 

 
Figure 4-19: Point spread function measurement of the seed laser 
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Figure 4-20: Point spread function measurement of the seed laser and Yb doped fiber without pumping 

 

Figure 4-21: Point spread function measurement of the seed laser and Yb doped fiber with pumping 

Figure 4-19, Figure 4-20, Figure 4-21 show the PSF measurements of the seed laser, 

seed laser & Yb doped fiber with no pumping and the seed laser & Yb with pumping 

respectively.  The Fourier transform of the received interference signal is performed, as 

described by Eq. 2-6.  The 6dB roll off from the 0.0mm position is a rough indicator of 

the physical range in which optimal imaging will occur, and this is a standard indicator 

set in the OCT industry.  In the seed laser, this was measured to be at 1.5mm however, 

adding the Yb doped fiber lengthened the 6dB roll off of the point spread function 

measurement.  The seed laser with the Yb doped fiber without pumping provided a 6dB 
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roll off of 2.05mm while pumping the Yb doped fiber provided a 6dB roll off of 2.25mm.  

For this measurement, the Yb doped fiber was pumped with approximately 4W from the 

976nm pump.  In general, narrowing the linewidth of the optical filter (Δλ) broadens this 

roll-off.  The following table summarizes the dB drop-off as the reference and sample are 

varied in length:  

Depth Seed Laser  
(Drop off) 

Seed + Yb + No 
Pump  

(Drop Off) 

Seed + Yb + Pump 
(Drop Off) 

0.0mm 0.00 dB 0.00 dB 0.00 dB 
0.5mm 2.46 dB 0.90 dB 0.83 dB 
1.0mm 4.14 dB 2.01 dB 2.12 dB 
1.5mm 6.00 dB 3.74 dB 3.99 dB 
2.0mm 8.12 dB 5.80 dB 5.75 dB 
2.5mm 10.37 dB 7.96 dB 7.75 dB 
3.0mm 12.84 dB 10.55 dB 9.11 dB 

Table 2: Summary of the point spread function measurement 

It must also be noted that the absolute amplitude values in the PSF measurements must 

not be considered as the signal power.  The photo-detector has a threshold limit, where it 

will begin to saturate.  For all the measurements, the output light from the amplifier was 

attenuated until the interference signal did not saturate the detector.  Attenuating the light 

from the amplifier did not alter this measurement, as only the relative power loss from the 

0.0mm position is considered.  The reason for the saturation was because this test is very 

similar to imaging the surface of a mirror.  In actual tissue OCT images, a significant 

smaller amount of light is back reflected from the sample, which causes the detector to 

not be saturated. 
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4.5.2.2 Clock Signals 

The MZI clock described in Figure 3-8 was custom built, as a suitable clock 

mechanism is not commercially available for the 1060nm wavelength range.  A clock is 

necessary in OCT as it is required for calibration for the interference signal.  The 

construction of the MZI clock was done by tapping 10% of the total signal and splitting it 

equaling into two paths.  The one path varied in length by 2.5mm and then the signals 

were recombined.  The clock signal is generally desired to be a Gaussian shape, so that 

when Fourier transform operations are performed, no ringing artifacts are present.  

 
(A) 

 
(B) 

 
(C) 

Figure 4-22: Clock signal of the laser source pre and post amp 

Clock Signal A was taken directly from the seed laser source.  Clock Signal B has the 

Yb-doped fiber added with no pumping and there was a significant lower amount of 

sample points, due to the fact that the output spectrum has also been reduced (Figure 4-17).  

Clock Signal C was taken when high pumping is occurring on the Yb doped fiber.  

Comparing Clock Signals A and C, A is larger in data sample size, meaning there are 

more data sample points from the interference signal.  However, Signal C has more of a 

Gaussian shape to it, which is helpful when performing Fourier transforms 
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4.5.2.3 OCT Images 

Multi-channelled images were obtained from the setup described in Figure 3-7 and 

Figure 3-8.  A two channelled scanning head has not been devised so the two channels 

obtained were imaged separately and digitally stiched together during post processing.  

Figure 4-23 through Figure 4-25 show the cross sectional view of an in vivo image of the 

Xenopus laevis tadpole.  The image sizes obtained had a resolution of 4096 x 512 and 

have been averaged by 4 in the transverse direction, which subsequently reduced noise 

and gave an image size of 1024 (transverse) x 512 (axial).  The actual width of the image 

is 5mm (transverse) by 3mm (axial) 

 
Figure 4-23: A 1-channel in vivo image (pre-amp) of a tadpole heart 

Figure 4-23 demonstrates the seed laser as an OCT laser source.  The 3-chamber heart is 

clearly visible along with several other structures of the sample.  However, if this single 

laser source is split into two channels the light power to the sample is halved and the 

reduction in the signal to noise is clearly seen in Figure 4-24.  The need for a high-powered 
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source for MOCT imaging is made very apparent here, as a lot of the deeper structure is 

not visible. 

 
Figure 4-24: A 2-channel in vivo image (pre-amp) of a tadpole heart 

After adding the Yb doped fiber in a post amplification configuration enough photons per 

channel were produced to image deeply.  Figure 4-25 shows that amplification can then be 

further increased to penetrate further into the sample, as the bottom most layers is in the 

sample are now visible again, and the loss seen in creating two channels has now been 

recovered.  The power to each channel was approximately 20mW, which allowed for 

such a deep penetration.  A minor problem that arose from the increase in power was that 

the photo-detector used to read the interference signal was suffering from saturation, 

causing odd streaks in the image, however this problem can be solved by adding even 

more channels. 
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Figure 4-25: A 2-channel in vivo image (post-amp) of a tadpole heart 

Full three-dimensional data sets were obtained of the Xenopus Laevis tadpole with a 

voxel resolution of 4096 x 512 x 512 corresponding to a 5mm x 5mm x 3mm volume. 
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5 Discussion 

5.1 Ring Configurations 

The four different ring configurations demonstrated the Yb doped fiber as a 

saturatable gain medium in a variety of setups.  The wavelength range of these setups all 

were roughly centered at ~1085nm which was reasonably close to the ideal 1060nm.  For 

Ring B verses Ring C, the 50% output was placed before the circulator and optical filter 

as apposed to after the circulator respectively.  Ring C’s output had complete suppression 

of the ASE due to the filter’s position in the cavity, not because of gain mediums lasing.  

