Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2002

Cloud data segmentation and classification for
reverse engineering using neural networks

Jiahong Wang
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Mechanical Engineering Commons

Recommended Citation

Wang, Jiahong, "Cloud data segmentation and classification for reverse engineering using neural networks" (2002). Theses and
dissertations. Paper 214.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/214?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

CLOUD DATA SEGMENTATION AND CLASSIFICATION FOR

REVERSE ENGINEERING USING NEURAL NETWORKS

by
Jiahong Wang

MASc. - Mech

Yanshan University, China, 2002

A thesis

presented to Ryerson University

in partial fulfillment of the
requirements for the degree of
Master of Applied Science
in the Program of

Mechanical Engineering

Toronto, Ontario, Canada, 2006

© Jiahong Wang 2006

Y

I

LIERARY

UMI Number: EC53628

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

o}

UMI

UMI Microform EC53628
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institution or individuals

for the purpose of scholarly research.

Date: M“j |2, Zov 6

Signature:

I further authorize Ryerson University to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Signature: : Date: " i‘“J"{ 12, 2906

iii

Abstract

Cloud Data Segmentation and Classification for Reverse Engineering

using Neural Networks

Jiahong Wang
Master of Applied Science, 2006

Mechanical Engineering, Ryerson University

Automatic segmentation of point data in the past has been mainly applied to
single range maps. However, there is a great need for the segmentation of fully digitized
objects with multiple viewpoints. This research reports on the automatic segmentation of
multiple viewpoint 3D digitized data captured by a laser scanner or a CMM. This is
accomplished in two steps. Firstly, the surface normal and principal curvatures are
estimated at corresponding point locations. Local Darboux frame and weighted least-
square surface fitting are used to calculate the normal values and curvature values of the
point data. Secondly, an eight dimensional feature vector (3D coordinate, 3D normal,
Gaussian and Mean curvature) is used as an input to a Self-Organized Feature Map
(SOFM). A normalized feature vector and a weighted Euclidean distance are adopted in
the learning process of the SOFM, which improves the speed and exactness of the
segmentation. The segmentation using SOFM is robust to noise and has no limitation to
surface type. The algorithm is validated by real and synthetic point data. To improve the
quality of surface fitting, segmented subregions of typical surfaces are classified by using
a back propagation neural network. The techniques developed play a key role in reducing

the length of product development time and the quality of a final surface model.

ACKNOWLEDGEMENTS

The author would first and foremost like to thank his thesis supervisor, Dr. Vincent
Chan, for his guidance, knowledge, and support in this research.
The author would also like to extend thanks Mr. Devin Ostrom for his help with
preparing some experimental parts using CNC machine.
Finally, I would like to thank all my family and friends for their support and

encouragement through this endeavor.

vi

TABLE OF CONTENTS

AUTHOR’S DECLARATION.......ciiiuiiiiitnrrtrincetnstaaseneenssensencsnssanssssnsesanssnne
ABSTRACT ettt st et sae st seae e ss s saseniesseassensens
ACKNOWLEDGEMENTS. iiiiiiiiiiiiiiittettaeeecasanesnsansensansansenseesessanansans
TABLE OF CONTENTS ...ouiiiiiiiiiiiiiiiiiitiisi it snsrisse s sansansens cessanssassan s
LIST OF FIGUREScciiiiiiiiiiiiiiniiiiiiii ittt sae e saec s snssstenseaesanssnesanen
LIST OF APPENDICES. ...ttt it saaeten st sinseasnessensessenes
NOMENCLATURE ..ottt et cs e tasan bt s e e s aassasansasens
CHAPTER 1 INTRODUCTION.......ittiiiuiiuiiiuniiniitiiinitienieaiairettnssammaestssessenes
1.1 Reverse Engineering TeChNologY «...ccuveieiriniiiiiiiiniiiiirineninieiineiinriiimenens
1.2 Automatic Reverse Engineering System..........cccccevene...
1.3 ThesisS ODBJECHIVES .vuverririeierenrienceniereseniorentaieesrsessssmensssnssosnsssssssssonsssses
1.4 ThesSiS OVEIVIEW «.uuiuiuiuiuiiniieninieiiiieiaiiimiieiiccaietasenensaresasesasensenes
CHAPTER 2 LITERATURE REVIEW.....coiiiiiiiiiiiiiiiiiiiii ettt snneeeneseenseaenne
2.1 INtroduCtion cceeuiueiieieniiiiniieiiiiiiieii i e raa et tieaeeeaaas
2.2 Review of Existing Segmentation Methods.........cccceuiiiuiiniieiiiiiiiiininannnn.e
2.2.1 Edge-Based Method........cccveuieniiiiiiiniiuiiuiiiiiiiiiiiiieiciiennenencnensnnns
2.2.2 Region-Based Method........ccviuiiuieniiiiininnieiiiiiniiiiiiiniinieceininnesesenn
2.2.3 Hybrid Method.......ceiuiiiniiniiniiiiiiiiiiiiiiiiiniiineenceraesaee e eeee s eae s
2.2.4 Neural Network Methodc.couieniiiiiiiiiiniiiiiniiiiiiiiiin cevenreneenan
2.3 Curvature Estimating...................... PPN
2.3.1 Curvature on Range Image.......ccvueieriniiniuieieiiiiceneirnrnniimnsenessnnn
2.3.1.1 Window OpPerator....cccoeeieiiierererurreraseserarenmissnosssssosesnsnsasnnsasssnnns

2.3.1.2 Surface Normal Method.......eeeveeereeiiiiiiiiiiiiieieieiirineeenrnnereneencnnns

vii

iii

vi

vii

11
12
13
14
14

16

2.3.1.3 Four-Direction Curvature Methodceeveeiiieviieiiiiiiiiiiiiiieeieeenenns

2.3.2 Curvature Estimation on Triangular Meshes

..

2.3.2.1 Parameterization Method.....cceieieiieiiieiiiirieeeitireeareeeeeeneeceeennns

2.3.2.2 Quadric Fitting Method......cccuiiiiiiiiiiiiuiiieiiiiiciieiiiriieeeene

CHAPTER 3 POINT DATA SEGMENTATION......ceuetruimuimeinntnniecin e

3.1 Kohonen’s Self-Organizing Feature Map......cccccevtrieiieniniininnnncsnnncccscneenene

3.1.1 Formation Process 0f SOM...cciiiiieieiiiiiereieriieieeieeneecesscenseennsresscenncene

3.1.2 Topological Neighborhood of SOM........cccciciiiiiiiiiiiiiniiieniiniinanees

3.2 Choice of Feature Vectors.....cceeeeeeeiereneenreneeneenecnecnoens

3.3 Calculation Of FEQture VECtOrS. ...uuueeeetreereereerieenserereseeeresceseescsnsassensensnnne

3.3.1 Computation of Normal VECtOr.......cccoveiuiirininiuiieiiiniiieiienrecnierecasanss

3.3.2 Curvature CalCulation.....cceeeeeeereerenreneiiereeeseneesenssscncerserencensesenceseeses

3.3.2.1 Ring Neighborhood......ccuiuiiureiieieniniiiiieiieretereeeeeeraeeeeeeensieennns

3.3.2.2 Coordinate TransformMation.....eeeeeeeeeeneeeeeneereeeeeneennceecencessesossonsses

3.3.2.3 Darboux Frame Theory.....ccievuieieiiiinieiniiinceiterieeeeeeeeeennenenennnne

3.3.3 Modification Of FEature VeCtOr. .. u e e eeeinieieitiiieeeecreeeeeaneenanseeensansase

3.4 SOFM for Point Cloud Segmentationccceveeneeienienienincenreenennennenneenes

CHAPTER 4 DATA CLASSIFICATION.ccittuuiiiitmeninnneresininsnssnssesssssesessaeesssnnens

4.1 IntroduCtion.....ccceeeeeeineieieennnenancnnnnn

4.3 Back Propagation Neural NetWork.......cccuceiuiimiiiuiiennieieencenreeneeneeneeeane

4.3.1 INDUL VECION. .. cinieniiniiniieiieieeetieeeenereeeaeanerteraertersncencs coeensemnsnonne

4.3.2 Hidden Lagyer.....................

...................

4.3.3 OULPUL LAYer..cuuiuniiiiiiniienienittnirnietneerncrenerneeenesneennneensennesnnecnnnn

4.3.4 Back Propagation Training Algorithm

4.4 Test of Surface Recognition......c...ceuvenenneneennnnne

viii

......

.........

17

17

17

19

21

21

23

23

24

25

25

28

28

29

31

33

35

40

40

42

43

43

45

46

46

50

CHAPTER 5 EXPERIMENTAL IMPLEMENTATION.......ccuuuiitmmmmeniniessseenneenne 51

5.1 INtrodUCHION. ..cuceieiiiieiieiieiieriettetaeetteeereeeneuesneenssnenmrssssssnssnssrsesannes 51
5.2 Experimental Results and ANalysis......cceeeeeeieirenrnereceoreneereerensinncrnesnsnm 52

CHAPTER 6 CONCLUSIONS AND FUTURE WORK.........cummnncnensiecnescnnecennees 74

6.1 CONCIUSIONS.... . uuiuiiniiiiniiiiiiriiiiiii it et eeererens sreernsrasmsnssnmesissssmmssssssins 74
6.2 FULITE WOK.....vocueeeereeeensannesesenesensensensennenes e 75
APPENDICES. ...ttt ettt eaeent st tasses s sassanssmessnssnssans 76
A. GloSSAry OF TEIMIS. cuevuenrerneeerecrnentasnmmesessssnstesunmsmessissosmsssssssssssasssssensasasss 76
B. Matlab Program COes.......cvuvereieiruiinieieniniiiiereteniueeimssietiesnecsssosncs 78
C. Surface Trim using Boundary CUrves.......c.coccuieieuniumerieieniucnieniencsnsenenneans 105
D. Free-form Surface Reconstructionc.eceveeriininniniiniiiiiiiiiiiiiiinenieceenenn. 108

REFERENCES.....ccuiuiititiiiiiiiiiiiiiiecricitetettereee et eteseneasansnsasesansasnsnns 110

ix

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 3.1:
Figure 3.2:
Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4-4:

Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 5.1:
Figure 5.2:

Figure 5.3:

LIST OF FIGURES

Picza LPX-250 3D Laser Scanner.....cccoeuveeeieinieieiecierecnneinneeceann
Picza LPX-30 3D Tough Scanner..........ccccvieiieeniereniniiaiecierannn

Automatic Reverse Engineering System.......cccoeeurerinieiciiiinienennens
Kohonen’s Self-Organization Feature Map......c.ccccevieieiiinieneninnnnee.
Two examples of topological neighborhood............cccoceuiiiiiirniiniaie
Calculation of the normal of @ point........cccceeieiiiiinieniinceennnnnene
Ring neighborhoods in a triangular mesh..........cccccvvreieninninnrennennnee
Local surface representation-the augmented Darboux frame..................

SOFM algorithm flowchart.........ccceuienieiinreimminnreceeerenreieennsnn
Curvature graph classification........ccceeerens errniirieniirenieeneneeeenenns
The set of eight primitive surfaces after Besl and Jain
Neural Network configurationc.cccccveeeneeniieeienrneenenerncenraeenns
Principal curvature of plane, sphere and cylindercc... veeenennn.n..
Gaussian and mean curvature of plane, sphere and cylinder
Neural network for 3 data classification.........ccovevrurenrereceerinenennn
Neural network for data classification........c.ccceeieiiiiiniiinciinncennnn
Some test results of surface recognition.........cceevueeeencenrererenreeanenn

The test block and segmented resultS......oveeereieneiiirirnreneneerenennnnne

The test block and segmented resultscccceuierincceerncrncrerrnnreesnennn

The test block and segmented results tem...........cceeeeenieneernnenennennnnnn.

22

24

27

29

30

39

41

42

43

44

45

46

49

Figure 5.4: The test block and segmented resultsoevumeeeeeneeeenneeneennennennns 60-62

Figure 5.5: Flatnesscuiiiniiniiiiiiiiiirieiirtertceererereeeesansensansansassnsnonns 64
Figure 5.6: An example of oversegmentationcceeeeeueeereeeereeeeenenncnnenns 65
Figure 5.7: The test object and segmented resultscceeuveeeeeerrneenrencenrecencrnens 66
Figure 5.8: The test object and segmented resultsccoveeeeeneeeeiiaeeerereeceneecenn 67-68
Figure 5.9: The test block and segmented resultsccccoceieiriniiineiiriien 69-71
Figure 5.10: The test object and segmented resultscceoveviiveccenienieneineenenenes 72-73
Figure A.1: Surface trim using boundary Curves...........cccvverinreieiiieinienenininnnes 106-107
Figure A.2 Surface reconstruction by boundary Curvescoeeuueeueeceiinmnnnnneeen 109

xi

Appendix A:
Appendix B:
Appendix C:

Appendix D:

LIST OF APPENDICES

Glossary Of TEMMIS ce.vuviuiuiiniinienieenenieiietnieneinieeersennrnnenmenones 76-77

MATLAB Program Codes.......cvueueienrneinieininieeeenetieeeieeeaeannnns 78-104
Surface Trim using Boundary Curves........ccceveveueeieiiieninnecacennennnnes 105-107
Free-form Surface Reconstruction.........ceeevuieineeieiiienenveiiniiennnnnn. 108-109

xii

NOMENCLATURE

x normalized x coordinate of input vector

y normalized y coordinate of input vector

z normalized z coordinate of input vector

ny, normalized x normal component of input vector

ny normalized y normal component of input vector

n, normalized z normal component of input vector

H Gaussian curvature of input vector

K mean curvature of input vector

X; Normalize input vector

Wy x coordinate weight of the representative region

Wy y coordinate weight of the representative region

W, z coordinate weight of the representative region

Wix x normal component weight of the representative region
Way y normal component weight of the representative region
Wz z normal component weight of the representative region
wy Gaussian curvature weight of the representative region
Wy mean curvature weight of the representative region

q the location vector of the winning neuron in output layer
m the number of triangles that share the same vertex

N,(1) neighborhood size in ¢ iteration

a(t) a scalar-valued “learning rate factor”

o)

hy

A

B

Wj -

f(x)
dxa.jxm

dt

dx(l_k),(z.j)
dt

(L
M)
NG.H
W(L,iX2,)
W@ix3.)
Eoutput,i
Ehidden,j

N
X,

min

max

Ri

ki

k

the width of the kernel

a smooth neighborhood kernel of Gaussian function

parameter- learning rate of connectors between hidden and output layer
parameter- learning rate of connectors between hidden and input layer
weight vector

hypertangent function

the adjustment of weights between the ouput and hidden layer

the adjustment of weights between the input layer and the hidden layer
input neural value at neural location i

hidden neural value at neural location j

output neural value at neural location i

connector weight between neural at the hidden and input layer
connector weight between neural at the hidden and output layer

Error at the output layer, neuron location i

Error at the hidden layer, neuron location j

number of iterations for the neural network training
minimum value

maximum value

reflected vector at the output layer
population standard deviation
population arithmetic mean

bias

maximum principal curvature

minimum principal curvature

Xiv

N, @)

LMS
RMS

control points

weights

B-spline basic functions.

least mean square
root mean square

artificial neural network

XV

To My Family

Chapter 1

Introduction

1.1 Reverse Engineering Technology

Reverse engineering (RE) refers to designing and producing of products on the
basis of an existing physical part. It has been widely used from spacecraft and
automobile design to human organs and copies of artistic sculptures [1-3]. Generally,
three steps are considered in RE:

1. Digitize the object’s surface using a scanning or measurement device and

preprocessing (noise reduction).

