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Abstract 

OPTIMIZATION OF A DUCTED FAN PROPULSION SYSTEM FOR A 

SINGLE ENGINE AIRCRAFT 

Master of Applied Science 

2009 

Adam Jasudavisius 

Aerospace Engineering 

Ryerson University 

The objective of this study was to perform a 3D aerodynamic shape optimization on a ducted fan 

propulsion system configured for cruise flight on an aircraft. The initial shapes of the duct and 

hub were determined using a basic grid searching optimization approach. An efficient 

optimization algorithm was created that utilized the BFGS searching technique with a Quasi

Newton line search to refine the initial geometry. The ducted fan was chosen to be controlled by 

13 control points connected using a combination of splines, ellipses and conics. The optimum 

design resulted in a 33.54% and 36.45% reduction in drag for the duct and hub respectively. The 

propeller thrust was also increased by 141.49%. The optimization methodology used throughout 

this study proved to be an efficient technique in finding the optimal design to within a high 

degree of resolution based on the entire design space considered. 
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1 Introduction 

1.1 Background Information 

Early ducted fan technology was commonly used on experimental aircraft [ 1] or 

hovercraft [2]. It has only been until recently that ducted fans have seen a wider range of uses. 

Currently this technology can be seen on airships [3], jet replicas [4], helicopter rotors [5], but 

most of all, on UAVs [6-7]. One of the reasons why a ducted fan is such an attractive propulsion 

system for a UAV is that it is much quieter than a regular propeller due to the presence of the 

outer duct walls. 

Aside from being quieter than a propeller, a ducted fan has many advantages that make it 

a beneficial option for aircraft. One of the main advantages for a ducted fan is that they are safer 

than a regular propeller because the blades are held within the duct walls. This results in another 

advantage where since the fan blades are isolated from the outside, foreign object damage occurs 

less often. By having a propeller within a duct also allows the use of inlet guide vanes (IGVs) or 

stators to align the flow for increased performance. Other advantages include better propeller 

performance due to the minimization of tip effect, and significantly better static performance. 

Although a ducted fan has better static performance than a typical propeller, it usually 

comes at the expense of cruise performance. It is widely assumed that a ducted fan can only be 

designed for low speed conditions. Typically, when applied to high speed conditions, the 

increase in performance that comes with a ducted fan is mitigated due to the drag induced by the 

duct [8]. In these cases a propeller is considered a better option. Although much work has been 
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done with ducted fans, it is still not clear whether a propeller is actually better, especially 

considering the number of benefits a ducted fan has. 

1.2 Literature Review 

The design of ducted fans started with adjusting propeller theory to accommodate the 

inclusion of the duct. One of the earliest methods was developed by Kucheman and Weber [9], 

who described how the duct influenced the flow velocity at the propeller plane. Another method 

by Patterson [ 1 0] described how the influence of the duct prevents the propeller slipstream rrom 

contracting as well as acting as an end plate on the propellers to account for the decrease in 

vortex downwash. Experimentation and validation was later performed by NASA which 

undertook development of ducted fans for their turbojet designs. Some of the experimentation 

went towards flutter analysis [11] and the limitations of one-spool engine design [12] as well as 

validation of the past theoretical design functions [ 13]. Once the ducted fan design became more 

popular, much more analysis was performed to focus on sound dampening. It was determined 

that rotors can be optimized to have a lower tip speed and uniform blade loading which can 

reduce noise [ 14-17]. Acoustic treatments can also be placed within the nacelles to reduce noise 

further [18]. 

It wasn't until the 1960's that NASA took the technology acquired from turbo-fan design 

and applied it to propellers. A study was performed by Mort et al. [19] to determine the 

aerodynamic characteristics of a 4-foot diameter ducted fan. They concluded that the ducted 

fans could generate efficiencies in excess of 80% in normal conditions, but would succumb to 

inlet lip separation and consequently increased noise levels, at high angles of attack. This helped 

in the research of the Bell X-22 V/STOL aircraft project [20] which later evolved into the now 

well known V-22 Osprey. At about the same time, much analysis went into the development of 

ducted fans for hovercraft application [21-22]. The ducted fans served a dual purpose by 

channeling air to inflate the skirt as well as providing thrust to propel and steer the hovercraft. 

More recently design and analysis has gone into creating ducted fans for U A V 

application. A recent study by Kondor et al. [8] looked at the possibility of modifying the 

circulation about the nacelle using integrated jets as a means of "morphing" the nacelle geometry 

without moving its surfaces. This would allow the ducted fan to perform in a larger flight 

regime, since it could adapt to the flight conditions. This is useful for ducted fans since they tend 

to only work for the regime in which they were designed. If the design could change to suit the 
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conditions, that p1ay make ducted fans more applicable to general aviation aircraft. What 

Kondor et al. found was that the presence of the jets was able to improve the static performance 

of a duct design that was optimal for axial flight. 

A significant amount of CFD optimization studies have been performed on almost all 

aspects of the aircraft. One of the earliest was performed by Hicks et al. [23] in 1977 which 

focused on the optimization of multiple 2D airfoils that made the span of a wing. Although this 

was not CFD as we know it today, it did show the feasibility of coupling CFD with optimization 

which paved the way for further studies. Since the rapid advancement of computer power, many 

more complicated and large scenarios have been tested. 

Further studies have been conducted for designs like airfoils [24-26], wings [27-29], and 

even full aircraft [30-32]. One such study performed by Madavan [33] used a genetic algorithm 

to optimize a turbine blade. Madavan showed how the genetic algorithm was able to find the 

global minimum, while still noting the advantages of a gradient-based algorithm. 

One study by Gur et al. [34] showed how the combination of both could be beneficial for 

the optimization of a propeller blade under multiple design objectives. The propeller was 

optimized under various structural, acoustic, and aerodynamic constraints. The optimization 

process started with a genetic algorithm to find the location of the global minimum. It was noted 

that genetic algorithms produce a "noisy" search process and do not focus on a specific area of 

interest, thereby making them inefficient for the entire optimization process. 

Once the global minimum was found, a Simplex method was used to quickly move the 

solution towards the optimum point. Once close to the optimum point a steepest-descent 

approach was put in place to locate the minimum and finish the process. Although the global 

minimum was believed to be found for each case, the iterations required to achieve this were in 

excess of 5000 iterations, just for the genetic algorithm alone. This was not believed to be a 

problem for this study since the scenario was analytically defined and therefore a single solve did 

not take much time. However, for cases that involve CFD, a more efficient algorithm would 

have been required to keep the amount of iterations to a minimum. 

Gradient-based algorithms tend to be the most efficient and the algorithm of choice for 

CFD optimization. This is demonstrated by Leung et al. [35] who optimizes a wing using a 

Newton-Krylov approach with an excess of 170 design variables. In this study Leung et al. 

examines the performance of a transonic wing and attempts to optimize it using a Quasi-Newton 
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approach. The optimum wing was defined by keeping the initial lift coefficient and reducing the 

drag coefficient to a pre-determined value. What they found was that after 120 iterations, the 

Quasi-Newton algorithm had reduced the objective function value by 12 orders of magnitude. 

The drag was reduced by 73.4% and the coefficient of lift was held to within a high degree of 

accuracy. This study shows the effectiveness of the Quasi-Newton optimization algorithm for 

aerodynamic design using CFD. 

Another critical component in the optimization of an aerodynamic body is how it is 

represented and controlled geometrically. Typically a set of control points define the shape of 

the aerodynamic body, however the way they are connected to each other has been known to 

affect the optimization process. This was studied by Mousavi et al. [26] who compared the 

effectiveness of representing a body using mesh points, B-spline surfaces, and Class 

function/Shape function Transformation (CST). It was noted that B-splines allow for a reduced 

number of design variables, and thus permit the use of a Quasi-Newton optimization method. 

Their study was performed on a number of cases, however the most notable was one in which a 

2D drag minimization was performed on an airfoil. It was concluded that the B-spline method 

proved to be the most efficient by reducing the drag the most, by approximately 40%, while only 

using 16 control points to define the airfoil. This is a promising result since the geometry of the 

ducted fan for this study is defined by only a few design variables connected by splines. 

1.3 Objective 

In this study, blade element theory is coupled with disk actuator theory to assess the 

potential of the ducted fan system as well as define a pressure profile boundary condition for 2D 

CFD analysis. The 2D CFD analysis is used to define a base geometry for a higher fidelity 3D 

CFD aerodynamic optimization. The 3D CFD optimization uses a Quasi-Newton Broyden

Fletcher-Goldfarb-Shanno (BFGS) algorithm to obtain an optimal configuration of the ducted 

fan. 

1.4 Thesis Summary 

Chapter 2 describes a study performed that uses a basic optimization procedure to find a 

relatively optimal 2D ducted fan configuration. The results from this section were used as the 

starting point for the in-depth 3D optimization. In Chapter 3, the optimization algorithm used in 

the 3D analysis is described. Its description is broken down to include each of the minimization 
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methods conside~ed and the final choices based on the information. Chapter 4 describes the 

initial ducted fan geometries and the design variables that control the shapes. The results 

obtained from the 3D optimization are then analyzed to see the degree of change from the initial 

configurations as well as the performance improvements from the optimization. In Chapter 5, 

conclusions are made as to whether the ducted fan achieved a global or local optimum and 

whether or not the final design is suitable for its purpose. Future considerations are given in 

Chapter 6 as to what can be done next to supplement this analysis. 
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2 Two-Dimensional Optimization 

2.1 Introduction 

The overall design of the ducted fan for the single engine aircraft started with a 2D 

analysis of duct and hub shapes and sizes, using performance data from a desired propeller 

geometry. This initial design work was broken down into 2 phases. The first phase involved the 

creation of a computer program that used disk actuator and blade element theory to design an 

optimal blade geometry for the propulsion unit. The second phase used the performance data 

from the optimal blade geometry and incorporated it into a 2D CFD analysis where various duct 

and hub cross sections were tested manually together to find an optimal duct and hub 

configuration. 

The 2D design of a duct and hub configuration was done to provide an estimate of the 

expected performance as well as serve as a starting point for the more in depth automated 3D 

optimization process. The duct and hub cross sections that were found to work best from the 2D 

optimization were revolved into a 3D geometry, and the optimal propeller itself, was placed into 

this configuration. This created the 3D model of the ducted fan that was later fully optimized by 

an automated optimization algorithm. 

7 



2.2 Propeller Design 

2.2.1 Background Theory 

A common visualization of the flow characteristics for a blade element is shown in Fig. 

2.1. The calculation process that follows is that of Houghton et al. [36]. 

V(1 + tl ) 

Figure 2.1: General blade element at radius r from axis of rotation 

where r is the radius, and Q is the rotation rate in (rad/s). The figure above shows the cross

section of a blade in the plane of rotation. This element has a speed in the plane of rotation equal 

to Qr m/s. The flow is also moving in the plane of rotation which is equal to a fraction of the 

elemental speed, thus being denoted as bQr m/s. Therefore the effective speed of rotation of the 

element is equal to Qr( 1-b) m/s, where the magnitude of b indicates the fraction of momentum in 

the rotational plane relative to the local blade rotation speed, otherwise known as swirl. The 

propeller is also advancing at a speed of V mls normal to the plane of rotation, where a 

represents the magnitude at which the velocity of the flow has increased when entering the plane 

of rotation. Therefore the effective velocity into the blade element is equal to V( 1 +a) m/s, where 

Va mls is the magnitude of the inflow which varies radially since a and b are both functions of 

radius r. 

From Fig. 1, the relative velocity can be found from the following formula. 

VR = V(l + a)sin -I¢= Qr(l-b)sec¢ (2.1) 

8 



This value is th~ effective incoming velocity that the element sees. By using this value, the 

appropriate lift and drag quantities can be found and used to determine the thrust and torque of 

the system. The incremental lift and drag are defined as follows. 

t5L =Be&~ pV~CL 

&J = Be8r~pV~C0 

(2.2) 

(2.3) 

Where B is the number of blades. The incremental thrust is then found by combining the lift and 

drag in the following manner, which corresponds to Fig. 1. 

or= &cos¢ - &Jsin ¢ 

(2.4) 

This equation can then be altered to incorporate a common variable, known as the "propeller 

solidity" or, a, where 

Resulting in, 

Be 
0"=-

2m-

= 2m-O"~ pV~ (C L cos¢- C 0 sin¢) 

In order to simplify the above equation further, it is first expanded to the following form. 

