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A B ST R A C T

Tracking Human M otion in M onocular Video Sequences w ith the  
DE-M C Particle Filter

© M ing Du 2005

Master of Applied Science 
Department of Electrical and Computer Engineering 

Ryerson University

Tracking human motion from monocular video sequences has attracted a great deal of in­
terests in recent years. The difficulty in solving this problem is largely due to the nonlinear 
property of human dynamics and the high dimensionality of the state vector space required 
to model human motion. Traditional particle filtering methods usually fail in this situation 
because the distributions they sample from are ill-defined. In this thesis we propose a novel 
tracking algorithm, namely the Differential Evolution - Markov Chain (DE-MC) particle 
filtering. It is based on the particle filter framework but makes substantial changes to its 
core, i.e. the sampling strategy. In this new approach, the Differential Evolution algorithm 
and the Markov Chain Monte Carlo algorithm are integrated, aiming at improving both the 
accuracy and efficiency in approximating the posterior distribution. Global optimization 
and importance sampling are spirits of the proposed method. To apply the DE-MC particle 
filter to articulated model-based human motion tracking, we also integrate multiple image 
cues including the area of silhouettes, color histograms and boundaries to measure the image 
likelihoods. We find the Fourier Descriptor (FD) to be a new and effective image feature 
in human motion tracking applications. Our other contributions, such as a modified color 
cue-based measurement function and a simple adaptive strategy for sampling, also help to 
improve the performance of the human tracker. Experimental results including the compar­
ison with the performance of other particle filtering methods demonstrate the power of the 
proposed approach.
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Chapter 1 

Introduction

1.1 General Background

One of the most important characteristics of human resides in their extended ability to com­

municate. After computer was invented, communication between human and computer has 

become a critical research issue. For decades many technological breakthroughs have been 

made to create increasingly powerful computers, but the ability of computers to understand 

human behavior is still limited. In other words, the effective bandwidth of information flow 

going from computers to humans was increased by the multimedia platform; however, com­

parably less advancement has been made the other way. Usually, computers receive signals 

from humans through low bandwidth devices such as a keyboard or mouse. These devices 

have turned out to be the bottleneck in communications between human and computer. This 

problem becomes even more apparent with the emergence of novel technology such as virtual 

reality. Because of those problems people started to develop Human Computer Interaction 

(HOI) technology.

We can list numerous applications for HCI, such as electronic entertainment, informa­

tion retrieval, security and surveillance, interactive education. In these applications, the 

computer analyzes the physiological or behavioral information of the human to make an 

appropriate response. Physiological properties, including face, fingerprint, iris and anthro­

pometric measurement, are often used in verification and identification. On the other hand, 

behavioral properties, including gesture, speech, emotion, gait and other types of motion,
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can function not only as the input to a biometrics system, but also to control the computer 

in the context of artificial intelligence.

1.2 H um an M otion  Tracking

Analysis of human motion, or more precisely, analysis of a human’s full-body movement, is 

an important component of HCI. The history of motion analysis from image can be traced 

back to 1878, when Eadweard Muybridge, an English photographer, used a row of cameras to 

snap more than a dozen photographs of a passing horse. Although his original intention was 

to verify that there exists a moment at which a trotting horse would have all its four hooves 

off the ground simultaneously [2], his work was then extended to capture many human and 

other animal motions. In his famous books The Horse in Motion (1878), The Human Figure 

in Motion (1901) and Animals in Motion (1899), thousands of pictures of men, women, 

children, amputees, and many domestic and wild animals are captured in action. Figure 1.1 

is one of the examples. His work sparked the scientific research on animal locomotion, which 

was published in 1887, and later, inspired the research on human motion analysis.

Figure 1.1: Man ascending stairs, photograph from Eadweard Muybridge’s ’Animal Locomo- 
tion’(1887)



The goal of human motion analysis is to accurately describe the properties of different 

kinds of actions and correctly recognize them, but we can not expect a computer to under­

stand high-level concepts directly. As a prerequisite for successful analysis, human motion 

must be quantified so as to be understood by the computer, which presents the problem of 

motion tracking. Although the human vision system can locate another person and his body 

parts easily, accurately and quickly, the same task remains arduous for computers. Early 

work on human motion tracking makes extensive use of sensors [3] [4]. Wearable markers 

report the position of main body parts in a comparably high frequency. Although a precise 

human motion configuration can be recovered from the received signals, this should not be 

considered as a general solution in that the markers will cause not only distorted motions but 

also confined application scenarios in which cooperative subjects must be available. There­

fore, tracking human motion from videos, especially monocular videos, has an irreplaceable 

position in HCI.

1.3 A pplication  Scenarios

There are a bundle of direct potential application scenarios for human motion tracking, the 

most important of which, are highlighted as follows.

In an electronic reference system for gymnastics or diving competitions, motions of athlete 

are captured and tracked, and the quantified data is then compared to various criteria for a 

fair evaluation, thus removing errors to a large extent. Similarly, an automatic sports training 

system will be able to rectify the users’ mistakes after tracking their motion and comparing 

the results with standard actions stored in the system. In the future, computer games or 

software are expected to receive users’ input via human tracking equipment, responding 

according to the analysis result of the input. Also, next generation surveillance systems will 

be able to uncover suspicious actions by tracking all the people within its scope.



1.4 Difficulties in H um an Tracking

Although the outlook for future applications of human tracking is very attractive, we still 

need to face the status quo in this area. Besides the many difficulties which are in common 

with tracking normal objects, there are some particular obstacles to tracking human move­

ment. We must be confronted with both the complex nature of the human motion and the 

wide gap between low-level image features and high-level concepts. Those difficulties lie in 

the following aspects:

Figure 1.2: Illustration of self-occlusion, depth ambiguity, motion blur, and loose fittings.

D epth  A m biguity: Videos are 2-dimensional descriptions of 3-dimensional real world. The 

depth information cannot be solved from projection equations if no prior knowledge about 

the object size is available. A direct consequence of depth ambiguity is that similar poses 

which are only different with each other in the direction of limbs may yield indistinctive 

observations. This can only be solved by observations from additional view angles. In the 

leftmost image of Fignre 1.2, the subject’s right lower arm is almost perpendicular to the 

projection plane of camera and causes depth ambiguity. If we do not know the size of this 

lower limb, it will be very hard to predict its actual position.

Loose-body Clothes: The appearance of humans in a video is largely determined by 

clothing. When loose-body clothes such as skirts are dressed, the shape and contour of 

human are distorted to a great extent; hence the observable motion may no longer follow the



patterns of normal human motion. The changes of shape and contour across time are also 

difficult to tackle since any deformable shape analysis needed remains an unsolved problem 

in computer vision. Moreover, loosely fitting clothes may render one or more body parts 

totally invisible in the scene. For example, in the rightmost image of Figure 1.2, it is almost 

impossible to directly locate the upper legs of the subject because they are covered by skirt. 

M otion blur: Motion blur usually accompanies fast human motion. When it occurs, the 

pixels in a blurred image area have almost uniform intensity values. As a result even with 

the naked eye, it is very difficult to locate the exact position of a blurred object. In practice, 

tips of moving limbs are more prone to blurring in videos.

Self-occlusion: In monocular video sequences, occlusions are unavoidable. Self-occlusion: 

part of the body being shaded by other parts of the body, is especially troublesome. In this 

case, observation will be incomplete during a certain period of time. This is the major cause 

of a large number of tracking failures. Basically, for monocular video tracking we should not 

expect to predict the position of the occluded body parts at each frame accurately. Instead, 

we set the target as being able to recover from temporary tracking failure when the occluded 

body parts reappear in the scene. The image in the middle of Figure 1.2 is an example with 

serious motion blur.

N on-linear D ynam ic M odel: In a tracking problem, when the movements of the object 

are in accordance with a linear dynamic model, and if the measurement model is also linear, 

then a Kalman filter can be applied. However, even small non-linearity in the dynamic model 

will lead to a substantial increase of peak numbers in the posterior [5], in which case both 

the Kalman filter and its extended version (the Extended Kalman Filter, EKF) lose their 

efficacy. In the leftmost image of Figure 1.2, most of the subject’s left arm is occluded. 

M ulti-m odality  of th e  M easurem ent Function: The relationship between human mo­

tion and image appearance is too complex to be formulated mathematically. To this day, 

the image processing society has not solved the problem of exactly describing objects in 

images, as such, we can only select some simple image features to represent measurement 

information. Normally, the measurement function is not directly related to state variables



and is multimodal with many peaks.

The above difficulties have to be addressed by any human motion tracker design. For 

many of them, there has not been and will never be perfect solutions. But there indeed exist 

some partially successful methods.

1.5 C ontributions

In this thesis a novel human motion tracker with top-down structure is proposed based on the 

particle filter. By noticing the fact that the traditional CONDENSATION algorithm ignores 

the most recent observation and therefore produces unreliable human motion tracking results, 

we introduce the Differential Evolution Markov Chain (DE-MC) algorithm from statistics 

and optimization theory to address the problem. The proposed DE-MC particle filter incor­

porates both the advantage of the Differential Evolution algorithm in global optimization 

and the ability of the Monte Carlo Markov Chain in reasonably sampling a high-dimensional 

state space. It evidently boosts the performance of the traditional tracking system in terms 

of more accurate motion vector prediction. In the implementation of the DE-MC particle 

filter we also fuse region, color and boundary information to build a robust measurement 

function. Among them, the boundary information represented by the Fourier Descriptors 

(FD) sets up a new and effective connection between the estimated model parameters and 

the image likelihoods. Compared with the previously used boundary or contour cue, FD has 

many noticeable advantages. Our other contributions include improving color cue utilization 

and introducing a simple adaptive strategy for particle filter implementation. Based on all 

of these novelties, our human motion tracking system achieves great improvement over the 

traditional particle filtering methods.

1.6 O utline o f thesis

The remainder of this thesis is organized as follows:



C h ap ter 2: R elated  W ork Previous work in the field of human motion tracking is reviewed 

from different aspects. Although we try to solve human tracking problem for monocular video 

sequences, some multi-camera tracking work will also be covered.

C h ap ter 3: T he P artic le  F ilte r The theory of particle filtering is introduced.

C h ap ter 4: From  3D W orld to  2D Im ages A 3D articulated human body model is 

proposed. Relationships between 3D scene and 2D videos are addressed.

C h ap ter 5: Fusing M ulti-C ue for Tracking In this chapter we design a robust multi-cue 

based measurement function which describes the resemblance between hypothesis and image 

observations.

C h ap ter 6: T he D E-M C P artic le  F ilte r The background knowledge about the Differ­

ential Evolution Monte Carlo (DE-MC) algorithm is introduced. Based on this algorithm 

and the measurement function presented in Chapter 5, a novel extension of the particle filter 

is proposed.

C h ap ter 7: Conclusions Experiments are carried out on several monocular video se­

quences based on the proposed method. The results are shown and analyzed.



Chapter 2 

Related Work

Previous human motion tracking research follows two different paths: an articulated-model- 

based approach and a non-articulated- model-based approach. The most evident difference 

between them is that the former tries to fit a pre-defined articulated model to image obser­

vations, but the latter treats the human body as a whole during feature extraction and then 

marks different body parts, or processes the features directly even without labelling. Note 

that although some non-articulated-model-based work claims that a model is used, these 

models are not articulated models in a real sense and only function as a connection map.

2.1 N on-articu lated-m odel-based  A pproaches

Non-articulated-model-based approaches usually extract features such as contours and sil­

houettes. The Ghost system proposed by Haritaoglu et al. detects the convex and concave 

hulls on silhouettes [6] . Then it first searches for the head within a region constrained by two 

lines which intersect at the principle axis of silhouettes with a certain angle. Other convex 

and concave hull vertices are labelled according to the topology of the human body. Leung 

et al. extracts human body outlines from human motion video sequences and employs ex­

tensive knowledge about human body structure to label body parts with ribbons and circles 

[10]. Ramoser et al. extract blobs from video and switches between two structures - normal 

torso structure and long torso structure to label the blobs [55]. We notice that some work 

attempts to track humans with optical flow methods, such as Shi-Tomashi-Kanade tracker
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in [38], 3D depth flow in [51], normal flow in [52] etc. However, they can only handle simple 

and short-duration motions for a small set of limbs. A more suitable application scenario for 

them is automatic initialization of model parameters, which we will discuss in this thesis.

