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Abstract

Wall Cops and Robbers

Master of Science (MSc) 2015

Fionn Mc Inerney

Applied Mathematics

Ryerson University

Wall Cops and Robbers is a new turn-based game played on graphs.

It is inspired by the games of Cops and Robbers and the Angel Problem.

The objective of the game is for the cops to capture the robber by sur-

rounding him with walls. The wall capture time of a graph G, written

Wct(G), is the least number of moves it takes for one cop to capture the

robber in G. The wall cop number of a graph G, written Wc(G), is the

least number of cops it takes to capture the robber in G. The thesis

explores these two parameters for various graph classes including trees,

hypercubes, grids, and tilings of the plane. We also introduce a variant of

the game called Wall Cops and Wall Robbers. In this game, the robber

creates a wall on visiting a vertex, disallowing a move to a previously

visited vertex.
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CHAPTER 1

Introduction

1.1. Introduction to Wall Capture Time and Wall Cop

Number

Wall Cops and Robbers is a new turn-based game played on graphs.

There are two players: a cop and a robber. The game starts with the

cop building a “wall” on a vertex which blocks off that vertex so that the

robber cannot occupy it. After that, the robber selects a vertex. The cop

can build a wall on any vertex on his turn except for the vertex that the

robber currently occupies. Hence, we may think of the cop as playing

off the graph. The robber, however, can only move along an edge to an

adjacent vertex each turn. The robber is also allowed to skip his turn,

but he may not move back to the vertex he occupied on his previous

turn. Both the cop and the robber have full knowledge of all the moves

that have taken place. The objective of the game for the cop is to build

walls to block off all adjacent vertices to the robber so that the robber

can no longer move on his next turn. The objective of the game for the

robber is to evade capture by the cop for as long as possible.

The wall capture time, written Wct, of a graph is the least number of

moves it takes for the cop to capture the robber on the given graph given
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that the cop and robber have both played their best strategies. The wall

cop number of a graph, written Wc, is the least number of cops it takes

for the cops to capture the robber on a given graph. The idea for Wall

Cops and Robbers is inspired by the games of Cops and Robbers and the

Angel Problem.

As a simple example, consider the game played on the graph G in

Figure 1.1. We label the vertices 1, 2, 3, 4, 5, and 6 as in Figure 1.1 and

the cop builds a wall on vertex 3. If the robber chooses 1 or 2, then he

will be stuck in the left triangle and will lose on the next turn. Any of

the vertices in the right triangle would be a good choice for the robber,

so he chooses 5. The cop builds a wall on 4. The robber can either move

to 6 or skip his turn and remain at 5; since both give the same result of

him losing next turn, let us say he moves to 6. The cop builds a wall

on 5 and captures the robber as he can no longer move. Since it takes

exactly three moves for the cop to capture the robber with both sides

playing at their best, we have that Wct(G) = 3. Also, since it only took

one cop to capture the robber, we have that Wc(G) = 1.
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2 5

1 3 4 6

Figure 1.1. A labelled graph G.

The game of Cops and Robbers was first introduced by Quilliot in his

Ph.D. Thesis [10] in 1978 and independently by Nowakowski andWinkler

in [9] in 1983. Cops and Robbers has all the same rules as Wall Cops and

Robbers except for the following. In Cops and Robbers, instead of the

cop building walls, the cop actually moves the same as the robber and

the cop wins if he lands on the robber. For more information on Cops

and Robbers, see [1], [3], and [7].

The Angel Problem was first introduced by John H. Conway in [2]

in 1982. The Angel Problem has similarities and differences with Wall

Cops and Robbers. The Angel Problem is a turn-based game played on

either an infinite chessboard or an infinite 3-dimensional chessboard. The

game is played by an Angel and the Devil which we call robber and cop,

respectively, in Wall Cops and Robbers. The Angel has power k, where

k is a positive integer, which allows the Angel to move k spaces in any

direction. We can think of this as the Angel having k moves on his turn
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where he can only move to an adjacent space on each move. In Wall Cops

and Robbers, the robber is the equivalent of an Angel of power k = 1.

The Devil has the same power as the cop in Wall Cops and Robbers,

except that he eats squares in the Angel Problem while the cop builds

walls on vertices. The objective of the game is the exact same as the

objective of Wall Cops and Robbers except in this game it is the Angel

trying to elude capture by the Devil on a chessboard which has spaces

instead of a graph with vertices but a chessboard can be represented

by a graph with vertices. The Angel Problem is only concerned with

who wins and not how many moves it takes for the Devil to win. For

more information on the Angel Problem, see [5]. Wall Cops and Robbers

takes the rules from the Angel Problem of how the Angel and Devil play

and combines them with the playing surfaces of Cops and Robbers so

that the game can be played on many different graphs instead of just a

chessboard. Also, the parameters from Cops and Robbers known as cop

number and capture time are adjusted so that they can be applied to

Wall Cops and Robbers. These parameters will be defined further on in

the chapter.

We also mention Firefighting on graphs which has some similar aspects

to our game. The Firefighter Problem was introduced by Hartnell in 1995

at [8]. Firefighting on graphs is a turn-based game where firefighters try

to contain a fire. The fire starts at some vertex and then the firefighters
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place themselves on vertices making these vertices fire-proof. Then on

the next turn the fire spreads to all adjacent vertices that are not fire-

proof and the firefighters move to new vertices with the previous vertices

always remaining fire-proof. The game continues like this and one of the

goals for the firefighters may be to contain the fire so that it spreads

no more and save as many vertices from the fire as possible. See the

survey [6] for various desired outcomes of the game.

1.2. Introduction to Graph Theory

The game of Wall Cops and Robbers is played on graphs and thus, we

will introduce some of the terminology from Graph Theory in this section.

A graph G, consists of a set of vertices represented by dots denoted by

V (G) and a set of edges represented by lines denoted by E(G). The edges

connect the vertices and when two vertices are connected by an edge, we

say that these vertices are adjacent. An edge between two vertices u and

v would be written uv. All graphs considered throughout the thesis are

undirected which means the edges do not have any direction. The order

of G is denoted by |V (G)| which is the total number of vertices in G. The

degree of a vertex is equal to the number of vertices that are adjacent to

it. The neighbour set of a vertex u is denoted by N(u) which consists of

all vertices that are adjacent to u. A graph is said to be k-regular if each

vertex has degree k. A subgraph H of a graph G is a graph that consists

of a vertex set denoted by V (H) and an edge set denoted by E(H) such
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that V (H) is a subset of V (G) and E(H) is a subset of E(G). A graph

is infinite if |V (G)| = ∞, that is there are an infinite number of vertices,

otherwise a graph is finite.

1

34

2

Figure 1.2. An example of a finite graph. The vertices of this graph
are 1, 2, 3 and 4. The edges are 12, 23, 34, and 41. N(2) = {1, 3}. The
graph is 2-regular since all of its vertices have degree 2. The cop number
of this graph is 2.

1

34

2

Figure 1.3. Figure 1.2 is a subgraph of this graph.

... ...

Figure 1.4. An infinite one-way path.
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The cop number of a graph G, denoted by c(G), is the least number

of cops it takes to capture the robber given that the cops and robber

use the best strategies possible in G. The k-capture time of a graph G

denoted by captk(G) is the least number of turns it takes for k cops to

capture the robber in G (not including the initial placement turn).

A path of order n denoted by Pn, is a sequence of n vertices such that

each vertex is adjacent to the next vertex in the sequence. The number

of edges in a path is called the length of the path. The distance between

two vertices u and v is the length of the shortest path connecting these

vertices or infinity otherwise. A graph is said to be connected if there ex-

ists a path between any two vertices; otherwise the graph is disconnected.

A cycle of order n represented by Cn, is a path of order n in which there

exists an edge between the first and last vertex in the sequence. A tree

is any connected graph that contains no cycles. A hypercube of dimen-

sion n denoted by Qn, has vertices elements of {0, 1}n with two vertices

being adjacent if they differ in exactly one coordinate. A hypercube of

dimension n can also be obtained by adding edges between corresponding

vertices between two copies of Qn−1 with Q0 being a single vertex.

Figure 1.5. A path of order 5 and length 4 denoted by P5.
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Figure 1.6. C5, a cycle of order 5.

Q
0

Q
1

Q
2

Q
3

Figure 1.7. A few examples of hypercubes.

A graph product is an operation done on two graphs to produce a new

graph. There exist many different graph products but we will focus on the

Cartesian and strong products. First, we will introduce the Cartesian

product of two sets. The Cartesian product of two sets A and B is

denoted by A × B. For example, if A = {1, 2, 3} and B = {4, 5}, then

A×B = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}. The Cartesian product

of two graphs G and H, denoted by G�H, consists of the vertex set

V (G) × V (H) and the edge set is obtained as follows: any two vertices
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(a, b) and (c, d) are adjacent in G�H if a = c and b and d are adjacent

in H or b = d and a and c are adjacent in G. The Cartesian product is

commutative in that G�H ∼= H�G.

The strong product of two graphsG andH, denoted byG⊠H, consists

of the vertex set V (G) × V (H) and the edge set is obtained as follows:

any two vertices (a, b) and (c, d) are adjacent in G⊠H if a = c and b and

d are adjacent in H or b = d and a and c are adjacent in G or a and c are

adjacent in G and b and d are adjacent in H. The strong product is also

commutative. It is important to notice that the first two conditions of

adjacency in the strong product are the same as in the Cartesian product

but the strong product also has a third condition making it possible to

have more edges than the Cartesian product. Further, they both have

the same vertex set and thus, the Cartesian product of two graphs is a

subgraph of the strong product of these graphs.

Figure 1.8. The Cartesian product of two paths of order 4 (left), written
P4�P4. The strong product of two paths of order 4 (right), written
P4 ⊠ P4.
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1.3. Outline of Thesis

In our introductory chapter, we introduced the new game of Wall

Cops and Robbers, along with associated parameters Wct and Wc. We

also introduced graphs and graph theoretic terminology. In Chapter 2, we

introduce wall capture time more thoroughly with a few small examples.

We discuss and prove the monotonicity of Wct in terms of subgraphs.

Also, we give results and proofs of wall capture time for hypercubes and

certain trees. In Chapter 3, we give results and proofs of wall capture time

for grids in 2 and 3-dimensions and tilings of the plane. We look at grids

such as the Cartesian product of two infinite paths, written P∞�P∞,

the strong product of two infinite paths, written P∞ ⊠ P∞, and tilings

such as hexagonal and triangular tilings. In Chapter 4, we introduce

wall cop number more thoroughly. We discuss and prove monotonicity

of Wc in terms of subgraphs. In addition, we give results and proofs of

Wc for 3-dimensional grids. In Chapter 5, we introduce a variation of the

game of Wall Cops and Robbers and give some results and proofs in that

variation. Finally, in Chapter 6, we give a short summary of the results

followed by some open problems.

We highlight that the majority of the results for Wct and Wc are

upper bounds as good lower bounds can be difficult to find and prove,

therefore, making it hard to prove equality in many of the cases. The

lower bounds are difficult to prove as they require proving that the cop

10



or cops are using their best strategy possible while simultaneously the

robber is using his best strategy possible. An upper bound, in contrast,

is more readily proven. In this case, we need to provide a strategy for

the cop or cops such that even with the robber using his best strategy,

the cop or cops can win in at most that many turns.
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CHAPTER 2

Wall Capture Time

2.1. Introduction

The game of Wall Cops and Robbers has the cops try to capture the

robber while the robber tries to evade capture forever. The most basic

aspect of the game is which side wins on a given graph. Note that the

cop is guaranteed to win on any finite graph since eventually, all the

vertices except the last one the robber occupies will be covered with a

wall. Therefore, a more interesting parameter to look at is how fast the

cop can capture the robber on a given graph which is known as wall

capture time.

Recall that the wall capture time of a graph G, written Wct(G), is the

least number of moves it takes for the cop to capture the robber in G

given that the cop and robber have both played their best strategies.

We will first look at a few examples of wall capture time for some small

graphs. We begin the discussion by considering a star with 5 vertices,

written K1,4, as seen in Figure 2.1 below. The cop plays on the central

vertex of degree 4. No matter where the robber places himself, he is

captured and therefore, Wct(K1,4) = 1. In fact, for any star with k + 1

vertices, written K1,k, we also have that Wct(K1,k) = 1.
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Figure 2.1. A star with 5 vertices, written K1,4.

