

Distributed Inter-Domain Routing and
Load Balancing in Software Defined Networking (SDN)

By: Taixue Su

Master of Engineering in Computer Application Technology
at Jilin University, 2006

A Thesis

presented to Ryerson University

In partial fulfillment of the

requirements for the degree of

Master of Applied Science

In the program of Computer Networks

Toronto, Ontario, Canada, 2019

©Taixue Su, 2019

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of

scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in

total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Distributed Inter-Domain Routing and Load Balancing in Software Defined Networking

Master of Applied Science

Computer Networks

Faculty of Engineering and Architectural Science

Ryerson University, Toronto, 2019

Software Defined Networking (SDN) is an emerging network technology where network control plane,

which is programmable, is decoupled from the data forwarding plane and moved to the SDN controller.

Originally, an SDN network is controlled by a single controller. As the SDN architecture becomes more

complex with multiple SDN domains and corresponding domain controllers, inter-domain routing

becomes an important design issue.

There are a number of approaches for SDN inter-domain routing. The most popular approach is the

hierarchical approach where a central controller coordinates with lower level domain controllers to

control the data flow. The main drawback of the hierarchical approach is that it is not scalable, and the

central controller represents a single point of failure. In this thesis, we proposed and designed a

distributed inter-domain routing mechanism. The distributed approach enables domain controllers to

exchange information with each other directly instead of communicating through the central controller.

We also proposed and designed a new load balancing scheme which makes use of the network traffic

information to choose a less-congested path among equal-cost multiple paths. We successfully implement

the proposed inter-domain routing mechanism and load balancing scheme using Python/Java in the

OpenDayLight SDN controller, which is a popular open-source SDN platform. In addition, the test result of

the proposed load-balancing scheme shows that it performs better than the scheme based on the round-

robin mechanism.

iv

Acknowledgements

Foremost, I would like to express my sincere acknowledgement and gratitude to my supervisor, Dr. Ngok-

Wah Ma for his consistent support, patient guidance and continuous encouragement throughout my

graduate study. It was a great experience for me to work under his supervision.

I would also like to thank Dr. Yu Xu and Hassan Ahmed for their support during my study, especially their

help in my thesis lab environment.

Special thanks to the Computer Networks Program and the Yeates School of Graduate Studies at Ryerson

University, for providing this great opportunity and the financial support to my graduate study.

Last, but not least, a special thanks to my family, who constantly supported and encouraged me over the

years.

v

Contents
Abstract iii

Acknowledgements iv

List of Tables vii

List of Figures viii

1. Introduction 1

1.1 Overview of SDN 1

1.2 Problem Statements 2

1.3 Our Approaches 2

1.4 Contributions of the thesis 2

2. Background and Literature Survey 3

2.1 Background 3

2.2 Literature Survey Related to Software-Defined Inter-Domain Communication and load balancing 4

2.3 Proposed Scheme 6

2.4 Comparison with the Approach in Literature 6

3. Design of Software-Defined Inter-Domain Communication and New Load Balancing 7

3.1 Overview of SDN Inter-Domain Routing and Load Balancing 7

3.2Topology Discovery in Global Inter-Domain Level 8

3.2.1 The Information Essential to be Exchanged among Domain Controllers 8

3.2.2 Algorithm of Discovery the Domain Level Topology 11

3.3 Inter-Domain Path Computing 15

3.4 Inter-Domain Flow Installation 16

3.5 Load Balancing 20

3.5.1 New Metric of Proposed Load Balancing Scheme 20

3.5.2 Example 23

4. Implementation and Results 25

4.1 Background Technologies 25

4.2 Environment 25

4.3 System Implementation 27

4.3.1 Topology 27

4.3.2 OpenDayLight L2switch module modification 28

4.3.3 Topology Discovery Based on SDNi 30

vi

4.3.4 Inter-Domain Shortest Path 31

4.3.5 Inter-Domain Flows along the Shortest Path 31

4.3.5 Load Balancing base on Distributed Inter-domain SDN 33

4.2 Result Analysis 33

4.2.1 Inter-domain Communication Test 33

4.2.2 Load Balancing Test 34

4.2.3 Performance Comparison 38

5. Conclusion and Future work 40

References 41

vii

List of Tables

Table 1 Flow Rules of Border Switch s13 of Domain D1 19

Table 2 Flow Rules inside Domain D1 19

Table 3 Flow Rules of Border Switches of Domain D2 19

Table 4 Flow Entry of Border Switches 20

Table 5 System Configuration of SDNi Environment 26

Table 6 Path of Round Robin Load Balancing Strategy 35

viii

List of Figures

Figure 1 Traditional Network Architecture Vs SDN Architecture 1

Figure 2 ONF SDN Architecture 3

Figure 3 OpenFlow Switch Anatomy 4

Figure 4 Overview Work Flow of SDN Inter-Domain Routing and Load Balancing 8

Figure 5 Basic Inter-Domain Topology 10

Figure 6 3-Physical Topology & Corresponding Domain Level Topology 11

Figure 7 4-Domain Full Topology & its Domain-level Topology 14

Figure 8 Domain-level Topology (6 Domains) 16

Figure 9 Design of Distributed Inter-SDN Domain Communication 17

Figure 10 Topology Indicated QoS info along Equal Shortest Paths 23

Figure 11 vCloud Deploying of the SDN Inter-domains 27

Figure 12 Topology for Inter-domain Communication and Load Balancing Test 28

Figure 13 Ping Result After Running Program 33

Figure 14 Flow Table in Related Switches Pushed by Application 34

Figure 15 Flow Table of Related Switches in Round Robin Load Balancing Strategy 35

Figure 16 Round Robin Paths between Source/Destination Host Pairs 36

Figure 17 Flow Tables on Border Switches in New Load Balancing Method 37

Figure 18 Real Paths between Source/Destination Host Pairs 38

Figure 19 Iperf Simulating Network Congestion 38

Figure 20 Performance of Round Robin Method 39

Figure 21 Performance of Proposed Load Balancing Method 39

1

1. Introduction

1.1 Overview of SDN

Traditional networks consist of many types of devices, such as switches, firewalls, load balancers,

routers and so forth as shown in Figure 1. The traditional network’s control and data planes are

coupled, and the routing mechanism is hop-by-hop with vertically integrated hardware, which

make it more complex to configure and reconfigure for rapid response to faults and significant

load changes [1].

Software-Defined Networking (SDN) is an emerging technology to relieve the problems of

traditional networking. The SDN architecture can abstract underlying infrastructure for all kinds

of network applications and services and decouple the network control plane from the data plane.

The control plane is moved to the centralized SDN controller, which is dynamic and

programmable. The use of the centralized controller simplifies the tasks of network management

and network service deployment. [2]

Figure 1 Traditional Network Architecture Vs SDN Architecture

2

1.2 Problem Statements
Initial design on SDN only deployed a centralized single controller to control the data flows based

on the global view of the whole network. However, the current development of the internet,

clouding computing and other applications increase the size and complexity of the network.

Deploying only a single controller will cause long flow setup latency, lack of scalability and lower

availability.

Furthermore, future Internet/Intranet can be interconnected multiple SDN-based domains and

each domain is administered by a different controller or controller cluster. Domain controllers are

required to communicate with each other and exchange the topology and QoS information to set

up the effective flow rules across these domains.

To overcome the limitation of a single controller and support future SDN expansion, some

researchers proposed a hierarchical or vertical solution which is comprised of multiple SDN

domains with two levels of controllers - one root controller and multiple local domain controllers.

These two types of controllers have different responsibilities - local domain controllers deal with

the local event in their respective domains, and the root controller handles the global view of the

network and communicates with the local domain controllers. Even though the hierarchical

approach has higher scalability, it still cannot completely solve the scalability problem as the

number of domains increases. Furthermore, the root controller remains a single point of failure.

With a large inter-domain topology, there will usually be equal-cost multiple paths between

domains. Thus, an effective dynamic load-balancing scheme is also paramount to extend SDN

technology to an inter-domain network.

1.3 Our Approaches

In order to deal with the two issues mentioned in the previous section, we proposed a distributed

inter-domains routing mechanism. The distributed approach enables domain controllers to

exchange information with each other directly instead of communication through the central

controller. We also designed a new load balancing scheme based on the distributed inter-domain

routing that is suitable for adaptive SDN data centres.

1.4 Contributions of the thesis

1) A new distributed routing mechanism for SDN inter-domains with the different subnets based

on BGP protocol.

2) Based on the distributed routing mechanism, we proposed a new load balancing scheme to

support equal-cost multiple path routing.

3

2. Background and Literature Survey

2.1 Background

Software Defined Networking (SDN) is an emerging network architecture where network control

is decoupled from forwarding and is directly programmable [3]. The Open Networking Foundation

(ONF) defined the 3 classic SDN-layer as shown in Figure 2, which has won the industry

recognition.

