

DESIGNING OF AN ALGEBRAIC SIGNATURE ANALYZER

FOR MIXED-SIGNAL SYSTEMS AND TESTING

By

Muhammad Mohsin Babar

Bachelor of Science in Electrical and Electrical Engineering, Ahsanullah

University of Science and Technology, Dhaka, Bangladesh, 2005

A project

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2017

© Muhammad Mohsin Babar, 2017

ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this project. This is a true copy of

the project, including any required final revisions.

I authorize Ryerson University to lend this project to other institutions or

individuals for the purpose of scholarly research

I further authorize Ryerson University to reproduce this project by photocopying

or by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

I understand that my project may be made electronically available to the public.

iii

Designing of an Algebraic Signature Analyzer for Mixed-Signal Systems

and Testing

Muhammad Mohsin Babar

Master of Engineering

Electrical and Computer Engineering

Ryerson University, Toronto, 2017

ABSTRACT

While the design of signature analyzers for digital circuits has been well

researched in the past, the common design technique of a signature analyzer for

mixed-signal systems is based on the rules of an arithmetic finite field. The analyzer

does not contain carry propagating circuitry, which improves its performance as well

as fault tolerance. The signatures possess the interesting property that if the input

analog signal is imprecise within certain bounds (an inherent property of analog

signals), then the generated signature is also imprecise within certain bounds. We

offer a method to designing an algebraic signature analyzer that can be used for

mixed-signal systems testing. The application of this technique to the systems with

an arbitrary radix is a challenging task and the devices designed possess high

hardware complexity. The proposed technique is simple and applicable to systems

of any size and radix. The hardware complexity is low. The technique can also be

used in algebraic coding and cryptography.

iv

CONTENTS

AUTHOR'S DECLARATION .. ii

ABSTRACT ... iii

FIGURES .. v

TABLES .. vi

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: SCOPE OF THIS PROJECT ... 3

CHAPTER 3: A NOVEL METHOD .. 11

CHAPTER 4: APPLICATION ... 19

4.1: HARDWARE OVERHEAD ... 20

4.2: TIME OVERHEAD ... 22

CHAPTER 5: EXPERIMENTAL SETUP ... 27

CHAPTER 6: FUTURE WORK AND CONCLUSION .. 35

APPENDICES .. 36

A. VHDL CODE ... 36

B. BLOCK DIAGRAM .. 38

C. PIN PLAN .. 39

D. WAVE FORMS ... 40

REFERENCES ... 43

v

FIGURES

Figure 1 Built-in signature analysis of a circuit under test .. 5

Figure 2 A t-stage polynomial division circuit .. 5

Figure 3 A symbolic presentation of a one-stage algebraic signature analyzer....................................... 5

Figure 4 A logic level presentation of the algebraic 3-input signature analyzer 6

Figure 5 A symbolic presentation of a one-stage arithmetic signature analyzer 7

Figure 6 A 3-input arithmetic compactor .. 10

Figure 7 A symbolic form of an algebraic SA for a mixed-signal CUT ... 12

Figure 8 A more detailed symbolic form of the SA .. 13

Figure 9 A register transfer level implementation of the SA .. 15

Figure 10 An 𝑛-bit comparator .. 20

Figure 11 A binary-weighted version of the SA.. 21

Figure 12 A register transfer level implementation of the 3-bit SA .. 24

Figure 13 A 3-bit signature analyzer data flow ... 24

Figure 14 The experimental setup ... 25

Figure 15 Altera DE2-115 ... 25

Figure 16 Altera DE2-115 Descriptions .. 26

Figure 17 9S12 ADC Transer Function ... 28

Figure 18 The combination ”1” is detected: ADC is operating properly on Seed 233............................ 31

Figure 19 The combination ”1” is detected: ADC is operating properly on Seed 250............................ 31

Figure 20 The combination ”1” is detected: ADC is operating properly on Seed 251............................ 32

Figure 21 The combination ”1” is not detected: ADC is faulty on Seed 201 .. 32

Figure 22 The combination ”1” is not detected: ADC is faulty on Seed 234 .. 33

Figure 23 The combination ”1” is not detected: ADC is faulty on Seed 252 .. 33

Figure 24 An 8-input signature analyzer ... 34

Figure 25 Block Diagram .. 38

Figure 26 PIN Planner ... 39

Figure 27 PIN Identifications .. 40

Figure 28 All output code deviations are within the tolerance bounds ... 40

Figure 29 Some of the output code deviations exceed the tolerance bounds .. 41

Figure 30 Some of the output code deviations in MAX .. 41

Figure 31 Some of the output code deviations in MIN ... 42

Figure 32 Some of the output code deviations in NOMINAL .. 42

vi

TABLES

Table 1 THREE REPRESENTATIONS FOR THE ELEMENTS OF 𝐺𝐹(23) GENERATED BY

𝒈(𝒙) = 𝒙𝟑 + 𝒙 + 𝟏. HERE 𝒈(𝜶) = 𝟎. ... 7

Table 2 RELATIONSHIP BETWEEN INPUT TEST STIMULI AND OUTPUT RESPONSES 30

1

CHAPTER 1: INTRODUCTION

A number of mixed-signal testing approaches have been proposed to detect

faults in digital circuitry [1]-[2]. Early approaches were primarily aimed at defect

oriented testing of the digital circuitry for manufacturing and system-level testing

[2]-[3]. More recent approaches are target digital functional test and measurement,

or specification oriented testing [4]-[6]. Signature analysis has been widely used for

digital and mixed-signal systems testing [1]–[12]. Mixed-signal systems consist of

both digital and analog circuits; however, the signature analysis method is only

applicable to the subset of these systems that have digital outputs (such as analog-to

digital converters, measurement instruments etc.). Signature analysis can be

employed as an external test solution or can be embedded into the system under test.

In the built-in implementation, a circuit under test (CUT) of digital or mixed signal

nature is fed by test stimuli, while the output responses are compacted by a signature

analyzer (SA), as illustrated in Figure 1. The actual signature is compared against

the fault free circuit’s signature and a 𝒑𝒂𝒔𝒔/𝒇𝒂𝒊𝒍 decision is made. A signature of

a fault free circuit is referred to as a reference signature. If the CUT is of a digital

nature, the SA essentially constitutes a circuit that computes an algebraic remainder.

The reference signature has only one, punctual value, and the decision-making

circuit consists of a simple digital comparator. If the CUT is of a mixed-signal

2

nature, the SA computes an arithmetic residue. In this case, the reference signature

becomes an interval value and the decision-making circuit uses a window

comparator.