Non-articulated-model-based approaches are normally easy to apply and are computa­

tionally efficient. Some of them can even achieve nearly real-time performance. However, 

lack of systematic interpretation for human body structure makes their results very unreli­

able for semantic processing. All the non-articulated-model-based tracking approaches we 

discussed above will have a high probability of failure in general application scenarios since 

silhouettes or outlines are rather a coarse description of human motion. When more reli­

able and advanced motion analysis is of concern, articulated-model-based approaches are the 

better choice.

2.2 A rticu lated-m odel-based  Approaches

Articulated-model-based approaches have the advantage that they can give natural interpre­

tation and description of human body motion. We are able to apply our knowledge about 

human motion directly to articulated models. The models also reasonably constrain the 

relative position of body parts. The vast majority of model-based work is in top-down style, 

namely in a scene the global position of the model is firstly determined, and then locations of 

other body parts are constrained according to their relative position with regard to the origin 

of the model coordinate system. On the contrary, in a bottom-up style method, candidates 

for individual limbs are located separately at first, then those impossible or less likely body 

part combinations are clipped out and a unique optimal solution is kept. The bottom-up 

approaches will be reviewed here first, and then the top-down approaches. The bottom-up 

approaches and the top-down approaches also share some commonalities. When discussing 

these issues in the top-down section we may mention some bottom-up work and vice versa.



2.2.1 Bottom -up M ethods

Ramanan and Forsyth are the first to systemically discuss bottom-up human trackers [24] 

[53]. They model the 2D view of human body as a puppet of colored, textured rectangles. 

Parallel lines of contrast are detected as body segment candidates. The appearance template 

for each body part is learned by clustering candidate feature vectors. The clusters which 

do not accord with defined constraints are pruned. The factors considered in imposing con­

straints include human body structure, human kinematics and common sense in dynamics. 

Similarly, Sigal et al. proposed loose-limbed body models for tracking [36] [39]. This model 

is composed of tapered cylinders. Templates for head, upper arms and lower legs are learned 

from a database which contains multi-view images. Eigen-template detectors are then im­

plemented to find these body parts. Spatial and temporal constraints and image likelihoods 

help to improve the initial hypothesis and locate other body parts. Compared with top-down 

methods, bottom-up methods make it easier to achieve automatic initialization and tracking 

failure recovery. The key issues are design of a reliable body part detector and reasonable 

constraints for clipping out false alarms.

2.2.2 Top-down M ethods

When tracking failures happen, top-down methods are often trapped in the proximity of 

failure configuration in the state space, but once a global position of the human in the image 

is roughly determined, top-down methods save a lot of energy in searching for positions of 

individual body part. Important considerations for designing a practical top-down model- 

based human motion tracker include initialization strategy, human body model type, features 

for measurement and appropriate search algorithms.

M odel Type

Models are used to generate hypothesis observations. Hence, on the one hand they should 

be designed to provide good fitting for ground-truth observations, on the other hand, com­

putational cost must be taken into account so that complicated models may be avoided.
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Authors Number of 
body parts

Number of 
DOFs

Shape of body parts

Rohr [30] 14 8 Cylinders
Yamamoto [13] 12 66 Polyhedrons

Wachter & Nagel [32] 14 24 Right-elliptical cones
Sminchisescu & Triggs [40] 16 38 Superquadric ellipsoids

Moon Sz Chellapa [7] 15 Not reported Truncated cones 
and ellipsoids

Deutscher et al. [15] 17 30 Tapered cones
Roberts et al. [12] 14 22 Super-quadrics

Lee et al. [22] 14 32 Tapered cones
Huang & Chung [35] 10 24 Cylinders

Sidenbladh [21] 12 25 Cylinders and sphere
Green & Guan [34] 11 38 Surface point sets 

associated to skeleton
Senior [33] 14 Not reported Ellipsoid and cylinders

Table 2.1: Features of 3D articulated human body model used in the previous research.

Generally speaking, we can roughly categorize the human models proposed in previous work 

into 2D ones and 3D ones.

Hu et al. model the human as 10 connected rectangles and fit it to silhouettes [37]. This 

cardboard type model has many similarities with the 3D articulated models which will be 

discussed later. However, since this is a 2D model, motions in depth can only be reflected by 

varying the size of rectangles. Therefore the geometric parameters for each rectangle must 

be re-evaluated at each frame, as with the position parameters. We can see a trade-off here: 

namely, that a simple model design brings heavy burdens for the following processing. A 

similar type of cardboard body model is used in [48]. The model is only defined for strict 

front view and side view and can only cover a portion of possible motion. Lee et al. divide 

silhouettes of a side-view walking person into 7 regions, modelling each region as ellipse 

[49]. It is an application of tracking in side-view gait analysis and hence too specific to be 

generally applied.

3D models are able to handle more complicated motions. In a 3D model body parts
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typically take the form of cylinders or truncated cones. At each important joint, one or 

more degrees of freedom (DOFs) are assigned to allow rotations around axes in different 

directions. Fine motions such as rotation of fingers and toes are usually not defined in these 

models. For clarity, we list the features of some previously proposed 3D articulated models 

in Table 2.1.

Initialization

The geometric parameters of a body model are usually assumed constant throughout the 

whole tracking process because they represent the anthropometric measurement of body 

parts. Small fluctuations of the parameters produced by the elasticity of muscles and stretch­

ing of joints are usually ignored. It is necessary to acquire the geometric parameters in the 

stage of initialization. If we know neither the initial state (motion parameters) nor the 

geometric parameters of the model, the dimension of search space for initialization will be 

prohibitively high, normally above 60. It provides a real challenge for any known algorithms. 

Conventionally the human motion trackers are manually initialized. This is a justified sim­

plification which enables us to focus on more important issues of tracking though currently 

it yields impractical application.

However, there is still some partial success towards automatic initialization. There are 

basically two kinds of approaches frequently adopted. The first one is template matching, 

which tries to find structures that are similar to pre-defined body part templates. For 

instance, Oren et al. detect upright pedestrians with arms hanging at their side [56]; Poggio 

et al.and Rowley et al. detect people by looking for their faces [57] [58]; Lee et al. detect head 

and hands with contour templates [22]. Besides, template matching is also an indispensable 

step for any bottom-up tracking approach, as we have discussed above. This is the reason 

why bottom-up approaches can achieve automatic initialization more easily. The second 

method for practical automatic initialization is motion segmentation, which analyzes the 

first several frames to extract body segments according to motion cues. Gao et al. applied 

RANSAC algorithm for motion segmentation [8]; Krahnstoever et al. present a framework 

which is based on low-level motion segmentation and elaborately designed model assembly
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iterations [54]. Their results are only shown on sets of two or three body segments and have 

not been extended to whole body due to complexity.

Besides template matching and motion segmentation, in [29] a promising contour-based 

approach for automatic initialization is proposed. It fits the contour of a 3D model into that 

of silhouette. When the two contours intersect each other, a technique called "Maxwell's 

demons" forces the contour of 3D model to move to the contour of silhouette, otherwise 

the Iteration Closest Points (IGF) algorithm is applied to make the contours intersect each 

other. The limitation is that for convergence, the start pose of 3D model must be somehow 

similar with the ground-truth pose.

Measurement of Fit

In a tracking problem, especially a particle filter based one (about the particle filter theory, 

please refer to Chapter 3.), an important step is to evaluate the correctness of proposed 

hypotheses. The criterion is similarity between two sets of image features - one extracted 

from hypotheses and one extracted from ground-truth. The choice for image features is thus 

critical for the performance of a human tracker. We are aware of the fact that every image 

feature alone just describes one aspect of the image observations and provides incomplete 

information about them. If we can utilize multiple image features, as far as the measure­

ment function is reasonably designed, in most cases, the description of similarity will be 

more accurate than using one feature alone. However, we should also consider the issue of 

computation efficiency. In other words, the selected features should be easy to extract. It 

is not worth improving the accuracy of similarity measurement slightly at the cost of much 

larger amount of calculation. We summarize the choices for image features from previous 

work as shown in Table 2.2 .

As we can see from the table, the most popular features are edge, silhouette area and 

intensity (color). Robustness of these measurements is largely determined by the capture 

environment and the image processing techniques applied. Edges give good description for 

the limbs since their projections usually have evident and nearly straight borders. They 

can be detected even with the presence of cluttered background. Paradoxically, for the
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A uthors Im age inform ation E x trac tio n  m ethod
Rohr [30] Edge

Hu et al. [37] Area silhouette Background subtraction
Zhao et al. [41] Intensity

Delamarre & Faugeras [29] Contour Geodesic active contour
Sminchisescu & Triggs [40] Edge Sobel operator

Motion Optical flow
Intensity

Moon & Chellapa [7] Boundary Shape filter
Intensity

Deutscher et al. [15] Edge map
Area of silhouette Background subtraction

Rui & Chen [23] Edge map Canny operator
Roberts et al. [12] Intensity

Lee et al. [22] Boundary
Area of silhouette Background subtraction

Huang & Chung [35] Area of silhouette Background subtraction
Sidenbladh et al. [21] Intensity

Green & Guan [34] Edge Gradient map
Region

Senior [33] Area of Silhouette Background subtraction
Sidenbladh & Black [14] Edge and ridge Multi-scale filter

Motion Optical flow
Ramanan & Forsyth [24] Intensity Color histogram

Shape Template matching

Table 2.2: Image features used in previous human tracking research
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same reason spurious edges are often extracted due to the disturbance from the texture 

of clothing. Silhouettes can be easily obtained by background subtraction and subsequent 

measurement is rather straightforward, but they are helpless to a lot of forms of ambiguities 

since many observations generated by different hypothesis may yield almost the same area of 

silhouette. Moreover, non-static backgrounds and shadows will cause segmentation errors for 

silhouettes. The intensity (color) cues are robust to spatial rotation, non-rigidity and partial 

occlusion. However, variance of lighting conditions often causes troubles for this feature. 

Motion cue based on optical flow computation is less frequently adopted now because it 

leads to a relatively heavy burden of calculation.

Physical constraints are often imposed to reweight the results obtained by the measure­

ment function ([7] [36] [39] [24] [21]), so unrealistic solutions can be avoided. We should 

notice that this imposition of joint limits should not be confused from a similar implemen­

tation in the sampling or prediction stage of particle-filtering-aided human tracking. There, 

the physical constraints help to directly improve the prior distribution.

For the work in which multiple image cues are combined, the overall measurement func­

tion is often defined as the multiplication of individual measurement functions (or the sum of 

their logarithmic version). It is based on the assumption of statistical independence (naive 

Bayesian model) of these cues. Roth et al. argue the reasonability of this assumption by 

showing the strong dependence existing between different measurements [42]. In place of the 

naive Bayesian model, they develop new image likelihood model based on Gibbs sampling 

theory. Their experimental results show that the measurement function obtained with the 

Gibbs model yields a distribution much more approximative to the ground-truth distribution 

than naive Bayesian model.

Democratic integration [43] fuses different cues together and adaptively varies their 

weights through evaluating tracking errors caused by each of them. However, since a re­

liable measurement of tracking error is not available (otherwise there is no need to track 

at all), most multi-cue fusion methods are still based on constant weight schemes [11] [44]. 

Even for the determination of fixed weights there has not been a perfect solution. A possible
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approach is to learn this knowledge as a prior by testing all candidate features on exemplar 

motion video sequences. However there is no guarantee that an image feature which is good 

as a measurement for the training database will be suitable for all videos because of the 

complexity of motion and the capture environment.

Sampling and Search Strategy

The core of a tracking algorithm is its mechanism of searching for configurations which 

interpret observations best. For this reason a rich body of technical fiterature was devoted 

to designing an efficient sampling and search strategy. Basically the two tasks are towards 

the same goal and are closely linked: a good sampling strategy will substantially increase 

the efficiency of searching and a proper search strategy will increase the possibility of finding 

extrema. Therefore we regard them as an integrated aspect.

Most human motion trackers are based on particle filters (we will give detailed intro­

duction for the particle filter in Chapter 3). Application of particle filters (or Sequential 

Monte Carlo Sampling) in the computer vision society can be traced back to the CONDEN­

SATION algorithm [17]. Although it does not touch the topic of articulated-model-based 

human tracking, it does encourage much successive work in this field.

To improve the performance of particle filters, the central issue lies in developing an effi­

cient way to do searching in high dimensional state space. Commonly, physical constraints 

like joint angle limits [40] are imposed on state vectors to help crop the unreasonable regions 

from search space, as mentioned in the last subsection, but more advanced ideas are neces­

sary. A natural consideration is to decompose the state space. Some work locates human 

body parts with evident features in each frame separately by body template matching [22]

[45]. It is a more general case of the discussed template matching for bottom-up trackers 

and automatic initialization: When all the body parts are detected with template matching, 

it is for the bottom-up tracker; when template matching is only applied to the first several 

frames it is for automatic initialization. Since the cost of exploring a state space increases 

exponentially with the space’s dimensionality, we can expect to save search cost greatly with 

this method. However, as we have mentioned previously, the cues used to detect and label
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the body parts are not always available or robust, so the performance of the detectors is not 

reliable enough.