Figure 2 ONF SDN Architecture

1) The Infrastructure Layer/Data Plane consists of the network elements/devices that

provide packet switching and forwarding, which expose their capabilities toward the

control layer (controller plane) via southbound interfaces from the controller. In our work,

we used Open vSwitch (OVS) as the network element in our testbed data centres.

2) The Control Layer/Controller Plane provides the consolidated control functionality that

supervises the network forwarding behavior through an open interface. The SDN

controller translates the applications’ requirements and exerts low-level control over the

network elements, while providing relevant information up to the SDN applications;

3) The Application Layer consisted of the SDN application that uses the northbound

interfaces (often called NBIs) offered by the Control Layer to obtain topology information

and request service across the network.

4

The SDN controller is the core application of software defined network that facilitates automated

network management and controls the communication between network devices and

applications.

OpenFlow [5] is an open standard protocol which helps researchers to run their experimental

protocols in the campus networks. The current most SDN controllers adopt OpenFlow as the

southbound protocol to communicate with network devices.

Figure 3 OpenFlow Switch Anatomy

2.2 Literature Survey Related to Software-Defined Inter-Domain

Communication and load balancing
Some researchers have proposed some improvement solutions to overcome the SDN initial
design's drawbacks. Amin Tootoonchian, et al. [10] proposed the first distributed control plane,
called - HyperFlow, which is a logically centralized but physically distributed event-based control
approach. The approach deploys a HyerFlow controller application in each SDN controller and
HyperFlow uses public/subscribe Openflow message events to propagate the controller's
information to others. Thus, all the controllers have a consistent network-wide view and localize
all decisions on each controller to minimize the control plane response time. This approach will
have scalability limitation for it may cause the generation of a large number of messages (a few
thousand events per second) [10].

Teemu Koponen, et al. [11] proposed a distributed SDN control platform (named ONIX) for large-
scale networks, which provides more general APIs for control plane and thus turns obscure
networking problems into resolvable distributed systems problem for developers.

In " Kandoo "[12], to solve the scalability limitation of the prior distributed approaches, Soheil
Hassas Yeganeh, and Yashar Ganjali proposed a novel framework for preserving scalability with
minimal developer intervention. The approach separates the controllers into two different layers:
one is root controller, which is a logically centralized controller that maintains the network-wide
states, and another layer is local controller group, which knows only their owned domain's states.
The root controller only processes rare events related global view, while the local controllers
handle frequent events such as network-wide statistics collection. The main concern of the

https://dl.acm.org/author_page.cfm?id=81467668588&coll=DL&dl=ACM&trk=0&cfid=848014136&cftoken=43171344
https://dl.acm.org/author_page.cfm?id=81467668588&coll=DL&dl=ACM&trk=0&cfid=848014136&cftoken=43171344
https://dl.acm.org/author_page.cfm?id=81100415294&coll=DL&dl=ACM&trk=0&cfid=848014136&cftoken=43171344

5

approach is that the root controller remains a single point risk of failure.

Ashvanth Kumar Selvakumaran [13] proposal a hierarchical SDN inter-domain communication
approach, which has a central controller on top of all the SDN domain controllers. In the solution,
each domain has a local controller and an agent that is used to exchange information between
the local controller and the central controller. The approach only considers the inter-domain
network as a single layer 2 network. In addition, the approach might still have the scalability issue
as the single controller approach when there are a large number of data centre domains.

Seyhan Civanlar, Erhan Lokman, et al.[1] represented a completely distributed scalable Inter-
domain SDN controller design without resorting to a top-level controller. In the inter-domain SDN,
each SDN controller exchanges its 'summarized' topology of service-enabled paths periodically
with other peers, which enables all controller in all domains to make autonomous End-to-end
dynamic path/flow management decisions with minimal processing overhead. The inter-domain
SDN architecture exchanges the resource reservation messages between controllers, which is
different from earlier protocols that use RSVP messages to traverse all routers on the selected
route and recent hierarchical SDN inter-domain architecture depending on a top-level authority.

In order to solve the congestion problem in the different SDN architectures, many researchers
have proposed some different load balancing approaches for SDN-based data centre. Recently
many researchers are focusing on the study of load balancing in inter-domain SDN-based data
centre. By migrating the throughput and network latency problems of the single path routing like
Spanning Tree Protocol (STP), the proposed scheme in [14] achieved higher throughput and lower
latency by a multipath routing mechanism with load balancing and admission control based SDN.

Tim Huang [15] proposed and implemented a load balancing algorithm based on a new path
computation & path selection algorithm in SDN Networks. The path computation algorithm uses
the basic information of the data center network to calculate all the shortest paths of the network.
The path selection algorithm utilizes the output of the path computation and network congestion
status to derive a set of paths with equal minimum congestion level and congestion weight and
then select an optimal path.

In [16], a dynamic load-balanced path optimization (DLPO) algorithm was proposed to change
paths of flows during flow transmissions in different SDN-based data centre network topologies.
The DLPO algorithm is composed of two stages: the path initialization stage, which will try to find
a temporary path according to available bottleneck links' bandwidth, and dynamic path
optimization stage which retrieves load statistics from switches and detects the load-balance
status by the Openflow protocol, and subsequently, it will trigger to balance link loads if link loads
are imbalanced. The authors also proposed a priority-based flow table updating strategy based
on the priority field in the flow to redistrict flows from the heavy-loaded path to light-loaded path
without interrupting flow transmission problem.

In [17], an approach for Traffic Engineering (TE) in SDNs without optimization was proposed. It
uses a logically hierarchical controller architecture, where TE is performed in two levels: the core
switches controllers (CSC) maintains a very small number of core pre-defined simple shortest path
rules in core switches; and access switches controllers (ASCs), which use a central measure to
make traffic distribution decision in the access switches in its own domain. However, the approach
uses a hierarchical controller architecture, thus, is susceptible to a single point of failure.

6

2.3 Proposed Scheme
We proposed a fully distributed approach to implement inter-domain routing and load balancing.
This approach is comprised of two levels of forwarding: inter-domain forwarding and intra-
domain forwarding. Inter-domain forwarding is implemented by setting the IP forwarding rules
between domains based on the global inter-domain level topology of the entire network. In the
intra-domain forwarding, each domain controller controls the layer-2 forwarding inside each
domain. The mechanism is flexible, scalable and distributed to support inter-domain routing.

In order to improve our scheme' availability and efficiency, we also introduced a load balancing
function. The load-balancing scheme uses inter-domain level topology to get the global topology
of the entire networks and then find out all the equal-cost inter-domain shortest paths (ECIPs).

2.4 Comparison with the Approach in Literature

1) Our approach does not rely on an extra root/central controller like most hierarchical

approaches. It is a fully distributed approach for SDN inter-domains' communication.
2) Compared with the other distributed approaches, our approach resorts to

Westbound/Eastbound protocol to share topology and QoS information of entire networks
rather than only neighbour domain's information or summarized topology.

3) Our approach also implemented a new load balancing schemes in the distributed SDN inter-
domain routing architecture based on global topology and QoS information.

7

3. Design of Software-Defined Inter-Domain Communication and

New Load Balancing
The objective of this thesis is to design a completely distributed SDN architecture to implement

data forwarding and load balancing among multiple domains. In this chapter, we first introduced

an overview of our proposed approach. We then described the topology discovery, inter-domain

path selection, and load balancing algorithms in detail.

3.1 Overview of SDN Inter-Domain Routing and Load Balancing
The overview workflow of our proposed approach is shown in Figure 4. The proposed approach

includes 4 modules: topology discovery, path computation, flow installation, and load balance

modules. These modules are briefly described as follows.

1) Topology discovery: the approach proposes 2-level topology discovery. The first level is

the intra-domain level that discovers the internal topology of a domain; the second one

is the inter-domain level that discovers the global network topology among the domains.

Note that each domain represents a subnet with its own unique IP address space.

2) Path computation: the module calculates the shortest path(s) between source and

destination hosts in two levels. The result will be used in the flow installation and load

balance modules.

3) Flow installation: the module pushes flows in the related border switches along the

domain-level shortest path between source/destination host pairs, and it pushes flows in

the relevant switches along the shortest path within a domain. If only one shortest path

exists, the module will use the path computation's result as input, otherwise, it will use

the result of the load balance module as input.

4) Load balance: If there are several equal-cost shortest paths between source and

destination host pair from path computation, the module will detect the network

congestion status to select a suitable path.

The parts of the above modules associated with the local-domain level have been

comprehensively covered and implemented in the literature and are out of the scope of this thesis.

In the following sections, we will provide more detail of the parts of the modules associated with

the inter-domain level.

