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Abstract

Vehicular ad hoc network (VANET) is a promising technique that improves traffic safety and

transportation efficiency and provides a comfortable driving experience. However, due to the rapid

growth of applications that demand channel resources, efficient channel allocation schemes are

required to utilize the performance of the vehicular networks. In this thesis, two Reinforcement

learning (RL)-based channel allocation methods are proposed for a cognitive enabled VANET envi-

ronment to maximize a long-term average system reward.

First, we present a model-based dynamic programming method, which requires the calculations

of the transition probabilities and time intervals between decision epochs. After obtaining the

transition probabilities and time intervals, a relative value iteration (RVI) algorithm is used to

find the asymptotically optimal policy. Then, we propose a model-free reinforcement learning

method, in which we employ an agent to interact with the environment iteratively and learn from

the feedback to approximate the optimal policy. Simulation results show that our reinforcement

learning method can acquire a similar performance to that of the dynamic programming while both

outperform the greedy method.
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Chapter 1

Introduction

1.1 Background

1.1.1 Cellular Network

Over the past few years, traditional cellular networks have been widely used for transmission of

voice, data, and other types of content. A cellular network is a communication network where the

last link is wireless. The network is distributed over land areas called “cells”, each served by at

least one fixed-location transceiver, but more normally three cell sites or base transceiver stations.

Figure 1.1: Structure of a three-tier heterogeneous cellular network.
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These base stations provide the cell with the network coverage which can be used for transmission

of all kinds of content. Figure 1.1 is the illustration of the structure of a three-tier heterogeneous

cellular network. A cell typically uses a different set of frequencies from neighboring cells, to

avoid interference and provide guaranteed service quality within each cell. Service based on a

cellular network such as long-term evolution (LTE)/LTE Advanced network, benefiting from its

large coverage area and centralized resource allocation, is capable of maintaining a long-distance

yet stable transmission. Based on the location of the base station, a cellular network can serve both

background users like all the residents in a residential community and vehicle users on the road.

1.1.2 Vehicular ad hoc Network

Vehicular ad hoc network (VANET), first mentioned and introduced in [1] under “car-to-car ad-hoc

mobile communication and networking” applications, where network can be formed and informa-

tion can be relayed among cars, is created by applying the principles of mobile ad hoc networks

(MANETs) – the spontaneous creation of a wireless network of mobile devices – to the domain of

vehicles [2]. We illustrate VANET in Figure 1.2. There are Roadside Units (RSUs) and On-Board

Units (OBUs) in the VANET system [3], [4], [5]. The RSU is a wave device usually fixed along the

Figure 1.2: Illustration of Vehicular ad hoc network.
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road side or in dedicated locations such as at junctions or near parking spaces. The RSU is equipped

with one network device for a dedicated short range communication based on IEEE802.11p radio

technology, and can also be equipped with other network devices so as to be used for the purpose

of communication within the infrastructural network. The OBU is also a wave device usually

mounted on-board a vehicle used for exchanging information with RSUs or with other OBUs.

VANET employs vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) to improve road safety

and driving experience. In V2V communications, vehicles communicate directly with the OBUs

on other vehicles or use other moving vehicles as relay nodes to increase transmission range and

transmission rate. In V2I communications, the vehicles can do uplink and downlink transmissions

when driving close to RSUs. This can provide a high transmission rate and minimal latency between

RSUs and vehicles [6].

1.1.3 Cognitive Radio

Cognitive Radio (CR) is an adaptive, intelligent radio and network technology that can automati-

cally detect available channels in a wireless spectrum and change transmission parameters enabling

more communications to run concurrently and also improve radio operating behavior [7]. When

combined with VANET, Cognitive Radio becomes the Cognitive enabled Vehicular ad hoc network

(CR-VANET). That is employed as a solution for overcoming the limitation of channel utilization at

RSUs. With CR-VANET, two types of users are defined—the licensed users on their own spectrum

bands, which are known as Primary users (PUs), and the unlicensed users that sense the idle

licensed spectrum (also called as spectrum holes, illustrated in Figure 1.3) and use the channel

opportunistically [8], which are known as Secondary users (SUs). We guarantee the priority of

PUs’ service requests in our work. And SUs, which have the lower priority, can only access the

idle channels when all PUs’ requests are satisfied. The network provides Quality-of-Service (QoS)

provision by the cooperation with the base station covering the RSU and vehicles.

1.2 Motivation and Objectives

For a cellular network, in urban scenarios such as intersections and highways, the transmission rate

will be seriously affected when the number of vehicle users becomes too large. VANET is proposed
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Figure 1.3: Opportunistic spectrum used by Secondary user.

as a solution to that problem. However, VANET still faces the problem of spectrum scarcity due to

the following reasons: 1) the ever-increasing infotainment applications and various service requests

demand a large amount of spectrum resource; 2) an RSU only has a limited number of channels to

allocate and thus cannot handle high vehicle density in urban areas. Moreover, some vehicles in the

system provide essential services related to public safety [9], such as police cars, fire trucks, and

ambulances. The services provided by those vehicles should have higher priority and more channel

resources. The channel allocation of RSUs in VANET must be fully utilized to satisfy these demands.

An efficient channel allocation scheme is seriously demanded to solve the aforementioned spectrum

scarcity and achieve channel resource utilization in VANET.

The main objectives of this research are to design a channel allocation scheme for RSUs in

CR-VANETs and solve the channel allocation problem to get the optimal allocation policy.
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1.3 Contributions

The related conference paper was accepted by 2019 IEEE Globecom Workshops (GC Wkshps):

IEEE GLOBECOM Workshop on Artificial Intelligence for Next-Generations Wireless Communica-

tions [10]. In our work, we formulate the channel resource management problem in CR-VANETs

as a Semi-Markov decision process (SMDP) and introduce two Reinforcement learning (RL)-based

channel allocation methods, i.e., a model-based dynamic programming method and a model-free

reinforcement learning method, to obtain an asymptotically optimal channel allocation policy and

maximize the long-term average system reward. Moreover, we compare two of our methods with

the Greedy method through simulations. The main contributions of this thesis are summarized as

follows.

1) We model the channel resource allocation of a single RSU in CR-VANETs as an SMDP and

propose a model-based dynamic programming method to find the asymptotically optimal

policy. Based on some assumptions, we degrade the SMDP into a continuous-time Markov

decision process (CTMDP) so that the Bellman equation can be used iteratively to calculate

the best policy. We use a relative value iteration (RVI) algorithm to conduct the calculation.

Besides, we focus on maximizing long-term average reward with our policies. In a decision-

making problem like the channel allocation, it may be preferable to compare policies on

the basis of their time-averaged expected reward rather than their expected total discounted

reward [11].

2) We propose a model-free reinforcement learning method to solve the channel allocation

problem without the need of any assumptions of the environment. This method employs

an agent to interact with the environment and learn from the feedback. With iterations of

exploring and updating its knowledge of the environment, the agent can obtain an optimal

channel allocation policy in the end. Since it is model-free and we just need to leave the agent

to explore the environment, the RL method can be used in many schemes where parameters

like the distribution of the users’ arrival could be different.

3) We make comparisons between the two proposed algorithms and the greedy algorithm. The

results show that our RL algorithm can achieve a similar performance to that of the RVI

5



algorithm, which is better than that of the greedy algorithm. Furthermore, we evaluate

the impact of various arrival rates and completion rates of service requests on the system

performance.

