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Abstract 

The Esophageal Pressure (Peso) signal can be used to monitor the respiratory mechanics 

of critically ill patients in the Intensive Care Unit (ICU), and has been successfully used in guiding 

mechanical ventilation strategies to improve patient outcomes. However, cardiogenic oscillations 

(CGOs) are a major source of interference, which not only makes it challenging in interpreting the 

patient’s respiratory mechanics, but can also cause false triggers in the mechanical ventilator 

resulting in a patient-ventilator asynchrony.     

In this thesis, we present a Peso enhancement scheme using Ensemble Empirical Mode 

Decomposition (EEMD) to suppress CGO interference. The proposed method was applied to 

synthetically generated Peso signals as well as real-world Peso signals from mechanically 

ventilated ICU patients. The proposed technique has been shown to significantly reduce the 

amplitude fluctuations caused by CGOs. The technique’s performance has been assessed through 

Face Validation by our collaborating clinicians, and is found to be suitable in not only suppressing 

CGO, but also extracting CGO from clinically acquired Peso signals. 
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Chapter 1 

Introduction 

1.1 Motivation 

1.1.1 Context 

With the hustle and bustle of daily life, we often take our bodies for granted. Many of us will 

occasionally feel aches and pains, and perhaps even experience sniffles in the nose and tickles in 

the throat. It would not be a rare thought to brush these off as minor annoyances that we simply 

have to cope with. However, worries start to set in when these minor annoyances escalate and 

become a hindrance. Instances like these warrant a trip to the doctor to ask the quintessential 

question, “What is wrong with me?” It is easy to forget that our bodies consist of several different 

organ systems working together to ensure that proper physiological processes are maintained. 

Oftentimes, the visit to the doctor’s office will reveal that the organ systems are working relatively 

well, and the problems that prompted the visit in the first place can be resolved quite simply. 

Unfortunately, there are times when a person’s organ systems start to fail as a result of a severe or 

life-threatening illness or injury. In cases like these, the person enters the health care system 

through the Intensive Care Unit (ICU), where they are monitored closely by a team of highly 

trained critical care specialists in order to maintain normal bodily functions. 

In the Canadian context, 11% of adult hospital stays around the country, excluding Quebec, 

required time in the ICU [1]. The top 10 medical conditions among Canadian ICU patients, most 

of which are related to the cardiovascular and respiratory systems, are shown in Figure 1.1. Many 
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people associate these conditions with mortality – and rightfully so, because some of the leading 

causes of death in Canada are in fact related to diseases affecting the cardiovascular and respiratory 

systems [2]. 

Figure 1.1. Top 10 medical conditions among adult ICU patients in Canada during 2007-2008 and 

2013-2014. Source: [1]. 

 

ICU Treatments: Mechanical Ventilation 

In Canadian ICUs, 1 in 3 patients are prescribed a life-supporting treatment known as 

mechanical ventilation [1]. The aim of mechanical ventilation is to: get oxygen (O2) into the 

patient’s lungs, remove carbon dioxide (CO2), reduce the amount of effort required to breathe, and 

perform the function of breathing for patients who have lost all ability to breathe due to injury or 

medication [3]. From Figure 1.1, the volume of ICU patients suffering from Respiratory Failure 
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has increased from 2% to 4% over a span of six years, which suggests that mechanical ventilation 

will continue to play a significant role in treating ICU patients.   

Mechanical ventilation in its most basic form is known as Conventional Mechanical 

Ventilation (CMV). CMV aims to improve gas exchange and ease respiratory distress by 

delivering a positive pressure to the patient’s airways using a pre-set tidal volume at a fixed 

respiratory rate [4]. While CMV has been used to save lives and improve the quality of care in 

critically ill patients, it has also been associated with significant drawbacks. Because CMV delivers 

a fixed volume at a fixed rate, it does not consider the patient’s respiratory drive. If a mismatch 

between the patient’s respiratory drive and the operation of the mechanical ventilator occurs, a 

phenomenon known as Asynchrony is observed [4]. Poor patient-ventilator interactions (i.e. 

asynchrony) can result in the deterioration of gas exchange, discomfort, cardiovascular 

impairment, and even increased mortality rates, thereby putting the patient at greater risk [5]-[6]. 

To avoid the potential risks of asynchrony, the patient’s respiratory drives are suppressed using 

sedatives. Unfortunately, the use of paralysis-inducing drugs on the respiratory muscles opens up 

a new set of challenges including muscle atrophy of the respiratory muscles (e.g. diaphragm), 

adverse drug-related effects, and excessive ventilation, and Ventilator-Induced Lung Injuries 

(VILI) [4]-[7]. In both cases, CMV has the potential to inflict harm as well as make it more difficult 

to wean patients off the mechanical ventilator, resulting in longer ICU stays. 

Economics of the ICU 

The ICU is an integral part of the Canadian health care system, but it comes with a hefty 

cost. On average, the cost to run an ICU is three times more than a general hospital ward due to 

high staff-to-patient ratios and the need for specialized equipment for complex treatments [1], [8]. 

Despite only a fraction of patients requiring ICU interventions, the ICU’s resource-intensive nature 
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takes up a substantial amount of a hospital’s resources [1]. The economic aspect of running an ICU 

is important to consider, because of the Canadian health care system model; our health care system 

is publicly funded, which gives Canadian residents reasonable access to necessary medical health 

care services without having to pay directly out-of-pocket [9]. Each of the Provincial Governments 

in Canada are responsible for the funding of their respective provincial health care systems. Figure 

1.2 breaks down the projected expenditure for the Ontario Government during the 2019-2020 year. 

The pie-chart indicates that 38.9% of Ontario’s funding is provided to the health sector, which is 

by far the greatest resource allocation [10]. It is expected that the needs for ICU beds and other 

hospital resources are to increase significantly in the future due to the aging population and the 

increasing severity of illnesses [1], [8]. As a result, more burden will be placed on an already-

ailing health care system, and provincial resources will need to be reallocated to account for 

changes in the population’s health.  

Figure 1.2. A breakdown of Ontario’s projected expenditure for the 2019-2020 year. Source: [10]  
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1.1.2 Towards the future of Mechanical Ventilation 

 It is clear that CMV has a huge cost not only in terms of financial burdens on the 

government funding agencies, but also in terms of the quality of care for ICU patients. From the 

perspective of the health care actors involved in treating ICU patients, new modes of mechanical 

ventilation are being developed to overcome the issues associated with CMV. There has been a 

shift in paradigm towards having patients take on more of the ventilatory effort; the mechanical 

ventilator should be assisting the patient instead of taking over the breathing process entirely. 

Through assisted modes of mechanical ventilation, the patient’s respiratory drive is able to trigger 

the operation of the mechanical ventilator [5]. In spite of new developments, issues such as 

asynchrony and VILI still persists as major problems for mechanical ventilation management [6]-

[7], [11]-[12].  

 Given the current problems still associated with mechanical ventilation, new “lung-

protective” mechanical ventilation strategies are being developed. The goal of these strategies is 

not only aimed at improving oxygenation and reducing the work of breathing, but also protecting 

the lungs from further injuries in an effort to decrease mortality rates and shorten ICU stays [13]. 

Measurements and derived parameters from Esophageal Pressure (Peso) and Transpulmonary 

Pressure (PL) have sparked interest in recent years towards guiding mechanical ventilation 

treatments, and have proven to be helpful in monitoring a patient’s respiratory mechanics [14]. 

While there is potential for Peso, clinicians run into problems involving cardiogenic oscillation 

(CGO) interference caused by the beating heart, which makes interpreting the Peso signal difficult, 

and can even result in asynchrony through ventilator auto-triggering [15]-[17]. Other technical 

limitations associated with Peso prevent it from being widely used in clinical practice. As a result, 

there is ongoing research towards validating the use of Peso and PL in the clinical context [18]. 
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1.2 Contributions of this Thesis 

The aim of this thesis is to develop a signal quality enhancement scheme to suppress the CGO 

contamination from the Peso signal to help clinicians extract meaningful insights into the 

physiology of their mechanically ventilated patients. 

 The first contribution presented in this thesis is a proposed enhancement scheme for CGO 

suppression in Peso signals using adaptive, data-driven time-series decomposition techniques, 

namely Empirical Mode Decomposition (EMD) and its variant, Ensemble Empirical Mode 

Decomposition (EEMD). To our knowledge, this is the first time that the EMD and EEMD 

algorithms have been applied to enhance the signal quality of the Peso signal. Additionally, while 

the main aim of the proposed enhancement scheme is to suppress CGO, it can also be used to 

extract the CGO. The ability to extract CGO independently may be useful in gaining an 

understanding of the patient’s heart physiology. 

 The second contribution of this thesis is the creation of synthetic “noisy” Peso signals, 

which have been termed, “FrankEinstein’s Peso signals.” The “noisy” Peso signals were created 

by superimposing CGO signals that were extracted from real ICU patients onto simulated Peso 

signals from the IngMar Medical ASL 5000 breathing simulator. The FrankEinstein Peso signals 

provide a means of objectively quantifying the performance of the proposed enhancement scheme. 

Furthermore, the level of CGO interference present in the signal can be adjusted, which is helpful 

in determining the operating limits of the proposed technique. 

 The final contribution of this thesis is the application of the proposed enhancement scheme, 

which was refined through the previous two contributions, to real ICU patients. Results of the 

enhanced Peso signals are shown, and technical limitations of the technique are described. 
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1.3 Thesis Organization 

The organization of this thesis is shown in Figure 1.3. 

 

Figure 1.3. Organization of this thesis. 
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The remainder of this thesis is organized as follows: 

 Chapter 2 - Background, provides a description of the anatomy of the respiratory system 

and the physiology of breathing. The significance of PL and its relation to the Peso signal in 

managing mechanical ventilation will be discussed. Time-domain and frequency-domain 

characteristics of the Peso signal and the CGO interference will be explained from a biomedical 

signal processing perspective. 

 Chapter 3 - The Proposed Enhancement Scheme: Characterizing the Peso and CGO 

Signals, Preliminary Experimentation & Proof-of-Concept, introduces the proposed enhancement 

scheme for the purposes of suppressing CGO from Peso signals. Several experiments are carried 

out in this chapter to characterize the Peso and CGO signals to develop and refine the enhancement 

technique. 

 Chapter 4 - FrankEinstein’s Peso Signals, describes how the FrankEinstein Peso dataset 

was created. The proposed enhancement scheme was applied to varying levels of CGO to 

determine the relationship between Signal-to-Interference Ratio (SIR) and an error measurement 

known as Percent Root Mean Square Difference (PRD). Furthermore, a suggested operating limit 

for the enhancement technique is proposed. 

 Chapter 5 - CGO Suppression in Real ICU Patients, applies the proposed enhancement 

scheme to real ICU patients. Representative results are shown, and limitations of the technique are 

described. 

 Finally, Chapter 6 - Conclusions and Future Works, presents the concluding remarks about 

the proposed technique, and future directions such as the potential to adapt the proposed technique 

for other signal processing applications in the ICU. 
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Chapter 2 

Background 

2.1 The Respiratory System & Physiology of Breathing 

Mechanical ventilation primarily acts on a patient’s respiratory system to improve 

pulmonary gas exchange and relieve respiratory distress in patients. The main role of the 

respiratory system is to help in breathing, which is otherwise known as respiration. Respiration 

includes processes such as ventilation, which describes the movement of air into and out of the 

lungs, and gas exchange, which ensures that oxygen (O2) is transported to our tissues and carbon 

dioxide (CO2) is removed from the body [19]. From a functional perspective, the respiratory 

system is divided into two regions: i) the Conducting Zone, and ii) the Respiratory Zone [19]. The 

role of the Conducting Zone is to move air, and consists of respiratory structures whose main 

purposes are for cleaning, warming, and humidification [19]. The Respiratory Zone on the other 

hand comprises of respiratory structures in the lungs that ensure proper gas exchange occurs [19]. 

An illustration of the respiratory system is shown in Figure 2.1. In the context of mechanical 

ventilation as well as this thesis, the physiology related to breathing occurring in the lower 

respiratory tract (trachea to alveoli) is of primary interest. 
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Figure 2.1. The anatomical structures of the respiratory system, which includes the Conducting 

Zone (nose to bronchial tree) and the Respiratory Zone (lungs and alveoli). The Diaphragm lies 

inferior to the lungs. Source: [20] 
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2.1.1 Anatomical Structures Involved in Breathing 

Trachea and Bronchial Tree 

The trachea, which is also known as the windpipe, and the bronchial tree are parts of the 

Conducting Zone. The trachea is a large membranous tube that consists of dense regular connective 

tissue and C-shaped hyaline cartilage [19]. The trachea splits into two smaller tubes known as the 

main bronchi. The two main bronchi branch off into several generations of smaller bronchi, 

resulting in a tree-like structure. The respiratory passageways after the trachea are known as the 

bronchial tree, which ultimately gives rise to the alveoli [19]. 

Alveoli 

The alveoli are part of the Respiratory Zone. Alveoli are small, air-filled chambers, which 

are the site of gas exchange between the air and the blood. The alveoli walls are lined with elastic 

fibres that allow for the expansion and recoil of the alveoli structure during ventilation.  

Lungs 

The lungs are the primary organs of respiration and reside in the thoracic cavity. The lungs 

house the structures of the Respiratory Zone, such as the alveoli, as well as parts of the Conducting 

Zone like the bronchial tree. In humans, the lungs come as a pair, and are divided into several 

lobes; the right lung consists of three lobes while the left lung has two lobes as well as an 

indentation known as the cardiac notch. The cardiac notch allows for the heart to lie in between 

the two lungs. The blood supply of the lungs consists of two major routes: i) the pulmonary 

circulation, which converts deoxygenated blood into oxygenated blood through gas exchange, and 

ii) bronchial circulation, which provides a blood supply to the airways of the lungs (i.e. bronchial 

tree) [19]. 
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Thoracic Cavity and Muscles of Respiration 

The thoracic cavity encloses the space between the thoracic walls and the diaphragm. The 

diaphragm and muscles of the thoracic walls are responsible for ventilation. During ventilation, 

the shape of the thoracic cavity must change to facilitate the expansion and recoil of the lungs.  

Muscles of Inspiration 

The muscles of inspiration include the diaphragm, external intercostals, pectroalis minor, and 

scalenes [19]. The diaphragm, which is a dome-shaped muscle located inferior to the lungs as 

shown in Figures 2.1 and 2.2, is considered to be the main muscle of inspiration. During 

inspiration, the diaphragm contracts and pushes down in the inferior direction, which results in an 

increase in the thoracic volume. The other muscles listed in this section are responsible for 

elevating the ribs [19]. 

Muscles of Expiration 

The role of the muscles of expiration are to lower the ribs and sternum [19]. Muscles of expiration 

include the internal intercostals and the transverse thoracis [19]. 

Pleura 

Pleural serous membranes surround the lungs to form the pleural cavity. The visceral pleura 

is attached to the surface of the lungs while the parietal pleura connects to the inner thoracic wall 

and the superior surface of the diaphragm. The pleural cavity contains pleural fluid that holds the 

visceral and parietal pleura together, which allows the lungs to adhere to the thoracic walls. 

Additionally, the pleural fluid also ensures that the visceral and parietal pleura are able to move 

with each other when the shape of the lungs and the thoracic cavity change during a breathing 

cycle. The pleural membranes and their fluids provide lubrication to the lungs to minimize friction 
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during expansion and contraction, and ensure that the structures of the lungs are protected from 

other thoracic structures. An illustration of the pleural membranes and the pleural cavity is shown 

in Figure 2.2. 

 

 

 

 

Figure 2.2. The anatomical structures of the chest wall and muscles of respiration, and a visual 

representation of the pleural membranes and the pleural cavity. Source: [21] 
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2.1.2 Ventilation 

Relationship between Pressure, Airflow, and Volume 

Recall that ventilation refers to the movement of air into and out of the lungs. In order for 

airflow to occur, a pressure gradient must exist between the atmosphere outside of the body (i.e. 

barometric pressure, PB) and the alveoli (Palv). In the case of inspiration, the pressure within the 

alveoli must be less than the atmospheric pressure to facilitate air movement into the lungs. The 

reverse is true for expiration; the pressure within the alveoli must be greater than the atmospheric 

pressure, which results in airflow out of the lungs. The pressure gradient is generated by changes 

in thoracic volume according to Boyle’s Law: 

𝑃 ∝
1

𝑉
      (𝐄𝐐𝟐. 𝟏) 

Physiology of Breathing 

During inspiration, the volume of the thorax increases due to the respiratory muscles 

contracting, resulting in the inflation of the lungs. The volume of the alveoli increases, which leads 

to a decrease in Palv due to the inverse relationship between volume and pressure as shown in 

EQ2.1. Thus, 𝑃𝑎𝑙𝑣 < 𝑃𝐵, which results in air flowing from outside the body and into the lungs. 

During expiration, the respiratory muscles relax and deflate the lungs. A decrease in lung volume 

therefore results in a decrease in alveolar volume and an increase in Palv. The relationship between 

alveolar pressure and barometric pressure is therefore 𝑃𝑎𝑙𝑣 > 𝑃𝐵, indicating that the pressure 

gradient has been reversed. The flow of air changes direction and moves from the alveoli to the 

outside of the body. 
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Factors Affecting Alveolar Volume 

Alveolar volume plays a significant role in breathing, because the direction of the pressure gradient 

is dictated by changes in the alveolar volume. According to [19], there are two key factors that 

affect how alveolar volume changes:  

Lung Recoil 

The lungs exhibit a property known as elastic recoil, which is the tendency for the lungs to decrease 

in size as they are stretched. When alveoli are expanded, their tendency to recoil is due to the 

elastic fibres lining their walls, as well as surface tension caused by the fluid film surrounding the 

them.  

Pleural Pressure 

The parietal and visceral pleura encapsulates the lungs to form the pleural cavity. The pressure 

within the pleural cavity is known as pleural pressure (Ppl). Under normal circumstances, pleural 

pressure is less than alveolar pressure (i.e. 𝑃𝑝𝑙 < 𝑃𝑎𝑙𝑣), which allows for the alveoli to remain 

expanded. The relationship between Ppl and Palv can be explained by the suctioning effect within 

the pleural cavity; due to lung recoil, the visceral pleura pulls away from the parietal pleura, which 

results in a negative pressure in Ppl.  

2.2 Respiratory Monitoring & Guiding Mechanical Ventilation 

As mentioned in Chapter 1, there has been interest in the critical care community to 

develop new “lung-protective” mechanical ventilation strategies to overcome challenges such as 

Ventilator-Induced Lung Injuries (VILI) resulting from the following mechanisms [22]-[23]: 

• Barotrauma: excessive inflation pressure,  
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• Volutrauma: overdistension of lung,  

• Atelectrauma: injury due to shear forces caused by cyclic opening and collapse of 

lung units, and  

• Biotrauma: injuries due to inflammatory response to mechanical lung injury 

To guide mechanical ventilation interventions and avoid the risks of the abovementioned 

mechanisms, several clinical parameters are monitored during treatment.   

2.2.1 Respiratory Monitoring in Mechanical Ventilation 

In the clinical context, the Airway Pressure (Paw) is universally acquired from mechanically 

ventilated patients by the mechanical ventilator to monitor the patient’s respiratory mechanics [24]. 

Airway Pressure is representative of the distending pressure of the respiratory system, which is the 

amount of force required to inflate the respiratory system. Airway Pressure consists of two main 

components: i) Transpulmonary Pressure (PL), which describes the insufflation of the lungs, and 

ii) Pleural Pressure (Ppl), which moves the chest wall and can be mathematically expressed as a 

sum of PL and Ppl according to EQ2.2 [18], [25]: 

𝑃𝑎𝑤 = 𝑃𝐿 + 𝑃𝑝𝑙       (𝐄𝐐𝟐. 𝟐) 

While Paw-based interpretations were originally used to guide mechanical ventilation in patients, 

it has been found that Paw can be significantly influenced by factors such as breathing patterns, 

alterations in lung volume, and varying characteristics of chest wall elastance [26]. In fact, the 

chest wall elastance of mechanically ventilated patients suffering from pathological conditions 

such as Acute Respiratory Distress Syndrome (ARDS) can vary greatly among individuals [26]-

[29]. Thus, differences in chest wall elastance makes interpretation of Paw (and by extension, the 

respiratory mechanics) more difficult. Additionally, the lungs and chest wall are both elastic 
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structures that are set up in a series connection [26]. This means that a portion of the pressure 

delivered by the ventilator to the respiratory system is distributed between the component 

distending the lung (PL) and the component distending the chest-wall (Ppl), which also contributes 

to the difficulty of guiding mechanical ventilation solely through Paw [26], [30]. Because varying 

chest wall elastance in critically ill patients has clinical implications, as well as the fact that 

ventilator-delivered pressure is dissipated between the chest-wall and the lungs, it has been 

suggested that lung-protective mechanical ventilator strategies incorporate Transpulmonary 

Pressure parameters in order to monitor the patient’s lung mechanics [26], [31].  

