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Abstract 

Segmentation of prostate boundaries in transrectal ultrasound (TRUS) images plays a great 

role in prostate cancer diagnosis. Due to the low signal to noise ratio and existence of the 

speckle noise in TRUS images, prostate image segmentation has proven to be an extremely 

difficult task. In this thesis report, a fast fully automated hybrid segmentation method based 

on probabilistic approaches is presented. First, the position of the initial model is 

automatically estimated using prostate boundary representative patterns. Next, the 

Expectation Maximization (EM) algorithm and Markov Random Field (MRF) theory are 

utilized in the deformation strategy to optimally fit the initial model on the prostate 

boundaries. A less computationally EM algorithm and a new surface smoothing technique 

are proposed to decrease the segmentation time. Successful experimental results with the 

average Dice Similarity Coefficient (DSC) value 93.9±2.7% and computational time around 

9 seconds validate the algorithm. 
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Chapter 1 

1 Introduction 

Prostate is a walnut shaped organ located between the bladder neck and the urogenital 

diaphragm in males. It lies in front of the rectum and behind the pubic bone (Figure 1-1) [1]. 

The prostate’s main function is to control the urine flow. It consists of 70% glandular tissue 

and 30% muscular tissue with a total approximate weight of an ounce. Throughout the men’s 

aging process, the prostate gland keeps growing. After the age of twenty five, the growth of 

the gland significantly reduces. However, most men especially after the age of forty five will 

face a prostate gland enlargement. The average normal prostate gland size is 3 3 5 cm and 

its volume should not exceed an approximate volume of 25 ml [2]. Although the prostate 

gland is not a life sustaining organ, its continual increase in size is referred to Benign 

Prostate Hyperplasia (BPH) [3], can lead to severe difficulties. BPH tightens the urethra 

causing decreased urine flow. It is very crucial to detect the gland growth in its early stages 

and provide medical treatment to overcome the disease, improving the quality of life in 

elderly men. A considerably more serious disease compared to BPH is prostate cancer (PCa) 

that threatens human life. In terms of newly diagnosed cancer cases, after lung cancer, 

prostate cancer is the second most common cancer among men worldwide. According to 

global cancer statistics published in 2011, over 900,000 men are estimated to be diagnosed 
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with prostate cancer and in almost 250,000 it is fatal [4]. Prostate cancer incidence rate is 

very high in developed countries including Australia, Western Europe, and North America. 

For instance in Canada, approximately 35,000 men are diagnosed with prostate cancer every 

year [5]. However, the mortality rates of PCa in developed countries have been decreasing 

due to the advancement of medical technology and improvement in medical imaging 

techniques. Physicians have been utilizing various medical imaging modalities for detecting 

BPH and PCa. Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and 

Ultrasound imaging are the main prostate imaging modalities. Each one of these modalities 

has unique advantages and disadvantages and is appropriate for particular applications 

including diagnosis,            

 
Figure 1-1 Coronal view of the Urinary bladder   – prostate gland is located on the floor of the 

bladder  

follow-up, and treatment of the prostate diseases (Table 1-1). For example, CT is the best 

modality with the ability to monitor the spread of cancer cells into bone tissues. Moreover, 
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due to the high radiation attenuation of the Brachytherapy seeds, the radiation sources located 

inside the gland appear as bright spots (high-intensity areas) in CT images allowing 

improved seed visibility compared to other modalities (Figure 1-2a). However, in contrast to 

MRI and Ultrasound imaging, the radiation of CT is harmful for the human body and it 

cannot be used in prostate volume determination. The low soft-tissue contrast in CT images 

makes it extremely difficult to detect cancerous lesions. Additional disadvantages for CT 

include high cost and lack of portability. Among all prostate imaging techniques, MRI 

images have the highest soft-tissue contrast especially T2-weighted images [6]. This 

advantage provides the ability for radiotherapists to easily discriminate the prostate from the 

surrounding tissues. Also, the resolution of the intra gland tissue, which is a very essential 

factor for lesion and cancer nodules detection, is considerably higher compared to CT and 

Ultrasound images [7] (Figure 1-2b). 

   
(a) (b) (c) 

Figure 1-2 Comparison of prostate imaging techniques  (a) a CT image (brachytherapy seeds are 

clearly visible) (b) an MRI T2-weighted image (high soft-tissue contrast) (c) an ultrasound image. 

MRI has numerous disadvantages which may necessitate use of other imaging modalities. 