However the drawback of Ring C is that the 50% output is slightly reduced by the 

efficiency of both the circulator (~1.5dB loss) and the filter (~1dB loss).  Given the 

efficiency of the linewidth output, Ring B’s configuration was chosen for both the short 

and long swept source laser experiments.  Ring D was also a reasonable setup.  If cost 

considerations are taken, a relatively expensive component such as the optical circulator 

can be replaced by a cheaper splitter. This swap will lower the overall lasing efficiency of 

the entire ring, but with such a large power being produced from the Yb doped fiber, the 

less efficient Ring D is a more suitable replacement.  

5.2 Wavelength Sweeping Laser Source – Short 

The length of the short cavity is related to the total output power.  As the polygon 

filter spins, the instantaneous position of the filter will allow one specific wavelength to 

pass through.  These photons propagate within the ring until it reaches the gain medium 
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again where it is amplified again and lasing begins.  To increase the output power in this 

setup, the amount of roundtrips that can occur for a single wavelength need to be 

increased and this can be achieved in two ways; 1) the polygon filter can be slowed down 

to allow for a larger time gate or 2) the length of the ring can be shortened.  A drastically 

reduced bandwidth (<20nm) was seen at standard sweep rates (36kHz) however when the 

sweep rate was slowed down to 1kHz the lasing bandwidth broadened to have a range 

from 1049nm to 1131nm.  This would indicate that at 5m the total ring cavity length is 

too long or that 1060nm Yb gain medium generally requires more round trips to reach a 

saturation state in comparison to SOA based 1060nm laser systems.  Given the required 

length of the Yb-doped fiber (4m), when a short cavity is necessary, this gain medium 

can only be used with slower acquisition times.  Slower acquisition times are 

advantageous when a high sensitivity in Doppler imaging is needed, as a larger phase 

build-up between successive axial scans is possible, which may be a possible application 

of this slow scan rate. 

5.3 Wavelength Sweeping Laser Source – Long (FDML) 

In FDML operation, the spectrum shapes were reduced on either sides and they 

were also shifted by narrowly varying the sweep speed (Figure 4-15).  This indicates that 

the gain medium does have the ability to lase at these wavelengths at the current sweep 

rate, and that the problem may come from chromatic dispersion in the HI1060 fiber 

spools. 
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5.3.1 Chromatic Dispersion in Fibers 

When light propagates through a single mode fiber chromatic dispersion occurs.  

A perfectly monochromatic pulse width does not exist, as it will always have a defined 

bandwidth, Δλ.  Because different wavelengths occur, the pulse width will have photons 

traveling at different speeds.  With a range of speeds, a narrow pulse width is broadened 

inside a dispersive waveguide.  The pulse widening is what hinders FDML operation in a 

highly dispersive medium, such as the HI1060 fiber. 

5.3.2 Dispersion in FDML Operation 

As described in the Section 5.3.1 chromatic dispersion leads to different 

wavelengths propagating at different speeds and this fact can be detrimental to FDML 

operation.  The first condition for FDML operation stated in Eq. 3-1 simply solved that 

the sweep rate should equal the round-trip photon propagation time.  In our case, with a 

3km long cavity, the photon round-trip propagation time was 14.7µs (1/68kHz).  

However, given a highly dispersive medium (HI1060 fiber) the pulse width is broadened.  

This broadening can be quantified as: 

€ 

τmismatch = lfiberdΔλtuning _ range         Eq. 5-1 

∆τmismatch (s) is the time delay between the shortest and longest wavelength after it has 

traveled through a given fiber length, lfiber (m), where the fiber has a chromatic dispersion 

coefficient of d (ps/(nm x km)) and the light has a tuning range of ∆tuning_range (nm).  For 

successful FDML operation, the ∆τmismatch must be smaller than the time duration τgate, 

where τgate is the time duration in which the bandpass filter transmits a single wavelength. 
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τgate can also be thought of as the dwell time that the system is lasing at a single 

wavelength, which is given as: 

€ 

τ gate =
Δλ

fdriveΔλtuning _ range
        Eq. 5-2 

where Δλ (nm) is the optical filter’s bandwidth and fdrive is the filter frequency previously 

described in Eq. 2-1.  Combining Eq. 2-1, Eq. 4-1 and Eq. 4-2 a criterion for a single 

successful photon round-trip propagation to occur in FDML operation can be described 

as: 

€ 

τ gate ≥ τmismatch
Δλ

fdriveΔλtuning _ range
≥ l fiberdΔλtuning _ range

Δλ ≥ l fiberdΔλtuning _ range
2 fdrive

Δλ ≥
cΔλtuning _ range

2 fdrived
n

       Eq. 5-3 

where c is the speed of light in a vacuum and n is the index of refraction of the fiber.  The 

fiber being used in the cavity is comprised of HI1060 fiber.  HI1060 is manufactured with 

a 5.3µm core for single mode propagation at1060nm.  However, at its single mode 

wavelength, there exists a large chromatic dispersion coefficient. 
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Figure 5-1: Dispersion curves for HI1060 and SMF-28 fibers 

Figure 5-1 depicts dispersion curves for both HI1060 and SMF-28 fibers.  In the 

SMF-28 fiber at ~1310nm, there exists 0 ps/nm/km dispersion which is why standard 

1310nm OCT systems generally have no issues with dispersion.  However in the HI1060 

fiber at a 1060nm wavelength, there exists a -40 ps/nm/km dispersion coefficient.  Given 

Eq. 5-3 with a Δλtuning_range of approximately 90nm and an n of 1.46, the minimum 

linewidth is given as: 

€ 

Δλ ≥
3×105km /s 90nm( )2 40ps /nm /km

1.46
Δλ ≥ 0.067

 

The filter bandwidth was tested to be 0.19nm, which satisfies the above condition.  