2. Segmentation and classification of point data.

3. Surface fitting and CAD model creation.

Ideally, the ultimate goal is to have a fully automatic reverse engineering system
which can implement an RE geometric modeling without any user interaction. The
emphasis of this work is on the second step of RE: automatic segmentation and
classification of point data. Specifically, digitized objects with multiple viewpoints are
segmented automatically.

In reverse engineering, segmentation is used to divide point data into subsequent
regions according to an object’s shape. It plays a key role in reducing the length of
product development time and the quality of the final surface model. The point data in

RE obtained by non-contact measuring devices, such as a laser scanner or contact

1

measuring devices such as a CMM, consists of thousands of points that only include
three-dimensional coordinates on the surface of an object. It is difficult to obtain the
geometric information of a part directly from the raw data. Therefore, in most RE
systems, the segmentation of digitized points is performed interactively, where the
operator defines the approximate locations of part edges and surface boundaries on the
digitized data [4, 5].

The manual process by a RE operator is time consuming and prone to error.
Automatic segmentation of point data in the past has been mainly applied to single range
data maps [6-10]. However, for objects with complex topology or complex geometry, the
point data from one viewpoint are not enough to characterize the object shape. To fully
digitize an object, multiple viewpoints or orientations need to be taken with multiple
scanning passes. Sometimes a multiple sensor integrated approach may be necessary to
combine different characteristics of several scanning devices. Unlike a range map, points
in multiple viewpoint data are not on a regular grid. Methods that rely on this regular
organization of data are not directly applicable for a general mesh. For example, window
operators to compute surface normal and curvature values of a range map cannot be used
because of the overlapping and disorganized nature of the point data. Methods to
segment digitized objects with multiple viewpoints are challenging.

After the surface of an object is segmented into various component surfaces (or
multi-patched surfaces), the type of surface that each subset of points belongs to needs to
be decided. The classification is a critical component in automated RE and a necessary
companion to point data segmentation. A good classification of surfaces complements

surface fitting.

1.2 Automatic Reverse Engineering System

A Roland Dr. Picza LPX-250 3D laser scanner (Figure 1.1) and a Roland Dr.

Picza PIX-30 3D touch scanner (Figure 1.2) are used to gather point data from the

surfaces of objects. The LPX-250 is a non-contact scanner. It can scan objects from
multiple viewpoints or orientations (up to 6 orientations). The PIX-30 acquires point
data using contact methods. Advantages of the contact methods are less noise and higher
accuracy.

Point data collected are saved as a STL file. If mesh triangulation is ill-behaved
or noise in the cloud data is unacceptable (causing a large error), a reverse engineering
software package, Surfacer version 10.6 is used to preprocess point data. Otherwise, the
STL file consisting of a list of triangular facet data is used directly to calculate point
normal and curvature. In the estimating of principal curvatures using the Darboux frame
and the local least-square method, the one-ring neighborhood for accurate 3D cloud data
is chosen. If there is noise (causing a small error) in the cloud data, a two-ring or
higher-ring neighborhood will be used to estimate the principal curvatures. The
calculation of the point normal and curvature are programmed by codes developed in

MATLAB.

Figure 1.1 Picza LPX-250 3D Laser Scanner

3

Figure 1.2 Picza PIX-30 3D touch Scanner

After computing the feature vector (3D point coordinate, point normal and point
curvatures), measured point data are segmented by an unsupervised neural
network-Kohonen’s self-organizing feature map. The segmented point subsets are then
classified by a supervised feed-forward based neural network. Finally, the segmented
point subsets are fitted according to their primitive surfaces. If a segmented patch is in
the typical surface library (plane, cylinder, sphere, cone, torus, etc), a least-square
method is used to fit the surface. Otherwise, Coons, Bezier, or NURBS surfaces are used
to reconstruct the surface. Surface trimming is sometimes needed after the surface fitting
using the least-square method. The flow chart of the automatic reverse engineering

system is shown in Figure 1.3.

Point data with x, y, z coordinate(STL file)

A

Read Point P; from point data

l

Search neighborhood of point P;

l

Calculate Gaussian and mean curvature
H, K using Local Darboux frame and
weighted least-square surface fitting

l

Point data segmentation using SOFM

Segmented single patch is in the
typical surface library? (using
supervised neural network)

Surface
Fit using
Coons,
Fit surface (plane, cylinder, Bezier,
sphere) using least square method NURBS
etc,
4 future
Surface trim using boundary curve work

(Future work)

A

End

Figure 1.3 Automatic Reverse Engineering System

1.3 Thesis Objectives

The main objective of this thesis is to set up an automatic reverse engineering
geometry modeling system. The system can be implemented through the following
objectives:

1. Automatic segmentation of point data with multiple viewpoints.

2. Automatic classification of segmented single patch.

3. Automatic surface fitting.

1.4 Thesis Overview

This thesis is organized as follows:

Chapter 1 introduces reverse engineering technology. This chapter describes the
problem with current segmentation methods of point data in reverse engineering. To
solve this problem, an automatic reverse engineering system is suggested.

Chapter 2 discusses data segmentation methods and the related literature review
of data segmentation and curvature estimating techniques.

Chapter 3 presents a SOFM algorithm to segment point data with
mutli-viewpoints. The Darboux frame and least-square method are used to calculate
feature vector of the SOFM.

Chapter 4 discusses the supervised neural network method applied in this work to
classify point data and tests the back propagation algorithm.

Chapter 5 tests SOFM algorithm with synthetic and real reverse engineering data.
The experimental results are analyzed.

Chapter 6 discusses the conclusion and future work.

Chapter 2

Literature Review

2.1 Introduction

Segmentation has been an essential part in the process of surface modelling from
a scanned point cloud [11]. A commonly used definition of image segmentation [4, 12]
states that if I is the set of all image pixels (or points) and P () is a uniformity predicate
defined on groups of connected pixels (or points), a segmentation of / is a partitioning

set of connected subsets or image regions{R,...,Rn} such that

LNJR,=I where RNR =@ Vizm 2.1

1=

The uniformity predicate P(R;)=True for all regions, and

P (Ri{URy) =False 2.2)

whenever R, is adjacent to Ry,

This definition can be applied to all data type including digital image or 3D
surface data. To divide the whole measurement point data into subsets according to
primitive surface has been a long-standing research problem. Previous work will be
reviewed in Section 2.2. To efficiently segment point data, principal curvatures of point

_data are to be estimated. The different methods of estimating principal curvatures are

reviewed in Section 2.3.

2.2 Review of Existing Segmentation Methods

The segmentation of 3D digitized data or range data have been studied by various
researchers. The currently reported segmentation algorithms are based on the assumption
that scanned data exhibits surface coherence. In general, segmentation techniques of 3D
point data can be classified into four categories: edge-detection methods, region-growing

methods, hybrid methods and neural network methods.

2.2.1 Edge-Based Method

Edge-based methods are a two-stage process, edge detection and linking [6, 13].
This works by attempting to find boundaries in the point cloud data representing edges
between surfaces. If edges are being sought, an edge-linking process follows, in which
disjoint edge points are connected to form a continuous edge. Detected edges usually
involve jump edges, crease edges and curvature edges. Jumps edges occur where depth
values are discontinuous in a range image. Crease edges correspond to surface pixels
where the depth is continuous but the surface normals are discontinuous. Curvature
edges are characterized by continuity of the surface normals but discontinuity of the
surface curvature.

Woo and Kang [11] used the octree-based 3D-grid method to handle a large
amount of unordered point data. The root node in the octree represents the entire point
data. The point data is divided into eight child nodes by halving the parent cell (or node)
along the X, y and z directions based on the criteria defined by the application (in
reference [11], the subdivision criteria of cells is the standard deviation of point normals
in each cell). The partitioning is performed iteratively until the leaf nodes are reached.
Obviously, the restriction of octree-based method is that each parent node (or cell) must
have eight child nodes. Thus regions in the segmented point data have a boxy
appearance. This method is usually suitable for the segmentation of boxy appearance

point data. At the same time, quadric surfaces such as a cylinder or a cone cannot be

8

segmented accurately because the octree-based segmentation method does not consider
Gaussian and mean curvature.

Milory and Bradley [13] used a semi-automatic edge-based method for
orthogonal cross-section (OCS) models. In this approach, surface differential properties
were estimated at each point of model, and the curvature extremes were identified as
possible edge points. Then an energy-minimizing active contour was used interactively
to link the edge points. Fan and Medioni [14] used local surface curvature properties to
identify significant boundaries in the range data. In order to avoid the loss of localization,
scale-space tracking, which convolves the entire data with Gaussian masks having
different values of the spread parameter, was employed. Lee and Kim [15] segmented
point data by calculating the curvature and angle between two triangles which share an
edge, and find an edge with large curvature and curvature deviation regions. Yang and
Lee [6] developed a segmentation algorithm using a parametric quadric surface
approximation. This method is based on local surface curvature properties. The surface
curvature and principal directions are computed from the locally approximated surfaces.
Edge points are identified as the curvature extremes and zero crossings, which are found
from the estimated surface curvature. After edge points are identified, an
edge-neighborhood chain-coding algorithm is used for forming boundary curves. The
original point set is then broken down into subsets, which meet along the boundaries. All
point data are applied to each boundary loop to partition the points into different regions.
But this method is only suitable for single range maps.

Edge-based methods suffer from the following problems [1]. Sensor data,
particularly from laser-based scanner, are often unreliable near sharp edges, because of
specular reflections there. The number of points used for segmenting the data is small,
i.e. only points in the vicinity of the edges are used, which means that information from
‘much of the data is not used to assist in reliable segmentation. On the other hand,

region-growing methods work on a larger number of points, in principle using all

available data.

2.2.2 Region-Based Method

Region-based methods infer connected regions of points that have homogeneity
or similar geometrical properties. Hoffiman and Jain [7] segmented the range image into
mahy surface patches and classified these patches as planar, convex or concave shape
based on a non-parametric statistical test for trend, curvature values and eigenvalue
analysis. Besl and Jain [12] have developed an algorithm that segments a large class of
an image into regions of arbitrary shape using a piecewise smooth surface model for
image data having surface coherence properties. They approximate image data with
bivariate functions so that it is possible to compute a complete noiseless image
reconstruction based on the extracted functions and regions. This algorithm is used for
segmenting both range data and intensity images. The first stage of the algorithm divides
the image into eight different primitive surfaces. The type of primitive surface depends
on the sign of the Gaussian and the mean curvature. These primitives are assumed to
have invariant characteristics which can break down any given surface. Using the
labeled image, a seed region is extracted that is used for region growing in the second
region. The second stage is an iterative region growing process. This process is
terminated when the region growing has converged or all the polynomials have failed to
fit the seed region.

All these region growing techniques depend heavily on initial seed generation
which is rather difficult and also critical for the success of regions growing procedures.
At the same time most of these fitting methods suffering inherently from computational
overhead-segmentation processing time that can be up to several CPU hours depending

on image complexity and number of surface primitives used [10].

10

2.2.3 Hybrid Method

The hybrid method refers to the combination of region-based and edge-based
methods. A combination of these two approaches is employed to overcome the problems
of oversegmetation and undersegmentation, which are encountered in the edge-based
and region-based methods. The method proposed by Yokya and Levine [16] divided a
three-dimensional measurement data set into surface primitives which are homogeneous
in their intrinsic differential geometric properties and do not contain discontinuity in
either depth or surface orientation. The method employs a selective surface fit and is
based on the computation of first and second partial derivatives determined by locally
approximating object surface using biquadratic polynomials. Then by computing the
Gaussian and mean curvature and examining their signs, an initial region-based
segmentation is obtained in the form of a curvature sign map. Two initial edge-based
segmentations are also computed from the partial derivatives and depth values. One
detects jump edge by computing differences in range values and crease edge from
differences in surface normals. The three initial image maps are then combined to
produce the final range image segmentation. Zhao and Zhang [17] employed a method
based on triangulation and region grouping that uses edges, critical points and surface
normals. In their algorithm, the initial edges and critical points were detected using
morphological residues, and the linked pairs of edge points were triangulated. For the
final segmentation, smaller surface triangular facets were expanded into large ones and
segmented according to the surface normal information. Lee and Park [18] used a
hybrid approach to segment point data, a method to the edge detection of 3D points
based on a region growing technique. The algorithm consists of two parts. First,
polygonal meshes are generated from the scanned point data using the Delaunay
triangulation algorithm. Second, the normal vector and the area of a polygonal mesh are
checked to find boundary meshes using angle criterion and area criterion based on a

region growing technique. The region growing technique aggregates meshes into a

11

region until the area of aggregated meshes reaches an area threshold from a series of
seed meshes. Similar to [11], quadric surfaces such as a cylinder can not be segmented

accurately because this method does not consider principal curvatures.

2.2.4 Neural Network Method

Many researchers have worked on image segmentation using neural networks.
Sugata and Mehrotra [10] described a neural network for the segmentation of a noisy
image. They used a two-stage connectionist neural net model which extracts local
surface features at each image point and group pixel via local interaction among
different features. Stage one computes the surface parameters, e.g., surface normals,
curvature and discontinuities (crease and jump) by optimally projecting the local range
profile onto a set of non-orthogonal basis functions. In stage two, adjacent pixels
compete with each other based on surface features associated with them to group
themselves into different surface patches. The surface feature extraction is performed
using the Daugman’s projection neural network and Kohonen’s self-organizing neural
network is used for competitive region growing.