Design methods for an algebraic signature analyzer have been well developed in

error-control coding [13]. A remainder calculating circuit for an arbitrary base

(binary or non-binary) can be readily designed for a digital CUT of any size. In

contrast, it is much harder to design a residue calculating circuit, specifically for a

non-binary base [14]. Furthermore, due to the presence of carry propagating

circuitry, the implementation complexity and error vulnerability of the residue

calculating circuit is higher compared to the remainder calculating circuit.

We propose an approach to designing an algebraic signature analyzer that can

be used for mixed-signal systems testing. Due to an algebraic nature, the analyzer

does not contain carry propagating circuitry. This helps to improve its error

immunity, as well as performance.

3

CHAPTER 2: SCOPE OF THIS PROJECT

Designed of an algebraic signature analyzer on the basis of a polynomial division

circuit, as shown in Figure 2 [3], [13], [15]. This circuit divides the incoming

sequence of non-binary symbols (digits), 𝒂𝒎−𝟏, . . . , 𝒂𝟏, 𝒂𝟎,

treated as a polynomial:

𝒂(𝒚) = 𝒂𝒎−𝟏𝒚
𝒎−𝟏 + … + 𝒂𝟏𝒚 + 𝒂𝟎

Eq. 1

by the polynomial:

𝒑(𝒚) = 𝒑𝒕𝒚
𝒕 +⋯+ 𝒑𝟏𝒚 + 𝒑𝟎, 𝒕 ≪ 𝒎

Eq. 2

The remainder:

𝒔(𝒚) = 𝒔𝒕−𝟏𝒚
𝒕−𝟏 + … + 𝒔𝟏𝒚 + 𝒔𝟎

Eq. 3

constitutes a CUT signature.

Each digit, 𝒂𝒊, 𝟎 ≤ 𝒊 ≤ 𝒎 − 𝟏 consists of 𝒏 bits and is considered to be an

element of the field 𝑮𝑭(𝟐𝒏). The degree of the polynomial (2), or the number of

stages, 𝒕, in Figure 2, depends on the desired probability of undetected error in the

sequence of incoming digits. For long sequences with independent errors, this

probability is estimated as 𝑷𝒏𝒅 ≈ 𝟐
−𝒕𝒏. In practice, 𝒏 ≥ 𝟖 and even for the one-

stage circuit, 𝑷𝒏𝒅 ≤ 𝟐
−(𝟏×𝟖) = 𝟎. 𝟎𝟎𝟑𝟗, which is quite low. Therefore, a

4

multiple-input signature analyzer normally contains only one stage. Such an

analyzer is presented in Figure 3 [14], where α is a primitive element of the field

𝑮𝑭(𝟐𝒏), i.e. a root of a primitive polynomial

𝒈(𝒙) = 𝒈𝒏−𝟏𝒙
𝒏−𝟏 + … + 𝒈𝟏𝒙 + 𝒈𝟎

Eq. 4

The field of each element can be represented by a power of 𝜶. Let 𝛼𝑖 be the

incoming digit and 𝛼𝑗 be the content of the analyzer. Then, each operational cycle

of the analyzer is described by the expression:

𝜶𝒋𝜶 ⊕ 𝜶𝒊 = 𝜶𝒌

Eq. 5

Without a loss of generality, we will consider a 𝟑-bit signature register (𝒏 =

 𝟑), with 𝜶 being a primitive element of 𝑮𝑭(𝟐𝟑), in particular, a root of a primitive

polynomial 𝒈(𝒙) = 𝒙𝟑 + 𝒙 + 𝟏. Then, a symbolic scheme of Figure 3 will transfer

to the logic level circuit of Figure 4, where

𝜶𝒍 = 𝜶𝟐
(𝒍)
𝒙𝟐 + 𝜶𝟏

(𝒍)
𝒙 + 𝜶𝟎

(𝒍)
, 𝜶𝒊

(𝒍)
∈ {𝟎, 𝟏}, 𝟎 ≤ 𝒊 ≤ 𝟐, 𝟎 ≤ 𝒍 ≤ 𝟔

Eq. 6

5

Figure 1 Built-in signature analysis of a circuit under test

Figure 2 A t-stage polynomial division circuit

Figure 3 A symbolic presentation of a one-stage algebraic signature analyzer

α j
α i

α

α k

Signature

Test

Under

Circuit

Analyzer Stimuli Responses

Test

Fail

Pass

Circuit

Making

Decision

Signature

Actual Output

Signature

Reference

- 1

s
0

s
1

···𝑎1𝑎0
···

m- a 1

p 1 p 0

t- s 1

t- p 1 t p

6

Figure 4 A logic level presentation of the algebraic 3-input signature analyzer

This expression indicates the relationship between the power and vector

representations of a field element, as reflected in Table I (𝒘𝒉𝒆𝒓𝒆 𝒙 = 𝜶).

If the preliminary “cleared” analyzer receives, for example, the following

sequence of 3-bit output responses from a digital CUT, 𝜶𝟓, 𝜶𝟔, 𝜶𝟒, 𝜶𝟐, 𝜶𝟏, 𝜶𝟎,then

after the 𝟔 − 𝑡ℎ shift its content will become:

(((((𝟎 · 𝜶 + 𝜶𝟓)𝜶 + 𝜶𝟔)𝜶 + 𝜶𝟒)𝜶 + 𝜶𝟐)𝜶 + 𝜶𝟏)𝜶 + 𝜶𝟎 = 𝜶

Eq. 7

The power representation of the field element, 𝜶, corresponds to the vector

representation, 010, which is the actual signature of the CUT.

In contrast to a digital CUT, the output responses of a mixed-signal CUT are

distorted even in a fault-free case. Small permissible variations in the responses

cause a significant deviation of the final signature. For example, if in the above

a 2 a 1 a 0

d 2 d 1 d 0

7

Table 1 THREE REPRESENTATIONS FOR THE ELEMENTS OF 𝐺𝐹(23)
GENERATED BY 𝒈(𝒙) = 𝒙𝟑 + 𝒙 + 𝟏. HERE 𝒈(𝜶) = 𝟎.

Power

Representation

Polynomial

Representation

Vector

Representation

𝛼𝑙 𝛼2
(𝑙)
𝛼2 + 𝛼1

(𝑙)
𝛼 + 𝛼0

(𝑙)
𝛼 𝛼2

(𝑙)
 𝛼1

(𝑙)
 𝛼0

(𝑙)

0 0 0 0 0

𝛼0 𝛼0 0 0 1

𝛼1 𝛼1 0 1 0

𝛼2 𝛼2 1 0 0

𝛼3 𝛼1 + 𝛼0 0 1 1

𝛼4 𝛼2 + 𝛼1 0 1 1

𝛼5 𝛼2 + 𝛼1 + 𝛼0 1 1 1

𝛼6 𝛼2 + 𝛼0 1 0 1

Figure 5 A symbolic presentation of a one-stage arithmetic signature analyzer

sequence of output responses the least significant bit in the first response changes

from 𝟏 𝒕𝒐 𝟎 (i.e. the vector 𝟏𝟏𝟏 changes to 𝟏𝟏𝟎, or power 𝜶𝟓 changes to 𝜶𝟒), then

the actual signature will change from 𝟎𝟏𝟎 𝒕𝒐 𝟏𝟎𝟏 (or from 𝜶 to 𝜶𝟔 in power form).

a
j

a
i

b

a +
j

8

Apparently, the conventional SA represented in Figures 3 and 4 cannot be

employed for mixed-signal circuits testing.