FDML operation was achieved (Figure 4-15) except for the odd spectrural shaping that 

occurred at either the short end or long end of the spectrum, depending on the sweeping 

frequency.  To further improve the FDML operation and reduce chromatic dispersion, a 

larger bandwidth filter (Δλ) could be used, however this would degrade the range in depth 

of the source.  A second alternative would be to use dispersion compensation components 

such as dispersion shifted fiber (DSF) to shift the dispersion curve of HI1060 at 1060nm 

fiber closer to 0 ps/nm/km. 
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5.3.3 Accepted Work Involving Yb Doped Fiber for a Swept Source Gain Medium 

 The work demonstrating the Yb doped fiber as an OCT source was published as a 

manuscript in the SPIE Photonics West 2010 at the Fiber Lasers VII: Technology, 

Systems, and Applications conference with poster presentation also occurring at the 

Imaging Network Ontario (ImNO) Symposium 2010.  The poster and manuscript are 

shown below: 
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Mark K. Harduara, Adrian Mariampillaib, Barry Vuonga, Kyle H.Y. Chengc, Lawrence R. 
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aDepartment of Electrical and Computer Engineering, Ryerson University, Toronto, 
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cDepartment of Electrical and Electronic Engineering, University of Hong Kong, 
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dDepartment of Electrical and Computer Engineering, McGill University, Montreal, 
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ABSTRACT 
 

 We demonstrate high efficiency and wide bandwidth gain in a Ytterbium doped fiber amplifier.  The 
high-powered amplifier has potential applications for use with a swept-source fiber ring laser in multi-
channel optical coherence tomography (OCT) system.  The ring cavity design includes a 976nm pumped 
dual core Yb doped fiber as the gain medium, where a rotating polygon mirror is used as a wavelength-
sweeping filter for this source.  The amplified spontaneous emission (ASE) had a spectral bandwidth of 
1037-1145nm at -60dBm, where a tunable lasing bandwidth of the ring cavity ranged from 1057-1115nm.  
The highest output power, for both the ASE and lasing spectrum, with this configuration was ~200mW, 
however it is possible to have a larger bandwidth and a larger output power.  Higher power, in the wattage 
range is achievable if free space components are employed.  Pumped with 976nm light at 1.27W, the use of 
this novel dual core Yb doped fiber as an amplifier has been successfully demonstrated, as it provided a 
small signal gain of 29.6 dB at 1085nm, where the gain medium was successfully saturated during 
operation. This is important for the spectral shaping requirements of OCT to improve image quality.  The 
gain was demonstrated for several different wavelengths and for several pumping powers at a 1085nm 
wavelength.  Fourier domain mode locked operation (FDML) was achieved with a bandwidth of 15nm and 
a sweep rate of 51.4kHz.  This laser source offers a low-cost, high power alternative for biomedical 
imaging with multi-channel optical coherence tomography.  
 
Keyword: Ytterbium doped fiber amplifier, optical coherence tomography, swept source, 1060nm, Fourier 
Domain Mode Lock 
 
 

1. MOTIVATION: 
 

 OCT is a novel imaging modality that provides high-resolution images (~1-10 µm) suitable for real-
time, in vivo imaging.  It has also become a standard imaging technique for the retina and has demonstrated 
pre-clinical value in the detection of neo-plastic tissue and vascular lesions1.  Doppler OCT (DOCT) adds 
functional blood flow imaging and can be used to quantify hemodynamics down to the capillary level2.  
Multi-channel OCT may improve the Doppler imaging performance3, however, there is an added 
requirement of several OCT channels, which requires a higher power output from the laser source prior to 
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splitting the light into the multiple channels.  In addition, operating near the water absorption minimum (~ 
1060 nm) will allow further imaging depth or penetration through saline, which will be a significant 
advancement in using OCT during surgical procedures. These imaging requirements necessitate the 
development of new sources. An example includes cladding pumped fiber lasers, such as Ytterbium (Yb) 
doped fiber lasers, as a replacement for existing swept wavelength lasers for OCT due to its low cost of 
production and high power output. Fourier domain mode locking (FDML) of such a fiber laser may provide 
a high axial scan rate, which could in turn produce an optimal light source for current and future multi-
channel OCT and DOCT platforms.    
  
 

2. INTRODUCTION / BACKGROUND 
 

 Recently, there has been a push for use of 1020-1120nm light sources for OCT retinal pathology 
imaging.  This wavelength is desirable because the light absorption of water is at a minimum5.  Using such 
a light source within this bandwidth range during biological imaging sessions can increase the light 
penetration in tissues such as vitreous humour or cerebral spinal fluid, with improved signal-to-noise ration 
(SNR) and depth of imaging.  Previously there has been development of swept source lasers within this 
wavelength range via conventional semi-conductor optical amplifies (SOAs), but these output powers have 
been in the low milli-wattage range (<10mW). SOAs, as a gain medium, have been able to provide 
bandwidths of ~70nm.  Like the SOA, the rare-earth element Yb can have its florescence spectrum tailored 
to be within the water absorption/scattering minimum. Ytterbium doped fiber amplifiers (YDFAs) consist 
of the rare-earth dopant fused within the glass silica of the optical fiber for amplification with high output 
power.  An advantage that Yb has over other amplifiers, such as Erbium doped fiber amplifiers is that the 
Yb element only has one excited state manifold, which eliminates the possibility of unwanted fluorescence, 
which in turn improves the overall efficiency6. Paschotta et al. have demonstrated the absorption and 
emission spectras in Yb fiber from white light6.  The absorption spectrum of Yb fiber is composed of a 
small broad peak at 915nm and a large narrow peak at 975nm.  The fluorescence spectrum has been found 
to have a large narrow peak at 975nm and a smaller broader peak at 1030nm.  Due to a significant overlap 
between the absorption and emission spectras, re-absorption can occur with the emission spectra.  Re-
absorption can be controlled in three ways i) changing the length of the fiber, ii) changing the doping 
concentration, effectively shifting the center wavelength of the ASE spectrum to longer wavelengths and 
iii) the driving pump power can be increased to saturate a larger portion of the doped fiber7. This last 
method shifts the ASE spectrum to shorter wavelengths and increases the overall optical power output.  
Additionally, different pump wavelengths can also vary the ASE spectrum.  Fourier domain mode-locked 
(FDML) is an operational mode of a wavelength swept laser source, which allows for a higher sweeping 
speed while maintaining the SNR of slower scanning speeds. Effectively a quasi-stationary mode of 
operation is created. FDML allowed for photon build up within the filter line-width by matching the 
sweeping period with the round trip time within the cavity8.  In this manuscript, a specifically designed 
ASE spectrum was used within a ring cavity to demonstrate the broadband gain around the water 
absorption minimum and the high efficiency of an YDFA for use as an FDML swept-source single and 
multi-channel OCT imaging platforms.  
 