Prom a different aspect, researchers have considered exploring the relationship of the 

target function with state space so as to sample more reasonably. The efforts diverge into 

two branches. Some are based on the original CONDENSATION framework; trying to define 

a robust dynamical model, i.e. a state transition distribution. An extensively used dynamical 

model is the general constant velocity model [21]. The prototype of this model seldom yields 

acceptable tracking results without révisai or help from outside. A refined version which 

derives the process noise for this model from an uncertainty description matrix is available 

in [32]. Zhou and Chellappa propose an adaptive velocity model [50] but actually this 

provides only limited improvement in performance. To particularly track human walking. 

Moon and Chellappa utilize much explicitly prior knowledge about this motion type [7], 

including left-right symmetry and periodic patterns, etc. In [31], Sidenbladh et al. explore 

human motion patterns by learning data from a motion capture database as an extension of 

their earlier efforts in learning only a walking model. This learning, as opposed to Moon and 

Moon’s approach, is an implicit one. Urtasun and Fua [26] also develop a similar approach. 

By adopting PC A they were able to reduce the dimension and match the motion history in 

the target video sequence with motion templates. The closest template will then guide the 

tracking procedure. Similar in spirit. Hidden Markov Model (HMM) is utilized to segment 

human motion into fixed states. Zhao and Nevatia [41] defines the locomotion model for 

standing, running and walking and allows switching between the three modes. There are 

16 states for running, 16 states for walking and 1 state for standing. Lan and Huttenlocher 

[27] also learn a motion template for walking, but since their model is a 2D one, they add 

the states for a certain number of different views as well. However, the methods of learning 

motion models or templates impose too strong motion constraints to be used for tracking 

general human motion, which can never be thoroughly included in a typical motion capture 

database.

As such, there has been more of a move toward borrowing ideas from sampling theory.
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In [16], Isard et.al. proposed ICONDESATION based on importance sampling, which forced 

particles to be generated from the "important area” of the state space. Those areas which 

produce samples with low importance are neglected since they "waste” the "energy" of parti­

cle filters. The approach helps to improve efficiency of sampling when auxiliary information 

about the state-space distribution is available as a form of importance function. The un­

scented particle filter (UPF) [23] is an application of the "importance sampling" concept, 

albeit much more general than the work in [16]. It draws particles from a proposal distrib­

ution which is determined by the calculation result of the unscented Kalman filter (UKF). 

Sminchisescu and Triggs develop a proposal density based on local parameter estimation 

uncertainty [40]. Along the lowest few covariance eigen-directions, sampling is implemented 

with covariances scaled by a factor from 8 to 14. The generated samples are refined by a 

deterministic Hessian-based optimization algorithm.

A typical problem frequently encountered when doing high-dimensional state space search­

ing is that samples are often trapped in local extrema and fail to escape from them. Deutscher 

et. al. developed the annealed particle filter (APF) [15], which originates from the simulating 

annealing algorithm of optimization theory. The algorithm pushes the samples gradually to 

the global maximum of weighting function by progressively adjusting the sensitivity of the 

weighting function. This work was then extended to an amended annealed particle filter [19] 

by making the drift of joint angle configurations adaptive and by introducing crossover op­

erator from another optimization algorithm the Genetic Algorithm (GA). GA is also applied 

in [37] although there it is not based on particle filtering framework. In a similar research 

direction, Sminchisescu and Triggs presented hyperdynamies importance sampling which is 

motivated by computational chemistry theory [18]. The algorithm can guide samples moving 

to low-cost negative curvature regions which may lead to neighboring cost basins, and hence 

avoids local minima trapping.
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2.3 Sum m ary

In this chapter we gave an overview on previous major work and recent progress in the area 

of human motion tracking. We focus on the articulated-model-based trackers, especially 

those aided by the particle filters, because they are able to handle general full-body motions 

and have promising future for practical applications. They are also the ones which have 

been relatively thoroughly investigated. Besides particle filters, bottom-up approaches are 

becoming more and more popular in that they require relatively less complicated algorithm 

design procedure and that they are easier to be initialized.

For the selection of model, as we see from Table 2.1 a 3D articulated one with 10-17 seg­

ments and 22-32 DOFs is usually competent for the task. It can handle motion in arbitrary 

directions while avoiding a totally intractable high-dimension vector space. We must also 

manage the balance between the simplicity of the segment shape and achievable geometric 

fit. The model which is built by attaching a highly accurate 3D mesh surface to articu­

lated skeletons may be widely adopted in the future although it provides a huge challenge 

for initialization. 2D models can accomplish the tracking task only in a few particular sce­

narios, and they are losing their advantage with the emergence of more and more powerful 

computers.

Initialization for articulated 3D human body models is basically an unresolved problem 

by far. Although partial success has been achieved, a general reliable automatic initialization 

algorithm is still in absence. We expect new breakthroughs to be made with the help from 

bottom-up approach and multi-view motion segmentation approaches.

Multi-cue fusion is absolutely necessary for robust tracking in monocular image sequences. 

Most of the previous work focuses on discussing what image features to track rather than on 

exploiting how different features affect each other when combined. For further improvement, 

a method to adaptively adjust relative weights of different cues is necessary. To this end we 

hope to know how to evaluate the performance of each individual cue on-line in the future.

Most significant research on human tracking takes place in the field of designing an 

efficient search and sampling strategy. The simplification of the state transition distribu­
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tion based on the Markov process assumption has shown its incapability when dealing with 

complicated human poses. Trade-off has to be made between the ability for handling an 

abrupt change of motion pattern and the efficiency of searching. Knowledge of statistics and 

optimization theory has been widely applied and we believe they will guide the future of 

vision-based human tracking research.
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Chapter 3 

Particle Filter

Particle filters take a lot of forms across a variety of literature. In the statistics community, 

the method is know as Sequential Monte Carlo Sampling; In the artificial intelligence com­

munity, sometimes it is called survival of the fittest; In the field of computer vision, its name 

becomes the CONDENSATION algorithm. It provides a robust Bayesian framework for the 

visual tracking problem and therefore is widely adopted. We will start from formulating the 

articulated model-based human motion tracking problem, and then introduce the statistics 

theory related to solve this problem before moving to the application of particle filtering.

3.1 Problem  Form ulation for V isual Tracking

In an articulated model-based human motion tracking problem, joint angles together with 

global translation and rotation parameters constitute a state vector. This vector gives a 

complete description for the pose of human. Therefore, the tracking problem can be formu­

lated as recursively estimating state at each time step according to a posterior distribution 

p(Xo:fc I Yi:fc) where Xo.-fc =  {Xq, X%,. . . ,  X^} are the state vectors up to and including time 

k and =  { Y i,. . . ,  Y^} are the observations in the same period of time. In addition, 

we are particularly interested in p(X^ | Yi;t), which is the so-called filtering process. By 

Bayesian Inference [17]:

p(Xfc|Yi:fc) =  Afcp(Y,. I Xfc)p(Xfc I Yi,fc_i)

2 1



=  X,p{Y,  I Xfe)

\ f \ r  I V  \ /* ^ 0:A;—1) p(X o:fc—1)
=  m y ,  IX ,) y  — p(Y .„-.)

=  ^,P(Y , I X ,) y  p(X , I Xo;fc_l, Yi;,_i)p(Xo:,_l I Yl:fc-l)dXo:fc-I (3.1)

where At is a normalization constant that is independent of Xfe.

We can further simplify Equation 3.1 if the human motion dynamics are assumed to 

form a temporal Markov chain, then the new state is conditioned directly on the immediate 

preceding state and independent of the earlier history:

p(Xfc|Xo:fc_i)=p(Xfe|Xfc_i) (3.2)

and if observations are assumed to be independent, both mutually and with respect to the 

dynamical process, then:
h—1

p(Xfc, I Xo:fc-:) =  p(Xfc I Xo:fc-l) ]][ p(Y, I X,)
1 = 1

=  P(Xfc I Xo:fc-i)p(Yi;fc_i I Xo;fc_i) (3.3)

Now:

p(Xfc|Xo:fc_l,Yi:fc_i) =  p(Xfc, Yi:fc_i | Xo:fc-l) ~ T

= p(Xfc I Xo;fe_l)

=  p{Xk I Xfc-i) (3.4)

and it follows that Equation 3.1 is reduced to:

p(Xfc I Yi:fc) = Afep(Yfc 1 Xfc) J  j p(Xk I Xfc_i)p(Xo;fc-i 1 Yi:fc_i)dXo;fc_2dXfc_i

=  Afcp(Yfc 1 Xfc) I p(Xfc I Xfc_i)p(Xfc_i I Yi,fc_i)dXfc_i (3.5)

Hence, some specifications are necessary for a recursive solution to human tracking problem: 

•P(Xo): leads to the implementation of initialization.

•P(Xfc I Xfc_i): leads to the definition of a dynamic model.

•P(Yfc I Xfc): leads to the definition of a measurement function or image likelihoods.
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3.2 The M onte Carlo Sim ulation

The Monte Carlo simulation tries to approximate a target distribution p(X) defined on a 

high-dimensional space % by drawing a set of independent and identically distributed samples 

}i=i,...,N from it and representing it as an empirical point-mass function:

where J^«)(X) denotes the delta-Dirac mass located at X^*\ Actually, in many cases, 

describing a probability distribution is not our primary objective; we wish to obtain a rep­

resentation of the expectation or some other statistical property for a state. For instance, 

in the human tracking problem we are interested in computing the expectation of current 

human pose state. To this end a sampled representation of integrals must be developed. 

Now we use the sums /iv(/) to approximate the integrals I{f) as:

M f )  =  -^ E  I  i f )  = [  f{X)p{X)dX.  (3.7)
^  i=l -/X

According to the strong law of large numbers, this estimate will converge to the target 

expression when the number of samples N  approaches oo. We can also obtain the maximum 

of an objective function as follows:

X  =  arg max p(X^'^) (3.8)
X “>;i=l N

Actually the expectation and maximum of the sample set are two alternative options for 

making decisions in the human tracking problem, as we will see later.

The direct Monte Carlo integration method is simple to use and understand, but also 

has its limitations. When the target distribution is too complex to allow easy generation of 

independent samples, this method is not applicable anymore. For example, in our tracking 

problem we wish to get a representation of p(Xfc | Yjjfc) by sampling, but obviously direct 

Monto Carlo integration is not possible.
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3.3 Im portance Sam pling

Importance sampling is a Monte Carlo method which is used for approximating distributions 

of interest by drawing samples from available auxiliary density [60]. It improves the efficiency 

of sampling by concentrating on regions of state space which contain most information about 

the posterior distribution. Assume that there is a distribution for X  we wish to sample 

from. It is with probabilities or probability densities that are proportional to the function 

p(X). Assume also that the value of p(X) for any X  can be evaluated, but that we are 

unable to directly sample from it because of its complexity, which is exactly the situation 

addressed in Section 3.2. As long as we are able to directly sample from another distribution 

which approximates the one defined by p(X), and this distribution is with the probabilities 

or probability densities proportional to the function g(X), we will be able to rewrite the 

integral / ( / )  as:

/(/) = J  f{X)w{X)g{X)dx  (3.9)

where w{X) =  is called the importance weighting function. It is now clear that if 

we obtain a set of i.i.d. samples {X^‘̂ }f=i,.„,Ar from the distribution defined by g{X), then 

according to the Monte Carlo simulation, the sum:

/w (/) =  E / ( X ( ‘))«;(X«) (3.10)

will converge to / ( / )  when JV—> oo provided g(X) ^  0 and p(X) ^  0. Here the correction 

term compensates for the uneven distribution of sample positions. By

examination we can also regard this method as a sampling strategy in which the posterior 

density function p(X) is approximated by

p jv (X )  =  f )  5̂ ( o ( X ) u ; ( X W )  (3.11)
2=1

It becomes obvious that / / /( /)  is nothing but the function /(X ) integrated w.r.t. the em­

pirical measure p//(X). In the inference of above equations, we make a default assumption 

that p(X) and g{X) are exactly the distribution densities themselves, i.e. / p(X)dX = 1
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and /  g(X.)dX. =  1. In a more general case, where p(X) and g(X) are not necessarily the 

density functions but proportional to them, Equation 3.9, Equation 3.10 and Equation 3.11 

should be rewritten as:

The accuracy of the estimation by importance sampling depends on the variability of 

w{i). When w{i) have large variance, it means that the estimation will be effectively based 

on only a few samples with the largest weights, and hence the approximation of g(X)  to 

p(X)  is not valid. When x is high-dimensional and p(X) is multi-modal, the specification 

of a usable auxiliary distribution g(X)  usually becomes very difficult. In the ICONDEN- 

SATION algorithm [16], Isard and Blake do not combine two available measurements to 

evaluate the resemblance between hypothesis samples and ground-truth, which is a strat­

egy widely adopted by most other visual tracking work. Instead, they make use of one of 

the measurements to generate the desired auxiliary distribution g(X). This is a reasonable 

method to realize importance sampling for complex distributions. The disadvantage is that 

some independent information of different measurements is discarded and can not be utilized 

to weight the samples.