Now we consider a 3-regular tree of height 2 as seen in Figure 2.2

below. The cop plays on the root vertex which is the topmost vertex.

The robber places himself on any vertex of the second level of the tree,

with the first level of the tree being just the root vertex, otherwise he is

captured next turn. The cop plays on one of the leaves adjacent to the

robber. The robber moves to the other leaf or skips his turn. The cop

moves to the vertex adjacent to the robber that does not have a wall and

the robber is captured in a total of 3 moves. Therefore, the wall capture

time of a 3-regular tree of height 2 is 3.

Figure 2.2. A 3-regular tree of height 2.
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As a last example, let us consider the wall capture time of the cube,

written Q3, as in the figure below. The cop will build a wall on 1. If the

robber chooses any vertex other than 7, then he will be captured in 5

moves. If the robber chooses 2, 3 or 4, then the cop will keep the robber

confined to the top level of the cube and then capture him on this level

for 5 moves. If the robber chooses 5, then the cop will play on 8 which

forces the robber to move to 6. The cop would play on 2. If the robber

skips his turn, then the cop plays on 7 and then adjacent to the robber

the next turn. If the robber moves to 7, then the cop plays on 3 and

then on 6 the next turn since the robber cannot move back there since

he occupied it last turn. Thus, the robber chooses 7 as then he will be

captured in 6 moves total. The cop will play adjacent to the robber and

then the robber will skip his turn. The cop will play adjacent to the

robber again and then the robber will move to the open adjacent vertex

and skip his turn for the remainder of the game resulting in 6 moves for

the cop. If the cop did not play adjacent to the robber both times, then

the robber would simply skip his turn until only one of his neighbours is

open and at that point he would move to that vertex and skip his turn

for the remainder of the game. Therefore, the wall capture time of Q3 is

6 or Wct(Q3) = 6.
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1

2

4

7

8

6

5

3

Figure 2.3. A cube, written Q3, with labelled vertices.

2.2. Wall Capture Time of a Subgraph

Wall capture time is monotonic relative to subgraphs. This result

gives lower bounds for the wall capture time of graphs if the wall capture

time of one of their subgraphs is known. Also, if the wall capture time of

a graph is known then this result gives upper bounds for the wall capture

time of subgraphs of that graph.

Theorem 2.2.1. Wct(H) ≤ Wct(G) if H is a subgraph of G.

Proof. The cop plays two games simultaneously: one in G using his

winning strategy there, and one in H. The robber is confined to H, and

we view moves in H by the robber as moves in G. The cop adapts his

strategy in G to one in H as follows. If the cop builds a wall in G on a

vertex u also in H, then he builds a wall on u in the game on H. Each

time the cop builds a wall in V (G)\V (H), he can just choose any vertex

without a wall in H, and build a wall there.
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The adapted strategy in H is winning for the cop, as in each round,

the vertices without walls available to the robber is a subset of vertices

without walls in G. Hence, the robber will be captured in Wct(G)-moves

or fewer in H. �

To show the bound is sharp, take the example of a path of length 20.

The wall capture time of this path is 4. The path P19 is a subgraph of

P20 but also has wall capture time of 4.

2.3. Wall Capture Time of a 3-regular Tree

The height of a tree T , written h(T ), is the length of the longest path

from the root vertex to a leaf vertex. Figure 2.2 is an example of a 3-

regular tree of height 2. A 3-regular tree, written T , is a tree in which

every vertex has degree 3 except the leaves.

The wall capture time of a 3-regular tree of height 0 is 1 since that is

just a graph with one vertex. The wall capture time of a 3-regular tree of

height 1 is 2 as the cop would play on the root vertex forcing the robber

to play on a vertex of degree one. The cop would then play on any other

vertex and win. The wall capture time of a 3-regular tree of height 2 is

3 as was shown in an earlier example.

Theorem 2.3.1. Wct(T ) = h(T ) + 2 for finite 3-regular trees T with

h(T ) ≥ 3.
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Proof. The cop plays on the root vertex. The robber then places

himself on the second level of the tree; otherwise, if he goes further

down, the cop will move to the vertex on the level above him, reducing

the wall capture time. If the cop ever moves two or more levels below

the robber, then the robber will move down whichever branch the cop

did not place himself on, therefore, without loss of generality, the cop

then moves to a vertex adjacent to the robber on the level below him.

The robber moves down to the third level. The cop moves to a vertex

adjacent to the robber on the level below him. The cop and robber will

keep moving like this until the robber gets to the second last level of the

tree then the cop will move to the vertex adjacent to the robber on the

level above him.

If the robber ever skipped his turn before reaching the second last

level, then the cop would play adjacent to the robber on the level below

him, forcing the robber to move back up the tree or skip his turn if he

cannot. If the robber can move back up the tree, he will get two more

moves out of the cop and if he cannot then he will get only one more

move out of the cop. Hence, the robber would never skip his turn before

reaching the second last level.

Now, the robber will stay still on the second last level of the tree since

otherwise he has to move to a leaf vertex and will be captured next turn.

The cop will move to one of the leaf vertices adjacent to the robber.
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The robber moves to the other leaf or stays still. The cop moves to the

vertex adjacent to the robber that does not have a wall and the robber

is captured in a total of the height of the tree + 2 moves.

We have equality for the wall capture time as the cop cannot improve

upon this strategy. We have shown that if he plays further down the tree

than just one level below the robber, then it makes no difference as the

robber will just move down the other branch. If the cop plays on the level

above the robber at any point other than when the robber reaches the

second last level of the tree, then the robber will just skip his turn and

gain one extra move out of the cop. Therefore, the cop’s best strategy is

as above and we have that Wct(T ) = h(T ) + 2 for h(T ) ≥ 3. �

2.4. Wall Capture Time of a k-regular Tree

A k-regular tree is a tree Tk, in which every vertex has degree k except

the leaves.

The wall capture time of a k-regular tree of height 0 is 1 and of height

1 is 2 using the same proofs as with 3-regular trees.

Theorem 2.4.1. The wall capture time of a k-regular tree of height 2

is k.

Proof. The cop plays on the root vertex. The robber places himself

on the second level of the tree otherwise he is captured next turn. The cop

plays on one of the leaves adjacent to the robber. The robber stays still
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until the cop has built a wall on all adjacent vertices and thus, captures

the robber since moving to a leaf vertex results in being captured on

the next turn for the robber. That vertex the robber stays on for the

duration of the game has degree k. Therefore, the wall capture time of

a k-regular tree of height 2 is k. �

Theorem 2.4.2. Wct(Tk) = (k − 2)h(Tk) − k + 5 for finite k-regular

trees with h(Tk) ≥ 3 and k ≥ 3.

Proof. The cop plays on the root vertex. The robber then places

himself on the second level of the tree; otherwise, if he goes further down,

the cop will move to the vertex on the level above him, reducing the wall

capture time. If the cop ever moves two or more levels below the robber,

then the robber will treat it as the cop moving only one level below him

on that same branch, therefore, without loss of generality, the cop then

moves to a vertex adjacent to the robber on the level below him. The

robber will skip his turn until only one option remains for him to move

down at which point he will move down since if he moves down earlier

then the cop will move to the vertex on the level above him. The robber

skips his turn k − 3 times so that only one option remains for him to

move down as the cop builds k − 3 more walls on the adjacent vertices

on the level below the robber. The robber moves down to the third level.

The cop moves to a vertex adjacent to the robber on the level below him.

The robber skips his turn k − 3 times while the cop builds k − 3 more
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walls on the adjacent vertices on the level below the robber. The cop

and robber will keep moving like this until the robber gets to the second

last level of the tree then the cop will move to the vertex adjacent to the

robber on the level above him.

If the robber ever backtracked when able to in any of the previous

moves, then the robber would be captured in three moves as the cop

would move to the adjacent vertex below him, then the robber would

move further up, then the cop would move to the adjacent vertex above,

then the robber will be forced to skip his turn and the cop will capture

him on the next turn.

If the robber ever skipped his turn k − 2 times on one level on any

level other than the second last level, then the cop would play adjacent

to the robber on the level below him which would force the robber to

move back up the tree and be captured in at most two moves as in the

3-regular finite tree proof.

Now, the robber will stay still on the second last level of the tree since

otherwise he has to move to a leaf vertex and will be captured next turn.

The cop has to make k − 1 moves to capture the robber now. The cop

therefore has made one move placing himself on the root vertex. Then

(k − 2)(h(Tk)− 2) moves for each level of the tree that is not the top or

bottom two levels since the robber skips his turn k − 3 times at each of

these levels. Finally, once the robber reaches the second last level of the
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tree, the cop makes one move above the robber and k − 1 moves below

the robber to capture him resulting in a total of (k−2)(h(Tk)−2)+k+1

moves. By multiplying, we have a total of (k − 2)h(Tk)− k + 5 moves.

We have equality for the wall capture time as the cop cannot improve

on the strategy above for the same reasons as in a finite 3-regular tree.

Therefore, the cop’s best strategy is as above and

Wct(Tk) = (k − 2)h(Tk)− k + 5 for h(Tk) ≥ 3 and k ≥ 3. �

2.5. Wall Capture Time of a Hypercube

Theorem 2.5.1. Wct(Qn) ≤ 2n−1 + n− 1 for n ≥ 1.

Proof. To begin it is fairly straightforward to see the following:

Wct(Q0) = 1 and Wct(Q1) = 1. By definition, there are 2n vertices

that each have degree n in any hypercube. Hypercubes are bipartite so

the vertices may be split into two disjoint sets V1 and V2 such that every

edge connects a vertex in V1 to one in V2. This bi-partition is unique

and both vertex sets have 2n−1 vertices. The cop’s strategy is to build a

wall on every vertex in one of those disjoint sets thereby capturing the

robber. Without loss of generality, the cop attempts to build a wall on

all the vertices of V1.

The only way the robber could hinder this strategy to live longer is

by staying on a vertex that the cop wants to build a wall on. Then the

robber can only be on one of the vertices the cop does not want him on
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in V1. Whichever vertex that is, the cop will start to build walls on all

its adjacent vertices but only after all the other vertices in V1 have a wall

built on them. The robber will skip his turn for the remainder of the

game once he is on a vertex in V1 and all the other vertices in V1 have a

wall built on them as otherwise he will lose in one turn if he moves. Then

for Qn, we have 2n−1 − 1 moves to build all the walls in V1 except for

the one the robber occupies. Then it takes n moves to build walls on all

the adjacent vertices of that vertex. That makes a total of 2n−1 + n− 1

moves to capture the robber in Qn for n ≥ 1. Therefore, we have that

Wct(Qn) ≤ 2n−1 + n− 1 for n ≥ 1. �
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CHAPTER 3

Grids

In this chapter, we will continue our theme of determining the wall

capture time of certain graph classes. We will study the wall capture

time of infinite grids and tilings of the plane in two dimensions. In

Section 3.1, we study the wall capture time of infinite hexagonal grids.

In Section 3.2, we study the wall capture time of infinite Cartesian grids.

In Section 3.3, we study the wall capture time of infinite triangular grids.

In Section 3.4, we study the wall capture time of infinite strong grids.

Lastly, in Section 3.5, we study the wall capture time of n-layered infinite

Cartesian grids.

3.1. Wall Capture Time of an Infinite Hexagonal Grid

The infinite hexagonal grid, written H∞, is a tiling of the plane by

hexagons with vertices represented as vertices of the hexagons. A drawing

of part of the infinite hexagonal grid as seen in Figure 3.1 will be used.

The labelling of the coordinates of the grid will follow the rule that the

distance between any two adjacent vertices on the x-axis or y-axis is one

unit.
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(0,0) (1,0)(-1,0)

(0,-1)

(-1,1) (0,1) (1,1)

Figure 3.1. An infinite hexagonal grid with labelled coordinates.

Theorem 3.1.1. Wct(H∞) = 8.

Proof. We begin by showing a strategy for the cop to capture the

robber in 8 moves, thus, proving an upper bound of 8 for the wall capture

time of H∞. We will present the moves of the cop and robber in a table

first. The first column labelled C represents the cop’s move. The second

column, labelled R, represents the robber’s move. We will then present

the moves again in a numbered format with explanations where we let

C: represent the cop’s move and R: represent the robber’s move. First,

in Case A, we will describe how the cop wins if the robber skips his 2nd

turn, then in Case B, we will describe how the cop wins if the robber

moves up or right on his 2nd turn.

