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Abstract 

 Amin Jafari Sojahrood.”Numerical and experimental investigation of the dynamics of 

ultrasound contrast agents excited at higher multiples of their natural resonance 

frequency”, M.Sc. Biomedical physics, Ryerson University, Toronto, 2011 

 

        In this work the Hoff model for microbubble oscillations was used together with 

bifurcation diagrams to investigate microbubble behavior for a range of the system control 

parameters (driving frequency and pressure, microbubble size and shell parameters). We 

have shown that if the microbubble sizes are optimized so that their resonance frequency is a 

fraction of the sonication frequency (1/3, 1/4...), above a certain pressure threshold, the 

microbubbles can emit higher order subharmonics at (1/3, 2/3...) of the sonication frequency. 

Experimental results (using  Artenga and in-house made lipid microbubbles with a 25 MHz, 

30 cycle pulse using 0.1-2.5 MPa pressures) showed subpopulations of the microbubbles that 

were able to show this behaviour by scattering ultrasound according to the theoretical 

predictions (e.g. having two frequency maxima for subharmonics at f/3 and 2f/3).  The ring-

down analysis of the natural free oscillations of these microbubbles confirmed the theoretical 

resonance predictions. 
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Chapter 1 Introduction 

 

1.1 Ultrasound contrast agents in diagnostic and therapeutic 

ultrasound 

 

 Encapsulated microbubbles are known also as ultrasound contrast agents (UCAs). They 

are used clinically for imaging of blood vessels or for therapeutic applications such as drug 

delivery. UCAs are small gas bubbles with diameters of the order of 1 to 10 μm. UCAs are 

encapsulated by a stabilizing thin shell (e.g., albumin or lipid) and are filled with air or with a 

gas with lower water solubility than air such as a perfluorocarbon (Klibanov 2002). UCAs are 

usually injected intravenously and traverse the lung capillaries. Then they will reach the heart 

and the internal organs, where imaging is usually performed. The UCA shell, designed to reduce 

diffusion of the encapsulated gas into the blood, can be stiff (e.g., denatured albumin) or 

relatively flexible (phospholipids). Because of the gas core, a UCA is highly compressible, and 

therefore highly echogenic.  

         Currently, encapsulated microbubbles are utilized in many applications such as vascular 

signal enhancement (Kerbel 2006), tissue perfusion imaging (Deng and Lizzi 2002), molecular 

imaging (Dayton and Ferrara 2002; Lanza et al. 2002), drug delivery (Liu et al 2006), 

sonothrombolysis (Hitchcock & Holland 2010), opening the blood brain barrier (BBB) (Meairs 



 

  2

and Alonso 2007) and heating enhancement in high intensity focused ultrasound treatments (Holt 

& Roy 2001). 

        When driven by an ultrasonic pulse, these small gas bubbles oscillate with a very high shell 

wall velocity (e.g tens to hundreds of meters per second) and can be pushed towards a vessel 

wall or fragmented into nanometer particles (Shin et al. 2009). Through application of a focused 

ultrasound beam and high pressures, UCAs can be disrupted which offers the opportunity to 

locally deliver a drug or gene. Moreover, higher ultrasound harmonics radiated by the oscillating 

microbubbles are absorbed very fast and can locally raise the temperature of the target. This 

temperature enhancement may be used in high intensity focused ultrasound (HIFU) treatment of 

tumors (Holt & Roy 2001). It is shown that when microbubbles are employed in HIFU, due to 

significant temperature enhancement of the target, larger tumors can be treated in a shorter 

duration (Yu et al. 2006).  In addition, when exciting microbubbles at lower ultrasound 

frequencies, significant enhancement in BBB opening has been achieved.  The transient opening 

of the BBB will aid in the delivery of drugs and macromolecules to the targets of interest in the 

brain without the need to open the skull (Meairs and Alonso 2007).  

        Because of the many applications and the intricate and complex bubble dynamics, the 

engineering of ultrasound contrast agents can be optimized for many different applications. UCA 

size and composition can be optimized for ultrasound imaging devices to map their local 

distribution, to enhance local drug delivery, sonothrombolysis, BBB opening and HIFU 

enhanced heating. The focus of this thesis is on gaining a more thorough understanding of the 

dynamics of UCAs for better optimizing the subharmonic detection based imaging applications 

of ultrasound. 
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1.2 Challenges of using UCAs in ultrasound imaging 

 One of the major steps in diagnosing a disease and monitoring the related treatment is the 

ability to image blood vessels and flow. For instance, the neovasculature within breast lesions 

has been shown to be an independent marker of cancer (Weidner et al. 1992; Gasparini et al. 

1995). Additionally, the ability to visualize tissue perfusion in real time is another useful 

indicator of malignancy or physiological malfunction (Wiesmann et al. 2004; Miles et al. 1998). 

Among all the imaging modalities capable of imaging blood flow, the number of ultrasound 

imaging applications is increasing because of the safe, inexpensive, and portable nature of the 

ultrasound (Levin et al. 2004). The capability for real time ultrasound imaging is perhaps one of 

the biggest advantages of the ultrasound modality, and makes it an ideal imaging option for 

many clinical applications.  “Ultrasound represents the safest, fastest and least expensive method 

of scanning for many types of medical diagnosis” (Stride & Saffari 2003). In addition compared 

to CT and MRI, the spatial and temporal resolution is higher (Cosgrove et al. 2006). This makes 

their application in detection of small and rapid blood flow (e.g. focal nodular liver hyperplasia) 

very demanding (Cosgrove et al. 2006).  One of the problems with ultrasound compared with 

other techniques such as magnetic resonance imaging, is that the image quality is often inferior 

and therefore methods for improving image contrast are highly desirable (Stride & Saffari 2003). 

The use of microbubbles in the blood stream can significantly improve the ultrasonic images. 

This is because blood does not reflect ultrasound very well and cannot be clearly distinguished 

from the surrounding tissue. Gramiak and co-workers (Gramiak and Shah 1968) first reported the 

enhancement of backscatter from blood due to the presence of microbubbles.  The primary 

reason for this enhancement is the significant change in the density and speed of sound at the 

surface of the bubble which results in a significant impedance mismatch. The resulted 
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enhancement in echogenicity has been used as an example in Doppler studies named “Doppler 

rescue” (Harvey et al. 2001). Although this increase in echogenicity is useful for Doppler 

studies, regions of small blood flow may not be detectable; moreover, conventional grey scale 

imaging as the concentration of the UCAs is too low to produce significant backscatter 

(Cosgrove et al. 2006).  

        Fortunately, due to the low density and the very high compressibility of the gas core of the 

UCAs, when they are exposed to ultrasound they undergo contraction and expansion exhibiting a 

unique nonlinear signature. Detecting the signals related to this unique signature aids in 

distinguishing them from the surrounding tissue. Backscatter from UCAs consists not only of 

signals at the insonating ultrasound frequency, but also at harmonics of the insonating frequency. 

Multiples of the insonating frequency of order 2, 3, 4, etc are termed higher harmonics, those of 

order 1/2, 1/3, etc are called subharmonics, and those of order 3/2, 4/3 etc are termed 

ultraharmonics (Lauterborn 1976, Eller and Flynn 1969, Neppiras 1969, Phelps and Leighton 

1997).  The nonlinear response of the tissue at these specific frequencies is negligible 

(Bhagavatheeshwaran et al. 2004) (even though there likely is nonlinear propagation of the 

ultrasound in the tissues (de Jong et al. 2002), which is a separate phenomenon). Therefore, 

forcing the UCAs to oscillate at these nonlinear frequencies and by filtering the backscattered 

signals to detect only these nonlinear signals, the contrast to tissue ratio (CTR) is enhanced, 

thereby better visualizing the tissue vasculature. Investigating new methods to improve the CTR 

by exploiting the nonlinear character of the bubbles is the subject of the interest of many 

investigations in ultrasound imaging and therapy and the main motivation of this thesis. 
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1.3   Methods to improve CTR 

 

 Early ultrasound imaging techniques were not able to distinguish in many cases the 

echoes from UCAs due to the low concentration of the bubbles resulting in the lower reflectivity 

compared to the surrounding tissue signal (Cosgrove 2006; Sboros et al. 2010). However, when 

microbubbles are insonified with a frequency close to their natural resonance frequency, they 

produce a significant backscatter not only at the resonance frequency, but also at higher 

multiples of the resonance frequency. Although the backscatter at these higher frequencies have 

lower intensities compared to backscattered intensity at the insonation frequency, the second 

harmonic may still be strong enough to be detected by the transducer with a good signal to noise 

ratio (SNR) and therefore may be exploited to be used for diagnostic purposes (Shankar et al. 

1999; de Jong et al. 2002).  By filtering the received signal and isolating the second harmonic of 

the backscatter signal, significant improvement in the CTR is expected; this is because only the 

microbubbles are producing signal at the second harmonic frequency while the surrounding 

tissue does not produce significant second harmonic emission. Another advantage of the using 

the second harmonic frequency is that it enables detection of extremely small blood vessels and 

regions of very slow flow which would be missed by using a conventional mode (Calliada et al. 

1998). In addition, in conjunction with B-mode imaging the cardiac motion related artifacts can 

also be reduced (Mulvagh et al. 1996).  This will enable the visualization of microbubbles in the 

myocardium (Mulvagh et al. 1996). The study of second harmonic imaging for better detection 

of UCAs began in the early 1990s (Burns et al. 1992, Schrope et al 1992, Goldberg et al 1993, de 

Jong et al. 1994) and has since been utilized for imaging purposes (Chang et al 1996, Forsberg et 
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al 1996, 1997, Shi et al 1997). The imaging technique which utilizes the second harmonic signal 

is called “second harmonic imaging”. 

      Although second harmonic imaging is available in all medical scanners (de Jong et. al. 2002), 

it does not always result in a good CTR.  This is because at higher ultrasound imaging pulse 

pressures (used to increase SNR) the higher frequencies associated with the nonlinear 

propagation of ultrasound in tissue are significant. This produces harmonic components in the 

propagating pulse, and therefore in the backscatter from tissue.Separating the second harmonic 

of the UCAs from the second harmonic of the tissue is difficult (Cheung et al. 2008). Another 

limitation of using harmonic imaging is that to produce a nonlinear response from the ultrasound 

contrast agents, a large number of cycles in the ultrasound pulse is required to generate sufficient 

detectible second harmonic by UCAs (Cosgrove at al. 2006). This can significantly impair image 

axial resolution.  

         Therefore other methods have been proposed with the aim of decreasing the number of the 

cycles and also suppressing the harmonic generation in tissue. In this regard, pulse inversion and 

amplitude modulation techniques use wide band pulses to retain the spatial resolution of the 

conventional imaging and at the same time minimizing the second harmonic generation in tissue 

(Burns et al. 2000, Phillips et al. 2001, Porter et al. 2003, Brock-Fisher et al. 2006). Despite the 

superior resolution, however, nonlinear propagation effects still limit the maximal obtainable 

contrast to tissue ratio (Tang and Eckersely 2006). 