1.4 Related Work

1.4.1 Spectrum Resource Allocation Management

In recent years, there have been a lot of works studying CR-VANETs. Figure 1.4 presents a taxonomy

of recent advances in CR-VANTEs. [12] and [13] introduced coordinated spectrum sensing methods

for CR-VANETs to achieve better sensing precision and efficiency. The network architecture based

on cognitive vehicular networking was designed in [14] to provide wireless connectivity to both

the general public and emergency responders in emergency cases. The problem of route planning

was solved by studying TV band white space in CR based high-speed vehicle network in [15].

In [16], a peer-to-peer-based approach for content distribution in VANETs was proposed. In that

paper, vehicle users can exchange data and complement the missing packets for other users with

CR-based V2V communications. A distributed and adaptive resource management was proposed

for optimal exploitation of cognitive radio and soft-input/soft-output data fusion in vehicular access

networks [17] [18], in which the energy and computing limited car smartphones were enhanced

Figure 1.4: Recent advances in CR-VANETs.
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by offloading their traffic to the local or remote cloud.

Furthermore, some works study spectrum resource allocation management in CR-VANETs by

different methods including static optimization algorithms [19], [20], [21], [22] and dynamic

optimization algorithms [23], [24], [25], [26], [27], [28]. In [19], a generalized Nash Bargaining

solution was proposed to formulate the intercell resource allocation, and the convex optimization

approach was used to solve the problem. The authors in [20] transformed the dynamic spectrum

access into a convex bipartite matching problem by constructing a complete bipartite graph and

defining proper weight vectors. The branch and bound method was employed to analyze the

spectrum resource allocation optimization problem in [21]. A prediction-window-based channel

allocation algorithm was proposed in [22], by which the number of delivered video layers can be

chosen adaptively according to the relation between the data amount that the vehicle can receive

in the current time slot and that it is possible to obtain in future time slots. In [23], the spectrum

access process was modeled as a noncooperative congestion game, and a distributed algorithm was

devised to achieve Nash Equilibrium. Huang et al. used data mining to predict the channel with

the greatest probability of channel availability in [24]. The author in [25] formulated the access

of vehicles with access points as a finite-horizon sequential decision problem and solved it using

dynamic programming. In [26], a joint channel allocation and adaptive video streaming algorithm

were proposed and an auction mechanism was employed to solve the problem.

1.4.2 SMDP-based Resource Allocation

He et al. proposed a Semi-Markov decision process (SMDP)-based resource allocation scheme to

facilitate video streaming application in [27]. SMDP was also used in [28] to model the channel

allocation of an RSU in CR-VANETs, and relative value iteration was used to achieve the maxi-

mization of the expected overall system reward. Moreover, there are many existing works focusing

on resource allocation in vehicular cloud computing, mobile cloud networks, and software-defined

Internet of Things networks using an SMDP-based model [29], [30], [31], [32], [33].

1.4.3 Model-free Reinforcement Learning

All these planning algorithms mentioned above are model-based, which means the system models

need to be obtained before the execution of optimization. To simplify training the models, some

7



strong assumptions have to be made in the model-based planning methods. Without these assump-

tions, it might be difficult or even impossible to employ algorithms to solve these problems. The

model-free reinforcement learning method can be the perfect solution to that deficiency since it

needs no assumption about the transition probabilities. However, only a few articles have adopted

the RL method for resource allocation [34], [35], [36]. There is barely no reference using RL for

channel allocation in CR-VANETs to the best of our knowledge.

1.5 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we present our SMDP-based chan-

nel allocation scheme. Model-based dynamic programming, one of the two methods we propose

to solve the channel allocation problem, is introduced in Chapter 3. Chapter 4 introduces another

method to solve the channel allocation problem: model-free reinforcement learning method. Then

these two methods are compared with the greedy method in Chapter 5. Finally, the conclusions

and future work are presented in Chapter 6.
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Chapter 2

SMDP-based Channel Allocation Scheme

2.1 Introduction

Due to some defects of vehicular ad hoc networks, an efficient channel allocation scheme for RSUs

is needed to solve the spectrum scarcity and achieve channel resource utilization. We model our

system environment as a Semi-Markov decision process (SMDP) [37] which is a special case of the

Markov decision process (MDP).

An MDP is a discrete time stochastic control process [38]. It provides a mathematical framework

for modeling decision making in situations where outcomes are partly random and partly under

the control of a decision maker. MDPs are useful for studying optimization problems solved via

dynamic programming and reinforcement learning. Markov decision processes are an extension

of Markov chains; the difference is the addition of actions (allowing choice) and rewards (giving

motivation). Conversely, if only one action exists for each state (e.g. ”wait”) and all rewards are

the same (e.g. ”zero”), a Markov decision process reduces to a Markov chain. Figure 2.1 describes

the Markov decision process. At each step during the process, the decision maker may choose to

take an action available in the current state, resulting in the model moving to the next step and

offering the decision maker a reward.

In discrete-time Markov Decision Processes, decisions are made at discrete time intervals. How-

ever, for continuous-time Markov decision processes (CTMDP) [39], decisions can be made at

any time the decision maker chooses. In comparison to discrete-time Markov decision processes,

continuous-time Markov decision processes can better model the decision making process for a

system that has continuous dynamics, i.e., the system dynamics is defined by partial differential

equations (PDEs).

9



Figure 2.1: Markov decision process.

Semi-Markov decision processes, first introduced by Jewell [40] and De Cani [41], is a special

case of continuous-time Markov decision processes where the sojourn time in a state is a continuous

random variable with distribution depending on that state and the next state. Figure 2.2 contains

dynamic diagrams representations of the Semi-Markov decision processes.

In this chapter, we present our SMDP-based channel allocation scheme. First, we introduce the

system model in Section 2.2. Then, we model the process as an SMDP and give detailed information

Figure 2.2: a) Structure of semi-Markov decision process. b)Structure of partially observable semi-Markov decision process.
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about elements in the SMDP in Section 2.3. Section 2.4 describes the formulation of our problem

and the objective of this thesis. A summary of this chapter is presented in Section 2.5.

2.2 System Model

We illustrate the channel allocation system as shown in Figure 2.3. In our system, we employ N

RSUs along a straight road, each of which has a coverage diameter of dR, where R ∈ {1, ..., N}.

All RSUs and users are under one base station’s coverage so that users in the system can always

transmit and receive data either from the adjacent RSU or the base station. We assume that one

RSU has K channels to allocate. The number of channels allocated to one service is denoted by c,

where c ∈ {1, ..., C}, C ≤ K. Thus, C is the maximum number of channels that can be allocated

to one service. We assume that one channel can meet the minimum service requirement of any

services, while more channels allocated mean higher transmission rate of that service request, and

bring higher user satisfaction.

Primary User Secondary User Base Station RSU

Figure 2.3: System model of cognitive enabled VANET.
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The reason why we select VANET as our environment for resource allocation is that we want

to test our methods under high arrival rates. In a dynamic system like VANET, the arrival rate of

vehicle users is usually high so that we can get a better view of our methods.

The system has two types of users: 1) Primary Users: Primary users are vehicles such as

emergency vehicles and mobile studio vehicles. These users have priority to transmit data in the

licensed spectrum bands. 2) Secondary Users: Secondary users are vehicles that can only use

primary band when there are available empty channels. The principles of channel allocations for

these two kinds of users are introduced below.