 

3. EXPERIMENTAL SETUP: 
 

Several ring configurations were investigated.  The optimal design is demonstrated in Figure 1.  
The entire system was assembled with HI1060 fiber, which allowed for high-power single mode operation 
at 1060nm but also added a loss of 1.5dB/km.   A single 976nm pump laser (FWHM = 5nm) drove a 20m 
segment of dual core gain medium (YBF, Prime Optical Fiber Corporation, USA).  The dual core medium 
was made up of a multimode pump core (118µm) side-fused to a single-mode Yb doped core (5.3µm). 
High optical power leakage from the pump core creates population inversion in the doped core, which 
results in a broadband spectrum emitted from the dual core fiber into the ring cavity. Given the high gain 
and the efficiency achievable with the Yb-doped fiber laser, a 3dB coupler was used to provide the high-
power output while in the closed ring configuration.  A custom broadband (1064nm +/-50, Aglitron, USA) 
circulator was utilized in the ring cavity to insert the polygon optical filter.  The polygon filter acts as an 
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intra-cavity tunable wavelength filter to provide a sweeping wavelength output suitable for OCT imaging. 
The grating of this filter was setup in a Littrow configuration as described in Figure 1b9.  The spinning 
mirror consisted of 72 facets (SA34, Lincoln Laser, USA), which gave an optical sweeping angle of ~10º.  
Using a Littrow’s angle of 40.8º and a 10º sweep angle aligned to a high-grove density blazed grating (1200 
grooves/mm, Thorlabs, NJ, USA), the filter’s achievable bandwidth was ~219nm (971-1190nm).  The 
spinning polygon mirror produced a unidirectional wavelength sweep, as apposed to the bi-directional 
fabry-perot filter.  It IS previously shown that unidirectional wavelength sweeping can reduce noise as 
apposed to the bidirectional sweeping10.  The circulator and filter components gave an ~10dB loss within 
the cavity.  Although the Yb doped fiber gain medium was not polarization dependant10, two polarization 
controllers were added to optimize the polarization states to improve the efficiency of the grating.  A 2km 
spool is inserted between the optical circulator and the polygon filter to add an optical delay to assist in the 
FDML operation.  The total length added by the spool is 4km as light propagates through it twice in one 
round trip. 

 

a)  b)  
Figure 1. a) Dual core Yb doped fiber ring laser source for multichannel SS-OCT (P1: 976nm Pump Laser. Yb: Yb 

doped fiber (20m), PC: 3-panel polarization controller, C1: 1064 wide-band circulator). b) Polygon filter in a Littrow 
configuration. 

 
 For FDML operation, the optical filter’s sweep rate was tuned to a period that is equal to a harmonic 

of the optical ring cavity’s round trip time given by the following equation4.: 
 

 

 
Where fdrive is the scan frequency required for synchronization, c is the speed of light in a vacuum, lfiber is 
the total length of the ring cavity and n is the index of refraction of the fiber core.  Adding an effective 
length of 4 km of fiber (HI1060, Corning, USA) with an index of refraction of 1.46, the cavity’s round-trip 
time is 19.3µs, resulting in a 51.4 kHz sweep rate.   
 
 

4. RESULTS: 
 

4.1 Amplified Spontaneous Emission Response 
 
 Figure 2 shows the efficiency of the ASE optical spectrum of the Yb doped fiber created by the 
976nm optical pump. It is hypothesized that there is a power loss from the pump to the Yb dual core fiber 
due to a core size mismatch, causing a poor fusion splice.  For the given pumping range, a linear 
relationship was demonstrated.  Based on slope in Figure 2, there is a 7.64dB loss by the dual core fiber.  
Figure 3a shows the output spectrum of the pump laser centered at ~976nm with a 3dB bandwidth of 5nm.  
Figure 3b shows the ASE with our current Yb fiber length and pumping power.  The peak is centered at 
1076nm, with a FWHM of ~ 25nm and an edge-to-edge bandwidth of 108nm (1037-1145nm).  The highest 
tested ASE output power was 237.6mW.  Based on the 976nm pump capabilities, the ASE has the ability to 
output in the wattage range.  Power output in this range was not tested to avoid burning components.  
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Figure 2: ASE and ring cavity laser output power based on 976nm input pump power.  

 

  
Figure 3: a) 976nm pump output spectrum. b) Dual core Yb amplified spontaneous emission output spectrum. 