Significance of Transpulmonary Pressure in Guiding Mechanical Ventilation 

The Transpulmonary Pressure has been used to describe the pressure distending the lung 

[18],[25], [31]-[32]. In other words, PL is the amount of pressure required to drive ventilation in 

the lungs. Rearranging EQ2.2, PL can be calculated as the difference between the distending 

pressure of the respiratory system, Paw, and the pressure required to distend the chest-wall, Ppl, as 

shown in EQ2.3: 

𝑃𝐿 = 𝑃𝑎𝑤 − 𝑃𝑝𝑙       (𝐄𝐐𝟐. 𝟑) 

The use of Transpulmonary Pressure to guide lung-protective mechanical ventilation strategies has 

gained attention in recent years, because it is able to determine the amount of pressure required to 

keep the lungs open during mechanical ventilation, can be used to estimate inspiratory effort, and 

measures the mechanical stress of the lungs [18], [33]. The aforementioned factors are important 

to consider in tailoring and managing mechanical ventilation settings for individual patients in 

order to optimize gas exchange while avoiding or mitigating the mechanisms leading up to VILI 

[26], [29].    
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Esophageal Pressure as Surrogate for Pleural Pressure 

 In the definition of Transpulmonary Pressure shown in EQ2.3, the Pleural Pressure is used 

to subtract the pressure component of the chest-wall. The Pleural Pressure, as noted in Section 

2.1.2, is the pressure within the pleural cavity, which suggests that a pressure sensor must be 

inserted directly into the pleural space. However, insertion of a device into the pleural cavity to 

measure Ppl is virtually impossible as it comes with the risk of inducing a pneumothorax (i.e. 

collapsed lung) in the patient due to puncturing the pleural membranes [19], [34]. As a result, 

Esophageal Manometry has been used as a non-invasive approach to acquire the Esophageal 

Pressure (Peso), which acts as a suitable surrogate for Ppl [18], [30]-[31], [35].  

Significance of Esophageal Pressure in Guiding Ventilation 

The direct measurement of Esophageal Pressure as a surrogate for Ppl is one approach to 

estimating Ppl and plays a significant role due to its ability to distinguish between the distending 

pressures of the lungs and the chest wall [29], [30]. While measuring the Esophageal Pressure in 

mechanically ventilated patients is not a new approach, it is seldomly used in the clinical context 

and is instead used more as a research tool [18]. The reason for its lack of use in the clinic is due 

to questions surrounding the validity of Esophageal Manometry [30]. Concerns such as insertion 

and placement of the pressure sensor via an esophageal catheter, the interpretation of the Peso 

trace, and the accuracy of Peso measurements arise [26], [30]-[31]. Despite the Peso’s limitation, 

a landmark study by Talmor et al. [14] used the Peso as a surrogate for Ppl to estimate PL. It was 

found that it was possible to make repeated measurements of Peso with a high degree of fidelity 

and quality to help guide mechanical ventilation. Furthermore, using Peso to adjust PL also resulted 

in significant improvements in both blood oxygenation and pulmonary compliance (i.e. the ability 

for the lungs to stretch) in patients suffering from ARDS [14]. 
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In addition to guiding mechanical ventilator strategies, the Peso signal can also be used for 

other clinical applications including [18], [31]:  

• Gaining insights into the pathophysiology of respiratory failure, 

• Titrating the level of respiratory and pharmacological support, 

• Detecting asynchrony leading to poor patient-ventilation interactions, 

• Assessing patient inspiratory efforts, and 

• Aiding in ventilator weaning. 

The abovementioned applications of the Peso show the importance of its use and the knowledge 

derived from it in managing treatment options for critically-ill patients.  

Acquisition of Esophageal Pressure 

According to [24], [31], and [35], the Peso signal is acquired through a pressure transducer 

via an air-filled balloon connected to the distal end of a catheter during mechanical ventilation. 

The balloon catheter is inserted either through the nostril or the mouth and positioned in the lower 

third of the esophagus. In addition to Peso, the Paw and the Flow are also acquired during invasive 

mechanical ventilation. The analog data from Peso, Paw, and Flow are converted into digital data 

using a BIOPAC system and stored as raw data in a workspace. The procedure for catheter 

insertion and signal validation is described in detail in [24], [31], and [35]. The clinical setup for 

signal acquisition in mechanically ventilated patients is shown in Figure 2.3 and a sample of a 

Peso as a function of time is shown in Figure 2.4. 
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Figure 2.3. Clinical setup used to acquire data from mechanically ventilated patients. Source: 

Adapted from Dr. Laurent Brochard’s iBEST 2017 poster. 

 

 

 

 

 

Figure 2.4. Nasal insertion of esophageal catheter (left) and the corresponding Peso signal (right).  
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2.3 Characteristics of the Esophageal Pressure (Peso) Signal 

2.3.1 Time-Domain Characteristics of Peso 

Overview of the Time-Domain 

The time-domain representation of a signal describes the variation in amplitude of the data 

or measurement as a function of time. The changes in amplitude are an important aspect of the 

time-domain, because the variations carry information of the processes being measured or 

observed. In the context of biomedical signals, the amplitude variations are a direct result of the 

underlying physiological processes.  

 Many of the physiological processes in the human body, such as breathing or the heart 

beating, are rhythmic in nature. The rhythmic nature of these processes manifests themselves as 

quasi-periodic (i.e. irregularly periodic) waveforms or traces, which have distinguishing 

shapes/morphology. The resulting morphology generated by the amplitude changes in the 

biomedical signal can then be mapped to specific physiological occurrences or events. Two 

popular examples that can be used to visualize the idea of connecting a physiological event to a 

corresponding morphology are: i) the positive and negative inflections of a respiratory signal, 

which represents inhalation and exhalation respectively, and ii) ventricular depolarization 

represented by the QRS complex of an electrocardiogram (ECG), which results in the contraction 

of the ventricular chambers of the heart. From these two examples, visualizing a physiological 

process in the form of a biomedical signal can be helpful, particularly for clinicians who are 

monitoring and treating their patients.   
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Time-Domain Characteristics of the Raw Peso Signal 

“Active Breathing” Conditions 

As described in Section 2.1.2, the process of inspiration and expiration depends on the 

pressure gradient generated between the lungs and the body surface/environment by the respiratory 

muscles, which occurs during an “active breathing” condition. Under “active breathing” 

conditions, a person is able to recruit their respiratory muscles to initiate an effort to take a breath. 

Since the Peso is used as a surrogate for Ppl, the amplitude of the Peso signal should follow Boyle’s 

Law according to the relation shown in EQ2.4:  

𝑃(𝑡) ∝
1

𝑉(𝑡)
      (𝐄𝐐𝟐. 𝟒) 

It is important to remember that the pressure (P) and volume (V) of the pleural cavity are both 

functions of time. To visualize the time-series represented by the Peso signal, a time-domain 

representation of the Flow and corresponding Peso signal from a mechanically ventilated, 

spontaneously breathing (i.e. some degree of active inspiratory effort – a form of “active 

breathing”) patient who is receiving pressure support is shown in Figure 2.5. Some significant 

clinical time-domain parameters related to pulmonary physiology are also included in the figure. 

Note that the parameters illustrated on the figure is not an exhaustive list. To draw the connection 

between Boyle’s Law, the flow provided by the mechanical ventilator, the Peso for a 

spontaneously breathing patient, the clinical parameters, and the physiological meaning of the 

clinical parameters shown in Figure 2.5, it is best to describe the parameters chronologically from 

left to right (① to ③) for each of the three breaths/epochs as depicted in the illustration. 
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Figure 2.5. The time-domain representation of the Flow signal (top) and Esophageal Pressure/Peso 

signal (bottom). The horizontal dashed red line in the Flow signal indicates the threshold between 

mechanical insufflation and mechanical exsufflation. Clinical parameters in the Peso signal are 

illustrated in the figure above. In the breath designated by ①, the vertical red dashed lines indicate 

the total inspiration time (tinspiration) and the green vertical dashed line represents total expiration 

time (texpiration). In ②, the blue horizontal dotted lines and arrow show the Peso Swing (ΔP). In 

③, the esophageal pressure-time product (PTPes) is highlighted in orange. The dark blue curve 

represents the chest wall pressure during a relaxed state (Pcw,rel), which is obtained during passive 

breathing. The small pressure fluctuations caused by the beating heart known as cardiogenic 

oscillations (CGOs), which are not labelled, are present throughout the Peso signal. 
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Before describing each of the three epochs in Figure 2.5, there are two notable 

characteristics of the plots to note: 

1) The red horizontal dashed lined in the Flow plot: The dashed line lies on the zero-value, which 

is the threshold used to distinguish between mechanical insufflation and mechanical 

exsufflation. When the plot of flow is positive (i.e. greater than zero), mechanical insufflation 

is occurring, which means that the mechanical ventilator is pushing air into the patient for the 

inspiration process. When the plot of flow is negative (i.e. less than zero), the mechanical 

ventilator switches to mechanical exsufflation to perform expiration. 

2) The starting point of inspiration time (tinspiration): Although the horizontal dashed red line in 

the Flow plot determines when mechanical insufflation and exsufflation occurs, the onset of 

inspiration does not begin when the Flow signal is positive. The reason for this is because 

Figure 2.5 is an illustration of a spontaneously breathing patient, which means that the patient 

can recruit their respiratory muscles to make some degree of inspiratory effort. Thus, the start 

of inspiration begins before the flow is positive as shown by the vertical lines, which represents 

tinspiration. To identify the onset of inspiration, a rapid decline in the Peso signal can be used 

[36], which indicates that the patient has made an effort to take a breath.  

During the inspiration phase of ①, the respiratory muscles are contracting over a period 

of time, which is illustrated by red vertical dashed lines and denoted as tinspiration. As the respiratory 

muscles contract, the volume of the chest cavity increases to allow for the expansion of the lungs. 

An increase in the chest cavity volume and pleural cavity generates a pressure gradient between 

the body surface and the alveoli, which allows for air to flow into the lungs. A negative deflection 

in the Peso signal is therefore observed due to two factors: i) the pressure is inversely proportional 
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to volume according to Boyle’s Law (EQ2.4), and ii) the suctioning effect of the pleura caused by 

pleural fluid. During expiration, which is characterized by green vertical dashed lines and denoted 

by (texpiration), the respiratory muscles are relaxing over time. The relaxation of the muscles 

decreases the volume of the chest cavity in order to deflate the lungs, which results in a positive 

deflection in the Peso as well as the exhalation of CO2.  

In ②, the Peso swing (ΔP) is shown as the difference between the two horizontal dotted 

light blue lines. To put the Peso swing into a clinical context, ΔP describes the amplitude of the 

esophageal pressure during a breathing cycle. The significance of ΔP is that it can be used to give 

clinicians an idea of their patient’s breathing effort [18], [31], [37]. Although using ΔP is a 

relatively simple and convenient way of quantifying a patient’s breathing effort, there are several 

limitations that the Peso swing does not consider, such as duration of the respiratory muscle 

contractions as well as frequency of breaths [37]. It has also been suggested that ΔP by itself has 

a poor correlation with energy expenditure of the respiratory muscles and can therefore not be used 

as a parameter to estimate the amount of energy required to drive respiration [37]. Nevertheless, 

since ΔP can be monitored at the bedside in real-time, it can still be used to get a general trend of 

the patient’s breathing effort [37].   

During tinspiration in ③, the flow signal exhibits two phases: a phase with an accelerating 

flow at the beginning and a second phase which describes the decelerating flow, both of which are 

provided by the mechanical ventilator. In ventilation modes such as pressure-support ventilation 

(PSV), a rapid increase in flow during tinspiration is necessary to achieve the pre-defined level of 

pressure [38]. Once the target pressure is achieved, less flow of air into the lungs is needed to 

maintain the pressure, which results in the decelerating flow provided by the ventilator. 
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The portion in the Peso swing highlighted in orange represents a parameter known as the 

esophageal pressure-time product (PTPes), which can be used to estimate the energy expenditure 

and oxygen consumption of the respiratory muscles, hence the reason it occurs only in the duration 

of tinspiration [18], [31]. The PTPes can also be used as a means to quantify a patient’s breathing 

effort, which can be useful in monitoring patients in the ICU with poor patient-ventilation 

interactions as well as patients who are difficult to wean [37]. In order to estimate the PTPes, it is 

necessary to first determine the muscle pressure (Pmus), which is the pressure produced by the 

respiratory muscles during active inspiration. For a spontaneously breathing patient, Pmus is defined 

according to EQ2.5 as the difference between the static recoil pressure of the chest wall (shown in 

dark blue in Figure 2.5) and the Peso under active conditions [18], [31]: 

𝑃𝑚𝑢𝑠 = 𝑃𝑐𝑤,𝑟𝑒𝑙 − 𝑃𝑒𝑠𝑜      (𝐄𝐐𝟐. 𝟓) 

The static recoil pressure of the chest wall (Pcw,rel) can be measured by recording the Peso signal 

under passive conditions (i.e. no patient effort during breathing) [18]. With knowledge of Pmus, the 

PTPes can then be calculated as the integral of Pmus over the duration of tinspiration as shown in 

EQ2.6 [18], [31]: 

PTPes = ∫ 𝑃𝑚𝑢𝑠 ∙ 𝑑𝑡     (𝐄𝐐𝟐. 𝟔) 
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“Passive Breathing” Conditions 

In the clinical context, another breathing condition or mode is “passive breathing.” During 

“passive breathing” conditions, patients do not provide any inspiratory effort during inspiration; 

respiration is achieved solely by the mechanical ventilator. To achieve the “passive breathing” 

condition, patients are sedated and a neuromuscular blocking agent (NMBA) (i.e. a reversible 

paralysis-inducing drug) is administered to their respiratory muscles [39]. The use of sedatives in 

patients receiving mechanical ventilation support in ICUs is intended to relieve pain and 

discomfort caused by respiratory treatments or interventions [40]. Treatment plans for patients 

with mild to severe acute respiratory distress syndrome (ARDS) often include the use of NMBAs 

in conjunction with sedatives during the early phases of treatment to improve oxygenation, and 

ultimately, overall survival rates [39], [41].  

 The distinction between “passive breathing” and “active breathing” conditions is important 

to make, because the morphology of the Peso changes depending on the condition. While the Peso 

signal deflects in the negative direction for “active breathing” conditions during inspiration as seen 

in the previous section, the opposite is true for “passive breathing” conditions; the Peso will deflect 

in the positive direction as shown in Figure 2.6. Since the NMBAs prohibit the contraction of the 

respiratory muscles, the mechanical ventilator performs inspiration by providing a positive 

pressure to the airways. The positive pressure allows air to flow into the lungs, thereby resulting 

in a positive deflection in the Peso signal. 
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Figure 2.6. A Peso signal from a passively breathing patient. The red vertical dashed lines 

represent the duration of one inspiratory cycle. At the onset of inspiration, the mechanical 

ventilator provides positive pressure to allow airflow into the lungs resulting in the positive 

deflection of the Peso signal. 
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2.3.2 Frequency-Domain Characteristics of Peso 

Overview of the Frequency-Domain 

The frequency-domain is another common representation of a signal, which describes the 

signal’s content as a function of frequency. In other words, the frequency-domain can express how 

much of the signal appears in a specific frequency band. The frequency-domain representation of 

a signal is often referred to as either the frequency spectrum or the power spectrum. While the 

plots generated in time-domain can be intuitive and easier to understand due to its relation to the 

physical processes being observed over time, the frequency/power spectrum plots generated in the 

frequency-domain can provide additional insights to the signal from a different perspective. 

Furthermore, there are instances where the time-domain signal can be complex and difficult to 

interpret; exploiting the frequency-domain representation may be far more helpful in extracting 

useful information in these cases. 

In the context of biomedical signal processing, the frequency-domain can be helpful in 

accomplishing two goals:  

1. Characterizing biomedical signals, and 

2. Enhancing biomedical signals 

Characterizing biomedical signals in the frequency-domain is an important aspect of biomedical 

signal processing and analysis, because information about the behaviour of the biomedical system 

can be derived. As mentioned previously, the frequency-domain is used to get information about 

the frequency content of a signal, and for biomedical signals specifically, the frequency content 

typically corresponds to the physiological processes being measured from a specific organ system. 

Since many of the biomedical signals acquired from the human organ systems are quasi-periodic 
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in nature, a finite bandwidth can then be defined for the processes measured from the 

corresponding organ. By defining a range of frequency bands, it is possible to not only characterize 

the usable bandwidth of the biomedical signal (i.e. where most of the power of the signal lies in 

the power spectrum), but to also detect different physiology-related events present in the signal. 

Knowledge of the frequency characteristics and properties of a specific biomedical signal can 

provide a baseline understanding of how the corresponding physiological system normally works 

and can therefore be used to detect or get an idea of whether an organ system may be in an 

abnormal/diseased state.  

Signal quality enhancement is another crucial aspect of biomedical signal processing that 

benefits greatly from the use of the frequency/power spectrum. Biomedical signals that are 

acquired in the clinic are often contaminated with various types of noise and interference, which 

present themselves as amplitude fluctuations in the time-domain. The amplitude fluctuations 

caused by the noise or interference can make it difficult to interpret the physiological signals, 

especially if an important clinical parameter relies on the morphology of the signal. Since each 

biomedical signal can be characterized by a usable bandwidth, it is then possible to distinguish 

between signal and noise/interference through the power spectrum. With the knowledge of which 

bandwidths are relevant for analysis, commonly used filters such as low-pass, high-pass, and band-

pass filters can be designed to remove frequency components that correspond to noise or 

interference.  

The Fourier Transform 

In order to bring an aperiodic signal from the time-domain to the frequency-domain, the 

Fourier Transform can be applied. According to Fourier, any time-domain signal can be 

represented as a superposition of sines and cosines of different frequencies. For biomedical signals, 
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which are aperiodic in nature, the Fourier Transform is used to decompose the signal, 𝑥(𝑡), into 

its constituent frequencies, 𝑋(𝜔), using the sinusoids as basis functions in the form of complex 

exponentials. The frequency components can be calculated via the Fourier Transform according 

to equation EQ2.7: 

𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 

∞

−∞

     (𝐄𝐐𝟐. 𝟕) 

where 𝜔 = 2𝜋𝑓 

Based on EQ2.7, 𝑋(𝜔) may be complex in nature. To visualize and analyze the frequency-domain 

representation of the signal, it is helpful to plot the frequency spectrum, which consists of two 

components: 

1) The magnitude spectrum, |𝑋(𝜔)|, which describes how much of a sinusoid with 

frequency 𝜔 is present in 𝑥(𝑡)  

2) The phase spectrum, ∠𝑋(𝜔), which represents how the different sinusoids align with 

each other to form 𝑥(𝑡) 

Through the frequency spectrum, it is then possible to accomplish the two goals outlined in the 

previous section, namely to characterize and enhance biomedical signals. 

Frequency Characteristics of the Raw Peso Signal 

The raw Peso signal that is acquired from the body is mixture of the “true” Peso signal as 

well as other physiological processes such as the heart-beat. The beating heart manifests itself as 

cardiogenic oscillations (CGOs), which is the main source of interference in the raw Peso signal 
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that the work in this this thesis aims to suppress. Under normal circumstances, the frequency range 

for the Peso signal is 0.17 - 0.67 Hz while the CGO has a frequency range of 0.8 - 2.5 Hz [42].  

2.3.3 Sources of Interference in the Peso Signal 

Sources of Interference in the Measured Peso Signal 

Cardiogenic Oscillations (CGOs) 

In Section 2.2.1, the Peso acquisition setup was described. Although the location of the 

esophageal catheter allows for a usable Peso signal to be acquired, the anatomical positioning also 

puts the catheter right behind the heart. Thus, small oscillatory pressure fluctuations caused by the 

beating heart known as CGOs are captured in addition to the Peso [43].  In the Peso signal shown 

in Figure 2.7 it is evident that significant CGO interference is present. In the same figure, one 

CGO period is highlighted in red.  

Figure 2.7. A Peso signal with significant CGO interference. A period of one CGO cycle is 

highlighted in red. 
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Esophageal Spasms 

Another major form of interference seen in the Peso signal are esophageal spasms caused 

by the act of swallowing and/or peristalsis. Esophageal spasms manifest themselves in the Peso 

signal as large spikes in pressure that are not related to the respiratory cycle as shown in Figure 

2.8. According to [31], the presence of an esophageal spasm during a Peso measurement should 

be stopped and resumed only once the Peso returns to a stable range.   

 

 

 

 

Figure 2.8. A Peso signal with an esophageal spasm occurring between 75-80 seconds. The spasm 

is caused by a swallowing.  
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2.3.4 Relevant work related to CGO Suppression in Peso Signals  

Interference of CGOs in the Peso poses a problem during respiratory health monitoring, 

because the amplitude fluctuations may result in inaccurate estimates of clinical parameters [43]-

[44]. Based on the frequency bandwidths of Peso and CGO provided in Section 2.3.2, it has been 

suggested that the frequency spectra for both signals may overlap [42], [44]. Because of the 

possible overlapping frequency spectra, conventional fixed filtering methods may not be 

appropriate for CGO removal/suppression.  

Several research groups have developed approaches to suppress CGO from Peso signals. 