Note that if the robber skips his turn after his 2nd turn but before it

is his 5th turn, then the cop can capture him in three moves, resulting

in less than 8 moves for the cop. Therefore, the robber will not pursue

this move. To see this, after the robber skips his turn, the cop would
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ensure capturing him in three moves by building a wall on an open vertex

adjacent to the robber that he has never occupied on a previous turn.

The robber would be forced to move to the open adjacent vertex or

else be captured next turn. There is only one open adjacent vertex as

the cop just built a wall adjacent to the robber and due to the cop’s

strategy, there was already a wall adjacent to the robber prior to the

robber skipping his turn. The cop would then build a wall on the open

vertex adjacent to the robber that he did not occupy on the previous

turn. The robber would either skip his turn or move to the only open

adjacent vertex. The cop would capture him by building a wall adjacent

to him.

Case A: The robber skipped his 2nd turn.
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C R

(x, y) (0, 0)

(−1, 0) (0, 0)

(2, 0) (0, 1)

(−1, 1) (1, 1)

(1, 2) (1, 1)

(2, 1) (0, 1)

(0, 0) (0, 1)

(1, 1) Captured

R
1,2

C
3

C
2

C
5

R
3,6,7

C
4

R
4,5

C
6

C
7

C
8

Figure 3.2. Cop and robber’s moves in Case A. The labels correspond
to the player’s turn number and location on the closest vertex up and to
the right. When both a cop label and a robber label are needed, the cop
label appears below the robber label. The notation R4,5 means that the
robber’s 4th and 5th move are on that vertex. The cop’s first move C1 is
not shown in the figure as it is sufficiently far away from these vertices.

(1) C: This is the cop’s first move and because it is an infinite grid,

we know it will be wasted.
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R: The robber plays sufficiently far away from the first cop

rendering that first wall useless.

(2) C: Due to symmetry, we can assume that the robber is on a vertex

that has two adjacent open vertices, one on its left and one on its

right, and one adjacent open vertex above it. The cop then plays

on the open vertex to the left of the robber. Here left and right

are symmetric so it does not matter which one the cop chooses.

R: The robber skips his turn.

(3) C: The cop plays distance two to the right of the robber.

R: The robber moves up as if he moves right he will be captured

in two moves.

(4) C: The cop plays to the left of the robber.

R: The robber moves to the right.

(5) C: The cop plays directly above the robber.

R: The robber skips his turn as if he moves to the right, he

will be captured in two moves.

(6) C: The cop plays to the right of the robber.

R: The robber moves left as otherwise, he will be captured

next turn.

(7) C: The cop plays directly below the robber.

R: The robber can only skip his turn.
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(8) C: The cop plays to the right of the robber and the robber is

captured.
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Case B: The robber moved up or right on his 2nd turn.

C R

(x, y) (0, 0)

(−1, 0) (0, 1)

(1, 1) (−1, 1)

(−1, 2) (−2, 1)

(−3, 1) (−2, 1)

(−2, 0) (−1, 1)

(0, 1) (−1, 1)

(−2, 1) Captured

R
1

C
3

C
2

C
5

R
3,6,7

C
4

R
4,5

C
6

C
7

C
8

R
2

Figure 3.3. Cop and robber’s moves in Case B. The labels correspond
to the player’s turn number and location on the closest vertex up and
to the right. When both a cop label and a robber label are needed, the
cop label appears below the robber label. The cop’s first move C1 is not
shown in the figure as it is sufficiently far away from these vertices.
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(1) C: This is the cop’s first move and because it is an infinite grid,

we know it will be wasted.

R: The robber plays sufficiently far away from the first cop

rendering that first wall useless.

(2) C: Due to symmetry, we can assume that the robber is on a vertex

that has two adjacent open vertices, one on its left and one on its

right, and one adjacent open vertex above it. The cop then plays

on the open vertex to the left of the robber. Here left and right

are symmetric so it does not matter which one the cop chooses.

R: The robber can move up or right and as these are symmet-

ric, the robber moves up.

(3) C: The cop plays to the right of the robber.

R: The robber moves left.

(4) C: The cop plays directly above the robber.

R: The robber moves left.

(5) C: The cop plays to the left of the robber.

R: The robber skips his turn as if he moves down, he will be

captured in two moves.

(6) C: The cop plays directly below the robber.

R: The robber moves right as otherwise he will be captured

next turn.

(7) C: The cop plays to the right of the robber.
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R: The robber can only skip his turn.

(8) C: The cop plays to the left of the robber and the robber is

captured.

Since a strategy for the cop has been shown that requires only 8 moves

to capture the smartest robber, we have shown an upper bound of 8 for

the Wct of an infinite hexagonal grid. Now we have to show that 8 is also

a lower bound for the Wct to show equality by proving the robber cannot

be captured in 7 moves.

First notice that since this grid is infinite, the first move for the cop

will always be wasted. Now since the degree of each vertex is three, it

is clear that four moves are required even if the robber does nothing.

If the robber skips his 2nd move, then the robber is guaranteed to have

at least one vertex free to move to that has three open vertices in its

neighbourhood. This is due to the fact that the only vertex that is shared

in the neighbourhoods of the vertices adjacent to the initial vertex the

robber occupies is the initial vertex itself. Once the robber moves to this

vertex, either none of its neighbours are adjacent to any walls or one of

its neighbours is adjacent to one wall or one of its neighbours is adjacent

to two walls. We assume the robber moves to this vertex and then we

will call these cases 1 through 3, respectively. Note that the cop and

robber have each made three moves and it is now the cop’s turn.
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Case 1: The robber is on a vertex where none of its neighbours are

adjacent to any walls.

We know that the cop did not build any walls within distance one of

the initial vertex of the robber due to the case we are in. The robber

can get at least five more moves out of the cop by what the robber did

at the beginning of the game. The robber will skip his turn once and

then move to the adjacent vertex that has no walls built on any of its

neighbours, which is a guarantee to exist and just skip his turn for the

remainder of the game. This results in 8 moves for the cop.

Case 2: The robber is on a vertex where one of its neighbours is

adjacent to one wall.

Due to the case we are in, we know that the cop built one wall within

distance one of the initial vertex of the robber and one wall distance

two or greater from the initial vertex of the robber. There has to be an

adjacent vertex that has no walls built on any of its neighbours so the

robber moves there. The cop makes his 5th move. Now, there must exist

an adjacent vertex that is not the one the robber just left that also has at

least two neighbours with no walls built on them. The robber skips his

turn. The vertex the robber is on is adjacent to two vertices that have at

least two open neighbours each. The cop’s 6th move can only close down

one of the options leaving the robber to move to the other and just skip
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his turn for the remainder of the game. This results in 8 moves for the

cop.

Case 3: The robber is on a vertex where one of its neighbours is

adjacent to two walls.

Due to the case we are in, we know that the cop built two walls

within distance one of the initial vertex of the robber. There has to be

an adjacent vertex that has no wall built on any of its neighbours so the

robber moves there. Again, there must be an adjacent vertex that has no

wall built on any of its neighbours so the robber moves there and then

just skips his turn for the remainder of the game resulting in 8 moves for

the cop.

We have shown that no matter what the cop does, there is always a

strategy for the robber to guarantee 8 moves for the cop or that the cop

cannot capture him in 7 moves or less. We have also shown that the cop

can capture the robber in 8 moves regardless of the strategy the robber

chooses. Therefore, we have shown that Wct(H∞) = 8. �

3.2. Wall Capture Time of an Infinite Cartesian Grid

An infinite Cartesian grid, written P∞�P∞, is the Cartesian product

of two infinite, two-way paths. We will be labelling the vertices using

Cartesian coordinates.

A trap is two walls made by cops on a Cartesian grid such that they

share the same x or y coordinate but not both, and are distance two
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apart. The vertex in between these two walls will be called the middle

vertex. It is called a trap since if the robber moves onto the middle

vertex, then the cop will close the trap by moving to the open vertex

that is adjacent to the middle vertex that the robber did not just come

from in the last move. The robber cannot move back to his previous

vertex by the rules of the game, and then the cop will capture him by

playing adjacent to him. Thus, moving into a trap guarantees that the

robber will be captured in exactly two turns.

Figure 3.4. The two possible traps the cop can build. The two walls of
the trap are in black and the middle vertex is in grey.

Theorem 3.2.1. Wct(P∞�P∞) ≤ 14.

Proof. The cop’s plan is to confine the robber to a subgraph where

he will capture him. The first move by the cop will be wasted as the grid

is infinite and so the robber will play so far away from that first wall that

is built that it will be of no consequence in capturing the robber. The

robber now places himself on a vertex which we will denote as the origin

(0,0). The second move for the cop is to play adjacent to the robber and,

due to symmetry, it does not matter which vertex the cop chooses so the
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cop will play to the right of the robber on (1,0). Now the robber has

three choices since moving up and down are symmetric so we will divide

this into cases with Case 1 being that the robber moves up to (0,1), Case

2 being that the robber moves left to (-1,0), and Case 3 being that the

robber skips his turn.

Case 1: The robber moved up to (0,1).

The cop plays on (1,2). Now the robber has four choices, but the

option of moving right to (1,1) is moving into a trap which results in him

being captured in two moves. Therefore, there are only three feasible

options and we will once again divide this into cases with Case 1.1 being

that the robber moves up to (0,2), Case 1.2 being that the robber moves

left to (-1,1), and Case 1.3 being that the robber skips his turn.

Case 1.1: The robber moved up to (0,2).

The cop plays on (-1,3). Now the robber has three options. We will

again divide this into three cases with Case 1.1.1 being that the robber

moves up to (0,3), Case 1.1.2 being that the robber moves left to (-1,2),

and Case 1.1.3 being that the robber skipped his turn.

Case 1.1.1: The robber moved up to (0,3).

The robber will be captured in 12 moves or less in this case. We will

now start the count again for the moves of the cop and robber.

(1) C: The cop plays on (0,4).
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R: The robber will not skip his turn since then the cop will play

on (1,3) and force him to move back to (0,2). This would be the

same situation as Case 1.1.3, except one more move would have

been played and the option of moving back up to (0,3) is gone as

the robber would be captured in two moves following that. This

will be shown in Case 1.1.3 to still result in 11 moves or less, thus,

he moves right to (1,3).

(2) C: The cop plays on (2,4).

R: The robber will not skip his turn as the cop would then

play on (2,3). This would allow the robber to move back to (0,3)

which is bad since the cop would play on (0,2) forcing the robber

to skip his next turn and then the cop would play on (1,3), thereby,

capturing him. The robber could also move up into the trap but

would then be captured in two turns. Lastly, the robber could

also skip his turn again which would allow the cop to force him

to backtrack to (0,3) or move into the trap, both of which have

been shown to be bad. So, if the robber skips his turn he gets

captured in at most 10 moves. The robber will not move up into

the trap as then he gets captured in 8 moves. Thus, the robber

moves right to (2,3).

(3) C: The cop plays on (3,3).
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R: The robber will not skip his turn as then the cop would play

on (2,2) which would force the robber to backtrack to (1,3) and

be captured in at most 11 moves. Therefore, the robber moves

down to (2,2).

(4) C: The cop plays on (3,1).

R: The robber will not move right into the trap as this results

in 10 moves. If he skips his turn or moves down, then he will be

captured in 12 moves. If he skips his turn, then the cop will play

on (2,1) and then he will skip his turn again followed by moving

to the open adjacent vertex and be captured in 12 moves. So we

will say the robber moves down to (2,1).

(5) C: The cop plays on (2,0).

R: The robber will not move left to (1,1) as then the cop will

play on (0,1) forcing the robber to skip his turn at which point the

cop will play on (2,1) and capture him in 11 moves. Therefore,

the robber will skip his turn since then the cop will play on (2,2)

forcing the robber to move left as above resulting in the robber

being captured in 12 moves.

(6) C: The cop plays on (2,2).

R: The robber has to move left to (1,1) or be captured next

turn.

(7) C: The cop plays on (0,1).
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R: The robber can only skip his turn.

(8) C: The cop plays on (2,1) and the robber is captured.

The robber is captured in 12 moves; thus, this is not the optimal strategy

for the robber and this concludes Case 1.1.1.
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Figure 3.5. Cop and robber’s moves in Case 1.1.1. The labels corre-
spond to the player’s turn number and location on the closest vertex up
and to the right. When both a cop label and a robber label are needed,
the cop label appears below the robber label. R8,9 means that the rob-
ber’s 8th and 9th moves are on that vertex. The cop’s first move C1 is not
shown in the figure as it is sufficiently far away from these vertices.