When a vehicle enters the coverage of an RSU and plans to request service from RSU, the

RSU will detect the type of the vehicle user and decide whether to accept the request or reject

it based on channel resources availability. If the request is from the secondary user, RSU will

accept the SU request as long as there are empty available channels. The number of channels that

are allocated to that service request should be decided by the RSU. More channels mean higher

transmission rate, which means more satisfaction income from that user. However, accepting that

user’s service request with more channels means less available channels for other incoming users.

So the RSU should make good decisions to optimize the channel allocation problem. The request

will be rejected if all channels of this RSU are busy. Thus, once an SU request arrives, the RSU

will accept it and allocate available channels to the service or reject it. If the request is from the

primary user, the RSU will always guarantee the priority of primary users. So the RSU will always

accept the PU requests whether there are available channels or not. When there are idle channels,

the RSU will allocate a certain number of channels to the PU service. The number should also be

decided by the RSU. Otherwise, the RSU will stop a certain number of SU services to offer channels

for that PU request when there is no empty channel. Those SU services will be transferred to the

base station. And here the decision of the number should also be optimized by the RSU. There

is a tradeoff between the transmission rate and the transferring cost for those SU services. The

flowchart describing the above process is shown in Figure 2.4. The notations and variables used in

this thesis are listed in Table 2.1.

When all of the channels are busy, since the system always provides the channel resources to

primary users, we may need to transfer SU’s service which occupying the RSU channels to the base

station or shrink channels of another PU service. Figure 2.5 gives examples of channel allocation
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Figure 2.4: Flowchart of channel allocation process.

when channels are busy. When a request from a primary user arrives in (a), one or more services for

Figure 2.5: Channel allocation when channels are busy.
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Table 2.1
LIST OF NOTATIONS AND VARIABLES

Symbol Description

K The maximum number of channels at one RSU

C The maximum number of channels that can be allocated to one service

c The number of channels that is allocated to one service

npc The number of PU services allocated with c channels

nsc The number of SU services allocated with c channels

Ap The arrival event of a PU service

As The arrival event of an SU service

Fpc The completion event of a PU service with c channels

Fsc The completion event of a PU service with c channels

Rs The user income when an SU service request is accepted

Rp The user income when a PU service request is accepted

Rt The transmission cost for occupying one channel

Et The transfer cost for one SU service

Ut The dropping cost for one channel

λp The arrival rate of PU service requests

λs The arrival rate of SU service requests

µp The completion rate of PU service requests

µs The completion rate of SU service requests

µd The completion rate of one vehicle associating with the RSU

SUs determined by SMDP policy will be transferred to the base station with certain cost to accept

the priority request, which is shown in (b). Then, in some extreme scenarios, when all channels

are occupied by primary users and a new primary user arrives, the system will find the service

occupying two or more channels and shrink it to accept a new request, which is illustrated in (c).

Besides, in the scenario where every single channel is occupied by one primary user, the next event

won’t be the arrival of a primary user.

2.3 SMDP Model

We model the channel allocation process as a generic SMDP. In this SMDP, the distribution of the

time to the next decision epoch and the state at that time depend on the past. The dependence is
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only through the state and action chosen at the current decision epoch. Generally, an SMDP can be

represented as a 5-tuple {ti, S, A, q, r}, where ti, i ∈ N (N denotes the set of non-negative integers)

is a decision epoch; S is the state space; A is the action space; q is the transition probability; and r

is the reward function.

2.3.1 Decision Epoch

In an SMDP, the time interval between two adjacent decision epochs can be a duration within

[0,∞], so that it can process service requests flexibly and promptly compared with a discrete-time

MDP.

2.3.2 State Space

An SMDP is one type of decision processes other than a natural process. Unlike a natural process

that models the state evolution of a system as if it were observed continually throughout time, a

decision process represents the evolution of a system at decision epochs only. The timeline of the

considered SMDP is illustrated in Figure 2.6. Vertical bars represent the time instants of event

occurrence. Solid dots represent the time instants of action execution. A decision-making state is

observed after an event occurs and before an action is taken. In the SMDP model, we only concern

the decision-making states which consist of conventional states and events at the decision epochs.

There are three components of the system state. The first two components are channels allocated to

two types of services, denoted as np = [np1, ..., npC ]T and ns = [ns1, ..., nsC ]T , where npc represents

……t3t2t1t0

Figure 2.6: Timeline of the SMDP.
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Algorithm 1 Searching all the states

1: Initialize state set S = ∅.
2: For all e ∈ {Ap, As, Fpc, Fsc, Fpm, Fsm}
3: for nsc1 = 0 : K do
4: for nsc2 = 0 : K−nsc1

2 do
5: for npc1 = 0 : K − nsc1 − 2nsc2 do
6: for npc2 = 0 : K−nsc1−2nsc2−npc1

2 do
7: S ← {s|s = 〈nsc1, nsc2, npc1, npc2, e〉}.
8: end for
9: end for

10: end for
11: end for
12: Return S is the state set for all states s.

the number of PU services assigned with c channels and nsc represents the number of SU services

allocated with c channels. Obviously, npc and nsc have to satisfy

C∑
c=1

[c(npc + nsc)] ≤ K. (2.1)

The third component of the system state, denoted as e, where e ∈ {Ap, As, Fpc, Fsc, Fpm, Fsm},

is the system event. The events Ap and As represent the arrival events of a PU service request

and an SU service request respectively. The elements Fpc and Fsc stand for the events that PU and

SU services with c channels are completed or handed over. The event of handed over means that

the services are handed over from one RSU to its base station or another RSU since the users are

out of the RSU’s coverage area. The elements Fpm and Fsm indicate the events that PU and SU

services with m channels are completed or handed over, where “m channels” is a specific case of “c

channels”. We will discuss what this m stands for later in the state transition probabilities part of

Chapter 3. Therefore, a system state can be formulated as s = 〈ns,np, e〉. The system state space

can be represented as

S = {s|s = 〈ns,np, e〉}. (2.2)

We present an algorithm to search all the states s of the finite state space S. The algorithm is

introduced in Algorithm 1. We use the maximum number of channels that can be allocated to one

service C = 2 as an example.
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2.3.3 Action Space

When a new request occurs in the system, the system must choose the following actions. When the

arrival event of an SU request occurs:

a〈ns,np,As〉 =


(s,m) accepts it with m channels

0 rejects it.

(2.3)

When the arrival event of a PU request occurs, the system will always accept the PU request. So

the action of accepting the PU request with m channels is:

a〈ns,np,Ap〉 = (p,m,T ) (2.4)

where T = [T1, T2, ..., TC ]T is the transfer vector for SUs. Here Tc stands for the number of SU

services allocated with c channels being transferred to the base station in order to offer the channel

space for PU service. It can be seen that Tc has to satisfy

C∑
c=1

cTc ≤ K (2.5)

where c ∈ {1, ..., C}.

Once an ongoing service is completed, the channels will be released. Such action is denoted as

a〈ns,np,F 〉 = −1, where F ∈ {Fpc, Fsc, Fpm, Fsm} is any completion event.

The action space is the set of all actions, as follows:

A = {a〈ns,np,As〉, a〈ns,np,Ap〉, a〈ns,np,F 〉}. (2.6)

We propose another algorithm to search a set of all the possible actions A for the finite state

space S. The algorithm description is stated in Algorithm 2.
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Algorithm 2 Searching all the available actions

1: Initialize action sets A, A1, A2, A3 = ∅.
2: Set X ← {s|e(s) =∈ {Fpc, Fsc, Fpm, Fsm}}, Y ← {s|e(s) = As}, Z ← {s|e(s) = Ap}, c = 1, ..., C.