8

Figure 4 Overview Work Flow of SDN Inter-Domain Routing and Load Balancing

3.2Topology Discovery in Global Inter-Domain Level

3.2.1 The Information Essential to be Exchanged among Domain Controllers

Each domain controller can obtain the information of the intra-domain topology. For example,

the controllers of domains 1, 2 and 3 in Figure 5 can acquire their intra-domain topologies through

Link Layer Discovery Protocol (LLDP) [18]. However, the controllers could not recognize the

9

external links among domains using LLDP alone. Consequently, controllers need to exchange the

intra-domain topology among themselves. Let us first define the symbols of some essential

information.

Let denote Di as Domain i, where i is the id of the domain. The global network thus consists of a

set of Domains = {D1, D2, ... Di, ..., Dn}

Si,n as switch n in Domain Di. We define Si as the set of all Si,n in Di

 Hi,n as host n in Domain Di ,

Pi as the port i of the switch/host,

define Li as the set of all link of Domain Di , and the Link from port p of Si,n to port q of Sj,m is denoted

as [Si,n:Pp , Sj,m:Pq]. When i = j, the link is the internal link of Domain Di, otherwise, it is the external

link between Domain Di and Dj. Note that the link is unidirectional. The switch associated with the

first part of the link is the source, while the switch associated with the second part is the

destination.

Similarly, the link between port p of switch Si,n and port q of host Hi,m in Domain Di , can be donated

as [Si,n:Pp , Hi,m:Pq]

If Domain i has a link [Si,n:Pp , Sj,m:Pq] and Domain j also has the corresponding link [Sj,m:Pq, Si,n:Pp],

we can deduce that Domain i and Domain j are connected by the bi-directional external link

consisting of [Si,n:Pp , Sj,m:Pq] and [Sj,m:Pq, Si,n:Pp].

10

Figure 5 Basic Inter-Domain Topology

In our design, the external links among domains will be learned via BGP protocol. Once the

external links are learned, the overall topology at the domain level can be derived by every

domain controller without requiring a central controller. Note that each domain is treated as a

single routing entity at the domain level. For example, given the inter-domain topology in Figure

6a, we can determine the corresponding domain level topology in Figure 6b.

Domain1

Pq

Domain 2

Domain 3

Pp

11

Figure 6a. 3-Physical Topology Figure6b. Corresponding Domain Level Topology

3.2.2 Algorithm of Discovery the Domain Level Topology

The pseudocode below describes the topology discovery algorithm which is run in each domain’s

controller to derive the domain level topology information.

Algorithm 3.1 - Pseudocode of Topology Discovery

1: Call the northbound API of current local domain Dk to get the local topology

2: Add all local switches into the local switches set Sk, and add all nodes and links Lk into local
domain topology graph G.

3: for Di in Domains do

4: if Di is not Dk then

5: Acquire the topology information (Si and link set Li) of the domain Di by west/east protocol

6: Add Di into domain level topology graph domainGraph as a node

7: if Si,n not in Sk then

8: add Si,n into the peer switches list – peerSwList

9: add the links connected to Si,n into external links - externalLinkList

10: end if

11: end if

12: end for

13: for Si,n in peerSwList do

14: for Dk in Domains do

15: if ∃[Sk,m, Si,n] ∈ externalLinkList and peer Domain Di's Link [Si,n, Sk,m] ∈ Li then

Domain1

Pq

Domain 2

Domain 3

Pp

12

16: identify Si,n , Sk,m and as border Switches and link [Si,n, Sk,m] as an external link;

17: record the port number of the two border switches;

18: add a link[Di, Dk] into domainGraph

19: end if

20: end for

21: end for

22: for Di in Domains do

23: for Dj in Domains, j>=i+1 do

24: if Di is not Dk and Dj is not Dk then

25: if at ∃ [Si,n, Sj,m] ∈ Li and ∃ [Sj,m, Si,n] ∈ Lj then

26: add link[Di, Dj] into domainGraph

27: end if

28: end if

29: end for

30: end for

Let us use an example based on Figure 7a to explain how to build the domain-level topology. In
Figure 7a, each controller has the following local topology information:

Domain D1:

 Switch Set S1: { s11, s12, s13}

 Host Set H1: { h11, h12, h13, h14}

 Link Set L1: {[s11:1, s13:2], [s11:2, s12:2], [s11:3, h14:1], [s11:4, h11:1], [s12:1, s13:1],
[s12:3, h11:1],[s13:3, h13:1], [s13:3, h13:2], [s13:4, s41:4], [s13:5, s21:4]}

Domain D2:

 Switch Set S2: { s21, s22, s23}

 Host Set H2: { h21, h22, h23}

 Link Set L2: {[s21:1, h21:1], [s21:2, s23:2], [s21:3, s22:2], [s21:4, s13:5], [s22:1, h22:1],
[s22:2, s21:3], [s22:3, s23:3],[s22:4, s32:4], [s23:1, h23:1], [s23:2, s21:2] , [s23:3, s22:3]}

Domain D3:

13

 Switch Set S3: { s31, s32, s33}

 Host Set H3: { h31, h32, h33, h34}

 Link Set L3: {[s31:1, h31:1], [s31:2, h34:1], [s31:3, s32:2], [s31:4, s33:1], [s31:5, s43:4],
[s32:1, h32:1],[s32:3, s33:2], [s32:4, s22:4], [s33:3, h33:1] }

 Domain D4:

 Switch Set S4: { s41, s42, s43}

 Host Set H4: { h41, h42, h43}

 Link Set L4: {[s41:1, s43:1], [s41:2, s42:1], [s41:3, h41:1], [s41:4, s13:4], [s42:2, s43:2],
[s42:3, h42:1],[s43:3, h43:1], [s43:4, s31:5]}

Let’s focus on domain D1. By scanning the link set L1 and switch set S1, the controller of D1 finds
the following links whose destination switches do not belong to S1:

[s13:4, s41:4] and [s13:5, s21:4]

Consequently, these are external links. The controller of domain 1 then advertises these external
links to the other controllers. At the same time, it will receive the external link advertisements
from the controllers of domains 2, 3 and 4.

From domain 2: [s21:4, s13:5], [s22:4, s32:4]

From domain 3: [s31:5, s43:4], [s32:4, s22:4]

From domain 4: [s41:4, s13:4], [s43:4, s31:5]

14

By examining all the external link, each controller can derive the domain-level topology as
shown in Figure 7b.

Figure 7a 4-Domain Full Topology

Domain 1 Domain 2

Domain 4 Domain 3

Figure 7b Domain-level Topology

15

3.3 Inter-Domain Path Computing
Algorithm 3.2 derives the domain level topology including domains and inter-domain links. Based

on the domain-level topology, each controller can compute the shortest inter-domain path(s)

between source and destination hosts. In this thesis, we assume all the external links have the

same bandwidth. Consequently, we will first use the domain hops as the metrics to compute the

shortest path. Note that our algorithm can easily be extended to accommodate cases where there

are different bandwidths for different external links. The pseudocode of the path computing

algorithm is given in Algorithm 3.2 below.

Algorithm 3.2 - Pseudocode of Path Computing

1: graph G ← Local Topology Information

2: domainGraph ← Global Topology Discovery

3: srcDomain ← the Domain of the source host

4: dstDomain ← the Domain of the destination host

5: shortestPaths ← get all shortest paths（domainGraph, srcDomain, dstDomain）

6: for shortestpath in shortestPaths do

7: if current Domain is the end node of the shortestpath then

8: return shortestpath

9: else

10: identify the border switch and port along the shortestpath

11: weight metric of the shortestpath ← call the path computing method of the peer
domain along the shortest path

 12: end if

13: end for

14: shortestpath ← the path which has the least weight metric of all the shortestpath

15: return shortestpath

Let us use Figure7b's topology as an example to illustrate the algorithm. For the domain level

topology, Domain Nodes Set is {D1, D2, D3, D4}, Links set is {[D1, D2], [D1, D4], [D2, D3], [D3, D4]}. If

computing the domain level path from h11 to h31 using domain hops as path metrics, the source

host h11's domain is D1, destination host h31's domain is D3, so we find two domain level shortest

paths {D1, D2, D3} and {D1, D4, D3}.

16

Let us use another topology - Figure 8 to illustrate the shortest path computation at the domain-

lever. The domain graph's nodes set is

{D1, D2, D3, D4, D5, D6}, links set is {[D1, D2], [D1, D3], [D3, D4], [D4, D5], [D5, D6], [D2, D6]}. There are 2

paths between D1 and D6: one path is {D1, D3, D4, D5, D6} and another is{ D1, D2, D6}, so the shortest

path is {D1, D2, D6}.