Case 1.1.2: The robber moved left to (-1,2).

The robber will be captured in 13 moves or less in this case. We will

now start the count again for the moves of the cop and robber.

(1) C: The cop plays on (-2,2).
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R: The robber will not skip his turn as then the cop would

play on (-1,1) forcing the robber to move to (0,2). The cop would

then play on (0,3) forcing the robber to move down to (0,1) or

be captured in two turns. The cop would then play on (0,0) after

which the robber would skip his turn or he would be captured in

two moves. The cop would then play on (0,2) forcing the robber

to move into the trap at (1,1) and be captured in a total of 11

moves. Thus, the robber moves to (-1,1).

(2) C: The cop plays on (-2,0).

R: The robber will not move left into the trap. If the robber

moves right to (0,1) then the cop would play on (0,0) and from

there, capture him in at most 11 moves total. If the robber skips

his turn then the cop would play on (-1,0) and from there, capture

him in at most 12 moves. Thus, the robber moves down to (-1,0).

(3) C: The cop plays on (-1,-1).

R: The robber will not skip his turn as then the cop would

play on (0,0) and capture him in at most 12 moves. Therefore,

the robber moves right to (0,0).

(4) C: The cop plays on (0,-1).

R: The robber will not skip his turn as then the cop would

play on (0,1) and capture him in at most 11 moves. Thus, the

robber moves up to (0,1).
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(5) C: The cop plays on (-1,1).

R: The robber will not move right to (1,1) as it is a trap. The

robber will not move up to (0,2) as then the cop would play on

(0,3) and from there capture him in at most 12 moves. Thus, the

robber skips his turn.

(6) C: The cop plays on (0,2).

R: The robber skips his turn as otherwise, he will be captured

in two moves.

(7) C: The cop plays on (1,1).

R: The robber moves down to (0,0) as, otherwise, he will be

captured next turn.

(8) C: The cop plays on (-1,0).

R: The robber must skip his turn.

(9) C: The cop plays on (0,1) and the robber is captured.

The robber is captured in 13 moves; thus, this is not one of the robber’s

optimal strategies and this concludes Case 1.1.2.
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Figure 3.6. Cop and robber’s moves in Case 1.1.2.

Case 1.1.3: The robber skipped his turn.

The cop plays on (-1,1). The robber would then have four choices.

(1) If the robber moved down to (0,1) then the cop would play on

(0,0) and from there capture the robber in at most 9 moves.

(2) If the robber moved up to (0,3) then it would be the same scenario

as in Case 1.1.1 which would result in 13 moves as a result of the

extra move taken by the cop when the robber skipped his turn.

(3) If the robber moved left to (-1,2) then he would be moving into a

trap and be captured in 7 moves total.

(4) If the robber skipped his turn then the cop would play on (0,3)

and from there capture the robber in at most 10 moves.

The robber is captured in 13 or less moves; thus, this is not one of the

optimal strategies for the robber and this concludes Case 1.1.3.
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Case 1.1.1, Case 1.1.2, and Case 1.1.3 have been resolved and thus,

this concludes Case 1.1.

Case 1.2: The robber moved left to (-1,1).

The cop plays on (-2,1). Now, the robber has two options as up and

down are symmetric. We will divide this into two cases, with Case 1.2.1

being that the robber moves up to (-1,2) and Case 1.2.2 being that the

robber skips his turn.

Case 1.2.1: The robber moved up to (-1,2).

The robber will be captured in 13 moves or less in this case. We will

now start the count again for the moves of the cop and robber.

(1) C: The cop plays on (-2,3).

R: The robber will not move left into the trap. The robber

will not move right to (0,2) as then the cop would play on (0,3).

From there, the robber would move down to (0,1) and the cop

would play on (0,0), forcing the robber to move to (-1,1). The

cop would play on (-1,0) and from there capture the robber in at

most 13 moves. The robber will not skip his turn as then the cop

would play on (0,2) and from there capture the robber in at most

12 moves. Thus, the robber moves up to (-1,3).

(2) C: The cop plays on (-1,4).
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R: The robber will not skip his turn as then the cop would

play on (-1,2) and from there capture the robber in at most 12

moves. Thus, the robber moves right to (0,3).

(3) C: The cop plays on (1,4).

R: The robber will not move up or right into the traps. The

robber will not skip his turn as then the cop would play on (-1,2)

and from there capture the robber in at most 12 moves. Thus,

the robber moves down to (0,2).

(4) C: The cop plays on (0,1).

R: The robber can now either move left or he can skip his turn.

Both of these options result in 13 moves for the cop so without

loss of generality, the robber moves left to (-1,2).

(5) C: The cop plays on (0,2).

R: The robber will skip his turn as, otherwise, he will be cap-

tured in two moves.

(6) C: The cop plays on (-1,3).

R: The robber skips his turn again for the same reasons.

(7) C: The cop plays on (-1,1).

R: The robber moves left into the trap at (-2,2) as otherwise,

he will be captured next turn.

(8) C: The cop plays on (-3,2).

R: The robber must skip his turn.
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(9) C: The cop plays on (-1,2) and the robber is captured.

The robber is captured in 13 moves; thus, this is not one of the robber’s

optimal strategies and this concludes Case 1.2.1.

Case 1.2.2: The robber skipped his turn.

The robber will be captured in 13 moves or less in this case. We will

now start the count again for the moves of the cop and robber.

(1) C: The cop plays on (-1,2).

R: The robber will not move right to (0,1) as then the cop

would play on (0,0) forcing the robber to skip his next turn or be

captured in two moves. The cop would then play on (-1,1) and

from there capture the robber in at most 10 moves. The robber

will not skip his turn as then the cop would play on (-1,0), forcing

the robber to move right to (0,1) and from there like above, he

would capture the robber in at most 10 moves. Thus, the robber

moves down to (-1,0).

(2) C: The cop plays on (-2,-1).

R: The robber will not move left into the trap. The robber

will not move right as then the cop would play on (0,-1) and from

there capture the robber in at most 12 moves. The robber could

skip his turn as then the cop would play on (-1,-1) and from there

capture the robber in at most 13 moves. But, since the robber
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can get 13 moves from moving down too, the robber moves down

to (-1,-1).

(3) C: The cop plays on (-1,-2).

R: The robber will not skip his turn as then the cop would

play on (0,-1) and capture the robber in at most 12 moves. Thus,

the robber moves right to (0,-1).

(4) C: The cop plays on (1,-2).

R: The robber will not move right or down into the traps. The

robber could skip his turn as then the cop would play on (0,0) and

from there capture the robber in at most 13 moves. But, since

moving up results in 13 moves too, the robber moves up to (0,0).

(5) C: The cop plays on (0,1).

R: The robber can either skip his turn or move left as both

result in 13 moves for the cop. Thus, the robber moves left to

(-1,0).

(6) C: The cop plays on (-1,-1).

R: The robber skips his turn as otherwise he will be captured

in two moves.

(7) C: The cop plays on (0,0).

R: The robber skips his turn again for the same reasons as

above.

(8) C: The cop plays on (-2,0).
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R: The robber skips his turn as, no matter what, he will be

captured next turn.

(9) C: The cop plays on (-1,1) and the robber is captured.

The robber is captured in 13 moves; thus, this is not one of the robber’s

optimal strategies and this concludes Case 1.2.2.

Case 1.2.1, and Case 1.2.2 have been resolved and thus, this concludes

Case 1.2.

Case 1.3: The robber skipped his turn.

The cop plays on (-1,1). Now the robber has two options as up and

down are symmetric. We will divide this into two cases with Case 1.3.1

being that the robber moves up to (0,2) and Case 1.3.2 being that the

robber skips his turn.

Case 1.3.1: The robber moved up to (0,2).

The robber will be captured in 14 moves or less in this case. We will

now start the count again for the moves of the cop and robber.

(1) C: The cop plays on (0,3).

R: The robber will not skip his turn as then the cop would play

on (-1,2) and from there capture the robber in at most 9 moves.

Thus, the robber moves left to (-1,2).

(2) C: The cop plays on (-2,3).

R: The robber will not move up into the trap. The robber will

not skip his turn as then the cop would play on (-2,2) and from
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there capture the robber in at most 10 moves. Thus, the robber

moves left to (-2,2).

(3) C: The cop plays on (-3,2).

R: The robber will not skip his turn for the same reason he did

not skip his fifth turn. Thus, the robber moves down to (-2,1).

(4) C: The cop plays on (-3,0).

R: The robber will not skip his turn for the same reason he did

not skip his sixth turn. Thus, the robber moves down to (-2,0).

(5) C: The cop plays on (-2,-1).

R: The robber will not skip his turn for the same reason he

did not skip his seventh turn as the cop would capture him in at

most 13 moves. Thus, the robber moves right to (-1,0).

(6) C: The cop plays on (0,-1).

R: The robber skips his turn as otherwise he will be captured

in two moves.

(7) C: The cop plays on (0,0).

R: The robber skips his turn again for the same reasons as

above.

(8) C: The cop plays on (-2,0).

R: The robber moves down to (-1,-1) as otherwise, he will be

captured next turn.

(9) C: The cop plays on (-1,-2).
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R: The robber must skip his turn.

(10) C: The cop plays on (-1,0) and captures the robber.

The robber is captured in 14 moves and this concludes Case 1.3.1.

Case 1.3.2: The robber skipped his turn.

The robber will be captured in 13 moves or less in this case. We will

now start the count again for the moves of the cop and robber.

(1) C: The cop plays on (0,0).

R: The robber will not move right into the trap. The robber

will not skip his turn as then the cop would play on (0,2) and from

there capture the robber in at most 8 moves. Thus, the robber

moves up to (0,2).

(2) C: The cop plays on (0,3).

R: The robber will not skip his turn as then the cop would play

on (-1,2) and from there capture the robber in at most 9 moves.

Thus, the robber moves left to (-1,2).

(3) C: The cop plays on (-2,3).

R: The robber will not move up into the trap. The robber will

not skip his turn as then the cop would play on (-2,2) and from

there capture the robber in at most 11 moves. Thus, the robber

moves left to (-2,2).

(4) C: The cop plays on (-3,2).
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R: The robber will not skip his turn for the same reason he did

not skip his sixth turn. Thus, the robber moves down to (-2,1).

(5) C: The cop plays on (-3,0).

R: The robber will not skip his turn for the same reason he

did not skip his seventh turn. Thus, the robber moves down to

(-2,0).

(6) C: The cop plays on (-2,-1).

R: The robber will not move right to (-1,0) as then the cop

would play on (-1,-1) forcing the robber to skip his next turn and

then capturing him by playing on (-2,0). Thus, the robber skips

his turn.

(7) C: The cop plays on (-2,1).

R: The robber has to move right to (-1,0) or he will be captured

next turn.

(8) C: The cop plays on (-1,-1).

R: The robber must skip his turn.

(9) C: The cop plays on (-2,0) and captures the robber.

The robber is captured in 13 moves; thus, this is not one of the robber’s

optimal strategies and this concludes Case 1.3.2.

Case 1.3.1, and Case 1.3.2 have been resolved and thus, this concludes

Case 1.3.
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Case 1.1, Case 1.2, and Case 1.3 have been resolved and thus, this

concludes Case 1.

Case 2: The robber moved left to (-1,0).

The robber will be captured in 14 moves or less in this case. We will

now start the count again for the moves of the cop and robber.

(1) C: The cop plays on (-2,0).

R: The robber has two options. He can move up or down as

they are symmetric and he can skip his turn. He will not move

up or down since then the cop would play the same strategy he

plays when the robber skips his turn except he will not have built

a wall on (-1,-1). Thus, the robber skips his turn.

(2) C: The cop plays on (-1,-1).

R: The robber will not skip his turn since then the cop would

play on (0,1) forcing the robber to move up to (-1,1) and capture

him in at most 12 moves. The robber will not move back right to

(0,0) since then the cop would play on (0,1) and capture him in

at most 13 moves. Thus, the robber moves up to (-1,1).

(3) C: The cop plays on (-2,2).

R: The robber will not move left into the trap. The robber

will not skip his turn as then he would be in the same situation as

if he skipped his last turn. The robber will not move right since
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then the cop would play on (1,2) and capture him in at most 13

moves. Thus, the robber moves up to (-1,2).

(4) C: The cop plays on (-1,3).

R: The robber will not skip his turn since then the cop would

play on (0,2) forcing the robber to move back to (-1,1) and he

would be surrounded by traps and be captured in at most 12

moves. Thus, the robber moves right to (0,2).