One of the limitations of the conventional SOFM is that the number of neural
units in the competitive layer should be approximately equal to the number of regions
desired in the final segmentation. However, it is usually not possible to predetermine the
number of regions in the final segmentation. This makes the use of original single layer
SOFM for image segmentation rather difficult. When the SOFM has much fewer neural
units than the number of visually distinguishable regions in the input image, the result is
an undersegmented image in which visually distinguishable regions are incorrectly
merged into a single region in the segmented image. On the other hand, when the SOFM
has a much larger number of neural units than the number of visually distinguishable
regions in the input image, the result is an oversegmented image in which homogeneous

regions are incorrectly split into several regions in the segmented image. Thus, there is

12

no control over the number of regions which might result from image segmentation
when a single-layer SOFM is used. This is a significant deficiency of the single-layer
SOFM since the number of regions in the final segmented image is very much dependent
on the input scene content, and is difficult to determine accurately a priori.

Thus a hierarchical self-organizing feature map (HSOFM) for range image
segmentation was proposed by Jean and Minsoo [8, 9]. HSOFM is an extension of
traditional (single-layer) self-organizing feature map (SOFM). It alleviates the
shortcomings of SOFM in the context of image segmentation. The problem of image
segmentation is formulated as one of vector quantization and mapped onto the HSOFM.
The HSOFM combines the ideas of self-organization and topographic mapping with
those of multi-scale image segmentation. Chan and Bradley [19] used a multilayer neural
network based stereo image processing to locate the object in the CMM work space, and
to generate the CMM touch probe path. In their work, the stereo pair of CCD images is
first segmented into surface patches using a neural network based algorithm. In this ten
layer neural network, layer one is used to input one original image, whereas the layers
above each (the remaining nine layers) represent a possible output (winning patch). Each
iteration of the algorithm calculates the strength of each neuron by updating the values
for excitatory and inhibitory connectors. Iteration is complete when the output converges,
i.e. no new or different winning neurons are declared. The location and radius of the
holes on each patch is derived from co-ordinate information already calculated for each

patch. However, all these methods are not suitable for multiple viewpoint data.

2.3 Curvature Estimating

Surface curvature is a concept rooted in differential geometry [20]. Differential
geometry states that a local surface shape is uniquely determined by the first and second
fundamental forms. Gaussian and mean curvature combine these first and second

fundamental forms in two different way to obtain scalar surface features that are

13

invariant to rotation, translations, and changes in parameterization. Therefore, Gaussian
and mean curvafure can be used to identify surface features such as ridges and valleys,
and planar, convex, concave, or saddle shapes. Surfaces are segmented into regions
based on these curvature features, and then the segmentations and features are used for
object recognition and registration. Curvature estimating can be classified into two

categories: range map and triangular mesh.

2.3.1 Curvature on Range Image

A number of researchers have worked at curvature estimation from 3D range

image for computer vision applications.

2.3.1.1 Window Operator

Range data provides a rectangular array of sample data, usually in the form of
pixels. Many of the methods operate on an NxN window centered at a point, where N is
an odd integer, typically 5 or 7 [25]. This window provides a natural orthogonal
parameterization and well-defined diagonals. Mean and Gaussian curvature can be
computed directly from a range image using window operators that yield least squares
estimates of first and second partial derivatives with respect to these preferred directions,
or directly from the array of sample data.

Gaussian and mean curvature value at any point (i, j, g(i, j)) in the range image

can be evaluated using window operators as follows[7, 12]:

E= 1+g.(, §) @3)
F=gu(i, j) 8+(i, J) : (2.4)
G=1+g,(i) @5)
)
P 26)
N+gan+g e

14

R

N= = = 2.7
N+ g6+ g6
M= g6 29
2 . 3 2 . 3 ’
Jleglin+gan

where gu(i, j), g, j), gu(, j), gu(, j), and gn(i, j) are the partial derivative

estimates, and can be computed via the appropriate 2-D convolutions (denoted*):

gu(i, j)=Du* g(i, J) (2.9)
gv(i, j)=Dv* g(i, J) (2.10)
guv(i; j)=Duv* 8(i,) @.11)
guu(i, j)=Du* g(i,) (2.12)
gw(i, j)=Dw* g(i, J) (2.13)

where Dy, Dy, Dy, Dus and D,y are the equally weighted least-square derivative

estimation window operators and can be computed as:

Dy=dod;" (2.14)
D,=ddo" (2.15)
Dy=did;" (2.16)
Du=dod" (2.17)
Dyv=dydo" (2.18)

where dy, d;, and d; are called the column vectors which depend on the size of

window operator. For 7 x7 windows, these are given by,

do= %[1 111111 (2.19)
di= 515[-3 2-10123] (2.20)
dy= 512[50-3-4-305]T (2.21)

15

I g GMNg G)+1+g (NG, G:)-2 8,618,698,)
2(\/1 +g @)+ g G j)J

g.G.)g G:)-g.@))

(+e26.0+£26.0)

(2.22)

K(i,j)= (2.23)

2.3.1.2 Surface Normal Method

A local technique is used for estimating the surface curvatures by approximating
the derivative of the surface normal [7- 9]. A simple estimate of the surface curvature at

point p in the direction of point q is given by

I,

k(@ q) =2 xs(p,q) (2.24)
lp -4l

where s(p,q)=1if |p-g|< "np— n.,|| and s(p,q)= -1 otherwise.

Here, n, and n, are the unit normal vector at points p and g, respectively. The
sign factor s(p,q) states that if two surface normals, n, and n, at point p and g,
respectively, approach each other as g approaches p then the surface curvature has a
negative value indicating a concave surface, else, the surface curvature has a positive
value indicating a convex surface. Using the value k(p, g) one can compute the mean and

Gaussian curvature. Let Q(p) be the set of points in the neighborhood of point p. The

mean curvature H and Gaussian curvature K are given by

. k™ ;k""" (») (2.25)

k= (o)™ (p) (2.26)

where k™"(p) =k(p,qoy=ming=a) k(p, q) and k™(p) =k(p,q1y=maxq=qp) k(p, q). A
3x3 neighborhood is used when computing the mean and Gaussian curvatures.

The mean and Gaussian curvature can be computed by a combination k™(p),

16

k™"(p) and fixed-weighted networks. Each curvature computing unit receives these
inputs from a center pixel (or point) and one of its 8 nearest neighbors, and computes a
curvature value. The k™(p) and k™(p) collect the curvature values to find the
maximum and minimum curvature values respectively, from which Gaussian and mean

curvature are calculated.

2.3.1.3 Four-Direction Curvature Method

Fan and Medioni [14] have proved that at every point computing the principal
curvature (k,k;) and their orientation a is equivalent to computing curvature in four

different directions 45° apart (ko, kys,, k90, k135).

2.3.2 Curvature Estimation on Triangular Meshes

Curvature estimation methods have been developed specifically for meshes
[21-25]. Meshes have a more general structure than range images. Mesh representations
have adjacency information embedded in mesh connectivity, but without any regular
organization. Generally speaking, curvature calculation methods on triangular mesh can
be classified into three categories: fitting method, discrete estimation of curvature and
curvature directions and estimation of a curvature tensor from which curvature and
curvature directions. Fitting methods include mainly parameterization method and
quadric fitting method. In this work, a simplified quadric fitting method (parabolic

fitting) is used.

2.3.2.1 Parameterization Method

Parameterization methods utilize a local 3D coordinate frame with its origin at
-the vertex [6]. The normal vector at the vertex is frequently chosen as one axis of this

frame. The vertex normal can be computed as the average of the face normals for the

17

faces adjacent to the vertex, with various weightings applied, or as the normal to plane
that best fits the vertex and some number of nearby vertices. Yang and Lee [6] used a

parametric quadric approximation method to calculate Gaussian and mean curvature:

2 2 -
ru,v)=Y.Y. Qu'V (2.27)

j=0 i=0

Or the matrix form is

1
r,v)=[1uv’]Q |v (2.28)

2

v

where Q is a 3x3 matrix with vector-valued elements Q;;

Q. Q. 9,
=0, 0, 0., (2.29)
0., 9. 9,
r(u,v) = (x(u,v), y(u,v), 2(4,v)) (2.30)

Q={Q;;}=(ay, bi;, cij) (2.31)

Here, N+1 points P; (x),y1,z;) are given and their associated parameter values (uj, vy),

1=0...N. N>8 is required for local surface approximation.

A set of N(=mxn) grid points can be parameterized with the Eq.(2.32)

i-1

ZIP&H,/ - Pk,jl

Ur=ui= :'_'l (2.32)

ng]:'Pkﬂ.j —Pk.j|

2<i<m, 1<j<n with u;=0

18

glp i,k+I—P i,kl

VIEVi= :_l (2.33)
kZﬂlPt.k*—l—Pl.kl

1<i<m, 2<j<n with v;;=0.

where 1=(i-1)xm+(j-1). The vectors are introduced

W= uv v u'vA,. . uivA)T (2.34)
a=(a00,301.202810,. 222) (2.35)
b=(boo,bo1,bo2bro,... bay’ (2.36)
¢=(Co0;C01,02.C10,...€22)" (2.37)
x=WTa, y=WTb, =W'c (2.38)
Z=(ZxZy,Zy) (2.39)
Ze[xoxi Xl Zy=[yo.yi- ', Z=z021,.-2n] (2.40)
M=[W,',...W\']" (2.41)

M is a (N+1)x9 matrix, where N>8 is supposed.

Fit equation of surface is MQ.

E=Z-MQ (2.42)
Use least-squared method

IE| =2ef (2.43)
The principal curvature kq; and knz can be obtained from

|G| knZ-(g11d22+d11822-2812d12)kn+ [D|=0 (2.44)

2.3.2.2 Quadric Fitting Method

Various forms of the quadratic function have been fitted to the range data and
mesh representétion. For a general second-order polynomial with six coefficients,

applied to a height function:

19

z=f (u;, vi)=Aui2+Buivi+Cvi2+Dui+Ev,+F (2.45)

where (u{, v;) is the parametric location of the i point in the tangent plane, and z;
is the height of the point above (or below) the tangent plane. N is the number of vertices
being fit and i runs from 1 to N. The coefficient A through F are determined by solving a
least-square problem. In this work, the augmented Darboux frame proposed by Sander
and Zucker [21] is used. This Darboux frame will be described in detail in the next

chapter.

20

Chapter 3

Point Data Segmentation

In order to make the surface reconstruction process more efficient, the point data
need to be divided into regions. When segmenting the scanned point data using a neural
network, the geometric shape of a scanned part should be taken into consideration. In
order to extract geometric information, such as point normal and curvature (Gaussian,
mean and principal curvature) values, from the point data, additional operations are
required. Once the geometric information of a part is obtained, it can be used for data

reduction, segmentation and other application.

3.1 Kohonen’s Self-Organizing Feature Map

Self-organizing approaches attempt to develop a network structure on the basis of
given sample data. One popular approach is clustering and mode separation. The
objective is to design a network that can discover clusters of similar patterns in the data
without supervision, by computing similarity. If the network can encode these types of
data, by assigning nodes to clusters in some way, then it is said to undergo both
self-organizing and unsupervised learning. Teuvo Kohonen, in the early 1980s,
developed an algorithm to mimic the brain’s ability to organize itself in response to

external stimuli. He called his algorithm a self-organizing feature map. The alternative

21

neural learning structure involving networks that perform dimensionality reduction
through conversion of feature space to yield topologically ordered similarity graphs or
maps or clustering diagrams with potential statistical interpretation. In addition, the
training algorithm implements a form of local competitive learning [26]. A typical
SOFM structure is shown in Figure 3.1. It consists of two layers, a layer of the input
nodes and a competitive layer consisting of neural units called Kohonen’s units. A
weight vector is associated with each connection from the input layer to a neural unit in
the output layer. The neural units in the competitive and cooperative layer are organized
in a regular geometric structure. Complex relationships in problems requiring a
higher-dimension of the weight vectors usually require higher-dimensional lattices to
sort themselves out. However, biological inspiration and practical processing

considerations typically limit the lattice dimension to 2 or 3.

Each output node has a vector of n weights

Output layer

conneciton weight
between a input node

Input layer and a output node

input vector

Figure 3.1 Kohonen’s Self-organization Feature Map [26]

22

3.1.1 Formation Process of SOM

After initialization, Kohonen’s SOMs result from the combination of three basic

processes:

1. Competition

For a given input pattern, each neuron in the competitive layer receives a sum of
weighted inputs from the input layer. All the neurons compute an activation function,
and the neuron with the largest activation (i.e. with the smallest Euclidean distance
between input vector and weight vector) is declared a winner.

2. Cooperation

In order to stimulate a topological ordering, every winning neuron in the
competitive layer is associated with a collection of other neurons which make up its
neighborhood. The winner spreads its activation over a neighborhood of neurons in the
map. For a winning neuron, the neurons in its immediate neighborhood excite more than
those farther away. Topological neighborhood decays smoothly with lateral distance and
size of neighborhood shrinks with time.

3. Adaptation

Adaptation is applied to all neurons inside the neighborhood of a winning neuron.
During training, the winner neuron and its topological neighbors are adapted to make
their weight vectors more similar to the input vector that caused the activation. Neurons
that are closer to the winner will adapt more heavily than neurons that are further away.
Neurons inside the neighborhood are moved a bit closer to the input vector. The
magnitude of adaptation is controlled with a learning rate, which decay with time to

ensure convergence of the SOM.

3.1.2 Topological Neighborhood of SOM

The key feature in Kohonen Self-Organizing Maps is to preserve a topological

order in the map so that neighboring neurons respond to “similar” input patterns. The

23

topology of Competitive Layer can be organized in 1 dimension, 2 dimensions, or n
dimensions. Typical implementations are a one- or two- dimensional lattice for the
purpose of visualization and dimensionality reduction. The lattice type of the array can
be defined to be rectangular, hexagonal, or even irregular. Hexagonal is effective for
visual display (Figure 3.2). The resulting accuracy of the mapping depends upon the
choice of the radius of the neighborhood, learning-rate, and the number of iterations.
Kohonen cites the use of 10000 to 100000 iterations as typical. Furthermore,
learning-rate should start with a value close to 1 and gradually decrease with time.
Therefore, it is reasonable to let the radius of the neighborhood be fairly large (Kohonen
suggests half the diameter of the map) and shrink the radius of the neighborhood with

time.