The known methods, output responses of mixed-signal circuits are compacted

by a circuit referred to as a modulo adder (or accumulator, or digital integrator) [4]–

[8]. It should be noted that a modulo adder is a special case of a

𝒓𝒆𝒔𝒊𝒅𝒖𝒆 𝒄𝒐𝒎𝒑𝒖𝒕𝒊𝒏𝒈 𝒄𝒊𝒓𝒄𝒖𝒊𝒕 [14]. A residue computing circuit is represented in

Figure 5. Here 𝒂𝒋 is the current content of the register, 𝒂𝒊 is the incoming (arithmetic)

symbol and 𝒃 is the base of the system. This circuit divides the incoming data

sequence of symbols, 𝒂𝒎−𝟏, . . . , 𝒂𝟏, 𝒂𝟎, treated as a number:

𝒂 = 𝒂𝒎−𝟏𝒃
𝒎−𝟏 + … + 𝒂𝟏𝒃 + 𝒂𝟎

Eq. 8

by the modulus

𝒑 = 𝒑𝒕−𝟏𝒃
𝒕−𝟏 +⋯+ 𝒑𝟏𝒃 + 𝒑𝟎, 𝒕 ≪ 𝒎

Eq. 9

As in the case with the algebraic SA, we consider a singlestage device, i.e.

𝒕 = 𝟏, 𝒑 = 𝒑𝟎 < 𝒃 = 𝟐
𝒏

Eq. 10

where 𝒏 is the number of bits occupied by the symbol. The residue, 𝒔𝟎, constitutes

a signature.

9

An operational cycle of the circuit in Figure 5 can be described by the

expression:

𝒂𝒋𝒃 + 𝒂𝒊 = 𝒂𝒋
+ (𝒎𝒐𝒅𝒑)

Eq. 11

Although the circuits of Figures 3 and 5 look similar, their implementation is

quite different. In general case, the designing procedure for the arithmetic circuits is

more complicated and their hardware complexity is greater.

As an example, Figure 6 represents the circuit that computes a modulo 5 residue

of the incoming sequence of 3-bit symbols treated as an octal number [14]. Here

𝒂𝒊 is the incoming octal digit and 𝑪 is a combinational circuit which generates the

following next state signals:

𝒄𝟐 = 𝜶𝟎
𝒋
𝜶𝟏
𝒋
𝜶𝟎
𝒊 𝜶𝟏

𝒊 𝜶𝟐
𝒊 + 𝜶𝟏

𝒋
(𝜶𝟎

𝒋
𝜶𝟏
𝒊⨁𝜶𝟐

𝒊 + 𝜶𝟎
𝒋
𝜶𝟎
𝒊𝜶𝟐

𝒊)

Eq. 12

𝒄𝟏 = 𝜶𝟐
𝒋
𝜶𝟐
𝒊 (𝜶𝟎

𝒊 + 𝜶𝟏
𝒊) + 𝜶𝟐

𝒋
𝜶𝟐
𝒊 (𝜶𝟎

𝒋
𝜶𝟎
𝒊 + 𝜶𝟏

𝒋
𝜶𝟏
𝒊) + 𝜶𝟏

𝒋
(𝜶𝟎

𝒋
+ 𝜶𝟐

𝒊) + 𝜶𝟎
𝒋
(𝜶𝟏

𝒊⨁𝜶𝟐
𝒊)

Eq. 13

𝒄𝟎 = 𝜶𝟎
𝒋
𝜶𝟏
𝒊 (𝜶𝟏

𝒋
⨁𝜶𝟐

𝒊) + 𝜶𝟏
𝒋
𝜶𝟐
𝒊 (𝜶𝟎

𝒋
+ 𝜶𝟎

𝒊 𝜶𝟏
𝒊) + 𝜶𝟐

𝒋
+ 𝜶𝟏

𝒋
𝜶𝟐
𝒊 (𝜶𝟎

𝒋
𝜶𝟏
𝒊 + 𝜶𝟎

𝒊 𝜶𝟏
𝒊 +

𝜶𝟎
𝒋
𝜶𝟎
𝒊)

Eq. 14

10

Each shift of this circuit implements the operation 𝒂𝒋 × 𝟖 + 𝒂𝒊(𝒎𝒐𝒅𝟓).

In addition to high hardware complexity, the arithmetic compactor contains

carry propagating circuitry (shown in red color in Figure 6) that delays the operation

and aggravates the effect of a single fault.

Figure 6 A 3-input arithmetic compactor

Below, we design an algebraic circuit that can be employed for mixed-signal

data compaction. It does not contain carry propagating circuitry.

a
0 S S

c
0

a
1 S S

c
1

a
2 S S

c
2

S

S

C

j

j

j
a

0

a
1

a
2
i

i

i

11

CHAPTER 3: A NOVEL METHOD

The polynomial (1) in conjunction with the reference signature can be

considered as a code word of the code whose minimal distance is defined by the

𝒈(𝒙). The distance here is the Hamming distance. This distance characterizes

algebraic error-detecting properties of the code and is not convenient for arithmetic

errors that occur in mixed-signal systems. Indeed, a small permissible deviation of

the data to be compacted causes the reference signature to span the entire space.

Under these conditions, the decision-making circuit in Figure 1 must be able to

compare the actual signature with the entire set of possible reference signatures. This

increases the analyzer complexity.

To decrease the complexity, an arithmetic SA treats the sequence of output

responses from a mixed-signal circuit as a number (4). In conjunction with the

reference residue, this is considered as a code word of an arithmetic error-control

code. The properties of this code depend on the arithmetic minimal distance which

in turn depends on the modulus 𝒑. The arithmetic residue calculating analyzer does

not search the entire space, since the space of arithmetic reference signatures is now

contiguous. To make a decision, it employs a window comparator. This simplifies

the circuitry. However, the hardware complexity of the arithmetic SA can still be

quite high, as it was illustrated above.

12

In the rest of this paper, we will show how to design an algebraic SA, which

generates a contiguous space of algebraic reference signatures.