In [44] and their subsequent work in [45], the Peso was modelled as a sum of pressure swings 

caused by respiration and the CGO. To remove the CGO interference, an adaptive filtering 

technique using an adaptive noise-cancelling structure was proposed. The inputs to the proposed 

adaptive filter were the raw Peso signal and a corresponding ECG signal. An estimate of the CGO 

interference was created by obtaining the R-peaks in the ECG signal and applying a convolution 

with a linear dynamic system modelled by an impulse response. The estimated CGO was then 

subtracted from the Peso signal to obtain a CGO-free Peso signal. This technique was tested and 

validated on eight simulated patients as well as real-world data from four ICU patients. Although 

the results of their study showed that the CGO could be suppressed, several limitations of their 

proposed technique arise. First, the impulse responses used to estimate the CGO assume linearity 

and stationarity of the beating heart, which are not consistent with our understanding of 

physiological processes. And secondly, the technique requires at least one-minute worth of ECG 

data and 10 stable breathing efforts in order to “learn” and adapt to the patient’s heart rate, which 

suggests that the technique is not suitable for short-term duration signals. 
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In [42], a CGO suppression scheme using a modified adaptive noise cancellation (MANC) 

technique was proposed. The technique makes use of the conventional adaptive noise cancelling 

(ANC) structure using the least-mean squares (LMS) algorithm to adjust the filter coefficients. In 

ANC structures, two inputs are required: i) the input signal with undesirable characteristics, and 

ii) the reference signal. The output of the ANC structure is the error signal (i.e. the difference) 

between the input signal and the reference signal. In the case of [42], the input signal was the CGO-

contaminated Peso signal, and the reference signal was selected as the airflow, which had similar 

temporal and spectral properties of Peso. The aforementioned selection of input and reference 

signals resulted in an error signal representative of the CGO. The proposed MANC structure 

subtracted the error signal of ANC (i.e. the CGO) from the original CGO-contaminated Peso to 

provide a “clean” version of the Peso. The performance of the MANC technique was tested on two 

Brown-Norway rats and shown to significantly improve the calculation of airway resistance, which 

is a respiratory system parameter. A major limitation of this study is the fact that the technique 

was tested solely on two Brown-Norway rats. Because the animal model exhibits different 

cardiopulmonary mechanics compared to humans in the ICU, it is difficult to infer the performance 

of the proposed MANC technique. 

In [46], the method proposed in [45] was modified and applied in suppressing CGO from 

impedance pneumography (IP) signals that are used to assess lung function. Like in [45], an 

estimate of the CGO was generated using the R-waves from a corresponding ECG signal and 

subtracted from the IP signal. In this approach, the CGO estimation was modified to take into 

account lung volume induced changes. The method was found to attenuate CGO with minimal 

distortions to the respiratory portion of the IP signal. 
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More recently, a template subtraction technique has been proposed by [43]. Drawing on 

work based on removing ECG contamination from EMG signals, the proposed technique aims to 

remove CGO from Peso using three steps. In the first step, the R-peak artifact in an EMG signal 

obtained at the costal margin (lower edge of the thorax located between the 7th and 10th ribs) is 

detected. The fundamental idea behind this concept is that the locations of the R-peaks correspond 

to the location of the CGO in the Peso. The second step in the proposed technique is the creation 

of the artifact template, which is generated by taking an ensemble average of successive Peso 

segments separated by the R-peaks and normalized in time to unit length. In the final step, the 

length of the artifact template is scaled back to the length of each artifact and subtracted from the 

raw Peso signal. The proposed template-subtraction technique was tested on six mechanically 

ventilated patients receiving Pressure Support Ventilation (PSV), and has shown to be able to 

suppress CGO quite well. Furthermore, the template generated through this method resembles the 

filling pressures of the left atrium of the heart, which may potentially be useful in assessing the 

structure and function of the heart. 

2.4 Chapter Summary 

This chapter has described the anatomical and physiological background of breathing. 

Parameters such as PL and Peso were then introduced and their importance in guiding lung-

protective mechanical ventilation strategies as well as managing treatments in critically-ill patients 

was summarized. Despite the technical limitations of using the Peso signal, its potential for clinical 

use has garnered a lot of interest in recent years. The rest of this chapter was devoted to describing 

how the Peso signal is acquired in the clinical context. From a biomedical signal processing 

perspective, the Peso signal’s time-domain and frequency-domain representations were described 

in detail. This chapter concluded by introducing the CGO as a major source of interference 
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encountered in the Peso signal, and a summary of the significant signal processing contributions 

developed for suppressing CGO was provided. The context provided in this chapter serves as 

motivation for the work presented in this thesis to develop new signal quality enhancement 

techniques to suppress CGO from Peso. The next chapter introduces the proposed enhancement 

scheme and its development based on proof-of-concept results. 
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Chapter 3 

The Proposed Enhancement Scheme: 

Characterizing the Peso and CGO Signals, 

Preliminary Experimentation & Proof-of-

Concept 

 

3.1 Motivation 

 Suppressing cardiogenic oscillations (CGOs) in the Peso signal is undoubtedly an 

important task, because CGO interference can pose problems for respiratory monitoring in ICUs. 

Although some potential solutions have been developed, which was described in the previous 

chapter, many of those techniques required a reference signal such as an ECG or EMG. Although 

multimodal approaches may provide additional context to how one organ system affects another, 

simultaneous acquisition of those biomedical signals requires multiple systems and devices. 

Introducing additional systems and devices may lead to other challenges, which include ensuring 

patient comfort as well as data synchronization. To avoid these issues altogether, an adaptive, data-

driven approach using solely the information from the Peso signal is proposed. The Peso signal 

and the CGO will be characterized using the decomposition algorithms, and the enhancement 

scheme will be developed and refined in this Chapter. 
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3.2 Proposed Enhancement Scheme 

3.2.1 Overview 

Empirical Mode Decomposition (EMD)  

The EMD algorithm is a popular data analysis method proposed by Huang in the late 1990s 

[47]. Over the past two decades, the algorithm has been applied in various research areas to 

adaptively decompose time series data into a finite set of zero-mean AM-FM components [48]. 

What makes the algorithm popular among researchers is the fact that EMD performs the 

decomposition without assuming linearity and stationarity of the data [47], [48]. Furthermore, the 

algorithm is entirely data driven; unlike tools such as the Fourier and Wavelet transforms that rely 

on basis functions (i.e. sinusoids and mother wavelets, respectively), EMD decomposes the time 

series based on intrinsic properties of the data [47].  The extracted AM-FM components described 

previously are known as intrinsic mode functions (IMFs), which represent the oscillatory modes 

embedded in the data [47], [48]. While the IMFs allow for the calculation of instantaneous 

frequency via the Hilbert Transform [47], [49], it has been suggested that the IMFs are also related 

to specific physical phenomena present in the measured data [49]-[50]. Since EMD is capable of 

decomposing nonlinear and non-stationary signals into components that can represent physical 

phenomena, the algorithm has been used successfully in many applications related to biomedical 

signal processing such as ECG enhancement and QRS detection [51], EEG artifact removal [52]-

[53], tissue artifact removal from respiration signals [54], feature extraction for epilepsy detection 

[55] and more recently, to identify a child’s autism severity level [56]. According to [47], the 

extracted components must satisfy two conditions to be considered an IMF:   

1. The number of extrema and the number of zero crossings may only differ by one. 
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2. The mean value between the envelopes generated by the local maxima and local minima 

must be zero at all times. 

The IMFs are obtained by performing EMD on a given signal, 𝑥(𝑡), through the sifting process 

[47]. The EMD algorithm and the sifting process are described as follows [47], [48]:  

1. Identify all local extrema in 𝑥(𝑡). 

2. Generate the upper envelope, 𝑒𝑢𝑝𝑝𝑒𝑟(𝑡), and lower envelope, 𝑒𝑙𝑜𝑤𝑒𝑟(𝑡), using cubic spline 

interpolation from the maxima and minima, respectively.   

3. Calculate the point-by-point mean between the upper and lower envelopes through EQ3.1: 

𝑚(𝑡) =  
𝑒𝑢𝑝𝑝𝑒𝑟(𝑡) − 𝑒𝑙𝑜𝑤𝑒𝑟(𝑡)

2
      (𝐄𝐐𝟑. 𝟏) 

4. Subtract 𝑚(𝑡) from 𝑥(𝑡) to obtain a potential IMF, ℎ(𝑡):  

ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡)     (𝐄𝐐𝟑. 𝟐) 

5. Check the properties of ℎ(𝑡): 

a. If ℎ(𝑡) satisfies the conditions to be considered an IMF, calculate the residual via 

EQ3.3:  

𝑟(𝑡) = 𝑥(𝑡) − ℎ(𝑡)     (𝐄𝐐𝟑. 𝟑) 

b. Otherwise, replace 𝑥(𝑡) with ℎ(𝑡) and iterate through Steps 1 to 5 until ℎ(𝑡) 

satisfies 5.a.   

6. Repeat Steps 1 to 6 until the residual, 𝑟(𝑡), satisfies a predefined stopping criterion. The 

original time series signal, 𝑥(𝑡), can then be represented as a sum of the IMFs, ℎ𝑖(𝑡) for 

𝑖 = 1. . 𝑁, and the residual, 𝑟(𝑡). 𝑥(𝑡) can be represented mathematically through EQ3.4:  

𝑥(𝑡) =  ∑ ℎ𝑖(𝑡) + 𝑟(𝑡)

𝑁

𝑖=1

      (𝐄𝐐𝟑. 𝟒) 
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Based on the steps of the EMD algorithm, the highest frequency components are sifted first. Thus, 

the first IMF contains the highest frequency component of 𝑥(𝑡). The IMFs that follow 

progressively contains lower frequency components. The last IMF has the lowest frequency 

component present in the signal and represents the residual. 

Ensemble EMD (EEMD)  

Although EMD has been quite successful in many fields, a major obstacle associated with 

the algorithm is the concept of mode-mixing [57]. Mode-mixing occurs when a single IMF 

contains more than one oscillatory mode, which results in a loss of physical meaning for the IMF 

[50], [57]. To overcome the mode-mixing problem, Wu and Huang [57] developed a noise-assisted 

data analysis method known as Ensemble EMD (EEMD). The EEMD method decomposes a signal 

into its IMFs via EMD over several trials [57]-[58]. White noise with finite amplitude is added to 

the original signal at the start of each trial before proceeding with EMD, which results in an 

ensemble for each IMF [50], [57]. The ensemble average for each of the corresponding IMFs are 

taken, which are then treated as the true IMFs [19]. The addition of white noise during the process 

ensures that no scales are missing, thereby overcoming the problem of mode mixing [57]-[58]. 

Theoretically, the true IMFs do not contain the added white noise as they are cancelled out during 

the ensemble averaging [50], [57]. A flowchart describing how the IMFs are generated using the 

EEMD algorithm is shown in Figure 3.1. 
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Figure 3.1. A flowchart representing how EEMD generates the IMFs of a given signal. 
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3.2.2 Enhancement Scheme 

As mentioned previously, the main form of interference observed in Peso signals are 

cardiogenic oscillations (CGOs) caused by the beating heart. While various pressures acting on 

the esophageal balloon may influence the measured signal, Pmeas, the work presented in this thesis 

assumes that Pmeas contains only two components superimposed on each other: i) the esophageal 

pressure (Peso) and ii) the CGO. The assumption of the measured signal is described by EQ3.5:  

𝑃𝑚𝑒𝑎𝑠 = 𝑃𝑒𝑠𝑜 + 𝐶𝐺𝑂      (𝐄𝐐𝟑. 𝟓) 

To suppress the cardiogenic oscillations from the measured signal, the decomposition algorithms 

described in the previous section were used to decompose Pmeas into its IMFs. The IMFs relevant 

only to Peso would be selected and used to reconstruct Pmeas such that CGO is no longer a 

component in the signal. Thus, the goal of this work is to apply the decomposition algorithms to 

Pmeas and achieve the following relation: 

𝑃𝑚𝑒𝑎𝑠,𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝑃𝑒𝑠𝑜     (𝐄𝐐𝟑. 𝟔) 

Based on the frequency bandwidths described in Section 3.2.2, the components related to CGO 

are expected to appear in the first few IMFs while the Peso components should appear in higher 

valued IMFs since the EMD algorithm sifts the signal in the order of highest frequency to lowest 

frequency. The reconstruction of the enhanced version of Pmeas (Pmeas,enhanced) is described in EQ3.7 

in which the IMFs related to Peso (IMFPeso) are summed together. 

𝑃𝑚𝑒𝑎𝑠,𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 =  ∑ 𝐼𝑀𝐹𝑃𝑒𝑠𝑜       (𝐄𝐐𝟑. 𝟕) 



44 
 

A general visual representation of the proposed enhancement scheme is shown in Figure 3.2. The 

complete methodology of this collaborative work between Ryerson University and St. Michael’s 

Hospital, from signal acquisition to signal processing, is shown in Figure 3.3. 

 

 

 

 

Figure 3.2. The workflow of the proposed enhancement scheme. The raw (“noisy”) signal will 

first be decomposed using a decomposition algorithm (i.e. EMD or EEMD) to generate the IMFs. 

The IMFs relevant to the physiological process being measured are then selected. The IMFs are 

summed together to reconstruct a “clean” signal that is free from noisy/interference seen in the 

original raw signal. 
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Figure 3.3. The complete methodology of this research work. This is a collaborative project 

between Ryerson University and St. Michael’s Hospital under the Institute of Biomedical 

Engineering, Science, and Technology (iBEST). The raw Peso signal is acquired using an 

esophageal catheter by clinicians at St. Michael’s Hospital, as shown in the blue box. The raw Peso 

signal is then provided to the Signal Analysis Research (SAR) Lab at Ryerson University, where 

the proposed enhancement technique (shown in the pink box) is used to remove/suppress the CGO 

interference from the Peso signal. 
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3.3 Characterizing the CGO Interference and Proof-of-Concept of Proposed 

Enhancement Scheme 

The assumption made about the raw Peso signal (Pmeas), as described in EQ3.5, is that it is 

comprised of two major components: i) the esophageal pressure (Peso) and ii) the cardiogenic 

oscillations (CGO). To get an understanding of the two components of Pmeas, data from patients in 

“passive breathing” conditions were used. This Section is focused on gaining insights into the 

characteristics of CGOs. Additionally, the enhancement scheme proposed in the previous section 

will be applied to generate a proof-of-concept to assess the feasibility of the EMD algorithm to 

suppress interference from Peso signals. 

3.3.1 Dataset 

The first dataset was used to characterize the CGO, which represents the major source of 

interference that the work in this thesis is trying to remove/suppress. This dataset will also be used 

to generate proof-of-concept results of the proposed enhancement scheme. There are five types of 

data in this dataset: i) Time [seconds], ii) Flow [L/s], iii) Airway Pressure [cmH2O], iv) Esophageal 

Pressure [cmH2O], and v) Transpulmonary Pressure [cmH2O]. The data was sampled at 25 Hz and 

was collected from two passively breathing patients receiving mechanical ventilation support. In 

the context of critical care medicine, the “passive breathing” condition means that the patient does 

not provide any effort in taking a breath; it is solely the mechanical ventilator that performs the 

role of respiration for the patient. To achieve the passive breathing condition in this dataset, the 

patients were sedated, and a paralysis-inducing drug was administered to their respiratory muscles. 

A low-flow inflation maneuver was performed on the patients where the ventilator inflated their 

lungs at a constant flow rate of 5 L/min. The duration of the two signals are approximately 20 



47 
 

seconds and 25 seconds. This dataset was approved by the St. Michael’s Hospital’s Research 

Ethics Board under REB# 15-074. The dataset used in this Section is summarized in Table 1. 

TABLE 1: SUMMARY OF THE DATASET USED FOR GETTING A BASELINE UNDERSTANDING OF CGOS. 

Dataset 

# 
REB # 

Size of 

Dataset 

(# of 

patients) 

 

Condition 

of Patients 
Types of data 

Sampling 

Frequency 

(Hz) 

Duration 

of Signals 

(sec) 

1 15-074 2 Passive 

1. Time 

2. Flow 

3. Airway Pressure 

4. Esophageal 

Pressure 

5. Transpulmonary 

Pressure 

25 20 - ~25 

 

3.3.2 Experimental Setup and Validation – Characterizing CGOs & Proof-of-Concept Results 

 The specific conditions behind data acquisition, as described in the previous section, are 

important to note for the experimental setup covered in this section. Since paralysis-inducing drugs 

were administered to the patients’ respiratory muscles, the patients were unable to provide any 

form of respiratory effort. As a result, only the activity of the heart in the form of CGOs, as well 

as the low-flow inflation maneuver are observed in the Peso signal. 

 To gain insights on the proof-of-concept results and determine the feasibility of the 

proposed enhancement scheme, our clinical collaborators were asked to provide their opinions as 

domain-experts. This form of validation is known as “Face Validity,” which relies on the 

subjective assessment of an expert about the appearance of a specific measurement or variable. In 

this work, the specific measurements used for face validity are the IMFs, the quality of the 

extracted CGO in terms of its morphology, and the quality of the enhanced Peso signal in terms of 

its morphology and the slope of the Peso deflection (
𝑑𝑃𝑒𝑠𝑜

𝑑𝑡
). 
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3.3.3 Results and Discussions 

Characterization of CGO 

 As mentioned in the previous Chapter, a basic understanding of a signal’s characteristics 

can be derived from the time-domain representation of the signal. Figure 3.4 (left) illustrates the 

time-domain representation of the Peso signal. The low-flow inflation maneuver is represented by 

a linear increase in pressure starting at ~7 seconds and ending at 12 seconds. The duration of the 

low-flow inflation maneuver is when inspiration occurs. Upon reaching the maximum value, the 

pressure declines at a steep rate from 12 seconds until it reaches a baseline value starting at ~13.5 

seconds. The declining pressure represents the expiration process. In addition to the low-flow 

inflation maneuver, another strikingly clear characteristic of the Peso signal for this patient are the 

low amplitude pressure variations exhibiting quasi-periodic behaviour. The oscillatory pressure 

fluctuations are the main form of interference in the Peso signal: the CGOs. It is important to note 

that the DC value of the Peso in Figure 3.4 has not been removed; this is by recommendation of 

the collaborating clinicians as there is no clinical reason to remove it. 

Because the CGOs are evidently quasi-periodic in nature, the frequency-domain may also 

be helpful in providing further insights into the signal. The frequency-domain representation of 

the Peso signal described previously is shown in the magnitude spectrum of Figure 3.4 (right). 

The large peak indicated by the blue arrow is the fundamental frequency of the CGO for the 

specific patient at the time of data acquisition. The smaller magnitude peaks indicated by green 

arrows represent the harmonics of the CGO. It is important to note that there is one more peak that 

occurs at a lower frequency than the CGO fundamental frequency; this peak represents the DC 

value as well as the magnitude of the frequency generated by the low-flow maneuver. 
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Figure 3.4. The Peso signal in time-domain on the left. The low-flow inflation maneuver manifests 

itself as a linear increase in pressure during inspiration and a steep decline in pressure during 

expiration, while the CGOs are represented by small oscillatory fluctuations throughout the time-

series. The magnitude spectrum of the Peso signal is shown on the right. The fundamental 

frequency of the CGO is indicated by the blue arrow, and the harmonics of the CGO are labelled 

with green arrows. 
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It is important to note that although the characteristics of the CGO shown in this Section 

are consistent with the physiological understanding of the heart (i.e. the oscillatory fluctuations 

caused by the depolarization and repolarization of the heart chambers, as well as the harmonics of 

the heart beat seen in the magnitude spectrum), there is a small-dataset problem. Only two signals 

from two passively breathing patients were provided, and therefore not representative of the entire 

population. Nevertheless, gaining some insight into the CGO signal characteristics will be helpful 

in distinguishing between Peso and CGO. 

 

Application of Proposed Enhancement Scheme – A Proof-of-Concept 

 It is evident from Figure 3.4 that the CGO is a major source of interference, which poses 

an issue for clinicians when trying to interpret their patients’ respiratory mechanics. The EMD 

algorithm was applied to the Peso time-series signal shown in Figure 3.4 as a proof-of-concept to 

assess the feasibility of using the enhanced Peso for clinical use.  

 Applying EMD yielded nine IMFs, which are shown in Figure 3.5. Based on the 

bandwidths of the relevant physiological processes found in literature and the preliminary 

characterization of CGO in the previous section, it is expected that the CGO would appear in IMFs 

containing higher frequency bands (i.e. first few IMFs). On the other hand, the Peso, or in this case 

the low-flow inflation maneuver, would be expected to appear in the IMFs representing lower 

frequency bands (i.e. IMFs after CGO).  
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Figure 3.5. The IMFs of the Peso signal using EMD. 
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Extraction of CGOs 

Through visual inspection of Figure 3.5 in conjunction with clinical collaborators, it 

appears that IMF1 and IMF2 certainly contain information about the CGO. Additionally, IMF3 

may also contain CGO information. To test the claim, two CGO signals were reconstructed by 

selecting the following IMF combinations: 

i) IMF1 and IMF2 

ii) IMF1, IMF2, and IMF3.  

The two CGO signals were plotted together along with the original Peso signal for comparison as 

seen in Figure 3.6 (A). There were two notable sections in Figure 3.6 (A) that provided 

information about the reconstruction using the above-mentioned claim. The first section, which is 

encapsulated by a yellow box, is a portion of the Peso signal that contains only the CGO. The 

second section is the portion of the Peso signal during the low-flow inflation maneuver. 