 

        Another, difficulty with using these techniques which apply low pressures, is the increased 

effects of noise, which reduces spatial resolution (Cosgrove et al. 2006). Thus we need special 

approaches to minimize the effect of noise. By repeating the phase inversion sequence numerous 
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times, averaging can be used to improve the signal-to-noise ratio (Cosgrove et al. 2006). This 

method is known as power pulse inversion (PPI) (Cosgrove et al. 2006).  However, multiple 

repetitions may improve the SNR but it will decrease the temporal resolution, therefore making 

the method not suitable for measuring the rapidly flowing blood.  

 

1.4 Subharmonic Imaging 

 

 Ultrasound contrast agents not only produce helpful enhancement of backscattered 

signals at the harmonics of the driving frequency, but also generate significant backscatter at half 

the driving frequency. This frequency component is called the subharmonic frequency. Although 

the generation of higher harmonics in the UCA oscillations has no threshold and gradually 

increases with increasing acoustic pressure, , subharmonic oscillations occur only when the 

excitation acoustic signal exceeds a certain threshold level (Prosperetti 1977). The subharmonic 

emission from free gas bubbles was first studied experimentally by Neppiras (1968). Later, 

theoretical predictions of the conditions of existence of the subharmonics were first obtained by 

Eller and Flynn (1969) and later by Prosperetti (1977). The threshold pressure for subharmonic 

generation was found to be minimized when using a driving frequency that was twice the 

resonant frequency of the free bubble and the UCA (Eller and Flynn 1969; Prosperetti 1977; 

Shankar et al. 1999).  

 

        In an early UCA study of insonated Levovist microbubbles by Schrope et al. (1992), 

subharmonics of the order of 1/2 and ultraharmonics of the order 3/2 were observed. Chang and 

coworkers (Chang et al. 1995) acquired a Doppler power spectrum of the subharmonic response 
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of Albunex microbubbles. Later subharmonic emission of Albunex was investigated by Lotsberg 

et al. (1996). Shi and colleagues (Shi et al. 1997) studied the subharmonic response of a 

surfactant coated microbubble agent versus different transmit ultrasound pulses and found that 

the acoustic pressure threshold for subharmonic generation was quite different for contrast agents 

with different compositions. 

        In a comparison study between the harmonic and the subharmonic signals to increase the 

CTR (Shankar et al. 1998), it was found that the ratio of the intensity of subharmonic signal 

scattered from UCAs to that from tissue is greater than the UCA to tissue ratio at the second 

harmonic. Later studies have also confirmed that subharmonic signals will have a higher CTR 

compared to approach that utilizes the second harmonics (Shi et al. 1999; Shi and Forsberg 

2000). 

        In addition to the mentioned early studies, recently, ultrasonic subharmonic imaging has 

attracted attention as an alternative for fundamental and harmonic imaging. This interest in 

subharmonic emission is due to the fact that nonlinear ultrasound propagation in biological 

tissues does not generate subharmonics at frequencies and acoustic pressures commonly used in 

medical imaging. Thus, the ratio of intensity of subharmonic signal from the UCA to that of the 

tissue is very high. Thus subharmonic imaging has a significant advantage compared to other 

ultrasound imaging procedures due to a very high CTR (Chomas et al 2002, Goertz et al 2005, 

Krishna 1999, Shi et al 1999, Shankar et al 1998, Zheng et al 2006). 

 

      The advantage of subharmonic imaging is even more pronounced in high frequency 

ultrasound imaging. This is because at high frequencies the harmonic generation in tissue 

increases significantly and methods based on 2nd harmonic detection may not work properly. 
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Goertz at al. 2005, have shown the clear advantage of subharmonic over harmonic and second 

harmonic imaging at frequencies more than 20 MHz. Because of the significant advantage in 

suppressing the tissue signal at higher frequencies,  the investigation of how to best generate 

subharmonics at frequencies more than 20 MHz has attracted a great deal of interest (Goertz 

2002, Goertz et al. 2003, 2004, 2005,2004a,2006b, 2007, Cheung et al. 2008, Sprague et al. 

2010). 

 

1.5   Clinical applications of subharmonic Imaging 

 The most mature in-vivo clinical applications of subharmonic imaging are for breast 

imaging. In order to reduce the number of unneeded biopsies, the ability to precisely and non-

invasively characterize breast lesions and their vasculature is of great importance. In addition, 

the detection of breast lesions at early stages is vital since early detection of the cancer is a 

crucial factor for survival (Smith et al 2006).   

     It is well known that the angiogenic vasculature within lesions conveys information about the 

malignancy because the vascular architecture is more bifurcated and aberrant relative to healthy 

tissue (Weidner et al 1992, Gasparini and Harris 1995). In addition, the neovasculature within 

breast lesions has been shown to be an independent marker of cancer (Weidner et al 1992, 

Gasparini and Harris 1995). Additionally, the ability to visualize tissue perfusion in real time 

using contrast-enhanced ultrasound imaging can be another useful indicator of malignancy or 

physiological malfunction (Wiesmann et al 2004; Miles et al. 1998).  Thus early and precise 

detection of the vascularity and flow pattern will aid in the early detection of malignancies and 

can be used to monitor the progress or efficiency of a treatment by imaging the changes in the 

vascularity and blood flow patterns. In addition, if the imaging technique is portable and safe, 
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continuous monitoring of the treatment may greatly help in determining the efficacy of a 

particular treatment and making decisions about using an alternative treatment at the early stages 

if the primary treatment has not been successful. 

       Even though it is the modality of choice for screening for early breast cancer, mammography 

lacks the ability to visualize the lesion vasculature, which decreases the overall specify of the 

technique (“65–90% of all post mammography biopsies are found to be benign” (Zonderland et 

al 1999, Kopans 1998)). Recent advancements in nonlinear ultrasound (US) scanning  using 

contrast agents as an alternative tool have been shown to increase the specificity and sensitivity 

of diagnostic US imaging (Ferrara et al. 2000; Frinking et al. 2000; Goldberg et al. 2001). In this 

regard, Doppler examinations using contrast agents have improved the visualization of deep and 

small vessels even with low or slow flow (Correas et al. 2001).  In addition this has enhanced the 

detection of flow within abnormal vessels because of the enhancement of the backscattered 

signal by the UCAs (Correas et al. 2001). However one major limitation in conventional Doppler 

imaging modalities is that the UCAs can produce backscatter patterns similar to conventional 

tissue scatterers. To improve the UCA detection, instead of the conventional Doppler, the 

nonlinear signals emitted by UCAs can be exploited. Harmonic imaging (HI) is one these 

nonlinear signatures. However, as discussed in the previous subsection for second harmonic 

imaging, the major disadvantage is that the tissue also produces sufficient harmonic energy to be 

detected by the transducer. This decreases the CTR (Frinking et al. 2000; Goldberg e al. 2001). 
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(a)                                                                        (b) 

Figure 1.1: Gray-scale US image shows ductal carcinoma in situ (*) and cyst  visualized in their 

largest cross sections. Gray-scale SHI image shows both peripheral and intratumoral flow in the cancer 

(*), while the cyst  is essentially avascular. (Forseberg et al. 2007).   

     The lack of subharmonic generation in tissue and the significant subharmonic scattering 

produced by UCAs can be used to distinguish between tissues and vascular structures (Forsberg 

et al. 2000). Furthermore, subharmonic imaging may also be advantageous for scanning tissue 

structures located deep in tissue, because the attenuation of the subharmonics is less than the 

fundamental or the harmonic signals (Shi et al. 2001). In addition, the ratio of subharmonic 

signal intensity from the UCAs  in the blood to that obtained from the surrounding tissue is 

greater (by about a factor of 10) than the ratio of second harmonic signal intensity from the 

UCAs in blood and that obtained from the surrounding tissue (Shankar et al  1998). 

      Subharmonic ultrasound imaging (SHI) is capable of exclusively imaging blood vessels in 

real time and at the same time completely suppresses the tissue signals (Eisenbrey et al. 2011a). 

SHI has been successfully used to estimate perfusion in canine kidneys, and the results correlated 

well with radiolabeled microsphere findings (r = 0.57, p < 0.001) (Forseberg et al. 2006). It has 

been shown that using SHI alone for breast imaging results in superior suppression of the tissue 



 

  12

signal after employing it on a commercial scanner (Forseberg et al. 2007). In a first human pilot 

study, 14 women with 16 biopsy-proven breast lesions (4 malignant) were imaged with dynamic 

cumulative maximum intensity (CMI) SHI (Forseberg et al. 2007). The area under the receiver 

operating characteristic curve (Az) for the diagnosis of breast cancer was 0.64 for grayscale 

imaging, 0.76 for mammography, and 0.78 for SHI. For dynamic CMI–SHI, the Az increased to 

0.90 and this was significantly better than mammography (p = 0.03) (Forseberg et al. 2007, Dave 

et al. 2010).  

       The diagnostic accuracy of SHI can be further improved through the use of parametric 

imaging, in which SHI based perfusion measurements have been shown to be a better automated 

tool for breast lesion characterization than CMI–SHI (p = 0.002 when comparing benign and 

malignant lesions with SHI perfusion alone, vs. p = 0.80 for CMI–SHI alone) (Eisenbrey et al. 

2011). In addition, in case of liver imaging, the feasibility of simultaneous grayscale and SHI 

imaging has been studied and it was shown that the ability to simultaneously visualize both 

imaging modes in real time would improve the applicability of SHI as a future primary clinical 

imaging modality (Eisenbrey et al. 2011b). Figure 1.1 shows the significant enhancement in the 

diagnosis of the cancer through SHI of injected UCAs. 

         Despite the advantages of SHI and its successful clinical and in vivo applications in the 

breast, kidney and liver, these studies suffer from the poor resolution of SHI. Conventional B-

mode ultrasound breast scans are done using 9-12MHz ultrasound (Athanasiou et al. 2009). 

However, the clinical applications of SHI in breast used frequencies of 4.4 MHz with the SHI 

done at 2.2 MHz. Therefore this method suffers from poor lateral resolution. In addition, 

sufficient number of cycles (at least 4 (Chueng et al. 2008)) should be emitted to drive the bubble 

to produce sufficient subharmonics, thus this method suffers even more from poor axial 
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resolution. Any method that can use the same contrast agents and at the same time increase the 

driving frequency (to increase both the lateral and axial resolutions or to decrease the pulse 

duration required to generate enough SNR or to increase the detectability of subharmonics 

(CTR)) will add to the sensitivity and precision of the method. If successful, this would aid in 

imaging details of the vasculature of even smaller tumors may be resolved which will help in 

diagnosing smaller tumors and in very primary stages. 