(5) C: The cop plays on (1,3).

R: The robber will not move up into the trap. The robber

will not skip his turn since then the cop would play on (0,1) and

capture the robber in at most 12 moves. Thus, the robber moves

right to (1,2).

(6) C: The cop plays on (2,2).

R: The robber can skip his turn or move down as both result

in 14 moves. Thus, without loss of generality, the robber moves

down to (1,1).

(7) C: The cop plays on (2,1).

R: The robber will not skip his turn since then the cop would

play on (0,1) and capture the robber in at most 12 moves. Thus,

the robber moves left to (0,1).

(8) C: The cop plays on (-1,1).
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R: The robber will not move down since then the cop would

play on (0,-1) and capture him in at most 13 moves. The robber

can move up or skip his turn as both result in 14 moves. Thus,

the robber moves up to (0,2).

(9) C: The cop plays on (1,2).

R: The robber will skip his turn since otherwise he will be

captured in two moves.

(10) C: The cop plays on (0,1).

R: The robber can either move up to (0,3) or skip his turn since

both result in 14 moves. Thus, the robber moves up to (0,3).

(11) C: The cop plays on (0,4).

R: The robber must skip his turn.

(12) C: The cop plays on (0,2) and the robber is captured.

The robber is captured in 14 moves and this concludes Case 2.
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Figure 3.7. Cop and robber’s moves in Case 2.

Case 3: The robber skipped his second turn.

The robber will be captured in 14 moves or less in this case. We will

now start the count again for the moves of the cop and robber.

(1) C: The cop plays on (-1,0).

R: If the robber moves up then the cop plays above him. If

the robber moves down then the cop plays below him. Both these

situations are symmetric to the situation in Case 1.3 which results

in 14 total moves for the cop. The robber skipping his turn also

results in 14 moves so the robber skips his turn.

(2) C: The cop plays on (0,-1).
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R: The robber will not skip his turn as then the cop would

capture him next turn. Thus, the robber moves up to (0,1).

(3) C: The cop plays on (1,2).

R: The robber will not move right into the trap. The robber

will not skip his turn as then the cop would play on (-1,2), sur-

rounding the robber with traps and from there capture the robber

in at most 10 moves. The robber can either move up or left then.

These are symmetric as the cop will not let the wall he built on

(0,-1) come into play again. Thus, the robber moves up to (0,2).

(4) C: The cop plays on (0,3).

R: The robber will not skip his turn as then the cop would

play on (-1,2) and force the robber to move back to (0,1) and be

surrounded by traps. Thus, the robber moves left to (-1,2).

(5) C: The cop plays on (-2,3).

R: The robber will not move up into the trap. The robber will

not skip his turn as then the cop would play on (-2,1) and capture

the robber in at most 13 moves. Thus, the robber left to (-2,2).

(6) C: The cop plays on (-3,2).

R: The robber will not skip his turn as then the cop would

play on (-2,1) and capture the robber in at most 13 moves. Thus,

the robber moves down to (-2,1).

(7) C: The cop plays on (-3,0).
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R: The robber will not move left or down into the traps. The

robber can move right or skip his turn as both result in 14 moves.

If the robber moves right then the cop would play on (0,1) forcing

the robber to move up or skip his turn both again which result

in 14 moves. Let us say then that the robber skipped his turn

initially.

(8) C: The cop plays on (-1,2).

R: The robber skips his turn as he is surrounded by traps.

(9) C: The cop plays on (-1,1).

R: The robber skips his turn again as he is surrounded by

traps.

(10) C: The cop plays on (-2,0).

R: The robber can either skip his turn or move left as they

both result in 14 moves so let the robber move left to (-3,1).

(11) C: The cop plays on (-4,1).

R: The robber must skip his turn.

(12) C: The cop plays on (-2,1) and captures the robber.

The robber is captured in 14 moves and this concludes Case 3.

All the cases have been shown to result in 14 moves or less for the cop

to win. Therefore, Wct(P∞�P∞) ≤ 14. �
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3.3. Wall Capture Time of an Infinite Triangular Grid

The infinite triangular grid, written △∞, is a tiling of the plane by

triangles with vertices represented as vertices of the triangles. A drawing

of part of the infinite triangular grid as seen in Figure 3.8 will be used.

Figure 3.8. An infinite triangular grid. Vertices are omitted.

Theorem 3.3.1. Wct(△∞) ≤ 138.

Proof. The cop will first trap the robber in a hexagon with lengths

of sides 3, 21, 21, 21, 21, and 3. The cop will build the hexagon, taking

the robber’s vertex as the centre of this hexagon so that he is distance 11

from each of its walls. The robber will not move backwards or skip his

turn while the hexagon is being built as this will allow the cop to build

a smaller hexagon and thus, use fewer moves to capture the robber. We

will describe the corners of the hexagon as follows: TLC, TRC, LC, RC,
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BLC, BRC with T standing for top, B standing for bottom, R standing

for right, L standing for left, and C standing for corner. The first 9 moves

for the cop are as follows:

(1) The first move of the cop is wasted as we are playing on an infinite

grid, so the robber will just play so far away from the first cop

that the wall he builds will be useless.

(2) The cop plays one up and right of the LC.

(3) The cop plays one down and right of the LC.

(4) The cop plays one up and left of the RC.

(5) The cop plays one down and left of the RC.

(6) The cop plays on the TLC.

(7) The cop plays on the TRC.

(8) The cop plays on the BLC.

(9) The cop plays on the BRC.

The robber must have moved towards one of the sides of the hexagon in

these first 9 moves. If he moved up, then the cop’s 10th move is to play

on the vertex two down and left of the TRC. If he moved down, then the

cop’s 10th move is to play on the vertex two up and right of the BLC. If

the robber went straight left or right without any diagonal movements

then the cop would not have had to play there so the robber would not

move like that. Otherwise, the cop could build a smaller hexagon. Then

we know that the robber will move either up or down towards the TLC
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or TRC or the BLC or BRC. Now the robber is distance two away from

a side (only one) and it is the cop’s turn and thus, the cop can stop him

getting on the sides of the hexagon.

...

...
...

...

LC RC

BLC BRC

TLC TRC

10
th 

move

Figure 3.9. The first 10 moves of the cop shown as black vertices, with
the first move not shown as it is far away from the hexagon. Also, the
assumption here for the tenth move is that the robber moved up towards
the TLC or TRC.

As the robber runs along the sides of the hexagon, the cop will gain

a move on the robber at the LC and RC due to the walls that were built

at the start. The cop will use these two extra moves to build a wall on

the vertex in between the TLC and TRC and a wall on the vertex in

between the BLC and BRC in the order that the robber will approach

these vertices.

The robber may be able to move toward the centre of the hexagon

after most of the sides have been built by the cop in order to gain some

extra moves. It is difficult to know exactly when this may happen and

60



in which exact direction the robber would move at the start of the game

and at this point in the game. Therefore, we will assume that the cop

will build the entire hexagon even if the robber moves toward the centre

of the hexagon early. Thus, the robber will force the cop to build a wall

inside the hexagon on his 10th move as described above. We will assume

also that the robber can be anywhere inside this hexagon after it is built.

The robber will be in the centre of the hexagon as if he is near any of

the sides, it will allow the cop to use those sides to trap him in a smaller

subgraph in this next phase.

The cop will then confine the robber to a parallelogram with diagonals

of length 23 and the other two sides of length five. We will assume,

without loss of generality, that the diagonals go from the top left side of

the hexagon to the bottom right side of the hexagon. Since both the top

left side and bottom right side of the hexagon are distance 11 from the

centre, the diagonal between them is of length 23. The two diagonals

of length 23 will be built distance five apart. One will be built distance

two from the robber on his left and the other will be built distance three

from the robber on his right. This guarantees that the robber is always

at least distance two away from either diagonal with it being the cop’s

turn. The first wall built on these diagonals will be built on the left one

since it is only distance two away from the robber. Thus, the robber

will never be able to occupy a vertex on either diagonal or leave the
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parallelogram. The two sides of length five are already built as they are

part of the sides of the hexagon. Once this parallelogram is completely

built, we will assume that the robber is in the best position possible.

Therefore, he will be in the centre of this parallelogram.

The cop will then be building two sides parallel to the sides of the

hexagon of length three to trap the robber in a 5× 4 parallelogram. The

first of these two sides will be built distance one away from the robber,

down and to his right, since it is possible to stop him bypassing the

side as there are only three open vertices to cover. Thus, the cop will

play adjacent to the robber on this side he will be building as seen in

Figure 3.10. The robber can move so that the side must actually be

built as parallel to the sides of the parallelogram of length five. This

does not matter as in either case the cop will trap the robber in a 5× 4

parallelogram. From here, the other side will be built distance two away

from the robber’s starting position in the parallelogram on the opposite

side of the first side built and parallel to the first side built. Now the

robber is trapped in a 5×4 parallelogram. The robber will move back to

the vertex he started on after the large parallelogram’s sides were built.

The cop will capture the robber in at most four moves inside this small

parallelogram, no matter where the robber moves inside it as there are

only six open vertices and the cop can cut out one of two vertices that

are distance three apart.
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... ...

R

C

Figure 3.10. The parallelogram that is built with the 5 × 4 parallelo-
gram built inside it with the robber’s starting vertex labelled R and the
cop’s first move labelled C and the rest of his moves to construct the
parallelogram not labelled. This figure assumes the robber moves in a
way that allows the sides of the parallelogram to be parallel to the sides
of the hexagon of length three.

Now we will sum up all the moves of the cop. The cop took one

wasted move at the start. He then takes 21 × 4 + 3 + 3 + 1 − 6 = 85

moves (subtract six for counting six vertices twice) to build the sides of

the hexagon and a wall on the vertex on his 10th move. Followed by 42

moves to build the two diagonals of length 23 of the large parallelogram.

Six moves to complete the sides of the 5 × 4 parallelogram. Then, four

moves to capture the robber inside the 5×4 parallelogram. Thus, it took

the cop 1+85+42+6+4 = 138 moves to capture the robber. The proof

now follows. �
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3.4. Wall Capture Time of an Infinite Strong Grid

The infinite strong grid, written P∞⊠P∞, is the strong product of two

infinite, two-way paths. We will be labelling the vertices using Cartesian

coordinates. We rely on the following fact from [2]. Note that in the

Angel Problem, the Angel (that is robber in our case), unlike in Wall

Cops and Robbers, is allowed to move to a vertex he occupied in the

previous turn. However, such moves will only lengthen the play of the

game. Hence, bounds on the length of the Angel Problem will also be

bounds on the wall capture time played on the infinite strong grid.

Lemma 3.4.1. [2] On the infinite strong grid, the cop can confine the

robber to a 35× 35 box by building three walls in each corner on his first

12 moves. The cop can confine the robber from there as he can always

stop the robber reaching a side of this box if the robber is distance five

from a side and it is the cop’s turn.

We now turn to the main result of this section.

Theorem 3.4.2. Wct(P∞ ⊠ P∞) ≤ 246.

Proof. Without loss of generality, we will assume that after the cop

plays his first turn, that the robber will place himself sufficiently far away

that this first wall will play no part in capturing the robber. Thus, we

will count this move only at the end in the total number of moves but

will not count it in our ordered turns for the cop below. The cop’s plan is
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to capture the robber in a 35× 32 box first and then capture the robber

inside that box. The robber’s best strategy has to be to move in one

direction such as up or right, and or diagonally up and right so as to

make it difficult for the cop to trap him. Otherwise, as moving back in

the opposite direction while this box is being set up will just waste the

robber’s turn and possibly allow the cop to build a smaller box to contain

the robber. If the robber skips his turn several times, then it will allow

the cop to either encroach the sides of the box or if they are already

built, then it will allow the cop to encroach the vertical or horizontal

walls that enclose the robber after that. Therefore, it is not a good idea

for the robber to skip his turn until he knows he will be captured and

there are few turns remaining because even doing it once will allow the

cop to be one turn ahead of the robber which may also result in fewer

moves needed.

The cop will start by building the corners of a 35 × 35 box as in

Lemma 3.4.1 and once a few moves have been made it will be clear what

direction, if any, the robber has chosen to move in which will allow the

cop to encroach one of the sides in three steps making it a 35 × 32 box

(or encroach two of the sides in for a total of three steps, also making it a

35× 32 box). The box must start as a 35× 35 box since the cop requires

12 moves before the robber can be at a distance of five moves from any
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side, thus, making it necessary that the robber start at a distance of 17

moves from any side which a 35× 35 box ensures.