 
4.2 Yb Doped Dual Core Fiber as a Gain Medium 
 

The Yb doped dual core fiber was tested for its use as a gain medium.  Its gain was demonstrated 
for several wavelengths with varying input powers induced by a 976nm pump power of 1.27W.  High gain 
was exhibited from the YDFA for a large spectral range, where gain saturation occurred around the center 
wavelength. It was observed that the side wavelengths of the lasing range did not reach the saturation 
regime.  The lack of saturation on the sidebands can be viewed as an advantage, due to the ideal flat top 
spectral requirements of OCT laser sources. Figure 4a shows the gain with the filter tuned to 1057nm, 
1085nm and 1115nm.  The central wavelength has a small signal gain of 29.6dB, which is an improvement 
over the standard semi-conductor optical amplifiers (SOA’s) small signal gain of ~23dB. The tested large 
signal gain also had a final output power greater than 20dBm.  Having a larger pump power can increase 
the small and large signal gain; this trend is shown in Figure 3b.  The SOA’s (BOA 1017, Covega, NJ, 
USA) gain also shown for comparison. 
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Figure 4: a) Gain of the Yb doped fiber at 1057nm, 1085nm and 1115nm wavelengths at a 1.27W pumping power. 
1085nm demonstrates saturation. b) Gain in Yb doped fiber at 1085nm due to different pumping powers is compared to 

an SOA’s gain curve. 
 

 
Figure 5: Small signal gain spectrum of Yb doped dual core fiber. 

 
4.3 Sweeping Laser Source 
 

  
Figure 6: a) Instantaneous spectral line-width created by polygon filter.  b) Laser output spectrum in a slow filtering 
short ring cavity 
 

The ring cavity provided an instantaneous spectral bandwidth with a FWHM of <0.15nm (Figure 
6a).  This instantaneous line width was able to sweep a range of 58nm (1057–1115nm).  Figure 6b shows a 
peak hold mode of the instantaneous line-width manually swept at a slow rate (less than 1Hz).  Figure 7 
depicts the output spectrum when the filter speed was set to 51.4kHz in FDML operation.  However, the 
spectral bandwidth was significantly reduced to a FWHM of 15nm with an optical power approximately 
20mW. 

 

 
Figure 7: Laser output spectrum in FDML operation. 
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5. DISCUSSION: 
 

 The limiting factor in the system setup was that the fiber components have damage thresholds of 
200-300 mW.  A solution to this problem is to employ the use of free space optics in place of the optical 
circulator and splitters.  Making these changes may allow for a dramatic increase of the output power into 
the wattage range.  Despite the relatively large cavity loss, due to the custom made wide-band optical 
circulator (10dB), the ring cavity with the polygon filter proved to be a good method for lasing, as there 
was a large increase in output power (Figure 2).   However, a sufficient pumping input of the 976nm pump 
was required prior to the center wavelengths of the gain spectrum reaching a saturation point.  The 
sidebands of the gain spectrum still maintained non-saturation behaviour.  This type of non-linear 
saturation contributed to the flat ‘top hat’ lasing spectrum in Figure 6b.  Observing the results from Figure 
4b, as the output power of the 976nm pump laser was increased, the ring cavity’s lasing became more 
susceptible to saturation.  Increasing the pump power can also further assist in the output spectrum 
flattening and widening.  Given the bandwidth of 58nm, a ring cavity operating in an FDML setup should 
provide a similar spectral bandwidth, however the FDML operation dramatically reduced the bandwidth.  It 
is speculated that this is related to the chromatic dispersion affect of the 4km of HI1060 fiber length and the 
20m of Yb doped dual core fiber within the ring cavity.  The chromatic dispersion caused by the fiber 
would cause different wavelengths to have a different cavity round trip times.  The variation in round trip 
time across a wide spectrum can reduce the allowable lasing window in the FDML operation. If the correct 
dispersion compensation device is set up into the cavity such as a dispersion shifted fiber or a grating pair, 
the FDML spectral bandwidth should be widened to achieve similar results to the lasing output spectrum of 
Figure 5b.  
 

Once the issue of the smaller bandwidth during FDML operation is resolved, the laser will further 
be characterized by a point-spread-function (PSF) to determine its ranging depth.  Further more, OCT 
images will be obtained both on a single channel and a multi-channel system and any improvements over 
standard SOA systems will be compared and noted.  Varying factors such as Yb pump wavelength and Yb 
fiber length will be explored to see its affect on ASE spectrum widening.  Although the limitation of a 
~200mW power output can be solved by using free space components, there is no immediate application 
for a swept source within the wattage range as the current output power is large enough for a 6 to 8 channel 
OCT imaging system. 
 
 

5. CONCLUSION: 
 

 In summary, a novel dual core Yb doped fiber laser was designed for use in a FDML fiber ring 
cavity. High gain and wide tune-ability has been demonstrated for this gain medium.  An ASE having a 
FWHM of 70nm and a lasing FWHM of 58nm are demonstrated.  The affects of increasing the 976nm 
pump power are that both the small signal and large signal gain of the Yb doped fiber laser are increased as 
well.  Both ASE and lasing configurations were tested to have output powers of ~200mW with the potential 
to be in the wattage range.  The immediate application of this new laser is to combine it with a multi-
channel OCT system, where a single output power is split into several parallel channels for simultaneous 
imaging, while maintaining a sufficient SNR during high-speed 3D visualization of biological tissues.   

 
 

6. ACKNOWLEDGEMENT: 
 

We would like to thank M.K. Leung and K.K.C. Lee for our discussions. This research was supported in 
part by Natural Science and Engineering Research Council of Canada (NSERC), Cancer Care Ontario and 
Ryerson University. 
 



  62 

7. REFERENCES: 
 

[1] B. K. Courtney, N. R. Munce, K. J. Anderson, A. S. Thind, G. Leung, P. E. Radau, F. S. Foster, I. 
A. Vitkin, R. S. Schwartz, A. J. Dick, G. A. Wright, B.H. Strauss, Innovations in imaging for 
chronic total occlusions: a glimpse into the future of angiography’s blind-spot. European heart 
journal Volume 29 Issue 5 (2008) 

[2] V.X.D. Yang, M.L. Gordong, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B.C. Wilson, A. 
Vitkin. “High speed wide velocity dynamic range Doppler optical coherence tomography (Part I): 
System design, signal processing, and performance” Optics Express 11, 794-809, 2003 

[3] Leung, M., Mariampillai, A., Standish, B., Lee, K., Munce, N., Vitkin, I., and Yang, V., “High-
power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier 
configuration for multi- channel optical coherence tomography,” Optics Letters 34(18), 2814–
2816 (2009). 