 

 1.6 High frequency SH imaging and its drawbacks 

       Imaging the microcirculation is of importance for the detection of early disease and in the 

detailed investigation of the effects of treatment modalities. This is because, “the formation of 

blood vessels, through a process known as angiogenesis, is fundamental to the proliferation of 

healthy tissue and disease processes such as cancer” (Cheung et al 2008). Thus a safe, portable 

and noninvasive imaging method capable of monitoring the blood flow in the microcirculation, is 

of great importance in the detection of early disease (Foster et al 2000a) and the evaluation of 

anti-angiogenic drugs (Kerbel 2001). In addition, obtaining information about the molecular 

pathways involved in the tumor growth , can be of great advantage in assessing anticancer 

therapies (Ferrara and Kerbel 2005). This can be possible by high resolution noninvasive 

imaging of molecules expressed on endothelial cells using targeted microbubbles (Klibanov 

2007; Rychak et al. 2007).   

        In this regard, high resolution imaging can be performed on small animal studies to 

investigate the molecular origin of human diseases such as cancer and evaluate the potential 

therapies. Ultimately the successful preclinical investigations can be translated into clinical 

applications.  
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       Due to poor imaging resolution, ultrasound at clinical frequencies (2–12 MHz) is not 

suitable for imaging the microcirculation. High frequency ultrasound above 15 MHz provides 

images with superior resolution (e.g. 50 μm at 50 MHz). Such a high resolution can provide 

insight into the spatial distribution of blood flow at a microvascular scale. This has contributed to 

significant advances in the area of small animal preclinical imaging in the last decade.  In 

addition, high-frequency color flow imaging systems (Kruse et al. 1998, 2002) and integrated 

(Pulsed wave Doppler) PWD/color flow systems (Kruse et al. 2000; 2003) have been 

investigated in skin, eyes, and superficial tumors.  

        Although through employing high-frequency Doppler ultrasound spatial resolution and 

sensitivity to flow in microvessels is improved, however, the detection process can still suffer 

from low signal to noise ratio and tissue motion.  This is because, when imaging the 

microvasculature, the blood velocities are very slow (mm/s to sub mm/s) and the vessels are a 

fraction of the imaging sample volume. They may also be at perpendicular orientations with 

respect to the beam axis. The applicability of these techniques is even more difficult when 

imaging slow blood flow near large, quickly moving vessel walls (known as the “wall thump” 

artifact in Doppler ultrasound (Zhang et al. 2004)). 

        It is possible that the use of contrast techniques may improve blood detection at high 

frequencies, using either B-scan or Doppler-based techniques. In addition, targeted contrast 

agents are proposed for emerging applications (Lanza et al. 2001). However, at high frequencies 

the enhancement due to microbubbles is decreased relative to the tissue. This is because most of 

the bubbles are off resonance and only very small bubbles are resonant at higher frequencies 

(and the scattering efficiency decreases at higher frequencies). Therefore there is a need to 

explore the nonlinear behavior of the microbubbles as a potential method to compensate for these 
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shortcomings. SHI based imaging techniques have been successfully implemented due to the 

increased tissue harmonics as a result of nonlinear propagation. 

      Subharmonic imaging is an alternative attractive choice, as the subharmonic is unique to 

microbubbles and cannot be created through nonlinear propagation in tissue. This may enhance 

the suppression of the signal from the surrounding tissue below the noise floor. The feasibility of 

high frequency subharmonic imaging has been demonstrated in preliminary vivo 

implementations in mouse and rabbit models (Goertz et al 2005). In that study the subharmonic 

(SH) signal from the commercially available contrast agent Definity™ showed the highest 

contrast- to-tissue ratio (CTR) of all the investigated nonlinear frequency components 

(ultraharmonics,second harmonic )  (Goertz et al. 2005a). In an in vivo study performed in an 

arteriole of a rabbit ear, Needles and coworkers (Needles et al. 2008) found that the ability to 

suppress tissue signals using SH signals may enable the use of higher frame rates. Higher frame 

rates will improve the sensitivity to microvascular flow or slow velocities near large vessel walls 

by reducing or eliminating the need for clutter filters (Needles et al. 2008). Figure 1.2 depicts the 

significant advantage of SHI at higher frequencies compared to harmonic and fundamental 

imaging. Despite the advantages in suppressing the signal from the tissue, axial resolution is 

degraded in subharmonic imaging due to the relatively long pulse required to generate the 

subharmonic signal. Therefore, imaging methods that can potentially increase the axial 

resolution and/or sensitivity are desired. 
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Figure 1.2: Example B-scan images of a 1-mm wall-less vessel phantom in fundamental 20 MHZ (FN20) 

(top left), harmonic 40 MHz (H40) (top right), subharmonic 10 MHz (SH10) (bottom left), and 

ultraharmonic 30 MHz (UH30) (bottom right) imaging modes. Both FN20 and H40 images show poor 

contrast between the vessel and tissue regions. However, SH10 and UH30 imaging suppresses the tissue 

signal to below the noise floor. Transmit settings are six cycles and −6 dB transmit amplitude. The images 

are 8 mm × 8 mm, and the spacing between the large hash marks on the vertical scale is 1 mm (Goertz et 

al. 2005). 
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     1.7 Higher order SHs  

 In addition to subharmonics of order ½, bubbles may also generate subharmonics of 

higher order: 2/3, 3/4,... (n-1)/n, where n = 3,4,5… . Biagi and co-workers (Biagi et al. 2005) 

studied the free gas bubble behavior exposed to ultrasound, as a basic step in understanding 

contrast agent dynamics. They studied free gas bubble oscillations experimentally using a high 

frame-rate imaging system. They found that different orders of subharmonics (1/5,1/4,1/3 and 

1/2 order  appear during bubble dissolution. Their simulated results suggest that, for a given 

excitation frequency, the subharmonic order is related to the bubble resonance frequency, which 

in turn is determined by the bubble dimensions: “larger bubbles exhibit lower resonance 

frequency and thus smaller subharmonic order”. In addition in an earlier experimental study on 

acoustic cavitation noise by Lauterborn (Lauterborn et al. 1981) the generation of higher order 

subharmonics of up to f/8 was observed. In that work the occurrences of subharmonics were 

through successive generation of period two oscillations (successive period doubling)rom 

subharmonics of ½ order to1/4 and then 1/8 order.  

        The existence of higher order subharmonics has been shown for free bubbles. However, a 

rigorous study of the higher order subharmonics for shelled ultrasound contrast agents has not 

been performed. Therefore, it is possible that through careful optimization of bubble size, 

pressure and the sonication frequency, direct generation of subharmonics of higher order for 

UCAs can be achieved. 
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    1.8 Hypothesis and objectives  

         Despite the preliminary studies on free bubbles which reported the generation of higher 

subhrmonics (Lauterborn et al. 1981; Biagi et al. 2005) (all of which were done in low frequency 

range, below 5 MHz), there is no experimental or theoretical study which investigates the 

generation of higher order subharmonics with ultrasound contrast agents and for higher 

frequencies. As the generation of higher order subharmonics may enable ultrasound imaging 

with superior SNR, CTR and resolution, in this study the behavior of the UCAs is studied in 

detail in an attempt to better understand on the nature and the necessary conditions for the 

generation of higher order subharmonics for UCAs. However, the equations that describe the 

bubble oscillations are highly non-linear and there are many physical parameters in these 

equations that are not well known. This makes sampling the relevant parameter space to identify 

these conditions through typical parametric numerical analysis difficult and time consuming.  

       The hypothesis is of this work is that through the use of bifurcation diagrams, the conditions 

required for the generation of higher order subharmonics for UCA in high frequency imaging can 

be identified. To investigate the validity of the numerical predictions, experiments using dilute 

polydisperse solutions of bubbles (but extracting the signals from single bubbles) will be used. 
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Chapter 2 Methods                                  

2.1 Introduction  

 

 This study has both numerical and experimental contributions. To study the dynamics of 

microbubbles oscillations, numerical simulations of the Hoff model for UCAs were combined 

with the use of bifurcation diagrams to permit the effective visualization of the results for a wide 

range of control parameters. Theoretical predictions of the model were studied experimentally by 

analyzing the signals scattered from single UCAs through sonication a polydisperse population 

of two different makes of UCAs. The verification of the results is done through analyzing the 

frequency response, the period of the bubble oscillations and finally through analyzing the ring 

down oscillations to estimate the resonance frequency of the considered UCA. The theoretical 

and experimental methods are described in the next sections. 
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2.2.1 Theoretical Model 

 

 The UCA oscillations are studied using the Hoff model (Hoff et al. 2000). The model is 

developed for viscoelastic thin shelled bubbles and is the simplification of the Church model 

(Church et al. 1995) for bubbles with a shell thickness which is much smaller than the bubble 

radius. The model describes the radial oscillations R of the bubble as a function of time and is 

given by equation 1: 
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                                                                             (1) 

where R0 is the initial radius, ρL is the density of the liquid, P0 is the equilibrium pressure inside 

the bubble, Г is the polytropic exponent, µL is the viscosity of the surrounding liquid, µs is the 

shell viscosity, Ѳ is the shell thickness and Gs is the shear modulus. pA(t) is the driving acoustic 

pressure and is given by equation 2:                                                                                                                          

ሻݐ஺ሺ݌                                                     ൌ ஺ܲsin ሺ2ݐ݂ߨሻ                             (2) 

Where PA is the amplitude of the acoustic driving force t is time and f is the frequency. Equations 

1 and 2 were solved numerically using a 4th order Runge-Kutta as described in (Behnia et al. 

2009a;Behnia et al. 2009b, Behnia et al. 2009c). The simulations were run on a computer with 

Intel(R) Core(TM)2 Duo 2.93 GHz CPU and 3.25GB and depending on the range of the 

parameter space and the sampling points would typically take 20-40 seconds to generate the 

solution for the radial oscillations R(t) (Figure 2.1) and 10 minutes to 3 hours to generate a 

typical bifurcation diagram (Figure 2.2). 
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Upon solving equations 1 and 2 for R(t), the backscattered pressure was calculated using 

equation 3 (Hilgenfeldt et al.  2000):      

௦ܲ ൌ  
ఘோ

ௗ
 ሺ2 ሶܴ ଶ ൅ ܴ ሷܴ ሻ                                                     (3) 

Where d is the distance from the center of the bubble. For simplicity, the pressure was calculated 

at a distance of 1 m as in (Kvikliene et al. 2004). The fast Fourier transform of the backscattered 

pressure was analyzed for the frequency content. Simulations were performed for bubble sizes 

(diameter) ranging from 1 to 10 m, shell thickness of 1 to 15 nm and shear modulus of 8-200 

MPa. The values represent a range of published values for UCAs. For the acoustic driving force 

in equation 2, frequencies of 4 to 60 MHz and driving pressures of 0.01 to 8 MPa were used. The 

simulated acoustic insonations to generate the bifurcation diagrams consisted of 80 cycles. In 

addition, in case of the frequency analysis of the selected signals, 30 cycles were employed in the 

simulations. As the dynamics of the microbubble oscillations was the subject of this study, long 

pulses (narrow band mono-frequency signals) were employed. This gives better separation 

between the frequency components of the backscattered signals. This separation of the frequency 

components will also be useful for the experimental validation of the theoretical predictions. 