Ensure that
∑C
c=1[c(npc + nsc)] ≤ K for state s.

3: if s ∈ X then
4: A1 ← {a|a = −1}.
5: else if s ∈ Y then
6: for m = 0 : C do
7: Ωs ← {s|

∑C
c=1[c(npc + nsc)] +m ≤ K}.

8: if s ∈ Ωs and m 6= 0 then
9: A2 ← {a|a = 〈s,m〉} ∪A2.

10: else
11: A2 ← {a|a = 0} ∪A2.
12: end if
13: end for
14: else if s ∈ Z then
15: for m = 1 : C do
16: Ωp ← {s|

∑C
c=1[c(npc + nsc)] +m ≤ K}.

17: if s ∈ Ωp then
18: A3 ← {a|a = 〈p,m, 0〉} ∪A3.
19: else
20: Find all possible T that

∑C
c=1[c(nsc−Tc+npc)]+m ≤ K, where Tc ≤ nsc, c = 1, ..., C.

21: A3 ← {a|a = 〈p,m,T 〉} ∪A3.
22: end if
23: end for
24: end if
25: Return A = A1 ∪A2 ∪A3, A is the possible action set for state s.

2.3.4 Transition Probabilities

The term q(t, j|s, a) can represent the transition probability that next decision epoch whose system

state is j occurs at or before time t. The state transition probability P (j|s, a) and the expected

time interval between two adjacent decision epochs τ(s, a) can be obtained based on q(t, j|s, a), as

follows:

P (j|s, a) =
∫ ∞
t=0

dq(t, j|s, a) (2.7)

τ(s, a) =
∑
j∈S

∫ ∞
t=0

tdq(t, j|s, a). (2.8)

In practice, P (j|s, a) and τ(s, a) need to be trained using the data collected from the system

environment.
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2.3.5 Reward Model

The reward function consists of two parts: users income i(s, a) and system cost c(s, a). Then the

reward function can be formulated as:

r(s, a) = i(s, a)− c(s, a). (2.9)

The system will lose secondary user’s satisfaction income if the service is rejected. When the

service is accepted, the completion time of the service will be less if more channels are assigned

to this service, so the transmission cost for occupying the channels will be less. If SU services

are handed over to base station when a PU service is accepted, there will be additional costs for

transferring the SU services and dropping the channels. So i(s, a) can be defined as follows:

i(s, a) =



0, a = −1

−Rs, a = 0

Rs −Rt/m, a = (s,m)

Rp −Rt/m−
∑C
c=1 TcEt a = (p,m,T )

−
∑C
c=1 cTcUt,

(2.10)

where Rs and Rp stand for the user satisfaction income for SU and PU respectively. Rt is the

transmission cost for occupying one channel. Et is the transfer cost for one SU service and Ut is the

dropping cost for one channel.

Then system cost c(s, a) can be defined as:

c(s, a) = τ(s, a)o(s, a) (2.11)

where τ(s, a) is the time interval and o(s, a) is the cost rate of the system, which is determined by

the total number of occupied channels

o(s, a) =
C∑
c=1

c(nsc + npc). (2.12)
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2.4 Problem Formulation

We formulate this channel allocation problem as an infinite-horizon average Semi-Markov decision

problem in this thesis. We focus on the expected long-term average reward, which can be defined

as [11]

gπ(s0) = lim
N→∞

Eπs0

{∑N
m=0

[
i(sm, am)− τmo(sm, am)

]}
Eπs0

{∑N
m=0 τm

} (2.13)

where s0 is the starting state and π is the policy we follow, sm and am refer to the state and

action at the decision epoch m, τm is the time interval between the mth and (m + 1)th decision

epoch. In this thesis, we assume that for every stationary policy, the embedded Markov chain has

a unichain transition probability matrix (i.e., every stationary deterministic policy π̄, which is a

mapping π̄ : S → A, has a single recurrent class plus a possibly empty set of transient states).

Under this assumption, the expected average reward of every stationary policy does not vary with

the initial state, namely gπ = gπ(s0), for all s0 ∈ S [11].

Using the above average reward instead of other metrics, e.g., system throughput, we adopt the

perspective of the users while finding the optimal policy. By doing so, we take user satisfaction and

fairness into account.

The objective of this thesis is to find an optimal policy π∗ to maximize the long-term average

reward

π∗ ∈ arg max
π

gπ. (2.14)

2.5 Summary

In this chapter, an efficient channel allocation scheme for RSUs in CR-VANET is proposed. Then an

SMDP model is designed to formulate the channel allocation process. In addition, the objectives of

this thesis, which are finding the optimal policy for our channel allocation problem and maximizing

the long-term average system reward, are presented in the problem formulation section.
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Chapter 3

Model-based Dynamic Programming Method

3.1 Introduction

Chapter 2 introduces our SMDP-based channel allocation scheme. It only describes our SMDP

model and our aims of this problem. We still need methods to solve this channel allocation problem.

In this chapter, we present our first method to solve the SMDP: a model-based planning method

which is called dynamic programming.

Dynamic Programming is a method for solving a complex problem by breaking it down into a

collection of simpler subproblems, solving each of those subproblems just once, and storing their

solutions using a memory-based data structure (array, map, etc). Each of the subproblem solutions

is indexed in some way, typically based on the values of its input parameters, so as to facilitate

its lookup. The next time the same subproblem occurs, instead of recomputing its solution, one

simply looks up the previously computed solution, thereby saving computation time. This technique

of storing solutions to subproblems instead of recomputing them is called memoization. If sub-

problems can be nested recursively inside larger problems, so that dynamic programming methods

are applicable, then there is a relation between the value of the larger problem and the values of

the sub-problems [42] [43]. In the optimization literature, this relationship is called the Bellman

equation.

We illustrate the schematic of our model-based planning method in Figure 3.1. First, the

state transition probabilities and the expected time intervals between decision epochs of the SMDP

model are trained using the data collected from the environment. Then the planning algorithm is

leveraged to find an optimal channel allocation policy. Generally, the model-based planning method

can be closed-loop, i.e., the model is continuously being trained during the system operation so that
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Figure 3.1: Schematic of model-based planning method.

the policy can be adaptively improved according to the change of the environment [35].

In this chapter, the proposed dynamic programming method is introduced in detail. We first

present the optimization formulation of the SMDP and then degrade the SMDP to CTMDP to

simplify the model and solve the planning for the control problem in Section 3.2. Next, we

calculate the state transition probabilities that have a significant effect on deriving the optimal

policy in Section 3.3. Then a relative value iteration algorithm is provided in Section 3.4 to solve

the CTMDP. Finally, Section 3.5 summarizes this chapter.

3.2 Optimization Formulation and Degradation

The maximum long-term average reward can be obtained by the Bellman optimality equation:

v(s) = max
a∈A

{
r(s, a)− g∗τ(s, a) +

∑
j∈S

P (j|s, a)v(j)
}
∀s ∈ S (3.1)

where g∗ is the average reward under an optimal policy π∗, r(s, a) denotes the expected reward

function. We can see from the Bellman equation that once we know the state transition probabilities

P (j|s, a) and expected time interval between two adjacent decision epochs τ(s, a), we can employ

a dynamic programming algorithm (such as value iteration algorithm or policy iteration algorithm)

to find the optimal policy that maximize v(s).
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To simplify the model, we assume that both users arrive with Poisson distribution, with mean

rates λp for primary users and λs for secondary users. The residence time for one vehicle associated

with one RSU follows the exponential distribution with the parameter of µd. And the service

operating time follows an exponential distribution with the parameters of cµp, cµs if c channels

are assigned to that PU or SU service, respectively. These assumptions are reasonable in certain

scenarios according to some practical measurements [44]. Under these assumptions, the time

interval between two adjacent decision epochs follows the exponential distribution. The SMDP

proposed above can be degraded to CTMDP.