3.4 Sequential M onte Carlo Sam pling

Based on the discussions in Section 3.2 and Section 3.3, and the problem formulation in 

Section 3.1, the Sequential Monte Carlo Sampling method is ready to apply. We wish to use 

N  samples (or particles) at time step k — l{X |’li}[^iwhich are approximately distributed 

according to the distribution p(Xk-i  | Yi;k-i) to compute the sample (or particle) set at time 

step In an ideal situation, we can represent the posterior according to Equation by
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drawing from it. Unfortunately directly sampling from the posterior is impossible,

so we will introduce an appropriate importance proposal distribution g(X.k | Yi;fc) from 

which we can draw samples to help accomplish the task. The posterior will be represented 

according to Equation 3.11 and the weights are given by:

I Yl:k)
I Yi:fc)

^(Xfc^) — J [ (3.15)

From Equation 3.4 it follows that:

p (X «  I Yi:fc) =  p{Yk I X « ) p ( x f  I I (3.16)

and we know:

5 ( x f  I Y^:k) = g(Xi') I I Y,:k-i)  (3.17)

Substituting the above equations into Equation 3.15 ,we obtain:

.y-d). _  p(Yfc I xi'))p(x(') I X « J p ( X « ,  I Yi:fe-i)
'  p (X « |X i^ i,Y fc )p (X « jY i:fc_ i)

■

A method to recursively evaluate the posterior is now available, but we still need to specify 

the proposal distribution g{-). The optimal proposal distribution is given by

P(Xi') I X « i ,  Yfc) =  p ( x f  I X « i ,  Yfc) (3.19)

However, for simplification, the traditional particle filters use the transition prior to generate 

samples:

5 ( x «  I xi?!i, Y ,) =  p (X «  I x i ' l j  (3.20)

Then the weights become:

u;(X«) =  u;(X ^Jp(Y k I X « ) (3.21)

Although attractively simple for implementation, this approach usually results in impor­

tant weights with high variance. The reason is obvious: by comparison of p(X|.*̂  | x j^ l j
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and I we can see that the observation at time step k - Y* is lost by this

simplification.

We summarize a typical particle filter step as follows:

The Particle Filtering Algorithm

At time step k, starting with a sample set:{Xj?li,u;(X^*li)}^i:

1 Selection: select a new set of samples {X^*^}^i from according to w(Xj^A )̂.

The samples with a larger weight should be selected with a higher probability.

2 Prediction: Sample from the importance function :

{X«} ~  g { X f  I X « , Yfc) i =  1 ,2 , . . . ,  iV (3.22)

3 Measurement: Evaluate the weight for each sample:

(3.23)
s(X<-> I X<'>, Y t)

where the p(Yfc | X̂ *̂ ) is the image likelihood and p(X|.'^ | X|.*̂ ) is the dynamical 

model. Then normalize the weight so that S Ü i w(X^'^) =  1

4 Representation: Estimate the state at time step k as:

Xfc =  argmax^(o..^j ^^(Xfc^) (3.24)

or:

Xfc -  E[Xfc] =  f :  n ;(X «)X « (3.25)
1 = 1

Here the measurement represented by Equation 3.23 does not include the item r/;(X|.*li) since 

this factor has already been considered when we do the selection. Note that in the prediction 

stage, if we sample from dynamical model according to Equation 3.20 and in the measurement 

stage, weight the samples according to Equation 3.21 instead, then the algorithm reduces 

to a traditional CONDENSATION particle filter. We illustrate the particle filtering process 

with a 10-sample example in Figure 3.1.
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particles
D o o

Figure 3.1: Illustration of particle filtering process

3.5 Som e Im plem entation  Issues

Sam ple Selection; At the beginning of each time step, a new set of particles need to be 

selected from the posterior particle set of last time step according to their weights. The 

following is a simple and efficient selection strategy:

1. generate a random number from uniform distribution /? 6 [0,1].

2. based on binary subdivision, find the smallest i which satisfies c(X^A^) > r. Then 

c(X[’l i )  is determined after w(X[*li) are normalized in the last time step by

= 0 

c (x E ,)  =

(3.26)

(3.27)

3. select X^l^ as X^^for successive processing.

Decision M aking: The ultimate goal of human motion tracking is to find the pose con­

figuration from video rather than to approximate a distribution. There are several ways to
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develop a representation for a desired state vector. As we mentioned in Section 3.2., the 

two most popular choices are the maximum likelihood representation and the expectation 

representation as in Equation 3.24 and Equation 3.25. The expectation decision is a more 

stable estimation. It ensures that there will not be any too nonsensical or ridiculous result. 

But if there are multiple maxima in the posterior distribution, or even if there is only one 

maximum but the distribution is quite flat, the result obtained by this approach will be 

greatly biased. Therefore, we prefer the maximum likelihood decision in our work since it 

represents the optimal solution available at the current iteration. The flaw of this method is 

that sometimes the estimate tends to "jump around" over time when the number of particles 

is limited because the condition of law of large numbers is not well satisfied.

N urriber of Particles: According to the law of large numbers, we know that the approxi­

mation to the posterior gets improved when the number of particles increase. However, we 

can not use too many particles since the factor of computational cost must be considered. 

It is reported by some literature that for the traditional CONDENSATION algorithm the 

number of particles N  will be sufficient if:

N  > (3.28)

where Dmm is the survival diagnostic and a  is the survival rate [45]. These two parameters 

evaluate the effective number of particles after one filtering iteration. Since a  -C 1, for a high­

dimensional problem like human motion tracking, the required number will be prohibitively 

large. But with some improvement strategy, this anxiety can be relieved to a large extent.
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Chapter 4 

From 3D World to 2D Images

Human tracking from monocular video sequences is basically a 3D reconstruction problem 

based on 2D image information. It involves a lot of projections and geometric transforma­

tions. In this chapter we will discuss the spatial relationships between the articulated human 

model, the scene and the camera.

4.1 R igid  G eom etric Transform ations

According to the knowledge of kinematics, individual motions are roughly categorized into 

rigid motions and non-rigid motions. Non-rigid motions can be regarded as deformations 

which change the shape of an object. The deformable motions of any point on the object are 

independent of those of other points and must be determined separately. Therefore many 

control points have to be set to describe this kind of motion. In case of rigid motions, the 

relative distance between any two sets of points on the same object remains invariant, and 

then the 3D structure of objects can be modelled as a non-deformable surface [59]. A very 

important result from this assumption is that the motion parameters (displacement, velocity, 

acceleration, direction etc.) of each single point on a rigid object are sufficient to represent 

the motion status of the whole object. In our work, although the human body as a whole 

is deformable, its every single part can still be assumed as a rigid object and to undertake 

rigid motions. Except those caused by extremely loose fittings, in most cases the non-rigid 

motions associated with body segments are trivial and thus can be ignored. Actually we are
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more interested in describing human motions as different combinations of the state of each 

body part, so we only consider rigid motions here.

Although rigid geometry transformations are developed to describe rigid motions in a 3D 

coordinate system, it can also be utilized to describe the relative positions of two objects. 

Actually the latter case is encountered even more frequently in our work. When we design an 

articulated human body model, we must consider the fact that each body part has different 

effects on others. For instance, when the torso moves, the positions of all the other body 

parts are unavoidably changed with it. However, when the upper arms are in motion, only 

the lower arms and hands are affected. The movement of hands can change the position 

of no other body parts but itself. Therefore, it is usually convenient to build the human 

body model hierarchically and describe the spatial location of body parts hierarchically. On 

the other hand, to simulate the image formation process we often need to switch between 

multiple different coordinate systems. Both of these implementations require handling rigid 

transformations.

Only two kinds of rigid transformations are defined: translation and rotation. A rigid 

transformation can be fully described by a translation matrix T  and a rotation matrix R:

P ' =  R P  +  T (4.1)

where P  =  [x, y, and P ' =  [a/, ÿ,  are the coordinates of the point before and after 

the transformation. R  is a 3 x 3 Matrix and T  =  [Ti, Ty, is the translation vector. A 

rigid rotation can be regarded as a combination of rotations around three coordinate axes. 

Assume that the Eulerian angles of rotations about x  axis, y axis and z axis are Ox, Oy and 

9z, respectively, the individual rotation matrices are:

■ 1 0 0 ■ co s Oy 0 s in  Oy ' ’ COS 02 — sin 0 2 0 ■
R i = 0 COS Ox — sin Ox ) — 0 1 0 ) H-2 — sin 0 2 cos 0 2 0

0 sin  Ox cos Ox _ — sin 0 cos Oy _ 0 0 1
(4.2)
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and thus the overall rotation matrix is given by:

cos 0y cos 6z — cos C7y sill Oz
sin Ox sin Oy cos Oz +  cos Oy sin Oz cos Oy cos Oz — sin Ox sin Oy

— cos Ox sin Oy cos Oz +  sin Ox sin Oz cos Ox sin Oy sin Oz + sin Oy

[46] that the matrix for a rotation around an arbitrary axis through the

nxTiz{l — cos a) +  riy sin a  ' 
ayUzil — cos a) — n^sino; 

+  (1 — nl) cos a
(4.4)

R  =  R iR yR j =

It is also shown in 

I is:

cos Oy sin Oz sin Oy
z — sin Ox sin Oy sin Oz — sin Ox cos Oy 
y sin Oz + sin Oy cos Oz cos Ox cos Oy

(4.3)

axis 1

origin

+  (1 — nl)  cos a nxny{l — cos a) — Uz sin a  
R-jÿ =  nxny{l — cos a) +  Uz sin a  +  (1 — n^) cos a nyUz{l — cos

«2 ( 1 — cos a)Ouy sin a  UyUzll — cos a) +  sin a

where i f  is a vector from (0,0,0) to (%, Uy, Uz) and or is the Eulerian angle of rotation around 

i f .  We plot the two kinds of rotations in Figure 4.1.

U'a,7l5;(l

z

Figure 4.1: Rotations about three coordinate axes and arbitrary axis.

4.2 H om ogeneous C oordinates and th e C hange o f Co­
ordinates

Equation 4.1 is not a convenient representation for rigid transformation. It is more effective 

to use a single matrix describing both the translations and rotations so as to increase the 

implementation efficiency. This goal can not be achieved in the old Cartesian coordinates 

because of the existence of addition operation. A more appropriate coordinate representation,
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homogenous coordinates, is then introduced to address the problem. The definition of the 

homogenous coordinates for a point with Cartesian coordinates [x, y, is:

Pk =

sx
sy
sz
s

(4.5)

where the s denotes a scale factor. Note that although the mapping from the Cartesian 

coordinates to the homogeneous coordinates is unique this is not true inversely. For example, 

the homogenous coordinates [x,y ,z , \Y  and [a:/2, y/2, z /2 ,1/2]^ refer to the same point in 

Cartesian coordinates. Now the rigid transformation can be described by a single 4 x 4  

matrix M  when P  and P ’ are represented by homogenous coordinates:

P ' =  M P (4.6)

or explicitly:
' x' ' ■ ri2 ns 0 ■

y' r2i f'22 2̂3 0
z' 3̂1 3̂2 3̂3 0

. 1 . .  % Ty T, 1 .

’  X  '

V
z

. 1 .

(4.7)

n i ri2 ri3
where î’21 V22 1'23

. 3̂1 r32 1'33
all the points in one

is the rotation matrix. Now if we want to change coordinate system,

all the points in one system can be mapped to the other through Equation 4.6 provided 

matrix M  is known.