OO0/ 00 O0OONOOO

CO0O0O000I00
QIO O OO O0|0 G
O[0|O O O|0|0|0 O
O|0|C @ O|0|0|0 O
0|00 O O|0(0|0 O
ClOO OO O0|0C
OO0 CCOOOO COO00000|0C
a) Hexagonal grid b) Rectangular grid

Figure 3.2 Two examples of topological neighborhood and evolution over iteration

3.2 Choice of Feature Vectors

In point cloud segmentation via vector quantization, the homogeneity of a
segmented region is enforced by the appropriate choice of feature vectors. Significant
surface features can be inferred by examining the values of the surface Gaussian and

mean curvature. Arbitrary smooth surfaces can be subdivided into simpler regions of

24

constant surface curvature sign based on the signs of the mean and Gaussian curvature at
each point. There are only eight possible surface types surrounding any point on a
smooth surface based on surface curvature sign: peak, pit, ridge, valley, saddle ridge,
saddle valley, flat (planar), and minimal [12]. Surface normals have strong
discriminatory power as surface features. For example, adjacent image pixels (or points)
belong to the same “class” (or physical surface) if the normal vectors at those points are
close to each other. Otherwise, they belong to different classes. The 3D position
coordinate x, y and z are also selected as feature attributes in order to preserve the spatial
connectivity of subregions in the final segmented image. Similar to [8, 9], an
eight-dimensional vector: xi= (X, ¥, 2, nx,ny, ng, H, K), is chosen as an input feature
vector of each point in the point data. Where the (ny, ny, n;) is the unit normal vector at
the point (X, ¥, z) on the three-dimensional surface. H and K are the mean and Gaussian

curvature, respectively, at the point (x, ¥, z) on the three-dimensional surface.

3.3 Calculation of Feature Vectors

The three-dimensional point coordinates (x, y, z) on the surface of an object can

be obtained directly from digitized point data.

3.3.1 Computation of Normal Vector

References [8, 9] use window oberators to calculate the surface normal and
curvature values. But window operators are not suitable for multiple viewpoint data. To
calculate the normal vector of cloud data, a global model can be constructed from
various methods. Milory et al [13] constructed a global model from three orthogonal
cross-sections (OCS). The model is constructed by interpolating each range map to
create a set of cross-sections at specified intervals in a global frame of reference. The
individual OCS models are combined by deleting redundant, overlapping segments and

merging the individual models to create a non-redundant, single global wire-frame

25

model. Then Darboux frame theory and weighted least-square surface fitting are used to
calculate the nbrmal values and curvature values of the point data. However, the
triangulated surface model is a best candidate for the global model. Triangles are the
simplest polygons for computations and can be created automatically from multiple
range maps, and a triangular mesh is a popular method for the global model. When
modeling cloud data for prototyping manufacturing, the STL file format has become the
de facto standard [15]. An STL file can be generated from a triangulation of digitized
data. Most commercial CAD/CAM software systems are capable of generating the STL
file directly. References [15, 27-29] describe a few triangulation methods in RE.

To facilitate segmentation, a global triangular mesh is used to delete redundant,
overlapping points. Soucy and Laurendeau [30] describe a method using a Venn diagram
to identify the overlapping data regions, which is followed by a re-parameterization and
merging of regions. Turk and Levory [31] devised an incremental algorithm that updates
a data reconstruction by eroding redundant geometry and zippering along the remaining
boundaries. Sun and Bradley [32] model the large data set by using a unified,
non-redundant triangular mesh. This is accomplished from 3D data points in two steps.
Firstly, an initial data thinning is performed, to reduce the copious data set size,
employing 3D spatial filtering. Secondly, the triangulation commences utilizing a set of
heuristic rules, from a user defined seed point. The spatial filtering parameters are
extracted from the cloud data set by a series of local surface patches and the required
spatial error between the final triangulation and cloud data.

In this work, digitized point data are saved as a STL file. The triangulation net of
this STL file is used directly to calculate point normal and curvature if the 3D point data
are accurate. If mesh triangulation is ill-behaved or noise in the cloud data is
unacceptable (causing a large error), the commercial reverse engineering software
package, Surfacer vesion 10.6 is used to preprocess the point cloud, and then the

algorithm (as shown in Appendix B) is used to calculate the normal values of the point

26

data. Preprocessing can be implemented by the following steps: First the data are
sampled according to a specified distance tolerance. This algorithm removes redundant
points from the scanned point data so that no points are closer than the specified
tolerance to another point. Second, the point data are sorted by coordinate axis direction
or by nearest distance tolerance. Finally a triangulation net is created. The calculation of

the point normal is programmed by MATLAB codes (Appendix B).

Figure 3.3 Calculation of the normal of a point

After the triangulation, the normal value Np; of point P; is estimated from a group
of triangles that share a common vertex. Figure 3.3 shows point P; and its one-ring
neighborhood. The normal value of P; is calculated by Eqn. (3.1).

2.7,
Npi==~ 3.1
Here m is the number of triangles that share the same vertex. n; is obtained directly from

a list of triangular facet data of the STL file. After calculating the point normals for each

27

point, the normal values are stored into a point data structure, which has x-,y- and z-

coordinates and x, y and z normal components.

3.3.2 Curvature Calculation

Principal curvatures and local Darboux frame are used during processes which
involve extraction of geometric properties from the 3D point data. In order to calculate
principal curvatures, polyhedral meshes are used. Curvature estimation is influenced by

the ring neighborhood size chosen.

3.3.2.1 Ring Neighborhood

Neighbors are defined as vertices that are part of the same face. All of the
vertices that are neighbors to, i.e., share a common face with, a given vertex constitute
its one-ring neighborhood. A two-ring neighborhood is obtained by adding all one-ring
neighbors of one-ring vertices. The fitting methods based on two or higher rings have
better overall performance, albeit at a greater computational cost. Accuracies for three
ring neighborhoods did not warrant the increase cost due to the size of the fitting
problem [25]. Therefore, in the estimating of the principal curvatures, the highest-ring
neighborhood is chosen as a two-ring neighborhood. One-ring and two-ring
neighborhood of point p are shown in Figure 3.4. Figure 3.4 a) shows a point p and its

one-ring neighborhood, where the triangles are filled.

28

a) one-ring neighborhood b) two-ring neighborhood

Figure 3.4 Ring neighborhoods in a triangular mesh

3.3.2.2 Coordinate Transformation

Coordinate transformation is necessary in many applications. Such
transformations take data or equations connected with a Cartesian coordinate system and
convert them into similar information in a shifted and rotated coordinate system (see
Figure 3.5). Two popular coordinate transformation methods are Direction Cosine
Representation and Euler Angle Representation. The second method for describing a
coordinate transformation divides the full transformation into a series of three simple
rotations, one after another, around well-defined axes (x, y, z). For the rotations, a
positive angle indicates a counterclockwise rotation about the axis of revolution.
Because a particular transformation is divided into a series of three simple rotations, the
mathematical description of the transformation involves multiplying a combination of
the three rotation matrices together. It is important to remember the order in which

multiple rotations are performed [33].

29

ettt

Tange;i':t plane

I

u

:
:
<
:
:
<
:
:
:
:
/] : et e,
D s
, .

Figure 3.5 Local surface representation-the augmented Darboux frame

To calculate the transformation, Direction Cosine Representation is used. This
method relates two coordinate systems (global coordinate system (Oyy;) and local
coordinate system (Py,)) to a set of quantities called the direction cosines. A particular
direction s is described by the cosines of the angles that this direction vector makes with
the x axis (lsx=co0sbs), y axis (ls,=cosbsy), and z axis (l;=cos6y;). The transformation

between coordinate systems can be represented in a matrix form as shown in Eqn. (3.2).

Lo Ly L) (s,
=l 1, L.|*|v-Y, | (3.2)

I I, I.)*" %

L <

Where the origin of the (x, y, z) system is O=(0, 0, 0) and the origin of the (s, u, v)

30

system is p=(X,, ¥, Z,). Equation 3.2 relates two coordinate systems by first rotating the
initial coordinate system and then translating it. The rotation matrix elements are the dot
products of the axis relative to each other which are the respective direction cosines, as
indicated by the subscripts [34]. Note that there are actually only six distinct quantities
required to specify the transformation matrix completely. The remaining three values in

the matrix can then be inferred using geometrical relationships among the angles (i.e. the

fact that [i+ [:x + li =1 and corresponding statements involve the y and z axes) [35].

3.3.2.3 Darboux Frame Theory

To calculate the principal curvatures of point data, Darboux frames are used as a
local representation for a local surface at each point [13, 21, 32]. Let the local
neighborhood of a point P;on a surface S be described by the parabolic quadric:

S(u, v) =au’+buv+cv? (3.3)

Where P; is at the origin, and the S axis is aligned with the local surface normal
N, as shown in Figure 3.5. The » and v axes lie in the tangent plane. The direction of the
u and v axis can assume an arbitrary direction in the tangent plane. The surface normal is
obtained from a simple planar fit to the local neighborhood (the one-ring neighborhood
for accurate 3D cloud data, two-ring neighborhood for noise data or ill-behaved mesh
triangulation). The local coordinate system (Pgy,) is obtained from the world coordinate
system (Oxy;) by the following 3D transformations:

1. Translate O to P;.

2. Rotate Z axis of the world coordinate system so that it aligned with the S axis.

3. Take x, y axis as u,v axis.

The local neighborhood of a point P; in the Darboux frame (Ps,,) is represented as
(u; ,vi ,s)). siis the height of the point above (or below) the tangent plane. Here, i runs
from 1 to n, where n is the number of vertices being fit. The coefficients (a, b, c) are

calculated by solving the local least-squares problem [22]:

31

AX=B

Sn

.

2
U,
2

Uv, Vv,
2

UnVn Vn

(3.4)

(3.5)

(3.6)

(3.7)

A single unique solution usually does not exist when the number of equations and

number of unknowns differ. However, with further constraints, a practical solution can

usually be found. In MATLAB, when rank(A)=min(r,c), where r and c are the number of

rows and columns in A, respectively, and there are more equations than unknowns(r>c)

(i.e., the overdetermined case), a division operator (X=A\B) automatically finds the

solution that minimizes the norm of the squared residual error (e=A ex-B). This solution

is of great practical value and is called the least-square solution.

Following the convention of Ferrie and Lagarde [22], the augmented Darboux

frame at each point p is given by 3 (p)=(p, mi, my, n, k; k2) which completely describes

the surface at p. The principal directions m; and m; are the directions in which the

surface normal curvature takes on a minimum and maximum value, denoted by scalars

ki and k; respectively.

32

J(c—a+\/(a—c)2 +b*,-b) a<c

L(b,c—a—,/(a-c)2 +5%) axc
r(b,c—a+\/(a—c)2+b2) a<c
Mma=< (39)
(c—a—+(a—c)? +b*,-b) a>c

kh=a+c- 1/(a—c)2+b2 , (3.10)

k=a+c++(a-c)® +b? @3.11)

m;= (3.8)

In terms of the principal curvatures (ki, k;), Gaussian curvature K and mean
curvature H can be written

K=k, k» (3.12)

H=(k + k) 2 (3.13)

Principal curvatures, Gaussian and mean curvature are calculated by the Darboux

frame theory and the local least-square fitting. The task is accomplished by developing

MATLAB codes (Appendix B).

3.3.3 Modification of Feature Vector

It has sometimes been suggested that the components of the input feature vector
be normalized (scaled) to have unit variance before it is used in the SOFM.
Normalization is not necessary in principle, but if the feature vectors are normalized,
then two schemes (x=(x, ¥, z, n, ny, Nz, H, K)) and wj=(wy, Wy, Wz, Wnx, Wny, Wnz, WH, Wk)
fall within a specified range (both range from 0 to 1). This assures that for each
component, the difference between two samples contribute approximately an equal
amount to the summed distance measure between an input sample and reference vector.

. Normalization improves the speed and exactness of the segmentation because the

similarity measure usually loses identity of component differences via a summation, or

33

treats all components equally, the components must contribute approximately as much to

the similarity measure. Otherwise, a component with large variance would shadow

components with small variance and thus only the components with large variance

would contribute to the distance measure used as a similarity measure. Normalization

gives each of the input feature vectors an equal importance and prevents premature

saturation of activation functions. Therefore, feature vectors need to be modified before

they are inputted into SOFM. An input feature vector is normalized by Eqn.

(3.14)-(3.21).

Normalize point coordinate

x _new =% Xea
- Xow = Xoua

Yy _ new ,=—*y‘ Y
ym—ymin

z _new =%t Zm
- Zm.x_me

Normalize point normal

X _new _ = X
- 2 2 2
Vel+ylezl

- Y u
Yy _new =-—— —
x,.,*'y,,,‘*'z..:
z _new _ =—= z", -
'un+y,.»+z~

34

(3.14)

(3.15)

(3.16)

3.17)

(3.18)

3.19)

Normalize point curvature

H new _H.Ha (3.20)
— ' H N - H -

K _nw ~KoKuw (3.21)
- K max K min

3.4 SOFM for Point Cloud Segmentation

Kohonen’s algorithm creates a vector quantizer by adjusting weights from
common N input node to M output node, arranged in a grid. Output nodes are
extensively interconnected with many local connections. Continuous-values (point by
point) input vectors are presented sequentially without specifying the desired output.
After enough input vectors are presented, weights will specify cluster or vector centers
that sample the input space such that the point density function of the vector trends to
approximate the probability density function of the input vectors. Moreover, the weights
are organized such that topologically close nodes are sensitive to inputs that are
physically similar. Output nodes thus become ordered in a natural manner [36-38]. The
weight vector wW=(Wx, Wy, Wz, Wnx, Wny, Wnz, Wi, Wi) Of each unit is the representative
vector of a region where (Wy, Wy, W,) is the coordinates of the center of region in the
three-dimensional space and (Wnx, Wny, Wn) is the representative unit normal vector of
the region. The components wy and wy are the representative mean and Gaussian
curvature of the region.

The Kohonen’s training algorithm can be summarized as follows:

1. Initialize network

Initialize weights Wj=(Wx, Wy, Wz, Wnx Wny, Wnz, WH, Wi) With small random value
(range from 0 tol). Set the initial radius of the neighborhood around each node to be
large in order to avoid a dead neuron which will never fire during the training process.
Initialize learning rate, number of iteration rounds and iteration epochs for each round.

Usually there are three different types of network initializations.

35

a. Random initialization: Random initialization means simply that random values
are assigned to codebook vectors. This is the case if nothing or little is known
about the input data at the time of the initialization.
b. Initialization using initial samples: Initial samples of the input data set can be
used for codebook vector initialization. This has the advantage that the points
automatically lie in the same part of the input space with the data.
c. Linear initialization: One initialization method takes advantage of the principal
component analysis of the input data. The codebook vectors are initialized to lie
in the same input space that is spanned by two eigenvectors corresponding to the
largest eigenvalues of the input data. This has the effect of stretching the
Self-Organizing Map to the same orientation as the data having the most
significant amounts of energy.
For this algortithm, random initialization is used.

2. Present input vector

Present input vector x; at time t (0<t<n, where t=0, 1, 2...is an integer the
discrete-time coordinate. n is the number of iterations defined by the user) to all neuron
in the network simultaneously.