The first section shown in the yellow box in Figure 3.6 (A) is shown more clearly in Figure 

3.6 (B). Through a superficial assessment of the CGO signals in Figure 3.6 (B) by the clinical 

collaborators, the morphologies of the reconstructed CGOs (red and blue) were found to be quite 

similar to the morphology of the original CGO (black). Not only were the peak-to-peak amplitude 

values of the signals very similar, but the “landmarks” of the waveforms, such as the notches seen 

throughout the CGO signal, were also reconstructed. The IMFs used to reconstruct the CGOs in 

Figure 3.6 (B) suggest that there is very little difference between the IMF combinations described 

in (i) and (ii).  

Based on the observations made from Figure 3.6 (B), the portion of the Peso signal 

representing the low-flow inflation maneuver shown in Figure 3.6 (C) may provide further insight  
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Figure 3.6. (A) Comparison between the original Peso (black), the reconstructed CGO using IMFs 

1 to 2 (red), and the reconstructed CGO using IMFs 1 to 3 (blue). The DC value of the original 

Peso was removed, an artificial value of -3 cmH2O was added to the CGO using IMFs 1 to 2 (red), 

and a value of -5 cmH2O was added to the CGO using IMFs 1 to 3 (blue) for a clear comparison 

of the waveforms. (B) A portion of the original Peso signal containing only CGO. The section of 

the signal portrayed in this plot is encapsulated by the yellow box in (A). (C) A portion of the 

original Peso signal containing the low-flow maneuver, which is extracted from the green box in 

(A). The expiration process of the maneuver is shown in the purple box. 
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into determining which IMFs truly represent the CGOs. During the inspiration phase of the 

maneuver (i.e. the portion of the Peso with a linearly increasing pressure over time), the CGO 

reconstructions are still quite similar to the original CGO, albeit without the linear increase caused 

by inspiration. However, the morphologies of the CGOs appear to differ during the expiration 

phase (i.e. the steep, negative slope) indicated by the purple box of Figure 3.6 (C). The expiration 

phase appears to last approximately one second. Based on the frequency of the CGOs prior to 

expiration, it is suspected that at least one CGO cycle is present in the negative deflection but is 

hidden within the larger amplitude of the Peso signal itself. The red signal (reconstructed using 

IMFs 1 to 2) shows that a small component of the CGO is present during the expiration phase, 

while a larger CGO component is seen in the blue signal (IMFs 1 to 3). Through face validation, 

it was agreed that IMFs 1 to 3 most resembled the activity of the beating heart for this specific 

person. 

Extraction of Peso 

To extract the Peso signal represented by the low-flow inflation maneuver, the IMFs from 

Figure 3.5 were again shown to the clinical collaborators. It was suggested that the following IMF 

combinations may be used to reconstruct the Peso signal: 

i) IMF3 to IMF9 

ii) IMF4 to IMF9 

iii) IMF5 to IMF9 

The three combinations listed above were used to reconstruct three Peso signals. The three Peso 

signals were plotted separately alongside the original Peso signal and are illustrated in Figure 3.7. 
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Figure 3.7. (A) The reconstructed Peso signal using IMFs 3 to 9 shown in red. The blue arrow 

indicates that a CGO cycle still persists after the application of the proposed signal enhancement 

scheme. (B) The reconstructed Peso signal using IMFs 4 to 9 shown in blue. (C) The reconstructed 

Peso signal using IMFs 5 to 9 shown in green. 

 

 
In Figure 3.7 (A), IMF3 was selected as the starting IMF. The reconstructed Peso in red 

appears to follow the low-flow inflation maneuver quite closely. Although a significant portion of 

the fluctuations caused by the CGO have been removed, it is still apparent in the morphology that 

the CGO interference is still present. Furthermore, as indicated by the blue arrow, a CGO pulse 

persists at the end of the expiratory phase. Thus, the reconstruction of (i) IMF3 to IMF9 was 

deemed unsuitable for interference removal for this patient as it still contains significant CGO 

information.  



56 
 

The next two combinations shown in Figure 3.7 (B) and Figure 3.7 (C) represent the Peso 

reconstructions using IMFs 4 to 9 and IMFs 5 to 9, respectively. For both signals, it was found that 

the CGO interference was suppressed relatively well while maintaining the shape of the low-flow 

inflation maneuver. However, Figure 3.7 (C) differs from Figure 3.7 (B) in that the reconstruction 

using IMFs 5 to 9 contains a larger delay in the pressure drop during expiration compared to the 

reconstruction using IMFs 4 to 9. According to the clinical collaborators, the slope of the Peso 

drop (i.e. 
𝑑𝑃𝑒𝑠𝑜

𝑑𝑡
) contains crucial clinical information. As a result, the reconstructed Peso using 

IMFs 5 to 9 was deemed unacceptable. Thus, the combination of IMFs 4 to 9 was selected as the 

acceptable IMFs for Peso extraction for this specific patient. 

Mode-Mixing of the Proposed Enhancement Scheme using EMD 

 The proof-of-concept results presented in this section show that the proposed enhancement 

scheme using EMD is capable of not only removing the CGO interference from the Peso signal 

but is also able to extract the CGO signal itself. Despite the promising results, there is one 

significant issue that was observed in Figure 3.5: mode-mixing between IMF 1 and IMF 2. Figure 

3.8 illustrates the mode-mixing problem seen in IMFs 1 and 2. The components in IMF 1 within 

the red squares should appear in IMF 2, which suggests that EMD may not be appropriate.  

Figure 3.8. Mode-mixing problem observed in IMFs 1 and 2. The oscillatory components in IMF 

1 that are shown in red should have appeared in IMF2. 
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3.4 Refining the Proposed Enhancement Scheme 

Section 3.3 showed that the proposed enhancement scheme is capable of not only 

suppressing the CGO interference, but also extracting the CGO signal itself. However, it was also 

found that the mode-mixing problem was present when the EMD algorithm was used. Because the 

mode-mixing problem renders the interpretation of IMFs physically meaningless, another 

decomposition algorithm must be used. The aim of this section is to refine the proposed 

enhancement scheme by applying Ensemble Empirical Mode Decomposition (EEMD) to 

determine if the mode-mixing problem would be solved.  

3.4.1 Dataset 

The dataset used in this section is the same data described in Section 3.3. A summary of 

the data used in this section is shown in Table 2. 

 

TABLE 2: SUMMARY OF THE DATASET USED FOR REFINING THE PROPOSED ENHANCEMENT SCHEME. 

Dataset 

# 
REB # 

Size of 

Dataset 

(# of 

patients) 

 

Condition 

of Patients 
Types of data 

Sampling 

Frequency 

(Hz) 

Duration 

of Signals 

(sec) 

1 15-074 2 Passive 

1. Time 

2. Flow 

3. Airway Pressure 

4. Esophageal 

Pressure 

5. Transpulmonary 

Pressure 

25 20 - ~25 

 

3.4.2 Experimental Setup – Refining the Proposed Enhancement Scheme 

 The EMD and EEMD algorithms will be applied to the two sets of data described in Section 

3.4.1 to make a comparison between the IMFs generated by both algorithms. For the EEMD 
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algorithm, the number of ensemble trials used in the decomposition was fixed at 100 to maintain 

a sufficiently good SNR while reducing computational complexity [58]. The amplitude of white 

noise added into each trial was computed using EQ3.8 according to [57]: 

𝑛 = 0.2 × 𝑠𝑡𝑑(𝑃𝑒𝑠𝑜)      (𝐄𝐐𝟑. 𝟖) 

The methods used in Section 3.3 for the extraction of the CGO and enhancement of Peso were 

repeated. 

3.3.3 Results and Discussion 

 A comparison of the IMFs generated using EMD and EEMD for the passively breathing 

patient described in Section 3.3 are shown in Figure 3.9 and Figure 3.10, respectively. 

Application of both decomposition algorithms yielded nine different IMFs. However, as noted 

previously in Section 3.3, the mode-mixing problem caused by EMD is clearly shown in IMFs 1 

and 2 of Figure 3.9. By applying EEMD, it appears that the mode-mixing problem has largely 

been overcome as seen in Figure 3.10.  

 Because the IMFs generated using EEMD were different, it was expected that the enhanced 

Peso signal as well as the extracted CGO signals obtained using EMD’s IMFs would also change. 

The same methods in Section 3.3 were applied for CGO extraction and Peso enhancement, but 

this time using EEMD’s IMFs. Table 3 summarizes the relevant IMFs used to reconstruct the 

CGO and Peso signals for both EMD and EEMD. A visual comparison of the reconstructed CGO 

using EMD and EEMD is shown in Figure 3.11(A), and likewise, the reconstructed Peso is shown 

in Figure 3.11(B). 
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Figure 3.9. The IMFs generated using EMD for the passively breathing patient (recreation of 

Figure 3.5). 
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Figure 3.10. The IMFs generated using EEMD for the same passively breathing patient seen in 

Figure 3.9. 
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Figure 3.11. (A) The original raw Peso (black) with the DC value removed, the extracted CGOs 

using and EEMD’s IMF 2 to IMF 3 (red) with an added value of -3 cmH2O, and EMD’s IMF 1 to 

IMF 3 (blue) with an added -5 cmH2O. (B) The enhanced Peso using EEMD’s IMF 4 to IMF 9 

(red) and EMD’s IMF 4 to IMF 9 (blue) superimposed on the original raw Peso (grey). 
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TABLE 3: THE IMFS USED FOR CGO EXTRACTION AND PESO ENHANCEMENT FOR PASSIVELY 

BREATHING PATIENT. 

 
IMF Combinations for 

CGO 

IMF Combinations for 

Peso 

EMD 1 to 3 4 to 9 

EEMD 2 to 3 4 to 9 

 

From Figure 3.11(A), there is not much difference in terms of the CGO reconstruction 

morphology between EMD and EEMD during the first 12 seconds. However, like in Section 3.3.3, 

the main difference is observed during the expiration phase of the low-flow inflation maneuver as 

indicated by the green box. The red CGO, which was reconstructed using the IMFs from EEMD 

shows a more consistent CGO morphology compared to the blue CGO, which was reconstructed 

using EMD’s IMFs. The consistent and more defined CGO morphology during the expiration 

phase seen in EEMD’s reconstruction suggests a better separation of the oscillatory modes than 

the EMD reconstruction. In fact, the frequency smearing seen in the CGO created through EMD’s 

IMFs during expiration is a product of the mode-mixing problem; since the mode-mixing occurred 

in IMF 1, the subsequent IMFs were modified and did not contain the true information about the 

physiological process (i.e. the heart beat).  

In addition to seeing an improvement in CGO extraction, a noticeable performance 

improvement of CGO suppression using EEMD in the proposed enhancement scheme was also 

observed as shown in Figure 3.11(B). At first glance, the EMD reconstruction (blue) appears to 

suppress the CGO marginally better. While the EEMD reconstruction (red) fluctuates a bit more 

than its EMD counterpart, the EEMD reconstruction can follow the slope (
𝑑𝑃𝑒𝑠𝑜

𝑑𝑡
) of the low-flow 

inflation significantly better during inspiration and contains less delay during expiration. 

Ultimately, the EEMD reconstruction’s ability to suppress the CGO and reconstruct a more 
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accurate representation of the low-flow inflation maneuver outweighs the “better” CGO 

suppression of EMD. 

3.5 Application of the (Refined) Proposed Enhancement Scheme to 

Spontaneously Breathing Patients – Another Proof-of-Concept 

Up until now, this Chapter has focused mainly on characterizing the CGO interference and 

refining the proposed enhancement scheme – both of which were accomplished using data from 

passively breathing patients. However, there is a push in the critical care community towards 

developing and adapting modes of ventilation that encourage patients to take on a greater portion 

of ventilatory effort. As a result, the proposed enhancement scheme must also be robust to 

conditions where patients are able to recruit their respiratory muscles to provide some degree of 

ventilation effort (i.e. “active breathing”).   

The aim of this section is to get a better understanding of the Peso signal in patients who 

are capable of active breathing, which can be achieved by suppressing their CGO interference. 

Because an “active breathing” condition is used in this section, which differs from the “passive 

breathing” condition used in Section 3.3, proof-of-concept results must also be generated to 

determine the feasibility of the proposed enhancement scheme in conditions other than “passive 

breathing.” 

3.5.1 Dataset 

The dataset used in this section is from spontaneously breathing patients, which are a subset 

of the “active breathing” condition. Unlike the “passive breathing” condition, the “spontaneously 

breathing” condition means that the patients’ respiratory muscles were not paralyzed; they were 

able to recruit some of their respiratory muscles to provide some degree of respiratory effort. This 
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dataset was obtained from six spontaneously breathing patients receiving pressure support 

ventilation (PSV). Under the “spontaneously breathing” condition during PSV, the patients’ 

inspiratory efforts triggered the ventilator to provide a pre-set positive pressure to supplement the 

patients’ breath. The dataset contains five signals: i) Airway Pressure [cmH2O], ii) Esophageal 

Pressure [cmH2O], iii) Gastric Pressure [cmH2O], iv) Flow [L/s], and v) Transpulmonary Pressure 

[cmH2O]. The signals were sampled at 200 Hz, and the duration of the signals range between 5.17 

minutes to 8.74 minutes. The collection of this data was approved by St. Michael’s Hospital’s 

Research Ethics Board under REB# 15-369. A summary of the data used in this section is shown 

in Table 4. 

 

TABLE 4: SUMMARY OF THE DATASET USED FOR REFINING THE PROPOSED ENHANCEMENT SCHEME. 

Dataset 

# 

REB 

# 

Size of 

Dataset 

(# of 

patients) 

 

Condition of 

Patients 
Types of data 

Sampling 

Frequency 

(Hz) 

Duration 

of Signals 

(min) 

2 
15-

369 
6 

Spontaneous 

with PSV 

1. Airway Pressure 

2. Esophageal 

Pressure 

3. Gastric Pressure 

4. Flow 

5. Transpulmonary 

Pressure 

200 5.17 - 8.74 

 

3.5.2 Experimental Setup and Validation – Proof-of-Concept Results for Spontaneously Breathing 

Patients 

 As mentioned in the previous section, the dataset being used is from spontaneously 

breathing patients. Thus, the morphology of the Peso signal will be different from the Peso 
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morphology seen in Section 3.3 and Section 3.4, as there will be a negative deflection during 

inspiration.  

 The same experimental setup used in Section 3.3 will be applied in this section. Insights 

on the proof-of-concept results and determining the feasibility of the proposed enhancement 

scheme will rely on face validity from our clinical collaborators. The specific measurements used 

for face validity in this section are the IMFs, as well as the quality of the enhanced Peso signal in 

terms of three specific clinical features: 1) the overall morphology of the Peso, 2) the amplitude of 

the Peso swing (ΔP), and 3) the slope of the Peso deflections (
𝑑𝑃𝑒𝑠𝑜

𝑑𝑡
).  

3.5.3 Results & Discussions 

Raw Peso Characteristics 

 The Peso signal of a spontaneously breathing patient undergoing PSV in the ICU is shown 

in Figure 3.12 (left). The Peso swing (ΔP) ranges between ~6 cmH2O and ~10.5 cmH2O, and the 

CGO interference, which appear as small oscillatory pressure fluctuations, occur at quasi-periodic 

intervals throughout the entire Peso signal. The CGO’s morphology is most clearly seen at the 

plateau occurring at the end of expiration. From visual inspection of the end-expiratory pressure, 

the CGO appears to have an amplitude of ~1 cmH2O. CGOs are also present during the inspiratory 

phase (negative deflection of Peso) and expiratory phase (positive deflection of Peso) but are not 

easy to see, because the significantly larger amplitude of ΔP masks the pressure fluctuations of the 

CGOs.  

 The frequency-domain representation of the Peso signal is seen in Figure 3.12 (right). The 

red vertical dotted line separates the activity of the Peso and the CGO; the peaks of the magnitude 

spectrum to the left of the red line represents the Peso and the DC value, while the peaks to the 
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right are representative of the CGO and its harmonics. An interesting observation from the 

magnitude spectrum is the location of the separating line. Although there are clear indications of 

the CGO and its harmonics, the position of the separating line lies in an ambiguous region in which 

there is activity from both the Peso and CGO. 

 

Figure 3.12. The time-domain representation of a Peso from a spontaneously breathing patient 

(left) and the magnitude spectrum (right). The peaks corresponding to CGO and its harmonics are 

indicated by red arrows. The red dotted vertical line marks the threshold between Peso activity, 

which are represented by peaks to the left of the threshold, and the CGO activity. The magnitude 

spectrum has been zoomed in to get a clear representation of the CGO and its harmonics. 

 

Application of the (Refined) Proposed Enhancement Scheme – A Proof-of-Concept 

Suppressing CGO in Spontaneously Breathing Patients 

To suppress the CGOs and extract the Peso signal, the EEMD algorithm was used to generate the 

IMFs, which are shown in Figure 3.13. The application of EEMD yielded 11 IMFs with no clear 

indication of the mode-mixing problem that was observed in Sections 3.3 and 3.4.  
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Figure 3.13. The IMFs using EEMD of the Peso for a spontaneously breathing patient. 
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Through visual inspection of the IMF morphologies, the clinical collaborators suggested the 

following IMF combinations for Peso reconstruction: 

i) IMF 4 to IMF 11 

ii) IMF 5 to IMF 11 

iii) IMF 6 to IMF 11 

Each of the three reconstructed Peso signals, which were generated using the abovementioned IMF 

combinations, were plotted separately as seen in Figure 3.14. Figures 3.14 (A), 3.14 (B), and 3.14 

(C), correspond to the IMF combinations (i), (ii), and (iii). In order to visually compare the 

performance of the reconstructions, the reconstructed signals were superimposed onto the original 

raw Peso and shown to the clinical collaborators.  

 At first glance, the reconstruction using IMFs 6 to 11 in Figure 3.14 (C) provides the best 

CGO suppression. However, there are significant modifications to the Peso morphology as well as 

ΔP. The raw amplitude of the highest swing within the frame is ~10 cmH2O. Upon reconstruction, 

ΔP was found to be ~6 cmH2O, which is a 4 cmH2O difference or a 40% loss of ΔP amplitude. 

Furthermore, there is also a visually significant decrease in 
𝑑𝑃𝑒𝑠𝑜

𝑑𝑡
, which manifests as delays in the 

Peso deflections. It was determined that the loss in amplitude of ΔP and the introduction of 

significant delays in 
𝑑𝑃𝑒𝑠𝑜

𝑑𝑡
 resulted in too much clinical information being lost. Thus, Peso 

reconstruction using IMFs 6 to 11 were deemed unacceptable and clinically non-viable. 

 The reconstructions of (i) IMFs 4 to 11 and (ii) IMFs 5 to 11 are shown in Figure 3.14(A) 

and 3.14(B), respectively. The CGO suppression in Figure 3.14(A) shows that the higher 

frequency components of CGO were removed. However, fluctuations from CGO were still present 

in the reconstruction. Similar observations were made in Figure 3.14(B) – the high frequency 
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components of CGO were removed, but small fluctuations persist albeit less than in 3.14(A). In 

both cases, there were no significant visual changes in 
𝑑𝑃𝑒𝑠𝑜

𝑑𝑡
. Thus, the final clinical feature that 

was critiqued was the amplitude of ΔP. The highest ΔP in both frames is ~10 cmH2O. The 

reconstruction using (i) IMFs 4 to 11 shows a negligible difference in ΔP. On the other hand, the 

reconstruction using (ii) IMFs 5 to 11 shows a ΔP of ~8 cmH2O, which is a 2 cmH2O difference 

from the original Peso and an overall 20% loss of ΔP amplitude. 

The slight differences in morphology between the reconstruction combinations of (i) and 

(ii) provided difficulty in determining which reconstruction prevails in the clinical context. To gain 

more insight into the enhancement performance, the frequency-domain representation of the 

signals was created. The magnitude spectra of the original Peso and the reconstructed Pesos are 

shown in Figure 3.15 (A) and 3.15 (B) for reconstructions (i) and (ii), respectively. In both 

magnitude spectra, most of the peaks associated with CGO and its harmonics have been 

suppressed. However, as indicated by the green arrow in the spectrum of Figure 3.15 (A), the 

reconstruction using IMFs 4 to 11 failed to suppress a peak associated with CGO. The same peak 

in the spectrum of Figure 3.15 (B), which is also indicated by a green arrow, has been significantly 

reduced in the enhanced Peso comprised of IMFs 5 to 11.  

Through face validation of the clinical features consisting of morphology, ΔP, and 
𝑑𝑃𝑒𝑠𝑜

𝑑𝑡
, 

as well as the magnitude spectrum, it was agreed that the best Peso enhancement was generated 

using a combination of IMFs 5 to 11. According to the collaborating clinicians, the proof-of-

concept results portrayed in this section suggest that the proposed enhancement scheme may be a 

viable solution towards suppressing CGOs in spontaneously breathing patients. 
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Limitations of the Proposed Enhancement Scheme 

 Although the proof-of-concept showed promising results, two limitations were discovered 

through preliminary experimentation and application of the proposed enhancement scheme 

specifically for spontaneously breathing Peso. 