 

2.2.2 Complex dynamics of the bubble model  

      It has been shown, both theoretically and experimentally, that the dynamics of the bubbles 

(free and encapsulated) are nonlinear and complex (Lauterborn et al. 1984, 1987, 1988; Parlitz et 

al.1990; Leighton et al. 1997; Simon et al. 2000, Behnia et al. 2009a, 2009b, 2009c,Macdonald 

et al. 2006)  This includes higher order nonlinear UCA emissions at higher harmonics, 
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subharmonics and bubble destruction. Due to the lack of knowledge of the physical parameters 

of the bubble (e.g. shell parameters)  and the complexity of the system resulting from the 

interaction of several control parameters (initial radius, frequency, pressure and shell 

parameters), it is difficult to efficiently sample the parameter space to provide an insight into the 

bubble dynamics. The bifurcation diagram enables us to visualize the bubble behavior in a wide 

range. 

 

2.2.3 Bifurcation diagrams 

 A bifurcation diagram is calculated by the examination of the oscillatory response of a 

bubble to acoustic insonation. The left-hand column in Fig. 2.1 illustrates the normalized radius–

time oscillations, after the bubble begin stable oscillations, for a 2 µm radius bubble with typical 

values of Gs=50 MPa, shell thickness of 3 nm and shell viscosity of 0.706 Pa.s, driven at f = 2.4 

MHz. The right-hand column illustrates the corresponding frequency domain of the oscillations 

in the left-hand column. As seen for the oscillatory response, the radial oscillations has been 

normalized by the initial bubble radius while the x-axis shows time in terms of periods of the 

driving frequency (T = 1/f). Descending from the top of the figure to the bottom corresponds to 

increasing the driving pressure amplitude of the transmitted pulse to 200, 325, 377, and 500 kPa. 

As the driving pressure increases, the radial oscillations of the bubble become more and more 

nonlinear while the maximum oscillation amplitude increases. In Fig. 2.1(a), the red circles 

identify the value of R(t) (radial oscillation amplitude at time t), at the end of each driving 

period. As seen the bubble repeats the same pattern after every time interval of T seconds. This 

behaviour manifest a period-1 oscillation. 
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Figure 2.1: Left column: The normalized radial oscillations (R(t)/R0) versus the driving period of  a 4 

micron bubble with Gs=50 MPa, µs =0.7066 Pa.s,Ѳ=3nm. The driving frequency is 2.4 MHz and the 

pressure amplitude is 200, 325,377 and 500 kPa from top to bottom. (Red circles represent the R(t)/R0 at 

the end of each acoustic driving period) Right column: the spectrum of the backscattered pressure 

(sampling frequency is 24 MHz). 

  

The corresponding frequency domain response, as depicted in Fig. 2.1(b), shows that only 

frequencies that are integer multiples of the fundamental frequency (f = 2.4 MHz) are present in 

the bubble behaviour. By increasing the transmit pressure amplitude to 325 kPa (Fig. 2.1(c)), 

results in a period-2 oscillation. In this case the bubble repeats the same oscillatory response 

once in every two driving periods (after every 2T seconds). As shown in Fig. 2.1(d), the 
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frequency domain response contains frequencies of (m*f/2) MHz, m = 1, 2, 3, . . . A period 4 

response is illusterated in Fig. 2.1(e) at the transmit pressure of 377 kPa. In this case the 

oscillatory pattern repeats itself after every four driving periods. Figure 2.1(f) shows that the 

frequency response contain of frequencies at m*f/4 MHz where m= 1, 2, 3, . . .,. by increasing 

the  transmit pressure amplitude to 500 kPa (Fig. 2.1(g)), the radial oscillations of the bubble 

becomes chaotic. Chaotic oscillations correspond to a broadband frequency spectrum. The 

frequency domain response is shown in Fig. 1(h). The route to chaos has been demonstrated to 

correspond to harmonic, subharmonic, and ultraharmonic frequencies (Leighton et al. 1997), 

which is observable in the bubble response.  

 

  2.2.4 Construction of the Bifurcation diagram 

    The radial oscillatory behaviour shown in Fig. 2.1 can be represented in what is referred to as 

a “pressure-bifurcation” (Macdonald & Gomatam 2006) diagram as shown in Fig. 2.2. It is 

calculated by selecting a starting transmit pressure of interest (50 kPa in this example) and then 

solving equations (1) and (2). Afterwards the value of the radial oscillations (R(t)) will be 

calculated at the end of each driving period and between a specific range (80T and 100T in this 

example). This will result in 20 values (in this example as the range consists of 20T) and these 

values will be plotted as a function of the pressure amplitude in the bifurcation diagram. These 

values (between 80T and 100T) were chosen to make sure that the analysis of the bifurcation 

points in last 20 cycles are carried out in the stable regime of oscillations while the initial 

transient oscillations have been decayed. Also 20 cycles will enable us to be able capture period 

2, 3, 4, 5 and chaotic oscillations. As an example in period 4 oscillations the bubble repeats the 

same behaviour every 5 acoustic cycles and therefore having a 20 period range for the analysis 
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ensures that the bubble will have repeated the oscillatory pattern for 4 cycles, and therefore the 

dynamics can be captured in this analysis. The pressure amplitude is then increased by a small 

amount (1 kPa) and the same procedure is carried out in small pressure increments up to a 

transmit pressure value of interest (500 kPa in Figure 2.2). Looking at Fig. 2.1(a), only one point 

is seen at 100 kPa on the bifurcation diagram. This is because all the 20 values of R(t) are plotted 

on each other which represents a period 1 oscillation. Looking at Fig. 2.1(b), two points are seen 

on the bifurcation diagram. The bubble exhibits period 2 oscillations, for any transmit pressure 

value in region B of Fig. 2.2.  Looking at Fig. 2.1(e), four points are visible on the bifurcation 

diagram corresponding to the transmit pressure value of 377 kPa. The bubble exhibits period 4 

oscillations for the pressure values in the region C in Fig. 2.2. By increasing the driving pressure 

amplitude to ~400 kPa the system oscillatory response becomes chaotic. In this case up to 20 

points are plotted at each transmit pressure amplitude value. It should be noted that, the bubble 

response is not chaotic for all of the values of the transmit pressure above 400 kPa. At around 

450 kPa, there is a very small window of regular behaviour. As seen a small change in the 

acoustic pressure (Pa) can result in a regular or chaotic behaviour.  

     In our analysis, the bifurcation diagram was also used to plot the amplitude of the 

subharmonics in the backscattered signal as a function of incident pressure. For example, the 

bifurcation diagram for the subharmonic of order 2/3 was done as follows: the backscattered 

pressure was calculated for 30 cycles of sonication. Then the frequency spectrum was calculated. 

In the frequency spectrum the amplitude corresponding to the frequency of 2/3 the driving 

frequency was found and was plotted versus the corresponding driving pressure. Then the 

pressure was increased by an small increment and the amplitude of the 2/3 was found and plotted 
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versus the new pressure. The approach was repeated until the whole pressure range of interest 

was covered.  

 

 

Figure 2.2: Bifurcation diagram of the normalized radial oscillations (R(t)/R0) versus the driving pressure 

of  a 4 micron diameter bubble with Gs=50 MPa, µs =0.7066 Pa.s,ϴ=3nm. The driving frequency is 2.4 

MHz .    

 

  2.2.5 Ring down analysis for bubble sizing 

     The results obtained by numerical simulation of the Hoff model are based on single bubble 

backscattering. The predicted bubble oscillations are highly sensitive to exposures at frequencies 

close to the resonant frequency of the bubble and the resonance frequency of the bubbles is size 

dependent. However the experiments performed (described later in 2.3.1-2.3.3) were based on 

sonicating a polydisperse population of the bubbles with different resonance frequencies. The 



 

  27

experimental results showed that sub-population of bubbles were able to generate the predicted 

model behavior. Since the size distribution was polydisperse and the resonance frequencies of 

the bubbles were not known, directly relating the theoretical predictions with experimental data 

was impossible. A method was developed to analyze the signals obtained by sonicating a 

polydisperse population of bubbles, isolating the signal from a signal bubble of unknown size, 

and estimating its’ resonance frequency. In this method the free damped oscillations of the 

bubble after the driving acoustic force is turned off was analyzed. The frequency of the free 

oscillations is approximately equal to the original resonance frequency of the bubble.  

To illustrate the concept described above, simulation results are presented. After the acoustic 

driving force is off, the bubble still continues to oscillate for a small number of cycles. The free 

oscillations after the sonication are called ring-down oscillations. The length of the ring-down 

oscillations depends on the viscosity of the shell and the medium surrounding the bubble. More 

viscous shells or more viscous mediums induce a larger damping; therefore the bubble ring down 

dampens sooner in time. Figure 2.3a-d shows the oscillations, backscatter, frequency content and 

the ring-down frequency, respectively, of a bubble due to a 60 cycle long acoustic insonation at 

25 MHz. After turning off the acoustic force the bubble oscillates for 3-4 cycles. Frequency 

analysis of the backscattered pressure confined to the ring-down oscillations shows that the 

frequency of free oscillations is equal to the resonance frequency of the bubble. In our 

experiments the frequency content of the ring-down oscillations were used to estimate the 

resonance frequency of the given bubble, which is further described in the experimental 

methods. This method has also been used to estimate the resonance frequency of a lipid shell 

microbubble using high speed optical camera with a temporal resolution of 10 ns (Sun et al. 