Similar to CT imaging, MRI is expensive, not portable, requires a long examination from 20 

to 90 minutes and is susceptible to motion artifacts. There is also a restriction for obese 

people who cannot fit in the MRI equipment and also for patients utilizing pacemaker. The 
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fusion of MRI and ultrasound imaging has been offered as an inexpensive alternative 

solution for extracting prostate biopsy samples. MRI/Ultrasound fusion guided biopsy 

technique [8] takes   

Table 1-1 Relative advantages and disadvantages of the various prostate imaging modalities (Ghose 

et. al [9] )  

 Advantages Disadvantages 

   

CT  

Useful in determining spread of prostate 

cancer to bone tissues 

Useful in determining effectiveness of 

prostate brachytherapy 

Expensive 

Radiation involved 

Not portable 

Poor soft-tissue contrast 

Difficult to detect lesions 

Cancer staging is difficult 

Difficult to implement real time imaging 

    

MRI  

Useful in determining prostate volume 

No radiation involved 

High contrast for soft-tissues 

Allows lesion detection 

Enables functional imaging of prostate 

Staging of cancer possible 

 

Expensive 

Not portable 

Difficult to implement real time imaging 

 

    

TRUS  

Useful in determining prostate volume 

No radiation involved 

Inexpensive 

Portable 

Useful for real time imaging 

 

Low contrast images 

Difficult to detect lesions 

Speckle 

Shadow artifacts 

Cancer staging is difficult 

 

advantage of high soft-tissue contrast in MRI imaging and the advantages of ultrasound 

imaging including its simplicity, cost effectiveness, real-time nature and the ability to 

determine the prostatic volume. In this method, the high spatial resolution T2-weighted MRI 

image is fused with real time ultrasound to guide physicians directly to the suspected tumors 

for biopsy. This technology not only has the ability of identifying suspicious areas, but also 

makes it possible to resample the same location over time. In order to virtually map the 
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suspicious tumors obtained from MRI images into the ultrasound images, it is required to 

first segment the prostate boundaries in transrectal ultrasound (TRUS) images. Although the 

boundary segmentation algorithms have significantly improved in the last decade, most 

radiologists and surgeons prefer to manually outline the prostate boundaries due to its 

reliability. However, manual boundary segmentation is a very tedious time consuming and 

irreproducible process. Moreover, significant inter-observer and intra-observer variability are 

two other important concerns in manual segmentation. The inter-observer variability is the 

amount of variation between the segmentation results of observers for a particular image. 

Intra-observer variability is the amount of variation between the segmentation results of one 

observer when segmenting the same image more than once. As a result, there is a strong 

demand to develop a highly reliable automatic boundary segmentation algorithm for 

transrectal ultrasound images. In order to describe the challenges of prostate boundary 

segmentation in ultrasound images, first it is necessary to introduce the ultrasound imaging 

modality.    

In an ultrasound imaging system, a piezoelectric crystal-based transducer transmits the 

ultrasound wave through human-body tissue and generates medical images based on the 

reflected wave. The frequency range of ultrasound waves for the purpose of medical imaging 

is from 2 to 10 MHz [10].  In each transducer, first, the electrical energy is converted to the 

mechanical energy for propagating sound waves in a medium. The returned signal from 

tissue is detected by the transducer and using an electromagnetic coil is then converted to the 

electrical energy. Ultrasound imaging equipment is consisted of transmitter and receiver 

switching circuit, pulse generator, control panel, analog to digital converter, computer 
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processing and display system [10]. Figure 1-3 illustrates a conventional ultrasound imaging 

system.          

 

Figure 1-3 A schematic diagram of a conventional ultrasound imaging system 

Several modes of ultrasound imaging modes are being used in medical imaging including a-

mode, b-mode, c-mode and Doppler. Transrectal ultrasound is a b-mode ultrasound imaging 

technique which constructs two dimensional V shape images representing the changes in 

acoustic impedance of tissue [10].  

Ultrasound images suffer from very poor quality, therefore, the segmentation algorithm 

should have the ability of overcome ultrasound imaging limitations including shadow 

artifacts, low signal to noise ratio, presence of micro-calcifications, and speckle noise 

(Figure 1-2c). More specifically, the challenges for prostate boundary segmentation in TRUS 

images can be classified into three major categories [11] [12]  including: 1) Presence of 

discontinuous boundaries at the anterior part of the prostate due to shadowing artifacts, 2) 

Existence of similar intensity distribution regions inside and outside of the prostate, and  3) 

Pulse Generation 

and timing 

Transmitter/ 

Receiver Circuit Control Circuit 

Data Acquisition 

Analog-to-Digital 

Converter 

Computer 

Imaging Storage 

and Processing 
Display 
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Existence of the dissimilar intensity distribution regions belonging to a particular class. 

These challenges are described in detail in the following.  