We will assume that the robber is moving diagonally opposite of the

corner in which the cop first plays as this makes it most difficult for the

cop since he will not be able to encroach the sides of the box further in

than just three steps. If the robber moves in any other fashion at the

beginning, then the same strategy can be used by the cop. It will be

shown that the robber cannot escape the box if he is at a distance of five

moves from any side of the box, there have been three walls built in each

corner of the box, and it is the cop’s turn as in Lemma 3.4.1.

Let T,B,L,R,C represent top, bottom, left, right, and corner, respec-

tively, of the 35×35 box. The way the moves of the cop will be described

should be interpreted as follows: two up from the BLC means that the

bottom left corner is (0,0) and two up from that would be (0,2). We will

play the first cop in the BLC and thus, we assume the robber is always

moving diagonally toward the TRC but of course the strategy of the cop

can be easily modified for the robber moving diagonally toward any cor-

ner. The robber by moving in the opposite direction of the second cop

stops the cop from encroaching one or two of the sides by more than a

total of three steps.

(1) The cop plays four up from the BLC.

(2) The cop plays two down from the TRC.
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(3) The cop plays one right of the TLC.

(4) The cop plays two right of the TLC.

(5) The cop plays four right of the TLC.

(6) The cop plays one down from the TRC.

(7) The cop plays four down from the TRC.

(8) It is now clear that the robber is moving to the TRC and thus,

the cop can encroach the bottom side of the box in three steps to

make it a 35x32 box by playing five up from the BLC.

(9) The cop plays seven up from the BLC.

(10) The cop plays three up and one left of the BRC.

(11) The cop plays three up and two left of the BRC.

(12) The cop plays three up and four left of the BRC.

Figure 3.11. Corners of the strong grid with the diagonal edges omitted.
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Now the next move the robber makes will bring him to within five

moves of one or two sides. In the present case, the robber has moved to

the TRC. If the robber moves up in any direction, then the cop’s next

move is to play on the side of the box directly above the robber. If the

robber moves diagonally down and to the right or directly to the right

then the cop’s next move is to play on the side of the box directly to the

right of the robber. From there in either case, we have the scenario where

it is the robber’s turn and he is distance five away from a side with a wall

on the side directly in his path if he were to go straight at the side. We

know that the cop can block the robber along this side now no matter

which move he makes by Lemma 3.4.1 and Figure 3.12 below. With three

walls built in each of the corners, the robber cannot run forever and must

turn at the corners. We will assume the cop builds the entire box and

that the robber can be anywhere inside that box afterwards. Therefore,

it takes 35 + 35 + 30 + 30 = 130 moves to build the walls of the box.
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Figure 3.12. Cop’s strategy to stop robber reaching a side from a dis-
tance of five moves. In each of the figures, a, b, and c represent the fourth
wall the cop would build if the robber moved diagonally up and to the
left or straight up or diagonally up and to the right, respectively. The
final wall to build from there is obvious then.

We assume the robber is in the centre of the 35 × 32 box. The cop

will now confine the robber to a 32 × 12 box. The two sides of length

12 have already been built as they are part of the sides of the 35 × 32

box. The cop will build the two sides of length 32 that are distance 11

from each other. The robber can only ever be distance five from either of

these two sides but not both. This ensures the cop can stop the robber

reaching either of these sides.
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It is difficult to know exactly what the best position the robber can

attain while still making the cop complete the 32×12 box. Thus, we will

say that once that box is completely built, we will let the robber be in

the middle of this smaller box as that is best for him with the knowledge

of the cop’s strategy. Therefore, up to this point including the first move

for the cop, there have been 131 moves for building the box and the first

move and 60 moves for the two sides of length 32 in the smaller box for

a total of 191 moves.

The robber is in the middle of the 32× 12 box with the sides of this

area completely covered with walls. The cop will now confine the robber

to a 12× 12 box. Two of the sides of length 12 have already been built

as they are part of the sides of the 32× 12 box. The cop will then build

the other two sides distance 11 from each other with the robber directly

in the middle so that he cannot be distance five from both of them at

the same time. These two sides take 20 moves in total to build. Thus,

the number of moves is now at 211.

We will again assume the robber to be anywhere in this new box which

is 12× 12 with the sides of this area completely covered with walls. The

cop’s strategy is to build a 6×6 box directly in the middle of the 12×12

box. This 6 × 6 box takes 20 moves to build. Now the robber can be

inside the 6 × 6 box or outside it or he could have been on one of the
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vertices of the sides of the 6 × 6 box. Let these be cases A through C,

respectively.

Case A: The robber is inside the 6× 6 box.

The cop builds a 4 × 4 cross such that the intersection of the cross

occurs in one of the middle vertices. The cop will build his first wall on

the intersection vertex and it is guaranteed to be open as there are four

possible intersection vertices in the 6 × 6 box. If the robber allows the

cross to be built which means not being on one of those vertices while the

cop needed to build a wall there, then he will be captured in at most three

moves after that as a 2 × 2 area is the largest compartment left. This

would total 10 moves for capturing him in the 6 × 6 box. If the robber

occupies one of the vertices of the cross the cop needs to build a wall on,

then the robber would occupy one of the vertices that is adjacent to the

2× 2 compartment that will be left open. But then the cop just builds a

wall adjacent to the robber in this 2× 2 compartment. No matter what

the robber does now, he will be captured in at most 10 moves. Therefore,

Case A results in 10 moves.

Case B: The robber is outside the 6× 6 box.

Since all the sides are symmetric we will consider the robber to be in

the bottom 12× 3 part of the 12× 12 box. Then the cop can build two

vertical walls or one horizontal and one vertical wall distance two and

three away from the robber to confine him to a 7 × 4 box. We can say
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that it will take a maximum of 8 moves for the cop to capture the robber

in that 7 × 4 area since there are only 10 open vertices in it as the cop

can choose the two open vertices after the 8 moves such that they will

not be adjacent. Therefore, Case B results in at most 12 moves.

Case C: The robber is on one of the vertices of one of the sides of

the 6 × 6 box after all the other vertices of the sides of this box have a

wall built on them.

If the robber is not on one of the corners of this 6 × 6 box, then the

cop will build a wall on the outside of the 6 × 6 box on the adjacent

vertex that is closest to a corner. The cop will keep playing adjacent to

the robber on the outside of the 6 × 6 box until he cannot anymore or

the robber moves. If the robber moves inside the 6× 6 box then he will

be captured in 10 moves by Case A. If he moves outside of the 6× 6 box

then he will be captured in 12 moves by Case B but the walls being built

while he is on one of the sides of the box count towards these 12 moves.

Therefore, if the robber does not occupy a corner vertex of the 6×6 box,

then he will be captured in at most 13 moves by skipping his turn until

he cannot move outside of the 6×6 box at which point he will move into

the 6× 6 box. This is due to there being exactly three adjacent vertices

outside of the 6 × 6 box. Note that the move where the cop builds the

wall to complete the 6× 6 box was already counted before.
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If the robber is on one of the corners of the 6× 6 box then there are

five adjacent vertices outside of the 6× 6 box. The cop will build a wall

on each of these vertices and once he has done so the robber will move

into the 6×6 box for the same reasons as above. This results in 15 moves

for the cop. Therefore, Case C results in at most 15 moves.

Since Case C results in the most moves for the cop, then that would

be the robber’s strategy. Hence, we have proven the desired result that

the total moves to capture the robber is 211 + 20 + 15 = 246.

Figure 3.13. 12 × 12 box robber is trapped inside with the 6 × 6 box
and 4× 4 cross inside.

�
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3.5. Wall Capture Time of an n-layered Infinite Cartesian

Grid

Theorem 3.5.1. For n a positive integer, we have that

Wct(P∞�P∞�Pn) ≤ 44n2 + 6n+ 15.

Proof. The cop will build an initial 2-dimensional box of dimensions

(8n+ 3)× (8n+ 3) on each of the n levels. The cop needs four corners

built for each of the n levels and the robber must be distance 4n+1 from

each side for this, since he can be stopped at distance one from a side of

the box if it is the cop’s turn. Thus, the dimensions of the box needed

are 2 · (4n + 1) + 1 = 8n + 3. The cop can always encroach one of the

sides one step in and one side n steps in or the equivalent in combination

of encroaching multiple sides based on the movement of the robber. This

is possible since the cop builds one of the corners on each of the n levels

with the robber moving toward one of the two sides that corner does not

touch. As soon as the cop starts building the second corner which will

share the same x or y coordinate as the first corner, the robber must

change direction so that he is going directly at the side that is opposite

those two corners to reduce the amount the cop can encroach the last

side. So P∞�P∞�Pn really requires a (8n+ 3)× (7n+ 2) box. It takes

n · (2 · (8n + 1) + 2 · (7n)) = 30n2 + 2n moves to build the sides of the

boxes on all levels.

74



Figure 3.14. Representation with compressed dimensions of the (8n+
3)× (7n+2) box built on one of the n levels. The grey vertices represent
the corners built at the beginning.

Then we will assume that the robber is in the centre of the bottom

level as that is the best possible position for him based on the cop’s

strategy. The cop will then build a side that is parallel to the 7n + 2

side of the box that will be distance one away from the robber. The

cop will also build another side that will be parallel to the previous side

that will be distance two away from the robber’s starting position. The

robber cannot pass either of these sides as he can only ever be distance

one away from either side with it being the cop’s turn. Then it takes

2n · 7n = 14n2 moves to build the sides on each level. Then, the robber

will be in this new box that is 7n× 4.

The cop will now make this new box into a 4× 4 box containing the

robber by building the two sides of length four that are perpendicular
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to the previous sides. The cop can build one of these sides distance one

away from the robber and the other distance two away. Then it takes 4n

moves to build these sides on each level assuming again that the robber

is in the best position possible.

Figure 3.15. Smaller representation of 7n × 4 box built on one of the
n levels with the 4× 4 box built inside it.

The cop will then build a ceiling that is distance one above the robber

and a floor that is distance two below the robber’s starting position which

again we assume is ideal. The ceiling and floor will take 8 moves to build

and the robber will be confined to two levels of 2× 2 open vertices or a

2×2×2 cube of open vertices. From the example in Section 2.1, we know

that such a cube has a wall capture time of 6 moves. Finally, it takes

14 moves to capture the robber inside these small 4× 4 boxes. Also, we

have the first move which is wasted and in total we have 44n2 + 6n+ 15

moves. �
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CHAPTER 4

Wall Cop Number

4.1. Introduction

So far, we have studied graphs in which one cop is enough to capture

the robber. Now, we will study graphs which may need more than one

cop to ensure the capture of the robber. This involves the parameter of

wall cop number.

Recall that the wall cop number of a graph G, written Wc(G), is the

least number of cops it takes for the cops to capture the robber in G

given that the cops and robber have played their best strategies. Note

that every finite graph has wall cop number 1.

We have already introduced several examples of graphs with a wall

cop number equalling one as we have shown that these graphs have a

finite wall capture time. Simple examples of graphs with wall cop number

greater than one are harder to find as these graphs must be infinite which

adds complexity. Therefore, as our first example, we will study k-regular

trees which we discussed in Chapter 2. In Chapter 2, we considered finite

k-regular trees. Here, we will consider infinite k-regular trees, written

T∞,k.
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Figure 4.1. An infinite 4-regular tree.

Theorem 4.1.1. Wc(T∞,k) = k − 1 for infinite k-regular trees.

Proof. Recall, Theorem 2.4.2 which stated that the

Wct(Tk) = (k − 2)h(Tk)− k + 5

for finite k-regular trees with h(Tk) ≥ 3 and k ≥ 3.

This theorem shows that the wall capture time goes to infinity as

the height of the tree goes to infinity. Therefore, Wc(T∞,k) > 1. From

the proof of Theorem 2.4.2, we know there is no strategy for one cop

to capture the robber before he reaches the bottom of the tree. When

considering the infinite k-regular tree, the cops must be able to confine

the robber to a finite subgraph. This can only be done by forming a

barrier of walls across a level of the tree to stop the robber continuously

moving down the tree. From the proof of Theorem 2.4.2, we know this is

not possible unless we have exactly k− 1 cops as all vertices on the level
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below the robber must be blocked in order to stop him moving down to

the next level.