2005). 
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`                            

(a)                                                                     (b) 

 

                                               (c)                                                                                  (d) 

Figure 2.3: a) Radial oscillations, b) Backscattered pressure, c) frequency spectrum of the backscattered 

pressure and d) frequency spectrum of the ring-down oscillations only for a 2.28 micron bubble driven at 

25 MHz and 2.5 MPa of pressure. Comparison of the power spectra (c) and (d) illustrate that during the 

ring-down, the microbubble oscillates at its resonant frequency. 
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  2.3.1 Experimental methods 

          Ultrasonic data acquisition was performed using a VEVO770 ultrasound imaging device 

(VisualSonics Inc. Toronto, Ontario). Radiofrequency data were collected at a sampling rate of 

420 MHz. A broadband focused Polyvinylidene Fluoride transducer (the RMV-710B), with a 

resonance frequency of 25 MHz, f-number of 2.1, focal length of 15 mm, and -6 dB bandwidth 

of 12-28 MHz was employed. Applying a 10 kHz pulse repetition frequency, 100 ultrasonic raw 

RF lines spaced 0.1586 mm apart were acquired from different lateral positions of a 2.64 

mm*15.86 mm RF window for each ultrasound frame. Two different types of bubbles were used 

in these experiments. The microbubbles were allowed to float in dilute suspensions in deionized 

water, so that when the imaging was done signals from individual microbubbles would be easily 

differentiated. Figure 2.4 shows such a signal from a single bubble as shown on the console of 

the imaging device. The solutions used were very dilute thus the bubble-bubble interaction is 

minimal. On the other hand the chosen RF line includes just one bubble (bottom left window). 

The resulting signal is shown on the bottom right window in red and the corresponding power 

spectrum is in blue.   

      Despite the fact that care has been taken to isolate the signals from single bubbles and reduce 

the interaction between bubbles, sometimes interaction between bubbles were inevitable, or 

isolating a single signal was impossible. Therefore such signals were excluded from analysis. 

Figure 2.5 shows an inappropriate signal for analysis. Further information on the procedure for 

isolating single scatterers from dilute solutions can be found elsewhere (Falou et al.  2008).  
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Figure 2.4: The signal from single Artenga bubble sonicated with frequency of 25 MHz and 10% of 

power. 
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Figure 2.5: Inseparable signal from single Artenga bubbles. The sonication frequency is 25 MHz with 

10% power.  

 

 

    2.3.2 Experiment with in-house made lipid coated bubbles 

       A microfluidic device manufactured from polydimethylsioxane (PDMS) (Gong et al. 2010) 

was employed and mixed a lipid solution and octafluoropropane that were pushed through the 

liquid and gas channels of the device. In the flow focusing chamber, the central stream of gas 

and two lateral streams of liquid merged and are forced through a 7-μm orifice. Microbubbles 

pinch off on the opposite side of the orifice, and by maintaining the liquid flow rate and gas 

pressure constant it was possible to produce microbubbles with very narrow size distributions. 



 

  32

Bubbles with very narrow size distributions of 3, 4.6, 6.2 and 6.6 µm were sonicated with pulses 

that had peak pressures ranging between 75 kPa-2.5 MPa and that  consisted of 3-30 cycles. The 

signals belonging to 30 cycles of insonation were chosen to be analyzed as longer pulses produce 

better seperation between the frequency components of the received signals.  

This makes the comparison with the numerical methods easier. In all cases the transducer was 

placed so that the focal point of the transducer was at least 2 cm away from the bottom of the 

glass container that the solution was housed in. For each case the experiments were repeated at 

least 5 times and each time 100 radio frequency signal was obtained to be analyzed later.  

 

   2.3.3 Experiment with Artenga bubbles 

      A 2 µl volume of Artenga bubbles were injected to a cylindrical custom made plexiglass 

container filled with distilled water. This concentration was chosen so that to decreases the 

interaction between the bubbles as much as possible.  The diameter and height of the container 

was 5 cm and it was filled with approximately 78.5 ml of deionized water.  The insonations were 

done with 30 cycle sinusoidal pulses of 1.25 MPa and 2.5 MPa amplitude. In all cases the 

transducer was placed so that the focal point of the transducer was at least 2 cm far away from 

the bottom of the glass container.  The experiments were repeated for at least 20 times for each 

pressure amplitude and each time 100 radio frequency signals were obtained to be analyzed later. 

 

   2.3.4 Signal Analysis 

     Visual inspection was performed on the stored signals to separate the signals of the single 

bubbles from the signals which were not distinguishable from each other. The same methodology 

used to isolate signals from single cells is described elsewhere (Falou et al.  2008). The 
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frequency content of the chosen signals were then analyzed using the MATLAB 7 package (The 

MathWorks, Inc., Natick, MA). As only the signals from the single bubble scattering were 

considered, the RF signal contained only the signal from the bubble. Therefore the frequency 

analysis was performed over the full window of the extracted RF signal. 

     In order to perform the ring down analysis a further set of qualification criteria were applied. 

The criteria were a) that the free oscillations at the end of the signals should be differentiable 

from the noise floor and b) that there was enough separation between the end of the ring-down of 

the signal and the next subsequent signal of the RF line (if present), so that the free oscillations at 

the end of the signal of interest are easily differentiable from the presence of any subsequent 

signal. This ensures that the analysis is limited to signals produced by the ring-down of the 

oscillating bubble.   
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Chapter 3 Results 

3.1 Theoretical results 

 

 The Hoff model (equation 1) was solved and the bifurcation diagrams of the normalized 

oscillations of the bubble were calculated. The results enabled us to define a new classification 

scheme for the bubble oscillations in terms of its resonance frequency.  The dynamics of a 

sample case are first presented (R0=0.8789 µm, Gs=108MPa, shell thickness=3 nm, µsh= 0.062 

Pa.s). The natural resonance frequency of this bubble is 12.5 MHz. The shell parameter values 

are calculated based on the reported values at high frequencies for Definity (Goertz et al. 2007). 

The simulation results is repeatable for every bubble with different shell parameters as long as 

the resonance condition, the insonation frequency and the threshold pressure are chosen correctly 

and in accordance to the classification scheme defined later in section 4.  

           Figure 3.1 shows the bifurcation structure of the bubble when it is sonicated at 25 MHz 

(twice its natural resonance frequency). The bubble exhibits linear period one oscillations for 

lower driving pressures and as soon as the pressure increase is above ~500 kPa the radial 

oscillations undergo a period doubling bifurcation and the bubble begins exhibiting a 

subharmonic response. The bubble will sustain this behaviour for a wide range of applied 

pressures before it undergoes further period doubling bifurcations which results in chaotic 

oscillations around 2 MPa. Figure 3.2 shows the subharmonic amplitude of the backscattered 

pressure versus the driving pressure for a 30 cycle insonation. The initiation of the subharmonics 
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is concomitant with the period doubling that occurs at the bifurcation (both begin around 450 

kPa). There is a drop in subharmonic amplitude as the higher periods appear in the bubble 

behaviour and therefore this feature is not suitable for imaging. In this case, the subharmonic 

amplitude versus pressure was not considered for driving pressures more than 2 MPa because the 

bubble passes the destruction threshold (R0/R>2) (Flynn & Church 1988). The occurrence of the 

chaotic oscillations may decrease the subharmonic amplitude as the energy of the signal is now 

divided over a very large frequency range. In order to better analyze the bubble dynamics one 

can consider the radial oscillations versus time, the corresponding backscattered signal and its 

frequency content. These are shown respectively in Figures 3.3a-c. The backscattered pressure 

has two maxima and there is a ring-down component at the end of the signal.  The frequency 

spectrum of the backscatter clearly shows a significant subharmonic at 12.5 MHz. 
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Figure 3.1: Bifurcation diagram of the normalized radial oscillations (R/R0) versus the driving pressure of 
a 1.76 µm bubble with Gs=108 MPa, µs =0.062 Pa.s,ϴ=3nm. The driving frequency is 25 MHz at the 
length of the pulse is 30 cycles.    
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Figure 3.2: Half order subharmonic amplitude (1/2) versus the driving pressure of a 1.76 µm bubble with 
Gs=108 MPa, µs =0.062 Pa.s,Ө=3nm. The driving frequency is 25 MHz.    
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(a)                                                             (b) 

 

(c) 

Figure 3.3: a) Radial oscillations (R(t)/R0) versus time of  a 1.76 µm bubble with Gs=108 MPa, µs =0.062 
Pa.s,ϴ=3nm. The driving frequency is 25 MHz, the length of the pulse is 30 cycles and the pressure 
amplitude is 1 MPa , b) the corresponding backscattered pressure, c) the frequency spectrum of the 
backscattered pressure. 
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      Figure 3.4 shows the bifurcation structure of the bubble versus pressure when the driving 

frequency is 36 MHz which is slightly less than three times its resonance frequency (37.5 MHz). 

The bubble exhibits linear oscillations for pressure less than 2 MPa. As soon as the pressure 

increases above 2 MPa there is a saddle node bifurcation to period three oscillations. The bubble 

sustains this behaviour until the driving pressure is increased above 3 MPa. Figure 3.5 shows the 

amplitude of the 2/3 subharmonic in the backscattered pressure versus the driving pressure. The 

subharmonic amplitude at 24 MHz undergoes a sudden increase concomitant with the occurrence 

of period three oscillations in the bifurcation structure. Afterwards, the 2/3 subharmonic 

amplitude gradually increases and plateaus before a significant drop concomitant with the 

reduction of period three oscillations. 

     The results of the analysis of the radial oscillations, the corresponding backscattered pressure 

and its frequency content at a pressure of 2.5 MPa are shown in Figures 3.6a-c respectively. The 

ring-down oscillations are clearly seen at the signal end. The backscattered pressure has three 

maxima and its frequency content has significant subharmonics at 12 MHz, 24 and 

ultraharmonics at 48 and 60 MHz. 
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Figure 3.4: Bifurcation diagram of the normalized radial oscillations (R/R0) versus the driving pressure of 

a 1.76 µm bubble with Gs=108 MPa, µs =0.062 Pa.s,ϴ=3nm. The driving frequency is 36 MHz and the 

pulse length 30 cycles.    
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Figure 3.5: 2/3 order subharmonic amplitude (24MHz) versus the driving pressure of  a 1.76 µm bubble 

with Gs=108 MPa, µs =0.062 Pa.s,ϴ=3nm. The driving frequency is 36 MHz and the pulse length 30 

cycles.    
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(a)                                                                       (b) 

 

(c) 

Figure 3.6: a) Radial oscillations (R(t)/R0) versus time of  a 1.76 µm bubble with Gs=108 MPa, µs =0.062 

Pa.s,ϴ=3nm. The driving frequency is 36 MHz, pulse length 30 cycles and the pressure amplitude is 1 

MPa, b) Corresponding backscattered pressure, c) frequency spectrum of the backscattered pressure 

 

     Figure 3.7 shows the bifurcation structure of the normalized oscillations of the bubble versus 

pressure when the driving frequency is 46 MHz which is slightly less than 4 times its resonance 

frequency (50MHz). The bubble behavior is linear for pressures less than the threshold pressure 

of ~4 MPa. After the driving pressure increases above 4 MPa the bubble oscillations undergo a 

saddle node bifurcation to period 4 oscillations. The bubble sustains this behavior for pressures 

up to ~4.7 MPa. Analysis of the ¾ subharmonic amplitude versus pressure in Figure 3.8 shows 
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that the 34.5 MHz subharmonic undergoes a sudden increase concomitant with the occurrence of 

period 4 oscillations. It reaches a saturation level and then suddenly decreases as the period four 

oscillations disappear. 