Where, 

dT = m-O"pV ~C L (cos¢- tan ysin ¢) 
dr 

= l!rO"pV} c L sec y( cos¢ cos r- sin¢ sin y) 

c 
tan r = ____!!.._ 

CL 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Assuming that the blade element has moderate incidence angles with the relative flow, the ratio 

of C0 /CL is small. This means that the angle y is also small, being approximately 1.15° for most 

applications [36]. Therefore with this approximation, sec y :::: 1, Eq. 2.7 can be simplified as 

follows 

writing, 

dT 
- = m-O"pV ~ C L cos(¢+ y) 
dr 

9 
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t = CL cos(¢+ r) 

the final equation for the thrust as a function of radius, for the whole propeller is, 

dT -=m-arpv: 
dr 

(2.10) 

(2.11) 

Using a similar derivation technique, the total torque, Q, as a function of radius, can be written as 

follows 

(2.12) 

Where, 

q = CL sin(¢+ r) (2.13) 

In order to form a closed system and reduce the amount of unknowns, disk actuator 

theory must be involved in the solution process. Disk actuator theory is different from blade 

element theory as it takes a momentum conservation approach to the flow through the propeller. 

Figure 2.2: Disk actuator representation of propeller [37] 

The thrust is equal to the product of the mass flow through the control volume and the 

change in velocity. The following equations are derived with respect to the flow through a single 

annulus. 
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8r=m~ 

m =(area of annulus)(velocity through annulus)(density) 

= (2JZ'r&)[V(l + a)]p 

= 2Jrrp8rV(l +a) 

bV =VExit -V 

= V(l + 2a)- V 

=2aV 

The thrust is then equal to 

Resulting in, 

dT 2 - = 4JrprV a(1 +a) 
dr 

(2.14) 

(2.15) 

(2.16) 

The above derivation allows now for the variable a to be solved for through an iterative approach 

since this system of equations cannot be solved analytically. Combining Eq. 2.16, 2.11, and 2.1, 

the following equation is formed. 

(2.17) 

Where then a can be solved for to give the following equation. 

a 
-- = l.atcosec 2¢ 
1 +a 

4 (2.18) 

The same can be done for the variable b. Again, using a similar derivation technique, the angular 

momentum is equal to 

Thus giving 

= (21lr& )[pV (1 +a) ](2bQ)r 2 

= 41lr 3 pVb(1 +a )QJr 

dQ =4m- 3 pVb(l +a ).Q 
dr 

Substituting both equations for VR (Eq.1), into Eq.12, yields 

dQ = m- 2 ap[V (1 +a) cosec¢ ][.nr(l- b) sec¢' ]q 
dr 

11 
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By setting Eq. 2.22 equal to Eq. 2.21, and perfonning some manipulation, the variable b can be 

solved for to yield the following equation. 

b 
-- = -taqcosec¢sec¢ 
1-b 

= 1aqcosec2¢J (2.23) 

2.2.2 Algorithm Iteration Process 

As mentioned earlier, by rearranging the above equations for the variables a and b, a 

solution approach is created that necessitates the need for an iterative process. This process 

starts by guessing values for a and b and inputting them into the following equation. 

tan¢= V(l +a) 
!lr(l-b) 

(2.24) 

This provides a value for ¢ which can then be inputted into Eq.l to solve for VR. This 

value, as mentioned earlier, is the speed of the flow relative to the blade element. A common 

problem in propeller behavior however, is that this relative flow may approach sonic speeds or 

close to sonic speeds, in which case the blade element will be subjected to compressibility 

effects. Therefore a function was incorporated which is known as the Prandtl-Glauert correction 

factor, which is shown below. 

(2.25) 

This function corrects the lift -curve-slope of the airfoil to incorporate the compressibility effects 

that it is seeing. It is accurate for up to a Mach number of 0.75. 

With the corrected lift-curve-slope found, the CL can be calculated from the following 

formula. 

C =adCL 
L da 

(2.26) 

This value, along with ¢,can then be substituted into Eq. 2.10 and 2.13 to solve fort and q. To 

complete one iteration, these values are then substituted into Eq. 2.18 and 2.23 to solve for new 

values for a and b. However, these new values of a and b are not used in the next iteration, 

rather, the method of arithmetic mean is employed and the output values are averaged with the 
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input values of a and b to create new values. The next iteration can then commence and this 
~ 

process can be continued until the desired accuracy is obtained. 

A common loss in efficiency for propellers is the introduction of swirl motion into the 

flow. However, methods can be taken to change this rotational energy of the swirl, into axial 

energy required for thrust. Thus, a peak efficiency can be found from the previous calculations 

by simply forcing the variable b equal to zero. As was explained earlier, b represents the 

magnitude of the rotational ve .ocity of the flow. Therefore, if b was equal to zero, then the 

rotational velocity of the flow would also be zero. Thus, all energy in the flow would be purely 

axial, and this situation would represent the highest efficiency that can be obtained in the system 

in terms of losses due to swirl. However, in reality this situation is very difficult, if not 

impossible to obtain, but it does represent an upper bound to which efficiencies in the system can 

be optimized towards. Efficiency can be defined by the following equation. 

d 
Useful power output "= -------

Power input 

V dT/ dr 
= 

2JTn dQ / dr 

V 2JrrCJ' 1 pV}t 
= 

21ln 21rr 2 CJ' 1 pV '} q 

v t 
=---

21lnr q 

where n is the revolutions per second. 

2.2.3 Propeller Design Steps 

(2.27) 

The computer program that was created required input variables that defined the 

geometry of the propeller as well as the flight conditions, and the output was thrust, power 

consumed and efficiency. The flight conditions chosen for the propeller were for the cruise 

segment of the flight which were defined as an airspeed of 270kts at an altitude of 21000ft using 

a maximum of 350Hp. This is the largest portion of the flight and to optimize the propeller for 

this regime would be the most logical approach in the early stages of design. 

A simple design method was chosen for the propeller; beginning with an arbitrary 

configuration, successive manual adjustments were made to improve performance. The initial 

configuration of the propeller is shown below. 
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Table 2.1: Initial configuration 

Configuration 1 

Inputs Outputs 

#of blades 16 Power input {Hp) 320 

Chord {em) 9.9 Thrust {N) 969.7 

Hub diameter {em) 8.3 Efficiency 56°/o 

Propeller diameter {em) 49.8 

RPM 5600 

Airfoil Clark Y 

Twist Linear 

Pitch at 0. 75R 68deg 

The Clark Y profile was chosen since it has commonly been used for propeller design 

and thereby provides a good starting point for further refining of the configuration [38]. Since 

the initial choice of 16 blades was arbitrary, to make the design more reasonable, the amount of 

blades was reduced by half. Reducing the amount of blades makes the analytical approach more 

reasonable as any blade to blade interaction is not included in the analysis [39]. Therefore, this 

analytical method should provide less error for a fan with fewer blades. 

To improve the design further, the radius of the blades were increased to a size that 

allowed the radius to be large, but not so large that the propellers looked out of proportion with 

the rest of the aircraft. The advantage of doing this is that increasing the radius is a very 

effective way of increasing the thrust while also keeping the power input down. The resulting 

configuration is shown below. 

Table 2.2: Improved design 

Configuration 2 

Inputs Outputs 

#of blades 8 Power input {Hp) 350 

Chord {em) 9.9 Thrust {N) 1445.7 

Hub diameter {em) 8.3 Efficiency 76°/o 

Propeller diameter {em) 70 

RPM 5600 

Airfoil Clark Y 

Twist Linear 

Pitch at 0. 75R 51.5deg 
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The ratio of the tlp"ust over the power input has increased from 3.03Nihp from Configuration #1 

to 4.13Nihp for Configuration #2, showing an increase in efficiency. As well, the increase in 

efficiency expected from reducing the amount of blades is not included in these ratios as the 

performance program does not include 3D effects such as blade wake interaction. Therefore, the 

increase in performance is expected to be higher. 

Another characteristic that was evaluated for the purpose of increasing propeller 

performance was the blade twist. Due to the rotation of the propeller, the effective velocity seen 

at every location along the span is different, and because of this the effective angle of attack of 

the blade section changes along the radius. Thus the propeller needs to be twisted along the span 

to compensate for this changing angle of attack. There are many ways a propeller can be 

twisted. According to rotor design theory for turbine engines, a rotor can be designed to have as 

many as 7 different types of twist, each hav1 g its own benefit [ 40-41]. As the current design in 

question is a ducted fan, rotor theory is very applicable. The one type of twist for a rotor that is 

corrunonly used for propellers is known as a free vortex design. A free vortex is one in which 

the angular momentum is constant along all radii. This corresponds to a tangential velocity that 

is inversely proportional to the radius. In other blade theories a free vortex design is referred to 

as a hyperbolic twist [ 42]. 

A hyperbolic blade is twisted at a rate from root to tip that varies according to a 

hyperbolic equation. Blades can also be twisted linearly to cut costs, however this results in 

performance degradation [ 42]. It is more efficient to vary the propeller hyperbolically because 

the effective angle of attack of the flow naturally varies hyperbolically along the span of the 

blade. The following figure was generated by the propeller program to illustrate the natural 

tendencies of the flow to follow a hyperbolic variation of angle of attack along the span of an 

arbitrary blade. 
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Figure 2.3: Hyperbolic distribution of flow along arbitrary blade 

In the above figure, phi, is the angle of the flow and theta, is the absolute angle of the 

blade. By having a linear twist, the blade results in an effective angle of attack in excess of 20 

degrees which would surely result in separation and a loss in performance. By forcing the blade 

to have a hyperbolic twist, the same as the flow, it ensures that the blade will not separate, and it 

also ensures that the effective angle of attack of the blade can always stay at its optimal level. In 

most airfoil cases, this optimal angle of attack is 5 degrees [43]. At this angle, the lift to drag 

ratio is the highest which means the airfoil is producing the most lift for the amount of drag in 

comparison to all other angles of attack. For a propeller, this will mean that it is producing the 

most thrust for the amount of input power. The figure below shows the resulting blade angle 

distribution. 
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Figure 2.4: Hyperbolic twist distribution for current design 
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theta new is the resulting twist distribution for a propeller with hyperbolic twist. The new twist 

distribution holds the effective angle of attack of the blade at 5 degrees which guarantees 

efficient operation. The resulting final configuration after the addition of hyperbolic twist and 

further refining is shown below. 

Table 2.3: Final propeller configuration 

Final Propeller Configuration 

#of blades 6 

Chord (em) 9.2 

Hub diameter (em) 15 

Propeller diameter (em) 70 

RPM 5600 

Airfoil Clark Y 

Twist Hyperbolic 

Pitch at 0. 75R 51.7deg 

Constant effective angle of attack 5deg 

The performance output of this configuration is shown in the following table. 

Table 2.4: Final propeller performance 

Final Propeller Performance 

Induced power (Hp) 350 

RPM 5600 

Thrust (N) 1507.9 

Efficiency 80°/o 

From the blade configuration shown in Table 2, there was a 3.61% increase in efficiency for the 

design due to the addition of a hyperbolic twist. 

2.3 CFD Analysis 

2.3.1 Exporting the Propeller Data 

The second phase of the project involved designing the duct and hub using a CFD 

analysis. The results obtained from the propeller program in the first phase of the project were 

coupled with a CFD analysis to mimic the effects of a propeller boundary. This allowed the duct 

and hub portions of the propulsion pods to be designed with respect to the actual flow 

characteristics. 
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By referencing disk actuator theory, propeller performance can be described by a 

pressure distribution before and after the plane of rotation, as was seen in Fig. 2.2. Using the 

known velocities at the propeller plane, the pressure distributions were calculated using the 

following approach. 

To find PI, the pressure in front of the propeller, Bernoulli's equation can be applied as 

follows 

I y2 _ I u2 
Po +2P o -PI +2Pv1 

PI =Po +1 p(Vo
2

- llr2
) 

(2.28) 

where Po is the atmospheric pressure, pis the density, V0 is the freestream velocity, and VI is the 

velocity of the flow at the propeller plane. To find p 2, the pressure behind the propeller, the 

following equation derived from disk actuator theory can be used 

dT = dAdisk (p2- PI) 

dT (2.29) 
p2 =~+pi 

disk 

where Tis the thrust, and Adisk is the area of the actuator disk that represents the propeller. Both 

Eq. 2.28 and 2.29 were solved at each incremental location along the span of the blade. The 

resulting pressure distribution can be seen in Fig. 2.5 
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Figure 2.5: Pressure distributions at propeller plane 
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An example output of the pressure distribution can be found in Appendix I. The pressure 
< 

distributions are linearly dominant and therefore were characterized by linear trend lines. The 

equations that describe the pressure distributions are shown below. 

p 1 = -2949.38r + 3913.20 

p2 = 3259.51r + 4059.73 

(2.30) 

(2.31) 

These equations were placed as boundary conditions for the 2D CFD analysis. An example 

configuration with the locations of these boundaries can be seen in Fig. 2.6. 