 The first limitation was that the morphology of the “best” reconstructed Peso, which used 

the combination of IMFs 5 to 11, still contained fluctuations from CGO activity. Despite the 

magnitude spectrum in Figure 3.15 (B) showing that the peaks of CGO and its harmonics have 

largely been suppressed, the separating line shown in Figure 3.12 was in an ambiguous region 

between Peso and CGO activity. As a result, there may have been overlapping frequency content 

between the Peso and CGO that were unable to be separated using EEMD. 

 The second limitation was the loss in amplitude of ΔP, which in the case of the “best” Peso 

reconstruction, was ~2 cmH2O. While there may be a loss of clinical information occurring, the 

collaborating clinicians suggest that a ~10% loss in information can be tolerated. The enhanced 

Peso has a loss of ~20% in amplitude for ΔP. However, it has also been suggested by the clinicians 

that the CGO may be modifying the amplitude of ΔP during the negative and positive deflections 

observed during inspiration and expiration. Thus, there may be a possibility that the 20% loss in 

ΔP has been overestimated, because the “baseline” or “ground-truth” signal, Pmeas, is a noisy signal 

consisting of the CGO interference.  
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Figure 3.14. A comparison of the raw Peso (black) and the reconstructed Peso using the following 

IMF combinations: (A) IMFs 4 to 11 (red) (B) IMFs 5 to 11 (blue) (C) IMFs 6 to 11 (green). 
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Figure 3.15. (A) The time-domain representations of the Peso signals (left) and the corresponding 

magnitude spectra (right). The raw Peso is shown in black while the reconstructed Peso using IMFs 

4 to 11 are plotted in red. The peak indicated by the green arrow shows that the activity from the 

CGO has not been suppressed. (B) Similarly, the time-domain (left) and frequency-domain (right) 

representations of the Peso signals are shown. The raw Peso is plotted in black and the 

reconstructed Peso using IMFs 5 to 11 are shown in blue. The green arrow in (B) points to the 

CGO peak described previously in (A). The reconstructed Peso (blue) has significantly reduced 

the magnitude of the peak.    

 



73 
 

3.6 Chapter Summary 

 This chapter introduced the proposed enhancement scheme that would be used to suppress 

CGO interference in the Peso signal of a patient in the ICU. However, the proposed enhancement 

scheme requires that the signal first be decomposed into its constituent components (i.e. IMFs) 

using EMD or EEMD. Thus, characterizing the CGO, the Peso, and the IMFs was the necessary 

first step in determining the feasibility of the proposed enhancement scheme.  

In Section 3.3, data from passively breathing patients in the ICU was used to characterize 

the CGO interference in the time- and frequency-domains. Paralysis of the patients’ respiratory 

muscles were induced to suppress their respiratory drive. Thus, only the CGO activity and a low-

flow inflation maneuver delivered at a constant flow rate by the mechanical ventilator were present 

in the Peso signal. The EMD algorithm was then used to generate the IMFs of the measured Peso 

signal. Several combinations of IMFs selected and tested to accomplish two tasks: i) the 

reconstruction of CGO, and ii) the reconstruction of Peso. The proof-of-concept results using the 

proposed enhancement scheme shown in in this section suggest that CGO extraction as well as 

CGO suppression can be achieved. Despite the results, further inspection of the IMFs found that 

the mode-mixing problem was present when EMD was chosen as the decomposition algorithm. 

The mode-mixing problem was alluded to in Section 3.2.1, which suggests that the resulting IMFs 

lose their physical meaning. The loss in physical meaning is because EMD is sequential in nature; 

the subsequent IMFs depend on the previous IMF. Thus, mode-mixing poses a problem in 

applications in source-separation applications such as the one presented in this thesis.   

 To overcome the mode-mixing problem, Section 3.4 was dedicated to comparing the IMFs 

between the EMD and EEMD algorithms. The EEMD algorithm was applied to the same data used 

in Section 3.3, and it was found that the mode-mixing was no longer present. The CGO and Peso 
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signals were then reconstructed using EEMD’s IMFs and compared to the reconstructions using 

EMD. Ultimately, the reconstructions of the passively breathing Peso using IMFs from EEMD 

were significantly better in retaining valuable clinical information. Thus, EEMD was selected as 

the decomposition algorithm used for the proposed enhancement scheme. Furthermore, feedback 

from the clinical collaborators found that the proposed enhancement scheme may be useable for 

Peso signals from passively breathing patients.  

The refined enhancement scheme using EEMD was then applied to spontaneously 

breathing patients in Section 3.5. The application of the proposed enhancement scheme to 

spontaneously breathing patients is important, because many clinicians are now trying to develop 

modes of ventilation that encourage patients to take on a greater proportion of the ventilatory effort. 

Thus, the technique must be robust to breathing conditions in which patients’ respiratory drives 

are active. In this section, the morphology of the Peso signals used were found to be more complex, 

which meant that process of selecting the “best” Peso reconstruction was more reliant on the 

clinicians’ opinions. However, the subjective input from multiple clinicians brought with it an 

interesting challenge. While some clinicians may take a more conservative approach to CGO 

suppression, there are others who may be more comfortable with a more liberal amount of filtering. 

Nevertheless, the group of collaborating clinicians were able to converge on a “best” 

reconstruction, which was presented in this section. 

In this chapter, the CGO and Peso signals were characterized in both time-domain and 

frequency-domain for passively breathing patients as well as spontaneously breathing patients. For 

both breathing conditions, the CGO were able to be suppressed as agreed upon by the collaborating 

clinicians. Interestingly, preliminary experiments into characterizing the CGO also suggest that 

the proposed enhancement scheme is also capable of extracting the CGO signal. From the findings 
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obtained in this chapter, the final enhancement scheme can be represented by the block diagram 

shown in Figure 3.16.  

Figure 3.16. The block diagram of the refined enhancement scheme used to suppress CGO. The 

EEMD algorithm is chosen to decompose the raw Peso signal into its IMFs. Through mode 

selection, it is possible to reconstruct both the CGO and the Peso separately.  

 

This chapter has also brought to light some major challenges in developing signal 

enhancement techniques for biomedical signals such as Peso. The “gold-standard” for validation 

is through subjective visual assessment (i.e. face validation) by domain-experts such as clinicians. 

The subjective assessments rely on clinical opinions, which means that the performance of the 

enhancement techniques can depend on whether individual clinicians are able to tolerate more 

filtering or are more comfortable with less filtering. Another challenge is that it is difficult to 

objectively benchmark the performance of any enhancement technique, because the baseline or 

“clean” Peso signals from live ICU patients are impossible to collect. Additionally, the subjective 

assessments of domain-experts may contain bias since the true morphology of the Peso signal (e.g. 

the positive and negative deflections) has already been modified by the CGO interference. Finally, 

the number of Peso signals available to develop and test the proposed enhancement scheme is 

limited, resulting in a “small dataset” problem.  
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Chapter 4 

FrankEinstein’s Peso Signals 

4.1 Motivation 

At the end of the last Chapter, three key challenges were summarized and have to be taken into 

account during the development and validation of biomedical signal enhancement techniques 

specifically for Peso signals: 

1. The gold-standard for validation is subjective and based on visual assessment/face 

validation by clinical experts, 

2. There are no objective or quantifiable approaches to benchmark the performance of the 

developed technique, and 

3. The fidelity of face validation for clinical parameters such as ΔP can be compromised since 

the Peso signal has already been modified by the CGO. 

In addition to the abovementioned challenges, the previous Chapter also brought up a “small 

database” problem that imposed limitations on developing and testing robust signal enhancement 

techniques. The aim of this Chapter is to address these challenges and limitations by applying the 

proposed enhancement scheme to synthetic “noisy” Peso signals.  

 Inspired by Mary Shelley’s science-fiction novel Frankenstein; or, The Modern 

Prometheus, which tells the story of a young scientist who pieces together different body parts and 

reanimates a living “human,” synthetic “noisy” Peso signals were created. In a similar vein to the 

creation of Frankenstein’s Monster, the synthetic “noisy” Peso signals were created by piecing 
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together two elements: i) Peso signals from a breathing simulator, and ii) CGO signals that were 

extracted using EEMD from patients as described in the previous Chapter. The synthetic “noisy” 

Peso signals were “reanimated” using EQ4.1: 

𝑃𝑒𝑠𝑜 = 𝑃𝑒𝑠𝑜,𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 + 𝐶𝐺𝑂𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑      (𝐄𝐐𝟒. 𝟏) 

These synthetic Peso signals are endearingly termed, “FrankEinstein’s Peso signals.” This Chapter 

will go into detail about the elements and methodology used to generate FrankEinstein’s Peso 

signals. The proposed enhancement scheme will be then be applied to FrankEinstein’s Peso 

signals, and the performance of the enhancement will be quantified through error measurements.  

4.2 Simulating Peso Signals 

 Benchmarking and objectively quantifying the performance of any biomedical signal 

enhancement technique ideally requires a “clean” version of the signal being enhanced. However, 

“clean” signals are oftentimes impossible to collect due to the inherent coupling of the human 

body’s physiological systems. In the context of this thesis, the relative anatomical positioning and 

physiological interactions between the respiratory and cardiovascular systems pose a challenge in 

monitoring solely the mechanics of the respiratory system. While it may be impossible to obtain a 

CGO-free Peso signal from a spontaneously breathing person, there are lung model simulators in 

the market that are able to realistically simulate human respiratory mechanics and provide 

respiratory signals that are seen in the clinic. The respiratory signals obtained from the simulator, 

which includes Peso signals, can then be used as reference or “clean” signals.  

4.2.1 Overview of Simulator 

The breathing simulator used in this work is the IngMar Medical ASL 5000 (Active Servo 

Lung) shown in Figure 4.1. The ASL 5000 is capable of not only simulating and reproducing 
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signals from passively breathing patients but is also able to simulate the respiratory mechanics of 

spontaneously breathing patients. 

Figure 4.1. The IngMar Medical ASL 5000 (Active Servo Lung). Source: [59] 

The simulation data obtained from the ASL 5000 is based on the movement of a piston 

within a cylinder that generates pressure. The piston’s movements depend on the respiratory model 

parameters that are defined on the computer as well as the equations of motion of respiration for 

either passively breathing or spontaneously breathing conditions (more details about the equations 

of motion can be found in [18], [31], and [59]). Figure 4.2 illustrates the functional overview of 

the ASL 5000 [59]. 

Figure 4.2. A functional overview of the ASL 5000. Source: Adapted from [59]. 
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4.2.2 Simulating the Peso Signal 

 As mentioned in the previous Chapter, there is a push in the critical care community to 

develop modes of ventilation that encourage patients to take on a greater proportion of the 

ventilatory effort. Thus, rather than simulating passively breathing patients, it was decided that the 

FrankEinstein Peso signals would be simulated as spontaneously breathing patients. However, to 

simulate Peso signals that mimic spontaneously breathing patients in the ICU, two models had to 

be defined in the ASL 5000 software: i) the lung model, and ii) the patient-effort model.  

Lung Model 

 For the purposes of generating FrankEinstein’s Peso signals, the single compartment model 

for the lungs was selected for simplicity. The single compartment model of the lung and its 

equivalent analog circuit are shown in Figure 4.3. From the analog circuit equivalent, it can be 

seen that the single compartment model consists of one resistor, which can have linear or parabolic 

properties, and one linear capacitor (i.e. compliance). The governing first-order differential 

equation shown in EQ4.2, which is based on the RC-circuit shown in Figure 4.3, can be used to 

represent ΔPtot, which is the total effective pressure driving the respiratory system [59]. The 

convention used to formulate EQ4.2 is such that inflation of the lungs is positive and deflation of 

the lungs is negative. 

Δ𝑃𝑡𝑜𝑡 = (𝑃𝐴𝑂 − 𝑃𝐵𝑆) + Δ𝑃𝑚𝑢𝑠 =
𝑉

𝐶
+ 𝑅𝑉̇      (𝐄𝐐𝟒. 𝟐) 
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The parameters in EQ4.2 are defined as follows: 

PAO is the pressure at the airway opening [cmH2O] 

PBS is the pressure at the surface of the body [cmH2O] 

ΔPmus is the internal pressure caused by the patient’s effort [cmH2O] 

V is the volume of the lungs [L] 

V̇ is the flow [L/s] 

C is the compliance of the lungs [mL/cmH2O] 

R is the resistance of the airway [cmH2O/(L/s)] 

 

 

 

Figure 4.3. The single compartment model of the lungs used in generating FrankEinstein’s Peso 

signals (left) and the equivalent analog circuit equivalent (right). The single compartment model 

consists of a one linear or parabolic resistor (R), and one linear compliance (C). Source: Adapted 

from [59]. 
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The single compartment model is dependent on three mechanical properties: i) the 

resistance of the airway (R) and ii) the compliance of the lungs (C), both of which can be modified 

by the user, and iii) the time-constant (τ), which is the product of R and C. According to [59], the 

single compartment system modelled by EQ4.2 assumes that both the right and left lungs act 

together as a single, pneumatic, visco-elastic compartment, which means that its mechanical 

properties are uniformly distributed across both lungs. Furthermore, EQ4.2 is a system with one 

degree-of-freedom, which is characterized by a single time-constant. In the clinical context, the 

single time-constant is representative of both lungs inflating and deflating in unison. 

The final component of the single compartment model is Pmus, which is shown as an 

independent source in the analog circuit equivalent. Pmus represents the internal pressure generated 

by the patient’s respiratory effort. It is important to note that the traces of Pmus are plotted as the 

negative of Pmus (i.e. -Pmus), which resembles the Peso signal [59]. Thus, Pmus is used as 

FrankEinstein’s Peso signal component. The distinction of Pmus being plotted as -Pmus is based on 

the convention used to formulate EQ4.2 in that a positive value indicates lung inflation (i.e. 

inspiration). However, recall that the Peso signal (represented by Pmus here) has a negative 

deflection during inspiration for spontaneously breathing patients according to Boyle’s Law as 

described back in Chapter 3. Because the Peso is an independent source and represented by the 

patient’s effort, it must be defined under the patient-effort model as a separate parameter to the 

ASL 5000. 

Patient-Effort Model 

 As mentioned previously, the Peso signals are defined in the patient-effort model 

parameters. The morphology and patterns of the signals are pre-defined in the ASL 5000 software. 
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Because the aim of FrankEinstein’s Peso signals is to simulate Peso signals that are reminiscent of 

the ones seen in spontaneously breathing ICU patients, the sinusoidal breath profile was selected.  

The sinusoidal breath profile is defined primarily by five parameters: 

1. Peak (negative) Pressure: the amplitude of the Peso swing (ΔP) (inspiration phase) 

2. Breath Frequency (breaths/min): the simulated breathing rate 

3. Time % of Pressure Drop: the percentage of one full breath cycle (100%) required to reach 

the peak negative pressure (inspiration phase) 

4. Time % of Hold: the percentage of one full breath cycle (100%) allocated to maintaining 

the peak negative pressure (inspiration phase) 

5. Time % of Release: the percentage of one full breath cycle (100%) required to return from 

the peak negative pressure back to zero (passive expiration) 

In addition to the five parameters, the sinusoidal breath model can also be used to simulate active 

expiration, which means that the person is recruiting their respiratory muscles to force more air 

out of their lungs. While active or forced expiration tests are often used to diagnose asthma or 

chronic obstructive pulmonary disease (COPD), in the context of this work, forced expiration can 

mimic poor patient-ventilation interaction in which the patient fights the ventilator [59]. The active 

expiration parameters include the: 1) peak (positive) pressure, 2) time % of increase, 3) time % of 

hold, and 4) time % of release. The eight parameters describing the sinusoidal breath model are 

visually illustrated in Figure 4.4. 
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Figure 4.4. An illustration of eight of the nine parameters used to define the Pmus/Peso trace (red) 

for the sinusoidal breath model for one full breath cycle. Not pictured in this figure is the breathing 

rate. Source: Adapted from [59]. 

 

 In the patient-effort model specifically used to create FrankEinstein’s Peso signals, the 

Peso signal comprised of only an inspiration phase and a passive expiration phase. The inspiration 

phase was split into 20% increase time and a 3% hold of the peak pressure, which was set to -10 

cmH2O. Thus, the inspiration phase accounted for 23% of the entire breath cycle. On the other 

hand, the expiration phase made up 77% of the breath cycle with 15% release time, which 

represents the return from peak pressure of inspiration to zero, and 62% hold for the remaining 

breath cycle.  An illustration of FrankEinstein’s breath profile is shown in Figure 4.5 and the 

parameters of the patient-effort model are summarized in Table 5. 
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TABLE 5: PATIENT-EFFORT MODEL PARAMETERS USING SINUSOIDAL BREATH PROFILE FOR 

FRANKEINSTEIN’S PESO. 

Inspiration 

Peak Pressure -10 cmH2O 

Increase 20% 

Hold 3% 

Passive Expiration 

Release 15% 

Hold 62% 

 

Figure 4.5. An illustration of the FrankEinstein’s Peso trace (red) using the sinusoidal breath 

model for one full breath cycle. Note that the illustration is not to scale. 

 

 

4.2.3 FrankEinstein’s “clean” Peso Signals 

Acquisition of Peso from ASL 5000 

With the lung and patient-effort models defined, the final step in generating the “clean” 

Peso was to run the models through the ASL 5000 and collect the simulated data. All data was 

sampled at 256 Hz. Eight Peso signals were simulated at different respiratory rates while 
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maintaining the values of peak pressure of ΔP at -10 cmH2O, the functional residual capacity 

(FRC) at 500 mL, the compliance of the lung at 20 mL/cmH2O, and the resistance of the airways 

at 10 cmH2O/mL. One peso signal was simulated at a respiratory rate of 15 breaths/min and 

varying the peak pressure of ΔP between -5 to -15 cmH2O. The other parameters were kept 

constant. The duration of each simulation was set to five minutes, but there were trials resulting in 

the ASL 5000 crashing after four minutes. Nevertheless, the data was kept. In total, nine “clean” 

Peso signals were created for FrankEinstein’s Peso signals. A summary of the nine Peso signals 

and their associated parameters are shown in Table 6. 

TABLE 6: PARAMETERS USED TO SIMULATE “CLEAN” PESO ON THE ASL 5000. 

Peso 

Signal # 

Respiratory 

Rate 

(breaths/min) 

Max ΔP 

(cmH2O) 

FRC 

(mL) 

Compliance 

(mL/cmH2O) 

Resistance 

(cmH2O/mL) 

Duration 

(mins) 

1 15 -10 500 20 10 5 

2 17 -10 500 20 10 5 

3 19 -10 500 20 10 5 

4 21 -10 500 20 10 5 

5 23 -10 500 20 10 4 

6 27 -10 500 20 10 5 

7 29 -10 500 20 10 5 

8 31 -10 500 20 10 5 

9 15 -5 to -15 500 20 10 4 

Sampling 

Frequency 

(Hz) 

256 

 

Two Peso signals are shown in Figure 4.6 and 4.7 to illustrate the Peso signals obtained from the 

ASL 5000. Figure 4.6 is a Peso signal corresponding to Peso Signal #1 from Table 6 with a 

respiratory rate of 15 breaths/min and a max ΔP of -10 cmH2O while keeping the other parameters 

constant. Figure 4.7 is representative of Peso Signal #9 from Table 6 with a respiratory rate of 15 

breaths/min and a max ΔP being varied between -5 to -15. The other parameters were also kept 

constant. 
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Figure 4.6. The “clean” Peso signal simulated from the ASL 5000. The max pressure amplitude 

of ΔP is -10 cmH2O. The blue arrows indicate a sharp inflection at the transition between i) the 

end of expiratory hold and the beginning of inspiratory increase, and ii) the end of expiration 

release and the beginning of expiration hold. 

Figure 4.7. The “clean” Peso signal simulated from the ASL 5000 to illustrate Peso Signal #9 

from Table 6. The max pressure amplitude of ΔP was varied between -5 to -15 cmH2O. 
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Processing of ASL 5000 Peso Signals 

 Although acquisition of the ASL 5000 Peso signals is an important step, processing of the 

data is necessary to obtain the final “clean” Peso use for FrankEinstein’s Peso signals. 

A noticeable characteristic of the Peso signals obtained from the ASL 5000 is the sharp 

inflection at the transition points between two phases: i) the end of expiratory hold and the 

beginning of inspiratory increase, and ii) the end of expiratory release and the beginning of 

expiratory hold. The sharp inflection points at the two transitions points are indicated by blue 

arrows in Figure 4.6. After consulting with the clinical collaborators, it was agreed that the sharp 

inflection points at those transitions are not characteristic of Peso signals from humans. In fact, the 

inflection points should have a gradual slope, and therefore a smoother Peso morphology is 

necessary. To smoothen the signal and remove the sharp inflection points, a 70-point moving 

average filter was applied to the ASL 5000 Peso signal.  

Another important aspect of the Peso signals was that they were acquired at 256 Hz. Recall 

that FrankEinstein’s Peso signals will consist of “clean” Peso signals from the simulator and CGO 

extracted from real patients. To ensure consistent sampling rates with CGO data collected from 

humans, which will we be discussed in Section 4.3, the Peso signals from the ASL 5000 must be 

resampled to 200 Hz. 