Domain 1

Domain 3

Domain 4

Domain 6Domain 5

Domain 2

Figure 8 Domain-level Topology (6 Domains)

3.4 Inter-Domain Flow Installation
From algorithms 3.1 and 3.2, we get the domain-level topology and then compute the shortest

path in the domain level. When the controller of the source domain receives the first packet sent

by a source host to a destination host in the other domain (packetin event), it needs to install

inter-domain flows in the border switches according to the inter-domain shortest path.

Normally, the controller will make a forwarding decision based on the destination MAC address.

For the inter-domain traffic, however, the forwarding decision is based on the destination IP

address. Thus, the controller needs to distinguish intra-domain traffic from the inter-domain

traffic to process these two types of packets properly. In our approach, we introduce a virtual

gateway MAC address and the corresponding IP address. The virtual gateway IP address will be

configured in each host as the IP address of the default gateway. The mapping of the virtual

gateway MAC and IP addresses is also configured in the ARP table of the host. With the above

17

configurations, when a host wants to send a packet to a host located in the other domain, it will

insert the virtual gateway MAC address at the layer 2 header of the packet. Subsequently, when

a controller sees the virtual gateway MAC address in a packet, it knows that it is processing an

inter-domain packet and examines the IP header of the packet to determine the shortest inter-

domain path.

Figure 9 Design of Distributed Inter-SDN Domain Communication

Unlike some approaches such as [14], this approach can identify the border switches dynamically

rather than relying on the fixed name of the switch/host. According to the output of the prior

modules, we can get the shortest paths in domain level and the border switches of the paths in

each domain. Thus, the packet-in event can trigger the flow installation module to install forward

and reverse flow into border switches at the source domain, the destination domain and the

transit domains along the domain-level shortest path. The source domain controller determines

the shortest path between the source switch and the chosen border switch. Similarly, the

transition domain controller determines the shortest path between the two border switches and

the destination domain controller determines the shortest path between the border switch and

the destination switch. Then these domain controllers install flows which match the MAC address

and IP address along the intra-domain shortest paths.

BGP

BGP BGP

Default Gateway

Default Gateway

Default Gateway

Flow Table

Flow Table

Flow Table

Flow Table Flow Table

Flow Table

Flow Table Flow Table

Flow Table

Domain2
10.1.2.0/24

Domain3
10.1.3.0/24

Domain1
10.1.1.0/24

18

Algorithm 3.3 - Pseudocode of Flow Installation

1: Input: domain shortest path, source host, destination host

2: for domain in domain shortest path do

3: if domain is source domain then

4: identify the border switch and port to downstream peer domain in shortest path

5: push the forward and reverse flows to the border switch

6: determines the intra-domain shortest path between the source switch and the chosen
border switch

7: push flows along the intra-domain shortest path

8: else if domain is destination domain then

9: identify the border switch and port to upstream peer domain in shortest path

10: push the forward and reverse flows the border switch

11: determines the intra-domain shortest path between the chosen border switch and the
destination switch

12: push flows along the intra-domain shortest path

13: else

14: identify the border switches and ports' number which are linked downstream and
upstream domain in the transit domain

15: push the forward and reverse flows to downstream domain

16: push the forward and reverse flows to upstream domain

17: determines the intra-domain shortest path between the two chosen border switches

18: push flows along the intra-domain shortest path

19: end for

Let us study an example based on Figure 7's topology. Supposed that source and destination hosts
are h11 and h31, respectively, and the algorithm adopts the shortest path {D1, D2, D3}. Based on
the shortest path, the source controller can determine that the border switch is s13 and its port
5 is connected to the downstream Domain D2. So the Flow-Installation module pushes the
following flow rules into flow table of s13 to lead the traffic to the downstream domain, D2, and
the reversed traffic from D2 to D1:

19

Table 1 Flow Rules of Border Switch s13 of Domain D1

Match Fields Action Domain:Switch

IP Src(h11)-> IP Dst(h31)
Inport(2)

Output at port 5 D1: s13

IP Src(h31)-> IP Dst(h11)
Inport(5)

Output at port 2 D1: s13

Note that the installed flow rules make the border switch behave like a router.

As the destination of the packet is not inside the Domain1, so when the controller receives the
packet-in message, it will find its designation MAC address is virtual gateway MAC address
('00:00:00:00:00:64'). The controller will then find the intra-domain shortest path between the
source switch s11 and the chosen border switch s13 - [s11, s13], and push the flows along the
intra-domain shortest path as shown in the following table 2.

Table 2 Flow Rules inside Domain D1

Match Fields Action Domain:Switch

IP Src(h11)-> IP Dst(h31)
Mac Dst(00:00:00:00:00:64)

Output at port 1 D1: s11

When the packet reaches a transit Domain D2, via the incoming border gateway s21, the controller
of D2 identifies the packet as an inter-domain packet since it arrives at the external link. The
controller of D2 thus processes the IP header and determines outgoing border gateway, s22.
Consequently, the Flow-Installation module in the controller of D2 will push a forward flow rule
into the flow table of the border switch s22 to forward packet at port 4 to D3 and push a reversed
flow rule to receive the reserved packet from D3, and also install the similar bidirectional flows
into another border gateway s21.

Table 3 Flow Rules of Border Switches of Domain D2

Match Fields Action Domain:Switch

IP Src(h11)-> IP Dst(h31),
inport(4)

Output at port 3 D2: s21

IP Src(h31)-> IP Dst(h11)
inport(3)

Output at port 4 D2: s21

IP Src(h11)-> IP Dst(h31)
inport(2)

output at port 4 D2: s22

IP Src(h31)-> IP Dst(h11)
Inport(4)

output at port 2 D2: s22

20

When the packet reaches the destination domain D3 through the border switch s32, the Flow-
Installation module in the controller of D3 pushes a forward and reserved flow rules into flow table
of the border switch s32 to lead the traffic to h31 and h11, respectively.

Table 4 summarizes the flow rules installed at the border switches of domains 1, 2 and 3.

Table 4 Flow Entry of Border Switches

Match Fields Action Domain:Switch

IP Src(h11)-> IP Dst(h31)
inport(2)

Output at port 5 D1: s13

IP Src(h31)-> IP Dst(h11)
Inport(5)

Output at port 2 D1: s13

IP Src(h11)-> IP Dst(h31),
inport(4)

Output at port 3 D2: s21

IP Src(h31)-> IP Dst(h11)
inport(3)

Output at port 4 D2: s21

IP Src(h11)-> IP Dst(h31)
inport(2)

output at port 4 D2: s22

IP Src(h31)-> IP Dst(h11)
Inport(4)

output at port 2 D2: s22

IP Src(h11)-> IP Dst(h31),
inport(4)

Output at port 2 D3: s32

IP Src(h31)-> IP Dst(h11)
inport(2)

Output at port 4 D3: s32

3.5 Load Balancing
There are some classic load balancing algorithms available for SDN traffic engineering such as

Random, Global First Fit, and Round Robin. Round Robin is widely used in industry and extremely

simple to implement.

Round Robin (RR) load-balancing algorithm pre-computes all the available equal-cost shortest

paths in domain-level for all source and destination domains pair and save these paths. The pre-

computed equal-cost paths will be selected for different traffic flows in round-robin fashion.

The RR algorithm does not provide a true load balancing for different traffic flows may have

different traffic characteristics: some require more bandwidth while others have a longer life

time. In this section, we introduce a mechanism to improve the load balancing performance.

3.5.1 New Metric of Proposed Load Balancing Scheme

In our load-balancing scheme, if the source domain finds that there are two or more equal-cost

shortest paths, it will obtain the load metrics of all these paths and choose the one with the lowest

load metric. The load metric of a path is the sum of the domain load metrics of the domains that

form the path. The domain load metric, in turn, is the load metric of an intra-domain path of that

21

domain. Individual domain controller computes the load metric of the domain. For the transition

domain, the intra-domain path is the path connecting the incoming and outgoing border switches

of that domain. For the source domain, the intra-domain path is the path connecting the source

and the outgoing border switch. Finally, for the destination domain, the intra-domain path

connects the incoming border switch and the destination.

For a given intra-domain path with a set of links, the load metric is the function of the number of

links, the bandwidths and the traffic loads of those links. Let

𝐿𝑖 = {𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖,𝑛}

where 𝐿𝑖 represents all the links associated with an intra-domain path 𝑖 and 𝑙𝑖𝑗 represents one of

those links. The total number of links of the path is 𝑛. The bandwidth of link 𝑙𝑖𝑗 is denoted as 𝐵𝑖𝑗

and the traffic load of the link is 𝑏𝑖𝑗. Based on this definition, the load metric, 𝐿𝑀𝑖, of an intra-

domain path 𝑖 is given by:

𝐿𝑀𝑖 = ∑
𝑏𝑖𝑗

𝐵𝑖𝑗

𝑛

𝑗=1

 (1)

Equation 1 tries to capture the load of all the links of the intra-domain path and the amount of

resource (link bandwidth) required for using the path. The traffic load of 𝑏𝑖𝑗 is obtained by the

controller from the switches associated with the link 𝑙𝑖𝑗 in every 5-sec window. The choice of the

length of the window of 5 sec is the balance between bandwidth usage and the currency of the

load information.