Freest ream 

Propeller 
location 

________ '\ ________ _ 

Plane of symmetry 

Figure 2.6: Dynamic pressure distribution on sample ducted fan 

2.3.2 Test Areas and Configurations 

For the 2D optimization of the ducted fan, four test areas were selected to focus on for 

finding an optimal geometry, which were the leading and trailing edges of the both the duct and 

hub. The locations of these test areas are shown below. 
6.89e+01 

4.41e+01 

.93e+01 

Figure 2. 7: Duct and hub test areas shown with velocity distributions 
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For each test area, three different geometries were selected. In total, this resulted in 81 

different configurations that were analyzed. Shown below is a list of the different geometries 

that were selected for each of the test areas. 

Table 2.5: Geometries for each test area 

Test area #1 Test area #2 Test area #3 Test area #4 

Configuration #1 Canted downward Converging duct 
Short hub nose Short hub tail 

duct inlet outlet 

Configuration #2 Straight duct inlet Straight duct outlet Medium hub nose Medium hub tail 

Configuration #3 Canted upward duct Diverging duct 
Long hub nose Long hub tail 

inlet outlet 

All 81 cases were each defined by a code using Table 2.5. For example, a case defined by the 

code "3123" corresponds to the following geometric properties. 

Table 2.6: Geometries for each test area 

Test area #1 Test area #2 Test area #3 Test area #4 

j Configuration# 3 1 2 3 

Case 3123, has a "Canted upward duct inlet", "Converging duct outlet", "Medium hub nose", 

and "Long hub tail". 

2.3.3 Mesh Validation 

An established fact CFD analysis is that as the mesh spacing of a computational grid 

decreases, the resulting solution has increasing fidelity. The reason for this is that the curvature of the 

geometry is better represented by a smaller mesh due to more mesh sections making up the surface 

profile. An example of this can be seen in the comparison below. 
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Figure 2.8: Geometry meshed with a small amount of mesh elements (less accurate) 

Figure 2.9: Geometry meshed with a large amount of mesh elements (more accurate) 

A high mesh density also provides greater resolution in the flow field especially in regions of 

high solution gradients since there are locally more nodes available to capture the flow 

characteristics. 

A geometry that is meshed with a mesh size that is infinitely small, will result in the most 

well resolved values possible. However, having a geometry that is meshed with an infinite amount of 

elements is not practical, nor is it possible. Thus a study was undertaken to find out what mesh 

spacing and how many mesh elements are required for a solution that results in a tolerable error. 

The study that was conducted involved testing different mesh sizes using the same duct and 

hub geometry to find out the mesh size needed for a well resolved solution. The mesh was varied by 
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changing the growth rate of the mesh from the surface outwards, as well as varying the node spacing 

along tqe surface of the duct and hub. Other variations included using different meshing techniques. 

By approaching the study in this fashion, the results not only show how small the mesh has to be, but 

also the best technique for meshing which will give the highest resolution for the least amount of 

mesh elements. 

Multiple test cases were assessed for their drag, and were plotted on a graph against their 

mesh size. This graph is shown below 
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Figure 2.10: Mesh size as a function of drag 

where the coefficient of drag is defined by the following formula. 

The characteristic length d is the outer diameter of the duct. 

12C01 00 

• 

(2.32) 

Fig. 2.10 shows a curving trend that looks to be as if it were approaching an asymptote, 

thus making it a hyperbolic trend. This trend makes sense when considering what was 

mentioned earlier, where the most well resolved values result from a mesh with infinite elements. 

Thus, according to Fig. 2.1 0, the most accurate drag value will result as the number of elements 

approaches infinity. This value of drag is equal to the asymptote that the curve is constantly 

approaching. 

An equation was devised using three points taken from the graph that defined the average 

curve. This equation was derived from a common equation for a hyperbola, shown below. 
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The resulting equation is as follows 

b 
y=a+--

x-c 

c = -.00495 + 243
.4

5 

D X+ 12595.26 

(2.33) 

(2.34) 

This was plotted on the graph to see how well it fit to the data points, which is shown below. 
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Figure 2.11: Plotted equation for mesh size as a function of drag 

The equation fits quite well with the data points and therefore provides a good estimation 

of the actual value for the drag. By taking the limit of Eq. 2.34, the estimated value for the 

coefficient of drag was found to be equal to -.00495. According to this value, to obtain a 

solution with an error below 10%, which is assumed to be reasonable in this case, the drag value 

would have to be equal to or less than -.00446. By extrapolating the curve in Fig. 2.11 outwards, 

the mesh size needed to achieve this value for the drag is approximately equal to 480,000 

elements. Therefore, the study concluded that the mesh size needed to achieve a result with less 

than 10% error, would have to be in excess of 480,000 elements. 

When considering the relatively long time and large computational resources needed to 

obtain a solution that contains more than 480,000 elements, and in addition still obtaining a 10% 

error, this conclusion proves to be impractical. Thus a new technique was adopted that used the 

above method of creating a curve from selected points and calculating the actual expected value 

as the number of mesh elements approaches infinity. This method is known as Richardson 

Extrapolation [ 44]. 
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The first step in performing a Richardson Extrapolation, is to determine the order of 

convergence from the following equation. 

p = ln(/3 - fz )/ln(r) 
fz- f1 

(2.35) 

Where f 1, f 2, and f 3, are the results obtained from each meshing case, and r is the constant grid 

refinement ratio. To obtain an accurate curve extrapolation, at least three different meshing 

cases are needed to provide the points along the curve. These points must also be located evenly 

along the curve to ensure the best possible extrapolation. 

The constant grid refinement ratio is the value chosen that increases the mesh size 

between cases. For example, if r is chosen as 4, Case 2 will have 4 times more mesh cells than 

Case 1, and Case 3 will have 4 times more mesh cells than Case 2. This ratio can also be chosen 

to represent other values such as the nodal spacing. However, this is usually the case for a 

relatively simple grid. In the case of the ducted fan optimization, the geometry is relatively 

complex and so the constant grid refinement ratio was chosen to affect the overall mesh size. 

Once the order of convergence is obtained from Eq. 2.35, Richardson Extrapolation can 

be performed to find the projected final value. 

1-' = f + ft- fz 
J h=O I p 1 r -

Where fh=O is the estimated objective value as the error approaches zero. 

(2.36) 

For the ducted fan analysis, the constant grid refinement ratio was chosen as 4. The 

resulting mesh cases are shown below. 

Table 2.7: Mesh cases for Richardson Extrapolation 

# of mesh cells 

Case #1 12500 

Case #2 50000 

Case #3 200000 

To vary the mesh size, the nodal spacing had to be changed for each case. To help continuity 

between cases, the variation of node spacing was held relatively constant at approximately a 

factor of 2. This ensured that no edges were excessively coarse or refined relative to the rest of 

the edges. The resulting distribution of cases along the expected curve is shown below. 
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The distribution of the cases accurately represents the curve that they are placed on. By 

having Case 2 ( 50000 mesh cells) at the inflection point, this improves the accuracy because 

there is a value available on the high gradient section ( 12500) as well as on the low gradient 

section (200000) of the curve. This gives a detailed illustration of how the curve behaves, and 

therefore results in maximum accuracy of the extrapolation to the final value. 

2.4 Two-Dimensional Results 

2.4.1 Inviscid Results 

The final coefficient of drag results are shown Fig. 2.13. A table listing how the case 

numbers correspond to the configuration, is shown below. These definitions correspond to Table 

2.5. 
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Case Con fig 

1 1111 

2 1112 

3 1113 

4 1121 

5 1122 

6 1123 

7 1131 

8 1132 

9 1133 
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Table 2.8: Configuration legend for Fig. 2.13 
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Figure 2.13: Final results for all 81 configurations 
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The test c~ses resulted in 19 configurations that produced negative drag, which is equal to 

a net thrust. A net thrust is possible since the fan is imparting energy into the flow which is seen 

as high pressure aft of the duct and hub. The best configuration, which produces the most thrust, 

is shown below. 

Figure 2.14: 2D configuration that produced the most thrust 

This configuration, compared to all the others, is the best one suited for the aircraft cruise 

condition. However, it may not be the best when in off-design conditions. 

An analysis was completed that assessed the inlet flow when the ducted fan was 

operating at lower free stream velocities. What was observed was that at the lower speeds, not 

only was the volume of air in front of the pod being ingested, but some of the air around the duct 

was being forced in as well. This resulted in air wrapping around the inlet of the duct in order to 

enter the pod. This effect can be seen below in Fig. 2.15. 
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Figure 2.15: Velocity vectors at duct inlet due to low free stream velocity for most optimal 
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The flow appears to have too much momentum for the curvature of the duct inlet, and separates 

from the wall before entering the propeller boundary. A region of reversed flow is created just in 

front of the propeller which degrades performance. This problem is known as inlet lip separation 

[19]. 

Inlet lip separation, as mentioned earlier, is caused by the momentum of the flow being 

too high to make it around the relatively sharp curvature of the duct. One way to solve this 

problem is to elongate the curvature such that the flow does not have enough momentum to force 

itself tangentially outwards away from the surface. This would keep the flow attached as well as 

keep performance at its highest. Coincidentally, the configuration that had the second best 

performance by thrust produced had an inlet like this, which can be seen below. 

Figure 2.16: Velocity vectors at duct inlet due to low free stream velocity for second optimal 

The inlets of the above configuration are canted outwards which would keep the flow attached as 

it enters the duct. This can be seen in Fig. 2.17. 
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Figure 2.17: 2D configuration that produced the second most amount of thrust 
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According tp the results, the loss in performance by ustng the above configuration is 

expected to be minimal when compared to the performance gained by keeping the flow attached 

as it enters the duct. This configuration is expected to maintain its performance for slightly off

design conditions when the airflow enters at a small oblique angle relative to the duct axis. 

Therefore, the above configuration was chosen as most optimal and was used as the basis for the 

3D optimization. 

2.4.2 Viscous Results 

A viscous analysis was performed on the top 8 configurations to see how the viscosity of 

the fluid affected their performance. This study was focused more so on observing how the 

relative performance changed, rather than the overall performance of each configuration by 

itself. The purpose of this was to show that the inviscid analysis was sufficient to generate 

accurate trends between the configurations, rather than accurate drag values. 

The overall goal of the 2D analysis was to find the optimal configuration relative to the 

others. The aim of the viscous analysis was to show that the optimal configuration in the 

inviscid analysis was still the optimal in the viscous analysis, thereby validating the inviscid 

approach. Richardson extrapolation was used for the viscous analysis and the results were 

plotted alongside the inviscid results which are shown below in Fig. 2.18. 
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Figure 2.18: Coefficient of thrust comparison between viscous and inviscid flows 

The original trend of best to worst is strongly maintained. However, what is the best 

configuration in the inviscid case is no longer the best in the viscous case. This is an odd result 

as the only difference between the best case and the second best case is the shape of the inlet. 
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The best case has a straight inlet, and the second best case has a canted outward inlet. Therefore, 

a change in thrust this large due to viscous effects should not result from a change in geometry 

that is strongly pressure drag related. 

A possible explanation for this may be due to Richardson extrapolation being applied to a 

viscous case. Due to the combination of tetrahedral mesh and boundary layer mesh, a 

Richardson extrapolation is more susceptible to error since it is more difficult to consistently 

refine the grid, based on the grid refinement ratio. Not only does the node spacing have to be 

considered, but also the boundary layer wall spacing and growth factors. If even a small 

inconsistency occurs in any of the results, this can skew the final result by a large magnitude 

since the trend is extrapolated outwards towards infinity. 

The analysis was not taken any further to verify if the viscous result for Case 3233 was 

an anomaly or not. The reason for this is that in the previous inviscid analysis, it was determined 

that although Case 3233 showed the best performance in its design condition, it was expected to 

degrade in its performance significantly in off-design conditions. As a result, Case 3133, was 

also considered as the basis for the 3D optimization initial design. Therefore, if it was later 

concluded that the viscous result for Case 3233 was an anomaly, and did actually result in the 

best viscous case, the observations from the inviscid analysis would still show Case 3133 as the 

favourable option. 
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3 Numerical Optimization Algorithm 

3.1 Introduction 

The objective of this project was to find the optimal ducted fan configuration. Unlike the 

previous optimization method mentioned in Chapter 2, the full optimization of the three 

dimensional ducted fan required a more automated, efficient approach. There are many reasons 

for this. Firstly, the full optimization was to take place on a three-dimensional design. By 

performing the analysis in three dimensions, more mesh elements were required which therefore 

greatly increased the time necessary to achieve a solution. Since it took more time to achieve a 

solution, the optimization process needed to be as efficient as possible to obtain the least amount 

of solves necessary to achieve an optimal design. 