Finally, normalizing the Peso signal amplitude between -1 to 1 cmH2O allows us to 

standardize the scale of the Peso signal. Normalizing to a common scale will play an important 

role in later sections, because the amplitude of the extracted CGO interference varies from person 

to person. Through normalization, it will be possible to control the CGO interference, as well as 

obtain performance measurements of the proposed enhancement scheme to make direct 
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comparisons without the influence of different scales. The Peso signal was normalized according 

to EQ4.3. 

𝑃𝑒𝑠𝑜𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑃𝑒𝑠𝑜

max(𝑎𝑏𝑠(𝑃𝑒𝑠𝑜))
      (𝐄𝐐𝟒. 𝟑) 

 

Figure 4.8 shows the steps outlined in this section and their associated Peso traces. An example 

of the final “clean” Peso signal is shown at the normalization step. 
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Figure 4.8. The workflow used to generate the final “clean” Peso for FrankEinstein’s Peso signal. 
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4.3 Extracting CGO Interference 

In Section 4.2, the process used to obtain FrankEinstein’s “clean” Peso signal was 

described, which plays an important role as the reference signal used for benchmarking and 

quantifying the performance of the proposed enhancement scheme. The counterpart to the 

reference signal is the interference source, which ideally, should be controllable. The purpose of 

controlling the interference source, which in this case is the CGOs, is to test the operating limits 

of the proposed enhancement scheme. The aim of this section is to describe how the CGO 

interference was derived from patients in the ICU. 

4.3.1 Dataset 

The dataset used in this section is an expansion of Dataset #2 described in Chapter 3. This 

dataset now contains 25 different patients under three different breathing conditions: i) passive 

breathing, ii) spontaneous breathing with PSV, and iii) breathing with a t-piece. Thus, the dataset 

contains 75 signals in total.  

Recall that passive breathing suppressed the patients’ respiratory drive by inducing muscle 

paralysis to their respiratory muscles, while spontaneous breathing with PSV is a form of active 

breathing, which gives patients an opportunity to take on more of the ventilatory. The third 

condition occurs when the patients were breathing using a t-piece and is considered another subset 

of active breathing. When breathing using a t-piece, patients were provided an external oxygen 

supply but were temporarily disconnected from the mechanical ventilator. Like in spontaneous 

breathing with PSV, breathing with a t-piece also encourages patients to take on a greater 

proportion of the ventilatory effort. The active breathing conditions described in this section are 

commonly methods of weaning patients off mechanical ventilation in the ICU. This dataset 
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contains five types of data: i) Airway Pressure [cmH2O], ii) Esophageal Pressure [cmH2O], iii) 

Gastric Pressure [cmH2O], iv) Flow [L/s], and v) Transpulmonary Pressure [cmH2O]. The signals 

were sampled at 200 Hz, and the duration of the signals range between 50.92 seconds to 644.86 

seconds. The collection of this data was approved by St. Michael’s Hospital’s Research Ethics 

Board under REB# 15-369. A summary of the data used in this section is shown in Table 7. 

 

TABLE 7: SUMMARY OF THE DATASET USED FOR EXTRACTING CGOS FOR FRANKEINSTEIN’S PESO 

SIGNAL. 

Dataset 

# 

REB 

# 

No. of 

Patients 

Condition of 

Patients 
Types of Data 

Sampling 

Frequency 

(Hz) 

Duration 

of 

Signals 

(sec) 

Total 

No. of 

Signals 

3 
15-

369 
25 

1. Passive 

2. Spontaneous 

with PSV 

3. Breathing 

with t-piece 

 

1. Airway Pressure 

2. Esophageal 

Pressure 

3. Gastric Pressure 

4. Flow 

5. Transpulmonary 

Pressure 

200 
50.92 - 

644.86 
75 

 

4.3.2. Setup for CGO Extraction 

 In Chapter 3, it was shown that while the proposed enhancement scheme is capable of 

suppressing CGO, it is also able to extract CGO. Based on those experiments, the EEMD algorithm 

was applied to Peso signals from patients in Dataset #3 to generate the IMFs and reconstruct a 

CGO signal. The number of ensemble trials used in the decomposition was fixed at 100 and an 

amplitude of white noise computed using EQ4.4 was added into each trial. 

𝑛 = 0.2 × 𝑠𝑡𝑑(𝑃𝑒𝑠𝑜)      (𝐄𝐐𝟒. 𝟒) 

Based on face validation with collaborating clinicians, the IMFs relevant to the CGO process were 

manually selected and summed together to reconstruct the CGO interference.  
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Finally, the extracted CGO was normalized between -1 and 1 according to EQ4.5: 

𝐶𝐺𝑂𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐶𝐺𝑂

max(𝑎𝑏𝑠(𝐶𝐺𝑂))
      (𝐄𝐐𝟒. 𝟓) 

As mentioned in Section 4.2, normalizing the amplitude values of CGO between -1 and 1 is 

important when making direct comparisons especially since the CGO is extracted from different 

patients. Using normalized CGOs also ensures that the interference in the FrankEinstein “noisy” 

Peso signals can be controlled, which is ultimately useful in obtaining the operating limits of the 

proposed enhancement scheme. The workflow used to extract the CGO interference is shown in 

Figure 4.9. 

From the 75 signals in Dataset #3, 20 were randomly selected and decomposed using 

EEMD. After applying the workflow shown in Figure 4.9, 20 CGOs were extracted in total to act 

as controllable interferences for FrankEinstein’s “noisy” Peso signals. It was found that the heart 

rate of the 20 CGOs range between 54 bpm to 144 bpm. 

Figure 4.9. The workflow used to extract the CGO interference from 20 randomly selected patients 

in Dataset #3. 

 

4.3.3 Extracting the CGO Signals 

 The first step in CGO extraction is the application of EEMD to one of the 20 Peso signals 

from Dataset #3 to obtain the IMFs. The IMFs for one of the Peso signals captured during passive 

breathing is shown in Figure 4.10. For the purposes of clarity, note that only the first eight IMFs 

out of 16 for this specific signal were shown and visualized. The rationale behind this decision 
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was that the CGO would only appear in the first couple of IMFs. Additionally, the EEMD 

algorithm was applied to the entire duration of the ~368 second signal. However, only the first 30 

seconds are shown in Figure 4.10 in order to clearly visualize the traces in each of the IMFs.   

Figure 4.10. The first eight IMFs of a passively breathing patient’s Peso. The IMFs related to 

CGO are indicated by a red box.  
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The second and third step of the workflow is to select the relevant modes and reconstruct 

the CGO signal. From Figure 4.10, IMFs 4 and 5 were selected and deemed to best represent the 

CGO signal. The time-domain and frequency-domain representations of the raw Peso signal and 

the reconstructed CGO are shown in Figure 4.11. From the time-domain representation, the 

morphology of the reconstructed CGO (shown in red) appears to look very similar to the CGO 

present in the raw Peso (shown in black) observed at end-expiratory pressure (i.e. the plateau 

occurring at the end of expiration). The magnitude spectrum also shows that the reconstruction has 

been able to retain the majority of the CGO’s fundamental frequency relative to the raw Peso’s 

magnitude spectrum, as well as the CGO’s harmonics. Although some of the fundamental 

frequency of the CGO was lost in the reconstruction, the task of selecting the IMF combination 

was a balance between reconstructing a “clean” CGO morphology and maintaining as much CGO 

frequency components. Other IMF combinations were tested as well; some combinations were 

able to retain all the CGO frequency content but at the expense of including more high-frequency 

noise in the time-domain representation. Alternatively, choosing IMFs to reconstruct a much 

“cleaner” CGO would result in not only a loss of significant frequency content, but may even lead 

to a loss of morphological characteristics or important “landmarks” such as the notches.  

The final step in extracting FrankEinstein’s CGO signal is to normalize the amplitude of 

the reconstructed CGOs between -1 and 1 cmH2O. The CGO trace used as an example in this 

section, which has also been used to construct one of FrankEinstein’s “noisy” Peso signal, is shown 

in Figure 4.12.  
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Figure 4.11. The time-domain representation of the Raw Peso (black) and the reconstructed CGO 

using IMFs 4 to 5 (red) is shown on the right. 

 

Figure 4.12. The normalized CGO that was extracted from a passively breathing patient.  
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4.4 “Reanimating” FrankEinstein’s “Noisy” Peso Signal 

 In Sections 4.2 and 4.3, the methodologies used to generate the Peso and extract the CGO 

signals were described. To create FrankEinstein’s “noisy” Peso signal, the two components are 

added together according to EQ4.1. However, as discussed throughout this Chapter, both the Peso 

and CGO amplitudes were normalized between -1 and 1 to ensure that direct comparisons can be 

made without the influence of varying scales. The normalization of the CGO amplitude plays an 

important role in finding the operating limits of the proposed Peso enhancement scheme; by 

normalizing the CGO signal, it is possible to control the level of interference in a given 

FrankEinstein Peso signal by applying a scaling factor to the CGO. A visual representation of the 

process used to create FrankEinstein’s Peso signal is shown in the block diagram of Figure 4.13. 

  

  

 

Figure 4.13. The process of creating FrankEinstein’s “noisy” Peso signal. 
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To simulate different levels of CGO interference, 10 scaling factors were applied to each 

of the 20 extracted CGOs. The 10 scaling factors range between 0.1 cmH2O to 1 cmH2O with 

increments of 0.1 cmH2O. The 10 Peso signals shown in Figure 4.14 is an example of one 

FrankEinstein “noisy” Peso signal with the 10 different levels of CGO interference. 

In generating FrankEinstein’s “noisy” Peso signal, each of the 20 CGO signals were scaled 

10 different times as described previously, which resulted in 200 CGO signals. The 200 CGO 

signals were then superimposed onto each of the nine simulated Peso signals obtained in Section 

4.2. Through this process, a total of 1800 “noisy” Peso signals were created for FrankEinstein’s 

Peso dataset. Table 8 summarizes the properties of FrankEinstein’s “Noisy” Peso dataset.  

 

TABLE 8: A SUMMARY OF FRANKEINSTEIN’S “NOISY” PESO SIGNALS DATASET. 

 

Peso Signal # 

Respiratory 

Rate 

(breaths/min) 

Max ΔP 

(cmH2O) 

 

Total No. 

of CGO 

Signals 

Heart 

Rate 

(bpm) 

No. of 

Scale 

Factors 

Total 

No. of 

scaled 

CGO 

Signals 

1 15 -10 

20 
54 - 

144 
10 200 

2 17 -10 

3 19 -10 

4 21 -10 

5 23 -10 

6 27 -10 

7 29 -10 

8 31 -10 

9 15 -5 to -15 

Total No. of 

“Noisy” 

Signals 

1800 

Sampling 

Frequency 

(Hz) 

200 
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Figure 4.14. A set of FrankEinstein Peso signals using one CGO that was scaled 10 different times.  
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4.5 Applying the Proposed Enhancement Scheme to FrankEinstein’s “Noisy” 

Peso Signal 

 Over the course of this Chapter, the focus has been on the methods used to create 

FrankEinstein’s “Noisy” Peso signal. As mentioned back in Section 4.1, the motivation behind 

creating the FrankEinstein Peso signals was to overcome the challenges associated with subjective 

assessments of the proposed enhancement scheme’s performance. Because the base Peso signals 

were synthetically generated using the ASL 5000, a reference signal is available for the purposes 

of objectively quantifying the enhancement performance. Moreover, the amplitude of the CGO 

signals that comprise FrankEinstein’s “noisy” Peso can be adjusted using a scale factor. By scaling 

the CGO amplitude, the level of interference present in the Peso signal can be controlled, and the 

upper operating limit of the proposed enhancement scheme can be determined with respect to the 

signal-to-interference ratio (SIR). Thus, the aim of this section is to apply the proposed 

enhancement scheme to the FrankEinstein Peso dataset, and quantify its performance using a 

popular distortion measure known as percentage root mean square difference (PRD).      

4.5.1 Dataset 

 The dataset used in this section is FrankEinstein’s “noisy” Peso signals. FrankEinstein’s 

Peso signals were created to mimic spontaneously/actively breathing patients with varying levels 

of CGO interference. Nine “clean” Peso signals were simulated on the ASL 5000 and used as the 

basis for FrankEinstein’s Peso. The properties of the Peso signals were previously described in 

Section 4.2 and are summarized in Table 6. In addition to the Peso, 20 different CGO signals were 

extracted from real ICU patients. Each of the 20 CGOs were scaled using 10 factors and 

superimposed onto the Peso signals. The scaling factors range between 0.1 to 1 with 0.1 
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increments. The heart rate from the 20 randomly selected CGOs range between 54 bpm to 144 

bpm. 

In total, 1800 “noisy” Peso signals were created for FrankEinstein’s Peso dataset. The 

signals have a sampling frequency of 200 Hz and range between 55 to ~589 seconds in duration. 

To make direct performance comparisons, the data can be divided according to the 10 scaling 

factors. For each of the 10 factors, there are 180 different “noisy” Peso signals. A summary of the 

components comprising FrankEinstein’s dataset is shown in Table 9. 

TABLE 9: A SUMMARY OF FRANKEINSTEIN’S DATASET. 

 

4.5.2 Experimental Setup 

 The proposed enhancement scheme using the EEMD algorithm will be applied to 

FrankEinstein’s Peso dataset using the same parameters established in Chapter 3. The number of 

ensemble trials is fixed at 100, and the amplitude of white noise is calculated according to EQ4.6: 

𝑛 = 0.2 × 𝑠𝑡𝑑(𝑃𝑒𝑠𝑜𝐹𝑟𝑎𝑛𝑘−𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛,𝑛𝑜𝑖𝑠𝑦)      (𝐄𝐐𝟒. 𝟔) 

Dataset 

# 

Simulated 

Condition 
Types of Data 

Total No. of 

Signals 

Sampling 

Frequency 

(Hz) 

Duration 

of 

Signals 

(sec) 

4 
Spontaneous/Active 

Breathing 

FrankEinstein’s 

“Noisy” Peso 
1800 

200 55 – 

589.24 

 

No. of 

CGO 
20 

No. of ASL 500 

“Clean” Peso 

9 

No. of 

CGO 

Scale 

Factors 

10 

(0.1 to 1 with an increment of 0.1) 

No. of 

FrankEinstein 

Peso per Scale 

Factor 

180 
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IMF Selection 

 Although the proposed enhancement scheme was successfully used in Chapter 3 to 

suppress CGO from the Peso signal, one of the major limitations associated with the technique is 

the manual selection of relevant IMFs. In the previous Chapter, the size of the datasets was quite 

small (2 signals for passive breathing and 6 signals for spontaneous breathing), which would allow 

for the clinical collaborators to visually inspect and select the IMFs. However, manual IMF 

selection by domain experts does not scale up well; it is not feasible to have experts perform IMF 

selection on significantly larger datasets such as FrankEinstein’s Peso dataset, which contains 1800 

different “noisy” Peso signals. To overcome the limitations imposed by manual selection, an 

automatic IMF selection threshold criterion of 0.75 Hz was defined. The rationale behind the IMF 

selection threshold will be described later in this section. The IMF selection and reconstruction 

process to suppress CGO for a Peso signal with M number of IMFs using the proposed threshold 

criterion is implemented as follows: 

1. Beginning with N = 1, generate the magnitude spectrum for IMF N using the FT. 

2. Find the maximum peak and its corresponding frequency bin, 𝑓. 

3. If 𝑓 ≥ 0.75 Hz, the IMF is representative of either high-frequency noise or CGO. Go to 

the next IMF (i.e. N = N + 1) and iterate through steps 1 to 3. 

4. If 𝑓 < 0.75 Hz, select IMF N as the starting IMF and go to step 5. 

5. Reconstruct the “clean” Peso according to EQ4.7: 

𝑃𝑒𝑠𝑜𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = ∑ 𝐼𝑀𝐹𝑖      (𝐄𝐐𝟒. 𝟕)

𝑀

𝑖=𝑁
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 The IMF selection threshold criterion was inspired by the physiological characteristics 

derived from reported bandwidths of the heart rate. To select the threshold, a frequency value that 

best separates the CGO/heart rate and Peso spectra for ICU patients was determined. According to 

[42], the bandwidth of the heart rate/CGO is 0.8 to 2.5 Hz. Alternatively, the American Heart 

Association has suggested that the normal adult resting heart rate ranges between 60 bpm to 100 

bpm, and can even go as low as 40 bpm for highly active individuals [60]. The aforementioned 

resting heart rates correspond to a bandwidth of 1 Hz to 1.67 Hz for a normal resting heart rate, 

and 0.67 Hz as the lowest possible heart rate. However, it was noted that a resting heart rate of 40 

bpm was uncommon. In the clinical context, bradycardia, which is defined as an abnormally slow 

heart beat, can be characterized by either a heart rate less than 50 bpm (<0.83 Hz) [61] or less than 

60 bpm (<1 Hz). Based on the information available about heart rates under different conditions 

as well as the fact that the lower bound of the CGO has been reported as 0.8 Hz, the following 

threshold rule was defined: any activity greater than 0.75 Hz is deemed to represent CGO or high-

frequency activity.  

Performance Measurements 

Signal-to-Interference Ratio (SIR) 

 The SIR describes the level of interference present in the signal as a ratio of the amplitude 

of the signal, which in this case is the amplitude of the FrankEinstein “noisy” Peso, to the 

amplitude of the interference, which is the CGO. Because the CGO component of the 

FrankEinstein signals are controlled using 10 different scaling factors, it is possible to adjust the 

SIR levels. Calculating the SIR and expressing it in the decibel scale is accomplished using EQ4.8.   

𝑆𝐼𝑅𝑑𝐵 = 10𝑙𝑜𝑔10 (
𝐴𝑃𝑒𝑠𝑜,𝐹𝑟𝑎𝑛𝑘−𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛

𝐴𝐶𝐺𝑂
)

2

      (𝐄𝐐𝟒. 𝟖) 



103 
 

Percentage Root Mean Square Difference (PRD) 

 The PRD is a distortion measure that is widely used to quantify the amount of information 

lost as a percentage during ECG compression and reconstruction. In the context of this work, the 

proposed enhancement scheme reconstructs a “clean” version of the Peso signal by removing CGO 

information. While suppressing the information of CGOs is the aim of this research, one of the 

main concerns raised in Chapter 3 was the possibility of losing information from the actual Peso 

signal. In order to test the enhancement performance of the proposed CGO suppression technique 

as well as quantify how much information is lost from the Peso during reconstruction, the PRD 

measure is used. Since PRD value ranges have been associated with qualitative measures for ECG 

reconstructions based on Face Validity as shown in [62], we believe that its use is appropriate in 

the context of this work due to our extensive use of Face Validity. However, it is important to note 

that the same qualitative measures and the associated PRD ranges in [62] may not apply in this 

work since the signals and sources of interference are different. The definition of the PRD 

expressed as a percentage is shown in EQ4.9. The base Peso (i.e. “clean” or reference) signal, 

which was obtained from the ASL 5000 is denoted as 𝑃𝑒𝑠𝑜𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑, while the Peso signal that 

was enhanced using the proposed CGO-suppression technique is represented by 𝑃𝑒𝑠𝑜𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑.  

 

𝑃𝑅𝐷 = √
∑ (𝑃𝑒𝑠𝑜𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑛) − 𝑃𝑒𝑠𝑜𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑(𝑛))2𝑁

𝑛=1

∑ (𝑃𝑒𝑠𝑜𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑛))2𝑁
𝑛=1

× 100%       (𝐄𝐐𝟒. 𝟗) 
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Testing the Performance of the Proposed Enhancement Scheme 

 The proposed Peso enhancement scheme using the 0.75 Hz threshold criterion will be 

applied to all 1800 of FrankEinstein’s “noisy” Peso signals for IMF selection. For each of the 1800 

“noisy” signals, the SIR will be determined and a corresponding PRD value for the signal 

reconstruction will be calculated. Insights into the performance of the CGO suppression technique 

will be visualized in two ways. The first will be a scatter plot of the PRD as a percentage with 

respect to SIR in decibels. The second will divide the FrankEinstein Peso signals according to the 

10 interference amplitude scale factors. A boxplot of the PRD with respect to the 10 interference 

amplitudes will be created. 

4.5.3 Results and Discussions 

Effects of SIR on CGO Suppression and PRD using the Proposed Enhancement Scheme 

 In this work, the SIR describes the level of CGO interference present in a “noisy” Peso 

signal. Because the SIR is defined as the ratio of the signals power to the power of the interference, 

a “noisy” FrankEinstein Peso signal with high SIR contains more signal than noise. In other words, 

the “quality” of the signal manifests itself as a “cleaner” signal in terms of morphological 

characteristics. Conversely, a Peso with lower SIR means that more noise is present, and therefore 

visually looks like a “lower quality” signal. To draw the connection between SIR and the quality 

of the Peso signal’s morphology, Figure 4.15 visually illustrates a FrankEinstein “noisy” Peso 

with an SIR of 22.8671 dB (CGO scale factor of 0.1) and a Peso with an SIR of 2.8671 dB (CGO 

scale factor of 1). 

The PRD measures the error between the reference signal (i.e. the “clean” Peso) and the 

reconstructed signal, which was derived by suppressing the CGO from the “noisy” Peso using the 
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proposed enhancement scheme. The value of PRD increases when the difference between the 

reference Peso and the reconstructed Peso is large. The ideal case is to have a PRD of 0%, which 

would mean that all the CGO information has been removed and the morphology of the Peso trace 

has been completely preserved. Thus, if the PRD for a reconstructed Peso is found to be high, the 

morphology of the reconstructed Peso is significantly different, which would suggest that the 

proposed enhancement scheme would be unable to sufficiently remove the CGO.    