In order to be contiguous, the space of signatures must be ordered. A signature

can be represented in the vector or power forms. We will use the power exponent as

the criterion for ordering the signature set. The distance between two vectors

(signatures) will be evaluated as the arithmetic difference between the corresponding

exponents. For example, the distance between the signatures 𝟎𝟏𝟎 and 𝟏𝟎𝟏 will be

5, because the exponents of powers 𝜶𝟔 and 𝜶 differ by 𝟓. We can interpret these

Figure 7 A symbolic form of an algebraic SA for a mixed-signal CUT

α j
α i α j + i

13

Figure 8 A more detailed symbolic form of the SA

exponents as output responses of a mixed-signal CUT, since they possess arithmetic

properties. At the same time, the corresponding vectors (signatures) possess

algebraic properties. Therefore, an arithmetic data is mapped into an algebraic data.

Figure 7 represents the circuit which performs the mapping and computes an

algebraic signature.

The circuit of Figure 7 can be obtained from the circuit of Figure 3 by the

following transform:

···

MUX

i

α j

α

α j + i

. . .

α α

α j +1 α j + i α j +2
n − 2

0

2 n -2

i

···

. . .

α j +0

1

2 n -1

14

𝜶𝒋𝜶𝒊 = (𝜶𝒋𝜶)𝜶𝒊−𝟏 = (𝜶𝒋𝜶) (𝟏 + 𝜶𝒌)⏞
𝜶𝒊−𝟏

= 𝜶𝒋𝜶 + 𝜶𝒋+𝟏+𝒌 = 𝜶𝒋𝜶+ 𝜶𝒍

Eq. 15

Since the finite field 𝑮𝑭(𝟐𝒏) is closed and errors are independent, this mapping

will not change the probability of undetected error.

The logic level implementation of the circuit of Figure 7 is more complex

compared to the circuit of Figure 3, but it is less complex than that of the circuit of

Figure 5.

Prior to designing the circuit, we have to make a few observations.

The 𝒇𝒊𝒓𝒔𝒕 observation is that

𝜶𝒋𝜶𝒊 = (…(𝜶𝒋𝜶)𝜶)…𝜶⏟
𝒊

 Eq. 16

Let us denote an output response from a mixed-signal CUT as 𝒊. The second

observation is that the response 𝒊 can be considered as an exponent of the power, i.e.

15

𝜶𝒊. Essentially, this means that the arithmetic values 𝒊 are mapped into algebraic

values 𝜶𝒊.

Based on these observations, we can design a signature analyzer in the way

shown in Figure 8. Here 𝜶 is a primitive element of a finite field 𝑮𝑭(𝟐𝒏); 𝒏

coincides with the bitlength of the output responses. The lower and upper inputs of

the multiplexer in Figure 8 are connected together, since 𝜶𝟐
𝒏−𝟏 = 𝜶𝟎 𝒊𝒏 𝑮𝑭(𝟐𝒏).

Figure 9 A register transfer level implementation of the SA

16

Considering the case when the analyzer is fed by 𝟑-bit data, its more detailed

implementation will have the form of Figure 9.

Here the buses consist of 3 lines, as indicated by the appropriate number. The

initial content of the SA before the shift is 𝜶𝒋, or 𝒂𝟐𝒙
𝟐 + 𝒂𝟏𝒙 + 𝒂𝟎 in the

polynomial form (we have omitted the superscripts for the sake of simplicity). The

notations 𝒂𝒌 and 𝒂𝒌
+, where 𝒊𝒏𝒅𝒆𝒙 𝒌 can be one of the 𝟎, 𝟏, 𝟐, indicate the present

and next states, respectively.

A multiplier by 𝜶 in 𝑮𝑭(𝟐𝟑) is realized bearing in mind that

𝒈(𝒙) = 𝒙𝟑 + 𝒙 + 𝟏, 𝛼 corresponds to 𝒙, and

(𝒂𝟐𝒙
𝟐 + 𝒂𝟏𝒙 + 𝒂𝟎)𝒙 𝒎𝒐𝒅 𝒈(𝒙) =

(𝒂𝟐𝒙
𝟑 + 𝒂𝟏𝒙

𝟐 + 𝒂𝟎𝒙)𝒎𝒐𝒅 𝒈(𝒙) =

𝒂𝟐(𝒙 + 𝟏) + 𝒂𝟏𝒙
𝟐 + 𝒂𝟎𝒙 =

𝒂𝟏𝒙
𝟐 + (𝒂𝟐 + 𝒂𝟎)𝒙 + 𝒂𝟐

Eq. 17

This operation is shown by cross-lines in Figure 9. The multiplexer inputs “0”

and “7” are tied together, because 𝜶𝟕 = 𝜶𝟎 in the field 𝑮𝑭(𝟐𝟑).

17

In order to demonstrate how to use this analyzer, we will assume that it receives

only two values from a CUT, in particular 𝒋 𝑎𝑛𝑑 𝒊. Since the CUT is of a mixed-

signal nature, there is an unavoidable (and thereby permitted) deviation of these

values by ±𝟏 (the greater tolerances can also be considered). The analyzer will map

the received data into 𝜶𝒋±𝟏 and 𝜶𝒊±𝟏, respectively. If we assume that the initial

content of the SA is 001 (versus 000 for a conventional SA), then after the first shift

the content becomes 𝜶𝟎𝜶𝒋±𝟏 = 𝜶𝒋±𝟏. After the second shift, it changes to

𝜶𝒋±𝟏𝜶𝒊±𝟏 = 𝜶𝒋+𝒊±𝟐. This expression is derived using the interval arithmetic rules.

It states that for the fault-free CUT the actual result must match one of the values

from the interval [𝜶𝒋+𝒊−𝟐, 𝜶𝒋+𝒊+𝟐], that is one of the following:

𝜶𝒋+𝒊−𝟐, 𝜶𝒋+𝒊−𝟏, 𝜶𝒋+𝒊, 𝜶𝒋+𝒊+𝟏, 𝜶𝒋+𝒊+𝟐

Eq. 18

To further simplify the SA operation, we will assume that instead of 𝜶𝟎

(𝒊. 𝒆. 𝟎𝟎𝟏) the initial SA content is 𝜶−(𝒋+𝒊). We will refer to this value as the

𝑠𝑒𝑒𝑑 value. Then, by the same reasoning, the SA content after two shifts will match

one of the following powers:

𝜶−𝟐, 𝜶−𝟏, 𝜶𝟎, 𝜶𝟏, 𝜶𝟐

Eq. 19

18

Due to the closure property of the field 𝑮𝑭(𝟐𝟑), this power set is equivalent to:

𝜶𝟓, 𝜶𝟔, 𝜶𝟎, 𝜶𝟏, 𝜶𝟐

Eq. 20

Consequently, the decision-making circuit in Figure 3 will work as follows. If

the actual signature does not match any value from the set (20), the CUT is

considered to be faulty. Since these values are ordered (and surround the power 𝜶𝟎),

the decision-making circuit can employ a comparator, thereby reducing the hardware

complexity of the SA.