Similarly, the load metric of an inter-domain link 𝐿𝑅𝑖𝑗 between two domain 𝐷𝑖 and 𝐷𝑗 is also

defined as the ratio of the bandwidth of the link, 𝐵𝑟𝑖𝑗, and the traffic load of the link, 𝑏𝑟𝑖𝑗:

𝐿𝑅𝑖𝑗 =
𝑏𝑟𝑖𝑗

𝐵𝑟𝑖𝑗
 (2)

The load-balancing algorithm will use the following mechanism to gather domain load metrics.

First, the source domain controller makes load-metric inquiries to its adjacent downstream

domains associated with all the equal-cost paths. These inquiries trigger the downstream domain

controllers to make inquiries to their own downstream domain controller(s). This procedure

repeats at each transition domain until the inquiries from different equal-cost paths reach the

destination domain controller. The destination domain controller responds with the domain load

metric(s) of its domain. The transition domain controller adds the load metric from the response

with the load metric of its domain and passes the sum to the upstream domain controller. Thus,

when the source domain controller collects the responses, it can compute the overall load metrics

of all equal-cost paths. The source domain controller then will choose the path with the lowest

22

overall load metric. The following Pseudocodes describe the algorithms used by the source

domain, transition and destination domain controllers.

Source Domain controller

1. Given the source and the destination, determines all the equal-cost paths, {𝑃1, … , 𝑃𝑛},

and the corresponding downstream domains. Let {𝐷1, … , 𝐷𝑛} be the set of these

downstream domains and {𝑆1, … , 𝑆𝑛} be the corresponding border switches that

connecting to these domains, respectively.

2. Determine the intra-domain paths from the source to each of these border switches in

{𝑆1, … , 𝑆𝑛}. Calculate the corresponding load metric, {𝐿𝑀1, … , 𝐿𝑀𝑛}

3. Calculate the load metric of the inter-domain link to to {𝐷1, … , 𝐷𝑛} , let the load metric

as {𝐿𝑅1, … , 𝐿𝑅𝑛}

4. Sends inquires to domain controllers whose domains belong to {𝐷1, … , 𝐷𝑛}. The inquiry

contains the source and destination information.

5. The response received from an adjacent domain j contains the load metric of the path,

𝐷𝑀𝑗, measured from domain j to the destination domain.

6. For every path in {𝑃1, … , 𝑃𝑛}, determine the overall load metric of 𝑃𝑗, 𝑃𝑀𝑗:

𝑃𝑀𝑗 = 𝐷𝑀𝑗 + 𝐿𝑀𝑗 + 𝐿𝑅𝑗

If no response is received from domain 𝐷𝑗 within the waiting window of 2 sec, 𝑃𝑗 , is

considered ineligible for the selection.

7. Choose 𝑃𝑗 if 𝑃𝑀𝑗 = min ({𝑃𝑀1, … , 𝑃𝑀𝑛}).

Transit Domain controller

1. Upon receiving a load-metric inquiry from the upstream domain, 𝐷𝑢 , at an incoming

border switch, 𝑆𝐼, the controller determines all the equal-cost paths, {𝑃1, … , 𝑃𝑛} , the

corresponding downstream domains {𝐷1, … , 𝐷𝑛} and the border switches that

connecting to these domains {𝑆1, … , 𝑆𝑛} .

2. Determine the intra-domain paths from 𝑆𝐼 to each of the border switches in {𝑆1, … , 𝑆𝑛}.

Calculate the corresponding load metric, {𝐿𝑀1, … , 𝐿𝑀𝑛}

3. Calculate the load metric of the inter-domain link to {𝐷1, … , 𝐷𝑛} , let the load metric as

{𝐿𝑅1, … , 𝐿𝑅𝑛}

4. Sends inquires to domain controllers whose domains belong to {𝐷1, … , 𝐷𝑛}.

5. The response received from an adjacent domain j contains the load metric of the path,

𝐷𝑀𝑗, measured from domain j to the destination domain.

6. For every path in {𝑃1, … , 𝑃𝑛}, determine the load metric, 𝑃𝑀𝑗:

𝑃𝑀𝑗 = 𝐷𝑀𝑗 + 𝐿𝑀𝑗 + 𝐿𝑅𝑗

If no response is received from domain 𝐷𝑗 within the waiting window of 2 sec, 𝑃𝑗 , is

considered ineligible for the selection.

7. Send 𝑃𝑀𝑗 back to 𝐷𝑢, where 𝑃𝑀𝑗 = min (𝑃𝑀1, … , 𝑃𝑀𝑛}.

23

Destination Domain controller

1. Upon receiving a load-metric inquiry from the upstream domain, 𝐷𝑢 , at an incoming

border switch, 𝑆𝐼, the controller determines the intra-domain path from 𝑆𝐼 to the

destination. It then calculates the corresponding load metric, 𝐿𝑀𝑑.

2. Send 𝐿𝑀𝑑 back to 𝐷𝑢.

3.5.2 Example

Let us use the topology in Figure 10 as an example to illustrate the proposed load balancing

approach. When h11 sends packets to h33, there are two equal shortest paths according to

algorithm 3.2 in section 3.3:

P1: {D1, D2, D3}

P2: {D1, D4, D3}

The figure also shows the traffic loads and bandwidths of the relevant links. The traffic load is

measured by the number of bytes sent on the link in a 5-sec window.

Figure 10 Topology Indicated QoS info along Equal Shortest Paths

24

In Source Domain 1: paths 𝑃1 and 𝑃2 have the same border switch s13, and the shortest path from

the source switch s11 to the border switch s13, L1 = { l11} = {[s11:1, s13:2]}, so the load metric of

𝑃1 and 𝑃2 is same , and 𝐿𝑀1 = 𝐿𝑀2 = b11/B11 = 1/10 = 0.1. The controller of Domain1 also

calculates the load metric of inter-domain link Lr12 ([s13:5, s21:4]) to Domain2 in 𝑃1 and Lr14

([s13:4, s41:4]) to Domain4 in 𝑃2 : 𝐿𝑅1= br12/Br12 = 3/20 = 0.15 and 𝐿𝑅2= br14/Br14 = 2/20 = 0.1.

Then the controller sends inquires to the controllers of Domain 2 (associated with 𝑃1) and

Domain 4 (associated with 𝑃2).

In Transit Domain 2(P1): there is only one path to destination Domain 3 and the incoming switch

is s21 and the outgoing border switch is s22, so the link set along the shortest path between the

two border switches is L2 = {l21} = { [s21:3, s23:2]}, and 𝐿𝑀′= b21/B21 = 5/10 = 0.5. The load metric

of inter-domain link Lr23 ([s22:4, s32:4]) to destination Domain 3: 𝐿𝑅′= br23/Br23 = 1/50 = 0.02. The

domain controller sends inquire to its downstream domain - Domain 3's controller.

In Transit Domain 4(P2): similar with Domain 2, 𝐿𝑀′′= b41/B41 = 1.5/10 = 0.15, and the load metric

of inter-domain link Lr43 ([s41:4, s31:5]) to destination Domain 3: 𝐿𝑅′′= br43/Br43 = 1.5/30 = 0.05.

The domain controller also sends an inquiry to the destination Domain 3.

In Destination Domain 3: the controller receives 2 inquiries from Domain 2 and 4.

For Domain2's inquiry: the link set along shortest path from s32 to the destination switch s33, L3=

{l32, l33} = {[s32:3, s33:2]}. It returns 𝐿𝑀𝑑 = b31/B31 = 0.5/10 = 0.05 to Domain 2.

Thus, Domain 2 gets the 𝐷𝑀′= 0.05 and then the Domain2's controller return 𝑃𝑀1′ = 𝐷𝑀′ +

𝐿𝑀′ + 𝐿𝑅′ = 0.05 + 0.5 + 0.02 = 0.57 to Domain 1, so Domain 1s gets the 𝑃𝑀1 = 𝐷𝑀1 + 𝐿𝑀1

+ 𝐿𝑅1 = 0.57 + 0.1 + 0.15 = 0.82

Similarly, Domain3 returns 𝐿𝑀𝑑′ = 0.01 to Domain 4, and then Domain 4 gets the 𝐷𝑀′′= 0.01 and

then the Domain4's controller return 𝑃𝑀′ = 𝐷𝑀′′ + 𝐿𝑀′′ + 𝐿𝑅′′ = 0.21. to Domain 1, so Domain

1 gets P2's metric 𝑃𝑀2 = 𝐷𝑀2 + 𝐿𝑀2 + 𝐿𝑅2 = 0.21 + 0.1 + 0.1 = 0.41.