3. Calculate winning neuron

Compute the distance d (x; wj) between the input and each output node using the
Eqn. (3.10). Winner neuron is the node with the smallest Euclidean distance between
input vector and weight vector.

d (x;, Wy)=as[[Xp- Wyl Hbe{[Xa- Wl FosHo-wphHde|K-wy] (3.10)

where a is the weight of point coordinate distance, b is the weight of normal
distance. ¢ and d are weights of curvature distance. The actual weights are determined
experimentally and are given in Chapter 5.

where:

Xi=(X, ¥, Z, ny, ny, nz, H, K)=(x,, Xn, H,K)

36

Xp=(x, Y, 2)

Xn=(Nx, Ny, Nz)

Wi=(Wx, Wy, Wz, Wnx, Wny, Wnz, WH, Wk) = (Wp,Wn, WH, Wk)

W=(Wy, Wy, Wz)

Wn =(Wnx, Wny, Wnz)

4. Update the weights

After a winning neuron is determined, the weight vectors connecting the input
layer to the winning neuron and its neighboring neurons are updated according to the

learning rule.

W (+1) = {wj(t)+hzkt(;)—wj(t)] Zj Z 11:’,:8 G
h, =a(®)eexp —%‘- (3.12)
a)= Qi ® (gf—""'JAM (3.13)
O= G i { a’ "":]An (3.14)

where ¢ is the location vector of the winning neuron in the output layer, Ny(1)
denotes defined neighborhood size in ¢ iteration, "rj —rq" is the Euclidean distance
between neuron j and g. hy; is a smooth neighborhood kernel of the Gaussian function.
a(f) is a scalar-valued “learning rate factor” and the parameter o(f) defines the width
of the kemel. Both a(f)and the radius of Ny(#) are decreasing monotonically in time
(during the ordering process). a(t) and o?(t) are used to control the amount of

learning rate. Effective choices for these functions and their parameters have so far only

37

been determined experimentally [36]. In this work, the learning rate a(¢) is decreased
from ajniiar Set to 0.9 to agna set to 0.01 so that Kohonen’s learning rule ensures that finial

convergence to the asymptotic values. Ginitial and Ogina1 are set to 5 and 0.1 respectively.
5.Goto2
After a certain number cycles (repeat from 2 to 5) as determined experimentally,
decfease the size of the neighborhood N,(¥), until neighboring radius is equal to zero and
end iteration.

A summary of the learning algorithm of SOFM network is shown in Figure 3.6.

38

Initialize network

A4

Present Input Vector |
(point by point)

A

Find winner neuron

Update weights

\ 4

Reduce neighborhood size

l

Enough iterations?

End

Figure 3.6 SOFM algorithm flowchart

FROPERTY OF
RYEREON GiIVERSITY LIBRARY
39

Chapter 4

Data Classification

In order to improve the quality of the surface reconstruction, surface geometric
primitives commonly used in mechanical parts (plane, cylinder, sphere, cone, torus, etc)
are required to be recognized. In this chapter, a back propagation neural network is used
to classify data segmented in order to decide to what type of surface each subset of point

belongs (e.g., planar, cylindrical).

4.1 Introduction

After the point data are segmented into subsets using Kohonen’s self-organizing
Feature map, each subset corresponds to a unique geometric primitive feature such as
plane, cylinder, sphere, cone, torus, or a free-form surface element such as Coons, Bezier,
NURBS. Obviously, this sort of information is crucial, since it will determine the quality
of the final model to be constructed and have a significant effect on the efficiency of the
computations. For example, a set of measured points from a sphere is reconstructed as a
free-from surface. This not only decreases the quality of the (sphere) surface but also
increases the computational time. Chappuis and Rassineux [39] described a method that
surfaces could be represented by the curvature graph shown in Figure 4.1, where k; and

k2 denote the principal curvatures.

40

ko|/|k
lkal/k Sphere

Plane Torus

Cylinder Cone

—

|ki]

Figure 4.1 Curvature graph classification [39]

Besl and Jain [12] classified point data based on the sign of Gaussian and mean
curvature into eight different primitives (Figure 4.2). The classification of the primitives
is based on zero values for the Gaussian and mean curvature. However, in practice, exact
zeros for curvature can not be obtained due to noise in the data. So, it is a common
practice to define a threshold value about the zero for both Gaussian and the mean
curvature. Assuming that two threshold values are Koo and Hyero respectively, the local
surface classification can be performed as follows [4].

1. K> Keroand H<- H,, peak surface
K> Kieroand H>Hyero pit surface
~Kzer0> K> Kieroand H<- H,er, ridge surface
“Kiero> K> Kyeroand H> Hyey, valley surface
~Kzero™> K> Kieroand - Hyero> H> Hyero flat surface
K< Kyeroand -Hyero >H> H,r, minimal surface

K<- Kyeroand H<- Hyero saddle ridge surface

N AN

K< -Kzeroand H> Hyer, saddle valley surface

41

The selection of the threshold value for K,eoand Hero is very critical. Besl and
Jain [12] have seiected threshold based on the maxima of both curvatures. Abdalla and
Saeid [4] used a back propagation neural network. In this work, a typical surface library
includes plane, cylinder and sphere (this library can expand to cone, torus, even

free-from surface). Surface recognition is accomplished by a feed-forward neural

network.

e o s

/’:_, - L l‘ ',-‘
Peak surface H<0, K>0 Flat surface H=0, K=0
FT e RN h
~ s - L
~ o >~ o T
Pit surface H>0, K>0 Minimal surface H=0, K<0
TN ——— o
e N PN LTI N T
i r N, T 7
et Y N S~ . =
N A S~
Ridge surface H<0, K=0 Saddle ridge H<0, K<0
b
e T T \ }' \\
e ! | R A
|.' N i | :\~4,/ \ \.;
N S T 7 ,L o ‘u' ,/"
ST pipe
Valley surface H=0, K<0 Saddle valley H>0, K<0

Figure 4.2 The set of eight primitive surfaces after Besl and Jain [12]

4.2 Artificial Neural Network

The neural network that is used has an input layer, a hidden layer, an output layer,

weights, bias and a transfer function (Figure 4.3). The inputs are multiplied by weights,

42

bias is added and the transfer function operates on the total to give the output. Generally,
linear transfer functions are best suited to linear problems and non-linear transfer
function are best suited non-linear problem. Different transfer functions are tested in

order to decide which transfer function is best for this work. By trial and error, the

hypertangent function is chosen.

e _.C tee

-~

Bias

Figure 4.3 Neural network configuration [38]

4.3 Back Propagated Neural Network

Back propagation is suitable for non-linearly-separable inputs. Back propagation
network is formalized first by Werbos, and later by Parter and by Rummelhart. This
network is designed to operate as a multiplayer, feedforward network, using the

supervised mode of learning [38].
4.3.1 Input vector

Both Gaussian, mean curvature (Figure 4.4) and two principal curvatures (Figure
4.5) can define the geometry of the typical surface primitives (i.e., plane, sphere and
cylinder). The calculation of these curvatures is the same as in Section 3.3.2. For this
algorithm, two principal curvatures are chosen as an input vector. Due to noise and
accﬁracy of measurement devices, there is an error between the curvatures of the ideal

surface and the curvatures of the actual surface. Usually there are many points in the

43

subset of a primitive surface in reverse engineering. So, the curvature distribution of
point data tends to possess a normal probability distribution according to the central limit
theorem [40]. # and o are parameters representing the population mean and standard

deviation. The mean g locates the center of the normal distribution.

X

u=L— 4.1)
n
>, - 1
oF=tl (4.2)
n

where % denotes Gaussian, mean , maximum or minimum curvature, n denotes
the total number of points in a subset. If the population standard deviation o is large, it
shows that there are big errors in this subset. This segmented subset needs to be
re-segmented. If the value of ¢ is small, the arithmetic mean of the curvatures is taken as
the input vector.

Plane: all directions

K, = K, = 0

. Sphere: all directions

Cylinder
\

\ K, < 0 K, = 0

Figure 4.4 Principal curvatures of plane, sphere and cylinder

44

K>0
H<0

\ K=0

__ H<0

Figure 4.5 Gaussian and mean curvatures of plane, sphere and cylinder

4.3.2 Hidden layer

One important issue with respect to a multilayer neural network is how to
determine the number of the hidden units required to perform classification. The number
of elements in a hidden layer can be determined by experimentation. Increasing the
number of elements in the hidden layer resulted in better mapping, however, at the
penalty of increasing training time. In this work, for the surface primitive recognition,

six neurons are used in the hidden layer (Figure 4.6).

4.3.3 Output Layer

This output layer has three output neurons for three kind of surface primitives.

The desired output for three kind of surface primitive formed the three dimensional

45

vectors are as follows:

plane: 100
cylinder: 010
sphere: 001
Xi o) O,
X2 ~ R . 0.
° []
[]
[J []
Xa ‘ Om
Y "
Input layer Hidden layer Output layer

Figure 4.6 Neural network for 3D data classification

4.3.4 Back Propagation Training Algorithm

Learning via back propagation involves the presentation of pairs of input and
output vectors. The actual output for a given vector is computed with the desired or
target output. If there is no difference, no weights are updated; otherwise, the weights are
adjusted to reduce the difference. This learning method essentially uses a gradient search
technique to minimize the cost function, which is equal to the mean square difference
between the desired and the actual outputs. Often, the back propagation network is
initialized by setting random weights and thresholds, and the weights are updated with

each iteration to minimize the mean-squared error [41]. The back propagation learning

46

algorithm for a three-layer network is as follows [42].

Let:

Na,»=input neural value at neural location i.

Nej=hidden neural value at neural location j

N@,p=output neural value at neural location i.

Waixzj=connector weight between neural at the hidden and input layer.

W(2x3,j=connector weight between neural at the hidden and output layer.

where i, j=1 to n, depend on the respective layer as shown in Figure 4.6, therefore,
the neuron value on the hidden layer can be calculated as:

Ulehn 12"; WeLix2g)eTl(Li) (4.3)

The output neuron values are depended on the transfer function. The transfer
function performs the task to pass the neuron value from the input layer to the hidden
layer or from the hidden layer to the output layer to generate the desired output.

Different transfer functions are tested for this data classification to decide which transfer

function to use. By trial and error, the hypertangent function was chosen.

1 -exp(-ax)

1+exp(-ax) (44)

f(x) =

where: o is typically between 0.01 and 1.0. In this work, a=0.6 is used by
experimental determination.

The output error is given as follows.

Eoutput,i = (desired_outputi - n3,i)) 4.5)

where 13, is the neuron value at the output

nei=Fn(...(F2(F1XpW(1))W(2))...)W(n)) (4.6)

The reflected vector is the product of the error vector, Eouputi and the calculated
output vector n@3,, it can be calculated as:

Ri= Eoutputi ® 13,y @ (1- NG.0) 4.7

47

The reflected vector is used to calculate the adjustments to the connectors
between the j"‘ neuron in the hidden layer and the i™ neuron in the output layer.

The adjustment of weights between the ouput and hidden layer can be calculated

by
M)_ =AeRje LleX)) (4‘8)
dt
The error of the hidden layer is given by
Ehiddenj=nie (1-n2p) * Y Rie x@c. 4.9
i=l

Finally, the adjustment of weights between the input layer and the hidden layer is
given by:

dX(;l;)-(__z"" =B e Enidden, j) ® 1)(1,k) (4.10)

Adjusting the two sets of weights between the layers and recalculating the
outputs is an iterative process that is repeated for each training vector until the errors all
fall below a predetermined tolerance level. It flowchart is shown in Figure 4.7.

Large error tolerances will result in a poorly performing neural network, while a
very small allowable error will result in excessively long training times. A relatively
large error tolerance (0.4) was used at the start, and incrementally lowered to the desired
level (0.03) as training is achieved at each succeeding level. This resulted in fewer
training iterations than starting out with the desired final error tolerance.

The technique of incrementally lowering the error threshold and learning rates
can greatly improve the performance of back propagation training. [43]. The learning
rates A and B also need to be determined experimentally. In this work, learning rate

starting point 0.4 for A and 0.5 for B. The final learning rate is 0.1 for A and 0.06 for B.

48

Initialize training
iteration counter N=1

Initialize weight with
Random values

l

Present input vectors

v

Assign the value for
each shape

»
>

\4

Compute output error E

End

Update the weights between
output and hidden layer

\ 4

Compute hidden layer error

A

Update the weights between
input and hidden layer

Figure 4.7 Neural network for data classification

49

4.4 Test of Surface Recognition

The neural network was evaluated by testing with different objects, Some results
of these tests are shown in Figure 4.8. The back propagation neural network test
algorithm of typical surface of machine parts are programmed with MATLAB and are

shown in Appendix B.

input=[0.002 -0.001];
output = 0.9548 0.3277 0.3277
modify_output = 1 0 0

This is a plane

input=[-10 -0.001];
output = 0.1639 0.8487 0.1681
modify_output= 0 1 0

This is a cylinder

Input = [-20 -20.0009];
output = 0.3326 0.3004 0.9795
modify_output = 0 0 1

This is a sphere

input=[-15 -1];
output = 0.2173 0.2216 0.0544
modify_output = 0 0 0

This is not a typical surface

Figure 4.8 Some test result of surface recognition

50

Chapter 5

Experimental Implementation

5.1 Introduction

To verify this work, real and synthetic scanned point cloud data were used in the
experiments (Fig5.1-5.10). In acquiring the point data, a PICZA 250 3D laser scanner
was used. The algorithms (SOFM, normal and curvature calculation) were written using
MATLARB. If cloud data are accurate, the algorithms of normal and curvature are directly
used. Otherwise, noise need to be removed from the initial scan data before calculating
the normal and curvature value of the points. For performing the preprocessing tasks,
reverse engineering softeware package, Surfacer version 10.6 was used. In the case of
3D point data, the weights used in the Euclidean distance measure were determined
empirically. During the course of computer simulation of SOFM, first, the objects in the
input images were observed to have relatively simple surfaces, then complicated surface.
The weight ratio a:b:c:d=1:0.7:0.1:0.05 was used for the weighted Euclidean distance
measure in all the case of 3D point data.

During the scanning, the height-direction pitch and width-direction pitch are both
chosen as 0.102 inch (2.59mm).

51

5.2 Experiment Results and Analysis

In order vto test the performance of the SOFM experimentally, a series of
experiments using synthetic and real scanned cloud data are carried out. Each output
node denotes if the points belong to the same “class” (physical surface) or different
classes. If the surface discontinuity, normal vector difference and curvature difference
are high, then the points lie on different surfaces. If the amount of discontinuity is not
significant but the normal difference is sufficiently high, then the points belong to
different surfaces. The points belong to the same surface, if the normal and curvature
difference as well as surface discontinuity are small.