As in any signature analyzer, some errors in the CUT output responses may

escape detection. The aliasing rate can be estimated as described in [16] and will

coincide with the aliasing rate of the conventional analyzer.

19

CHAPTER 4: APPLICATION

Let us assume a 𝟑-bit CUT, which is fed by two input stimuli. Under the fault-

free operation, the CUT produces the output responses 𝒋 = 𝟏𝟎𝟏 ± 𝟏 and 𝒊 = 𝟏𝟏𝟎 ±

𝟏.Therefore, the seed value will be 𝜶−(𝒋+𝒊) = 𝜶−(𝟓+𝟔) = 𝜶−𝟏𝟏 = 𝜶𝟑, 𝒐𝒓 𝟎𝟏𝟏 in the

vector form. If the CUT is fault-free, then after 𝟐 shifts the SA content must match

one of the elements in the set (20). For example, if the actual responses are 𝟏𝟎𝟏 +

𝟏 = 𝟏𝟏𝟎 (𝒐𝒓 𝜶𝟔) 𝒂𝒏𝒅 𝟏𝟏𝟎 + 𝟏 = 𝟏𝟏𝟏 (𝒐𝒓 𝜶𝟕) (i.e. the variations are within the

tolerance bounds), the signature will be 𝜶𝟑𝜶𝟔𝜶𝟕 = 𝜶𝟐 which belongs to the set

(20). And the decision-making circuit will generate a pass signal. The validity of

such a decision is determined by the aliasing rate.

Let us assume that a fault in the CUT has made the following changes in the

output responses: 𝟏𝟏𝟎 → 𝟎𝟏𝟏(𝜶𝟔 → 𝜶𝟑)𝒂𝒏𝒅 𝟏𝟏𝟏 → 𝟏𝟎𝟎 (𝜶𝟕 → 𝜶𝟒). Then the

actual signature will become 𝜶𝟑𝜶𝟑𝜶𝟒 = 𝜶𝟑. This element does not belong to the set

(20), so the fault is detected.

There are two distinct ways of designing the decision-making circuit depending

on the optimization criteria (time or hardware overhead).

20

4.1: HARDWARE OVERHEAD

If performance is paramount and time overhead is not desirable, the following

approach can be employed. Let 𝒎 be the number of output responses. All of the

𝟐𝒎+ 𝟏 𝜶-multiplier outputs (see Figure 8) that belong to the set (20), are connected

to the first inputs of the 𝟐𝒎+ 𝟏 comparators of a similar type. The second inputs of

these comparators are shared and fed by the vector 𝟎. . . 𝟎𝟏. If the CUT is fault-free,

one of the comparators will produce a logic “𝟏” signal. The logic OR of the

comparator outputs will constitute a 𝒑𝒂𝒔𝒔/𝒇𝒂𝒊𝒍 signal.

The above procedure is based on the fact that the fault-free CUT produces one

of the signatures from the set (20). If the actual signature is 𝜶𝟎, the comparator

connected directly to the signature register produces a logic “𝟏”, thus indicating that

the CUT is fault free. If the actual signature is 𝜶𝟔, then the product 𝜶𝟔𝜶, generated

at the output of the first 𝜶-multiplier equals to 𝟏, which is detected by the next

comparator. The same

Figure 10 An 𝑛-bit comparator

{𝑛
·
·
·

21

Figure 11 A binary-weighted version of the SA

reasoning applies to the rest of signatures from the set (20). The logic diagram of the

𝒏-bit comparator is shown in Figure 10.

i

α j

α

··· 0

1
α 2

0

1

0

1

α 2 n − 1

. . .

22

4.2: TIME OVERHEAD

If time overhead is allowed, the hardware complexity can be further reduced. In

terms of implementation, it is more convenient to use the following seed value:

𝜶−(𝒋+𝒊+𝒎+𝟏) where 𝒎 is the number of output responses. For the above example,

𝜶−(𝟏𝟏+𝟑) = 𝜶𝟎, and the set (20) will transform to:

𝛂𝟐, 𝛂𝟑, 𝛂𝟒, 𝛂𝟓, 𝛂𝟔

Eq. 21

After the last output response, has been shifted in, the SA continues to shift its

content 𝟐𝒎+ 𝟏 more times, while the input 𝒊 is forced to 𝟏. This ensures that the

SA content is multiplied by 𝜶 with each shift. For the above example, 𝟐𝒎+ 𝟏 = 𝟓.

If within this time, the match with an element of the set (21) has been determined,

the CUT is considered to be fault-free. Otherwise, it is faulty.

If the CUT is fault free and its output responses have not exceeded their

tolerances, then while cycling through the states during the extra 𝟐𝒎+ 𝟏 shifts, the

output of the multiplexer in Figure 8 will go through the power 𝜶𝟎 or vector 𝟎. . . 𝟎𝟏.

The match with the vector 𝟎. . . 𝟎𝟏 is detected by the comparator of Figure 10

connected to the multiplexor’s output. The comparator output is actually producing

a 𝒑𝒂𝒔𝒔/𝒇𝒂𝒊𝒍 signal.

23

The implementation complexity of the circuit of Figure 8 increases significantly

with the growth of the data width, 𝒏. Therefore, this circuit can only be implemented

for the output responses with relatively low values of 𝒏. For greater values of 𝒏, we

will modify the circuit of Figure 8 to the one shown in Figure 11. The modified

circuit contains binary-weighted stages and is more economical in terms of

hardware. The complexity of the multiplier × 𝜶𝒊 is comparable with that of the

multiplier × 𝜶, whereas the number of multipliers drops from 𝟐𝒏 𝑡𝑜 𝒏. The economy

increases with the growth of 𝒏.