4.3 P erspective P rojection

The pinhole perspective projection model, which is firstly proposed in the 15th century by 

Brunelleschi is mathematically convenient and provides acceptable accuracy for the approx­

imation of the image formation process. In this model we regard the camera that is used 

to capture videos as an ideal pinhole camera. According to the principles of geometrical 

optics, all the rays refiected by an object will pass through the center of camera lens. For
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this reason it is also called the central projection. Real perspective projection yields an in­

verted image, but for convenience usually a virtual image plane is assumed to be positioned 

in front of the camera and symmetric to the actual one with respect to the pinhole. Figure 

4.2 illustrates the perspective projection. From Figure 4.3 we can derive algebraic relations

WorldOptical Axis
CoordinatesCOP Image Image

Coordinates
Plane

Figure 4.2: The perspective projection

im

C O P
projection

plane

Figure 4.3: Derivation of perspective transformation
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Xim \ r t ]
Vim . n .

for the projection transformation easily with the knowledge of similar triangles:

(4.8)

where {xim, yim) are the image coordinates of the projection of P , {xc, ^c) are the camera 

coordinates of P  and /  is the focal length of the camera. When the coordinates of P  

are given in the form of world coordinates {xw,ywtZw), we need additional specification of 

the rigid transformation matrix for calculating the image coordinates. The transformation 

characterized by Equation 4.8 is nonlinear. However, we can make a linear mapping for 

perspective projection by transferring into the homogenous coordinate system:

lyim
I

/  0 0 0 
0 / 0 0  
0 0 1 0

■ kXc '
kyc
kZ(*
k

(4.9)

where /, k are scale factors as the s in the definition of homogenous coordinates.

4.4 Cam era Calibration

From perspective projection we see that to simulate image formation several parameters have 

to be known first. They include the center of image plane, the focal length of camera and the 

relation between camera coordinates and world coordinates. We classify these parameters as 

intrinsic ones and extrinsic ones. Intrinsic parameters are solely determined by the inherent 

properties of a camera, including the focal length, center of image plane, distortion of lens and 

skew coefficients. Extrinsic parameters describe the spatial characteristics of a camera, such 

as the position and orientation of the camera with reference to a defined world coordinate 

system. The process of estimating these camera parameters is called camera calibration. In 

this process we assume that some known features such as points or lines with known positions 

in a reference coordinate system are available. Hence the calibration can be considered as 

an optimization problem where the discrepancy between the observed image features and 

their theoretical positions is minimized with respect to the camera’s intrinsic and extrinsic
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parameters. There are two main steps for camera calibration. In the first step intrinsic 

parameters are obtained. Based on them, extrinsic parameters are then calculated in the 

second step.

1001

2501

3001

3501

4001

4501

The red crosses should be close to the image corners

100 200 300 400

Figure 4.4: Camera calibration

We use the MATLAB camera calibration toolbox which is developed by Intel to aid 

our calibration. The toolbox is based on perspective projection theory and the calibration 

algorithm developed by Heikkila and Silven [46]. The procedure of calibration with this 

toolbox is as follows: Firstly, a checkerboard pattern with known size is created. We vary 

the orientation and position of the pattern and capture the process as a video sequence.Then 

a suitable number of frames were selected as the calibration images. Usually a sequence with 

20-30 images is sufficient for the convergence of result. Too many images will only make the 

procedure unnecessarily burdensome. For each calibration image we mark the four corners 

of the checkerboard pattern and specify the size of the grids. Then the toolbox will try to 

extract corners of each grid. The estimate of the grid corners are subject to rectification 

from the user. In this manner the mean square error of the estimate can be calculated.
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After a certain number of iterations, the estimate of grid corners will become accurate and 

the calibration result converges. The algorithm in [46] adopts an 8-DOF camera model. 

Since we are only interested in some of the parameters for the simulation of perspective 

projection, those parameters which describe the lens distortion and the skew of camera are 

ignored due to the fact that these effects are not evident in our work. The estimate of 

extrinsic parameters also follows the procedure of marking checkerboard pattern corners 

and automatically extracting grid corners, but it is only implemented for a single image 

(iteration) based on the known intrinsic parameters. The origin of the world coordinate 

system is specified as one of the checkerboard pattern corners. Displacement of the camera 

with regard to this corner is encoded in the form of translation and rotation matrixes. 

It is beneficial to select a fixed position in the shooting scene and make it coincide with 

the assumed world coordinate origin. If the subject starts from this position when we 

capture the human motion video, the initialization for the tracker will become much easier, 

since 6 DOFs are already determined by the extrinsic parameters. Figure 4.4 illustrates 

an intermediate step of our camera calibration procedure with the MATLAB toolbox and 

Figure 4.5 illustrates the extrinsic parameter estimate result.

4.5 3D A rticu lated  H um an B od y M odel

Following the typical human motion tracking method, we build a 3D articulated model which 

is composed of 14 segments to represent human body. These segments include head, neck, 

upper and lower limbs, torso and feet. All of them are modelled as truncated cones except 

the head, which is represented by a sphere. Geometric parameters such as the radius and 

height of the truncated cones correspond to anthropometric data of humans, so they are 

assumed to be constant during the whole tracking process. We have not realized automatic 

initialization by far so these values are obtained through a manual initialization procedure.

As we mentioned earlier, this model has a hierarchical structure so as to address the 

different effect yielded by the motion of each body segment on others. We illustrate this
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Figure 4.5: Extrinsic parameter estimate result
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RUA = Right Upper Arm RLL = Right Lower Leg

RL A = Right Lower Arm LF = Left Foot

LLA -  Left Lower Arm 
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LUL = Left Lÿper Leg

Figure 4.6: The proposed 3D articulated human body model and its hierarchical structure 

structure in Figure 4.6. As we can see, the root segment is the torso; all the other body
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parts form its child branches or grandchild branches. Thus, each body part can only affect 

its own children. We define a global coordinate system for the model with the origin located 

at the bottom center of torso. Each body part also has its own local coordinate system. 

Its origin coincides with the joint which connects this body part to its parent. Figure 4.7 

illustrates three connected limbs: a lower arm, an upper arm and a torso. According to the 

rigid transformation we have discussed, the points on the lower arm have model coordinates 

which can be represented as:

(4.10)

where M i^  and M 21 are 4 x 4  homogenous geometry transformation matrices which transfer 

upper-arm coordinates into model coordinates and lower-arm coordinates into upper-arm 

coordinates. Therefore, at any moment as long as we have the knowledge of the joint angles.

1 ■ T%2 ■
ATm
XZjn

— N Ii„,
7Z1

=  M im M 2 i
t F2
TZ2

. A . . 7 . T

Figure 4.7: Connected body segments and their local coordinate systems

we will be able to determine the global model coordinates for any point on the body model. 

Armed with the information specifying the relation between the model coordinate system 

and the world coordinate system, we can further determine the position of the point in the 

world frame. It is based on this fact that joint angles plus global translation and rotation 

parameters are said to be “complete” for describing the pose and the position of a human. 

They together form the DOFs of a human body model. Note that the local translation
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Joint Rotation Axis Range (Degree)
Neck X 90

y 90
Shoulder X 225

y 255
z 180

Elbow y 180
Hip X 180

y 135
z 180

Knee y 150

Table 4.1: Range of joint angles

matrix is already known in the form of geometrical parameters of body model segments. 

To reduce the dimension of state space we truncate some unimportant joint angles. For 

example, although feet are present in our model, no DOF is assigned to the ankle joints. 

Hands are not separately modelled but regarded as the extension of lower arms. As a result, 

there are 24 DOFs assigned to this model in total. Among them 18 are joint angles, 3 

global translation parameters (Tx,Ty,Tz) which describe the position of hip joint in the 

world coordinate system, and 3 global rotation parameters (ipxfipyjipz). We illustrate the 

model in Figure 4.6 with all the DOFs marked.

Joint limits are widely adopted to avoid unreasonable configurations of articulated human 

model. The range of joint angles used in our work is summarized in Table 4.1. They are 

learned from common knowledge and are just rough. Further narrowing down the ranges is 

possible if we investigate on the statistics of human kinematics in the future.

4.6 Sum m ary

In this chapter we have presented all the factors concerning the relationship between 2D 

images and the 3D world. Their roles in a human tracking system can be summarized as 

follows. Rigid transformation allows us to determine the spatial relationship between model 

coordinates, camera coordinates and world coordinates. The movement of any human body
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part is first described in a model coordinate system to form a 3D pose together with motions 

of other body parts. Then the 3D pose is positioned in a 3D world frame and generates an 

image on the projection plane of a camera through the perspective projection. The necessary 

parameters for simulating the perspective projection come from camera calibration. The 

consideration about computation efficiency drives us to choose homogenous coordinates to 

facilitate implementations in these procedures. We show the connections by a block diagram 

in Figure 4.8.
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Figure 4.8: The image formation process

An image obtained through this process is called a hypothesis observation since it is 

generated by the articulated human model. In contrast, the captured human motion video 

sequence is called the ground-truth observation. Assume that there are no intolerable errors 

in the simulation of image formation, the model’s pose which is similar to the ground-truth 

human pose should lead to a hypothesis image very close to the ground-truth image. This 

is the principle for judging the correctness of a tracking hypothesis, and it poses another 

problem which is to be discussed in the next chapter.
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Chapter 5 

Fusing Multi-Cue for Tracking

A critical step of human tracking with the particle filter is the calculation of the weights of the 

particles. In traditional particle filters, they are solely determined by the weights in previous 

iterations and the current image likelihood, i.e. For a more accurate weighting,

we should consider not only the image measurement but also some other factors, as we can 

see from Equation 3.18. But it is still one of the most important issues in designing a visual 

tracker. The measurement function should be able to evaluate the resemblance between 

image features generated by hypothesis and those generated by ground-truth human pose, 

as the criterion for judging the correctness of hypothesis. An ill-conditioned measurement 

function will produce an undesirable effect on the tracking result or may even lead to total 

failure. In this chapter, realizing the importance of the measurement function, we specify 

our method in building a robust measurement function which fuses multiple image cues.

5.1 D ata  A cquisition  and S ilhouette E xtraction

The color video sequences used in our work are captured by a digital video camera in various 

indoor environments. During the capture process we ensure that there are no evident changes 

or moving objects other than the human subject in the scene. In some of them, a bluescreen 

background is used. The camera is located in a fixed position and there are no zoom effects in 

the video sequence. In other words, the intrinsic and extrinsic parameters remain invariant. 

The lighting condition is normal and the subject is equipped with no markers.
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The color images can be directly used to generate intensity cues, but features such as 

area of silhouette and boundary usually need silhouette images as a starting point. The 

conditions of data acquisition make it possible to extract silhouettes by implementing back­

ground subtraction. To this end, we build a background model though an A/'-frame (usually 

N >  100 is sufficient) pure background video sequence under the assumption that the in­

tensity value of each background pixel follows a Gaussian distribution. Pixel differencing is 

implemented between the human motion video frames and the mean of background model. 

Then a threshold with the value 2-3 times of standard deviation of background pixel is set 

for binary silhouette extraction. The background model can be updated on-line with each 

new human motion video frame coming in. Shadow removal is then applied to refine the 

silhouettes [47]. Figure 5.1 shows a video frame and the final silhouette extraction result. 

To avoid redundancy in the repeated experiments we extract silhouettes once for each se­

quence off-line. However we can also carry out the process on-line. For the video sequences 

in which background is bluescreen, the extraction of silhouettes becomes straightforward. 

Direct thresholding on the Hue channel is sufficient to generate good silhouettes.

Figure 5.1: Silhouette extraction result.
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5.2 M easurem ent Function

Our goal is to design a measurement function which has a significant peak corresponding to 

the ground-truth configuration. We must also reduce as much computational cost as possible 

since sample weighting is the most time-consuming step in particle filter iterations. We have 

learned the importance of multi-cue fusion for building a robust measurement function in 

Chapter 2. In our work we choose area of silhouette, color and boundary as image features 

to track.

5.2.1 Area of Silhouette

Given a silhouette 5 ’ which is extracted from the image projected from a hypothesis pose 

we compare it with the observed silhouettes S, which is generated by ground-truth 

human pose. The pixels are categorized into 2 groups, Ri and R2 with Ri — SCi S ' and 

R2 = SU S \  Let the number of pixels in Ri and R2 be and N2 , respectively, and then 

the silhouette area measurement density can be represented by:

I X ? )  =  ^  (5 .1 )

5.2.2 Color Histogram

We know that image pixels in the region which corresponds to the human subject are gen­

erated by the points on the human body surface through perspective projection. If we want 

to build correspondences between them, an inverse projection is necessary in the case that 

image observations are available. Camera calibration solves the focal length and the relation 

between camera coordinates and world coordinates, and the initialization of the human body 

model provides the relationship between the local segment coordinates, global body coordi­

nates and the world coordinates. Note also that we assume the human body model coincides 

with the real human body after initialization. With the above knowledge and assumptions
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we are able to make an inverse projection from the image to the 3D model:

P, = Mr^(Xo,M"L(Q-'(Pi,E))) (5.2)

where P „  and P , are the body part local coordinates of a point and the image coordinates 

of its projection, respectively; Q is the perspective projection; E  is the extrinsic camera 

parameter learned from calibration; Mmw and Mj„, are the rigid transformation relating 

the model coordinates to the world coordinates and that relating the body segment local 

coordinates to the model coordinate, respectively; and Xo is the initial pose learned from 

initialization.