[4] Huber, R., Wojtkowski, M., and Fujimoto, J., “Fourier Domain Mode Locking (FDML): A new 
laser operating regime and applications for optical coherence tomography,” Optics Express 14(8), 
3225–3237 (2006). 

[5] B.Hermann, M.Esmaeelpour, B.Povazay, B.Hofer, F. Bounaparte, N.Sheen, R.North, W.Drexler, 
"Wide field visualization of retinal and choroidal microstructure in vivo using frequency domain 
OCT at 1060 nm with up to 47000 lines/s ", SPIE Vol. 7163, 71630A, 2009. 

[6] Paschotta, R., Nilsson, J., Tropper, A., and Hanna, D., “Ytterbium-doped fibre amplifiers,” IEEE 
Journal of Quantum Electronics 33(7), 1049–56 (1997). 

[7] D.C. Hanna, R.M. Percival, I.R. Perry, R.G. Smart, P.J. Suni and A.C. Tropper  “An ytterbium-
doped fibre laser: broadly tunable operation from 1010µm and three-level operation at 974nm”, 
Journal of Modern Optics, 37(4), 517-525 (1990). 

[8] R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new 
laser operating regime and applications for optical coherence tomography," Optics Express 14, 
3225-3237 (2006). 

[9] S.M.R. Motaghian Nezam “ High-speed polygon-scanner-based wavelength-swept laser source in 
the telescope-less configurations with application in optical coherence tomography”, Optics 
Letters 33(15), 1741-1743 (2008) 

[10] R.Huber, D.C. Adler, J.G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional 
swept laser sources for optical coherence tomography imaging at 370,000 lines/s”, Optics Letters, 
Vol.31 No.20 2975-2977 (2006) 

[11] R.Huber, D.C.Adler, V.J.Srinivasan, J.G.Fujimoto, “Fourier domain mode locking at 1050nm for 
ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per 
second” Optics Letters 32(14), 2049- 2051 (2007) 

[12] M. Bashkansky, M.D. Duncan, L. Goldberg, J.P. Koplow, J.Reintjes, “Characteristics of a Yb-
doped superfluorescent fiber source for use in optical coherence tomography”, Optics Express 
Vol.3, No.8, 305-311, 1998. 

[13] S. H. Yun, G. J. Tearney, J. F. De Boer, N. Iftimia, and B. E. Bouma, "High-speed optical 
frequency-domain imaging," Optics Express 11, 2953-2963 (2003). 

[14] R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: 
Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," 
Optics Letters 31, 2975-2977 (2006). 

[15] W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-
speed wavelength-swept semiconductor laser," Optics Letters 30, 3159-3161 (2005). 

[16] Chen, L. and Gu, X., “Dual-wavelength Yb-doped fiber laser stabilized through four-wave 
mixing,” Optics Express 15(8), 5083–5088 (2007). 

 [17] M. Salhi, H. Leblond, F. Sanchez, “High power tunable all fiber double-clad Er:Yb:silicate fiber 
laser”, Optics Communications 247 (2005) 181-185 

[18] M.Y. Jeon, J. Zhang, Q. Wang, Z. Chen, “High-speed and wide bandwidth Fourier domain mode-
locked wavelength swept laser with multiple SOAs”, Optics Express, 16(4) 2547-2554 (2008) 

[19] S.H. Yun, C. Boudoux, G.J. Tearney, B.E. Bouma, “High Speed wavelength-swept semiconductor 
laser with a polygon-scanner-based wavelength filter”. Optics Letters 28(20) 1981-1983 (2003) 



  63 

[20] S.M.R. Motaghian Nezam, “High-speed polygon-scanner-based wavelength-swept laser source in 
the telescope-less configurations with applications in optical coherence tomography”, Optics 
Letters 33(15) 1741-1743 (2008) 

[21] R. Herda, M. Rusu, S. Kivisto, O.G. Okhotnikov “ Mode-locked ytterbium fiber laser with 
dispersion compensation by a fiber taper”, Ultrafast Phenomena XV, Proc. 15th International 
Conference. Pacific Grove, (2006) 

[22] M. Rusu, R. Herda, S. Kivisto, O.G. Okhotnikov, “Fiber taper for dispersion management in a 
mode-locked ytterbium fiber laser”, Optics Letters, 31(15) 2257-2259 (2006) 



  64 

 

5.4 Post Amplification Configurations 

5.4.1 Spectrums, Clock Signals, Point Spread Function 

The Yb doped fiber successfully amplified the seed laser.  Based on the Yb doped 

fiber output ASE spectrums the post amplification range can be predicted. A complete 

characterization of the Yb’s gain spectrum based on fiber length was not formulated but 

based on the tested 1m, 4m and 20m lengths a rough estimation of the gain spectrum can 

be made.    

An advantage that was seen by using the Yb doped fiber was the Gaussian 

shaping effect on the interference signals.  This occurred because of the convenient 

overlap between the seed laser’s output and the absorption spectrum of Yb.  Although 

perfect Gaussian shaping did not occur, it did aid during noise artifacts in Fourier 

transform operations. 