For the case of 𝟑-bit data, the circuit of Figure 11 transfers to the one shown in

Figure 12. This circuit operates much in the same way. The 𝜶𝒊-multipliers structure

is determined from the following expressions:

𝐱(𝐚𝟐𝐱
𝟐 + 𝐚𝟏𝐱 + 𝐚𝟎) 𝐦𝐨𝐝 𝐠(𝐱) = 𝐚𝟏𝐱

𝟐 + (𝐚𝟐 + 𝐚𝟎)𝐱 + 𝐚𝟐

𝐱𝟐(𝐚𝟐𝐱
𝟐 + 𝐚𝟏𝐱 + 𝐚𝟎) 𝐦𝐨𝐝 𝐠(𝐱) =

(𝐚𝟐 + 𝐚𝟎)𝐱
𝟐 + (𝐚𝟐 + 𝐚𝟏)𝐱 + 𝐚𝟏

𝐱𝟒(𝐚𝟐𝐱
𝟐 + 𝐚𝟏𝐱 + 𝐚𝟎) 𝐦𝐨𝐝 𝐠(𝐱) =

(𝒂𝟐 + 𝒂𝟏 + 𝒂𝟎)𝒙
𝟐 + (𝒂𝟏 + 𝒂𝟎)𝒙 + (𝒂𝟐 + 𝒂𝟏)

Eq. 22

24

Figure 12 A register transfer level implementation of the 3-bit SA

Figure 13 A 3-bit signature analyzer data flow

25

Figure 14 The experimental setup

Figure 15 Altera DE2-115

Freescale
128 S12DG 9

R

V

Sw

R

Altera DE2
Cyclone II 2C35

S

V i

D
A3

A2

A1

A0

A4

A5

A6

A7

Str

V C

C

V C

C

26

Figure 16 Altera DE2-115 Descriptions

27

CHAPTER 5: EXPERIMENTAL SETUP

The proposed method of signature analysis has set up for experimental setup to

test the proposed method of signature analysis is shown in Figure 14. The setup

includes the microcontroller system board Adapt9S12D (Technological Arts Inc.)

based on the Freescale’s 9S12DG128 microcontroller, and the Altera DE2

Development board based on the Cyclone II EP2C35F672C6 field-programmable

gate-array (FPGA) device. We have selected 16 input test stimuli (voltages 𝑽𝒊𝒏,)

equally distributed over the range (𝟎 ∼ 𝟓. 𝟏𝟐)𝑽 and applied them to the analog-to-

digital converter (ADC) of the 9S12 microcontroller (which served as a mixed-signal

system). Each input voltage, 𝑽𝒊𝒏, was measured by a high-precision voltmeter and

regarded as a nominal test input value.

The circuit in Figure 14 operates as follows. Every time the switch 𝑆𝑤 is closed,

the system performs 8 measurements of the same test signal and averages the result

by accumulating the sum of the eight 𝟖-bit measurements and shifting it right three

times, which eliminates noise. The ADC transfer characteristic is presented in Figure

16 [17]. According to this characteristic, each conversion result for a properly

operating device can deviate from the nominal value by ±𝟏, which is an implication

of the fact that the permissible differential nonlinearity can range from −𝟎. 𝟓 𝒕𝒐 +

𝟎. 𝟓 LSB (see shadowed boxes in Figure 16). For example, if 𝑽𝒊𝒏 = 𝟒𝟎𝒎𝑽 , the

conversion result can be $𝟎𝟏, $𝟎𝟐 𝒐𝒓 $𝟎𝟑 (in the worst case,

28

Figure 17 9S12 ADC Transer Function

the points 𝒂 and 𝒃 coincide). Therefore, each of the thirty-two 𝟖-bit average results

contain an error of at most ±𝟏 count. The test stimuli have been selected equal to

the midpoints of the quantization bins, thereby increasing the uncertainty and

worsening the probability of undetected error. If the test stimuli would have been

selected at the transition points of the characteristic, the probability of undetected

error (aliasing rate) would improve. This follows from the observation that each

conversion would result in 𝟐 possible values as opposed to 𝟑 possible values in the

previous case.

29

As soon as average values of the conversion results are computed by the

microcontroller, they are transferred to the DE2 board. The transfer of each data is

accompanied by a high-to-low transition of the strobe signal 𝑺𝒕𝒓. The 𝑺𝒕𝒓 signal serves

as a 𝒄𝒍𝒐𝒄𝒌 for the state machine that implements the signature analyzer (in its 𝟖-bit

configuration). The signature, 𝑫, is displayed on a two-digit 𝟕-segment display in

hexadecimal form.

The first experiment was performed on the properly operating device. In the

second experiment, the average results were corrupted digitally in the

microcontroller (thereby simulating random faults in the ADC) and sent to the

analyzer. The analyzer has correctly identified the faulty device.

The relationship between input voltages and output codes is presented in Table

II. Based on this Table and taking into consideration that

𝒈(𝒙) = 𝒙𝟖 + 𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝟏

Eq. 23

the seed value is calculated as follows.

𝟒 + 𝟐𝟎+ . . . +𝟐𝟒𝟒 = 𝟏𝟗𝟖𝟒 = 𝟏𝟗𝟗 𝒎𝒐𝒅 (𝟐𝟖 − 𝟏) = 𝟏𝟗𝟗

𝜶−𝟏𝟗𝟗 = 𝜶𝟓𝟔 = 𝟎𝟏𝟎𝟏𝟏𝟏𝟎𝟏

𝑺𝒆𝒆𝒅𝑽 𝒂𝒍𝒖𝒆 = 𝜶𝟓𝟔𝜶−𝟏𝟔 = 𝜶𝟒𝟎 = 𝟎𝟏𝟏𝟎𝟏𝟎𝟏𝟎 = 𝟏𝟎𝟔

In addition to test experiments, the operation of the analyzer (the DE2 part of the

test setup) was simulated using Altera Quartus II software. Based on the two

30

experiments represented in Table II, the signatures that correspond to fault-free and

faulty ADCs are respectively 𝟐𝟑𝟑, 𝟐𝟓𝟎, 𝟐𝟓𝟏 and 𝟐𝟎𝟏, 𝟐𝟑𝟒, 𝟐𝟓𝟐 (in decimal form).

 Table 2 RELATIONSHIP BETWEEN INPUT TEST STIMULI AND

OUTPUT RESPONSES

Input

Voltage

Output Code

mV Min Nom Max No Fault Fault

80 3 4 5 3 3

400 19 20 21 21 21

720 35 36 37 37 37

1040 51 52 53 53 53

1360 67 68 69 68 70

1680 83 84 85 85 85

2000 99 100 101 99 99

2320 115 116 117 117 117

2640 131 132 133 133 133

2960 147 148 149 148 150

3280 163 164 165 165 165

3600 179 180 181 179 179

3920 195 196 197 197 197

4240 211 212 213 212 240

4560 227 228 229 229 230

4880 243 244 245 244 244

31

Figure 18 The combination ”1” is detected: ADC is operating properly on Seed

233

Figure 19 The combination ”1” is detected: ADC is operating properly on Seed

250

32

Figure 20 The combination ”1” is detected: ADC is operating properly on Seed

251

Figure 21 The combination ”1” is not detected: ADC is faulty on Seed 201

33

Figure 22 The combination ”1” is not detected: ADC is faulty on Seed 234

Figure 23 The combination ”1” is not detected: ADC is faulty on Seed 252

34

Figure 24 An 8-input signature analyzer

The process of calculation of these signatures is demonstrated in Figures 28 and

29. Figures 18, 19, 20 and 21, 22, 23 represent the fault detection process. The actual

final signatures are shifted additionally 𝟑𝟐 times. If the value 𝟏 appears in the

analyzer during these shifts, the system is fault free. Otherwise it is faulty.