Simple synthetic images were used (Figure 5.1). The use of synthetic images was
convenient during the development phase of the SOFM because the ideal output was
known. The slopes of test block in Figure 5.2 are 45 degree. The different slopes (30
degree and 70 degree) were also tested.

i) block left top face and j) block right top face in Figure 5.3 have same width,
but i) show wider than j) that is because the axis in i) is from 0 to 0.5 but the axis in j) is
from O to 1 so the scale in i) is twice than j), same reason can explain why h) and i) in
Figure 5.4 shows different even though they are in same dimension. Figure 5.4 is
different from Figure 5.3. The cloud data in Figure 5.4 are synthetic. During scanning,
the groove left face and the groove right face of the block in Figure 5.3 can not be
scanned (jump edges without point data). The two faces are synthetic in Figure 5.4 and

then the point data are segmented by SOFM.

52

b) Cloud data

a) Test block

w
A aud

........C.QI.......\
000 00 0000 OCOOCEOINPOONNPOINOSNTGDO
0 0000000000000 0 0000
90 000 000000000000 000
0 0000000000060 000000
G0 0 000000000000 00000
0000000 Q00O OCEPOINOSEPOLEINPOSTDIOIOOD
00 000000000000 00000OF
00000000 00O0CONONOSEOEODOLIOLEOES
060000000 00000000000
0 00 0000600000000 O0O0CDOS
006000000000 000 000000
00 0000000000000 00000
006 0000000000000 00000
00 000000000000 000000
0 0600000060000 0000O0O0OS
0 0000000006000 000000
0000 0000000000000 OCO
00 000000000000 0000 00
0000000000000 000000

0.5

c¢) Right face

vﬂfiﬁ!:4§1;
© ¥ o o-r
o

Figure 5.1 Test bock and segmented results

53

e) Back face

d) Bottom face

g) Left face

f) Front face

Figure 5.1 (continued)

54

a) Test block

Qi
et
4 };l“;g.“': RS,

Al
e B

N Wi i Hed

s s,

A
) i ey it
\ ity s;,‘,‘gg,‘;';‘::«;;‘r
@t attint My
“,';15‘11,,: i) 08,
(LY
02,

00 00
c) Norma\'\zed cloud data d) Top face
Figure 5.2 Test pock and segmented results

55

0o

e) Back face

d) Left face d) Front face

Figure 5.2 (continued)

56

a) Test block (7 faces) b) Cloud data

d) Right face

¢) Normalized cloud data

Figure 5.3 Test bock and segmented results

57

e) Front face f) Left face

05

04

03

024

08

h) Groove top face

g) Back face

Figure 5.3 (continued)

58

i) Block left top face

08,
06
04.

02.

Jj) Block right top face

Figure 5.3 (continued)

59

a) Test block (9 faces) b) Cloud data

d) Groove right face

c¢) Normalized cloud data

Figure 5.4 Test bock and segmented results

60

0

i
N
i

06

iia,
£
5
S
%&1\%\1«.&%\&
.~..._.....~....~._.~
£
c\uﬁ&\k&.ﬁ.ﬁ.‘- .w-.‘-
..o-a...m;. k..
.u.u..n.\
.-_.-ﬁ-

u

f) Groove left face

e) Block left face

>

)

X,

08

06|

04

02

w
=1

04

03

02

01

h) Block right top face

g) Groove top face

Figure 5.4 (continued)

61

08

0§

04

024

k) Block front face 1) Block back face

Figure 5.4 (continued)

62

To avoid an oversegmented or an undersegmented surface, the number of neural
units in the competitive layer needs to be chosen close to the number of regions desired
in the final segmentation. In most case, the number of neural unit is not strict. For
example, in Figure 5.4 the competitive size can be 3x3, 3x4, 4x4, 4x5 (20 units are over
two times actual faces (9 faces) and an oversegmented occurs if the size is bigger than
6x6. For a simple object (Figure 5.1), the competitive size can be up to 7x7(49 units are
almost ten times actual faces (5 faces)). In the following experiment (Figure 5.6), the
final segmentation result shows the successful segmentation of two planar surfaces (top
surface and bottom surface). But it fails to segment the cone surface as a whole surface.
An oversegmentation occurs even though every point on the cone surface has the same
nonzero magnitude Gaussian curvature. It segments the cone surface into several
longitudinal strips (patches). The reason for the segmentation of the cone surfaces into
longitudinal strips is that surface points on a single longitudinal strip have identical or
similar unit normal vector values. And the weight of Gaussian curvature is much smaller
than the weight of the normal. To solve this problem, three methods can be used.

1. The number of neural units chosen is close to the number of regions desired in
the final segmentation. For example, an oversegmentation can be avoided if the number
of neural units is chosen as 3, or 4 (Figure 5.7) and 5, or 6 (Figure 5.10).

2. The weights of Gaussian and mean curvature are increased. For example, the
number of neural units can be up to 9 (9 is 3 times the number of final segmented
regions) if the weight of Gaussian curvature is bigger than 0.6 (Figure 5.7) and the
number of neural units can be up to 16 (16 is over 3 times the number of final segmented
regions) if the weights of Gaussian and mean curvature are both bigger than 0.7.

3. A hierarchical self-organizing feature map (HSOFM) can be used. Jean and
Minsoo [8, 9] found that an HSOFM can alleviate the oversegmentation shortcomings of
SOFM in the context of image segmentation. But even in HSOFM, the weights of a, b, c,

d are still variational.

63

After study, it is suggested that the first method be used, as:

1. The weight ratio a:b:c:d=1:0.7:0.1:0.05 can be used for the weighted Euclidear;
distance measure in all the case of 3D point data.

2. Computational times are very short. Trying different size of the neural net is
possible. For example, a training step is chosen as 50000 (Figure 5.9). The resulting time
is as little as 2. 3 seconds.

3. The oversegmentation will not occur if the central angle of a cylinder surface
is less than 90° (Figure 5.8).

4. Due to the manufacturing error, actual geometric features are not perfect.
Flatness evaluates the largest vertical distance between the highest and lowest points on
a surface. The flatness tolerance defines the distance between two perfect planes within
which all point on a surface must lie (Figure 5.5). Flatness could be considered
straightness on a surface, applied in all directions. Therefore, an oversegmentation will
occur if the weights of Gaussian and mean curvature are chosen greater. For example,
the test block (Figure 5.9) will be segmented into many small patcﬁes because of the

poor flatness if the weights of Gaussian and mean are both taken as 0.7.

.002 Tolerance Zone Size
[] |.002 l (2 planes)

._/_f\/

T/

Actual points on Surface

are between the 2 planes

Drawing Tolerance Zone

Figure 5.5 Flatness

- At et e s o2 MM»»._...._...«—..-.

' Pigure V¥ A Figuze 2
Rile Rdit Yiew hnrt Iooh Desktop l.uvlu Help ¥

Dﬁﬂé R QQ@O'@ a >

m 114 8is Ioae Tod « Desie Tind Bl >

EB!MQQ‘W »

modify = Ricroso. ..) 10 HATLAB

Figure 5.6 An example of oversegmentation

65

o~

a) Test block (3 faces)

c¢) Cylinder face

d) Bottom face

[

PR V= Ly AP (R
4 4 ’ . ’ .
(R S JS PR AN Sasand

4

b) Cloud data

e) Top face

Figure 5.7 Test object and segmented results

66

3 (7. ZLLLLLTLLLLG
CSNER GG 7

—yemmmyme=y-

%

b) Normalized cloud data

a) Cloud data (6 faces)

d) Back face

c) Bottom face

Figure 5.8 Test object and segmented results

67

seccccccocccscssccssscniscncen

®escccccccctcccccsocssstssssoe

®ccececccntcccccccssnisscsscee

0.4

f) Left face

der face (fillet face)

In

e) Cyl

08

06

04

02

06

0

02

09

h) Top face

g) Right face

Figure 5.8 (continued)

68

Due to manufacturing errors, the 3D dimensions of the test blocks are inaccurate,
For example, the actual biggest width dimension of the block in Figure 5.9 is 62.15 mm
and the smallest dimension is 61.92 mm, so the left face in Figure 5.9 €) has a slight
angle with axis (0.04, not exactly 0). Similarly, the length dimension of this block is
from 61.92 mm to 62.33 mm can explain why j) back face is not exactly in line with the

axis.

PRI UL R
ETITITRTS

a) Test block (7 faces) b) Cloud data

¢) Normalized cloud data d) Right face

Figure 5.9 Test bock and segmented results

69

")
<
o

e) Left face

g) Block top face

f) Step top face

Figure 5.9 (continued)

70

h) Fornt face

i) Middle face J) Back face

Figure 5.9 (continued)

71

cmm s m e - ———————-—. -

’ .
PR Y A L Y M
’ ’
’ ’
P R MR g
4 d ’
, . ’
€ el Ve m
AY \ N
\ \ \ ~
\ \ \ '
\= A —— - -
\ \
\ \
K== === e R o
A} \ \ AY A} AY
\ \ \ \ \
Ve md ==\ ==
\ \ \
\ A} \
- 3 Y
© w o~
o~

T

b) Cloud data

a) Test block (5 faces)

d) Sphere face

¢) Normalized cloud data

Figure 5.10 Test object and segmented results

72

08,

e) Support face 1 f) Support face 2

08, 08+

h) Bottom face

g) Support face 3

Figure 5.10 (continued)

73

Chapter 6

Conclusions and Future work

6.1 Conclusions

In most RE systems, the segmentation of digitized points is performed
interactively. This manual process by a RE operator is time consuming and prone to
error. This research reports on the automatic segmentation and classification of point
data. The principal contributions of this work and conclusions are as follows.

1. An automatic reverse engineering system is proposed. This system is simple

and practical.

2. After existing segmentation methods are reviewed, an automatic
segmentation algorithm of multiple viewpoints 3D digitized point data
captured by a laser scanner or a CMM is proposed and implemented. Some
of the building blocks (SOFM, Darboux frame and the weighted least-square
method) are well known, but it is the way in which these are tied together.
Experimental results prove that this method is effective and correct.

3. Normalized feature vector and weighted Euclidean distance adopted in the
learning process of the SOFM can improve the speed and exactness of the
segmentation.

4. The segmentation using the SOFM is robust to noise (the accuracy of Dr.

Picza-250 is 0.2 mm) and has no limitation to surface type.

74

6.2 Future Work

To construct an automatic reverse engineering modeling system, surface fitting
and surface trim will be programmed by MATLAB after segmentation and classification
and cloud data.

For most mechanical parts, CAD models can be represented by a set of
parametric patches such as plane, cylinder, sphere, cone and torus. Lukaxs and Marshall
[44] describe Geometric least-squares fitting of spheres, cylinders, cones and tori.
Reference [45] gave MATLAB source codes of the Least Squares Geometric Elements
library. This library consists of MATLAB functions to find the least-squares fit of
geometric shapes to data, implementing a number of the geometric fitting routines key
functions. It is based on a general purpose non-linear least-squares solver that takes as
input function-and-gradient routines, and these routines are implementations of the
geometric evaluation key functions.

Surface trimming is sometimes needed after surface fitting using the least-square
methods. For example, in Appendix C, a whole face is obtained when the segmented
bottom face is fitted using the least-square method. Arshad [46] used a back propagation
neural network to recognize these boundary curves. The final surface can be created by
trimming the whole face with boundary curves using Boolean operators.

Free-form surfaces are needed to reconstruct if the segmented point subset is a
free-form surface. The NURBS method seems to be the most effective and is introduced

in Appendix D.

75

APPENDICES

Appendix A: Glossary of Terms

76

Term

Definition

SOM

Back-Propagation

CAD

CAM

Cloud data
Neuron

Topology
Free-form surface
NURBS
One-Ring

Segmentation

Artificial Neural Network- a computer algorithm based on the
architecture of a biological brain.
Self-Organizing Maps-networks in which units exhibit a
competitive form of behavior and presents neural-based examples
of unsupervised learning.

Method to update connector weights in multi-layer neural networks
based on error.

Computer Aided Design
Computer Aided Manufacturing
Term used to describe the collected points in RE
A node in neural network
The spatial relationship of different patches to each other
A surface not belong to any geometric primitive
Non-uniform rational B-spline surface
One group triangles which share a same vertex

Divide the cloud data into subregions

77

Appendix B: MATLAB Program codes

78

% MATLAB code for normal calculation of point data

clear all

close all

tic % Start a stopwatch timer
load faceplanel.txt; % Loading faceplanel text file

x=faceplanel(;,1);
y=faceplanel(:,2);
z=faceplanel(:,3);
n=length(x);
fori=1:n
if rem(i,4)~=1 % exclude non-point coordinate
k=1;
% assign the first normal value of point data
if rem(i,4)==2
normal_x=x(i-1);
normal_y=y(i-1);
normal_z=z(i-1);
elseif rem(i,4)==
normal_x=x(i-2);
normal_y=y(i-2);
normal_z=z(i-2);
else normal_x=x(i-3);
normal_y=y(i-3);
normal_z=z(i-3);

end

79

% Find the points with same vertex
for j=1:n
if rem(j,4)~=1
if (x()=x()&&(y()=y())&&(z(1)==2(j)) & &(i~=))
k=k+1;
if rem(j,4)==2
normal_x=normal_x+x(j-1);
normal_y=normal_y+y(j-1);
normal_z=normal_z+z(j-1);
elseif rem(j,4)==3
normal_x=normal_x+x(j-2);
normal_y=normal_y+y(j-2);
normal_z=normal_z+z(j-2);
else normal_x=normal_x+x(j-3);
normal_y=normal_y+y(j-3);
normal_z=normal_z+z(j-3);
end
end
end

end

% calculate normal value of cloud data
pointnormal_x(i)=normal_x/k; % x normal components
pbintnormal _y(i)=normal_y/k; % y normal components
pointnormal_z(i)=normal_z/k; % z normal components

end

end

80

for i2=1:n
if rem(i2,4)==1 % normal values
x(i2)=nan;
y(i2)=nan;
z(i2)=nan;
pointnormal_x(i2)=nan;
pointnormal_y(i2)=nan;
pointnormal_z(i2)=nan;
end

end

delete=find(isnan(x)); % find duplicate points
x(delete)=[];
y(delete)=[];
z(delete)=[];
pointnormal_x(delete)=[];
pointnormal_y(delete)=[];
pointnormal_z(delete)=[];
nn=length(x);
for i4=1:nn
for j4=(i4+1):nn
if (x(14)==x(4)) & &(y(i4)=y(i4)) & &(z(i4)==2(j4))
x(j4)=nan;
y(j4)=nan;
z(j4)=nan;
end

end

81

end
delete1=find(isnan(x));
x(delete1)=[];
y(deletel)=[];
z(delete1)=[];