 In the shadow artifacts areas, it is impossible to detect a boundary that distinguishes the 

prostate and non-prostate regions. Therefore, the algorithm should use neighborhood 

boundaries information to estimate the location of prostate boundary. The blue circle labeled 

with C in Figure 1-4a and the region pointed out by arrow A in Figure 1-4b   illustrate the 

unclear boundaries at the anterior side of the prostate in TRUS images. The second challenge 

in boundary segmentation is the existence of regions with similar texture in both prostate and 

non-prostate areas. As a result, due to the overlap between the intensity distributions, a linear 

classifier cannot be employed to separate the prostate and non-prostate areas. The  

  
(a) (b) 

Figure 1-4 Three major challenges in TRUS images (a) Low signal to noise ratio and poor quality of 

TRUS images (rectangle ). Arrows   in right side point to two distinct regions with similar intensity 

distributions and left Arrows   point to two same class regions with different intensity distributions. 

Shadowing artifacts is depicted by circle   (Yan et. al [11]) - (b) Arrow   points to shadowing 

artifacts. Arrows    and    points to two similar intensity distribution regions belonging to two 

distinct class. Arrows    and    points to dissimilar intensity similarity regions belonging to the same 

class (Zhan and Shen [12])  
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regions pointed out by arrows    and    in Figure 1-4b have exactly similar intensity 

distributions while belonging to two distinct classes. On the other hand, many regions can be 

found in the same class with dissimilar intensity distributions. For instance, the intensity 

distributions of the regions pointed out by arrows    and    in Figure 1-4b are totally 

different while they belong to the same class (Prostate).  Due to the challenges mentioned 

above, prostate boundary segmentation in transrectal ultrasound images remains to be a very 

difficult task. Despite the extensive efforts made to develop a fully automated segmentation 

algorithm, a reliable and accurate segmentation technique has yet to be accomplished. Two 

comprehensive surveys, one published by Shao et al. [13] in 2003 and the other by Ghose et 

al. [9] in 2012, concisely reviewed all the developed algorithms. The purpose of the surveys 

was to classify the existing algorithms into broad categories and to compare the advantages 

and disadvantages of the same category algorithm. In the survey published in 2003, the 

prostate segmentation algorithms in TRUS images were classified into three categories: 

Edge-based, texture-based and model-based algorithms. Edge-based algorithms detect the 

prostate gland edges and boundaries and then connect the specific edges together in order to 

segment the prostate. Texture-based algorithms are another approach for boundary outlining  

based on texture energy measurements that classify each pixel of the image into the prostate 

or non-prostate region. Model-based algorithms use a priori knowledge of the prostate shape 

to capture the shape variability in the same class of objects. It was indicated that model-based 

algorithms are more promising compared to edge-based and texture-based algorithms. The 

reason for this statement is the problem of absent edges and boundary discontinuity in the 

edge-based algorithms and computational complexity in the texture-based algorithms. As a 

result, since 2003, researchers have been motivated to employ model-based techniques in 
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their proposed algorithms. However, model-based methods alone do not provide adequate 

segmentation results and it is essential to incorporate other techniques to achieve the 

desirable outcome. For this reason, in the survey published in 2012, a distinct category was 

added, hybrid algorithms. Hybrid algorithms are referred to those techniques that combine 

the advantages of two or more categories to obtain more reliable and robust segmentation 

results.  

The proposed hybrid algorithm in this thesis has been developed in such a way to combine 

and utilize the advantages of the edge-based, texture-based and model-based algorithms. The 

proposed method consists of two phases: 1) Initial model pose estimation and 2) Model 

deformation. In the first phase, utilizing both edge-based and model-based techniques, an 

approximate location of the prostate gland in TRUS images is obtained. In the second phase, 

combining both texture-based and model-based techniques, the initial model is deformed in 

such a way to best fit the prostate boundaries and provide the final boundary segmentation. 

Each phase consists of sequential steps that are briefly described below.  

In the first phase, a fast fully automated model pose initialization method based on template 

matching using normalized cross-correlation (NCC) is proposed. Using lower and upper 

boundary representative patterns, a strip rotates around the center of the probe and 

emphasizes the prostate boundaries. Representative patterns are constructed from a 

dictionary learning method, referred to as iterative least squares dictionary learning algorithm 

(ILS-DLA). Affine transformation parameters then transform the prostate model to a position 

that best fit on the emphasized boundaries. The obtained initial model is an acceptable 

approximation of the prostate gland.  
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In the second phase, a new model deformation strategy for prostate boundary segmenting in 

transrectal ultrasound images is proposed. The Expectation Maximization algorithm (EM) 

and Markov Random Field (MRF) theory are utilized in the deformation strategy to 

optimally fit the initial model on the prostate boundaries. For the purpose of real time 

therapy, a less computational complex EM approach is proposed for obtaining the probability 

distribution parameters. Also, a new internal force energy that uses 2D geometric 

transformations is presented that prevents model fault deformation.  