The simulation results matched the experimental results.

35

CHAPTER 6: FUTURE WORK AND CONCLUSION

Mixed signal systems test and measurement using Signal Analyzer is complex

and can require considerable knowledge and effort by designer for successful

implementation. We examined an algebraic signature analysis method that can be

employed for mixed-signal circuits testing. We demonstrated how to design the

appropriate device. To simplify the hardware description model, hardware elements

can be conditionally generated using simulation software. This device does not

produce arithmetic carries and is therefore less prone to errors. The absence of carry

propagating circuitry also contributes to the higher performance of the device.

Stimuli output for respective Seed for the fault-free or faulty system’s signature

were evaluated analytically.

The proposed scheme can also be used in arithmetic and algebraic error-control

coding, as well as cryptography.

Future work to complement this work would be to implement the signature

analyzer circuits in arithmetic error-control coding to verify a more accurate

evaluation of time delay, overhead, and fault secure property of the circuit.

36

APPENDICES

 A. VHDL CODE

library ieee;

use ieee.std_logic_1164.all;

ENTITY SigAnalyzer IS

 PORT (sin : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 res, clk : IN STD_LOGIC ;

 seed : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 sout : BUFFER STD_LOGIC_VECTOR(7 DOWNTO 0));

END SigAnalyzer;

ARCHITECTURE Behavior OF SigAnalyzer IS

 SIGNAL w128, w64, w32, w16, w8, w4, w2, w1: STD_LOGIC_VECTOR(7 DOWNTO 0);

 SIGNAL f128, f64, f32, f16, f8, f4, f2, f1 : STD_LOGIC_VECTOR(7 DOWNTO 0);

 COMPONENT mux2to1

 PORT (w0,w1 : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 s : IN STD_LOGIC;

 f : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

 END COMPONENT;

BEGIN

 PROCESS (res, clk)

 BEGIN

 IF res = '0' THEN

 sout <= seed;

 ELSIF Clk'EVENT AND Clk = '0' THEN

 sout <= f128;

 END IF;

 END PROCESS;

 stage128: mux2to1 PORT MAP (f64, w128, sin(7), f128);

 stage64: mux2to1 PORT MAP (f32, w64, sin(6), f64);

 stage32: mux2to1 PORT MAP (f16, w32, sin(5), f32);

 stage16: mux2to1 PORT MAP (f8, w16, sin(4), f16);

 stage8: mux2to1 PORT MAP (f4, w8, sin(3), f8);

 stage4: mux2to1 PORT MAP (f2, w4, sin(2), f4);

 stage2: mux2to1 PORT MAP (f1, w2, sin(1), f2);

 stage1: mux2to1 PORT MAP (sout, w1, sin(0), f1);

--

 w128(7) <= f64(7) XOR f64(6) XOR f64(4) XOR f64(0);

 w128(6) <= f64(6) XOR f64(5) XOR f64(3);

 w128(5) <= f64(7) XOR f64(5) XOR f64(4) XOR f64(2);

 w128(4) <= f64(6) XOR f64(4) XOR f64(3) XOR f64(1);

 w128(3) <= f64(7) XOR f64(6) XOR f64(5) XOR f64(4) XOR f64(3) XOR f64(2);

 w128(2) <= f64(5) XOR f64(3) XOR f64(2) XOR f64(1) XOR f64(0);

 w128(1) <= f64(6) XOR f64(2) XOR f64(1);

 w128(0) <= f64(7) XOR f64(5) XOR f64(1) XOR f64(0);

--

 w64(7) <= f32(7) XOR f32(4) XOR f32(3) XOR f32(1);

 w64(6) <= f32(6) XOR f32(3) XOR f32(2) XOR f32(0);

37

 w64(5) <= f32(7) XOR f32(5) XOR f32(2) XOR f32(1);

 w64(4) <= f32(7) XOR f32(6) XOR f32(4) XOR f32(1) XOR f32(0);

 w64(3) <= f32(7) XOR f32(6) XOR f32(5) XOR f32(4) XOR f32(1) XOR f32(0);

 w64(2) <= f32(7) XOR f32(6) XOR f32(5) XOR f32(1) XOR f32(0);

 w64(1) <= f32(6) XOR f32(5) XOR f32(3) XOR f32(1) XOR f32(0);

 w64(0) <= f32(5) XOR f32(4) XOR f32(2) XOR f32(0);

--

 w32(7) <= f16(6) XOR f16(3) XOR f16(0);

 w32(6) <= f16(5) XOR f16(2);

 w32(5) <= f16(7) XOR f16(4) XOR f16(1);

 w32(4) <= f16(7) XOR f16(6) XOR f16(3) XOR f16(0);

 w32(3) <= f16(5) XOR f16(3) XOR f16(2) XOR f16(0);

 w32(2) <= f16(7) XOR f16(6) XOR f16(4) XOR f16(3) XOR f16(2) XOR f16(1) XOR f16(0);

 w32(1) <= f16(5) XOR f16(2) XOR f16(1);

 w32(0) <= f16(7) XOR f16(4) XOR f16(1) XOR f16(0);

--

 w16(7) <= f8(7) XOR f8(6) XOR f8(4) XOR f8(1);

 w16(6) <= f8(7) XOR f8(6) XOR f8(5) XOR f8(3) XOR f8(0);

 w16(5) <= f8(6) XOR f8(5) XOR f8(4) XOR f8(2);

 w16(4) <= f8(5) XOR f8(4) XOR f8(3) XOR f8(1);

 w16(3) <= f8(7) XOR f8(6) XOR f8(3) XOR f8(2) XOR f8(1) XOR f8(0);

 w16(2) <= f8(5) XOR f8(4) XOR f8(2) XOR f8(0);

 w16(1) <= f8(6) XOR f8(3);

 w16(0) <= f8(7) XOR f8(5) XOR f8(2);

--

 w8(7) <= f4(5) XOR f4(4) XOR f4(3);

 w8(6) <= f4(4) XOR f4(3) XOR f4(2);

 w8(5) <= f4(7) XOR f4(3) XOR f4(2) XOR f4(1);

 w8(4) <= f4(6) XOR f4(2) XOR f4(1) XOR f4(0);

 w8(3) <= f4(4) XOR f4(3) XOR f4(1) XOR f4(0);

 w8(2) <= f4(7) XOR f4(5) XOR f4(4) XOR f4(2) XOR f4(0);

 w8(1) <= f4(7) XOR f4(6) XOR f4(5) XOR f4(1);

 w8(0) <= f4(6) XOR f4(5) XOR f4(4) XOR f4(0);