3.3 State Transition Probabilities

Suppose that the system is at the state s, and an action a is selected at the current state, then

the system will transit to the new state j. The time duration from these two continuous decision

epochs is denoted by τ(s, a). Since the system model is a CTMDP now, from any state-action pair

(s, a), the time intervals to all the next service request arrivals and ongoing service completions or

being handed over are assumed to be independent exponential variables. The expected value of the

minimal time interval is namely the expected time interval τ(s, a). Therefore, the mean occurrence

rate γ(s, a) of event for a state-action pair (s, a) is the summation of the rates of all events in the

system, which is the reciprocal of τ(s, a)

γ(s, a) = 1
τ(s, a) . (3.2)

In order to get the specific expression of the event occurrence rate for every available state-action

pair, we present the following proposition.

Proposition 1. Suppose that X1, X2, ..., Xn are independent exponential variables, with Xi having

parameter φi, i = 1, 2, ..., n. It turns out that the minimum of Xi is an exponential random variable

with a parameter equal to the sum of the φi.
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Proof: Since

P{min(X1, ..., Xn) > x} = P{Xi > x for each i = 1, ..., n}

=
n∏
i=1

P{Xi > x} (by independence)

=
n∏
i=1

e−φix = exp
{
−
(

n∑
i=1

φi

)
x

}

the cumulative distribution function of random variable X = min(X1, ..., Xn) is

FX(x) = 1− exp
{
−
(

n∑
i=1

φi

)
x

}
.

Therefore, the minimum of Xi is an exponential random variable with a parameter equal to

(
∑n
i=1 φi).

According to Proposition 1, the time interval from state-action pair (s, a) to the first event

occurrence among the service request arrivals and the ongoing service completions follows an

exponential distribution with parameter γ(s, a). Using Proposition 1 with {φi} substituted by

{λp, λs} and {µp, µs, µd}, the mean rate γ(s, a) of events can be expressed as

γ(s, a) =



γ0(s, a) + (mµs + µd), e = As a = (s,m)

γ0(s, a)−
∑C
c=1 Tc(cµs + µd) e = Ap a = (p,m,T )

+(mµp + µd),

γ0(s, a), others

(3.3)

where γ0(s, a) can be further denoted by

γ0(s, a) = λp + λs +
C∑
c=1

[nsc(cµs + µd) + npc(cµp + µd)] (3.4)

where λp and λs are the arrival rates for PUs requests and SUs requests, respectively. The comple-

tion rates for one PU service and SU service which is allocated with c channels are cµp and cµs. The

hand-off rate for one service is µd.

24



When a PU or SU service is completed, or a SU service is rejected by the network, there

exists
∑C
c=1(nsc + npc) services in the system, then the completion rate of all these services is∑C

c=1(cµsnsc + cµpnpc), and the hand-off rate is
∑C
c=1 µd(nsc + npc).

When an SU service is accepted with m channels, the number of the services in the system will

increase by one, the completion rate and hand-off rate will increase by mµs and µd respectively.

When a PU service is accepted with m channels, and
∑C
c=1 Tc of SU services allocated with c

channels are transferred to the base station, the number of services in the system will increase

by 1 −
∑C
c=1 Tc. The completion rate and hand-off rate will increase by mµp −

∑C
c=1 cTcµs and

µd −
∑C
c=1 Tcµd, respectively.

Now that the mean rate of events is derived, the state transition probability P (j|s, a) can be

calculated according to the following proposition.

Proposition 2. Suppose X1 and X2 are two independent exponential variables with respective param-

eters φ1 and φ2. Then

P (X1 < X2) = φ1
φ1 + φ2

.

Proof: Since the random variables X1 and X2 are independent, the joint probability density func-

tion is

f(x1, x2) = φ1e
−φ1x1 · φ2e

−φ2x2 .

Then

P (X1 < X2) =
∫ ∞

0

∫ x2

0
f(x1, x2) dx1 dx2 = φ1

φ1 + φ2
.

For the current state s = 〈ns,np, e〉, where e ∈ {Fpc, Fsc} and the action a = -1, the next state

may be one of the following states:



j1 = 〈ns,np, As〉

j2 = 〈ns,np, Ap〉

j3 = 〈ns,np − Ic, Fpc〉

j4 = 〈ns − Ic,np, Fsc〉

(3.5)
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where the vector Ic represents a vector with C elements, where the c-th element is 1, and others

are 0. P (j|s, a) can be obtained as

P (j|s, a) =



λs
γ(s,a) , j = j1

λp

γ(s,a) , j = j2

npccµp+npcµd

γ(s,a) , j = j3

nsccµs+nscµd
γ(s,a) , j = j4.

(3.6)

For the current state s = 〈ns,np, As〉 and the action a = 0, the next state will be one of the

following states: 

j1 = 〈ns,np, As〉

j2 = 〈ns,np, Ap〉

j3 = 〈ns,np − Ic, Fpc〉

j4 = 〈ns − Ic,np, Fsc〉

(3.7)

The transition probabilities P (j|s, a) are:

P (j|s, a) =



λs
γ(s,a) , j = j1

λp

γ(s,a) , j = j2

npccµp+npcµd

γ(s,a) , j = j3

nsccµs+nscµd
γ(s,a) , j = j4.

(3.8)

For the current state s = 〈ns,np, As〉 and the action a = (s,m), the next state will be one of the
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following states: 

j1 = 〈ns + Im,np, As〉

j2 = 〈ns + Im,np, Ap〉

j3 = 〈ns,np, Fsm〉

j4 = 〈ns + Im,np − Im, Fpm〉

j5 = 〈ns + Im − Ic,np, Fsc〉

j6 = 〈ns + Im,np − Ic, Fpc〉

(3.9)

where Im, similar to Ic, indicates a vector with C elements, where the m-th element is 1, and

others are 0 with m ∈ {1, ..., C}. The events Fsm and Fpm here are special cases where a service

allocated with m channels is completed while the next coming event is an arrival event and that

service is allocated with the same number of channels, where the number c ∈ {1, ..., C} and c 6= m.

P (j|s, a) can be obtained as

P (j|s, a) =



λs
γ(s,a) , j = j1

λp

γ(s,a) , j = j2

(nsm+1)(mµs+µd)
γ(s,a) , j = j3

npm(mµp+µd)
γ(s,a) , j = j4

nsc(cµs+µd)
γ(s,a) , j = j5

npc(cµp+µd)
γ(s,a) , j = j6.

(3.10)

For the current state s = 〈ns,np, Ap〉 and the action a = (p,m,T ), the next state will be one of
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the following states: 

j1 = 〈ns − T ,np + Im, As〉

j2 = 〈ns − T ,np + Im, Ap〉

j3 = 〈ns − T − Im,np + Im, Fsm〉

j4 = 〈ns − T ,np, Fpm〉

j5 = 〈ns − T − Ic,np + Im, Fsc〉

j6 = 〈ns − T ,np + Im − Ic, Fpc〉

(3.11)

where T = [T1, T2, ..., TC ]T is the transfer vector for SUs. P (j|s, a) can be obtained as

P (j|s, a) =



λs
γ(s,a) , j = j1

λp

γ(s,a) , j = j2

(nsm−Tm)(mµs+µd)
γ(s,a) , j = j3

(npm+1)(mµp+µd)
γ(s,a) , j = j4

(nsc−Tc)(cµs+µd)
γ(s,a) , j = j5

npc(cµp+µd)
γ(s,a) , j = j6.