Figure 4.15. An example of “noisy” FrankEinstein Peso signals with different SIR levels. On the 

left is a Peso with SIR of 22.8671 dB and the Peso on the right has an SIR of 2.8671 db. The CGO 

interference is common between both signals albeit with different scaling factors. The CGO for 

the left Peso has a scale factor of 0.1 and the CGO for the right Peso has a scale factor of 1. 

 

 To visually illustrate the effects of SIR on CGO suppression and Peso reconstruction, the 

two signals shown in Figure 4.15 were passed through the proposed enhancement scheme. For 

both signals, the reference Peso from the ASL 5000, the FrankEinstein “noisy” Peso, and the 

reconstruct Peso are shown in Figure 4.16. In Figure 4.16 (A), the FrankEinstein Peso had a CGO 

amplitude of 0.1 cmH2O, which resulted in an SIR of 22.8617 dB. After passing the “noisy” Peso 

through the enhancement scheme, the reconstructed Peso has a PRD of 4.6% and is visually shown 

to have suppressed some of the CGO fluctuations. The FrankEinstein Peso shown in Figure 4.16 

(B) has an SIR of 2.8617 dB as a result of a significantly larger CGO amplitude of 1 cmH2O. The 
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reconstructed Peso has a PRD of 11.2%, which is a relatively high distortion measure. However, 

from visual inspection, the reconstruction is relatively good and may be useful for clinicians. While 

the reconstruction for a CGO amplitude of 1 cmH2O is shown to be usable for Figure 4.16 (B)’s 

FrankEinstein Peso, that is not always the case as demonstrated by the reconstruction in Figure 

4.17. The FrankEinstein Peso of Figure 4.17 also uses the 1 cmH2O scaling factor but is 

constructed using a different CGO signal. The SIR of this Peso is 2.01 dB and the PRD of the 

reconstruction is 53.2%, which indicates that a significant amount of distortions is present. 

Furthermore, a visual inspection of the reconstruction confirms that the reconstructed Peso has not 

been able to preserve the morphology of the reference Peso.  
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Figure 4.16. Three signals are shown in each plot: i) the reference Peso in black, which was 

obtained from the ASL 5000, ii) the FrankEinstein “noisy” Peso shown is in green, and iii) the 

reconstructed Peso resulting from the proposed enhancement scheme is in red. (A) The SIR of the 

FrankEinstein Peso is 22.8617 dB. The reconstructed Peso has a PRD of 4.3%. (B)  The SIR is 

2.8617 dB, and the reconstructed Peso’s PRD is 11.2%.   
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Figure 4.17. The reference Peso (black), the FrankEinstein “noisy” Peso using a CGO scaling 

factor of 1 cmH2O (green), and the reconstructed Peso (red). It is evident that the reconstructed 

Peso is unable to preserve the reference Peso’s morphology.  

 

The examples in this section show that at high SIRs, the quality of the reconstruction is 

visually very good, which is supported by a low PRD distortion measure. On the other hand, the 

reconstruction quality of Peso signals with low SIRs can be variable; some reconstructions appear 

to do well in suppressing CGO and preserving the Peso morphology while other reconstructions 

fail to do either. Nevertheless, it can be seen from Figure 4.16 that there is an increase in PRD 

values as the SIR goes up, which suggests that there is a relationship between the levels of CGO 

interference and the quality of the reconstruction. 

In addition to the potential relationship between SIR and PRD, the examples in this section 

also show that the CGO interference can affect the amplitude and the swing of the actual Peso 

signal. The signals shown in Figure 4.16 specifically illustrate the aforementioned observation; 

4.16(B) shows that the peak negative pressure can be significantly modified by the CGO while an 
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amplitude change can be observed in 4.16(A) albeit to a lesser degree. The modification of the 

Peso swing by CGO was introduced in Section 4.1 as one of the key challenges when developing 

signal enhancement tools for Peso signals. Based on these results, clinicians must consider that the 

morphology of the ΔP swing has been modified. These considerations should be incorporated into 

their visual assessments when tasked with face validation of reconstructed Peso signals from real 

humans. 

Relationship between SIR and PRD 

To determine the relationship between SIR and PRD for the FrankEinstein’s “noisy” Peso 

signals, a scatterplot of the PRD with respect to its associated SIR was created and is shown in 

Figure 4.18. Using linear regression, a first-order polynomial was fit to the data. The regression 

line and the model coefficients are shown in red in Figure 4.18. Based on visual inspection of the 

data, it is evident that there is a negative relation between the independent variable, SIR, and the 

dependent variable, PRD. The negative relation is further confirmed by the negative slope of the 

linear regression model. The data suggests that FrankEinstein Peso signals with low SIR have 

significantly more error after reconstruction compared to Peso signals with high SIR. 

In order to put the abovementioned observation into context, it is first important to 

understand the meaning behind SIR. A high SIR signifies that the signal’s power is higher than 

the power of the interference. As a result, it is easier to detect the true signal. As the SIR level 

decreases, the power of the noise increases. Thus, the ability to detect the true signal becomes more 

difficult. In the research presented in this thesis, the aim of the proposed enhancement scheme is 

to preserve the Peso information by selecting the relevant IMFs while removing the information 

from the CGO interference. Keeping in line with the definition of SIR and its implications on 

signal detection, FrankEinstein signals with high SIR result in poor reconstructions because the 
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ability to detect the actual Peso in the IMFs is hindered by the higher power levels of the CGO 

interference. Alternatively, the proposed enhancement scheme can detect the true Peso signal with 

ease at higher SIR levels, which lead to better CGO suppression and enhanced Peso reconstruction, 

thereby resulting in lower PRD values.  

 

Figure 4.18. A scatterplot of PRD (%) with respect to SIR (dB) for all 1800 “noisy” FrankEinstein 

Peso signals. A first-order polynomial model was fit to the data and is plotted in red. A region 

containing a low density of datapoints above PRD = ~40% is outlined in a green circle. The 

datapoints represent significant outliers, most of which are associated with one specific CGO. 

 

 

Low-Density Region in PRD vs. SIR 

Another notable observation of the datapoints shown in Figure 4.18 is the low-density 

region above PRD = ~40%, which is highlighted by a green circle. The datapoints within this 

region are considered outliers in the data. Upon further inspection of the datapoints in the 

abovementioned region, it was found that the majority of these points were associated with one 
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specific CGO. It was found that the heart rate for the specific CGO was estimated to be around 54 

bpm, which also happens to be the lower bound for heart rate in the 20 CGOs that were extracted. 

Two possible factors may help to explain the poor reconstruction performance for these 

Peso signals. First, the SIR associated with these datapoints are quite low (generally less than 5 

dB). As previously mentioned, a low SIR means that significantly more CGO interference is 

present in the signal, which makes detecting the true Peso signal more difficult. The second factor 

is related to the estimated heart rate of the CGO itself. Because the CGO is relatively low, there is 

a possibility that the frequency spectrums of CGO and Peso overlap. In situations such as this one, 

it is impossible to truly separate the processes, because their frequency components are embedded 

within the same IMFs.  

Operating Limits of the Proposed Enhancement Scheme 

Another approach to quantifying the performance of the proposed enhancement scheme is 

by categorizing the PRD values according to which of the 10 scale factors was used in constructing 

the FrankEinstein Peso. By separating the PRD values according to the scale factor of the 

interference amplitude, it is possible to not only gain insights into how the technique performs at 

various interference levels, but also helps in determining the upper operating limits of the 

technique. To visualize the PRD measures with respect to their normalized interference amplitude, 

a box plot generated and shown in Figure 4.19. Each category (i.e. the 10 scale factors) contains 

180 PRD values, which were derived from suppressing the CGO from 180 different FrankEinstein 

“noisy” Peso signals. Table 10 summarizes descriptive statistic measures of the PRD for each of 

the scale factors. Measures of central tendency include the mean and median, while the measures 

of variability are standard deviation, minimum, maximum, range, and skewness. 
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From a holistic perspective, the mean and median of the PRD distributions for each of the 

scale factors shown in Figure 4.19 increases as the interference amplitude increases. In other 

words, as the interference scale factor increases, the quality of the Peso reconstruction after CGO 

suppression becomes increasingly distorted. This observation is consistent with the relationship 

shown in Figure 4.18 in which the PRD of the reconstructed Peso increases as the SIR decreases 

due to the inclusion of more interference power in the signal.  

Looking more closely at the individual categories, the PRD distribution using an amplitude 

scaling factor of 0.1 cmH2O is characterized by a mean of 5.4%, a standard deviation of 1.7%, and 

a range of 9.5%. The minimum and maximum PRD are 1.7% and 11.2%, respectively. 

Additionally, the boxplot indicates that the distribution lies completely below a PRD of 10% with 

the exception of four outliers. In terms of performance and reliability, the proposed enhancement 

scheme performs quite well due to a low standard deviation. A low standard deviation indicates 

that there is low variability of the reconstruction quality; the amount of information lost during 

CGO suppression and Peso reconstruction is consistently within a small range below 10%. 

However, the performance of the reconstruction appears to degrade as the scaling factor increases; 

at an interference level of 0.2 cmH2O, the reconstruction performance mean is 8.7% ± 3.2%; when 

the interference level is set to 0.5 cmH2O, the mean PRD is 14.6% ± 6.9%; and at an interference 

level of 1 cmH2O, the performance is characterized by a mean PRD of 21.6% ± 10.5%. 

To put the PRD values mentioned above and their relation to the performance of the 

proposed enhancement scheme into context, it is best to observe the statistical trends of the PRD 

at different interference levels. The PRD distributions for all categories are positively skewed, 

which indicates that the majority of the reconstructions tend to be within the lower range of the 

PRD distortion measure. However, as mentioned previously, the measures of central tendency 
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increase as the interference scale factor increases, which manifests as more distortions in the Peso 

reconstructions as the amplitude of CGO gets larger. In addition to the increases observed in the 

measures of central tendency, the measures of variability also go up as the CGO gets larger. As an 

example of large variability in the PRD distribution, the boxplot for normalized interference 

amplitude of 1 cmH2O shown in Figure 4.19 is used. The variability of the PRD distribution, 

which is numerically represented by a standard deviation of 10.5%, a range of 48.1%, and visually 

represented by a large interquartile range, is indicative of inconsistent reconstruction performance 

as shown by the wide range of PRD values. This is a direct contrast to the variability of the PRD 

distribution for a normalized interference amplitude of 0.1 cmH2O in which the spread of the PRD 

values is close to the mean. The trends observed in the statistical measures can be attributed once 

again to the relationship described in the previous section; an increase in the interference amplitude 

makes it more difficult to detect the true Peso signal, which results in more distortions in the 

reconstruction. 
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Figure 4.19. A boxplot showcasing the distribution of PRD (%) for each of the 10 CGO scale 

factors. 

 

 

 

TABLE 10: DESCRIPTIVE STATISTIC MEASURES OF PRD FOR EACH OF THE NORMALIZED CGO 

AMPLITUDE SCALE FACTORS. 

Normalized 

CGO 

Amplitude 

(cmH2O) 

Mean 

PRD 

(%) 

Median 

PRD 

(%) 

Standard 

Deviation 

of PRD 

(%) 

Min 

PRD 

(%) 

Max 

PRD 

(%) 

Range 

(%) 
Skewness 

0.1 5.398 5.351 1.705 1.706 11.164 9.458 0.632 

0.2 8.653 8.123 3.240 2.456 22.068 19.612 1.174 

0.3 10.851 9.820 4.392 3.237 23.731 20.493 0.973 

0.4 12.922 11.395 5.960 3.924 31.832 27.908 1.236 

0.5 14.553 12.313 6.992 4.659 39.629 34.970 1.375 

0.6 16.237 13.263 7.974 5.580 47.552 41.972 1.352 

0.7 17.697 14.344 8.868 6.415 55.478 49.063 1.520 

0.8 18.993 15.508 8.951 7.261 45.665 38.404 0.970 

0.9 20.204 16.490 9.646 7.951 50.952 43.001 1.040 

1.0 21.634 17.640 10.465 7.880 55.977 48.097 1.068 
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To determine the upper operating limit of the proposed enhancement scheme, recall that in 

Chapter 3 the collaborating clinicians provided a tolerance of 10% loss in Peso information. For 

an interference scaling factor of 1 cmH2O, the measures of central tendency and variability of the 

PRD distributions was consistently below 10%. These results suggest that the proposed 

enhancement scheme can be used when the CGO amplitude is ~10% of the amplitude of the Peso 

swing, ΔP. For an interference scaling factor of 0.2 cmH2O, the mean PRD was found to be 8.7% 

± 3.2%. Additionally, the third quartile, as seen from Figure 4.19, was found to be a PRD of 

10.2%, which means that 75% of the 180 (i.e. 135) “noisy” Peso signals with a CGO amplitude of 

0.2 cmH2O had a PRD less than or equal to 10.2%. The measures of central tendency for the 

interference scaling factor of 0.3 cmH2O appear at the borderline of the clinical threshold with a 

mean of 10.9% ± 4.4%. The median PRD is 9.8%, which indicates that 50% of the reconstruction 

PRDs were within the permitted threshold. These statistical measures suggest that the proposed 

enhancement scheme may be used to suppress CGO interference that is ~20% the amplitude of ΔP 

reliably and until ~30% the amplitude of ΔP, but with the caveat that there is a possibility of 

surpassing the 10% information loss threshold. Based on the 10% threshold for Peso information 

loss imposed by clinicians, the remaining interference amplitude categories cannot suppress CGO 

without losing significant Peso information.  

4.6 Chapter Summary 

 This Chapter focused on two main ideas: the creation of FrankEinstein’s “noisy” Peso 

signals, and applying the proposed enhancement scheme to the FrankEinstein data. Generating our 

own synthetic data was in response to the fact that no objective and quantifiable ways of 

benchmarking the CGO suppression performance was available for real patients. Although face 

validation from clinical experts was used to gain insights into the performance of the proposed 
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enhancement scheme, their opinions were based on subjective visual assessments of the 

reconstructed Peso signals. While face validation may be considered the “gold standard,” personal 

biases such as the clinicians’ tolerance for filtering as well as the lack of a reference/true Peso 

signal, contribute to compromising the fidelity of performance validation.  

 Sections 4.2 and 4.3 were devoted to describing the characteristics and the methods used 

to obtain the two components of the FrankEinstein Peso. The Peso used as the base/reference for 

FrankEinstein’s Peso signal was shown in Section 4.2. The ASL 5000 breathing simulator was 

used to simulate nine spontaneously breathing patients with the assumptions that the lungs are 

modelled as a single compartment, and that the patient has a sinusoidal breathing pattern. The 

morphology of the raw ASL 5000 Peso signals were found to have unnaturally sharp/sudden 

transitions between the inspiration and expiration phases, which are not characteristic of human 

breathing. Thus, a 70-pt moving average filter was applied to the raw ASL 5000 signals to mimic 

a real human Peso morphology. The second component of FrankEinstein’s Peso, which was 

described in Section 4.3, was the CGO. The CGOs were extracted using EEMD from 20 randomly 

selected Peso signals from a database of 75 Peso signals captured in the ICU. In both sections, the 

final waveforms were normalized to have amplitudes between -1 to 1 cmH2O. 

In Section 4.4, the base Peso signals and the CGOs were superimposed onto each other to 

generate the FrankEinstein “noisy” Peso signal database. Each of the 20 CGO signals were scaled 

10 different times with scaling factors ranging between 0.1 cmH2O to 1 cmH2O in 0.1 cmH2O 

increments. Thus, it was possible to superimpose 200 different CGOs on the nine base Peso 

signals, which resulted in a database size of 1800 “noisy” Peso signals. For each of the 10 scaling 

factors, there were 180 unique Peso signals with different CGOs. By varying the amplitude levels 

of the CGO and keeping the amplitude of the base Peso constant, it was then be possible to test the 
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operating limits of the proposed technique. Through this methodology, we were able to augment 

the size of the datasets used in Chapter 3 to overcome the “small dataset” problem, as well as test 

the robustness of the proposed enhancement scheme to different levels of interference. 

In Section 4.5, the proposed enhancement scheme was applied to each of the 1800 

FrankEinstein Peso signals. Because the reference signal (i.e. the “true” Peso) was readily 

available, it was possible to validate the CGO suppression performance not only through visual 

means, but through quantifiable distortion measures, such as PRD, as well. An automated IMF 

selection method was introduced into the proposed scheme due to the reliance on clinicians to 

manually select the IMFs, which is not feasible for large datasets such as FrankEinstein’s “noisy” 

Peso signals. The results from applying the modified proposed enhancement scheme show that the 

level of interference can modify the morphology of the Peso, specifically at the ΔP swing. 

Moreover, varying the levels of CGO amplitude also affects the reconstruction performance; in 

some cases, the reconstruction was able to suppress the CGO quite well while preserving the Peso 

morphology. However, there were also reconstructions that resulted in very high PRD values, 

indicating that extreme distortions were present. By plotting the reconstruction PRD for each of 

the FrankEinstein signals with respect to their associated SIR, it became apparent that lower SIRs 

generally led to higher PRD values. This relationship observed between SIR and PRD can be 

explained by the fact that an increase in the interference level makes it difficult for the proposed 

enhancement scheme to detect the “true” Peso signal. 

Despite a general trend for the relationship between PRD and SIR being established, the 

question as to how much interference can the proposed enhancement scheme handle arises. To test 

the operating limits of the proposed enhancement scheme, a boxplot of the reconstruction PRDs 

categorized into their respective normalized interference amplitude was generated. Additionally, 
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measures of central tendency and variability were calculated for each category. Two conditions 

were considered in determining if the proposed enhancement scheme can be used: i) the majority 

of the PRD distribution fell at or below 10% as per the clinician-defined tolerance for Peso loss, 

and ii) the reconstruction performance was consistent, which are indicated by the measures of 

variability as well as the interquartile range in the boxplot. Based on the results obtained in this 

section, it was found that the proposed enhancement scheme could reliably be used up until the 

CGO amplitude is 20% of the ΔP amplitude. However, it has also been suggested that the 

enhancement scheme can still be used until the CGO amplitude is ~30% of ΔP, but under the 

condition that clinicians are able to tolerate slightly more than 10% Peso information loss. 

In this Chapter, we were able to address some of the challenges mentioned in Section 4.1. 

The creation of the FrankEinstein Peso dataset provided us with the ability to overcome the “small 

dataset” problem. Furthermore, we were also able to verify that the CGO can in fact change the 

shape of the Peso signal. We were also able to quantify the proposed enhancement scheme’s 

performance to establish a relationship between PRD and SIR. These quantifiable measures were 

also instrumental in determining which levels of interference the enhancement scheme can reliably 

be used. Through these results, recommendations can be provided to clinicians if/when the 

proposed enhancement scheme is translated from development to clinical use. It is important to 

note however that the gold standard for validation still lies with the clinician; it is to their discretion 

as to whether the performance of the proposed enhancement scheme can provide clinically viable 

Peso signals for different levels of CGO interference. Additionally, it is essential to recognize the 

limitations of the Peso signals generated by the ASL 5000. Despite being a state-of-the-art 

breathing simulator, it is still unable to mimic the complex interactions of the respiratory system 

in mechanically ventilated patients.  
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Chapter 5 

CGO Suppression in Real ICU Patients 

5.1 Motivation 

 In Chapters 3 and 4, the proposed Peso enhancement scheme was refined by establishing 

the appropriate decomposition algorithm for CGO suppression and defining an automated IMF 

selection for reconstruction. While the FrankEinstein Peso signals introduced in Chapter 4 served 

as a means of testing the performance of our technique, the models used to generate the “true” 

Peso signal were limited in their ability to reproduce the complex physiological interactions of the 

respiratory system in mechanically ventilated patients. The aims of this Chapter are to determine 

if the proposed technique is robust enough to suppress CGO from ICU patients, and to see if the 

resulting Peso signal is clinically viable from the perspective of critical care specialists. 

5.2 Application of the Proposed Enhancement Scheme on Real ICU Patients 

5.2.1 Dataset 

The dataset used in this section was described in Chapter 4 under Section 4.3.1. Recall 

that this dataset contains 25 different patients under three different breathing conditions: i) passive 

breathing, ii) spontaneous breathing with PSV, and iii) breathing with a t-piece, resulting in 75 

signals. This dataset contains five types of data: i) Airway Pressure [cmH2O], ii) Esophageal 

Pressure [cmH2O], iii) Gastric Pressure [cmH2O], iv) Flow [L/s], and v) Transpulmonary Pressure 

[cmH2O]. The signals were sampled at 200 Hz, and the duration of the signals range between 50.92 

seconds to 644.86 seconds. The collection of this data was approved by St. Michael’s Hospital’s 
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Research Ethics Board under REB# 15-369. A summary of the data used in this section is shown 

in Table 11. 

TABLE 11: SUMMARY OF THE DATASET USED FOR TESTING THE FINAL PROPOSED ENHANCEMENT 

SCHEME. 