The strategy for k − 1 cops is to build walls on the k − 1 adjacent

vertices on the level below the robber. There will be exactly k − 1 of

these vertices as the cops will build a wall on the topmost vertex of the

tree on their first turn. The robber will then have to move up the tree

towards the topmost vertex. The cops build a wall on the k − 1 vertices

the robber is adjacent to, excluding the vertex he just came from. The

robber must skip his turn and is captured on the next turn. Therefore,

Wc(T∞,k) = k − 1. �

Wall cop number is monotonic relative to subgraphs. This result gives

lower bounds for the wall cop number of graphs if the wall cop number of

one of their subgraphs is known. Also, if the wall cop number of a graph

is known, then this result gives upper bounds for the wall cop number of

subgraphs of that graph.

Theorem 4.1.2. If H is a subgraph of G, then Wc(H) ≤ Wc(G).

Proof. The cops play two games simultaneously: one in G using

their winning strategy there, and one in H. The robber is confined to H,

and we view moves in H by the robber as moves in G. The cops adapt

their strategy in G to one in H as follows. If the cops build a wall in G

on a vertex u also in H, then they build a wall on u in the game on H.
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Each time the cops build a wall in V (G) \ V (H), they can just choose

any vertex without a wall in H, and build a wall there.

The adapted strategy in H is winning for the cops, as in each round,

the vertices without walls available to the robber is a subset of vertices

without walls in G. �

4.2. Wall Cop Number of an Infinite-layered Infinite

Hexagonal grid

An infinite-layered infinite hexagonal grid, writtenH∞,∞, is an infinite-

layered perfect matching between two copies of H∞. Each layer is a copy

of H∞ and each vertex in each copy of H∞ is adjacent to its correspond-

ing vertex in the layer above and below. The labelling of the coordinates

of the 3-D grid will follow the rule that the distance between any two

adjacent vertices on the x-axis or y-axis or z-axis is one unit.

Theorem 4.2.1. Wc(H∞,∞) ≤ 2.

Proof. We will show a strategy for two cops to win, thereby proving

an upper bound of two for the wall cop number. The cops’ plan is to

confine the robber to two layers. Note that since we are only dealing

with wall cop number here, the number of moves it takes for the cops to

capture the robber is irrelevant. Therefore, the robber will not skip his

turn as no vertex has an infinite degree which would be the only case in

which the robber would skip his turn. We will not mention the robber’s
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ability to skip his turn below as we have shown it is irrelevant. We will

now show the moves for the cops and robber. The moves can also be

seen in Figure 4.2 below.

(1) C: The first move for the cops will be wasted as the grid is infinite.

R: The robber will place himself on the graph and we will

denote this vertex as the origin, (0,0,0). Without loss of generality,

we will assume this vertex has an adjacent vertex at (0,1,0).

(2) C: The cops play on (-1,0,0) and (1,0,0).

R: The robber will not move to (0,1,0) as then the cops would

play on (-1,1,0) and (1,1,0), forcing the robber to move up or down

a layer except two more walls will have been built close to him.

Therefore, the robber will move up a layer to (0,0,1) as moving

up or down a layer is symmetric.

(3) C: The cops play on (0,0,2) and (0,1,1).

R: The robber can only move left or right and since they are

symmetric, the robber moves right to (1,0,1).

(4) C: The cops play on (1,0,2) and (1,-1,1).

R: The robber can only move right to (2,0,1).

(5) C: The cops play on (2,0,2) and (3,0,1).

R: The robber will not move down a layer to (2,0,0) as then

the cops would play on (2,0,-1) and (3,0,0) which would put the

robber in the same case he is in now except more walls will have
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been built close to him. Therefore, the robber must move to

(2,1,1).

(6) C: The cops play on (2,1,2) and (3,1,1).

R: The robber will not move down a layer for similar reasons

to the last turn. Therefore, the robber must move left to (1,1,1).

(7) C: The cops play on (1,1,2) and (1,2,1).

R: The robber can only move down a layer to (1,1,0).

(8) C: The cops play on (1,1,-1) and (1,2,0).

R: The robber will not move left as the cops would play adja-

cent on his left and on the layer below him, forcing him to move

back to (0,0,0) on his next turn. The cops would then play ad-

jacent on the layers above and below him and he would have to

skip his turn and be captured on the next turn. Therefore, the

robber moves right to (2,1,0).

(9) C: The cops play on (2,1,-1) and (3,1,0).

R: The robber will not move up a layer to (2,1,1) as then the

cops would play adjacent on his left and below him on the same

layer, forcing him to skip his turn and be captured on the next

turn. Thus, the robber will move down to (2,0,0).

(10) C: The cops play on (2,0,-1) and (3,0,0).

R: The robber can only move up a layer to (2,0,1).

(11) C: The cops play on (2,1,1) and (1,0,1).
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R: The robber must skip his turn.

(12) C: One of the cops plays on (2,0,0) and the robber is captured.

Thus, we have shown that two cops suffice to capture the robber on

H∞,∞. Therefore, Wc(H∞,∞) ≤ 2. �
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Figure 4.2. Cops and robber’s moves in H
∞∞

. The labels correspond
to the player’s turn number and location on the closest vertex up and to
the right. When both a cop label and a robber label are needed, the cop
label appears below the robber label. R4,10,11 means that the robber’s
4th, 10th, and 11th moves are on that vertex. The cops’ first move C1 is
not shown in the figure as it is sufficiently far away from these vertices.

84



4.3. Wall Cop Number of an Infinite-layered Infinite

Cartesian grid

An infinite-layered infinite Cartesian grid, written P∞�P∞�P∞, is the

Cartesian products of three infinite, two-way paths. We will be labelling

the vertices using Cartesian coordinates.

Theorem 4.3.1. Wc(P∞�P∞�P∞) ≤ 2.

Proof. We will show a strategy for two cops to win, thereby proving

an upper bound of two for the wall cop number. The cops’ plan is to con-

fine the robber to an 11×11×11 cube. The robber’s initial vertex will be

at the centre of this cube. The first five moves for the cops will build walls

near the eight corners of the cube with the first move wasted as the grid

is infinite. The exact coordinates of these vertices as can be seen in Fig-

ure 4.3 are (−4,−4,−5), (−4, 4,−5), (4,−4,−5), (4, 4,−5), (−4,−4, 5),

(−4, 4, 5), (4,−4, 5), (4, 4, 5). Now the robber is at least distance one

away from one of the six sides of the cube since he starts at distance five

away from each of the sides and it is the cops’ turn.
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Figure 4.3. Fifth layer of the cube (xy plane at z = 5). Cops’ first
moves are represented by the four vertices in the corners. The figure is
the same for the z = −5 layer of the cube.

When the robber resides in the top layer or bottom layer of the cube,

one of the cops will keep him confined in the two-dimensional plane. This

is possible since in the top and bottom layer of the cube, the robber can

only ever be adjacent to one of the sides of the cube. The other cop will

play directly above the robber on the layer above him if the robber is in

the top layer or directly below him if he is in the bottom layer.

When the robber resides in any of the other layers of the cube, both

cops will work to keep him confined in the two-dimensional plane. This

is possible since in these layers of the cube, the robber can only ever be

adjacent to two sides of the cube.
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Thus, the robber can never escape this cube. Since the cube is finite,

the robber will eventually be captured. Therefore,

Wc(P∞�P∞�P∞) ≤ 2. �

4.4. Wall Cop Number of Layered Strong Grids

An infinite-layered infinite strong grid, written P∞ ⊠ P∞ ⊠ P∞, is the

strong products of three infinite, two-way paths. We will be labelling the

vertices using Cartesian coordinates.

Theorem 4.4.1. For n a positive integer with n ≤ 14, we have that

Wc(P∞ ⊠ P∞ ⊠ Pn) ≤ n.

Proof. This proof uses the proof in Chapter 3 of how the one cop

wins on a strong grid. When we have n layers of strong grids, we employ

one cop per layer for a total of n cops, all using the same strategies but on

their respective layers. They all play the same moves on their respective

layers and they all employ the strategy to win on their layer which was

introduced in the strong grid proof. Thus, it only requires one cop per

layer, so Wc(P∞ ⊠ P∞ ⊠ Pn) ≤ n for n ≤ 14. �

Theorem 4.4.2. Wc(P∞ ⊠ P∞ ⊠ P∞) ≤ 14.

Proof. (1) C: The first move for the cops is wasted since the

graph is infinite.
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R: The robber plays sufficiently far away from the walls built

on the cops’ first moves and we will call this the origin (0,0,0).

(2) C: The first 12 cops build walls to form four columns of three walls

all diagonal to the robber: (1,1,1),(1,1,0),(1,1,-1),(1,-1,1),(1,-1,0),

(1,-1,-1),(-1,1,1),(-1,1,0),(-1,1,-1),(-1,-1,1),(-1,-1,0),(-1,-1,-1). The

last two cops play on one side of the robber: (-1,0,0),(-1,0,-1). See

Figure 4.4.

R: The robber will move to (1,0,1) as this is away from the

most walls.

(3) C: The cops play on (2,0,0),(2,0,1),(2,0,2),(2,-1,0),(2,-1,1),

(2,-1,2),(2,1,0),(2,1,1),(2,1,2),(1,-1,2),(1,1,2),(0,-1,2),(0,0,2),(0,1,2).

See Figure 4.5 and Figure 4.6.

R: The robber wants to move away from any walls already

built. He will not move up to (1,0,2) as otherwise he will be

captured next turn since he would be adjacent to 13 walls and

the cops can build 14 more. Therefore, the robber moves to

(0,-1,0) as here he will only be adjacent to eight walls already

built which is the fewest. Also, this moves away from all walls

built above him on the previous turn. See Figure 4.7.

(4) C: The cops play on (-1,-2,-1),(-1,-2,0),(-1,-2,1),(0,-2,-1),(0,-2,0),

(0,-2,1),(1,-2,-1),(1,-2,0),(1,-2,1),(0,0,-1),(0,0,0),(0,0,1),(-1,0,1),

(0,-1,-1). See Figure 4.8, Figure 4.9, and Figure 4.10.
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R: The robber can only move to (1,0,-1) or (1,0,0). Thus, the

robber moves to (1,0,-1) as it is adjacent to 10 walls which is the

fewest. See Figure 4.11.

(5) C: The cops will force the robber to move directly up to (1,0,0)

by playing on (0,-1,-2),(0,0,-2),(0,1,-2),(1,-1,-2),(1,0,-2),(1,1,-2),

(2,-1,-2),(2,0,-2),(2,1,-2),(2,-1,-1),(2,0,-1),(2,1,-1),(0,1,-1),(0,1,0).

See Figure 4.12 and Figure 4.13.

R: The robber moves up to (1,0,0).

(6) C: The cops play on (0,1,1),(0,-1,0),(1,0,-1),(1,0,1) and the robber

is captured.

Therefore, 14 cops suffice to capture the robber on (P∞ ⊠ P∞ ⊠ P∞).

Thus, Wc(P∞ ⊠ P∞ ⊠ P∞) ≤ 14. �
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Figure 4.4. Robber’s position in red after 2nd turn for cops in blue.
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Figure 4.5. Robber’s position in red after 3rd turn for cops in green.
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Figure 4.6. Robber’s position in red after 3rd turn for cops in green.
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Figure 4.7. Robber’s position in red before 4th turn for cops.
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Figure 4.8. Robber’s position in red at (0,-1,0) (cannot be seen) after
4th turn for cops in yellow.
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Figure 4.9. Robber’s position in red at (0,-1,0) (cannot be seen) after
4th turn for cops in yellow.
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Figure 4.10. Robber’s position in red at (0,-1,0) (cannot be seen) after
4th turn for cops in yellow.
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Figure 4.11. Robber’s position in red before 5th turn for cops.
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Figure 4.12. Robber’s position in red (cannot be seen) after 5th turn
for cops in magenta.
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Figure 4.13. Robber’s position in red (cannot be seen) after 5th turn
for cops in magenta.

Corollary 4.4.3. For n a positive integer with n ≥ 15, we have that

Wc(P∞ ⊠ P∞ ⊠ Pn) ≤ 14.

Proof. The proof follows by Theorem 4.4.1 and Theorem 4.4.2. �
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CHAPTER 5

Wall Cops and Wall Robbers

5.1. Introduction

In this chapter, we will study a variation of the game of Wall Cops

and Robbers called Wall Cops and Wall Robbers. The game is played

the exact same way as Wall Cops and Robbers except for the robber also

builds walls now. The robber builds a wall on each vertex he occupies.