(3.12)

3.4 Relative Value Iteration Algorithm

We can directly iterate the Bellman optimality equation to get the optimal policy that gives us

the maximum v(s) in a discrete-time MDP since the event occurrence rate γ(s, a) is identical for

every state-action pair (s, a). However, what we have is a continuous-time MDP. Therefore, the

uniformization transformation of event occurrence rate should be added to apply the algorithm

of the discrete-time MDP to the CTMDP. To realize the uniformization, we should uniformize the

event occurrence rates of all state-action pairs by adding extra fictitious decisions. The method is

introduced as follows.

For all s ∈ S and a ∈ A, the uniform constant event occurrence rate ω has to satisfy the follow
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inequality:

[1− P (s|s, a)]γ(s, a) ≤ ω. (3.13)

We set ω as follows:

ω = λp + λs +
C∑
c=1

[
K

c

]
c(µp + µs) +

C∑
c=1

[
K

c

]
µd. (3.14)

Thus, the uniformed reward function r̃(s, a) and uniformed transition probability P̃ (s, a) are de-

noted as

r̃(s, a) = r(s, a)γ(s, a)
ω

(3.15)

g̃ = g∗

ω
(3.16)

P̃ (j|s, a) =


1− [1−P (s|s,a)]γ(s,a)

ω , j = s

P (j|s,a)γ(s,a)
ω , j 6= s.

(3.17)

Therefore, the Bellman equation can be rewritten as

ṽ(s) = max
a∈A

{
r̃(s, a)− g̃ +

∑
j∈S

P̃ (j|s, a)ṽ(j)
}
∀s ∈ S. (3.18)

Since we have the uniform Bellman equation for our SMDP, we can apply a relative value iteration

to solve the Bellman equation as shown in Algorithm 3. It conducts an exhaustive sweep over the

whole state space at each step. An asymptotically optimal policy can be obtained by iteratively

calculating the state value of the Bellman optimality equation [45]. Compared with the value

iteration, the relative value iteration offers a much faster rate of convergence by substracting a

constant after each iteration. Let Φ(v) represent the span of vector v, which is defined as follows

Φ(v) = max
s∈S

v(s)−min
s∈S

v(s) (3.19)

where v represents the vector whose elements are the values of all states. In the result, the relative
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Algorithm 3 RVI Algorithm

1: Initialize v0(s) = 0 for all states, choose a fixed state k∗, specify a small constant ε > 0, and set
i = 0.

2: For all s ∈ S, calculate vi+1(s) as follows:

vi+1(s) = max
a∈A

{
r̃(s, a)− vi(k∗) +

∑
j∈S

P̃ (j|s, a)vi(j)
}

3: if Φ(vi+1 − vi) < ε then
4: i = i+ 1 and back to step 2.
5: else
6: For all s ∈ S, choose an ε-optimal policy as follows:

dε(s) ∈ arg max
a∈A

{
r̃(s, a)− vi(k∗) +

∑
j∈S

P̃ (j|s, a)vi(j)
}

7: end if

value iteration algorithm can obtain a vector of decision rules dε(s) that constitutes the optimal

policy π∗.

3.5 Summary

In this chapter, we present a model-based dynamic programming method to solve our channel

allocation problem. First, we introduce the Bellman equation and make some assumptions to

degrade the SMDP model to CTMDP. Then state transition probabilities are calculated for each

state action pair. Besides, an algorithm called RVI is applied to conduct the iterations of the Bellman

equation. Since it is a model-based method, the algorithm can obtain the optimal policy within a

short period with the knowledge of the system environment. After calculating the best policy, the

system can get a better performance compared to model-free method by following the best policy.
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Chapter 4

Model-free Reinforcement Learning Method

4.1 Introduction

Reinforcement learning is an area of machine learning concerned with how software agents ought

to take actions in an environment so as to maximize some notion of cumulative reward. This is

accomplished by assigning rewards and punishments for agents’ actions based on the temporal

feedback obtained during the path of interactions of the learning agents with dynamic systems.

Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised

learning and unsupervised learning. It differs from supervised learning in that labeled input/output

pairs need not be presented, and sub-optimal actions need not be explicitly corrected. Instead,

the focus is finding a balance between exploration (of uncharted territory) and exploitation (of

current knowledge) [46]. The main difference between the classical dynamic programming meth-

ods and reinforcement learning algorithms is that the latter does not assume knowledge of an

exact mathematical model of the MDP and they target large MDPs where exact methods become

infeasible [47] [48].

We make assumptions about the arrivals and operating times of two types of users to simplify

the model in Chapter 3. However, these assumptions may not be valid for all scenarios in prac-

tice [49]. Therefore, the policy obtained from the model-based dynamic programming method is

not necessarily optimal. We need a more practical, more general, and more intelligent method to

solve this SMDP. Thus, we introduce a model-free reinforcement learning method to solve the

channel allocation problem in this chapter. This method doesn’t need the calculation of state

transition probabilities and the expected time intervals between adjacent decision epochs. The

working principle of reinforcement learning is first introduced in Section 4.2 and then we present
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an average reward RL algorithm to obtain the optimal policy in Section 4.3. Section 4.4 is the

summary of this chapter.

4.2 Working Principle

We illustrate the reinforcement learning model in Figure 4.1. Any RL model basically contains 4

elements which are the environment, the agent, a set of actions, and the environmental response.

The environment is typically formulated as a Markov decision process, as many reinforcement

learning algorithms for this context utilize dynamic programming techniques [47] [48] [50]. There

is a learning algorithm and a knowledge base inside the agent. The learning algorithm gathers the

environmental response after the agent takes an action, and it derives information about the new

state and the immediate reward, which can be used to update the knowledge base and select the

next action. The knowledge base resembles a library that stores the experience data. The data could

be tabular action values (Q learning), the weights of artificial neural networks (Deep Q learning),

or the weights of linear function, etc. Knowledge bases for Q learning and Deep Q learning are

Environ

ment

Learning

Algorithm

Knowledge

Base

Fetch Update

Reward

Agent

State Action

Figure 4.1: Reinforcement learning model.
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Figure 4.2: Two kinds of knowledge base.

illustrated in Figure 4.2. In this thesis, we consider that the knowledge base is made up of a table

that stores the action value of each state-action pair. Initially, the action values for all state-action

pairs are assigned arbitrary equal values (e.g., zeros). When the system visits a state for the first

time, a random action will be selected since all the action values are equal. Then the environment

will respond to the action, namely output the new state and immediate reward to the agent. The

agent perceives the environmental response, updates the action value for that original state-action

pair, and selects a new action based on the action values for the new state stored in the table. This

completes one step in the iteration process. As this process repeats, the learning agent continues to

improve its performance.