After the correspondence between model points and image pixels is built through Equa­

tion 5.2, we can construct a reference appearance model for each individual segment of the 

human body. The normalized color histogram is calculated for the surface of the segment 

in RGB color space. The histogram has f bins (in our experiment 10 x 10 x 10 bins are 

used) for each single color channel. Since the monocular videos are a 2D projection of the 

3D scene, unavoidably observations for part of the human body surface will be missing. To 

handle this problem, we make some justified assumptions such as the left-right symmetry 

of the appearance. We also assume that iii the initialization stage there are only limited 

occlusions existing and the occluded part of a body segment has the same color distribution 

as the visible part.

The reference appearance model represented by the normalized histogram is regarded as 

ground-truth and assumed almost constant throughout the tracking process. Starting from 

the first frame after initialization, at each time step k the histogram is built for hypoth­

esis state vector X^^ by following a similar procedure as introduced above. Traditionally the 

difference of the reference histogram and the hypothesis histogram is measured by 

summing the Bhattacharyya distance of all the individual body segment histograms [46,47]:

D(H„ H<‘>) .  Ë Ê  D(H,, H® (5.3)
m=l j=l

where

r« 1 -  É  . (5-4)‘̂ =1 ^
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k is time step index, n is the bin index, j  is RGB channel index, and m  is body segment 

index.

However, there is an apparent flaw in Equation 5.3: it does not consider the relative 

importance of different body parts. Actually errors in estimating the position of the torso 

almost always cause more trouble than errors in estimating the position of a foot. Therefore 

we propose to assign different weights for the histogram of each segment in summing, which 

turns Equation 5.3 into:

D{Hr, H « ) =  E  è  D{Kr, ,„)) (5.5)
m=l j = l

where am denotes the weights of histogram for each individual body segment. This weight is 

proportional to the area of the image patch projected by the body part of interest. We will 

show in Chapter 7 how this change improves the performance of the tracker significantly. 

The color measurement distribution can then be formulated as:

P2(Yfc I X g ) =  (5.6)

where /? is a scalar which helps the result evaluated by Equation 5.6 more reasonably dis­

tributed in the range of (0,1). To make the reference appearance model adaptive to the

variation of lighting conditions in video, an update process can be applied:

H;!;, =  AH-,-f-(i-A)H;!;fc_i (5.7)

where the sign -t- and - distinguish the reference appearance model both after and before the 

update has occured.

5.2.3 Boundary

Boundaries are often confused with edges and contours. Here we define the boundary as the 

outer border of an object without any circles inside. Therefore we can not use typical edge 

and contour extraction method for boundary extraction. Instead, a morphology operator is 

applied to the silhouettes S  [1]:

B = S  — S  Q M  (5.8)
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An example of awhere M is an structuring element and © signifies erosion:

boundary extraction result is shown in Figure 5.2.

The boundary B  can be represented by the image coordinates of pixels on it: h{n) —

[x{n), y{n)], for n =  0,1,2,_Æ-1. N  is the total number of pixels on B. Treating b{n) as a

complex number:

b{n) =  x{n) +  jy{n) (5.9)

we can implement DFT for b{n):

B { f )  = Ç f : b { n ) e - ^ ^ f ^  (5.10)
•'* n=0

B{f)  is called the Fourier Descriptor (FD) of the boundary b{n) [1]. The boundary information- 

based measurement density is then formulated as:

p , (Y ,  I X « ) =  (6.11)

where p has a similar function as the /? in Equation 5.6 and D{B{f)j^, B{f)^^) is the Euclid­

ean distance between the FD of the ground-truth boundary and the FD of the boundary 

generated by hypothesis .

For a boundary the number of pixels N  is usually in hundreds or even thousands. How­

ever, in our work just the first 100 coefficients in B{f)  are already sufficient to capture the 

gross essence of a boundary and are able to roughly reconstruct the boundaries, as we can 

see from Figure 5.2. In fact this approximative representation is even more advantageous 

than the original one since high frequency components of the FD correspond to noise or 

trivial details, which should be eliminated. Using only low frequency components of the 

FD allows a strong emphasis to be laid on the relationship between the boundaries and 

human motions rather than on the errors of geometric fit caused by noise. Moreover, it can 

reduce the computational cost to a great extent with the help of the Fast Fourier Transform 

(FFT). An additional advantage of using the FD as a measurement is that it can be directly 

integrated into the human tracking framework. In this field, translations and rotations of
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the model are estimated by the state vectors, so we do not need to do any modifications 

to make the FD insensitive to translation, rotation and scaling, a factor we would normally 

have to worry about in many shape analysis scenarios. On the contrary, we wish FD to be 

sensitive to those transformations. Otherwise the change of positions or poses of human can 

not be reflected by the FD. However, we do wish to avoid the FD’s sensitivity to the starting 

point. To this end we can set a fixed corner of the boundary as the starting point. The FD 

has once been used for tracking in [28]. However, their work is significantly different with 

the function of the FD here in that they only use FD to determine motion parameters with 

respect to a known shape whilst we use the FD to calculate the degree of fit for what are 

initially unknown boundaries.

Figure 5.2: Boundary extraction result (left) and the boundary reconstructed from the first 100 
(middle) and the first 50 (right) FD coefficients.

The Fourier Descriptor is not the only method for boundary representation. Shape signa­

ture is also aimed at describing boundary and shape [Ij. Compared with it, the superiority of 

the FD is evident: Shape signature requires the origin to fall inside the shape, and for a uni­

form comparison, the origin is normally chosen as the point with mean x and y coordinates. 

However there is no guarantee that this point will always fall inside the boundary of a human 

silhouette. In contrast, the FD can be extracted from any boundary; Principle Component 

Analysis (PCA) is usually necessary to reduce the dimensions of shape signature, while with
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FD we just select the first certain number of coefficients as mentioned above.

Figure 5.3 demonstrates the power of FD as a measurement feature for tracking. The 

images on top of the checkerboard are ground-truth observations and the images on the 

left of the checkerboard are generated by hypothesis. The gray-level values of those blocks 

are proportional to the Euclidean distance between the FDs of the ground-truths and the 

hypotheses. A dark block indicates a strong resemblance and a bright one indicates otherwise. 

As we expected the blocks along the diagonal axis are darkest among the row and the column 

they are located in. We can also observe that the block corresponding to the distance between 

the first and the third pose is rather dark as well. This can be explained by the similarity 

of boundaries generated by these two poses.

* n  A À

1

Figure 5.3: Euclidean distance between Fourier Descriptors extracted from ground-truth image 
and that extracted from hypothesis image.

5 .2 .4  C o m b in a t io n

We fuse the three image cues to build the overall measurement distribution: 

p(Yfe I X«) = pi(Y, I X «)X Y fe I xi*yp3(Yfc I (5.12)

The parameters n and v are used to adjust the relative weight of the 3 individual image 

likelihoods. Due to reasons discussed in Chapter 2, we still set them as constant. In our
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experiments, equal weights fi = v = 0.33 works well for all purposes. Figure 5.4 is an example 

of the proposed multi-cue fusion measurement function surface from two perspective. We 

illustrate it only in a two-dimensional space for the reason of tractability. The figure is 

plotted for a certain frame of a human motion sequence. The values are obtained by varying 

2 DOFs of the human body model and keep all the other DOFs equal to the ground-truth 

data. The peak of the surface the global maximum we are searching for. Its distinction 

suggests the validity of our measurement function. In a 24-dimensional space the surface of 

a measurement function will be much more complicated, but exhibits similar properties.

X-firectlon DOF of Left Hip Joint

Figure 5.4: The measurement function surface for a human motion video frame w.r.t. 2 DOFs 
when other DOFs are ground-truth data.
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Chapter 6 

The DE-MC Particle Filter

We have addressed the problems on how to form images from hypotheses and how to evaluate 

the likelihoods for them, but the most important issue, i.e. how to generate the hypotheses, 

is still pending. The simplest method is to thoroughly exploit the state space. Unfortunately, 

for our articulated model-based tracking application there are 24 DOFs to be determined, 

which makes this idea totally unrealistic. We can also choose to follow the traditional CON­

DENSATION algorithm and some of its refined versions since they are much more efRcient 

in exploiting the high dimensional space. However, in our experiments their performance are 

far from satisfactory due to inappropriate sampling strategies. Let us have a look back at 

the problem discussed in Chapter 3: Can we have a reasonable strategy for sampling from 

^(Xfc I Xfc-i,Yfc)? The choice made by a general particle filter (CONDENSATION) is to 

sample from p(Xjt | X^-i) instead and that by the refined particle filters is to utilize an au­

toregressive dynamical model to sample from p(Xfc | Xfc_i,Xfc_2 , . . .  ,Xfc_m), but they both 

ignore the factor of observation. With a statistical technique which is called the Differential 

Evolution - Monte Carlo (DE-MC) algorithm, we are able to provide a better solution. We 

will start with the introduction to the related theoretical background, and then propose our 

novel DE-MC particle filter.
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6.1 M arkov Chain M onte Carlo

We informally described the definition of the Markov chain in Equation 3.2. For clarity we 

repeat it here: A stochastic process is called a Markov chain (MC) if the following condition 

holds:

p(Xfc|Xo:fc-l)=p(Xfc|Xfc_i) (6.1)

That is, the current state of the process is conditionally independent of the past states except 

the most recent one. A Markov chain can be described by a transition matrix T in which:

Tmn =  p(Xfc =  Sn\Xk-l = Sm) (6.2)

where S„ and Sm are two of the possible states. Regardless of which initial state the algorithm 

starts, the chain will always reach a steady state distribution p(X) if T  possesses the following 

two properties [50]:

1. Irreducibility: A MC is called irreducible (or indecomposable) if for all pairs of states 

(n, m) there exists an integer n such that T̂ mn > 0. An irreducible MC can not be 

decomposed into parts which do not interact.

2. Aperiodicity: An irreducible chain is called aperiodic (or acyclic) if the period equals 1 

or, equivalently, if for all pairs (m,n) of states there is an integer Lmn such that for all 

I > Lmn, the probability > 0. Here =  p{Xk+i =  n | X*, =  m). This property 

ensures that the chain will not get trapped in cycles.

They guarantee a finite path from every state to every other state with non-zero transition 

probability, which is the so-called ergodicity property.

Given a defined target distribution, Markov Chain Monte Carlo (MCMC) method takes 

aim at constructing a MC which has this distribution as its invariant distribution [25]. 

Normally we ensure the stationarity of the chain by designing it to satisfy the reversibility 

property (detailed balance):

p(Xfe)T(Xfc_i I Xfc) = p(Xfc_x)T(Xfc 1 Xfc_i) (6.3)
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This is easy to see as long as we sum both sides of the equation above over Xt_i:

p(Xfc) = p(Xfc-i)T(Xfc I Xfc_i) (6.4)
X._,

The most frequently adopted MCMC method is the Metropolis-Hasting (MH) algorithm 

proposed by Hasting [51]. According to this algorithm the transition probability is given by:

T(Xfc I Xk-i) =  a(Xfe_i, Xk)g{Xk \ X^-i) (6.5)

where g{Xf^ \ Xj^.j) is a proposal distribution we can directly sample from and:

a{Xk-i , Xk) = mm(l, p^Xfc!!)^(Xfc j L _ ! )^  (^ 6)

is called the acceptance rate. It is easy to verify that Equation 6.6 has the property of 

reversibility. One condition that ensures the quality of convergence is that g{X)/p(X) > 0 

everywhere, so usually g{X) is chosen such that it is similar in shape to p(X), the target dis­

tribution. Figure 6.1 shows the results of a one-dimensional M-H algorithm implementation 

in which the proposal distribution is Gaussian: N{Xk-i ,  100) and the target distribution 

p{X) oc 0.3e“°‘̂ ^̂  +  In the figure i is the number of iterations. g(X) deter­

mines how the state space is exploited. This is especially important to a high-dimensional 

problem such as human tracking. Gibbs sampling is one of the choices. Given a proposal 

distribution, Gibbs sampling repeatedly replaces each component of the vector with a value 

picked from a distribution conditional on the values of all the other components. However, 

a more general and more popular method is the Metropolis algorithm. In this algorithm, 

new samples are generated by varying some of the components of the vector by a symmetric 

random walker sampler, which means that the sampling proposal is determined only by the 

samples’ separation from X&_i:

g { X k \ X k - i ) = g { \ X k - X k - i \ )  (6.7)

Thus the acceptance rate reduces to:

a(Xfc_i, Xfc) =  min(l, (6.8)
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Figure 6.1: The Metropolis-Hasting algorithm implementation for MCMC
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The calculations of the MH algorithm and the Metropolis algorithm are especially convenient 

because although we cannot directly draw samples from the target distribution, we know how 

to roughly evaluate the weights of them everywhere. This is precisely the case encountered 

when using the particle filter for visual tracking. Practically the symmetric random walker 

sampler is often chosen as a multivariate normal distribution iV(0, c^S). Here E is the 

covariance matrix of the D-dimensional vector X, and c is a scalar whose value is found to 

be optimal when c = 2.38/(D)^/^.