% Elimination of duplicate point
pointnormal_x(deletel)=[];
pointnormal_y(deletel)=[];
pointnormal_z(deletel)=[];

toc

82

% MATLAB codes for curvature calculation of poit data

% using local Darboux frame and least-square method

clear all
close all
tic
load stlfile.txt; %load stlfile text of point data |
X=stlfile(:,1);
Y=stlfile(:,2);
Z=stlfile(:,3);
m=length(X);
k=0;
for ii=1:m
if rem(ii,4)~=1 % exclude non point coordinate
k=k+1;
x(k)=X(ii);
y(&)=Y(ii);
z(k)=Z(ii);
end
end
n=length(x);
fori=Il:n
1=2;
% assign the neighthood point of first triangle
ifrem(i,3)==1
neighborhood_x(1)=x(i+1);

83

neighborhood_y(1)=y(i+1);
nei gh.borhood_z(l)=z(i+l);
neighborhood_x(2)=x(i+2);
neighborhood_y(2)=y(i+2);
neighborhood _z(2)=z(i+2);
elseif rem(i,3)==2
neighborhood_x(1)=x(i-1);
neighborhood_y(1)=y(i-1);
neighborhood_z(1)=z(i-1);
neighborhood_x(2)=x(i+1);
neighborhood_y(2)=y(i+1);
neighborhood_z(2)=z(i+1);
else neighborhood_x(1)=x(i-2);
neighborhood_y(1)=y(i-2);
neighborhood_z(1)=z(i-2);
neighborhood_x(2)=x(i-1);
neighborhood_y(2)=y(i-1);
neighborhood_z(2)=z(i-1);
end
% find the points share with a common vertex
for j=1:n
if (x(D)==x())&&(Y()=y())&&(z(1)==2())) &&(i~=))
1=1+2;
if rem(j,3)==1
neighborhood_x(I-1)=x(j+1);
neighborhood_y(I-1)=y(j+1);
neighborhood_z(I-1)=2z(j+1);

84

neighborhood_x(1)=x(j+2);
neighborhood_y(1)=y(j+2);
neighborhood_z(1)=z(j+2);
elseif rem(j,3)==2
neighborhood_x(1-1)=x(j-1);
neighborhood_y(1-1)=y(j-1);
neighborhood_z(I-1)=z(j-1);
neighborhood_x(1)=x(j+1);
neighborhood_y(l)=y(j+1);
neighborhood_z(l)=z(j+1);
else neighborhood_x(I-1)=x(j-2);
neighborhood_y(1-1)=y(j-2);
neighborhood_z(1-1)=z(j-2);
neighborhood_x(1)=x(j-1);
neighborhood_y(l)=y(j-1);
neighborhood_z(1)=z(j-1);
end
end
end
lI=length(neighborhood_x);
foril=1:(1l-1)
for jl=(i1+1):1l
% find duplicate points
if (neighborhood_x(il1)==neighborhood_x(j1))...
&&(neighborhood_y(i1)==neighborhood_y(j1))...
& &(neighborhood_z(il)==neighborhood_z(j1))

neighborhood_x(j1)=nan;

85

neighborhood_y(j1)=nan;
nei ghborhood_z(j1)=nan;
end
end
end
% Eleminating the duplicate points
delete=find(isnan(neighborhood_x));
neighborhood_x(delete)=[];
neighborhood_y(delete)=[];
neighborhood_z(delete)=[];
% check number of data points
m1 = length(neighborhood_x);
ifml <2
sprintf(‘error:At least 3 data points required ");

end

XX1=[(neighborhood_x)' (neighborhood_y)' (neighborhood_z)'];
XX2=[x(1) y(i) z()];
XX=[XX1;XX2];
% calculate centroid
X0 = mean(XX)';
% form matrix A of translated points
A = [(XXC, 1) - x0(1)) (XX(, 2) - x0(2)) (XX(, 3) - x0(3))];
% calculate the SVD of A
[U, S, V] =svd(A, 0);
% find the smallest singular value in S and extract from V the

% corresponding right singular vector

86

[s, iii] = min(diag(S));
cosangle = V(, iii);
llineydirection1=neighborhood x(1)-x(i);
llineydirection2=neighborhood_y(1)-y(i);
if (llineydirection1==0)&&(llineydirection2==0)
llineydirection3=1;
elseif cosangle(3)==0
llineydirection3=0;
else
llineydirection3=(cosangle(1)*llineydirection 1+cosangle(2)*1lineydirection2)...
/(-cosangle(3));
end
normal=((llineydirection1)"2+(llineydirection2)"2+(llineydirection3)"2)"0.5;
lineydirection1=llineydirection1/normal;
lineydirection2=llineydirection2/normal;
lineydirection3=llineydirection3/normal;
linexdirection1=(1-(lineydirection1)"2-(cosangle(1))"2)".5;
linexdirection2=(1-(lineydirection2)"2-(cosangle(2))"2)".5;
linexdirection3=(1-(lineydirection3)"2-(cosangle(3))"2)".5;
nn=length(neighborhood_x);
for i2=1:nn |
BB.x(i2)=neighborhood_x(i2)-x(i);
BB.y(i2)=neighborhood_y(i2)-y(i);
BB.z(i2)=neighborhood_z(i2)-z(i);
end

BB1=[BB.x;BB.y;BB.z];

87

newcoordinate=[linexdirection] linexdirection2 linexdirection3;...
lineydirectioni lineydirection2 lineydirection3;...
cosangle(1) cosangle(2) cosangle(3)]*BB1;
newcoordinate_x=newcoordinate(l,:);
newcoordinate_y=newcoordinate(2,:);

newcoordinate_z=newcoordinate(3,:);

newcoordinate_xsquare=(newcoordinate_x)."2;
newcoordinate_xy=(newcoordinate_x).*(newcoordinate_y);
newcoordinate_ysquare=(newcoordinate y).~2;
coordinate_matrix=[newcoordinate_xsquare; newcoordinate_xy;
newcoordinate_ysquare]';
% least-square method to slove the coefficent
coefficent=coordinate_matrix\(newcoordinate z)';
% calcualte principal curvature
k1=coefficent(1)+coefficent(3)-((coefficent(1)-coefficent(3)) 2+coefficent(2)*2)"0.5;
k2=coefficent(1)+coefficent(3)+((coefficent(1)-coefficent(3))*2+coefficent(2)2)"0.5;
% calculate gaussian and mean curvature
K(i)=k1*k2;
H(i)=(k1+k2)/2;
end
save hkcurvature H K

toc

88

% MATLAB code for segmentation of cloud data using SOFM

clear all

close all

tic

load step2.txt; % load step2 text file

X=step2(:,1);

Y=step2(:,2);

Z=step2(:,3);

Normalx=step2(:,4);

Normaly=step2(:,5);

Normalz=step2(:,6);

load hkstep2 H K % load Gaussian and mean curvature file
[m n]=size(step2);

%classes=input('Please input the number to classify:");
POINTCLASS=zeros(m,2); %remember the winning neuron for input point
%build SOM neural network

SOMNEURONX=input('Please input the number of rows of SOM:");
SOMNEURONY=input('Please input the number of columns of SOM:');
% assign random weight
weight=rand(SOMNEURONX,SOMNEURONY,3);

disp('Initialized coordinate weights')

weight; %showing initialized weights matrix
weightnormal=rand(SOMNEURONX,SOMNEURONY,3);
disp('Initialized normal weights')

weightnormal; %showing initialized weights matrix

89

weightH=rand(SOMNEURONX,SOMNEURONY);
weightK=rand(SOMNEURONX,SOMNEURONY);
% assign coefficients

a=l;

b=0.7;

c=0.1;

d=0.005;

SOMiloop=5;

epochs=50000;

alpha=0.9;

sigma=2.5;

figure;

plot3(X,Y,Z,'s."); %showing the distribution of point
axis squarc;

grid on;

wx=weight(:,:,1);

wy=weight(:,:,2);

wz=weight(:,:,3);

grid on;

wnx=weightnormal(:,:,1);

wny=weightnormal(:,:,2);

wnz=weightnormal(:,:,3);

xmin=min(X);

xmax=max(X);

ymin=min(Y);

ymax=max(Y);

zmin=min(Z);

90

zmax=max(Z);
Hmin=min(H);
Hmax=max(H);
Kmin=min(K);
Kmax=max(K);
%Normalized feature vector
for ii=1:m

X(ii)=(X(ii)-xmin)/(xmax-xmin);

Y (ii)=(Y(ii)-ymin)/(ymax-ymin);

Z(ii)=(Z(ii)-zmin)/(zmax-zmin);
Normalx(ii)=Normalx(ii)/((Normalx(ii)"2+Normaly(ii)"2+Normalz(ii)*2)"0.5+2*eps);
Normaly(ii)=Normaly(ii)/((Normalx(ii)"2+Normaly(ii)"2+Normalz(ii)"2)"0.5+2*eps);
Normalz(ii)=Normalz(ii)/((Normalx(ii)*2+Normaly(ii)*2+Normalz(ii)"2)"0.5+2 *eps);

H(ii)=(H(ii)-Hmin)/(Hmax-Hmin);

K(ii)=(K(ii)-Kmin)/(Kmax-Kmin);
end
step2=[X,Y,Z,Normalx,Normaly,Normalz,H,K];
figure;
plot3(X,Y,Z,'.");

for epochl=1:epochs

alpha=0.98*(0.001/0.98)"(epoch1/epochs);

sigma=1.5*(0.01/1.5)"(epoch1/epochs);

if rem(epoch1,10000)==0
SOMloop=SOMloop-1;

i=1;

while i<m %i is the point position

91

distanceinput=zeros(SOMNEURONX,SOMNEURONY);
%find the winner neuron
for i1=1:SOMNEURONX %i1,j1 are the SOM neurons position
for j1=1:SOMNEURONY
distanceinput(il,j1)=a.*(((X(i)-weight(il,j1,1))"2+...
(Y(i)-weight(il,j1,2))"2+(Z(i)-weight(il j1,3))*2)"0.5)+...
b.*(((Normalx(i)-weightnormal(il,j1,1))"2+(Normaly(i)-weightnormal(il j1,2))"2+...
(Normalz(i)-weightnormal(il,j1,3))*2)"0.5)+c.*(H(i)-weightH(i1,j 1))+d.* (K(i)-weightK
(i141));
%neighborhood=abs(i1-i)+abs(j1-j);
end
end
minimumd=min(min(distanceinput));
%il,j1 are the SOM neurons position
for i2=1:SOMNEURONX
for j2=1:SOMNEURONY
if minimumd==distanceinput(i2,j2)
POINTCLASS(j,1)=i2;
POINTCLASS(i,2)=j2;
end
end
end
%determine if computing deltaw
for il=1:SOMNEURONX %il,j1 are the SOM neurons position
for j1=1:SOMNEURONY
neighborhood=((i1-POINTCLASS(i,1))"2+(j 1-POINTCLASS(i,2))"2)".5;
if neighborhood <= SOMloop

92

distance=(i1-POINTCLASS(i, 1))"2+(j 1-POINTCLASS(i,2))"2;
deltawx=alpha.*exp(-distance/(2*sigma”2)).*(step2(i,1)-weight(il,j1,1));
deltawy=alpha.*exp(-distance/(2*sigma”2)).*(step2(i,2)-weight(il,j1,2));
deltawz=alpha.*exp(-distance/(2*sigma”"2)).*(step2(i,3)-weight(il j1,3));
deltawnx=alpha.*exp(-distance/(2*sigma”2)).*(step2(i,4)-weightnormal(il j1,1));
deltawny=alpha.*exp(-distance/(2*sigma”2)).*(step2(i,5)-weightnormal(il j1,2));
deltawnz=alpha.*exp(-distance/(2*sigma”2)).*(step2(i,6)-weightnormal(il ,j1,3));
deltawH=alpha.*exp(-distance/(2*sigma”2)).*(step2(i,7)-weightH(il j1));
deltawK=alpha.*exp(-distance/(2*sigma”2)).*(step2(i,8)-weightK(il,j1));
weight(il,j1,1)=weight(il,j1,1)+deltawx;
weight(il,j1,2)=weight(il,j1,3)+deltawy;
weight(il,j1,3)=weight(il,j1,3)+deltawz;
weightnormal(il,j1,1)=weightnormal(il j1,1)+deltawnx;
weightnormal(il,j1,2)=weightnormal(il,j1,2)+deltawny;
weightnormal(il,j1,3)=weightnormal(il,j1,3)+deltawnz;
weightH(il,j1)=weightH(il,j1)+deltawH;
weightK(il,j1)=weightK(il,j1)+deltawK;
end
end
end
%POINTCLASS(i,j,1)=il;
%POINTCLASS(i,j,2)=j1;
i=i+1;
end
end

end

93

% 'The weights after training';
weight; 4
weightnormal; %showing weights matrix after training
weightH;
weightK;
x1=weight(:,:,1);
yl=weight(:,:,2);
zl=weight(:,:,3);
figure;
plot3(x1,yl,z1,'r+");
grid on;
Nx=weightnormal(:,:,1);
Ny=weightnormal(:,:,2);
Nz=weightnormal(:,:,3);
figure;
plot3(Nx,Ny,Nz,'r+");
grid on;
%to classify each pixel
POINTCLASS=zeros(m,2); %remember the winning neuron for input point
%classify each point
POINTCLASSNO=zeros(SOMNEURONX,SOMNEURONY);
fori=1:m
for il=1:SOMNEURONX %i1,j1 are the SOM neurons position
for j1=1:SOMNEURONY
distanceinput(il,j1)=a.*(((X(i)-weight(i1,j1,1))"2+...
(Y(i)-weight(il,j1,2))"2+(Z(i)-weight(il,j1,3))*2)*0.5)+...