 

Figure 3.7: Bifurcation diagram of the normalized radial oscillations (R/R0) versus the driving pressure of 

a 1.76 micron bubble with Gs=108 MPa, µs =0.062 Pa.s, ϴ=3nm. The driving frequency is 46 MHz and 

the incident pulse length 30 cycles.    
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Figure 3.8: 3/4 order subharmonic amplitude versus the driving pressure of a 1.76 micron bubble with 

Gs=108 MPa, µs =0.062 Pa.s, ϴ=3nm. The driving frequency is 46 MHz.    

 

     Figures 3.9a-c show the radial oscillations, the corresponding backscattered pressure and the 

power spectrum of the backscatter for a 4.2 MPa acoustic pressure. The backscattered pressure 

has 4 maxima and its frequency content has 3 subharmonics at 11.5, 23 and 34.5 MHz with 

ultraharmonics at 57.5, 69 and 80.5 MHz. 
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                                                 (a)                                                           (b) 

 

(c) 

Figure 3.9: a) Radial oscillations (R(t)/R0) versus time of  a 1.76 micron bubble with Gs=108 MPa, µs 

=0.062 Pa.s,ϴ=3nm. The driving frequency is 46 MHz and the pressure amplitude is 4.2 MPa , b) 

Corresponding backscattered pressure, c) frequency spectrum of the backscattered pressure 

 

     Figure 3.10 shows the bifurcation structure of the normalized oscillations of the bubble versus 

pressure when the driving frequency is 55 MHz which is less than five times the resonance 

frequency of the bubble. Linear oscillations occur below a threshold pressure of ~ 6.2 MPa. The 

bubble sustains this behavior for pressures of approximately 6.8 MPa. The 4/5 subharmonic 

amplitude (44 MHz) versus the driving pressure is shown in Figure 3.11. As seen the 

subharmonic amplitude undergoes a rapid increase at a point of period 5. There is a saturation 
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region corresponding to the period five region in the bifurcation diagrams and then the drop 

region corresponding to the annihilation point of the 5 coexisting attractors (period 5 

oscillations) at a pressure of approximately 6.8 MPa. 

 

Figure 3.10: Bifurcation diagram of the normalized radial oscillations (R/R0) versus the driving pressure 

of  a 1.76 µm bubble with Gs=108 MPa, µs =0.062 Pa.s,ϴ=3nm. The driving frequency is 55 MHz.    
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Figure 3.11: 4/5 order subharmonic amplitude versus the driving pressure of a 1.76 µm bubble with 

Gs=108 MPa, µs =0.062 Pa.s, ϴ=3nm. The driving frequency is 55 MHz.    

 

 

Figures 3.12a-c shows the radial oscillation, backscattered pressure and it frequency content 

when the insonation pressure is 6 MPa at 55 MHz. The backscattered pressure has five maxima 

and its frequency spectrum  has four subharmonics at 11, 22, 33 and 44 MHz with 

ultraharmonics at 66, 77, 88 and 99 MHz.  
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(a)                                                                         (b) 

 

(c) 

Figure 3.12: a) Radial oscillations (R(t)/R0) versus time of  a 1.76 µm bubble with Gs=108 MPa, µs 

=0.062 Pa.s,ϴ=3nm. The driving frequency is 55 MHz and the pressure amplitude is 6 MPa, b) 

Corresponding backscattered pressure, c) frequency spectrum of the backscattered pressure. 

 

    It should be noted that the cases of the frequencies which was chosen to show the behaviours 

depicted in the bifurcation diagrams were arbitrary. These frequencies were chosen because as 

the UCAs were able to sustain the higher order subharmonic emissions for a wider range of 

driving pressure. 
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Figure 3.13: Bifurcation diagram of the normalized radial oscillations (R(t)/R0) versus the initial bubble 

diameter of a bubble with Gs=108 MPa, µs =0. 062 Pa.s, ϴ=3nm. The driving frequency is 25 MHz and 

the pressure amplitude is 2.5 MPa.    

 

     The results shown are only based on sonicating a single size bubble. However in clinical 

practise the bubble size distribution is polydisperse. Because of this it is helpful to see the 

behavior of a large size distribution of the bubbles when the pressure and the frequency are 

fixed. The bifurcation diagram of the bubble versus the initial diameter of the bubble shows the 

size dependent behavior of the bubble together with their specific nonlinear response. Figure 

3.13 shows the bifurcation diagram of the normalized oscillations of the bubble versus the 

bubble size for a frequency of 25 MHz and a pressure of 2.5 MPa. Smaller bubbles which are 

resonant at 25 MHz undergo chaotic oscillations and their normalized oscillation amplitude 

exceeds the destruction threshold (R/R0>2). Bubbles with diameters between 1.8-2 microns in 
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size are able to produce subharmonics at 12.5 MHz and their behaviour is characterized by 

period two oscillations. Slightly bigger bubbles between 2.2-2.4 micron are able to exhibit period 

three oscillations and subharmonics at 8.33 and 16.66 MHz. Bubbles with diameters between 

2.5-2.7 micron exhibit period four oscillations and subharmonics at 6.25, 12.5 and 18.75 MHz. 

For a sufficient high pressure amplitude there exist subpopulation of bubbles in which their 

behaviour is characterized by period two, period three or higher period oscillations. The type of 

behaviour critically depends on the bubble size which determines its natural resonance 

frequency.  

      This prediction motivated the experimental part of this study which is based on insonation of 

a polydisperse bubble distribution at different pressure amplitudes. Signals from single bubbles 

satisfying the  four different predicted behaviours illustrated above were isolated and were 

analyzed further to confirm the theoretical predictions. 

 

3.2 Experimental results 

       Backscatter data were collected from two types of bubbles as described in section 2.2.2 and 

2.2.3. In the first set of experiments, custom made lipid bubbles were examined, and in the 

second set of experiments, commercial Artenga bubbles were examined.  

 

3.2.1 Signals from lipid bubbles 

       Custom made lipid bubbles (section 2.3.2) were sonicated with a 25 MHz pulse train with a 

pulse length of 30 cycles and at 100% power, corresponding to a peak pressure of ~ 2.5 MPa at 

the transducer focus (Iradji 2008). For further comparison with a signal from a linear reflector a 

layer of DC710 oil was also sonicated at the same acoustic settings. Figure 3.14 shows the 
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backscattered signal from DC710 oil as the linear reflector. The frequency of insonation is 25 

MHz and the sonication is done at 50% of power with 30 cycles. As seen the response of the 

DC710 oil is linear and there is no subharmonic is present in the frequency spectrum. The 

backscattered signal also contains just one peak.  

 

Figure 3.14:Measured backscattered signal (red) from insonating a linear reflector (DC710 oil) (red) and 

its frequency spectrum (blue). Transmit pulse have has a frequency of 25 MHz, pressure amplitude of 2.5 

MPa and is 30 cycles long. 

 

Figure 3.15 shows one of the measured backscatter signals from the lipid bubbles related to 

period 2 oscillations as a screen capture from the VEVO 770 console. The backscatter signal 

recorded is shown in red, while the blue color shows the frequency content of the signal (the 

power spectrum of the backscatter signal, without any filtering). The backscattered signal has 

two periods (two maxima) and the frequency response contains a significant subharmonic at 12.5 

MHz. This is consistent with the theoretical predictions using the period-doubling bifurcation 

diagrams (Figure 3.1) and the subsequent backscattered pressure analysis.   
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Figure 3.15: Measured period two backscattered signal (red) from insonating a lipid coated bubble and its 

frequency spectrum (blue). Transmit pulse has a frequency of 25 MHz, pressure amplitude of 2.5 MPa 

and is 30 cycles long. 

 

Figure 3.16, illustrates the measurement of the period 3 backscatter signals. The backscattered 

pressure (red signal) has three maxima. The corresponding power spectra (blue) show the two 

subharmonics at 8.33 and 16.66 MHz. An ultraharmonic is also observable at 33.33 MHz, 

consistent with theoretical predictions.  
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Figure 3.16: Measured period three backscattered signal (red) from insonating a lipid coated bubble and 

its power spectrum (blue). The transmit pulse has a frequency of 25 MHz, pressure amplitude of 2.5 MPa 

and is 30 cycle long. 

 

    3.2.2 Signals from Artenga bubbles 

       Artenga bubbles (section 2.2.2) were sonicated with a 25 MHz pulse train with a pulse 

length of 30 cycles and at 50% power, corresponding to a peak pressure of ~ 1.25 MPa at the 

transducer focus (Iradji 2008). 

     Figure 3.17 shows the backscatter signal from a period two oscillation in red and the 

corresponding frequency content (power spectrum) in blue. In addition to the major fundamental 

component of the signal at 25 MHz, a strong subharmonic at 12.5 MHz and a strong 

ultraharmonic at 37.5 MHz are noticeable. 

Figure 3.18 depicts one of the measured period 3 backscatter signals. The red signal which 

shows the backscattered pressure consists of 3 maxima and the corresponding power spectrum 

(blue) shows 2 subharmonics at 8.33 and 16.66 and an ultraharmonic at 33.33 MHz. 
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Figure 3.17: Measured period two backscattered signal (red) from insonating an Artenga bubble and its 

power spectrum (blue). The transmit pulse has a frequency of 25 MHz, pressure amplitude of 1.25 MPa 

and is 30 cycles long. 

  

      Figure 3.19 shows one of the measured period 4 backscatter signals. Four maxima are observed in the 

received signal. The power spectrum of the signal illustrates 3 subharmonics at 6.25 MHz, 12.5 MHz, 

18.75 MHz and an ultraharmonic at 31.25 MHz. Figure 3.20 illustrates one of the measured period 5 

backscatter signals. The detected backscattered signal has 5 maxima. In addition to the main fundamental 

frequency at 25 MHz, the signal has 4 subharmonics at 5, 10, 15 and 20 MHz and a strong ultraharmonic 

at 30 MHz. 
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Figure 3.18: Measured period three backscattered signal (red) from insonating an Artenga bubble and its 

power spectrum (blue). The transmit pulse has a frequency of 25 MHz, pressure amplitude of 1.25 MPa 

and is 30 cycles long. 
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Figure 3.19: Measured period four backscattered signal from insonating an Artenga bubble (red) and its 

frequency spectrum (blue). The transmit pulse has a frequency of 25 MHz, pressure amplitude of 1.25 

MPa and is 30 cycles long. 
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Figure 3.20: Measured period five backscattered signal from insonating an Artenga bubble (red) and its 

frequency spectrum (blue). The transmit pulse has a frequency of 25 MHz, pressure amplitude of 1.25 

MPa and is 30 cycles long. 