6.2 The Differential E volution A lgorithm

The Differential Evolution Algorithm (DE) is an algorithm dealing with the problem of par­

allel searching for a global maximum through high dimensional state space [20]. Similar 

to other evolutionary program methods such as the Genetic Algorithm, it is also based on 

evolution theory and a competition mechanism. Stronger members of the population more 

easily survive to the next generation to guarantee that the new generation is better than the 

last one as a whole. Many people noticed the similarity between evolutionary optimization 

algorithms and the particle filter, just as Deutscher commented in [19]. Compared with the 

Genetic Algorithm, the Differential Evolution Algorithm is defined in real parameter spaces 

instead of binary code parameter spaces. So it is much simpler to implement. The DE algo­

rithm is able to explore non-isotropic structures such as ridges in the target function because 

the vector differences are usually aligned with the direction of the ridges. Experiments also 

verify its excellent performance in convergence through comparison with other optimization 

methods [20].

Assume that a complicated function /(E ) is defined over a D-dimensional state space 

e. Assume also that we do not know the analytical form of this function (or the analytical 

form is too complicated for a gradient-based method to apply), but can evaluate the value 

indirectly. We can use the DE algorithm to search the global maximum with an initial 

population E„ 0̂ ) n =  0 ,1 , . . . ,  A — 1. N  is the number of population. The simplest version
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Figure 6.2: The Differential Evolution Algorithm

of the DE algorithm generates a new generation of population in time step fc+l according 

to:

En,fc+1 +  K^rl,k ~ ^r2,k) (6.9)

where r l ,  r2 are random integers drawn from [0,1,2,... and mutually different, and

A > 0. Figure 6.2 illustrates how the DE algorithm produces a new vector from the previous 

generation. In the literature, there are several variations of Equation 6.9 available, which 

can also be applied to the DE algorithm [20]. A popular one is given below:

En,fc+1 — ®n,A: +  ^l(^best,k ~  Ê ,A:) +  A2(Ê î  ̂ — Er2,k) (6 .10)

where the Et̂ est,k is the best member in the A;th generation.

The use of a crossover operator is then optional for increasing the potential diversity of 

the perturbed state vectors:

(6 .11)

Here is the dth element of vector E^, and {D) denotes the modulo function with modulus 

D. The start position index I for crossover operation is randomly chosen from [0, D-1], and 

the crossover length V is drawn from [0, D-l] with the probability p{V =  v) =  {CRY,
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CR €[0,1] is a control variable. Whether a newly generated state vector will be accepted is 

solely dependent on the value evaluated by the target function: In a global maximum search, 

if yields a larger function value than Ej,„ the state will be updated, otherwise it will

be kept intact.

6.3 T he Differential E volution M arkov Chain

By examining the characteristics of the MCMC and the DE algorithm we find that they 

aid each other in searching for an optimal solution. The acceptance rule in the DE part is 

controlled by the MCMC acceptance mechanism, whilst the step size and orientation of the 

random walk of the MCMC part is produced by the DE algorithm. By constructing multiple 

MCMCs in parallel, the state space is more efficiently explored since the state vectors can 

be more reasonably distributed than with a single chain. These chains can interact with 

each other, sharing information with the aid of the DE algorithm. Under the guidance of 

the DE algorithm, the MCMCs will gradually concentrate on the important regions of the 

posterior distribution without being easily trapped in local basins. The DE-MC algorithm 

is summarized as follows:

The DE-MC Algorithm

1 Start with a target function /(E ) and an initial population (Eo,o, Ei_o,. . . ,  E//_i,o), 

whose members are D-dimensional vectors.

2 In the A:th iteration For each member of the population E„fc_i,n =  0 ,1 ,... ,iV — 1, 

randomly choose two integers r l  and r2 so that rl r2 ^  n.

3 Create a new member E* j. by:

® n , f c  =  +  A ( E r i , f c _ i  —  Er2,k-l)  +  9- ( 6 . 1 2 )

A is the same scalar as used in Equation 6.9 and g is drawn from a symmetric distrib­

ution with small variance compared to that of E.
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4 Compute the ratio:

R  =  (GW)
J \ p n , k - 1 )

5 Choose a number h from (7(0,1), lî R >  h, E„,fc =  B* otherwise E„̂ fc =  E„,fc_i.

6 Repeat steps 2-5 for iteration k+ 1 until a convergence or a preset end point is reached.

Note that to make the DE-MC algorithm match our work, here we are searching for a 

maximum instead of a minimum.

The combination of the DE algorithm and MCMC appears to be natural and simple. 

However there are still some issues we should examine. Since the theoretical foundation 

for MCMC is built upon detailed balance we should avoid violating it. However, not every 

version of DE can retain detailed balance. Fortunately Equation 6.12 satisfies the detailed 

balance condition since if E* j. is accepted:

E„,fc =  E„_fc+i + A(Er2,fc — Eri,k) — 9 (6.14)

and if it is rejected, the value remains unchanged. In contrast. Equation 6.10 can not be 

written in such a balance form. Therefore, we choose the original DE version for the DE-MC 

algorithm.

The same problem occurs when we use the crossover operator in the DE-MC. To ensure 

the detailed balance, when we pick two members from the population for crossover, we do not 

only use part of one member to replace that part of the other member, but interchange this 

part of the two members. Moreover, if one of the new members is accepted, the other new 

member created by interchanging must also be accepted. Therefore Equation 6.13 becomes:

It is easy to verify that detailed balance is retained with the modified crossover operator. 

However, additional function evaluations are required. Users can make a choice whether to 

include the crossover operator in D&MC by considering the overall performance gain. If it 

is included, it should be between Step 3. and Step 4. of the DE-MC algorithm.
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6.4 T he D E-M C  particle filter

Based on the Differential Evolution-Monte Carlo (DE-MC) particle filter, we propose a novel 

sequential Monte Carlo sampling approach, namely the DE-MC particle filter. The DE-MC 

particle filtering iteration at time step k is shown below:

The D E-M C P artic le  F ilte r A lgorithm

Starting from the set of particles which are the filtering result of time step k —1:

1 Selection: select a new set of samples from with the probability

proportional to w(xj.'2i).

2 P red ic tion  and  M easurem ent: Apply a constant velocity dynamical model to the 

samples:

X « -  =  X «  +  Vfc_i (6 .16)

where V^-i is the velocity vector computed in time step k-1. The particle set {X|.*^~}A ̂  

then acts as the initial population for a T-iteration DE-MC processing. The processing 

follows the procedure we listed in the previous section. The fitness function is deter­

mined as the measurement function we developed in Chapter 5. Hence the weights of 

particles are subject to update by the DE-MC. For Equation 6.12 in step 3 of the DE- 

MC algorithm we choose g ~  U{—ca, ca) and a =  [cro, cri,. . . ,  ao-i]^ is a vector with 

the elements equal to standard deviations for the elements in X. Normal distribution 

can be used here instead of uniform distribution, c is a small number which can be 

flexibly chosen. Also in the same equation, the optimal value of A is determined in 

literature [9] by

A =  (1 -  c) X - j =  (6.17)

In our experiments since D =  24 the value is around 0.437. At the end of this step, we

take the output population as the particle set of current time step: {X ^\ u;(Xj^^)}A
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3 R epresen tation  and  Velocity U pdating: Estimate the state at time step k as:

Xfc =  argmax„(o (6.18)

and calculate the velocity vector of current time step:

Vfc = Xt — Xfc_i (6.19)

We adopt a simple strategy to help the filter adapt to the changes of situations. The 

method is to calculate the value of a in step 2 by:

where t denotes the DE-MC iteration index. This strategy comes naturally from Equation 

3.28. The step size of random jumping for current DEl-MC iteration is reduced if the survival 

rate of the last DE-MC iteration is high and is increased the other way round.

The most evident improvement of the DE-MC particle filter with respect to the CON­

DENSATION algorithm is that the prediction (sampling) step and the measurement step 

are now integrated together instead of functioning separately. Please be reminded that at 

the beginning of this chapter we pointed out that generic particle filters simplify the dis­

tribution I Yfc) =  pi^k^  I Xfcli). Obviously, We lose the information about

current observation during this simplification, which causes serious distortion in the sam­

pling from posterior distribution. To be more specific, when we begin the measurement 

process, the samples are already drawn. If they are already trapped in the local cost basin 

of the state space, which frequently occurs in the human motion tracking applications, there 

is no way for them to escape. Errors are then accumulated and things get worse, until a 

total tracking failure takes place. However, with the DE-MC particle filter we are able to 

make a more reasonable sampling. The dynamical model is still necessary to accomplish 

part of the sampling task, as we can see from the DE-MC particle filtering step. However it 

is the DE-MC algorithm that really makes the proposed algorithm work successfully. In the 

DE-MC iterations, the measurement module provides necessary feedbacks to the sampling
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module, and according to them the sampling moves to regions in the state space where it 

is more possible for the global maximum of the measurement function is to be found. Note 

that the generated samples are not necessarily in strict accordance with the ground-truth 

posterior distribution. Since we are interested in the global optimal state and only have 

limited number of samples, we place denser sampling grids in the region of interest. For 

the purpose of global optimization, this approach yields a result reasonably close to that 

obtained by sampling strictly according to the ground-truth posterior distribution, while at 

the same time it saves considerable computation cost.
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Chapter 7 

Experimental Results

We carry out experiments with the proposed DE-MC particle filter and measurement func­

tion. We use two monocular human motion video sequences: Most experiments are con­

ducted on Sequence 1, which is a walking sequence; Sequence 2 is a hopping sequence. Their 

length are 1.8s and 1.2s, respectively. Both of them are in side view. The human subject 

wears loose fit clothings. The shooting environment has been introduced in Chapter 5. We 

will show the general tracking results first and then some comparison results concerning the 

performance of the DE-MC particle filter and proposed measurement function.