94

b.*(((Normalx(i)-weightnormal(il,j1,1))*2+(Normaly(i)-weightnormal(il,j1,2))"2+...
(Normalz(i)-weightnormal(il,j1,3))*2)"0.5)+c.*(H(i)-weightH(i1 j1))+d.*(K(i)-weightK
(141
end
end
minimumd=min(min(distanceinput(:,:)));
for i1=1:SOMNEURONX %il,j1 are the SOM neurons position
for j1=1:SOMNEURONY
if minimumd==distanceinput(il,j1)
POINTCLASS(i,1)=il;
POINTCLASS(i,2)=j1;
POINTCLASSNO(il,j1)=POINTCLASSNOC(i1,j1)+1;
end
end
end
end
"The number of points belongs to the each output ncuron'
POINTCLASSNO
%ttest=input('please press any key to continue...");
%set each point with same color
%ttest=input('please press any key to continue...");
%set each point with same color
%display classified image for each type
for i1=1:SOMNEURONX
for j1=1:SOMNEURONY
if POINTCLASSNO(i1,j1) >3
IOUT = zeros(m,3);

95

fori=1:m
if (POINTCLASS(i,1)==i1) && (POINTCLASS(i,2)==j1)
for kk=1:3
IOUT(i,kk)=step2(i,kk);
end
end
end
figure;
plot3(IOUT(:,1),I0UT(:,2),I0UT(:,3),"");
end
end
end

toc

96

% MATLAB codes for back propogation algorithm

clear all
close all
% predetermined the weight
for i=1:2
for j=1:6
weight1(i,j)=0.01;
end
end
weight2=[0.2000 0.2000 0.2000
0.2000 0.2000 0.2000
0.2000 0.2000 0.2000
0.2000 0.2000 0.2000
-0.6069 -3.2974 -3.2974
30.4156 3.0235 3.0235];
input=[-0.002 -0.001];
input=[-10 -0.001];
input=[-20 -20.001];
input=[-15 -1];
%desired_output
desired_output=[1 0 0];
for k=1:800
for i=6
hidden(i)=0.18;
for j=1:2

97

hidden(i)=hidden(i)+(weight1(j,i)*input(j));
end
end
fori=1:3
output(i)=0.8;
for j=1:6
output(i)=output(i)+(weight2(j,i)*hidden(j));
end
output(i)=(1-exp(-0.6*(output(i))))/(1+exp(-0.6*(output(i))));
end
total_error=0;
fori=1:3
total_error=total_error+abs(desired_output(i)-output(i));
end
if total_error<0.03;
else
fori=1:3
R(i)=(desired_output(i)-output(i))*output(i)* (1-output(i));
end
a=0.1;
for i=1:6
forj=1:3
weight2(i,j)=weight2(i,j)+(a*R(j)*hidden(i));
end
end
for i=1:6
E_hidden(i)=0;

98

for j=1:3
E_hidden(i)=E_hidden(i)*(R(j)*weight2(i,j));
end
E_hidden(i)=hidden(i)*(1-hidden(i))*E_hidden(i);
end
b=0.06;
fori=1:2
for j=1:6
weightl(i,j)=weight1(i,j)+(b*E_hidden(j)*input(i));
end
end
end
end
disp('the weights between input and the hidden layer');
weightl;
disp('the weights between the hidden and the output layer");
weight2;
disp(‘the output’)
output
modify_output=(0.8 < output)
if (modify_output==desired_output)
disp('this is a plane')
else
% predetermined the weight
for i=1:2
for j=1:6
weightl(i,j)=0.01;

99

end

end
weight2=[0.2000 0.2000 0.2000
0.2000 0.2000 0.2000
0.2000 0.2000 0.2000
0.2000 0.2000 0.2000
-0.6069 -3.2974 -3.2974
-2.9622 42.0219 -2.7749];
%desired_output
desired_output=[0 1 0];
for k=1:800
for i=6
hidden(i)=0.18;
for j=1:2
hidden(i)=hidden(i)+(weight1(j,i)*input(j));
end
end
fori=1:3
output(i)=0.8;
for j=1:6
output(i)=output(i)+(weight2(j,i)*hidden(j));
end
output(i)=(1-exp(-0.6*(output(i))))/(1+exp(-0.6 *(output(i))));
end
total_error=0;
fori=1:3
total_error=total_error+abs(desired_output(i)-output(i));

100

end
if total_error<0.03;
else
fori=1:3
R(i)=(desired_output(i)-output(i))*output(i)*(1-output(i));
end
a=0.1;
for i=1:6
for j=1:3
weight2(i,j)=weight2(i,j)+(a*R(j) *hidden(i));
end
end
for i=1:6
E_hidden(i)=0;
for j=1:3
E_hidden(i)=E_hidden(i)*(R(j)*weight2(i,j));
end
E_hidden(i)=hidden(i)*(1-hidden(i))*E_hidden(i);
end
b=0.06;
fori=1:2
for j=1:6
weightl(i,j)=weight1(i,j)+(b*E_hidden(j)*input(i));
end
end
end

end

101

disp(‘the weights between input and the hidden layer');
weightl;
disp('the weights between the hidden and the output layer');
weight2;
disp('the output’)
output
modify_output=(0.8 < output)
if (modify_output==desired_output)
disp('this is an cylinder')
else
% predetermined the weight
fori=1:2
for j=1:6
weight1(i,j)=0.01;
end
end
weight2=[0.2000 0.2000 0.2000
0.2000 0.2000 0.2000
0.2000 0.2000 0.2000
0.2000 0.2000 0.2000
-0.6069 -3.2974 -3.2974
-3.1418 -2.3864 -30.9949];
desired_output=[0 0 1];
for k=1:800
for i=6
hidden(i)=0.18;
for j=1:2

102

hidden(i)=hidden(i)+(weight1(j,i)*input(j));
end
end
fori=1:3
output(i)=0.8;
for j=1:6
output(i)=output(i)+(weight2(j,i)*hidden(j));
end
output(i)=(1-exp(-0.6*(output(i))))/(1+exp(-0.6*(output(i))));
end
total_error=0;
fori=1:3
total_error=total_error+abs(desired_output(i)-output(i));
end
if total_error<0.03;
else
for i=1:3
R(i)=(desired_output(i)-output(i))*output(i)*(1-output(i));
end
a=0.1;
for i=1:6
for j=1:3
weight2(i,j)=weight2(i,j)+(a*R(j)*hidden(i));
end
end
for i=1:6
E_hidden(i)=0;

103

for j=1:3
E_hidden(i)=E_hidden(i)*(R(j)*weight2(i,j));
end
E_hidden(i)=hidden(i)*(1-hidden(i))*E_hidden(i);
end
b=0.06;
for i=1:2
for j=1:6
weightl(i,j)=weight1(i,j)+(b*E_hidden(j)*input(i));
end
end
end
end
disp('the weights between input and the hidden layer');
weightl;
disp('the weights between the hidden and the output layer");
weight2;
disp('the output’)
output
modify_output=(0.8 < output)
if (modify_output==desired_output)
disp('this is a sphere')
else
disp('this is not a typical surface')
end
end

end

104

Appendix C: Surface Trim using Boundary curves

105

L

a) segmented patch using SOFM

b) Surface fitting using least-square method

Figure A.1 Surface trim using boundary curves

106

c¢) Boundary feature recognition

d) Surface trim using Boolean operations

Figure A.1 (continued)

107

Appendix D: Free-form Surface Reconstruction

108

When free-form surfaces are reconstructed, the NURBS method seems to be the
most effective [47]. The mathematical formula of the two parametric (u,v) function can

be expressed [48-50]:

S(u,v) = ii%EjNi‘p(u)N,_P(v)/iiW,jN,_p(u)Nj_q(v), uvelol]; (6.1)

i=0 j=0 i=0 j=0

where F,; are control points, #,

,; are weights, N, (u)and N, (v) are

B-spline basic functions.

A example of a free-form reconstruction is shown in Figure A.2.
p(0,v)

v/ p(u,l)
"\

p(u0)\ /p(1,v)

a) Fitted boundary curves b) Curvature radius check

¢) Smooth curves d) fitted surface

FigureA.2 Surface reconstruction by boundary curves

109

—
.

10.

11.

REFERENCES

T. Varady, RR Martin, J. Cox, “Reverse engineering of geometric models-an
introduction”, Computer-Aided Design, 29(4), pp. 255-268, 1997.

Y. H. Chen and Y. Z. Wang, “Genetic algorithms for optimized retriangulation in the
context of reverse engineering”, Computer-Aided Design, 31(4), pp. 261-271, 1999.

KH Qin, WP Wang, ML Gong, “A genetic algorithm for the minimum weight
triangulation”, Proceedings of the IEEE Conference on Evolutionary Computation,
13-16 April, Indianapolis, IN, USA, 1997, pp. 541-546.

A. Alrashdan, M. Saeid, “Automatic segmentation of digitized data for reverse
engineering applications”, IIE Transitions (2000) 32, pp. 59-69.

Y. Jun, V. Raja, “Geometric feature recognition for reverse engineering using neural
network”, Advanced Manufacturing Technology (2001) 17, pp. 462-470.

M. Yang, E. Lee, “Segmentation of measured point data using a parametric quadric
surface approximation”, Computer-Aided Design 31(1999), pp. 449-457.

R. Hoffman and Jain, “Segmentation and classification of range images”, IEEE
Transactions on Pattern Analysis and Machine Intelligence 9 (1987), pp. 608-620.

J. Koh, M. Suk, “A multilayer self-organizing feature map for range image
segmentation”, Neural Networks 8(1) (1995): 67-86.

M. B. Suchendra, J. Koh, “A hierarchical neural network and its application to image
segmentation”, Mathematics and Computers in Simulation 41(1996): 337-355.

G. Sugata, M. Rajiv, “Range surface characterization and segmentation using neural
networks”, Pattern recognition 28(1995): 711-727.

H. Woo, E. Kang, “A new segmentation method for point cloud data”, Machine

Tools& Manufacture 42 (2002): 167-178.

110

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

PJ. Besl, R.C. Jain, “Segmentation through variable-order surface fitting”, IEEE
Transactions on Pattern Analysis and Machine Intelligence 10 (2) (1988): 167-192.
M.J. Milory, C. Bradley, G W. Vickers, “Segmentation of a wrap-around model using
an active contour”, Computer-Aided Design 29(4) (1997): 299-320.

T. Fan, G. Medioni, R. Nevatia, “Segmentation description of 3-D surfaces”, IEEE
Transactions on Robotics and Automation RA-3(6) (1987):527-538.

SH Lee, HC Kim, “STL file generation from measured point data by segmentation
and Delaunay triangulation”, Computer-Aided Design 34 (2002): 691-704.

N. Yokoya, M.D. Levine, “Range image segmentation based on differential
geometry: a hybrid approach”, IEEE Transactions on Pattern Analysis and Machine
Intelligence 11(6) (1997): 643-649.

D. Zhao, X. Zhang, “ Range-data-based object surface segmentation via edges and
critical points”, IEEE Transactions in Image Processing 6(6) (1997): 826-830.

Y. Lee, S. Park, “A robust approach to edge detection of scanned point data”,
Advanced Manufacture Technology (2004) 23:263-271.

V.H. Chan, C. Bradley, GW. Vickers, “a multi-sensor approach to automating
co-ordinate measuring machine-based reverse engineering”, Computers in Industry
44 (2001): 105-115.

M P. do Carmo, “Differential Geometry of Curves and Surfaces”, Prentice-Hall, Inc.,
1976.

P. Sander and S. Zucker, “Inferring differential structure from 3-D image”, IEEE
Trans. Patt. Anal. Machine Intell., 1990; 12(9):833-854.

FP Ferrie, J Lagarde, P. Whaite, “Darboux frames, snakes, and super-quadrics:
geometry from the bottom up”, IEEE Transactions on Pattern Analysis and Machine
intelligence 1993;15(8):771-784.

T Surazhsky, E Magid, O Soldea, “ A Comparison of Gaussian and Mean Curvatures
Estimation Methods on Triangular Meshes”, IEEE Sept. 2003 vol. 1:1021-1026.

11

24

25.

26.

27.

28.

29.

. C. S. Dong, G.Z. Wang., “ Curvatures estimation on triangular mesh”, JZUS
2005(6):128-136.

TD. Gatzke, CM. Grimm, “Estimating curvature on triangular meshes”, International
Journal of Shape Modeling 2005 1-23.

S. T. Welstead, “Neural Network and fuzzy logic Applications in C/C++”, John
Wiley&sons, Inc, Toronto, 1994.

KH Qin, WP Wang, ML Gong, “A genetic algorithm for the minimum weight
triangulation”, Proceedings of the IEEE Conference on Evolutionary Computation,
13-16 April, Indianapolis, IN, USA, 1997, pp. 541-546.

LL. Schumaker, “Triangulations in GAGD”, IEEE Computer Graphics&
Applications. 1993:1.

S.-M. Hurl, H.-C. Kim1 and S.-H. Lee, “STL File Generation with Data Reduction

. by the Delaunay Triangulation Method in Reverse Engineering”, Advanced

30.

31

32.

33.
34

35.

36.

Manufacturing Technology 2002(19):669-678.

M Soucy, D Laurendeau, “A general surface approach to the integration of a set of
range views”, IEEE Pattern Analysis and Machine Intelligence 1995; 17(4):344-58.
G Turk, M Levoy, “Zipped polygon meshes from range images”, Proceedings of
Siggraph, 1994, p351-358.

W. Sun, C. Bradley, “Cloud data modeling employing a unified, non-redundant
triangular mesh”, Computer-Aided Design 33(2001) 183-193.

W. G. Heinrich, “ Differential Geometry”, New York, 1977.

R. Murray and Spiegel, “ Mathematical Handbook of Formulas and Tables”,
McGraw-Hill, New York 2001.

HIJ Bartsch, “Handbook of Mathematical Formulas”, Academic Press, Inc. New York,
1974.

T Kohonen, “Self-organizing Maps”, 2™ Edition Springer-Verlag Berlin Heidelberg
New York, 1997.

112

37.

38.

39.

40.

41.

42,

43.

44

45.

46.

47.

48.

49.

50.

J A. Freeman, DM. Skapure, “ Neural Networks Algorithms, Applications, and
Programming Techniques”, Addison-Wesley publishing Company, Inc. 1992.

K Gurney, “AN Introduction to neural networks”, University of Sheffield, 1997.

C. Chappuis, A. Rassineux, P. Breitkopf, “ Improving surface meshing from discrete
data by feature recognition”, Engineering with Computers (2004) 20:202-209.

M Beaver, “ Introduction to probability and statistics”, 9" edition, 1994.

AD. Kulkarni, “Computer vision and fuzzy-neural systems”, Prentice Hall 2001.
V.H. Chan, “Atrtificial Intelligence for Mechanical Engineers”, Class Lecture notes,
March 2005, Ryerson University.

RIJ. Schalkoff, “Artificial neural networks” 1997: 157-162.

http://citeseer.ist.psu.edu/482177.html

http://www.eurometros.org/gen_report.php?category=distributions&pkey=14&subfo
rm=yes.

M Arshad, “Feature recognition in geometric reverse engineering”, MASc thesis,
Department of Mechanical Engineering. Ryerson University, 2004.

A. Wemer, K. Skalski, “Reverse engineering of free-form surfaces”, Materials
Processing Technology 76(1998):128-132.

L. Piegl and W. Tiller, “Algorithm for approximate NURBS skinning”,
Computer-Aided Design, 28(9), pp. 699-706, 1996.

L. pigel, T. Wayne, “Curve and surface constructions using rational B-spline.
Computer-Aided Design”, 19(9) (1987) 485-498.

G. Farin, “Curves and surfaces for computer aided geometric design”, A practical

guide, 2" ed.. Academic Press, New York 1990.

113

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2002

	Cloud data segmentation and classification for reverse engineering using neural networks
	Jiahong Wang
	Recommended Citation

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127