To improve the optimization process further, it had to be automated. The methodology 

presented in Chapter 2 required constant attention and manipulation. By automating the 

procedure, it can run continuously, without the need for use input. The methodology in Chapter 

2 also required pre-made geometries which-were designed based on intuition. The point of using 

an optimization algorithm to fully optimize a design is that it works purely based on results 

sometimes giving an unpredictable geometry. Also, because it is automated, an optimization 

algorithm can make the decisions itself on how to manipulate the geometry. Therefore, instead 

of having to choose from a list of pre-made geometries, it can move the nodes itself (design 
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variables) to change the shape and create a new geometry. This process allows for more freedom 

of design. 

Pre-made optimization algorithms are available within MA TLAB, and one of those could 

have been used instead of programming an optimization routine from a known algorithm. 

However, as they are component functions of a larger application program, the code is 

unavailable to observe and manipulate in the event of an unknown error or a failed optimization. 

Those routines are also programmed to allow for a wide range of optimization scenarios. Thus 

by creating one from a known optimization method, allows for the algorithm to be tailored to the 

problem and possibly be more efficient. 

3.2 Objective Function 

The ducted fan was optimized to maximize thrust for a given power input. The objective 

function used for this optimization is given below. 

J(X) = 1000- Thrust( X) (3.1) 

Originally the objective function was the inverse of the thrust, however this posed a 

problem if the thrust was ever negative (drag of duct and hub overcame the thrust of the 

propeller). If the thrust was ever negative, the objective function would be negative, and the 

optimization algorithm, trying to minimize the objective function, would interpret that result as a 

minimization and proceed to optimize in the same direction. Therefore an arbitrarily high 

number was chosen to perform a subtraction of the thrust, as seen in Eq. 1. Increasing the thrust 

would still result in a decreased objective function, and if the thrust were ever to become 

negative, the objective function would result in an increase. 

The objective function is a function of the thrust and the thrust is a function of the design 

variables, (X). For the ducted fan optimization process, a CFD analysis would have to be 

performed on the geometry defined by the design variables. Various thrust and drag values 

would be recorded for the propeller, duct, and hub which when put together would result in an 

overall thrust. This thrust value would be inputted into Eq. 3.1 to define an objective function 

for that geometry. 

If the design variables are changed, a new ducted fan geometry will be generated. This 

would result in different thrust and drag values for the propeller, duct, and hub. The overall 

thrust would be different, which would result in a different objective function. This would be 
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inputted into an ~ppropriate optimization program which would then decide how to manipulate 

the design variables such that the thrust increases and consequently Eq. 3.1 decreases. 

3.3 One-Dimensional Minimizations Methods 

The full optimization of the ducted fan configuration required the manipulation of many 

control points that defined the geometry, thus making the analysis multi -dimensional in nature. 

However, the final choice of the multi-variable optimization method required a sub-routine that 

solved a one-dimensional problem. Therefore, a study was undertaken to assess the pros and 

cons of various one-dimensional optimization routines in order to find the best one, as well as 

gain a firm understanding of the methodology for optimization. 

A one-dimensional optimization usually takes place on what is known as a unimodal 

function. This type of function contains one minimum or maximum within a specific interval 

and can be continuous or discontinuous in nature. The objective of the optimization process is to 

find the minimum (or maximum) of the unimodal function within the desired interval [ 45]. 

One of the most basic processes that can do this is known as the Fixed step size method. 

This is the easiest method to program, however it is one of the most inefficient. It starts with a 

step is taken in a favourable direction from an initial point that lies on the unimodal curve. The 

function value of the curve at that point is recorded and a new step is taken in the same direction 

using the same step size. This process is repeated until the minimum has been found [45]. 

Figure 3.1: Fixed step size methodology [45] 

The desired accuracy of the minimum point is related to the step size. If high accuracy is 

desired, then the step size must be small in order to pin-point the location of the minimum. The 

trade off for this is that if the step size is small, then many iterations may have to take place in 

order to approach the minimum and find it considering that the interval of uncertainty can be 

33 



very large. This is the reason why this method is so inefficient. Other methods that use a 

stepping process to find the minimum are Accelerated step size, and Exhaustive search, each 

with their own advantages and disadvantages (See Ref. [ 45] for more information). 

Another method that was examined, which is more efficient than the above stepping 

methods, is known as the Interval halving method. In this method, each subsequent interval is 

halved until the minimum is found within the desired accuracy. This method works by taking 

three evaluations within the interval of uncertainty, each spaced equally apart. The half of the 

interval that contains the highest value of the objective function is then deleted. This is allowed 

because one can be certain that the minimum does not lie in that interval assuming that the curve 

is unimodal. The following figure illustrates this step, where L0 is the initial interval of 

uncertainty [45]. 

fo 

a xo b 

~------------------- Lo------------------~ 

Figure 3.2: First step in the Interval halving method [45] 

For each subsequent step after this, only two new evaluations are taken, dividing the 

remaining two intervals of uncertainty in half. 

to 

a xo 

~------------------- Lo------------------~ 

Figure 3.3: Second step in the Interval halving method [45] 
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This process is repeated until the minimum has been found within the desired accuracy 

constraints. Other interval dividing methods are Dichotomous search, Fibonacci method, and 

Golden section method (See Ref. [ 45] for more information). All of these methods tend to be 

more efficient than the above stepping methods. However there are other methods that take into 

account the gradients of the function, which are even more efficient than the above division 

methods. These are known as Interpolation methods and Direct Root methods. In fact, these are 

the most efficient one-dimensional minimization routines, which is why a Direct Root method 

was chosen for the final optimization algorithm [ 46]. 

The Direct root method that was chosen is known as the Quasi-Newton method. This is 

based on the original, Newton method, but has been altered to make it more suitable for general 

optimization problems. These problems involve a setup that is not available in closed form or is 

difficult to differentiate [ 45]. The current problem in question is not analytical, and so to find the 

derivatives, the finite difference formulas must be used. The following is an approximation for 

the first derivative using central differencing. 

!
'(A,.)= J(A-; + L\A-)- J(A-;- L\A-) 

I 2L\A (3.2) 

where L\'A is a small step size. Once the derivative is calculated, the cost function is then 

evaluated and the following equation is used to find the new step size. 

A, =A, - L\A-[J(A-; + L\A-)- J(A-;- L\A-)] 
i+l ; 2[J(A-; +L\A-)-2J(A-;)+ J(A-; -L\A-)] (3.3) 

This process is repeated until a desired convergence criteria has been satisfied, such as: 

(3.4) 

where £ is the level of convergence [ 45]. 

To prove that the Quasi-Newton method was superior to the others mentioned above, a 

study was performed comparing the iterative performance of each minimization method using a 

simple quadratic function. The performance measures for this study were the total number of 

iterations for convergence as well as the accuracy of the final solution. Another important 

measure is the number of function evaluations, since this shows how many times the objective 
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function must be solved in total in order to achieve convergence. This demonstrates the 

computational cost of the minimization method. The results are shown below. 

Table 3.1: Comparison of one-dimensional minimization methods 

Minimization 
# of iterations 

# of function 
Level of accuracy method evaluations 

Fixed step size 67 67 1 00°/o 

Accelerated 
12 12 81.60°/o step size 

Exhaustive 
9 9 96.67°/o search 

Dichotomous 
22 44 99.996°/o search 

Interval halving 
25 47 99.997°/o method 

Fibonacci 
11 22 99.93°/o method 

Golden section 
12 24 99.93°/o method 

Quasi-Newton 
1 3 1 00°/o method 

Not only does the Quasi-Newton method achieve a level of accuracy of 100%, but it also does 

this in a single iteration that requires only 3 function evaluations. This method is clearly one of 

the best one-dimensional minimization routines and background research shows that because of 

this, it is a common tool for fast, efficient, optimization [35]. 

3.4 Multi-Dimensional Minimization Methods 

There are many multi-dimensional minimization methods, and like the one-dimensional 

methods, some are more efficient while others sacrifice efficiency for easy implementation. One 

of the most basic multi-dimensional minimization methods is the Univariate method, which is 

simply just many one-dimensional minimization routines in sequence. It works by selecting one 

variable and assigning a one-dimensional minimization method to it to find the point where the 

objective function is at its minimum, while the other variables are fixed. Once the minimum has 

been located, the next variable is selected, the remaining variables are fixed, and the same 

procedure is performed to find the new minimum. Once all of the variables have gone through a 
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minimization pro~ess, the cyc_le starts all over again and continues until the minimum of the 

entire problem has been found [ 45]. 

The Univariate method is easy to implement, however it may not converge in some cases, 

and even if it does, its convergence rate slows as it approaches the minimum. There are other 

minimization methods that use the Univariate method as their foundation, but add to it what is 

known as pattern directions to make it more efficient, and these are known as Pattern search 

methods. Some Pattern search methods are the Hooke and Jeeves' Method and Powell's Method 

[ 45]. These methods work by evaluating the function using the Univariate method for the first 

iterations. The results are then used to generate a search direction in which to guess the location 

of the new points for evaluation. An example case is shown below for a two-variable function 

minimization. 

2 

'----------xl 

Figure 3.4: Example Pattern Search convergence for dual-variable function [45] 

The points 1, 2, 3, ... indicate the resulting values found from successive univariate 

solutions. As shown in Fig. 3.4, the search vectors connected by alternate points (ie. 1, 3; 2, 4; 3, 

5; ... ) are always in the general direction of the minimum and get more accurate as the function 

approaches the optimal point. To make this process even more efficient, Rosenbrock [ 4 7] added 

what is known as rotating coordinates to create the Simplex method. This method is closely 

related to the Hooke and Jeeves method, but uses a series of "Simplexes" in the design space that 
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either expand or contract and reflect to find the best direction to search for the optimal point (See 

Ref. [45] for more information). 

The above methods work well for basic design problems, however, seeing as the current 

project has not only a relatively large amount of variables, but is also being optimized using CFD 

results, a maximum efficiency method is preferred due to time constraints. The types of methods 

that allow for maximum efficiency are known as gradient methods. These tend to be the 

quickest to optimize because they form their searches not only on where the optimum lies, but 

also on the quickest way to get there. 

Some common gradient methods are Steepest Descent, Conjugate Gradient, Newton, and 

Quasi-Newton. The Conjugate Gradient method is an improved version of the Steepest Decent 

method and both are known to perform better than any Pattern Search method [45]. However, 

according to Rao [45], the Newton methods are even more efficient than the latter, and hence, 

were chosen as the methodology for the multi -dimensional optimization. 

The Newton method to be examined is the same as the one-dimensional Newton method 

mentioned in Sec. 3.2, but extended for a multi-dimensional application, however, the same 

problems are still present. The Newton method relies on first and second derivatives, and with 

the application of multi-dimensional analysis comes the need to calculate, manipulate and store 

large matrices. Therefore, for problems with a large amount of variables, the Newton method 

can be impractical [45]. The Newton method also tends to be impractical for CFD applications 

because it requires extra solves for each variable to supplement the finite difference 

formulations. To help explain this point, the Newton methodology is described below. 

The Newton method takes its form from a Taylor series expansion of a quadratic function 

and its basic equation can be expressed as 

VJ(Xi) = -[Ji](x- xi)= o (3.5) 

where X is a point in the design space. Eq. 3.4 can be rearranged to the following form. 

X = Xi - ( Ji ]-1 V f (Xi) (3.6) 

To make the above equation applicable to an iterative scenario, it can be written as 

(3.7) 

where J is 
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a2J 

[li]= ax2ax! 

a2! 
axnax! 

This is known as the Hessian matrix which is what makes the Newton method impractical for 

most CFD applications. Not only are the first and second derivatives required, but also the 

second partial derivatives for each possible pair of variables. So, the amount of solves required 

for one iteration goes up quadratically as more variables are included. 

The main idea behind the Quasi-Newton method is to approximate the Hessian matrix, J, 

by using only the first partial derivatives off [ 45]. The result is a significant reduction in the 

amount of solves required for each iteration with only a small compromise in efficiency. This is 

what makes the Quasi-Newton method more suitable for CFD applications and thus, the 

algorithm of choice to perform the 3-dimensional optimization. 

The Quasi-Newton method differs from the Newton method by rewriting Eq. (3 .6) as 

(3.8) 

where B is the approximate Hessian which starts as an identity matrix for the first iteration. The 

method proceeds by finding a search direction using 

(3.9) 

and then solving for the optimal step length, A-; . The optimal step length is found by minimizing 

J(X i +AiSJ with respect to A using any preferred one-dimensional minimization routine. For 

this specific task, the one-dimensional Quasi-Newton method was the routine of choice for the 

final multi-dimensional optimization program. 