7.1 General E xperim ent R esults

Figure 7.1 - 7.6 show part of the tracking results for the 2 monocular sequences. For tracking 

Sequence 1, a 7-layer DE-MC particle filter is used (Here we use “layer” instead of “iteration” 

so as to avoid being confused with the tracking iteration). The number of particles is 

500, which can lead to a satisfactory balance between the reliability and the computational 

cost of the tracker. For Sequence 2, a 9-layer DE-MC particle filter with 600 particles is 

used. Since the side-view causes very serious self-occlusions in the scene, these monocular 

image sequences offer a huge challenge for any human motion tracking algorithm. Note 

that the uniform-color fitting in Sequence 1 provides additional difficulty since in many 

previous research works, clothing with varying texture is often utilized to label the body 

segments. To our knowledge there are very few successful tracking results reported under a
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similar situation in the literature. [31], [26] and many other similar works tackle monocular 

video sequence-based human tracking by learning dynamical models, which departs from our 

intention to design a general-purpose tracker. [15] and [19] use image sequences from three 

views, which remove the self-occlusion problem and depth ambiguity to a large extent. Our 

tracking results are not perfect. For example: Due to the fast motion and the existence of 

much depth ambiguity, even when using a DE-MC particle filter with more computational 

power to track Sequence 2, the tracking result is still much worse than that of Sequence 

1; We can find the tracking errors that are obviously caused by motion blur, such as those 

around the foot in Figure 7.2 and Figure 7.3, and those around the limbs in Figure 7.5 and 

Figure 7.6. Moreover, self-occlusion causes the invisible right arm to be wrongly positioned 

in Figure 7.2(f), Figure 7.3(b) and (f), and Figure 7.4(f). However, we should be aware 

that most of these errors are unavoidable for tracking monocular video sequences. Even 

a human eye can rarely tell the exact position of a limb when it is occluded or in motion 

blur. Even though, the proposed DE-MC particle filter still achieves an excellent overall 

performance. For instance, when the occluded arm in Figure 7.3(d) and (f) reappears in 

Figure 7.4 (b), the DE-MC particle filter is able to quickly reallocate it. This illustrates 

the ability of the DEl-MC particle filter to escape from a local minimum trapping. Another 

example is the tracking for left lower arm in Figure 7.6 (b). Although the estimation deviates 

from arm’s real position because of motion blur, it becomes accurate again when the motion 

blur alleviates in 7.6(d). According to the tracking results, we plot the shoulder and hip 

joint angles for the rotation around x-axis together with the elbow and knee joint angles in 

Figure 7.7. To help understand the values of these joint angles, in Figure 7.8 we illustrate 

how they change with limb movement. The reference positions are the locations of the limbs 

when a human is in an upright standing pose. Here we define any movement of the upper 

arms or legs in the direction that the human subject is facing as movement in the forward 

direction, a  and /? are positive.
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(a) Frame 1

(c) Frame 6

(b) Frame 1

(d) Frame 6

(e) Frame 11 (f) Frame 11

F ig u re  7.1: General experiment: tracking result for Sequence 1(1).
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I
(a) Frame 16 (b) Frame 16

(c) Frame 21 (d) Frame 21

(e) Frame 26 (f) Frame 26

F ig u re  7.2: General experiment: tracking result for Sequence 1(11).
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(a) Frame 31 (b) Frame 31

t o

(c) Frame 36 (d) Frame 36

(e) Frame 41 (f) Frame 41

F ig u re  7.3: General experiment: tracking result for Sequence l(III).
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I
(a) Frame 46 (b) Frame 46

(c) Frame 51 (d) Frame 51

I
(e) Frame 56 (f) Frame 56

F ig u re  7,4: General experiment: tracking result for Sequence 1(IV).
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(a) Frame 5 (b) Frame 5

(c) Frame 10 (d) Frame 10

(e) Frame 15 (f) Frame 15

F ig u re  7.5: General experiment: tracking result for Sequence 2(1).

68



(e) Frame 30

(a) Frame 20

(c) Frame 25

\
(b) Frame 20

h
(d) Frame 25

V
(f) Frame 30

F ig u re  7.6: General experiment: tracking result for Sequence 2(11).
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Algorithm

CONDENSATION
Annealed Particle Filter
DE-MC Particle Filter

Particle
Number

5000
500
500

Layer
Number

N/A
10

Measurement Function 
Evaluations

5000
5000
3500

Table 7.1: Computational cost for different algorithm used in Comparison Experiment 1

7.2 Com parison Experim ent R esults

Comparison Experiment 1

In Figure 7.9, we compare the tracking result obtained by a 7-layer DE-MC particle 

filter with those obtained by other popular particle filtering-based algorithms. In this figure, 

the images at each row are (from the top to the bottom): the original video sequence, the 

results obtained by using the CONDENSATION algorithm, the results obtained by using 

the Annealed Particle Filter and the results obtained by using the DE-MC particle filter, 

respectively. In terms of fair comparison, the experiment is based on almost the same 

number of measurement function evaluations because it is the most time-consuming part 

for particle filtering. The computational expense for each algorithm is listed in Table 7.1. 

The other factors, such as the initialization result, initial standard deviation of the state 

vector, constant velocity model, adaptive strategy and measurement function are all given 

the same settings for each algorithm. As we can see, although consuming only 70% of the 

computations spent by the other two algorithms, the DE-MC particle filter still shows its 

superiority. It locks every human body part with relatively high accuracy. The Annealed 

Particle Filter, which is based on the Simulating Annealing algorithm, is shown to be able 

to successfully track human walking from multi-view video sequences in [15]. But in our 

monocular experiment, it just roughly captures the global location of the human subject 

but rarely makes invalid estimates to the motion of limbs. The classic CONDENSATION 

algorithm cannot even predict the global position of the human accurately. This experiment 

strongly demonstrate the power of our proposed approach.

Comparison Experiment 2

71



f

Figure 7.9: Comparison Experiment 1: comparison of the performance of the DE-MC particle 
filter with different tracking algorithms.
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In this experiment we compare the tracking results for Sequence 1 obtained by using 

2-layer, 5-layer and 7-layer DE-MC particle filters, as shown in Figure 7.10 from the left 

to the right, respectively. We emphasize that the evident difference shown here is a result 

of accumulated difference for the three different particle filters up to the 36th frame. This 

should not be confused with the intermediate output of a 7-layer DE-MC particle filter 

obtained after the computation in the second, fifth and seventh layer. In the latter case, the 

difference is much smaller.

Figure 7.10: Comparison Experiment 2: comparison of the performance of the DE-MC particle 
filters with different layer number.

C om parison E xperim ent 3

In this experiment we compare the efficacy of different image cues. A 7-layer, 500-particle 

DE-MC particle filter is used. We compare the tracking results for Sequence 1 using particle 

filters based on 4 different measurement functions in Figure 7.11. The images at each row 

are (from the top to the bottom): the original video sequence, the results obtained by using 

the multi-cue fusion-based measurement function, the results obtained by using the color 

cue-based measurement function, the results obtained by using the silhouette area cue-based 

measurement function, and results obtained by using the boundary cue-based measurement 

function, respectively. From this figure we can see that superiority of multi-information 

fusion is apparent. It also demonstrates the power of individual cues: Color cue-based 

tracker yields relatively large error in locating the position of leg, mainly because color 

measurement function lacks the ability in describing the geometrical property of the objects. 

It tries to find the most possible region only in the sense of best color histogram fit, no matter
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where this region is or whether this region actually corresponds to a body part. Ambiguity 

often occurs when the two legs of the subject are overlapped, since from then on there exists 

many regions with similar color histograms. Even after the legs depart from each other, 

the already updated histogram makes it very difficult to relocate them. On the contrary, 

the silhouette area information-based tracker and the boundary information-based tracker 

seldom produce geometrical fit error. What confuses them is the left-right ambiguity. This is 

especially evident in the third result image for the silhouette area information- based tracker 

and the fourth result image for the boundary information-based tracker. They appear to 

provide almost perfect geometrical fit, but through careful examination, we can find that they 

totally reverse the position of left and right arms. This is reasonable since both boundary and 

silhouette are unable to distinguish individual body parts. Instead, they treat the human 

body as a whole. On the other hand, the color information is able to mark each body 

segment and update their histograms individually. This experiment exactly demonstrates 

the necessity of fusing multiple image features for tracking.

Com parison E xperim ent 4

Figure 7.12 shows the results of tracking Sequence 1 with a DEkMC particle filter before 

and after adopting the proposed relative weight strategy for calculating Bhattacharyya dis­

tance of the two histograms as formulated in Equation 5.5. From the comparison we can 

conclude that the performance gain by adopting our method is significant and evident. Note 

that all the results in this experiment are based on the fused measurement function rather 

than the color-cue-alone measurement function.
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Figure 7.11: Comparison Experiment 3: comparison of the performance of different measurement 
function
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Figure 7.12: Comparison Experiment 4: result before (top) and after (bottom) adopting relative 
weights for color-cue based measurement function
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Chapter 8 

Conclusions

8.1 Sum m ary

Tracking human motion from monocular video sequence is a difficult task. For years re­

searchers have been committing a lot of efforts, trying to solve the problem. However, only 

limited progress has been made. In this thesis, we propose a novel approach for human mo­

tion tracking from monocular sequences. This approach is mainly based on the Differential 

Evolution algorithm, the Monte Carlo Markov Chain theory and the particle filtering, so 

we name it as DE-MC particle filtering. The most noticeable characteristic of the proposed 

method is its ability to incorporate the sampling and the measurement process which are 

separately implemented in most previous visual tracking work. We develop such a method 

based on the accumulated experience that in a human tracking problem, which can be formu­

lated by Bayesian inference, the posterior depends on both the previous system state and the 

current observation. The advantage of combining sampling and measurement is that it will 

lead to a more reasonable approximation to the ground-truth posterior. Moreover, the power 

of the DE algorithm and the MCMC allows us to save a large amount of computations when 

simulating the posterior distribution, because their interactive combination has the property 

of "importance sampling”. In term of searching for global optimal pose configuration in a 

high-dimensional state vector space, the DE-MC particle filter achieves very good balance 

between exploration and exploitation.

We also notice that human tracking is a complicated project which requires good coop-
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eration from different aspects. We use a simple but effective articulated 3D human body 

model in our work. It can model most of the human poses without difficulty. We introduce 

an adaptive strategy for the random jumping of the DE-MC iterations as a fine adjustment 

method. Also, we design a robust measurement function which fuses multiple image cues. 

Among them, the boundary cue represented by FD to facilitate tracking is a novel approach. 

It has the merits of easy extraction and is computationally economical. Besides, the color 

cue representation is improved by adopting a weighted Bhattacharyya distance calculation, 

which is specially tailored for human tracking applications. The fusion of different image 

information yields a peaky measurement function, which contributes greatly to the stable 

performance of the DE-MC particle filter.

Both the general experiment results and the comparison experiment results suggest the 

validity of our approach. Similar or better results for tracking a full-body human motion are 

usually seen in the work which adopts trained dynamical models or which is based on videos 

captured by multiple synchronized cameras.

8.2 O pen Issues

There is much work yet to be addressed within the field of human motion tracking. We 

expect more technological breakthroughs to be made in the near future. Below we outline 

several important research issues related to our work:

There is still substantial space for the sampling and searching strategy to be further 

improved. There are a lot of optimization and sampling algorithms available. Some of them 

may be more suitable for solving the human tracking problem. For example, Gibbs sampling 

is extensively used for multivariate distribution sampling. It is a time-consuming procedure 

when vectors are in high dimension, but with some modifications it may be incorporated into 

the DE-MC framework. The constant velocity model also accomplishes part of the sampling 

work. We may adopt an autoregressive model instead. It can help the particle filter to 

adapt to abrupt human pose change but will not bring too much additional burden since the
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update only happens once at the end of each time step.

Finding a more reasonable fusion method for diflFerent image cues is an urgent issue. 

Currently they are simply multiplied and their individual characteristics are ignored. It will 

be greatly helpful if an online adaptive strategy for fusion is developed. We hope it can 

automatically decide the timing for changing the relative importance of different image cues 

according to their most suitable working environment. Some tries to realize this strategy 

by comparing the weights evaluated by individual measurement functions. It is our opinion 

that this may not be an effective method, since the measurement function itself is still to be 

evaluated and the weights generated by them cannot be used as a criterion.

Our human body model leads to acceptable accuracy of approximation to the real human 

body, but further improvement of the model will bring additional gains in the tracker’s 

performance. For example, the thickness of human torso is often smaller than the width. 

It is thus impossible to obtain good hypothesis observations with the initialized truncated 

cones when the subject turns around his body. We can handle the problem in two directions 

in the future: 1. To use more complicated geometrical solids such as elliptical cones for 

modelling. The price is more parameters for determination in the initialization stage. 2. 

To make the body model reconfigurable. Therefore when the currently used model is no 

longer able to provide satisfactory geometrical approximation, the parameters of the model 

can be reinitialized. This is an attractive solution with great challenge: we must develop a 

reliable criterion to judge that whether the errors of geometrical fit of the model come from 

the inaccurate modelling (the case in which we should implement the reconfiguration) or 

from the tracking failure (the case in which we should not implement the reconfiguration). 

Moreover, it is obvious that this method will not be available until an acceptable automatic 

initialization algorithm emerges first.

At this point, we have no access to the equipments such as joint markers. Therefore, 

in our experiments no ground-truth data are available for us to carry out objective and 

quantitative analysis of the tracking results. It will be beneficial to all the researchers in 

this field if a universal human motion tracking video database is built. Camera calibration
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results and ground-truth motion vectors should be provided as well as the videos. Moreover, 

the database should provide facilities so that image processing methods developed might 

be applied to it. For example, it should be accompanied with background images to ease 

silhouette extraction.

Another field that we should pay more attention to is the exploitation of prior knowledge 

about human kinematics. By far the furthest step taken in this direction is the applica­

tion of joint limits. (Here we do not take account of training human motion models from 

a motion capture database since they are not helpful to tracking many general human mo­

tions, or may even cause negative effects.) In our belief there should be much more useful 

physical constraints which can be applied to facilitate human motion tracking. Researchers 

from computer vision society have been fighting with such difficulties alone for a long time. 

It is the time for more participation from experts in biology, athletics, performing arts, 

biomechanichal engineering and other related fields.
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