--

 w4(7) <= f2(7) XOR f2(3);

 w4(6) <= f2(7) XOR f2(6) XOR f2(2);

 w4(5) <= f2(7) XOR f2(6) XOR f2(5) XOR f2(1);

 w4(4) <= f2(6) XOR f2(5) XOR f2(4) XOR f2(0);

 w4(3) <= f2(7) XOR f2(5) XOR f2(4);

 w4(2) <= f2(6) XOR f2(4);

 w4(1) <= f2(5);

 w4(0) <= f2(4);

--

 w2(7) <= f1(5);

 w2(6) <= f1(4);

 w2(5) <= f1(7) XOR f1(3);

 w2(4) <= f1(7) XOR f1(6) XOR f1(2);

 w2(3) <= f1(7) XOR f1(6) XOR f1(1);

 w2(2) <= f1(6) XOR f1(0);

 w2(1) <= f1(7);

 w2(0) <= f1(6);

38

--

 w1(7) <= sout(6);

 w1(6) <= sout(5);

 w1(5) <= sout(4);

 w1(4) <= sout(7) XOR sout(3);

 w1(3) <= sout(7) XOR sout(2);

 w1(2) <= sout(7) XOR sout(1);

 w1(1) <= sout(0);

 w1(0) <= sout(7);

END Behavior;

-- 8-bit mux2to1 component

library ieee;

use ieee.std_logic_1164.all;

ENTITY mux2to1 IS

 PORT (w0,w1 : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 s : IN STD_LOGIC;

 f : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END mux2to1;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

 f <= w0 WHEN s='0' ELSE w1;

END Behavior;

B. BLOCK DIAGRAM

Figure 25 Block Diagram

39

C. PIN PLAN

Figure 26 PIN Planner

40

Figure 27 PIN Identifications

D. WAVE FORMS

Figure 28 All output code deviations are within the tolerance bounds

41

Figure 29 Some of the output code deviations exceed the tolerance bounds

Figure 30 Some of the output code deviations in MAX

42

Figure 31 Some of the output code deviations in MIN

Figure 32 Some of the output code deviations in NOMINAL

43

REFERENCES

[1] R. Frohwerk, “Signature Analysis: A New Digital Field Service Method,”

Hewlett Packard J., vol. 28, no. 9, pp. 2–8, 1977.

[2] G. Starr, Q. Jie, B. Dutton, C. Stroud, F. Dai, and Vector P. Nelson,

“Automated Generation of Built-in Self-Test and Measurement Circuitry

for Mixed-Signal Circuits and Systems,” in Proc. 24th IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 11–19,

2009.

[3] D. K. Pradhan and S. K. Gupta, “A New Framework for Designing and

Analyzing BIST Techniques and Zero Aliasing Compression,” IEEE

Transactions on Computers, vol. 40, no. 6, pp. 743–763, 1991.

[4] C. Stroud, J. Morton, T. Islam, and H. Alassaly, “A Mixed-Signal Built-

in Self-Test Approach for Analog Circuits,” in Proc. Southwest

Symposium on Mixed-Signal Design, 2003, pp. 196–201, 2003.

[5] N. Nagi, A. Chatterjee, Y. Heebyung, and J. Abraham, “Signature

Analysis for Analog and Mixed-Signal Circuit Test Response

Compaction,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 17, no. 6, pp. 540–546, 1998.

44

[6] N. Nagi, A. Chatterjee, and J. Abraham, “A Signature Analyzer for

Analog and Mixed-Signal Circuits,” in Proc. IEEE International

Conference on Computer Design: VLSI in Computers and Processors, pp.

284–287, 1994.

[7] S. Mir, M. Lubaszewski, V. Liberali, and B. Courtois, “Built-in Self-Test

Approaches for Analogue and Mixed-Signal Integrated Circuits,” in Proc.

38th Midwest Symposium on Circuits and Systems. Proceedings, vol. 2,

pp. 1145–1150, 1995.

[8] J. Rajski and J. Tyszer, “The Analysis of Digital Integrators for Test

Response Compaction,” IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, vol. 39, no. 5, pp. 293–301, 1992.

[9] W. Liu and J. Lei, “An Approach to Analog and Mixed-Signal BIST based

on Pseudo Random Testing,” in Proc. IEEE International Conference on

Communications, Circuits and Systems,” pp. 1192–1195, 2008.

[10] F. Corsi, C. Marzocca, and G. Matarrese, “Defining a BIST-Oriented

Signature for Mixed-Signal Devices,” in Proc. IEEE Southwest

Symposium on Mixed-Signal Design, pp. 202–207, 2003.

45

[11] S. Demidenko, V. Piuri, V. Yarmolik, and A. Shmidman, “BIST

Module for Mixed-Signal Circuits,” in Proc. IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems (Cat.

No.98EX223), pp. 349–352, 1998.

[12] T. Damarla, “Implementation of Signature Analysis for Analog and

Mixed Signal Circuits,” U.S. Patent US6367043 B1, Apr. 2, 2002.

[13] W. Peterson and E. Weldon, Error Correcting Codes. Cambridge, MA:

The MIT Press, 1972.

[14] V. Geurkov, “Optimal Choice of Arithmetic Compactors for Mixed-

Signal Systems,” in Proc. IEEE International Symposium on Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 182–

186, 2012.

[15] S. Lin and D. Costello, Error Control Coding. Upper Saddle River, NJ:

Pearson Education, Inc., 2004.

[16] V. Geurkov, V. Kirischian, L. Kirischian, and R. Sedaghat,

“Concurrent Testing of Analog-to-Digital Converters,” I-manager's

Journal on Electronics Engineering, vol. 1, no. 1, pp. 8–14, 2010.

46

[17] MC9S12DT128 Device User Guide, Motorola Inc, V02.11. Rev. May

2004, [Online]. Available:

(http://www.cse.chalmers.se/~svenk/mikrodatorsystem/HC12/reference_

manuals/9S12DT128/9S12DT128DGV2.pdf)

http://www.cse.chalmers.se/~svenk/mikrodatorsystem/HC12/reference_manuals/9S12DT128/9S12DT128DGV2.pdf
http://www.cse.chalmers.se/~svenk/mikrodatorsystem/HC12/reference_manuals/9S12DT128/9S12DT128DGV2.pdf

	AUTHOR'S DECLARATION
	ABSTRACT
	CONTENTS
	FIGURES
	TABLES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: SCOPE OF THIS PROJECT
	CHAPTER 3: A NOVEL METHOD
	CHAPTER 4: APPLICATION
	4.1: HARDWARE OVERHEAD
	4.2: TIME OVERHEAD

	CHAPTER 5: EXPERIMENTAL SETUP
	CHAPTER 6: FUTURE WORK AND CONCLUSION
	APPENDICES
	A. VHDL CODE
	B. BLOCK DIAGRAM
	C. PIN PLAN
	D. WAVE FORMS

	REFERENCES