These walls do not affect the cops in any way but they hinder the robber

himself. The walls the robber builds have the same properties as the ones

the cops build and therefore, the robber may never revisit a vertex he

has previously occupied. In addition, the robber may not skip his turn.

The wall robber capture time of a graph G, written WR
ct
(G), is the

least number of moves it takes for the cop to capture the wall robber in

G given that the cop and robber have both played their best strategies.

The wall robber cop number of a graph G, written WR
c (G), is the least

number of cops it takes for the cops to capture the wall robber in G given

that the cops and robber have played their best strategies.

We will study the wall robber capture time of the infinite hexago-

nal grid, written H∞, and the wall robber capture time of the infinite

Cartesian grid, written P∞�P∞.
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Theorem 5.1.1. (1) WR
ct
(H) ≤ WR

ct
(G) if H is a subgraph of G.

(2) WR
c (H) ≤ WR

c (G) if H is a subgraph of G.

(3) WR
ct
(G) ≤ Wct(G)

(4) WR
c (G) ≤ Wc(G)

Proof. To prove (1) and (2), consider the cops as playing two games

simultaneously: one in G using their winning strategy there, and one

in H. The robber is confined to H, and we view moves in H by the

robber as moves in G. The cops adapt their strategy in G to one in H as

follows. If the cops build a wall in G on a vertex u also in H, then they

build a wall on u in the game on H. Each time the cops build a wall in

V (G) \ V (H), they can just choose any vertex without a wall in H, and

build a wall there.

The adapted strategy in H is winning for the cops, as in each round,

the vertices without walls available to the robber is a subset of vertices

without walls in G. Hence, the robber will be captured in WR
ct
(G)-moves

or fewer in H if one cop is playing. Otherwise, if multiple cops are

playing, then the number of cops required to capture the robber in G

will suffice to capture him in H.

To prove (3) and (4), consider that since the robber is also building

walls, the number of possible moves for both players is less or equal than

in the original game. Hence, the game of Wall Cops and Wall Robbers
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is never longer or needing more cops than the game of Wall Cops and

Robbers when played on the same graph. �

5.2. Wall Robber Capture Time of an Infinite Hexagonal Grid

Recall from Chapter 3, that the infinite hexagonal grid, written H∞,

is a tiling of the plane by hexagons with vertices represented as vertices

of the hexagons. The labelling of the coordinates of the grid will follow

the rule as in Chapter 3, that the distance between any two adjacent

vertices on the x-axis or y-axis is one unit.

Theorem 5.2.1. WR
ct
(H∞) = 6.

Proof. We first provide a strategy for the cop which will take six

moves to capture the robber. We will then describe why no fewer than

six moves suffice to capture the robber.

(1) The first move of the cop is wasted since the grid is infinite. The

robber plays sufficiently far away from that first wall rendering it

useless. Due to symmetry, we can assume that the robber is on a

vertex that has two adjacent open vertices, one on its left and one

on its right, and one adjacent open vertex above it. This vertex

will be the origin (0,0).

(2) The cop plays directly adjacent to the left of the robber on (-1,0).

The robber can either move up or right and as they are symmetric,

the robber moves right to (1,0).
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(3) The cop plays to the right of the robber on (2,0). The robber

must move down to (1,-1).

(4) The cop plays to the right of the robber on (2,-1). The robber

must move left to (0,-1).

(5) The cop plays below the robber on (0,-2). The robber must move

left to (-1,-1).

(6) The cop plays to the left of the robber on (-2,-1) and the robber

is captured in a total of six moves.
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C
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R
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C
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R
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C
6

R
2

R
5

Figure 5.1. Cop and robber’s moves. The labels correspond to the
player’s turn number and location on the closest vertex up and to the
right. The cop’s first move C1 is not shown in the figure as it is sufficiently
far away from these vertices.

This is the best strategy for the cop as the only other option for cop

moves would be to play not adjacent to the robber but further away.

If this is done at any stage, the robber will just treat it as if the cop

had played adjacent to him in that direction so he will not move in the
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direction of this cop and following his strategy above, he will guarantee

at least six moves. �

5.3. Wall Robber Capture Time of an Infinite Cartesian Grid

Recall from Chapter 3, that the infinite Cartesian grid, written P∞�P∞,

is the Cartesian product of two infinite, two-way paths. We will be la-

belling the vertices using Cartesian coordinates.

Theorem 5.3.1. WR
ct
(P∞�P∞) ≤ 10.

Proof. The cop’s plan is to trap the robber in a subgraph in which

he will then capture the robber. The first move by the cop will be wasted

as the grid is infinite and so the robber will play sufficiently far away from

that first wall rendering it useless. The first vertex the robber plays on

will be denoted as the origin (0,0). The second move for the cop is to play

adjacent to the robber and due to symmetry, it does not matter which

vertex the cop chooses so the cop will play to the right of the robber on

(1,0). Now the robber has two choices since moving up and down are

symmetric so we will divide this into cases with Case 1 being that the

robber moves up to (0,1) and Case 2 being that the robber moves left to

(-1,0).

Case 1: The robber moved up to (0,1). The cop plays on (1,2). Now

the robber has three choices. If he moves to the right, then he will be

captured next turn as that is moving into a trap. Thus, he can move left
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or up so we will divide this into cases with Case 1.1 being that he moved

up to (0,2) and Case 1.2 being that he moved left to (-1,1).

Case 1.1: The robber moved up to (0,2). We will now start the count

again for the moves of the cop and robber.

(1) C: The cop plays on (0,3).

R: The robber can only move left to (-1,2).

(2) C: The cop plays on (-2,3).

R: If the robber moves up, then he will be captured next turn

as he would be moving into a trap. If the robber moves down,

then he will be captured in 8 moves as the cop would play on

(-2,0). Thus, the robber moves left to (-2,2).

(3) C: The cop plays on (-3,2).

R: The robber can only move down to (-2,1).

(4) C: The cop plays on (-3,0).

R: The robber moves down to (-2,0) as his only other options

are moving left into a trap or right, both which result in him being

captured next turn.

(5) C: The cop plays on (-2,-1).

R: The robber can only move right to (-1,0).

(6) C: The cop plays on (-1,-1).

R: The robber can only move up to (-1,1).
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(7) C: The cop can play anywhere as he wins once it is the robber’s

turn as the robber is already captured.

The robber is captured in 10 moves and this concludes Case 1.1.
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Figure 5.2. Cop and robber’s moves in Case 1.1. The labels correspond
to the player’s turn number and location on the closest vertex up and to
the right. The cop’s first move C1 is not shown in the figure as it is
sufficiently far away from these vertices. The cop’s tenth move C10 is not
shown in the figure as it is irrelevant in the capture of the robber.

Case 1.2: The robber moved left to (-1,1). We will now start the

count again for the moves of the cop and robber.

(1) C: The cop plays on (-2,1).

R: If the robber moves down then the cop will play on (-2,-1)

and capture the robber in a total of 8 moves. Thus, the robber

moves up to (-1,2).

(2) C: The cop plays on (-2,3).

R: If the robber moves left, he will be captured next turn as

he would move into a trap. If the robber moves right, he will be
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captured next turn as the cop would play on (0,3). Thus, the

robber moves up to (-1,3).

(3) C: The cop plays on (-1,4).

R: The robber can only move right to (0,3).

(4) C: The cop plays on (1,4).

R: No matter where the robber moves, he will be captured

next turn. Thus, the robber moves down to (0,2).

(5) C: The cop can play anywhere as he wins once it is the robber’s

turn as the robber is already captured.

The robber is captured in 8 moves, thus, this is not an optimal strategy

for the robber and this concludes Case 1.2.
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Figure 5.3. Cop and robber’s moves in Case 1.2. The labels correspond
to the player’s turn number and location on the closest vertex up and to
the right. The cop’s first move C1 is not shown in the figure as it is
sufficiently far away from these vertices. The cop’s tenth move C8 is not
shown in the figure as it is irrelevant in the capture of the robber.

Case 1.1 and Case 1.2 have been resolved and thus, this concludes

Case 1.

Case 2: The robber moved left to (-1,0). We will now start the count

again for the moves of the cop and robber.

(1) C: The cop plays on (-2,0).

R: The robber can only move up and down and as these are

symmetric the robber moves up to (-1,1).

(2) C: The cop plays on (-2,2).
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R: If the robber moves left then he will be captured next turn

as he would move into a trap. If the robber moves right then the

cop would play on (1,2) and the robber would be captured in a

total of 7 moves. Thus, the robber moves up to (-1,2).

(3) C: The cop plays on (-1,3).

R: The robber can only move right to (0,2).

(4) C: The cop plays on (1,3).

R: If the robber moves down or up he will be captured next

turn. Thus, the robber moves right to (1,2).

(5) C: The cop plays on (2,2).

R: The robber can only move down to (1,1).

(6) C: The cop plays on (2,1).

R: The robber can only move left to (0,1).

(7) C: The cop can play anywhere as he wins once it is the robber’s

turn as the robber is already captured.

The robber is captured in 9 moves, thus, this is not an optimal strategy

for the robber and this concludes Case 2.
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Figure 5.4. Cop and robber’s moves in Case 2. The labels correspond
to the player’s turn number and location on the closest vertex up and
to the right. The cop’s first move C1 is not shown in the figure as it is
sufficiently far away from these vertices. The cop’s tenth move C9 is not
shown in the figure as it is irrelevant in the capture of the robber.

All the cases have been shown to result in 10 moves or less for the cop

to win. Therefore, WR
ct
(P∞�P∞) ≤ 10. �
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CHAPTER 6

Conclusion and Open Problems

In our final chapter, we summarize the results from the thesis and

present some open problems collected from the entire thesis. Recall that

we introduced the wall capture time of a graph G, written Wct(G), as

the least number of moves it takes for the cop to capture the robber in G

given that the cop and robber have both played their best strategies. We

also introduced that the wall cop number of a graph G, written Wc(G),

is the least number of cops it takes for the cops to capture the robber in

G given that the cops and robber have played their best strategies. Note

that every finite graph has wall cop number 1.

The table below gives a summary of the bounds on the above parame-

ters that were found for the various graph classes we studied throughout

the thesis.
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Graph Wct Wc

Tk with h(Tk) ≥ 3 and k ≥ 3 (k − 2)h(Tk)− k + 5 1

T∞,k Undefined k − 1

Qn for n ≥ 1 ≤ 2n−1 + n− 1 Open

H∞ 8 1

H∞,∞ Open ≤ 2

P∞�P∞ ≤ 14 1

P∞�P∞�Pn ≤ 44n2 + 6n+ 15 1

P∞�P∞�P∞ Open ≤ 2

△∞ ≤ 138 1

P∞ ⊠ P∞ ≤ 246 1

P∞ ⊠ P∞ ⊠ Pn Open ≤ n for n ≤ 14

P∞ ⊠ P∞ ⊠ Pn Open ≤ 14 for n ≥ 15

P∞ ⊠ P∞ ⊠ P∞ Open ≤ 14

6.1. Open Problems

We will now present some open problems.

(1) Tight lower bounds.

For most of the graph classes we have studied, we only have

an upper bound for the wall capture time or wall cop number.

To improve on our results, one could find tight lower bounds for
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these two parameters. It is important that these lower bounds be

tight in the sense that they equal the upper bounds.

(2) Wct(P∞�P∞�P∞).

This graph is the infinite-layered infinite Cartesian grid. It is

not known whether one cop can capture the robber on this graph.

We have shown in this thesis that two cops suffice. One would

want to prove that either one cop cannot capture the robber or

if one cop suffices, then determine how many moves would be

needed to capture the robber.

(3) Wct(P∞ ⊠ P∞ ⊠ P∞).

This graph is the infinite-layered infinite strong grid. It is not

known whether one cop can capture the robber on this graph. We

have shown in this thesis that 14 cops suffice. One would want

to prove that either one cop cannot capture the robber or if one

cop suffices, then determine how many moves would be needed to

capture the robber.

(4) Wct of other graph products.

In this thesis, we have studied the Cartesian and strong graph

products. There are 256 possible products, and some of the no-

table ones that we have not studied are the lexicographic, disjunc-

tion, and symmetric difference products [4].
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(5) Wall robber capture time and wall robber cop number for trees

and hypercubes.

All the graph classes we studied for the original game may

also be studied for Wall Cops and Wall Robbers. It would be

interesting to determine the wall robber capture time and wall

robber cop number for trees and hypercubes.
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