Since PM2 (0.41) < PM1(0.82), the new load balancing algorithm will choose P2 {D1, D4, D3} as the

shortest path for traffic between h11 and h33 .

25

4. Implementation and Results

4.1 Background Technologies

The OpenDaylight controller is JVM software for SDN and can be run on any OS. It supports

OpenFlow protocol with some useful tools, such as Karaf, Maven, OSGi, JAVA interfaces, REST

APIs. ([4]) We select the OpenDayLight (ODL) platform in its Beryllium-SR4 as the base SDN

controller of our scheme. The version has integrated SDNi which is used to implement the

controllers' information exchange.

ODL-SDNi (Software Defined Networking Interface) is an application that is used to connect
multiple Opendaylight-federated controllers in a network and sharing the Topology and QoS
information among them. ([7][8])
Python is an interpreted and object-oriented programming language which has a large standard

library to support string processing, various kinds of Internet protocols and operating system

interfaces. Many SDN researchers use Python to develop their own SDN applications. ([6])

Mininet is a network emulator which can run virtual hosts, switches and controllers and links on

a PC, VM workstation or cloud system and so on. Mininet supports arbitrary custom topologies,

Python API, developing and testing Openflow applications and SDN systems. Mininet is very useful

for development, teaching, and research on network field. ([9])

4.2 Environment
The complete network environment runs on the vCloud with the following resource: 32HZ Virtual

CPU, 64GB Memory, 1TB Storage.

There are 8 VM machines, 192.168.118.129/133/135/140 are Mininet servers, other 4 VM

machines (192.168.30.136/137/138/142) are OpenDayLight controllers. The relationship of these

Mininet servers and ODL controllers is as follows:

 1)Mininet (192.168.118.129) is connected to ODL (192.168.30.136)

 2)Mininet (192.168.118.133) is connected to ODL (192.168.30.137)

 3)Mininet (192.168.118.135) is connected to ODL (192.168.30.138)

 4)Mininet (192.168.118.140) is connected to ODL (192.168.30.142)

http://mininet.org/sample-workflow
http://mininet.org/teaching
http://reproducingnetworkresearch.wordpress.com/

26

Their detailed configuration is shown as the beloved table:

Table 5 System Configuration of SDNi Environment

VM Machine IP Address Software Hardware

Mininet 1 192.168.118.129 OS: Ubuntu 14.04

Mininet 2.2.1

1 CPU, 1GB Memory,

8GB Storage

Mininet 2 192.168.118.130 OS: Ubuntu 14.04

Mininet 2.2.1

1 CPU, 1GB Memory,

8GB Storage

Mininet 3 192.168.118.135 OS: Ubuntu 14.04

Mininet 2.2.1

1 CPU, 1GB Memory,

8GB Storage

Mininet 4 192.168.118.140 OS: Ubuntu 14.04

Mininet 2.2.1

1 CPU, 1GB Memory,

8GB Storage

ODL Controller 1 192.168.30.136 OS: Ubuntu 16.04 64bits

ODL Beryllium SR4

2 CPU, 8GB Memory,

32GB Storage

ODL Controller 2 192.168.30.137 OS: Ubuntu 16.04 64bits

ODL Beryllium SR4

2 CPU, 8GB Memory,

32GB Storage

ODL Controller 3 192.168.30.138 OS: Ubuntu 16.04 64bits

ODL Beryllium SR4

2 CPU, 8GB Memory,

32GB Storage

ODL Controller 4 192.168.30.142 OS: Ubuntu 16.04 64bits

ODL Beryllium SR4

2 CPU, 8GB Memory,

32GB Storage

27

These servers' deploying is shown in Figure 11:

Figure 11 vCloud Deploying of the SDN Inter-domains

4.3 System Implementation
Following are the steps to implement the SDN inter-domain routing.

1) Capture and process inter-domain packets in L2-Switch module of the controller

2) Develop an application that provides an interface to the controller. The functions of the

application include topology discovery based on SDNi, Inter-Domain shortest path

computation and inter-domain flows installation along the shortest path;

3) Implement load-balancing function based on the distribution SDN inter-domain routing

architecture.

4.3.1 Topology

We use the following python script to create the test network in each domain.

 "Create Domain1 Network"

 net = Mininet(controller=lambda a: RemoteController(a, ip='192.168.118.136'))

 info('*** Adding Controller\n')

 net.addController('c1')

 # Add hosts and switches

 info('*** Creating Nodes\n')

 Host11 = net.addHost('h11', mac='00:00:00:00:00:01', ip='10.1.1.1/24')

 Host12 = net.addHost('h12', mac='00:00:00:00:00:02', ip='10.1.1.2/24')

 Host13 = net.addHost('h13', mac='00:00:00:00:00:03', ip='10.1.1.3/24')

 Host14 = net.addHost('h14', mac='00:00:00:00:00:04', ip='10.1.1.4/24')

 info('*** Creating Switches\n')

 Switch11 = net.addSwitch('s11')

 Switch12 = net.addSwitch('s12')

 Switch13 = net.addSwitch('s13')

 # Add links

 info('*** Creating links\n')

 net.addLink(Host11, Switch11)

 net.addLink(Host14, Switch11)

 net.addLink(Switch11, Switch12)

 net.addLink(Switch12, Host12)

28

 net.addLink(Switch12, Switch13)

 net.addLink(Switch11, Switch13)

 net.addLink(Switch13, Host13)

 info('*** Building network\n')

 net.build()

Figure 12 is our test-bed topology for inter-domain communication and load balancing test. The

red lines in the figures refer to the inter-domain links connecting the border switches among the

domains; the blue lines refer to the local links connecting the local switches/hosts in each domain.

Figure 12 Topology for Inter-domain Communication and Load Balancing Test

 4.3.2 OpenDayLight L2switch module modification

In ODL, L2Switch is an important basic network service, which provides Layer2 switch

functionality. L2Switch module is comprised of the following Components:

29

1) Packet Handler: Decodes the packets coming to the controller and dispatches them

appropriately. In this component, some decoder classes can decode Ethernet, ARP, IPv4 or

IPv6 packet based their Ethertype respectively.

2) Loop Remover: This component removes loops in the network by writing STP (Spanning Tree

Protocol) status of "forwarding" or "discarding" to each link in the Topology data tree.

Forwarding links can forward packets and discarding links cannot forward packets. The

component uses Link Layer Discovery Protocol (LLDP) to learn topology information, so it can

change STP status of a link based on changes in the network.

3) Arp Handler: It handles and processes the controller's incoming ARP packets and send the

ARP packet back into the network.

4) Address Tracker: This component learns the Addresses (MAC and IP) of packets in the

network. its class AddressObserverUsingArp, AddressObserverUsingIpv4,

AddressObserverUsingIpv6 registers for Arp, IPv4, IPv6 packet notification respectively.

5) Host Tracker: It tracks the locations of hosts (MAC addresses of the hosts as the primary ID)

in the network and gathers information about the traffic flowing to a host.

6) L2Switch Main: It installs flows based on MAC addresses learned on each switch when packets

come to the controller. If the destination of a coming packet is unknown, it will send a

broadcast message in the network, otherwise, if the destination is known, L2Switch module

will forward the packet to the destination.

In our approach, we change the Address Tracker component of L2Switch module to enable it to

recognize the inter-domain packets. Firstly, as mentioned in section 3.4, we configure a static

gateway in the routing table and ARP table of each host. The following python script is used to

configure the static gateway (Mac address is "00:00:00:00:00:64") in each host of a domain.

 # Congfigure dummy routers

 info('*** Congfigure dummy routers\n')

 Host11.cmd("sudo route add default gw 10.1.1.100 h11-eth0")

 Host11.cmd("sudo arp -s 10.1.1.100 00:00:00:00:00:64")

 Host12.cmd("sudo route add default gw 10.1.1.100 h12-eth0")

 Host12.cmd("sudo arp -s 10.1.1.100 00:00:00:00:00:64")

 Host13.cmd("sudo route add default gw 10.1.1.100 h13-eth0")

 Host13.cmd("sudo arp -s 10.1.1.100 00:00:00:00:00:64")

 Host14.cmd("sudo route add default gw 10.1.1.100 h14-eth0")

 Host14.cmd("sudo arp -s 10.1.1.100 00:00:00:00:00:64")

If the destination of a packet is not in the current domain, the destination MAC address will be

the default gateway MAC address. Thus, L2Switch can identify the inter-domain traffic based on

this MAC address. We configure and change the address tracker component of L2Switch module

30

such that it can capture and process inter-domain packets when packet-in messages arrive at the

controller. If the L2Switch component receives these inter-domain packets, it calls our python

application (which will be represented in following section) for layer 3 forwarding. Packets

destined inside the current domain will be handled by the default L2Switch layer 2 forwarding.