Once an iteration is complete and the variables have been updated via Eq. (3.7), the new 

gradients off are found at X i+l and the Hessian matrix B is updated using the new information. 

Many methods are available to update the Hessian matrix, however one of the most common and 

efficient ones has been derived by and is known as the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) method [46]. In its final form, the BFGS method updates the Hessian using the 

following equation 
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where 

(3.10) 

(3.11) 

(3.12) 

This method tends to be very stable and robust when compared to other methods of the same 

level. It has also been shown to have superlinear convergence near x*, which corresponds to a 

fast convergence rate. A minimization method is said to have superlinear convergence when 

(3.13) 

where x* is the minimum point. 

3.5 Constrained Optimization 

The previously mentioned routines have been derived for unconstrained minimization. 

For most practical problems however, constraints will be present and the above optimization 

methods need to be modified slightly in order to handle them. 

Two common methods used for changing the minimization techniques to handle 

constraints are the interior and exterior penalty function methods. The interior penalty function 

method works by modifying the objective function in the following manner. 

Find X which minimizes J(X) (3.14) 

Subject to 

gj(x)~o, j=1,2, ... ,m (3.15) 

which results in 

(3.16) 

where rk is the penalty parameter defined by the user. Although Eq. 3.15 is configured for 

constrained optimization, it is in the form of an unconstrained minimization problem and can be 

solved using the method previously defined [45]. 

One potential hazard in the interior penalty function method is found in how it handles 

the constraints. As the function minimizes and nears the bounds set by the constraints, g j (X) 
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approaches zero. , Therefore, Eq. 3.15 will approach infinity for the optimal solution, or for any 

solution where a constraint is satisfied critically, ie. when g 
1 
(X) is equal to 0 [45]. Also, if X 

were to violate the constraints and land in the infeasible domain, Eq. 3.15 cannot account for this 

and the minimization process may diverge. 

The exterior penalty function method tends to be more robust for the above situations. 

The equation for this method is as follows. 

where 

m 

(A = ¢(X' rk ) = f (X)+ rk L \ g j (X) r 
)=1 

(g.i{x)) = max(g .i(x),o) 

g 1(X) g 1(X)>O 

= 
0 

(constraint is violated) 

g 1 (x)~o 
(constraint is satisfied) 

(3.17) 

Both the problem of critically satisfying and violating the constraints is handled in the exterior 

penalty function method. An example of how this method works is shown below. 

Consider the optimization of a propeller for maximum thrust. The objective function for 

this scenario in its most basic form is shown below 

J(X)= 1 
Thrust( X) (3.18) 

where the minimization of f(X) occurs as thrust increases. At its starting point, the propeller may 

produce a thrust of 1000N using 275Hp. A constraint may be imposed whereby the optimum 

design cannot exceed a power input of 300Hp. The constraint, g(X), is thereby calculated using 

the following equation. 

g (X) = ~ (X)- P max 

g(x) = ~(x)- 300 (3.19) 

The objective function then has to be altered to the same form as Eq. 3.16, in order to apply 

constraints to the minimization process. The final form of the objective function is shown below 

¢(X, r) = l ( ) + r(max(P;(X )- 300, 0))' 
Thrust X 

(3.20) 
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where q was chosen as 2, and r for illustration purposes will be chosen as 1E-6. At the 

propellers starting point, where Pi is equal to 275Hp, 

resulting in, 

g(X)=275-300 

g(X) = -25 

¢(X, r) = -
1
- + 1e-6 [max(- 25, 0 )Y 

1000 

¢(X, r) = -
1
- + 1e-6 (0)2 

1000 

¢(X ,r) = 0.001 

Since g(x) is negative, the constraint is not violated and the original objective function has not 

been affected. Consider now the propeller optintization after one iteration where the thrust is 

1200N using 350Hp. 

g(X) = 350-300 

g(X)=50 

The objective function is modified due to the positive g(x) as shown below. 

¢(X, r) = -
1
- + 1e-6 [max(50, 0 )Y 

1200 

¢(X ,r) = -
1
- + le -6 (5o? 

1200 

¢(X, r) = 0.0008333+ 0.0025 

¢(X, r) = 0.00333 

The final objective function of the above iteration shows an increase from the original, 

which tells the optintization program that its search direction is unfavourable since its objective 

is to ntinintize the function. Even though the thrust has increased relative to the original point, 

and consequently the objective function defined by Eq 3.17 has decreased, the constraint was 

violated which caused the objective function to be artificially increased. This is equivalent to a 

decrease in thrust and therefore to maxintize the thrust would require the constraint to be in less 

violation. 

To make the exterior penalty function method converge faster, Lagrange Multipliers can 

be added to Eq. (3.15). The Lagrangian for Eqs. (3.12) and (3.13) is as follows 
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p 

L(x,A-L)= f(X)+ LA-1h1(x) (3.21) 
) = I 

Where AL is the Lagrange multiplier. Adding this into Eq. (3.15) results in the following 

augmented Lagrangian multiplier method. 

(3.22) 
) = I ) = I 

This is the final form of the penalty function method that was chosen to optimize the ducted fan 

geometry. Coupled with Quasi-Newton minimization methods, the overall optimization program 

that was created for this study ensures high efficiency convergence towards the optimum 

geometry. A flow chart for the final program is given in Figure 3.5. 
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Figure 3.5: Flow chart for optimization method 
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4 Three-Dimensional Optimization 

4.1 Introduction 

Once the optimization program was complete, it was linked with the outside CFD 

software and was ready to optimize the full 3D version of the ducted fan. The reasons for 

performing a 3D optimization rather than a 2D optimization are quite simple. One of the main 

reasons is due to the presence of the propeller. 

As mentioned earlier the propeller was represented by a pressure boundary for the 2D 

study cases. This is sufficient for obtaining an estimation of performance for a preliminary case, 

however if more accuracy is desired a physical propeller is required in order to capture all of the 

localized flow effects. 

Some three dimensional effects that are expected to change the performance of the ducted 

fan with respect to the propeller are due to the presence of the duct and hub. As the geometry is 

being optimized, the duct and hub shapes will be perturbed repeatedly in order to gather 

performance gradients. These perturbations are expected to ~hange the inlet and outlet flow 

slightly which in tum will change the flow relative to the propeller. As a result, the propeller 

performance will change and the pitch may have to be adjusted to compensate. 

Two base geometries were chosen to serve as the starting point for two different 

optimization processes, shown in Figs. 4.2, 4.3, 4.5, 4.6. One of the configurations was the result 

of the 2D analysis and the other was a configuration that was designed to be very different in 
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shape from the first. The reason for this was to give insight into whether the final optimized 

geometry was a global optimum or local. The way this was determined was by comparing the 

two end results with each other. If the two separate cases resulted in similar geometries, then it 

would be reasonable to assume that they converged to a global minimum, which is illustrated in 

Fig. 4.1. However, if the resulting geometries were different, then either of them could have 

been stuck in a local minimum while the other achieved global optimization. This type of 

scenario is shown in Fig. 4.2. 

j(x) 

j(x) 

Final Configuration 1 and 2 
Qocal minimum is global minimum) 

Figure 4.1: Global minimum 

Configuration 1 

Ide al Configuration 
(global minimum) 

Figure 4.2: Global and local minima 

Since the study is a physical optimization of a ducted fan, multiple local rmrnma 

significantly different from the global minimum are not expected. For problems of this nature, 
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there usually exi~ts only one configuration that performs the best. If there are local minima 

present, they usually lie close to the global minimum, whereby the differences in the 

configuration and performance are minimal as can be seen in the work by Madavan [33]. 

4.2 Geometry Specifications 

4.2.1 Initial Duct Geometry 

The initial cross-sections of the duct for the two optimization cases are shown below in 

Figs. 4.3 and 4.4. 

Figure 4.3: Initial duct cross-section for Case 1 (from 2D optimization) 

L. 
Figure 4.4: Initial duct cross-section for Case 2 (alternate start point) 

The major differences between these two designs are the overall length of the duct and 

their camber into the outgoing flow. The two have their own advantages and disadvantages. The 

curvature of the duct for Case 2 brings the tail into the propeller wake and increases the velocity 

of the exiting flow. This increases the pressure behind the propeller and as a result, increases the 

forward force of the propeller blade. However, the cost of doing this is an increase in the drag of 

the duct. The opposite applies for Case 1 where the duct is fully streamlined keeping its drag 

down, but the exit velocity is lower as a result. The optimal point is expected to be somewhere 

in-between, but it does leave the opportunity open for either to optimize towards an extreme case 

and locate a local minimum. 
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The shape of the duct is being optimized using control points at various locations around 

the duct perimeter. These control points and their degrees of freedom are shown in Fig. 4.5. 

F 

G 

H A B 

D 

L. 
Figure 4.5: Duct control points 

There are various sets of control points that are connected to each other by either a spline 

or straight line. The control points [B,C,D] are connected to each other using a spline and they 

make the lower trailing edge shape of the duct. Control points [F,E,D] are connected using a 

spline and make the upper trailing edge shape of the duct. The leading edge of the duct is 

formed via a spline using the control points [A,H,G,F], and the points [A,B] are connected using 

a straight line. The reason for this is that the propeller passes through this area and by keeping it 

straight, makes the geometry rendering easier and less prone to error due to intersection of 

foreign surfaces. The points [A,B] have not been configured to move in they-direction because 

the inner radius of the duct has been fixed at 35cm. 

The duct contains 6 control points with 11 degrees of freedom. Each control point has 

the freedom to move anywhere in the x or y direction which allows a wide range of duct shapes 

to be assessed. However, not all of the degrees of freedom are completely independent. In the 

effort of gaining efficiency for the optimization process, some control point degrees of freedom 

were made dependent on some other control points' locations. This was done for movements in 

which the new location of a point has a negligible effect on the shape of the duct. By doing this, 

the optimization algorithm has less perturbations to make in order to provide the program with 

the necessary information to generate a search direction. If there are less perturbations, then 

there are less solves and the optimization program completes in a shorter amount of time. 
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There are } control points on the duct where a degree of freedom is made dependent on 

other control points. One of these is the x-direction degree of freedom for control point C. It is 

dependent on D and B in the following manner. 

D-B c = X X +B 
X 2 X 

(4.1) 

According to Eq. (4.1), the x-position of C will always be half the distance between D and B. 

This ensures that C will always be in a good position for Cy to independently adjust the curvature 

of the lower trailing edge spline. 

Another point that has its x-direction degree of freedom dependent on other points is 

control point E. Ex is governed by the position of Dx and Fx using the following equation. 

D -F 
E = X X +F 

X 2 X 
(4.2) 

Like Cx, Ex is made to be half-way between its neighboring control points such that it stays in

bounds relative to them and also allows Ey to adjust to create the necessary curvature. 

The y-direction degree of freedom for control point H was made dependent for the 

purpose of keeping the geometry within bounds, rather than for an increase in efficiency. In 

preliminary studies, control point H would move upwards so much that it would intersect with 

the curve above and create a degenerate geometry. To solve this problem, Hy was made 

dependent on the vertic allocation of points A and G using the following formulation. 

G -A 
H = y y +A 

y 3 y 
(4.3) 

Rather than being half the distance between the dependent control points, Hy is set to be a third 

of the distance from point A. The original position which was at half the distance was found to 

make a discontinuous connection with the line [A,B]. By placing the node a third of the distance, 

this created a more gradual connection. 

4.2.2 Initial Hub Geometry 

The initial hub geometries are shown in Figs. 4.6 and 4.7. 
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Figure 4.6: Initial hub cross-section for Case 1 (from 2D optimization) 

L 
Figure 4.7: Initial hub cross-section for Case 2 (alternate start point) 

As with the ducts, Case 2 was designed to be far from Case 1, geometrically. The hub 

section for Case 1 is streamlined due to its long design and small frontal area, which will most 

likely give it a low drag profile. The design for Case 2 has a larger frontal area due to its larger 

radius. Although the larger frontal area will most likely give it a higher drag, the larger radius 

cuts out the high work, low thrust portions of the propeller blade, which are at the root. This 

allows extra available power to be placed elsewhere in the system to increase the thrust. An 

optimum could possibly be found in between these designs that combines the streamlined shape 

of Case 1, with the high thrust characteristics of Case 2. 

The hub shape is generated using 5 points around the perimeter and is defined by 3 

parameters. The locations of these are shown below in Fig. 4.8. 

L. 
Figure 4.8: Hub control points 
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The hub ~ose is created using the formulation for an ellipse. Its length is variable and is 

defined by the parameter LJ. It is attached to the line [B,C] which controls the radius of the hub 

via the parameter LJ. The tail of the hub is defined by a conic function with a p value of 0.2. 