Let Q∗(s, a) be the expected average adjusted value of taking action a at state s, and then

continuing infinitely by choosing actions optimally. Then the value function v(s) of state s when

the initial action is also optimal can be written as v(s) = maxa∈As Q
∗(s, a). The average reward
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Bellman optimality equation for the SMDP (3.1) can be rewritten in action value form as

Q∗(s, a)= r(s, a)−g∗τ(s, a) +
∑
j∈S

P (j|s, a) max
b∈Aj

Q∗(j, b) ∀s ∈ S. (4.1)

Then we have π∗(s) = arg maxa∈As Q
∗(s, a) as an optimal policy. The value of the state-action pair

(s, a) visited at the mth decision epoch is updated iteratively by the following equation [11]:

Qm+1(s, a) = Qm(s, a) + αm

{
r(s, a, j)− gmτ(s, a, j) + [max

b∈Aj

Qm(j, b)−Qm(s, a)]
}

(4.2)

where αm is the learning rate of themth decision epoch. r(s, a, j) is the cumulative reward between

two decision epochs whose states are s and j, respectively. The term gm is the average reward until

the mth decision epoch, and τ(s, a, j) is the actual sojourn time between those two decision epochs.

We update the action value with the rate of αm (αm should be a properly set small positive value

to avoid learning path divergence) to the direction of the difference between the maximum action

value of the new state and the original action value for that state-action pair at each iteration. As

the process goes, the states continue to be revisited and consequently, the agent refines the action

values and the corresponding decision making process. Finally, the algorithm will converge to the

optimality.

For a random state s ∈ S, the agent can choose an action a∗ satisfying a∗ ∈ arg maxa∈As Qm(s, a).

This is called greedy policy. However, when the agent has no knowledge of the system initially,

choosing the greedy actions all the time means it will miss some potentially beneficial actions

which have more future rewards. Therefore, sometimes, the agent chooses an action other than

that suggested by the greedy policy. This is called exploration. This will help the system ensure that

all possible states are visited. The most common exploration method is the ε-greedy exploration,

where all actions are tried with non-zero probabilities. The agent chooses the greedy action with

probability 1−ε and chooses an action at random with probability ε. In this thesis, the learning rate

αm, the exploration probability εm and the average reward update βm at the mth decision epoch

are decayed slowly to 0 according to a Darken-Chang-Moody search-then-converge procedure [51]

as follows

Θm = Θ0
1 + u

(4.3)
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Algorithm 4 SMART

Initialization:
1: Let the count of decision epoch m = 0. For all s ∈ S and a ∈ A, initialize action values
Q0(s, a) = 0. Set the cumulative reward R = 0, the total time T = 0 and the initial average
reward g0 = 0. The DCM scheme is used to select the learning rate α0, αω, the exploration
probability ε0, εω and the average reward updating rate β0, βω. Select the initial state s and
initial action a arbitrarily. Set the immediate reward r(s, a, j) = 0, the time interval τ(s, a, j) =
0 and the learning time t = 0. Let the maximal learning time be Tmax.

Execution:
2: while t < Tmax do
3: Monitor the occurrence of events
4: if a user’s service request arrives then
5: Use the DCM scheme to update αm, εm and βm.
6: Update the immediate information r(s, a, j) and τ(s, a, j).
7: Choose a greedy action b∗ with probability 1− εm, otherwise randomly choose an action

from the set {Aj/b∗}.
8: Use (30) to update the new action value function Qm+1(s, a).
9: If the greedy action as chosen at the mth decision epoch, update the following

parameter: the cumulative reward R = (1 − βm)R + βmr(s, a, j), the total time T =
(1− βm)T + βmτ(s, a, j) and the average reward gm = R/T . Else, set gm = gm−1.

10: Set the current state s to the new state j, the count of decision epoch m = m + 1 and
update the learning time t.

11: Reset r(s, a, j) = i(s, a) and τ(s, a, j) = 0.
12: else{a service completes}
13: Update r(s, a, j), τ(s, a, j) and t.
14: end if
15: end while

where u = m2

Θω+m ; Θ here can be substituted by α, ε and β for learning, exploration and updating

respectively. Θ0 and Θω are constants that should be determined at the beginning.

4.3 Average Reward RL Algorithm

We apply a model-free average reward RL algorithm called SMART (Semi-Markov average reward

technique) [11] to solve our SMDP in this section. The algorithm is presented in Algorithm 4. The

agent continuously monitors the occurrence of the events. When the event of request arrival occurs,

the agent uses ε-greedy policy selection criterion to select an action a according to the current state

s and the tabular action values for all possible actions stored in the knowledge base. That action

will take the system to a new state j. The action value Qm+1(s, a) for that state action pair (s, a) is

updated based on the temporal information (the immediate reward and the time interval between
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those two decision epochs) and the previous action value stored in the knowledge base. When the

event is the completion of a service, the agent doesn’t need to take an action and update the action

value. It only updates the temporal information and the learning time.

As the algorithm runs for many iterations, for every state, the action values of a smaller subset

(one or more) of all the available actions become dominant. The algorithm ends when a clear trend

appears, and the dominant actions constitute the decision policy vector.

4.4 Summary

In this chapter, we propose a model-free reinforcement learning method to solve the SMDP for

channel allocation. Four elements of reinforcement learning model and the update equation are

introduced in the working principle of the RL method. Then we apply an average reward RL

algorithm to solve our SMDP. During the path of interacting with the environment, the agent

keeps learning from the feedback. Therefore, compared with the model-free planning method,

our model-free RL method may have a worse performance at the beginning with no knowledge of

the environment. However, after taking some actions and learning from the feedback, the agent

will have its own understanding of the environment and try to take the optimal action each time.

At last, our RL method can acquire a similar performance to that of the model-based dynamic

programming method.
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Chapter 5

Performance Evaluation

5.1 Introduction

In this chapter, we evaluate the performance of our SMDP channel allocation scheme. First, we

examine the convergence of the model-free RL method by testing the average rewards with fixed

parameters versus time in Section 5.2. Then we change the arrival rates and the completion rates of

two types of users to test how the average system reward varies with two kinds of rates in Section

5.3 and Section 5.4, respectively. In addition, we also evaluate the rejection probabilities of SUs’

service requests versus the arrival rates and the completion rates of two types of users in Section

5.5. Finally, Section 5.6 compares different action probabilities of two types of users’ requests.

To monitor the occurrence of different events, we use multiple event clocks for corresponding

events. The results of our dynamic programming method and reinforcement learning method

are compared with the Greedy Policy. The Greedy Policy is an algorithm that doesn’t explore the

environment to get more statistical information about the system and only considers the short-

sighted maximal immediate reward. That is, when a user arrives, the service request will always

be allocated to the maximum available channels.

In our first dynamic programming method, we made some assumptions to acquire the transition

probabilities so that we can obtain an asymptotically optimal policy. Then we can use the policy

to calculate the expected long-term average reward. The second reinforcement learning method

is a way of learning an approximately optimal control policy. This is accomplished by assigning

rewards and punishments for their actions based on the temporal feedback obtained during active

interactions of the learning agent with the dynamic system.

In the simulation we set the maximum number of channels for one cognitive enabled RSU
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Table 5.1
SIMULATION PARAMETERS

K 6 Rp 40

C 2 Rs 30

λp 2 Rt 8

λs 5 Et 5

µp 2 Ut 4

µs 3 ε 10−10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Simulation Epoch

80

100

120

140

160

180

200

220

A
v
e

ra
g

e
 R

e
w

a
rd

RL

RVI

Greedy

Figure 5.1: Average reward versus simulation epoch.