The following function is the key java code in the modification of ODL L2Switch's Address Tracker

component.

 public void onIpv4PacketReceived(Ipv4PacketReceived packetReceived) {

 if(packetReceived == null || packetReceived.getPacketChain() == null) {

 return;

 }

 RawPacket rawPacket = null;

 EthernetPacket ethernetPacket = null;

 Ipv4Packet ipv4Packet = null;

 for(PacketChain packetChain : packetReceived.getPacketChain()) {

 if(packetChain.getPacket() instanceof RawPacket) {

 rawPacket = (RawPacket) packetChain.getPacket();

 } else if(packetChain.getPacket() instanceof EthernetPacket) {

 ethernetPacket = (EthernetPacket) packetChain.getPacket();

 } else if(packetChain.getPacket() instanceof Ipv4Packet) {

 ipv4Packet = (Ipv4Packet) packetChain.getPacket();

 }

 }

 if(rawPacket == null || ethernetPacket == null || ipv4Packet == null) {

 return;

 }

 if(!IPV4_IP_TO_IGNORE.equals(ipv4Packet.getSourceIpv4().getValue())) {

 addressObservationWriter.addAddress(ethernetPacket.getSourceMac(),

 new IpAddress(ipv4Packet.getSourceIpv4().getValue().toCharArray()),

 rawPacket.getIngress());

 MacAddress destMac = ethernetPacket.getDestinationMac();

 if(!ignoreThisMac(destMac)) {

 String checkDummyMac = destMac.getValue();

 if (checkDummyMac.equals("00:00:00:00:00:64")) {

 Runtime run = Runtime.getRuntime();

 String command = "python /home/user/multi_domain_router.py";

 String line = null;

 Process pr = run.exec(command);

 pr.waitFor();

 BufferedReader buf = new BufferedReader(new InputStreamReader(pr.getInputStream()));

 while ((line=buf.readLine())!=null) {

 _logger.debug("Run Python Router Application Info : {}", line);

 }

 }

 }

 }

 }

 4.3.3 Topology Discovery Based on SDNi

By setting up SDNi, each domain controller can obtain the domain topology information of the

other domains by communicating with respective domain controllers. After obtaining the

information topology of the inter-domain network, each domain controller can independently

build a domain level topology and identify the border switches and the corresponding external

links. The domain-level topology will be used to determine the shortest path between source and

destination domains.

31

 4.3.4 Inter-Domain Shortest Path

We can get the domain level topology from section 4.3.3 and form the domain level network

graph. In the graph, domain IDs as nodes are inserted as graph vertices and the external links are

inserted as the graph edges. We created the dictionary variables (subIPDomains and

domainSubIPs) for mapping the different domains and their network address. Based on the

domain-level network graph, we use the python NetworkX package to compute the inter-domain

shortest path as the following code:

h1: source host's ip address; h2: destination host's ip address

srcSubnet = IP(h1).make_net('255.255.255.0').strNormal()

srcDomain = subIPDomains[srcSubnet]

dstSubnet = IP(h2).make_net('255.255.255.0').strNormal()

dstDomain = subIPDomains[dstSubnet]

dmShorted_path = nx.dijkstra_path(domainGraph, source = srcDomain, target = dstDomain)

For a transit domain controller, it can use the following code to get the domain level shortest path

between the current transit domain to the destination domain:

curDomain = ipDomains[curDomainIP]

dstSubnet = IP(h2).make_net('255.255.255.0').strNormal()

dstDomain = subIPDomains[dstSubnet]

dmShorted_path = nx.dijkstra_path(domainGraph, source = curDomain, target = dstDomain)

4.3.5 Inter-Domain Flows along the Shortest Path

The following pushFlowRules function illustrates our method to push the inter-domain flows along

the domain level shortest path.

h1: source ip address; h2: destination ip address

def pushFlowRules(dmshortestPath,h1,h2):

 global globalFlowId

 flowNum = 100

 curDomain = ipDomains[curDomainIP]

 localSubnet = domainSubIPs[curDomain]

 bottom = len(dmshortestPath)

 for currentNode in range(0,bottom):

 if curDomain == dmshortestPath[currentNode]

 print "Intra-domain shortest path : "

 print dmshortestPath

 if currentNode == 0:

 borderLink = borderDomainLink[dmshortestPath[1]]

 portnumlst = linkPorts[borderLink]

 portNum = portnumlst.split("::")[1]

 borderSwitch = borderLink.split("::")[1]

 bSwID = borderSwitch.split(":")[1]

 swNode = 's' + bSwID

 flowName = h1 + 'output_to' + h2

 globalFlowId = globalFlowId + 1

 flowURL = http_url + curDomainIP + ':8181/restconf/config/opendaylight-

inventory:nodes/node/'+ borderSwitch + '/table/0/flow/' + str(globalFlowId)

 jsonBody = makeFlowInstr(globalFlowId, flowName, portNum, dummyRouterMac,h1,h2)

 print flowURL

 print jsonBody

 response = requests.put(flowURL, auth=auth, data = jsonBody, headers = headers)

 print response

 elif currentNode == bottom - 1:

32

 borderLink = borderDomainLink[dmshortestPath[bottom - 2]]

 portnumlst = linkPorts[borderLink]

 portNum = portnumlst.split("::")[1]

 borderSwitch = borderLink.split("::")[1]

 bSwID = borderSwitch.split(":")[1]

 swNode = 's' + bSwID

 flowName = h1 + 'output_to' + h2

 globalFlowId = globalFlowId + 1

 flowURL = http_url + curDomainIP + ':8181/restconf/config/opendaylight-

inventory:nodes/node/'+ borderSwitch + '/table/0/flow/' + str(globalFlowId)

 jsonBody = makeFlowInstr(globalFlowId, flowName, portNum, dummyRouterMac,h2,h1)

 response = requests.put(flowURL, auth=auth, data = jsonBody, headers = headers)

 print response

 else :

 borderLink = borderDomainLink[dmshortestPath[currentNode+1]]

 portnumlst = linkPorts[borderLink]

 portNum = portnumlst.split("::")[1]

 borderSwitch = borderLink.split("::")[1]

 bSwID = borderSwitch.split(":")[1]

 swNode = 's' + bSwID

 flowName = h1 + 'output_to' + h2

 globalFlowId = globalFlowId + 1

 flowURL = http_url + curDomainIP + ':8181/restconf/config/opendaylight-

inventory:nodes/node/'+ borderSwitch + '/table/0/flow/' + str(globalFlowId)

 jsonBody = makeFlowInstr(globalFlowId, flowName, portNum, dummyRouterMac,h1,h2)

 response = requests.put(flowURL, auth=auth, data = jsonBody, headers = headers)

 print response

 #push reversed flow

 borderLink = borderDomainLink[dmshortestPath[currentNode-1]]

 portnumlst = linkPorts[borderLink]

 portNum = portnumlst.split("::")[1]

 borderSwitch = borderLink.split("::")[1]

 bSwID = borderSwitch.split(":")[1]

 swNode = 's' + bSwID

 flowName = h2 + 'output_to' + h1

 globalFlowId = globalFlowId + 1

 flowURL = http_url + curDomainIP + ':8181/restconf/config/opendaylight-

inventory:nodes/node/'+ borderSwitch + '/table/0/flow/' + str(globalFlowId)

 jsonBody = makeFlowInstr(globalFlowId, flowName, portNum, dummyRouterMac,h2,h1)

 response = requests.put(flowURL, auth=auth, data = jsonBody, headers = headers)

 print response

In the function, dmshortestPath is the domain level shortest path which is obtained from section

4.3.3. If currentNode is the first node of the domain level shortest path, it is the source domain,

and the source domain controller identifies the border switch and port to downstream peer

domain and then push the forwarding flow; if currentNode is the last node of the domain level

shortest path, it is the destination domain, and the destination domain controller identifies the

border switch and port to upstream peer domain and then push the reversed flow; otherwise,

currentNode is transit domain, and its controller identifies the border switches and ports that are

linked to downstream and upstream domain, and then push the forwarding and reserved flows

into the border switches.