After calculating the point spread functions in Section 4.5.2.1, the 3dB widths of 

each peak signal can be analyzed for a direct measurement of the axial resolution.  The 

seed laser gave an axial resolution of 9um.   The seed laser with the Yb doped fiber and 

no pumping gave an axial resolution of 15.8um.  The seed laser with the Yb doped fiber 

and pumping gave an axial resolution of 10.5um.  Adding the Yb reduced the axial 

resolution, which is expected due to the reduction in the spectral width, however the 

degradation from 9um to 10.5um is not a significant loss and is far out weighted by the 

advantage of the adding multiple imaging channels. 
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5.4.2 Image Analysis 

The images for the multi-channeled post-amplification provided an increase in 

structural information.  To help visualize this increase in structural information, the 

structural OCT images were enhanced in several ways through post-processing.  The 

images were all normalized (1), meaning all the darkest pixel values were set as 0 and all 

the brightest pixels were set as 255, and all the values in between were all scaled 

accordingly.  What this did is show the full dynamic range of the image.  Secondly, a de-

speckle algorithm was used where a 3x3 mask was applied to every pixel in the spatial 

domain (2).  For every 3x3 mask location, the median was calculated and a new pixel 

value replaced the old one.  The overall effect of this filter was to generally smooth out 

any sharp noises in the image.  This process is effectively the same as a low pass filter in 

the frequency domain.  The third filter applied was an edge detector to emphasize the 

structural information (3).  The edge detector applied a derivative mask and edges were 

highlighted with white, while the background was suppressed to black.  It was important 

to apply the de-speckle algorithm first so that background noise would not be mistaken 

for edges of the structural data.  Lastly, a simple thresholding algorithm was applied to 

further differentiate background and structure (4).  All pixel values that were less than 

127 were automatically considered as background noise.  Figure 5-2 shows the a flow chart 

of the algorithm sequence. 
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Figure 5-2: Simple structure detector algorithm 

This type of image analysis is un-biased towards one side as both images were 

normalized and the exact same filters were applied in the same numerical fashion to 

images that were obtained from the exact same region of the same tissue sample. 

  
Figure 5-3: Structural image of channel A of MOCT image pre (left) and post (right) amplification 

Post-amplification provided more structural information compared to pre-amplification 

and this is seen in Figure 5-3 and the difference is enhanced in Figure 5-4. 



  67 

  
Figure 5-4: Structural detection of channel A of MOCT Imaging for pre (left) and post (right) 

amplification. 

To further quantify these results, a total count of the white pixels can give a relative 

indication of how much structure is present in each image.  From a total pixel count of 

243942 per channel, the pre-amp had a white pixel count of 14273 (5.85%), while the 

post-amp had a white pixel count of 38354 (15.72%). 
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6 Conclusion 

6.1 Summary 

An OCT laser source, centered at 1060nm has been designed, developed, and 

produced.  Dual core Yb doped fiber was utilized for high-powered amplification.  The 

output ASE spectrums of the dual core Yb doped fiber have been characterized based on 

two different optical pumping wavelengths (915nm and 976nm) and three different fiber 

lengths (1m, 4m, and 20m).  Both the 915nm and 976nm laser pump diodes provided 

similar output ASE spectrums with the 915nm’s ASE spectrum being shifted to slightly 

longer wavelengths (+8nm).  The two different pumping wavelengths did not provide a 

significant difference in the output spectrum.  The shorter the Yb doped fiber length, the 

wider the output spectrum was, due to the lower probability of re-absorption into the 

fiber.  If re-emission were to occur, the wavelengths would be emitted as successively 

longer wavelengths.  However, with the shorter fiber, the output power was dramatically 

reduced as a smaller amount of gain medium existed.  A 4m length of fiber was found to 

have a reasonable trade off, as the ASE spectrum spanned from 1024nm to 1124nm and 

output powers greater than 200mW was seen. 

The Yb doped fiber was also placed into four different ring cavity configurations 

to test this gain medium’s ability to lase under four different conditions.  An optical filter 

in the form of a collimator and blazed grating allowed for a single wavelength lasing. 

 Lasing was successful for several wavelengths with greatest ASE suppression occurring 

for the center wavelengths (~1085nm).  The gain of the Yb doped fiber due to different 
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input power was also measured to observe its ability to reach a saturable gain state, which 

is important for spectral shaping.  Output powers of all the spectrums were all 

proportional to the power of the 976/915nm laser pump diode.  The highest operating 

lasing wavelength was ~200mW, but it is projected that the output can be within the 

wattage range.  Higher output power was not tested, as operational threshold of the 

components used were approximately 250mW. 

This well characterized gain medium was also tested for its ability to work as a 

swept source laser.  A sweeping filter was constructed with a 72-faceted spinning 

polygon mirror, grating and collimator and was inserted into the ring.  The swept source 

laser was tested for two operations modes: a short cavity and a long (FDML) cavity.  In a 

short cavity configuration, sufficient lasing occurred only during a slow sweeping rate of 

less than 1kHz.  Although the observed output-sweeping spectrum was wide and 

powerful enough for good OCT imaging, the sweep rate was not fast enough.  The slower 

sweep rate was a resultant of the relatively large portion of Yb doped fiber inserted into 

the short cavity.  Each sweep required a longer time to lase because the photon trip length 

was also long.  In a long cavity operation the cavity length was made to be 3km long and 

the sweep rate of the filter was tuned to the photon round-trip travel time in the cavity. 

 This allows for a high-speed sweeping rate without a loss to signal power.  FDML 

operation was achieved, however the output spectrum had been reduced in width and odd 

spectral shaping and lower efficiency occurred due to the lower chromatic dispersion in 

the 3km of HI1060 optical fiber. 

A third mode of operation was in a seed and post amplification configuration. 

 The Yb doped fiber was taken out of the short cavity and replaced with an SOA.  This 
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cavity configuration provided a low powered output but was able to optically sweep at an 

8kHz rate.  This output of the seed was coupled into the Yb doped fiber and acted as a 

single pass amplifier.  The overall edge-to-edge spectral range was slightly narrowed by 

10nm, but due to spectral shaping, the 3dB bandwidth was reduced from 60nm to 35nm. 

 The output power was amplified from 10mW to more than 200mW, which is sufficient 

enough for multi-channel OCT. 