The conics control point, E, is dependent on the radius and length, and is set to be at a height 

equal to the radius as well as at a length equal to the total length of the hub. The tail length is 

variable and is defined by the parameter L2• 

4.2.3 Propeller Geometry 

The optimization of a propeller itself can be a large enough task to require a study all on 

its own [48]. Since the primary goal of this study was to find a suitable duct and hub geometry, 

optimizing the propeller along with those would have been an unnecessary addition. For this 

reason, many variables that make the shape of the propeller were fixed. 

The cross-section of the propeller was a constant profile which was chosen as the N ACA 

65-410. It can be seen below in Fig. 4.9. 
NACA6~10 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 4.9: NACA 65-410 airfoil [49] 

The original airfoil chosen for the 2D analysis was the Clark Y airfoil. The NACA 65-410 was 

chosen instead because of its high-speed design which yields a relatively lower drag for the 

amount of lift produced. This is due to the shape allowing laminar flow to exist farther down the 

chord [50]. The NACA 6-series also exhibits a higher critical mach number which allows the 

propeller to rotate faster and thereby generate more thrust. 

Another aspect of the propeller that was fixed, was the span-wise twisting of the blade. 

To have the blade twist adjust to the flow with a reasonable amount of accuracy would have been 

an expensive addition to the design process. Unfortunately, this could place the blade in off-
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design conditions that would result in high (or low) angles of attack which may induce separated 

flow. However, to alleviate this problem, the twist was fixed but the overall pitch was made 

variable. This way, if the flow changes and the majority of the blade is in unsatisfactory flow 

conditions, the pitch can change to compensate thereby improving performance. The twist that 

was chosen for the propeller was the same one that was used for the 2D analysis. 

Although most of the propeller variables have been fixed, a few key ones have been 

chosen to remain variable as they are expected to affect performance the most, relative to their 

cost of computation. One variable, mentioned earlier, controls the entire pitch of the blade which 

will have a large effect on the performance. Another key variable was chosen as the location of 

the propeller within the duct and hub assembly. The variables that define the propeller would 

mostly affect the performance of the propeller itself. However, by changing the location of the 

propeller, it is expected that this will affect the performance of also the duct and the hub. 

One common problem, mentioned in Chapter 2, is the occurrence of inlet lip separation. 

By having the propeller closer to the inlet, it may come in contact with the flow before it has the 

chance to separate, which would improve performance. Inlet lip separation is more commonly 

seen in low flow velocity regimes. However the above example is just to illustrate how the 

location of the propeller can have an effect on all aspects of the design. 

4.3 Operational Constraints 

There are two sets of constraints that bound the optimization to within a specific domain. 

The first set of constraints places a limit on how thin the duct section can get. Since the 

objective function is trying to maximize thrust and minimize drag, a possible direction the 

optimization may go in is to make the duct as thin as possible to reduce its drag. This may result 

in a duct section that is too thin to be of practical application. The duct will eventually contain 

components needed for aircraft applications as well as structural elements. If the duct is too thin, 

these may not be able to fit and the ducted fan assembly would have to be redesigned. 

To stop the duct from getting too thin, constraints were created near the leading and 

trailing edge. The leading edge constraint was set at a minimum of 26mm, while the trailing 

edge was set at a minimum of 15mm. A depiction of the minimum cross-section is shown below 

in Fig. 4.10. 
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Figure 4.10: Minimum allowable duct cross-section 

The leading edge constraint was created by taking the vertical distance between points F and A 

(using Fig. 4.4) to create the thickness value t1. The equation for this constraint that was 

imposed in the objective function is shown below. 

(X)= t1 -26 
gl 26 (4.4) 

The constraint function is normalized by dividing the difference by the value of the constraint. 

This ensures that all constraints are of the same magnitude and will be treated equally. The 

trailing edge constraint is created in a similar manner by taking the vertical distance between 

points C and E to create the thickness value t2• The resulting equation for this constraint is 

shown below. 

(X)= t2 -15 
g 2 15 (4.5) 

Both Eq. 4.3 and 4.4 are related to the objective function using Eq. 3.17 in Sec. 3.5. 

Although the needed dimensions have not been verified, the allowable space in Fig. 4.9 

seems adequate to support the necessary components. If it is not enough, only a slight increase is 

expected which would alleviate the need for an entire re-design. 

The other bound on the final design is the input power to the propeller. This ducted fan is 

being designed to have an aircraft travel at 270kts at an altitude of 21000ft using a 350Hp rated 

engine to drive two ducted fans. The engine is to power the aircraft at 75-80% during cruise 

which, for the choice of engine, was chosen as 275hp. This input power is the constraint which 

the optimized design must not exceed. This value is generated by finding the moment on the 

blade after each solve and then applying a conversion to it to make it in terms of horsepower. 
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The result is only for one blade, so it is also converted to account for 12 blades which correlates 

to 6 blades per pod and 2 pods. This equation is shown below 

12MQ 
Power= { } 

745.6999\~ 
(4.6) 

where M is the moment on the blade and Q is the rotation rate in (rad/s). The constraint equation 

is as follows. 

(X)= Power-Pmax 
g3 p 

max 

(X)= Power- 275 
g 3 275 (4.7) 

Constraints are put in place to ensure the final design does not exceed the specified 

design limitations. However, a design can also exist that has its constraints partially satisfied to 

within a reasonable margin. A trade-off may present itself where a considerable boost in 

performance may arise at the cost of a minor violation of a constraint. With this in mind the 

results at each step were observed to obtain a complete view of the viable designs. 

4.4 Mesh Characteristics 

4.4.1 Mesh Spacing 

The meshing software used for this study lacked the capability necessary for defining 

differential node spacing along certain edges. This tool is commonly used in places where a 

higher degree of numerical resolution is required. This can include areas of high curvature and 

turbulent regions. Where an area of an edge may need a fine spacing and the rest could be 

coarse, the entire edge would have to be meshed using only one nodal spacing. Unfortunately, if 

the maximum accuracy is required, then the entire edge has to be meshed using the smallest 

spacing which results in much longer solve times. Due to this, a compromise had to be made for 

this study where a single spacing was selected that achieved affordable solve times by not 

sacrificing too much accuracy. 

The surfaces along the duct and hub were long and smooth which allowed a larger mesh 

spacing to be applied to them. The flow variables such as density, velocity and energy, were 

expected to be relatively steady and exhibit small gradients in their behavior parallel to the duct 
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axis. The spacing along these surfaces was set to 4mm which, for comparison sake, is applied to 

a duct length of 630mm. 

Around the leading edge of the duct, the spacing was set to 2mm due to the high 

curvature that was present. A higher degree of node resolution was preferred for the tip of the 

duct, however the mesh size would increase dramatically for any value smaller than 2mm. 

Therefore the choice of 2mm for the nodal spacing was found to satisfy the desired accuracy by 

also keeping the solve time within reason. 

The propeller surfaces were set to have a constant node spacing of 1mm. This generated 

a fine mesh relative to the rest of the model, which was required due to the adverse flow 

conditions that it could encounter. Where the propeller intersected the hub and duct, the spacing 

in those areas was set to 3mm. This provided the transition from the larger 4mm spacing to the 

fine lmm spacing around the propeller. The final mesh contained on the order of 1.2 million 

elements. Fig. 4.11 shows the locations of the aforementioned node spacing. 

Figure 4.11: Node spacing summary 

4.4.2 Error Approximation 

The software used for this study was NX 6.0 which contained grid generating and CFD 

components. The grid generating component was created by Simmetrix Inc., and the fluids 

solver component was a Navier-Stokes finite-volume based software created by MAY A Heat 

Transfer Technologies. 

The meshing software had the algorithm capable of producing a boundary layer mesh, 

however the algorithm did not work properly. Thus the study had to be completed using an 
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inviscid style mesh coupled with results that give an approximation of the error incurred by 

doing this. Although a boundary layer mesh was preferred for this study, the ambient conditions 

and the high speeds suggest an inviscid dominant flow. White [51] suggests that inviscid flow 

will give excellent results for the outer flow if Re > le4
, and for internal flow if LID < 10. In 

fact, the lowest Reynolds number in this scenario is approximately 5e5 and the maximum LID is 

3.2. These values are within the limits defined by White and therefore the analysis should yield 

reasonable results. 

To gain a better understanding of how much error would be present in the results, a 

separate study was performed to compare the results from a model solved using a boundary layer 

mesh, to one that was not. The mesh spacing, flow conditions, and geometry were held constant 

while only the boundary layer mesh was changed. The node spacing was the same as defined in 

Sec. 4.4.1 and the surface conditions were set as non-slip surfaces. A summary is shown in 

Table 4.1 below of the mesh characteristics for this particular study. 

Table 4.1: Summary of mesh characteristics for error approximation study 

With Boundary Layer Without Boundary Layer 

Off-wall spacing 0.005mm -3mm 

Boundary layer grid thickness 4mm N/A 

Boundary layer grid rows 20 N/A 

Total mesh elements 1485688 260393 , 

The setup used the duct and hub cross-sections of Case 1 and extruded them 1 OOmm to 

make a 3-dimensional part. The purpose of choosing both sections was not only to verify the 

error expected in the drag by not having a boundary layer mesh, but also to see how that higher 

resolution affects the flow around those bodies. For example, if the boundary layer is not 

modeled properly, it may be thicker than expected and would divert more of the flow. In the 

region between the duct and the hub, this would cause a constriction of the area between them 

and as a result, increase the local velocity. Since the propeller is located in this region, this could 

affect the performance. 

The case that provided the base comparison had a boundary layer grid with an off-wall 

spacing that was calculated using an online source [52]. The turbulence model chosen was the k

c model and the energy and momentum equations were solved using a second order formulation. 

The other non-boundary layer mesh cases that were compared to the base case used the same 
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settings, except o!le used the k-c turbulence model and the other used the mixing-length model. 

The reason for doing this was that when applied to the full case, the k-c model required a 

significant amount of relaxation to stop the problem from diverging. This increased the solve 

times drastically, so a measure was taken to add stability to the solve which involved the use of 

the mixing-length turbulence model instead. Thus a comparison needed to be made to see how 

much error would be expected by using the mixing-length model as opposed to the k-c model. 

Since the k-c model is a more sophisticated algorithm, it was taken as the most accurate. The 

comparisons were made between the values of drag for both the duct and the hub. The results 

are shown in Table 4.2 below. 

Table 4.2: Drag comparisons to determine expected error 

Base Case Test Case A Test Case B 

Boundary layer mesh Yes No No 

Turbulence model k-£ k-£ mixing -length 

Duct drag (N) 2051.47 2253.36 2422.96 

Hub drag (N) 3052.88 3393.15 3598.59 

The error for each case is as follows. 

Table 4.3: Resulting error from lack of a boundary layer mesh 

Test Case A Test Case B 

Duct error(%) 9.84 18.11 

Hub error(%) 11.15 17.88 

The absence of a boundary layer mesh produces an error much less than expected. The average 

error for Test Case A is about 10.5% and the average error for Test Case B is about 18%. 

Although an error of 18% is significant, considering the drags are consistently over predicted, 

these expected errors can provide corrections to the final results. 

The velocity profiles were sampled at two locations between the duct and the hub. The 

first location was at 400mm from the nose of the hub. This position was selected because it 

represents the smallest section between the duct and hub. Here the local velocity varies the most, 

so any deviance from the base scenario is expected to be more prevalent at this location. The 

second sample location was located at 680mm from the nose of the hub. This is the rear of the 

duct, where the boundary layer will be the thickest. Therefore, if the boundary layer is not 

accurately modeled, it may become thicker than normal, in which case, the velocity profile will 
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be affected. A figure showing the velocity contours of the base case with the locations of the 

velocity profile samples is shown below in Fig. 4.12. 

x= .tOOmm x= 680mm 

Figure 4.12: Velocity contours of the base case with velocity profile locations 

The resulting velocity profiles are shown in Figs. 4.13 and 4.14. 
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Figure 4.13: Velocity profiles at x=400mm 
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Figure 4.14: Velocity profiles at x=680mm 

Figs. 4.13 and 4.14 above show the distribution of the flow velocities starting close to the 

duct surface extending close towards the hub surface. Each location, where the velocity profile 

suddenly decreases close to the wall, represents the flow within the boundary layer. The base 

case predicts that the velocity profile extends closer to the wall than the other cases. This means 

that the absence of a boundary layer mesh caused the solutions to over predict the thickness of 

the boundary layer. However, according to Figs. 4.13 and 4.14, the velocities in the inviscid 

regions have not been affected by this over prediction as expected. Once out of the boundary 

layer region, the velocity profiles match up quite well to the nominal case. Although Fig. 4.13 

shows much deviation from the nominal relative to Fig. 4.14, the largest error is only about 1%. 