33

4.3.5 Load Balancing base on Distributed Inter-domain SDN

We use python flask framework to create the RESTful API web services in each domain. These

REST APIs provides the domain's load metric calculation (defined by section 3.5) and calls the

downstream domain's load metric API if the current domain is not destination domain. When the

source domain controller gets all the results from all downstream domains' APIs in equal-cost

shortest paths, the controller chooses the path with the minimum load metric and pushes the

inter-domain flows along the optimal path using the function of section 4.3.4. The following codes

depict how to implement the load balancing based on our distributed inter-domain SDN.

 mLst = getcurrentDomainLoadMetric(PeerDomains,borderSws)

 LoadMetricList = []

 for peerDomainIP in PeerDomains:

 odl_url = http_url + peerDomainIP + loadmetric_url

 response = requests.get(odl_url, auth=auth)

 LoadMetric = json.loads(response.content)

 LoadMetricList.append(LoadMetric)

 minMetricPathID = get_min_path(LoadMetricList, mLst)

 dmshortestPath = shortestPaths[minMetricPathID]

 pushFlowRules(dmshortestPath,h1,h2)

4.2 Result Analysis

4.2.1 Inter-domain Communication Test

We test the inter-domain communication by pinging from h11 of domain 1 to h23 in domain 2

and h31 in domain 3 in the Figure 12's topology. The ping process was found successful (Figure

13). After the ping, we checked the border switches' flow tables. Figure 14 shows that the

application can identify border switches between domains and push the proper flows to those

switches. The flow table entries that are underlined are the flows installed by the controller in the

border switch used for inter-domain routing. The underlined entries show that the inter-domain

packets will be forwarded along the inter-domain/intra-domain shortest path.

Figure 13 Ping Result After Running Program

34

Figure 14 Flow Table in Related Switches Pushed by Application

4.2.2 Load Balancing Test

After integrating the load balancing application to all the domain controllers, we test the new load

balancing method and compare it with Round Robin load balancing strategy. Firstly, we use iperf

to generate large traffic in the transit domain - Domain 4 and make the domain congested. We

issue a sequence of pings according to the following order:

1) From h11 to h33

2) From h11 to h34

Based on the topology shown in Figure 12, the equal-cost domain-level shortest path from

Domain1 to Domain 3 are found as follows:

 1) Domain 1-> Domain 2->Domain 3

 2) Domain 1-> Domain 4->Domain 3

We tested Round Robin load balancing strategy and get the flow table of the related switches as

Figure 15, so we can get the paths which are allocated to these hosts according to Round Robin

as the following Table 6 and Figure16.

35

Figure 15 Flow Table of Related Switches in Round Robin Load Balancing Strategy

Table 6 Path of Round Robin Load Balancing Strategy

Source Destination Path

h11 h33 Domain 1-> Domain 2->Domain 3

h11 h34 Domain 1-> Domain 4->Domain 3

36

Figure 16 Round Robin Paths between Source/Destination Host Pairs

Round Robin load balancing method does not consider traffic condition, so it won't avoid the

congested domain.

After we completed the all ping operation using our new load balancing application. We check

the flow table on each border switches, and then we got the following real paths between these

source/ destination host pairs.

h11->h33

h11->h34

37

Figure 17 Flow Tables on Border Switches in New Load Balancing Method

38

Figure 18 Real Paths between Source/Destination Host Pairs

The test result is consistent with our expectations.

4.2.3 Performance Comparison

We used iperf to simulate network congestion for 20 seconds in Domain 4 as Figure 18.

Figure 19 Iperf Simulating Network Congestion

h11->h33

h11->h34

39

When Iperf was simulating the congestion, we tested ping h33 & h34 from h11 respectively. As

there is a congested domain at the path from h11 to h34 in Round Robin method, the ping (from

h11 to h34) is slow and spent more time with the accumulation of network traffic. It also has 9%

packet loss. However, another ping (from h11 to h33) is fast and no packet loss as there is no

congested domain along its path.

Figure 20 Performance of Round Robin Method

For the same scenario, our load balancing method got better performance than Round Robin

method as Figure 20 because the new method can detect the network traffic congestion and

choose an optimized path.

Figure 21 Performance of Proposed Load Balancing Method

40

5. Conclusion and Future work
We designed and implemented a distributed inter-domain routing mechanism in the SDN

environment. The implementation was found to be successful. In addition, we proposed,

designed and implemented an efficient load balancing scheme, which performs load balancing

based on the traffic load of the network. Again, we found that the implementation was successful,

and the controller can select a better path to avoid the congested part of the network. We

emphasize that the OpenDayLight controller can be deployed in the real network. For that reason,

our implementation can be easily tested and deployed in the production environment.

In the future, we will continue to improve this application to deal with more complicated

topology. We will also combine the segment routing module into our approach to expedite the

recovery for some link failure.

41

References

[1] S. Civanlar, E. Lokman, B. Kaytaz, A. Murat Tekalp, "Distributed management of service-
enabled flow-paths across multiple sdn domains", IEEE European Conf. on Networks and
Communications (EuCNC), pp. 360-364, 2015.

[2] Benzekki Kamal et al. Software‐defined networking (SDN): a survey. Security and
Communication Networks 9, no. 18 (2016): 5803-5833.

[3] "White Papers". Opennetworking.org. Retrieved 26 January 2017.
[4] “OpenDaylight - An Open Source Community and Meritocracy for Software-Defined

Networking”. https://www.opendaylight.org. Retrieved 7 February 2017.
[5] OpenFlow: Enabling Innovation in Campus Networks, ACM SIGCOMM Computer

Communication Review Volume 38 Issue 2, April 2008 Pages 69-74.
[6] "The Python Tutorial". www.python.org/. Retrieved 17 January 2017.
[7] https://wiki.opendaylight.org/view/ODL-SDNiApp:User_Guide_for_Beryllium_Release.

Retrieved 7 May 2017.
[8] https://wiki.opendaylight.org/view/ODL-SDNi_App:Main. Retrieved 7 May 2017.
[9] Bob Lantz, Brandon Heller, and Nick McKeown. A Network in a Laptop: Rapid Prototyping for

Software-Defined Networks. 9th ACM Workshop on Hot Topics in Networks, October 20-21,
2010, Monterey, CA.

[10] Tootoonchian A, Ganjali Y. HyperFlow: a distributed control plane for OpenFlow. Proceedings
of the 2010 Internet Network Management Conference on Research on Enterprise
Networking. USENIX Association,2010, p. 3.

[11] Teemu Koponen , Martin Casado , Natasha Gude , Jeremy Stribling , Leon Poutievski , Min
Zhu , Rajiv Ramanathan , Yuichiro Iwata , Hiroaki Inoue , Takayuki Hama , Scott Shenker, Onix:
a distributed control platform for large-scale production networks, Proceedings of the 9th
USENIX conference on Operating systems design and implementation, p.1-6, October 04-06,
2010, Vancouver, BC, Canada

[12] S. Hassas Yeganeh, Y. Ganjali, "Kandoo: A Framework for Efficient and Scalable Offloading of
Control Applications", Proc. HotSON '12 Wksp., pp. 19-24, 2012.

[13] Ashvanth Kumar Selvakumaran. Software-Defined Inter-Domain Switching. Ryerson
University, MASc. Thesis, 2016

[14] M. F. Ramdhani, S. N. Hertiana, and B. Dirgantara, “Multipath routing with load balancing
and admission control in softwaredefined networking (SDN),” in Proc. 4th Int. Conf. Inf.
Commun. Technol. (ICoICT), Bandung, Indonesia, 2016, pp. 1–6.

[15] Tim Huang. Path Computation Enhancement in SDN Networks. Ryerson University, MASc.
Thesis, 2015.

[16] Y. L. Lan, K. Wang and Y. H. Hsu, "Dynamic load-balanced path optimization in SDN-based
data center networks," 2016 10th International Symposium on Communication Systems,
Networks and Digital Signal Processing (CSNDSP), Prague, 2016, pp. 1-6.

[17] P. Amaral, P. F. Pinto, L. Bernardo and F. Silva, "SDN based traffic engineering without
optimization: A centrality based approach," 2017 IEEE International Conference on
Communications (ICC), Paris, 2017, pp. 1-7.

[18] IEEE Standard 802.1AB Station and Media Access Control Connectivity Discovery, IEEE
Computer Society, 28 June 2005.

http://www.opennetworking.org/sdn-resources/sdn-library/whitepapers
http://conferences.sigcomm.org/hotnets/2010/papers/a19-lantz.pdf
http://conferences.sigcomm.org/hotnets/2010/papers/a19-lantz.pdf
http://conferences.sigcomm.org/hotnets/2010/program.html
https://dl.acm.org/citation.cfm?id=1924968&CFID=848014136&CFTOKEN=43171344
https://dl.acm.org/citation.cfm?id=1924968&CFID=848014136&CFTOKEN=43171344
https://dl.acm.org/citation.cfm?id=1924968&CFID=848014136&CFTOKEN=43171344
https://dl.acm.org/citation.cfm?id=1924968&CFID=848014136&CFTOKEN=43171344
https://dl.acm.org/citation.cfm?id=1924968&CFID=848014136&CFTOKEN=43171344