Dataset 

# 

REB 

# 

No. of 

Patients 

Condition of 

Patients 
Types of Data 

Sampling 

Frequency 

(Hz) 

Duration 

of 

Signals 

(sec) 

Total 

No. of 

Signals 

3 
15-

369 
25 

1. Passive 

2. Spontaneous 

with PSV 

3. Breathing 

with t-piece 

 

1. Airway 

Pressure 

2. Esophageal 

Pressure 

3. Gastric Pressure 

4. Flow 

5. Transpulmonary 

Pressure 

200 
50.92 - 

644.86 
75 

 

5.2.2 Experimental Setup 

Method for Suppressing CGO in Peso 

The proposed enhancement scheme that was developed throughout this thesis will be 

applied to all 75 Peso signals described in Section 5.2.1. The EEMD algorithm will be applied, 

and 100 ensemble trials are used for decomposition. The amplitude of white noise added into each 

trial is shown in EQ5.1. 

𝑛 = 0.2 × 𝑠𝑡𝑑(𝑃𝑒𝑠𝑜)       (𝐄𝐐𝟓. 𝟏) 

The automatic IMF selection approach described in Chapter 4 will be used. Recall that the IMF 

selection process involves finding the frequency bin associated with the largest magnitude in each 

of the IMF magnitude spectra. A threshold criterion of 0.75 Hz is defined; if the magnitude peak 

in the IMF spectra resides in a bin greater than 0.75 Hz, the IMF is representative of CGO and 

other high-frequency processes present in the signal.  
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Validation of Results 

Face Validation from our clinical collaborators will be used to assess the clinical viability 

of the enhanced Peso signals. Clinicians will be making their decisions based on the quality of the 

enhanced Peso signal in terms of its morphology, slope of the Peso deflection (
𝑑𝑃𝑒𝑠𝑜

𝑑𝑡
), and the Peso 

swing (ΔP). 

5.2.3 Results and Discussions 

Representative Results 

 In this section, 7 of the 75 Peso signals were selected to demonstrate the performance of 

the enhancement scheme. Figures 5.1 to 5.6 demonstrate representative results. 

 Figure 5.1 is a Peso signal obtained from a spontaneously breathing patient receiving PSV. 

The morphology/breath profile seen in this Figure represents a typical pattern observed in 

spontaneously breathing patients. This patient has a heart rate of 84 bpm and the CGO amplitude 

is ~2 cmH2O. The reconstructed Peso shown in red indicates that the technique has been able to 

suppress a significant amount of CGO activity by reducing its amplitude to ~0.5-0.75 cmH2O. 

Despite the persisting CGO activity, our collaborating clinicians are satisfied with the suppression 

performance, because the Peso morphology, 
𝑑𝑃𝑒𝑠𝑜

𝑑𝑡
, and ΔP are largely unaffected based on Face 

Validation.  

 

 



122 
 

Figure 5.1. A Peso signal obtained from a spontaneously breathing patient receiving PSV. This 

Peso signal is representative of a typical breathing pattern and morphology. 

 

Figure 5.2. A Peso signal obtained from a spontaneously breathing patient receiving PSV. This 

Peso signal is representative of a similar breath profile/morphology shown in Figure 5.1, but with 

a different CGO morphology. 
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 Figure 5.2 is another Peso signal obtained from a spontaneously breathing patient 

receiving PSV. The morphology of this Peso signal is similar to the one shown in Figure 5.1, 

albeit this patient has a noticeably different CGO morphology. Furthermore, the amplitude of the 

Peso is not consistent; the first 10 seconds illustrate a consistently large ΔP, which may indicate 

that the patient is taking deep breaths, while the remaining 10 seconds show a consistently smaller 

ΔP. Unlike in Figure 5.1, the proposed technique has almost entirely suppressed the CGO. 

However, the collaborating clinicians have expressed concerns regarding the amplitude loss of ΔP, 

specifically at the inflection points between the inspiratory and expiratory phases. The loss of 

amplitude is most evidently observed in the first 10 seconds of the signal. The original Peso had a 

ΔP of ~12 cmH2O and the reconstructed ΔP was ~10 cmH2O, which corresponds to a 16.7% loss 

in amplitude. Recall that the clinicians suggested a 10% threshold on information loss. Despite 

surpassing the threshold, the reconstructed Peso can arguably be used for interpretation and 

analysis. Furthermore, as discussed in Chapters 3 and 4, the original ΔP may have been influenced 

by the amplitude of the CGO interference, which has now been removed through the proposed 

technique.   

 Figure 5.3 is obtained from a spontaneously breathing patient receiving PSV and illustrates 

another commonly seen morphology/breath profile. The resulting Peso reconstruction has many 

similarities to the results seen in Figure 5.2; the CGO has almost entirely been suppressed and 

there is some information loss at the inflection points between the inspiratory and expiratory 

phases. Despite the information loss, the clinicians were satisfied with the suppression 

performance, because the reconstructed signal appears to represent the morphology of the Peso 

quite well. 
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Figure 5.3. A Peso signal obtained from a spontaneously breathing patient receiving PSV. This 

Peso signal is representative of another commonly observed breath profile/morphology. 

 

 

Figure 5.4. A Peso signal obtained from a passively breathing patient receiving mechanical 

ventilation support. 

 



125 
 

 Figure 5.4 is representative of a Peso signal obtained from a passively breathing patient 

receiving mechanical ventilation support. Generally, the reconstruction is agreed to be quite good 

and is able to suppress CGO. However, like the previous two Peso signals, there are some concerns 

regarding the loss of information at the inflection points (located at the top in this case due to the 

passive breathing condition). 

 Figure 5.5 is another Peso signal obtained from a passively breathing patient. This signal 

was selected to demonstrate the performance of the technique when an occlusion (i.e. a blockage) 

is present in the signal. The occlusion occurs at 𝑡 = 41 seconds to 𝑡 = 46 seconds, which means 

that the Peso should not deflect in any direction, and only the CGO will be observed in that 

timeframe. The reconstructed signal in Figure 5.5 shows no deflections or fluctuations present 

during the occlusion. These results therefore suggest that the proposed technique has been able to 

completely suppress the CGO, and lends confidence that the enhancement scheme is working as 

expected. Moreover, the morphology of the Peso deflections is deemed acceptable by the clinicians 

with the caveat that potential information has been lost at the inflection points. 

 Figure 5.6 is a Peso signal obtained from a spontaneously breathing patient using a t-piece. 

Just like in Figure 5.5, this signal was selected due to an occlusion being present in the signal. The 

occlusion occurs from 𝑡 = 154 seconds to 𝑡 = 172 seconds. The reconstructed signal shows that 

the CGO amplitude has been mostly been supressed, but there are small fluctuations still present. 

While the Peso in Figure 5.5 was expected to have no Peso deflections, that is not the case in 

spontaneously breathing patients. Because this patient’s respiratory drive has not been suppressed, 

it is possible to see small deflections due to Peso activity that indicate breathing efforts by the 

patient. The consensus for reconstructed signal is that the CGO suppression was quite good, and 

the Peso morphology, for the most part, has been preserved.  
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Figure 5.5. A Peso signal obtained from a passively breathing patient. An occlusion occurs at 𝑡 =
41 seconds to 𝑡 = 46 seconds. 

 

 

Figure 5.6. A Peso signal obtained from a spontaneously breathing patient using a t-piece. An 

occlusion occurs from t=154 seconds to t=172 seconds. 
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Limitations of the Technique 

Effects of Esophageal Spasms 

 Although CGOs are the main source of interference observed in the Peso signal, another 

prominent interference source are esophageal spasms that manifest as large transients in the signal 

as demonstrated in Figure 5.7. Because the balloon catheter is placed in the esophagus, any 

processes that cause variations in pressure within the esophagus are captured. The esophageal 

spasms are a result of physiological processes such as swallowing or peristalsis, which are 

rhythmic contractions of the esophagus. During interpretation of the Peso signal, clinicians will 

take note of when the esophageal spasm occurs and will not consider the subsequent Peso epochs 

for analysis. Analysis and interpretation the Peso signal will be stopped until the signal returns to 

a stable value.  

Figure 5.7. A Peso signal obtained from a spontaneously breathing patient receiving PSV. The 

large transients represent esophageal spasms caused by the patient swallowing their saliva. The 

segment of the signal highlighted in the green box is used in Figure 5.9 to illustrate the effects of 

the esophageal spasm on signal reconstruction using the proposed enhancement scheme. 
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 To see what effects the esophageal spasms have on the reconstruction of the Peso signal, 

the proposed enhancement scheme was applied under two different conditions: 

1) The raw signal was decomposed without any modifications, and 

2) The esophageal spasms were clipped before decomposition. 

The Peso segment highlighted in the green box in Figure 5.7 is shown in Figure 5.8 for the 

purposes of making a direct comparison between the abovementioned conditions. In Figure 5.8 

(A), which corresponds to Condition #1, the reconstructed Peso (red) indicates that the proposed 

enhancement scheme has performed quite poorly; in fact, the quality of the resulting reconstruction 

may arguably be worse than the raw signal. In contrast, Figure 5.8 (B) shows a significantly better 

Peso reconstruction/CGO suppression (blue) under Condition #2. 

 The poor reconstruction under Condition #1 can be attributed to the inclusion of the 

esophageal spasm during decomposition, which affected the resulting IMFs. Because the 

esophageal spasm manifests as transients with significantly larger amplitude values than the Peso 

signal, the SIR is small compared to a large SIR under Condition #2. As a result, the EEMD 

algorithm may be unable to separate the processes properly and preserve the Peso morphology. 

The issues introduced by the esophageal spasms is reminiscent of the FrankEinstein Peso signals 

with low SIR shown in Figure 4.17 of Section 4.5.3 in Chapter 4. Thus, the inclusion of 

esophageal spasms poses a challenge in preserving the Peso morphology using the proposed 

technique, which indicates that the spasms must first be removed. 
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Figure 5.8. The Peso segment highlighted in green from Figure 5.8. The raw Peso is shown in 

black in both figures. (A) The reconstructed Peso signal is shown in red. The EEMD algorithm 

was applied to the raw signal with the esophageal spasms still in tact. (B) The reconstructed Peso 

signal shown in blue. The esophageal spasm from the raw signal was clipped manually before 

applying the EEMD algorithm. 

 

Time Requirements 

 One major limitation that is imposed by the EEMD algorithm is the amount of time 

required to decompose a signal. The proposed technique was applied to each of the 75 Peso signals 

in Dataset #3 on a Precision T1700 Desktop Workstation running Windows 7 with an Intel® 

Xeon® E3-1225 v3 processor and 24 GB of RAM. The plot shown in Figure 5.9 demonstrates the 

time required to decompose a Peso signal using EEMD with respect to the duration of the Peso 

signal. The scatter plot and the corresponding curve fitting model indicates that there is a power 

law relation between the two aforementioned variables. As a result, longer duration signals would 

require a significant amount of time to decompose via EEMD. Other factors that can affect the 

proposed enhancement scheme are large transients, such as the esophageal spasms described in 



130 
 

the previous section, as well as higher sampling rates, which increases the amount of datapoints. 

The amount of time required to run the proposed technique is important to consider for clinical 

applications; if time requirements are not a critical aspect of the task, then the proposed technique 

may be used. However, the proposed enhancement scheme in its current form may not be 

appropriate for applications such as real-time monitoring. 

 

Figure 5.9. The relation between the amount of time required to decompose a Peso signal using 

EEMD with respect to the duration of the Peso signal. 

 

5.3 Chapter Summary 

 This Chapter was dedicated to applying the proposed enhancement scheme, which has been 

developed through this thesis, to mechanically ventilated ICU patients. The dataset used in this 

Chapter helpful in testing the robustness of the technique, because the data was collected from 25 

different patients. Thus, the data encompasses variability in the CGO signals both in terms of 
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morphology as well as bandwidth. Additionally, the dataset is unique in the fact that each of the 

25 patients were put under three different breathing modes. This enables us to test the technique 

on signals that capture both the inter-patient variability of the Peso waveforms, as well as intra-

patient variability resulting from different modes of breathing. Face Validation was used as a 

means of testing the enhancement scheme’s performance. The feedback from our collaborators 

showed that the technique was able to suppress much of the CGO. For many of the reconstructed 

Peso signals, there was a consensus that they may be used for further interpretation. However, it 

is still important to note that there are still concerns regarding the loss of information in the ΔP 

amplitude. This Chapter concluded with a discussion of the limitations of the enhancement 

scheme, such as the fact that transients in the signal caused by esophageal spasms negatively 

affects the decomposition and subsequent reconstruction. As a result, esophageal spasms must be 

removed before applying the technique. Additionally, there are time constraints imposed by the 

EEMD algorithm, as it was shown that there is a power model relation between the amount of time 

required to decompose the Peso signal and the length of duration of the Peso signal. At present, 

the technique cannot be used in real-time applications, but it may be ideal for offline analysis of 

Peso signals. 
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Chapter 6 

Conclusions and Future Work 

This thesis addressed the problem of CGO interference in Peso signals obtained from 

mechanically ventilated patients. From a biomedical signal processing perspective, suppressing 

CGOs from Peso signals is a challenging task, because both processes have bandwidths that can 

overlap with each other. Furthermore, inter-patient and intra-patient variabilities exist between 

both signals in terms of bandwidth. As a result, conventional filtering approaches may not be 

appropriate for signal quality enhancement. From a clinical perspective, enhancing the quality of 

Peso signals gives clinicians the ability to guide their mechanical ventilation strategies more 

effectively and empowers clinicians to personalize their patients’ treatments. Ultimately, the aim 

is to reduce ICU stays and improve patient outcomes, which has societal and financial implications 

on the greater health care system and its associated funding agencies.  

To conclude the work in this thesis, this Chapter will summarize the main contributions 

presented in Chapters 3 to 5. A discussion of future directions for this work and the potential of 

adapting the proposed technique to other mechanical ventilation applications will then be provided. 

6.1 Contributions 

 The enhancement scheme proposed in this thesis makes use of adaptive, data-driven 

decomposition techniques, namely EEMD, to separate the Peso and CGO processes into their 

respective IMFs. Compared to conventional filtering techniques, which are constrained by the 

assumptions of linearity and stationarity of the incoming signals, techniques such as EEMD are 
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ideal options for biomedical signal processing applications, because they can handle the non-linear 

and time-varying nature of physiological processes. Furthermore, the proposed technique can deal 

with inter-patient variability to generate a set of IMFs that are unique to each person. The utility 

of data-driven decomposition algorithms as outlined in this section has formed the basis of the 

contributions presented in this thesis. 

6.1.1 Characterization of Peso and CGO 

 Preliminary experimentation using EMD on passively breathing patients showed that the 

CGO and Peso can be separated into their respective IMFs; CGOs are represented by the first few 

IMFs, while the Peso are present in the latter IMFs. However, the mode-mixing problem was 

observed, which suggested that a different algorithm, specifically EEMD, may be more appropriate 

to ensure that the IMFs retained their physical meanings. Further experiments using EEMD as the 

decomposition algorithm found that the proposed enhancement scheme is not only capable of 

reliably reconstructing clean Peso signals in passively breathing patients, but is also able to extract 

CGO. Thus, the technique may be used to monitor both the respiratory mechanics of the patient as 

well as the activity of their heart. 

6.1.2 Objective Performance Measures 

 Validation of the proposed technique’s performance is based purely on the subjective 

assessment of domain-experts. Although Face Validation by our collaborating clinicians is 

considered to be the “gold-standard” performance measure, their opinions can vary; some 

clinicians may be satisfied with the amount of filtering, while other clinicians voice concerns over 

the loss of information. To supplement the clinicians’ assessments, an objective approach to 

validating the filtering performance has been proposed using FrankEinstein’s Peso signals. By 
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varying the levels of CGO interference in FrankEinstein’s Peso signals, experiments were able to 

show that increasing the levels of CGO interference while keeping the amplitude level of the Peso 

constant resulted in larger reconstruction errors. Furthermore, the experiments also provided 

insights into the operating limits of the technique, which suggest that the technique can be used up 

until the CGO amplitude is ~30% of ΔP with the caveat that information loss may be greater than 

the clinical threshold of 10%.   

6.1.3 Feasibility in the Clinical Context 

 The proposed technique, which was refined through the course of this work, was applied 

to real-world mechanically ventilated ICU patients under three different conditions: i) passive 

breathing, ii) spontaneous breathing with PSV, and iii) spontaneous breathing with t-tube. 

According to the collaborating clinicians, the enhancement scheme can reliably suppress CGO in 

many of these signals regardless of the breathing condition, breathing profile/pattern, or CGO 

morphology. However, the technique does come with several limitations. First, clinicians voiced 

some concerns regarding the loss of information, specifically in ΔP, for some Peso signals. 

Secondly, esophageal spasms, which are often present in spontaneously breathing patients, 

negatively impacts the reconstruction. Finally, the EEMD algorithm requires a significant amount 

of time to decompose long-duration signals. Thus, in the clinical context, the technique should be 

used as a tool to supplement the decisions made by clinicians. Moreover, the technique in its 

current form cannot be used for real-time monitoring and ventilation management, and is instead 

better suited for offline applications. 
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6.2 Future Work 

Overcoming Technical Limitations 

In Section 6.1.3, technical limitations were introduced in the application of the proposed 

technique. In its current form, the technique has only been applied to full-duration signals offline, 

which results in long decomposition times. To adapt the enhancement scheme for real-time 

applications, it will first be necessary to implement the EEMD algorithm in a way that would allow 

streaming data to be decomposed. 

Knowledge Translation 

While real-time enhancement is important for respiratory monitoring and mechanical 

ventilation management, the current enhancement scheme can be used in a clinical research setting 

for the purposes of understanding the respiratory mechanics of critically ill patients. To facilitate 

knowledge translation, a stand-alone executable file with a graphical user interface (GUI) may be 

developed so that clinical researchers can incorporate the technique in their standard workflow. 

Adapting to other Mechanical Ventilation and Respiratory Monitoring Applications 

While the Peso signal is used as a means of monitoring a patient’s respiratory mechanics 

and controlling the level of mechanical ventilation, it is important to note that it is a pneumatic 

signal resulting from pressure changes in the thoracic cavity. Other modes of mechanical 

ventilation are being developed to capture information directly from the phrenic nerve, which 

serves as the neural pathway from the respiratory centres of the brain, to control the level of 

ventilatory support [5]. However, capturing information directly from the phrenic nerve is 

presently not technically feasible [5]. To circumvent the challenges of the aforementioned 

approach, a mode known as Neurally Adjusted Ventilatory Assist (NAVA) has been developed 
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[5]. NAVA captures the electrical activity of the diaphragm (EAdi), which has been shown to be 

a valid measurement of a patient’s neural respiratory drive, in order to control the level of 

ventilatory support [63]. Because the EAdi signal is a proxy for the respiratory drive, NAVA has 

consistently been shown to detect and overcome the challenges associated with asynchrony, 

especially in populations where significant patient-ventilator asynchronies (e.g. neonates, COPD 

patients) are observed [64]-[69]. Thus, the EAdi is undoubtedly a promising control signal for 

mechanical ventilation management. However, just like the Peso signal, the EAdi signal is also 

contaminated with interference from the heart but in the form of the ECG [70]. In this case, the 

problem formulation is the same as the one presented in this thesis: activity from the cardiovascular 

system is the major source of contamination during respiratory system monitoring, which suggests 

that the enhancement scheme in this thesis may be adapted to suppress ECG from the EAdi. 

The abovementioned challenge of suppressing ECG from EAdi is in fact one of the works 

that inspired this thesis. Although ECG suppression from EAdi is not currently an active research 

project, we are in contact with the inventors of the NAVA technology through the Institute of 

Biomedical Engineering, Science and Technology (iBEST), which is a collaboration between 

Ryerson University and St. Michael’s Hospital in Toronto, Ontario, Canada. Through iBEST, we 

have gained access to a dataset of EAdi signals obtained from 13 infants and 15 adults receiving 

NAVA support during mechanical ventilation. The data is sampled at 2 KHz and the duration of 

signals range between 3.6 minutes to 2.18 hours. As mentioned previously, the ECG signal is a 

major source of contamination in the EAdi, which can be attributed to the data acquisition setup 

shown in Figure 6.1. Similar to Peso acquisition, a catheter outfitted with electronic sensors is 

inserted into the esophagus and guided towards the diaphragm. Due to the anatomical positioning 
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of the heart with respect to the diaphragm, the ECG signal is captured by the electrodes during 

EAdi acquisition. 

Figure 6.1. Experimental setup and data acquisition of EAdi signals. Source: [71]. 

 

 The proposed enhancement scheme presented in this thesis using the EMD algorithm has 

been applied to the EAdi signals. Unfortunately, the preliminary results showed poor ECG 

suppression performance due to the mode-mixing problem. Furthermore, the technique was unable 

to decompose the EAdi signals in a reasonable timeframe due the high sampling rate, the large 

transients caused by the QRS complex, and the long duration of each signal. Thus, EMD and its 

variants may not be a suitable for this application. Based on the aforementioned limitations, future 

work related to ECG suppression in EAdi should ensure that the techniques are able to deal with 

the overlapping frequency spectra of both signals, as well as limiting the complexity of the 

algorithms such that they can converge in a reasonable amount of time.  
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