Aside from the power benefits of using the post amplification configuration, this 

setup was tested for any degradation that the Yb doped fiber could have added to the 

swept source laser.  Point spread function (PSF) measurements were performed to 

determine the axial resolution and range in depth.  The axial resolution was degraded as 

expected: the measured 3dB width of the PSF signal was changed from 9.3µm to 10.5µm 

for the seed laser and seed laser plus amplifier configurations respectively.  The range in 

depth was slightly improved as the 6dB roll off increased from 1.5mm to 2.25mm.  An 

advantage that the amplifier had was the Gaussian shaping affect on the interference 

signal at several depths.  With Gaussian shaping applied, cleaner Fourier transform 

operations can be applied resulting in an image with less artifacts. 

Multi-channeled imaging was performed on a beating Xenopus laevis tadpole 

heart to demonstrate in vivo image.  Two channels were used to show a single laser 

source can be split into several channels and provide consistent imaging.  Through image 

analysis, it was numerically shown that the post-amplification configuration had 

improved the structural data in a MOCT system. 
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6.2 Future Work 

With a seed laser providing sufficient imaging with 10mW and a tested output 

power of greater than 200mW, this setup has enough power for at least 10 channels with 

double the power.  A full implementation of a 10-channel system simultaneously imaging 

would require 10 sample and reference arms and a well-designed raster scanning 

mechanism.  Custom software would be designed to acquire 10 channels of data and 

process them all in parallel.  Similar work has been done with 6 channels in the 1310nm 

range [9]. 

 Although FDML operation was achieved in this thesis, there was significant 

degradation in the output bandwidth due to the chromatic dispersion in HI1060 fiber at 

1060nm.  Dispersion compensation devices can be employed to improve its operation.  In 

such a high dispersive material (d = -40 ps/km/nm) and a large bandwidth of 80nm the 

time difference between the shortest wavelength and longest wavelength can be given by:  

€ 

τ diff =| d | lΔλ
τ diff = 40(ps /km /nm) × 3(km) × 80(nm)
τ diff = 9.6ns

 

Where d is the chromatic dispersion coefficient, l is the length of fiber and Δλ is the 

bandwidth.  The physical difference in air between the shortest and longest wavelength 

can be given by: 

€ 

ldiff =
τ diff c
n

ldiff =
9.6ns× 3×108m /s

~ 1
ldiff = 2.88m

 

With a path difference of 2.88m between the shortest and longest wavelength, larger free 



  72 

space compensation will be needed, but an all fiber solution would be simpler.  An 

alternative fiber can completely replace a portion of the HI1060, with a positive 

dispersion coefficient providing an effective dispersion coefficient 0 ps/km/nm.  A 

reasonable insertion loss would not be a major issue, as the gain medium could be 

pumped harder for a higher output power.   

Another fiber based dispersion compensation method would be to insert a chirped 

fiber Bragg grating.  When broadband light pass through a fiber Bragg grating (FBG) one 

specific wavelength with a narrower bandwidth is filtered and reflected back to the light 

source.  Inducing a periodic variation in the index of refraction in the fiber core can 

create the FBG.  The period is chosen based on the reflected wavelength.  In a chirped 

FBG, the wavelength specific reflectors are placed at different lengths in the fiber.  When 

used with an optical circulator, the distance traveled by different wavelengths can be 

compensated.  If a total distance of 2.88m exists between the longest and shortest 

wavelength, a chirped FBG should have a total length of 1.44m (2.88/2) in length, with 

the wavelength dependant FBG reflectors placed incrementally throughout the length of 

the fiber.  Within the high dispersive medium, the longer wavelengths travelled at a faster 

speed than the shorter wavelengths, so the shortest wavelength FBG should be placed at a 

distance of 0m in the chirped FBG while the longest wavelength is placed at the end of 

the chirped FBG (1.44m).  This configuration theoretically compensates for dispersion 

issues. 

 With OCT laser sources, for axial resolution improvements, larger spectral 

bandwidths are desired (Eq. 2-4).  A second rare earth metal with a slightly varied 

emission spectrum can be utilized. Neodymium (Nd) has two absorption peaks at 808nm 
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and 869nm, while there exists 4 emission peaks, 946nm 1064nm 1123nm and 1319nm. 

The two emission peaks at 1064nm and 1123nm are suitable as they both fall within a 

desired output spectrum. Nd can be introduced into the current system by using co-

doping, where the doped medium contains both Nd and Yb, which would be a simpler 

implementation.  The other alternative is to combine two separate lasers along with 

various filters, where the Yb light will be multiplexed with the Nd light.  The latter 

method provides more control as the variables (length and pump power) of each element 

can be controlled independently.  Overall, an improved method for spectral shaping is 

possible.   

Figure 6-1 is a proposed ring cavity that uses a dual Yb and Nd pumping scheme 

for a wider spectral output.  The Yb and Nd are implemented independently, as apposed 

to a co-doped fiber so the pumping schemes can be controlled independently.  A chirped 

fiber Bragg grating is added for dispersion compensation during FDML operation.  A 

long period grating is added to the output for spectral shaping, allowing for a wider 3dB 

bandwidth. 

 
Figure 6-1: Suggested cavity design for an improved spectral FDML response 
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6.3 Impact to the Field 

The greatest impact that this work has on the field, is the output power at 1060nm 

for swept source OCT.  Typical output powers for OCT light sources at this wavelength 

are all less than 20mW, and this is due to the limitation in the SOA gain medium.  10mW 

is an adequate amount of output power to image with OCT and have excellent light 

penetration. With the dual core Yb doped fiber, an output power can be achieved in the 

wattage range.  For the first time, a laser source at 1060nm has an output power greater 

than 30mW.  Because an output power at 200mW is achievable, multi-channeled imaging 

is now possible as a single light source; it can now provide enough power for several 

OCT sample arms.  An MOCT imaging system centered at the 1060nm water 

absorption/scattering window impacts the medical imaging field, as there now exists a 

source that can image multiple regions of the same tissue.  More over, this provides the 

backbone work for the next generation of MOCT systems.  Next steps would include 

catheterization of the multi-channeled source and to perform in-vivo endoscopic imaging 

to help with either image-guided surgery or for pathology. 
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