According to the results, sacrificing the ability to accurately model the boundary layer is 

not expected to have a detrimental effect on the optimization analysis. The flow velocities are 

still in good agreement with the best case scenario and the drag values both generate a maximum 

error of about 18%, which can be regarded as small when considering the cause. Due to this 

consistency, one can confidently estimate the error in the final results or could even apply the 

known error as a correction to make the final values more accurate. As mentioned earlier, Test 

Case B over predicted the drag by 18%. Therefore the final results most likely can be assumed 

to have approximately 18% less drag for a case with similar mesh spacing, at least for the duct 

and hub. 
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4.5 Perturbation Size Study 

The optimization algorithm works by perturbing each of the variables, one at a time, for 

the first step of the analysis. These provide the values necessary to generate gradients of the 

objective function for each point. From here, the algorithm calculates a search direction based 

on the gradients. A common discipline in this type of optimization is to keep the perturbation 

size relatively small in order to generate accurate gradients. This is a trivial task for optimizing 

equation based systems, but for a study such as this one, this poses a potential problem. 

As was discussed in Chapter 2, the mesh size has a large impact on the outcome of the 

results. Even though the geometry may stay the same, just by simply changing the mesh, the 

final solution can change by a significant amount. When relating this occurrence to obtaining 

gradients by perturbing the nodes around the geometry, a problem arises. If the perturbation size 

is too small, the change in geometry may be so little that the change in the objective function is 

outweighed by the error caused by the change in the mesh. Due to this, an incorrect gradient 

may be generated and the optimization algorithm may search in the wrong direction. With this 

in mind, a study was performed to find the perturbation sizes necessary to change the geometry 

enough such that the error caused by the change in the mesh, is not significant. 

A series of tests were performed on a 2-dimensional duct profile, where a specific node 

was chosen and perturbed continuously in one direction such that after many perturbations, the 

node has moved a relatively long distance. This process would demonstrate how the objective 

function changes over time and would thus show a general trend in behavior. 

The first node selected was at the trailing point of the duct and was perturbed in the x

direction at intervals of 0.5mm for a total distance of 36.5mm. The duct was to get longer, so it 

was expected that the drag should generally increase. The results are shown below in Fig. 4.15. 
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Figure 4.15: Drag trend after many perturbations for aft duct point 

A trend can be seen which shows that the drag of the duct increases as the length gets 

longer, which was expected. So, theoretically any perturbation making the duct longer should 

signal an increase in drag to the optimization algorithm. However, points exist on the figure 

above that indicate otherwise. Some perturbations actually show a decrease in drag due to that 

small increase in length. This is obviously due to the error caused by the change in the mesh 

outweighing the small change in the objective function. A step size can be found from this data 

in which a positive gradient is always present thereby signaling to the optimization algorithm a 

correct direction to search in. This is achieved by just selecting distances spaced far enough 

away from each other that the inclusion of the mesh error still results in a positive gradient from 

the previous position. The results for this methodology are shown in Fig. 4.16. 
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Figure 4.16: Dampened drag trend for aft duct point 

By using a perturbation distance of 5mm, rather than 0.5mm, most of the noise created by 

the previous analysis is dampened out. Although the gradients are not the most consistent, they 

are still positive in nature which would signal to the optimization algorithm the correct direction 

in which to search. 

There are nodes around the duct perimeter that are more sensitive than the one just tested. 

This means that a smaller perturbation is more likely to dampen out the noise found by an 

analysis like the one above. The nodes that tend to be more sensitive are the ones that perturb in 

they-direction thereby altering the shape of the duct to interfere with the flow. Shown below in 

Fig. 4.17 is the drag distribution by perturbing the aft duct point, this time in the y-direction. 
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Figure 4.17: Drag trend for aft duct point perturbed in they-direction 

The drag trend appears to show a decrease in drag to a minimum and then an increase. 

Also, the amount of noise in the solution is significantly less than found in the previous case, 

even though the perturbation size is the same. One thing to note is the change in sensitivity as 

the node progresses in distance. Between 0 and 7mm, there is more noise in the solution, which 

means that the node is less sensitive. Beyond 7mm however, the trend smoothes out and the 

perturbation size seems adequate. The reason for this is that between 0 and 7mm, the node is 

located in the duct wake, and due to this has less of an aerodynamic impact. Beyond 7mm, the 

node has entered freestream flow thus increasing its sensitivity. The trend after smoothing using 

a perturbation size of 1mm is shown below in Fig. 4.18. 
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Figure 4.18: Dampened drag trend for aft duct point in y-direction 

For the most part, the trend is relatively consistent in creating a smooth curve with a 

minimum. However, an anomaly is seen at a distance of 5mm, where the trend seems to be 

violated. More smoothing can be done by using a larger step size to get rid of the anomaly, but 

this may cause convergence problems in the end, remembering that a smaller step size usually 

works better. So, a compromise was taken by keeping the step size at lmm considering that the 

optimization algorithm may generate a search direction slightly different than what it should. 

Depending on the location of the node, the perturbation size could be smaller than others 

and still dampen out the noise to give the proper search direction. As a result, the nodes around 

the duct have a variety of perturbation sizes. These are summarized in Table 4.4 using the 

notation from Fig. 4.5. 
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Table 4.4: Summary of perturbation sizes for duct 

Node Perturbation size (mm) Perturbation size(% of duct length) 
By 2 2.94E-01 

Cx 5 7.35E-01 

Cy 2 2.94E-01 

Dy 2 2.94E-01 

Ey 1 1.47E-01 

Fx 2 2.94E-01 

Fy 1 1.47E-01 

Gx 1 1.47E-01 

These results are not too far off from what Morris et al. [ 48] suggested. It was suggested that a 

perturbation size between 0.1% and 0.001% that of the reference length is preferred for 

consistent sensitivities which would yield a smooth optimization. 

One of the reasons for this is that a smaller size tends to produces better results, but the 

location of the node also affects the choice of perturbation size. Every node could have been 

chosen to use the same perturbation size. This would have worked as long as they all get the 

largest one of the group. However, these movements can be troublesome in certain places. At 

the rear of the duct for example, a perturbation size of 5mm is acceptable considering the length 

of the duct is about 680mm. This node would have to take more than 100 steps towards the front 

of the duct before it runs into the problem of intersecting other edges. However, the thickness of 

the duct could be less than 15mm at some nodal locations, in which case if a node were to move 

in they-direction, it has about 3 moves at 5mm perturbations before it intersects with the other 

side and creates an error. By using a smaller step size such as 1mm, this node has then about 15 

moves before it runs into trouble, and by then the optimization algorithm will most likely have 

adjusted to keep it away. 

As mentioned earlier, not every node was tested to find its best perturbation size. Based 

on their location and their direction of movement, their proper perturbation size could be 

assumed when related to other nodes in similar situations. Common trends observed are if the 

node is extending the length of the body, a larger perturbation size is necessary to smooth out the 

noise. For nodes extending the body into the freestream, the perturbation size can be less due to 

the heightened sensitivity. When applied to the hub nodes, the following perturbations were 

chosen and are summarized in Table 4.5. 
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Table 4.5: Summary of perturbation sizes for hub 

Node Perturbation size (mm) Perturbation size(% of hub length) 

Ax 5 3.33£-01 

Dx 5 3.33E-01 

L3 2 1.33£-01 

The propeller perturbation sizes are also summarized in Table 4.6. 

Table 4.6: Summary of perturbation sizes for propeller 

Node Perturbation size Perturbation size (%of duct length) 

Pitch 20 N/A 

Location Smm 2.94E-Ol 

4.6 Two-dimensional Validation of Optimization Algorithm 

Before being applied to the full 3D analysis, the optimization program was set up to solve 

a simple 2D case. The purpose of this was to verify the previous study in which the perturbation 

sizes were determined based on their location. More importantly however, this was also to 

verify that the optimization algorithm would work correctly. 

The method used to verify that the program worked and had achieved an optimum was by 

using a case with a known optimal result. Specifically, the case used was a 2D cross section of 

the duct and the objective function was its drag. So, if the optimization program were to 

minimize this objective function, it would be trying to minimize the duct's drag. Aerodynamic 

practice tells us that any aerodynamic body in a flow, trying to achieve the least amount of drag, 

should be as thin and short as possible, and in the case of airfoils, symmetrical as well. 

Therefore, the optimum duct profile should have exactly those traits. 

A first scenario was set up where only the tail of the duct was made variable for 

optimization. A constraint was placed on the thickness of the tail making sure that it did not 

exceed a minimum thickness of 15mm. This thickness was based on the distance between the 

two aft duct nodes B and D. The results gathered from this optimization study were the shapes 

of the duct after each major iteration. The initial geometry is shown below in Fig. 4.19. 
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Figure 4.19: Initial geometry for 2D optimization validation study 

The resulting geometry after 8 major iterations is as follows. 

Figure 4.20: Final geometry for 2D validation study 

The duct has indeed resulted in the expected shape. It is shorter than its original and the 

tail is relatively symmetric. It is not thinner than the original which is simply due to the nose of 

the duct not being a part of the optimization. There was also a thickness constraint at the tail 

which prohibited it from getting any thinner. However this does also validate the correct 

operation of the constraints. 

A modification to the optimization program that was applied during this study controlled 

the magnitude of the search direction. When the program determines the search direction in 

67 



which to find the appropriate step length, a value can sometimes be of such a high magnitude 

that the initial step size moves certain nodes too far which could result in edges intersecting each 

other. Therefore, the search direction was scaled down evenly until the maximum value within 

the search vector was below a value of 1. This process is shown below 

if max(sj(x))> 1 

( )- S/X) 
S j+l X - --=--

a 

(4.8) 

where a is an arbitrary factor greater than 1. This process is repeated until the maximum value 

of S(X) is less than 1. This ensures that for every search direction, the maximum value will not 

be large enough when combined with the initial step length to move a node across a boundary. 

Rather, this forces the algorithm to take several smaller steps to find the optimal step length, in 

which case if it reaches close to another boundary, it will most likely be in violation of a 

thickness constraint and can readjust properly. 

A more complete study was performed later that included the optimization of every node 

around the duct. It also examined the efficiencies of choosing different perturbation sizes. The 

series studied were 0, +1, +2, and +3mm larger than the original perturbations sizes. Note that 

the initial perturbation sizes are that of Table 4.3. The results for the minimization of the drag 

are shown in Fig. 4.21. 

At the end of the optimization the series that were + 2mm larger than the original, 

achieved a lower drag in the same amount of iterations. However, the series that were + 3mm 

larger achieved the same final drag as the + 1 series, in only 24 iterations, where the other 

achieved it in 65. So it seemed that the +3mm process was more efficient in the early stages, 

which could have possibly warranted the use of that perturbation size. This is not the case 

however, when assessing the objective function values seen in Fig. 4.22. 

The drag itself may have minimized early for the + 3mm case, but the objective function 

did not. What this means is that while the drag was low, the geometry was in violation of some 

constraints. When in violation of any constraint, the optimization algorithm multiplies the 
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Figure 4.21: Minimization of drag over time for 2D validation study 
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Figure 4.22: Minimization of the objective function over time for 2D validation study 
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magnitude of the violation by the penalty parameter and adds on that value to the objective 

function. This creates a pseudo drag value that is higher than the actual. What this does is 

manipulates the optimization algorithm into thinking that that configuration is not a minimum 

and that it should keep on working. Eventually, the algorithm will move nodes to not violate the 

constraints and the magnitude of the penalty value will decrease towards 0. The end product will 

have an objective function that is equal or close to the actual value, in this case, the drag. 

For the above study, the penalty value has in fact decreased towards 0. The final value of 

drag for the +2mm case was 52.15N, and the final value for the objective function was 52.47N, a 

difference of less than 1%. This means that the penalty value has decreased to 0.32N which 

corresponds to a thickness violation of less than 1.5%. Other scenarios have either reduced that 

violation further by being under 0.5%, or have satisfied it completely. The distributions of the 

penalty functions over time can be seen in Appendix II. 

According to the above results, the optimization algorithm does indeed perform as 

expected. It not only is able to minimize a function, but it can also do this to satisfy any 

constraint. This is a beneficial process to take since the model being optimized is not as simple 

as just a lone duct. With minimizing the drag on a lone duct, it is straight forward to determine 

the effectiveness of the optimization algorithm, just by using common aerodynamic sense. 

However, for the optimization of a ducted fan, it is significantly harder to determine if the 

optimization algorithm is effective or not. For that reason the previous study was performed in 

order to validate and increase confidence in the optimization algorithm. 