K = 6, the maximum number of channels for one service is C = 2. All other default simulation

parameters are summarized in Table 5.1. The unit of the arrival rate λ is number of users per

second. The constant ε in our relative value iteration algorithm is set to 10−10. The constants used

in the reinforcement learning algorithm for the learning rate, the exploration probability and the

average reward update rate are set to α0 = ε0 = β0 = 10−1 and αω = εω = βω = 1011, which are

the common values according to reference [51]. The simulation is run by 106 unit times and it is

repeated by 5 times to obtain the average performance except for the the case of convergence in

Section 5.2.

5.2 Convergence of the Model-free RL Method

First, we test the average rewards with fixed user arrival rates and completion rates versus simula-

tion epoch in Figure 5.1 to examine the convergence of our model-free RL method. Each simulation
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epoch is run by 106 unit times. Since the relative value iteration algorithm generates the optimal

policy for each state with known transition probabilities and time intervals and then acts based

on the policy, the average reward curve for RVI doesn’t fluctuate much. The system has the

similar average reward from the beginning to the end and the curve is basically a straight line.

In reinforcement learning algorithm, the agent needs to interact with the environment and learn

the optimal policy from the feedback. The average reward for RL takes a longer time to converge

so the curve has significant fluctuations at the beginning, and then it stabilizes at a certain level.

As for Greedy algorithm, it chooses actions based on the Greedy policy so that basically its curve

has no fluctuation. We can see from the figure that our RL algorithm can get an approximately

optimal average reward compared with the optimal value from RVI algorithm, 171.8 versus 176.4,

and definitely better than the Greedy algorithm’s value for 163.8.

5.3 Average System Reward versus Arrival Rates

Then we change the arrival rates of two types of users to test the performance of three algorithms in

Figure 5.2. The sub-figure (a) of Figure 5.2 is the simulation result when PU arrival rate λp increases
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Figure 5.2: Average reward versus the arrival rates of (a) PUs’ requests and (b) SUs’ requests.

from 1 to 10, λs = 5, µp = 2 and µs = 3. The sub-figure (b) of Figure 5.2 shows the result when SU
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Figure 5.3: Average reward versus the completion rates of (a) PUs’ requests and (b) SUs’ requests.

arrival rate λs varies from 1 to 10 with λp = 2, µp = 2 and µs = 3. From the simulation results, the

average reward increases as the service request rate increases. That is because the system hasn’t

reached its saturation under given arrival rates. However, the slope of the average reward curves

decreases as the service request arrival rates increase. This is because that the opportunity of the

new request being allocated with channel resources will decrease with the increase of arrival rates

due to the limited number of channels in one RSU. The system is about to reach its saturation.

There is a special case where the average reward decreases when the SUs’ arrival rates are high

for the greedy algorithm. This is because we set a negative reward for rejection of SUs’ service

requests. When the SUs’ arrival rates are high and we still take the greedy policy to handle these

requests, the rejection will happen frequently and the average reward will be decreased. We can

see that the performance of the RL algorithm is close to that of the RVI algorithm and is better than

that of the greedy algorithm.
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5.4 Average System Reward versus Completion Rates

Figure 5.3 shows the average rewards versus the completion rates of two different service requests.

From the simulation results, the average rewards increase with the increase of completion rates

while the increasing speed gradually shrinks. And our RL algorithm outperforms the greedy

algorithm when the completion rate of the PU is less than 5, while the greedy algorithm is almost

as good as the RL algorithm when the completion rate of the PU exceeds 5. This is because we

only update our Q-table when there is an arrival event. With high PU completion rate, there will be

more completion events rather than arrival events so that the Q-table won’t be updated frequently.

Then the agent won’t be trained enough. That is to say, the agent is not smart enough to make good

choices. So, in that case, our RL algorithm won’t be that much better than the greedy algorithm.

5.5 Rejection Probabilities of SUs’ Service Requests

Figure 5.4 and Figure 5.5 present the rejection probabilities of SUs’ service requests versus the

arrival rates and completion rates of two types of users’ requests. We can see from the simulation
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Figure 5.4: Rejection Probability of SUs’ requests versus the arrival rates of (a) PUs’ requests and (b) SUs’ requests.
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Figure 5.5: Rejection Probability of SUs’ requests versus the completion rates of (a) PUs’ requests and (b) SUs’ requests.

results that the rejection probability increases as the arrival rates increase and decreases as the

completion rates increase. And the rejection probability of our RL algorithm is pretty close to that

of the RVI algorithm while the rejection probability of the greedy algorithm is quite high. This

is because that both RL and RVI algorithms take future rewards into consideration so that they

will save some empty channels for incoming users. However, the greedy policy only considers

immediate reward and it will always allocate a maximum number of channels to the current user.

5.6 Action Probabilities

We compare different action probabilities of two types of users’ requests in this section. We illustrate

the action probabilities when the system event is the arrival of a primary user versus the arrival rates

of primary users λp, the arrival rates of secondary users λs, and the completion rates of primary

users µp in Figure 5.6, Figure 5.7 and Figure 5.8, respectively. The action probabilities when the

system event is the arrival of a secondary user versus the arrival rates of primary users λp, the

arrival rates of secondary users λs, and the completion rates of primary users µp are compared in

Figure 5.9, Figure 5.10 and Figure 5.11, respectively. Since the system will always accept PUs’
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Figure 5.6: Action probabilities of PUs’ request versus the arrival rates of PUs
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Figure 5.7: Action probabilities of PUs’ request versus the arrival rates of SUs

requests, the rejection probability remains zero during the simulation. Therefore, in the first three

figures, when adding the probabilities of accepting the PU’s request with one channel and those

with two channels with fixed parameter for each method, the sum should equal one. We can see
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Figure 5.8: Action probabilities of PUs’ request versus the completion rates of PUs
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Figure 5.9: Action probabilities of SUs’ request versus the arrival rates of PUs
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Figure 5.10: Action probabilities of SUs’ request versus the arrival rates of SUs
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Figure 5.11: Action probabilities of SUs’ request versus the completion rates of PUs
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from the figures that the probabilities of two types of service requests being allocated with two

channels decrease as the arrival rates increase while they increase as the completion rates increase.

The probabilities of two types of service requests being allocated with one channel increase as the

arrival rates increase while they decrease as the completion rates increase.
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5.7 Summary

In this chapter, we evaluate the performance of the two methods. First, we introduce some

parameters we use during the simulation. Then we examine the convergence of the model-free

RL method, average system reward versus arrival rates, average system reward versus completion

rates, rejection probabilities of SUs’ service requests, and different action probabilities of two types

of users’ requests, respectively. Through extensive performance evaluation, we have demonstrated

that our reinforcement learning method can acquire a similar performance to that of the dynamic

programming while both outperform the greedy method.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we proposed two RL-based channel allocation methods in a CR-VANET. We ana-

lyzed the SMDP model, made some assumptions and calculated the transition probabilities for the

model-based dynamic programming method. The RVI algorithm was used to find an asymptotically

optimal channel allocation policy. Due to the consideration of the validity of those assumptions in

real life, we presented another RL algorithm to approximate the optimal channel allocation policy.

The numerical results show that our model-based dynamic programming method can get better

performance with a shorter time while our model-free RL method can converge to a more reliable

performance in real-life scenarios.

6.2 Future Work

Many possible extensions could be further explored for the proposed channel allocation scheme.

The connections and interference between two types of vehicle users are not considered in our

proposed scheme. For future works, the influence of interference between SU and PU channels

in the channel allocation process needs to be investigated in our model. Moreover, an alternative

reward scheme needs to be studied considering diverse traffic environments, such as the direction

and speed for vehicles.
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