 

   3.3 Ring down analysis 

       Results presented in section 3.2 showed that subpopulations of bubbles were able to exhibit 

the behavior predicted by numerical simulations. These behaviors include the subharmonics of 

higher order (period 3, period 4 and period 5 oscillations). According to the theoretical 

simulations, for bubbles to generate such subharmonics, the bubble should a) be insonated with a 

frequency which is equal or slightly less than integer multiples of its resonance frequency (e.g. 

2.8 times the resonance frequency of the bubble to get period 3 oscillations, Figure 3.6) and b) 

sufficient pressure amplitude should be applied (Figures 3.1, 3.4, 3.7, 3.10). The results of Figure 

3.13 suggest that these bubble oscillations associated with subharmonics are very sensitive to the 

initial bubble radius.  
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     In order to experimentally confirm the resonance predictions by the model, the initial bubble 

radius need to be known or estimated. To achieve this, the free oscillations of the bubbles were 

studied (section 2.1.4). After turning off the acoustic driving pulse, the bubble oscillates for a 

limited number of cycles. The frequency of these free oscillations is equal to the resonance 

frequency of the bubbles (Leighton 1994). Appropriate period 2, period 3, period 4 and period 5 

signals were selected which were able to fully satisfy the constraints listed in section 2.3.. In 

order to isolate the ring down oscillations the number of the driving cycles should be identified. 

In our experiments with DC710 oil as a reflecting surface (Figure 3.14), it was found that for a 

30 cycle input excitation there are 2 extra cycles, attributed to the transducer response. To isolate 

the free oscillations from the forced oscillations due to the incident pulse including the 

transducer response, the analysis window did not include signal from the first 32 cycles of the 

backscattered pulse. In addition, in order to separate the ring down backscattered signal from the 

noise, signals with a SNR of less than ~12.7dB were eliminated. Selected signals were multiplied 

by a signal with a rectangular window with amplitude of 1. The location of the window for the 

ring-down analysis starts after 32 cycles of the received backscatter signal with a length of 

approximately 2-3 cycles after which the ring down amplitude diminishes to less than 12.7dB 

above the noise level. 

      Figure 3.21 shows the extracted period 2 signal resulting from insonation of Artenga bubbles 

with 25 MHz pulse consisting of 30 cycles. The frequency content of the signal is shown in In 

Figure 3.22 the amplitude of each frequency is normalized to the fundamental frequency of the 

received signal. There is a clear subharmonic signal at 12.5 MHz.  

Figure 3.23 illustrates the isolated ringdown signal from the bubble shown in Figure 3.21 

(selected from the highlighted area) while the power spectrum of this segment is shown in Figure 
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3.24. The main frequency of the free oscillations is equal to 13 MHz, which is in line with 

numerical predictions. According to the numerical simulations if the bubble is sonicated with a 

frequency which is slightly less than m (2,3,4…) times its natural resonance frequency, and for 

sufficient pressure amplitude a subharmonics of order 
ଵ

௠
… ௠ିଵ

௠
 are observable in the backscatterd 

signal spectrum.  

      Figures 3.25 and 3.26 show the extracted period 3 signal and its frequency components.  Two 

subharmonic components are detected at 8.33 MHz and 16.66 MHz. The ring down oscillations 

were isolated and are shown in Figure 3.27. The power spectrum of the free oscillations is 

depicted in Figure 3.28. The main frequency of the free oscillations is 8.38 MHz which is in line 

with theory which predicts a resonance frequency of 8.33 MHz or slightly higher. According to 

numerical simulations if the sonication frequency is slightly less than three times the natural 

resonance frequency of the bubble and for sufficient pressure amplitude the bubble is able to 

generate subharmonics of order 1/3 and 2/3 in the backscattered signal. 

      Out of the 64 signals collected for ring down analysis, 21 met the criteria for the ring down 

analysis outlined in the methods section. Of these 21, 11 were period 2 signals and 10 were 

period 3 signals. No period 4 and 5 signals met the criteria due to very weak ring- down signals. 

The reason for the weak signals might be the decreased sensitivity of the transducer in detecting 

lower frequencies of around 6.25 and 5 MHz. Out of those 11 period two signals the ring down 

analysis showed that the resonance frequency of the bubbles capable of exhibiting period two 

oscillations was 14.53±3.02 MHz which is consistent the numerical simulations. Analysis of 10 

period three signals resulted in a resonance frequency of 9.53±1.37 MHz which is again 

consistent with the results of the numerical simulation. 
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Figure 3.21: A measured period two backscattered signal from insonating insonating an Artenga bubble 

(pulse transmit frequency of 25 MHz, pressure amplitude of 1.25 MPa and 30 cycle length). 
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Figure 3.22: Power spectrum of the signal in figure 3.21. A strong subharmonic signal is detected at 12.5 

MHz. 
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Figure 3.23: Ring down oscillations of the bubble (figure 3.21) after multiplying the signal by a 

rectangular window of amplitude 1 and appropriate width and position (determined according to the 

criteria outlined in section 2.2.4). 
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Figure 3.24: Power spectrum of the ring-down signal in figure 3.23.The ring-down is associated with a 

dominant 13 MHz oscillation frequency. 
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Figure 3.25: A measured period three backscattered signal from insonating an Artenga bubble (pulse 

transmit frequency of 25 MHz, pressure amplitude of 1.25 MPa and 30 cycle length). 
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Figure 3.26: Power spectrum of the signal in figure 3.25. 
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Figure 3.27: Ring down oscillations of the bubble in figure 3.25 after multiplying the signal by a 

rectangular window of amplitude 1 and appropriate width and position. 
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Figure 3.28:  Frequency spectrum of the ring down oscillations in figure 3.26 
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Chapter 4 Discussion                     

   4.1 Summary and discussion of the numerical and experimental     

results 

 

     The dynamics of the ultrasound contrast agents were studied for a wide range of system 

control parameters (including pressure, bubble size and frequency) both experimentally and 

theoretically. For both the theoretical and the experimental part of this study a novel and efficient 

method was employed to investigate the UCA dynamics. In the theoretical section, the use of the 

bifurcation diagrams enabled us to visualize the bubble behavior for a very wide range of the 

control parameters. This tool was used, for the first time, to classify the dynamics of the bubble 

in terms of its resonance frequency. Experimental methods were developed that permitted the 

sonication of a polydisperse solution of UCAs with different sizes and the isolation and analysis 

of signals from single bubbles. The efficient method of ringdown analysis (has also been used in 

(Sun et al. 2005)) enabled us to estimate the bubble natural resonance frequency based on the 

received signal and to test the theoretical predictions for a wide range of resonant frequencies 

and therefore bubble sizes.  Through the combination of the parametric analysis of the bubble 

dynamics through the use of bifurcation diagrams and the experimental investigation of the UCA 

behavior, a more detailed insight into the behavior of microbubbles was obtained which was not 

available before.  
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      According to our results, in addition to the generation of subharmonics at half of the driving 

acoustic frequency, it is possible to force the bubbles to exhibit higher subharmonics. In 

conventional subharmonic imaging the bubbles are insonated with a frequency of approximately 

twice their natural resonance frequency. If the pressure amplitude of the incident ultrasound is 

sufficient, the bubble will exhibit subharmonic oscillations at half the driving frequency.  

Using the analysis tools presented in the thesis, we showed that if the bubble is insonated with a 

frequency more than twice its resonance frequency and slightly less than integer multiples of its 

resonance frequency (m=3,4,5,..) the bubble is able to exhibit subharmonics at higher order in its 

backscattered pressure. The strongest subharmonic will be of (m-1)/m order and has a higher 

frequency compared to the subharmonic at order ½.   

Polydisperse populations of Artenga bubbles were insonated using a Vevo 770 at 25 MHz by 

applying sinusoidal pulses with 30 cycle length.  Period two, three, four and five oscillations 

were detected. The frequency analysis of the detected signals showed that in addition to the 

conventional subharmonics at 12.5 MHz, the bubbles were able to exhibit higher subharmonics 

at 8.33 and 16.66 MHz for period three backscattered signals, 6.25, 12.5 and 18.75 MHz for the 

period four backscattered signals and 5,10,15 and 20 MHz for period five backscattered signals. 

  

   4.2 Summary and discussion of the ring down analysis 

      In order to further confirm the theoretical predictions regarding the generation of higher 

subharmonics, the frequency of the free oscillation of the bubbles was examined. As the 

frequency of the free oscillations should be at the natural resonance frequency of the bubbles, the 

validity of the theoretical predictions was tested. It was shown that both for the period two and 

period three oscillations the resonance frequency of the bubble is in the range of the 
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corresponding resonance frequency predicted by the numerical simulations. The results of the 

analysis of 11 period two signals showed that the resonance frequency of the bubbles capable of 

exhibiting period two oscillations was14.53±3.018 MHz which confirms the predictions of the 

numerical simulations. Analysis of 10 period three signals resulted in a resonance frequency of 

9.53±1.37 MHz which is again consistent with the results of the numerical simulation. According 

to numerical simulations, in order to generate period three oscillations the sonication frequency 

should be equal to three times or slightly less than three times the natural resonance frequency of 

the bubbles. The analysis of the period 5 and period four signals were difficult as none of the 

ring-down oscillations were able to satisfy the SNR constraint. In other words, ring-down 

oscillations were not separable from the noise floor. We hypothesize this is due to the decreased 

sensitivity of the 25 MHz transducer in detecting the 6.25 and the 5 MHz oscillations, as they 

outside the transducer bandwidth. 

    4.3 possible applications of the observed phenomenon 

     In most of the imaging applications the driving frequency is chosen to be equal to the 

resonance frequency of the transducer to achieve the highest sensitivity. In conventional 

subharmonic imaging, the received signal from bubbles is detected at half the driving frequency. 

Because this frequency is far from the resonance frequency of the transducer, the transducer 

sensitivity at the subharmonic frequencies is low (This is only true if the transmit frequency is 

chosen to be the resonance frequency of the transducer). This may impair the detection of the 

weaker subharmonic signals in the regions of low blood flow as the number of the present 

bubbles is smaller and therefore the total resulting signal may be weaker.  

In this work, we demonstrated theoretically and experimentally the existence of higher 

subharmonics. These subharmonics are of (m-1)/m order. As the integer m increases, the 



 

  71

frequencies of the subharmonics generated approach the resonant frequency of the transducer. 

Since the higher subharmonics are closer to the resonant frequency of the transducer, the 

sensitivity of the imaging device in detecting the backscattered signal increases. The maximum 

number of m achieved in our experiments is five. However, higher order subharmonics may be 

achievable at different acoustic conditions (higher pressures, frequencies or different type of 

UCAs). Compared to the conventional subharmonic imaging, this may result in a better SNR and 

sensitivity, depending on several factors. It should be noted that the above comparison is based 

on the assumption that the transmit frequency is at the resonance frequency of the transducer. 