4. 7 Three-Dimensional Results 

4.7.1 Case 1 

Case 1 was defined earlier as the resulting configuration from the 2D analysis. The initial 

cross-section of the duct can be seen in Fig. 4.3 in Sec. 4.2.1, and the cross-section for the hub 

can be seen in Fig. 4.6 in Sec. 4.2.2. The convergence history for Case 1 is shown below in Fig. 

4.23. Various views of the final flow characteristics can be found in Appendix III. 
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Figure 4.23: Convergence history for Case 1 

The objective function clearly shows a decrease in its value throughout the optimization process. 

The resulting performance characteristics for the optimal ducted fan configuration are shown 

below in Table 4. 7. The results are for the l/6th section of the ducted fan shown in Fig. 4.11. 

Table 4.7: Comparison of optimum with initial configurations for Case 1 

Duct drag (N) Hub drag (N) Propeller thrust (N) 

Initial 19.94 4.37 31.85 

Final 13.25 2.78 76.90 

Relative difference -33.54% -36.45% +141.49% 

The optimization program was able to decrease the duct and hub drag by 33.54% and 

36.45% respectively. This is a significant improvement in the overall performance of the ducted 

fan. The largest performance increase came from the propeller which resulted in a 141.49% 

increase in thrust from the initial configuration. This is at a small cost however due to the 

optimization algorithm violating the power usage constraint by 2.47%, which corresponds to a 

total input power of 281.80Hp. 

The resulting duct and hub geometries are shown below in Figs. 4.24 and 4.25, relative to 

their initial shapes. 
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Figure 4.24: Comparison of initial and final duct cross-sections for Case 1 
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Figure 4.25: Comparison of initial and final hub cross-sections for Case 2 

The most changes can be seen in the duct geometry where a decrease in height of 3% of the tail 

node, D, defined in Fig. 4.5, helps generate an increase in camber of 2.45%. This modification 

of the shape creates a low velocity, high pressure section behind the propeller blade relative to 

the initial geometry, which can be seen in Fig. 4.26. 
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Figure 4.26: Comparison of initial and final static pressure contours 

This modification is very similar to the design of natural laminar flow airfoils. The 

camber that the airfoils have which creates a high pressure lifting force, is delayed until the rear 

of the blade in order to hold laminar flow for as long as possible. In the case of the duct, the rear 

camber creates a high pressure section that, instead of being used for lift, is used for thrust. The 

high pressure pushes on the propeller to increase its thrust, and also on the hub, to decrease its 

drag. This can be seen in Fig. 4.27 which shows a cross-section of the propeller blade under the 

same conditions. 

Figure 4.27: Comparison of initial and final static pressure contours on propeller cross-section 

A higher pressure area is present behind the propeller for the final case, thus resulting in an 

increase in thrust. 
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4.7.2 Case 2 

Case 2 was defined earlier as the alternate starting point to Case 1. This was to show 

how the optimization progressed from a different side of the design space. The initial cross

section of the duct can be seen in Fig. 4.4 in Sec. 4.2.1, and the cross-section for the hub can be 

seen in Fig. 4.7 in Sec. 4.2.2. The convergence history for Case 2 is shown below in Fig. 4.28. 

Views of the flow physics can be seen in Appendix III. 
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Figure 4.28: Convergence history for Case 2 

The first iterations create a disorganized pattern because the initial stages of the optimization 

applied major changes to the geometry. This can be considered the portion of the optimization 

where the function is trying to find the steepest gradient of descent. Once found, the 

minimization becomes relatively smooth, as can be seen for the later iterations. The resulting 

performance characteristics for Case 2 are shown below in Table 4.8, for a 1/6th section of the 

ducted fan. 

Table 4.8: Comparison of optimum with initial configurations for Case 2 

Duct drag (N) Hub drag (N) Propeller thrust (N) 

Initial 71.20 6.41 107.54 

Final 15.25 6.68 75.95 

Relative difference -78.59% +4.25% -29.38% 
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The resul~s are interesting as the optimization has increased the drag slightly for the hub, 

and decreased the thrust for the propeller. However, the drag on the duct has decreased more 

than the latter two to result in an overall increase in thrust. The initial situation was an extreme 

version of what was seen in the final performance for Case 1. The duct was cambered in 

significantly which created a high pressure region behind the propeller. However, the increased 

drag on the duct outweighed the increase in thrust on the propeller thereby requiring a different 

configuration. The resulting duct and hub shapes are shown below in Figs. 4.29 and 4.30. 
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Figure 4.29: Comparison of initial and final duct cross-sections for Case 2 
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Figure 4.30: Comparison of initial and final hub cross-sections for Case 2 
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The purpose of analyzing Case 2 was to give insight into whether Case 1 would converge 

on a local or global minimum. Although the above results have been extracted before the 

optimization was completed, and have not ended up in exactly the same configuration as Case 1, 

they have changed in favour of the Case 1 design variables. The hub has increased its total 

length by 32.62%, and the duct tail node has increased its height by 9.85% and length by 5.46%. 

This shows that whatever minimum Case 2 is approaching, it is very similar in shape to Case 1. 

Therefore, since both geometries started out at what could be considered opposite ends of the 

design spectrum, and are approaching relatively the same configuration, it makes it more likely 

that the final configuration is a global minimum. Also, it is expected that even if both 

geometries converge on a local minimum, the global minimum is not expected to have a 

significant jump in performance over the final designs. This is based on the assumption that to 

generate a significant increase in performance, would require a significant change in geometry. 

However, there is little that can change to the geometry to result in a significant change in 

performance, while still keeping a minimal drag design. This can be seen in the results of Case 

2, where it would have to make a cumulative change in geometry of 112% to achieve only a 5% 

increase in thrust to match that of Case 1. 

To get a definitive answer would require Case 2 to be fully optimized until it has reached 

a rmrumum. Unfortunately with the current computational resources this would require many 

more weeks to accomplish, which would exceed the time frame for this study. However 

according to the current findings, both cases are certain to result in the same optimal geometry. 
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5 Conclusions and Future Work 

5.1 Two-Dimensional Findings 

A propeller design program was created using blade element and disk actuator theory. 

The pressure difference results were placed as boundary conditions into a 2D analysis. A basic 

optimization procedure was undertaken to find a starting point for a more in depth 3D analysis. 

The analysis examined 81 different configurations and the best were chosen based on the least 

amount of drag they produced. The best configurations resulted in negative drag which is 

equivalent to a net thrust. The resulting coefficients of thrust for the top two configurations in 

the inviscid case are shown below in Table 5.1. 

Table 5.1: Coefficients of thrust for top two configurations in 2D analysis 

Code# Coefficient of thrust 

3233 0.0185 

3133 0.0173 

The most optimal configuration had the longest possible hub length as well as a 

streamlined duct shape. After further analysis, a phenomenon was seen at the inlet of the duct 

known as inlet lip separation. This degrades performance of the duct at low velocities and so the 

second most optimal ducted fan configuration was suggested as a possible alternative. This 

configuration was the same as the optimal except it had a duct leading edge that was canted 

77 



upwards. This would help to reduce the appearance of inlet lip separation while still maintaining 

a somewhat streamlined design. 

A viscous analysis was performed on the top 8 configurations to see how their 

performance varied due to added viscous effects. The trend of best to worst was strongly 

maintained thereby showing the inviscid analysis was adequate in performing the study. An 

anomaly was observed in the viscous result for the top case, however it was concluded that in 

either situation, the initial 3D case would still be largely based off of the second best case, 3133, 

since it had better off-design characteristics. 

5.2 Three-Dimensional Findings 

An efficient Quasi-Newton algorithm was created to perform a 3D aerodynamic shape 

optimization on a ducted fan configuration. The optimization proved to be successful by 

reducing drag and increasing thrust significantly in various areas. This proves that the objective 

function worked exactly how it was supposed to, which was to maximize thrust. The duct drag 

had been reduced by 33.54% and the hub drag by 36.45%. The propeller thrust had also been 

increased by 141.49% from the initial design. The secondary case that was studied showed that 

the convergence of the main case was most likely towards a global minimum since the secondary 

case was approaching the same configuration from a different side of the design space. This 

study also validated the 2D results which created the starting point for the 3D optimization. It 

showed that the main case was able to reach a minimum in about a third less iterations than the 

secondary case which means its starting point was much closer to the minimum. 

5.3 Future Work 

The current study mainly optimized the duct and hub shapes, but also incorporated a 

small amount of propeller optimization by varying the pitch and location of the blade. Future 

studies will include more design variables in order to increase the design space for the duct and 

hub shapes as well as fully integrate propeller optimization into the entire analysis. A multi

objective optimization will also be performed to determine the ducted fan configuration that 

achieves good performance for all flight regimes. Stators are also to be added to the 

configuration in order to reduce the exit swirl of the flow to salvage the lost energy and convert it 

into thrust. 
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Appendix I - Propeller Program Output 

%% %%%% Final results%% %% %%% 
r (in) pl(psi) p2 (psi) theta(deg) Ur(ft/s) T(1bf) Cl 

2. 9527 6. 4461 6. 4978 89.2521 464.9186 0.4032 0. 6056 

3.3464 6. 4330 6. 5103 86. 2168 471.3892 o. 6776 o. 6075 
3. 7401 6. 4232 6. 5201 83.4522 477. 9810 0.9434 0. 6095 
4.1338 6. 4155 6. 5280 80.8994 484.8260 1.:2049 0. 6117 
4.5275 6. 4092 6. 5346 78. 5183 491.9966 1. 4660 0. 6140 

4. 9212 6. 4038 6. 5404 76.2814 499.5303 1.'7294 0. 6164 

5. 3149 6. 3990 6. 5455 74. 1694 507.4439 1. 9974 0. 6191 

5. 7086 6. 3947 6. 5502 72. 1680 515.7419 2.:2720 0. 6220 

6.1023 6. 3907 6. 5547 70. 2664 524.4210 2. 5549 0. 6251 

6. 4961 6. 3869 6. 5589 68. 4562 533.4732 2.8475 o. 6285 

6. 8898 6. 3832 6. 5630 66.7306 542.8870 3.1512 0. 6321 

7. 2835 6. 3796 6. 5670 65.0840 552.6496 3. 4673 0. 6360 

7. 6772 6. 3761 6.5710 63. 5116 562.7467 3. 7971 o. 6402 

8. 0709 6. 3725 6. 5750 62.0092 573.1634 4.1418 o. 6447 

8. 4646 6. 3689 6. 5790 60. 5730 583.8851 4.5026 0. 6495 

8. 8583 6.3653 6. 5831 59. 1996 594.8967 4. 8808 0.6546 

9. 2520 6.3615 6. san 57. aB61 606.1937 5. 2776 0. 6601 

9. 6457 6.3577 6. 5916 56.6294 617.7318 5.6945 0. 6660 
10.0394 6.3538 6. 5960 55.4270 629.5275 6.1328 o. 6723 

10.4331 6. 3498 6. 6005 54.2763 641.5574 6. 5942 0. 6790 

10.8268 6. 3456 6. 6052 53. 1750 653.8088 7. 0803 0. 6862 
11.2205 6. 3413 6. 6101 52.1210 666.2698 7. 5929 0. 6939 
11.6142 6. 3368 6. 6152 51. 1123 678.9288 8.1340 0. 7022 

12.0079 6. 3322 6. 6205 50. 1468 691.7746 8.'7059 0.7110 
12.4016 6. 3273 6. 6260 49. 2229 704.7970 9. 3109 0. 7206 
12.7953 6. 3223 6. 6318 48.3389 717.9859 9.9518 0. 7308 
13.1890 6. 3169 6. 6379 47. 4933 731.3319 10.6318 0. 7418 

13.5927 6. 3113 6. 6444 46. 6947 744.9259 11. ~543 0. 7537 

Velocity ( ft/3) RPM T(lbf) P(HP) Pideal (HP) n 

455.6 5000 272.9963 280.4030 226.1994 o. 8067 

Figure 11: Propeller blade pressure distribution 
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Appendix II - 2D Validation Convergence History 
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Figure Ill: Rear thickness penalty function over time 
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Appendix III - Resultant Views for Final Cases 

Figure III1: Contours of velocity magnitude for Case 1 
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Figure III2: Contours of static pressure on hub for Case 1 
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Figure III3: Streamlines for Case 1 
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Figure III4: Contours of static pressure for Case 1 

Figure III5: Final model for Case 1 

Figure III6: Contours of velocity magnitude for Case 2 
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Figure III7: Contours of static pressure on hub for Case 2 

Figure III8: Streamlines for Case 2 

Figure III9: Contours of static pressure for Case 2 
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-

Figure lillO: Final model for Case 2 
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