However, a more reliable comparison should take into account the fact that the transmit 

frequency can be chosen not be equal to the resonance frequency of the transducer. (e.g. between 

the resonance frequency of the transducer and the sub harmonic frequency). In this case we need 

to do more rigorous and detailed analysis to achieve a more reliable comparison. Moreover, for 

the same number of transmit cycles, the higher frequency of the higher order subharmonics 

improves the imaging resolution (both axial and lateral).  

The increase in resolution may be applied in two different approaches. Imagine an imaging 

system which operates at the frequency f (e.g. 4 MHz). This frequency is twice the resonance 

frequency of the employed bubbles. By tuning the frequency to a higher frequency and applying 

a sufficient pressure, the bubbles will be able to emit higher subharmonics. As an example by 

maintaining the number of cycles and increasing the frequency to 2f (8 MHz), and detecting the 

¾ order subharmonics at 12f/4 (3/4*4f)  (e.g. 6 MHz) the resolution of the system (both axial and 

lateral) is significantly improved compared to detecting at f (½*2f) (e. g. 2 MHz).  For example 

imagine a pulse consisting of 8 cycles. The axial resolution of the ¾ order subharmonic and ½ 

order subharmonic can be calculated using: 
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݊݋݅ݐݑ݈݋ݏ݁ݎ ݈ܽ݅ݔܣ ൌ
݄ݐ݈݃݊݁ ݁ݏ݈ݑ݌ ݈ܽ݅ݐܽ݌ݏ

2
 

Where the spatial pulse length can easily be calculated using: 

݄ݐ݈݃݊݁ ݁ݏ݈ݑ݌ ݈ܽ݅ݐܽ݌ܵ ൌ
݀݊ݑ݋ݏ ݂݋ ݀݁݁݌ݏ כ ݏ݈݁ܿݕܿ ݂݋ ݎܾ݁݉ݑ݊

ݕܿ݊݁ݑݍ݁ݎ݂
 

Therefore the spatial pulse length for the ¾ order subharmonic will be 2 mm while the spatial 

resolution belonging to the ½ order subharmonic will be 6 mm. It should be noted that for 

simplicity of comparison, the assumption here is that we can generate higher order subharmonics 

with the same number of cycles necessary to generate 1/2 order subharmonics. However, in 

practice the number of cycles may not be equal and further detailed analysis is necessary to 

compare the axial resolutions. In addition the frequency of the higher order subharmonic is 

closer to the transmit frequency and assuming the transmit frequency to be equal to the 

resonance frequency of the transducer; the  SNR will increase. Again the assumption here is that 

the transmit frequency is at the resonance frequency of the transducer. However, this may not 

always be true and for cases where the transmit frequency is not at the resonance frequency of 

the transducer, further comparison and analysis is needed to do the comparison. Another fact that 

should be considered in comparing the SNR is the absolute strength of the signal. In this regard 

the concenteration of the each population size should be considered. For example, if the number 

of UCAs emitting SH of 1/2 order is significantly higher than the number of bubbles emitting 

subharmonics of 3/4 order; the absolute strength of the 1/2 oredr subharmonic signal will be 

much higher than the 3/4 order subharmonic. Thus the SNR corresponding to 1/2 order 

subharmonic will be higher. This is another important fact that should be considered for further 

analysis in order to make more reliable comparisons between the SNR of different order 

subharmonics.  
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Despite the improved CTR, one drawback of the current subharmonic imaging of breast is the 

low frequency of insonation (4.4 MHz) (Forseberg et al. 2007; Eisenbrey et al. 2011) which 

decreases the resolution compared to the conventional B-mode breast scans at 9-12MHz 

(Athanasiou et al. 2009). However, through optimization of bubble size and properties using  this 

approach, breast subharmonic imaging can potentially offer improved spatial resolution, both 

axial and lateral (considering the same imaging instrument, axial resolution will be improved if 

the number of transmit cycles is maintained. therefore, care must be taken in choosing the 

optimum number of cycles). In addition this technique combined with nonlinear frequency 

modulated ultrasound signals (Harput et al. 2010) will further improve the signal to noise and 

resolution. 

Another approach is to use larger bubble sizes which have a lower resonance frequency. As an 

example, larger bubbles can be chosen, which have a resonant frequency of approximately one 

fourth of the driving frequency (1/4*f) suitable for high frequency subharmonic imaging. At 40 

MHz and through applying a suitable pressure, the bubbles will emit higher subharmonics in the 

order of ¾ at 30 MHz. Compared to detection at f/2 (20 MHz), an improvement in spatial 

resolution is expected. One of the applications which may take advantage of this approach is 

high frequency subharmonic imaging (Goertz et al. 2005, 2006, 2007b, Needles et al. 2008). 

Despite the significant advantage of the subharmonic imaging at high frequencies in improving 

the CTR (Goertz et al. 2005), detection of the signals at half the driving frequency is not optimal; 

the detection sensitivity and resolution are reduced as the signal is usually at the limits of the 

useful transducer bandwidth. The conventional approach in high frequency subharmonic imaging 

is to filter the bubble sizes to smaller bubbles which have a resonance frequency at half the 

driving frequency (Shi et al. 1997, Shankar et al. 1998. Krishna et al. 1999, Forseberg et 
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al.2000). Through careful size selection of the bubbles and employing larger bubble sizes, these 

bubbles can be forced to emit higher subharmonics and improve the sensitivity and resolution. 

Another important application of the investigated phenomenon may be in Amplitude Modulation 

(AM) techniques. Amplitude modulation techniques (Porter et al. 2003, Brock-Fisher et al. 2006) 

are based on transmitting two pulses, one pulse usually having twice the amplitude of the second 

pulse. Upon scaling and subtraction of the backscattered signals, the residual of a linear scatter 

like tissue will be minimal. This is because the linear scattered behaves linearly and near full 

cancellation will be obtained by multiplying the received signal from the half amplitude pulse by 

two and subtracting it from the received signal belonging to sonication with the full amplitude 

pulse. However, due to the nonlinear response of the bubble to the pressure increase, the two 

signals do not cancel after scaling and subtraction. Therefore there would remain a significant 

residual signal belonging to the bubble and the CTR will be improved.  

As seen in the bifurcation diagrams, when the bubble is sonicated with the appropriate frequency 

(capable of generating higher subharmonics) the radial oscillations of the bubble undergo a 

sudden increase as the pressure amplitude is raised above a threshold value. By choosing the 

appropriate pressure amplitudes associated with the two pulses, large changes in the 

subharmonic backscatter can be achieved, and therefore the CTR. Figure 3.1 and 3.2 illustrates 

this; if for this scenario the first pulse is sent with an amplitude of 0.3 MPa, and the second with 

an amplitude of 0.6 MPa, large gains in CTR can be achieved. Therefore, setting the amplitudes 

of the amplitude modulation first and second pulses to be smaller and greater than the pressure 

threshold, the CTR of the amplitude modulation technique may be enhanced significantly. It has 

been recently shown that one way to increase the nonlinearity is to take advantage of the 

buckling behavior of lipid shell bubbles  
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(Emmer et al. 2007a). However, this method is limited to frequencies below the resonance of the 

bubble. To achieve enhanced nonlinearity at high frequencies, the oscillations of the UCAs 

should be optimized.  
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Chapter 5 Conclusion and future 

work                       

      In conclusion, through both experimental and theoretical investigations, the feasibility of the 

generation of higher subharmonics was shown. It was confirmed that through careful resonace 

selection of bubbles (resonance frequency strongly depends on bubble size) and application of a 

frequency which is equal or slightly less than integer multiples of the resonance frequency of the 

bubbles (m = 3, 4 , …) and by applying a sufficiently high acoustic pressure, the bubbles can 

exhibit subharmonics of higher order. Because of the higher frequency content of the higher 

subharmonics the sensitivity and resolution of the procedure can potentially be improved 

compared to conventional subharmonic imaging. This may be beneficial in improving clinical 

breast subharmonic imaging and high frequency subharmonic scanning of small animals. This 

technique will increase the sensitivity of the measurement especially in case of the regions of 

small blood flow where weaker signals are expected due to the lower concentration of the 

bubbles. 

      This study had certain limitations. Long pulses consisting of 30 cycles were employed. The 

application of long cycles is not appropriate for clinical imaging as the axial resolution of the 

images decreases significantly. Long pulses were implemented in our since there will be a clear 

separation between the frequencies of the backscattered signal. This significantly helps us to test 
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the theoretical predictions and gain a clear insight into the bubble dynamics. As the aim of this 

study was to obtain a deeper understanding regarding the physics behind the bubble dynamics 

and classify their behavior, application of shorter cycles suitable for clinical applications was not 

investigated. However, for an actual subharmonic imaging procedure, the relationship between 

the number of the transmit cycles and the strength of the higher subharmonics is very important 

and should be studied. Generating stronger subharmonics through transmitting a shorter pulse is 

desirable as the axial resolution will significantly be improved. Investigation of the relationship 

between the cycles and the strength of higher subharmonics should be the subject of further 

study.  

     As the goal of this study was to investigate the dynamics of the bubble versus a wide range of 

the bubble sizes, we employed a polydisperse size distribution of Artenga bubbles. This made the 

determination of the pressure threshold for the generation of each of the higher periods regimes 

very difficult. Application of stacks of monodispers bubbles (e.g. through centrifuging a 

polydisperse solution (Feshtihan et al. 2009; Sirsi et al. 2010)) with resonance frequencies of 1/3, 

¼ and 1/5 of the driving frequency and obtaining the pressure threshold for the generation of 

each of these higher subharmonics can be the subject of the future studies. Obtaining this 

pressure threshold can also aid in designing a more efficient amplitude modulation technique at 

higher frequencies. 

     Recently, the application of lipid shell bubbles like Definity has attracted a lot of interest in 

contrast enhanced ultrasound imaging. The softer shell leads to a buckling behavior specific to 

lipid shell bubbles. Therefore, the generation of nonlinear signals is much easier and may be 

possible at lower pressures (de Jong et al. 2007; Emmer et al. 2009, 2007a,2007b,2007c; 

Frinking et al. 2010;Faez et al. 2011).  The majority of the bubbles used in our studies were 
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surfactant shell Artenga bubbles. The theoretical model (Hoff model) employed in numerical 

simulations is suitable for only viscoselastic shells and is not able to simulate the more intricate 

behavior of the lipid shell bubbles (such as buckling). Employing the buckling phenomenon in 

using new models (e. g. the Marmottant model (Marmottant et al. 2005)) and the classification of 

the dynamics of the lipid shell bubble at higher frequencies can be the subject of the future 

studies. In addition similar experiments can be performed on lipid bubbles to test these 

theoretical predictions. 
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