The contributions of the proposed algorithm are summarized in the following: 

1) Initial model pose estimation 

 New edge emphasizing technique using radial strips 

 New representative pattern construction technique 

2) Model deformation strategy 

 New prostate landmarks indication  

 Fast and less computational Expectation Maximization (EM) algorithm 

 New local search procedure using MRF  

 New model surface curvature preserving technique using 2D geometric 

transformation   

The thesis report is organized as follows: In chapter 2, a comprehensive study on the existing 

developed algorithms is performed. In the first section chapter 2, those categories and their 

related works given in survey (2003) are briefly described. In the next section, the most 

recent algorithms (since 2002 to present) are explained in detail. In chapter 3, the methods 

and materials of the proposed algorithm are presented in two sections. The first section is 



11 

 

dedicated to the initial model pose estimation and in the next section the model deformation 

strategy is fully described. The experimental results and the algorithm evaluation are given in 

chapter 4. Finally future work and conclusion are stated in Chapter 5. 
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Chapter 2 

2 Literature review 

Almost two decades ago, the first computer-aided prostate boundary segmentation algorithm 

was designed for improving the efficiency and assisting radiologists and surgeons. Since that 

time, excessive advancements have been made and the segmentation algorithms have become 

more rapid and reliable. In this literature review, in order to highlight the progress and 

advantages of the recent algorithms, the segmentation algorithms were categorized based on 

the year that they were published. The algorithms which are published before 2002 are 

briefly reviewed in section 2.1 and those which were developed after 2002 are explained in 

detail in section 2.2.  

 Prostate boundary Segmentation algorithms (1996-2002)              2.1

In 2003, Shao et al. [13] provided a great survey for prostate boundary detection algorithms 

in ultrasound images. The purposes of the survey were (a) To categorize the algorithms based 

on the utilized methods and materials (b) To describe the advantages and disadvantages of 

the proposed algorithms. The authors indicated that all the developed algorithms can be 

categorized into three broad categories: 1) Edge-based algorithms, 2) Texture-based 
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algorithms, and 3) Model-based algorithms. A number of related works for each category is 

given in Table 2-1.  

Table 2-1 Prostate boundary segmentation algorithms (1996-2002)  

Category Related works 

Edge-based  

 

Maximum/Minimum filter [14]  

Weak membrane fitting [15] 

RBR and harmonics method [16]  

   

Texture-based 

 

Pixel classifying based on 4 energy terms [17] 

 

Model-based 

 

Feed forward Neural networks [18] 

Feature modeling [19] 

 

 

A brief explanation about each category and their related works are given in the following 

sub-sections.          

2.1.1 Edge-based algorithms 

Edge-based algorithms are referred to the techniques that first employ an edge detector filter 

to emphasize the boundary edges and then connect the discontinuous boundaries to obtain a 

closed prostate contour. However, due to the presence of the speckle noise and the poor 

quality of transrectal ultrasound images, it is clear that simple edge detector filters (e.g. Sobel 

and Prewitt) do not give the desirable results. Therefore, most of the edge-based algorithms 

first enhance the quality of the image in the preprocessing part and then utilize more 

sophisticated edge detector filters to achieve accurate segmentation results. 
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In  1998, Aarnink et al. [14] developed an edge-based algorithm where maximum/minimum 

filters were first utilized in the preprocessing part in order to increase the signal to noise ratio 

of the ultrasound images. Since image gradient and image second derivative were further 

used in the edge enhancement algorithm, it was essential to reduce the high frequency noise 

for preserving false edge detection. For this purpose, prior to the edge detection procedure, a 

smoothing filter was applied to the ultrasound images. A multi-resolution edge detection 

technique based on the global and local standard deviation values was then employed for 

highlighting the prostate boundaries. A comparison between local and global standard 

deviation values determines whether the gray level transition exists or not. Those regions 

with greater standard deviation values are then analyzed in a multi-resolution manner in 

order to construct the edge map (Figure 2-1b). Final boundary outlining was accomplished by 

connecting the enhanced edges using interpolation and incorporating prior knowledge 

(Prostate shape).  

   
(a) (b) (c) 

Figure 2-1 Edge-based prostate boundary segmentation using integrated edge maps (a) 

Maximum/minimum filtered image (b) Edge detected image using global and local standard deviation 

values (c) The final prostate contour  

In 2000, Pathak et al. [20] presented a new edge-based algorithm where stick-shaped and 

anisotropic filters were employed to enhance the contrast of the ultrasound images. Stick-

shaped filter calculates the average gray-level intensity value along each line passing through 

the center of an     square matrix around each pixel of the image, and then assigning the 
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maximum average gray-level value to that particular pixel. This filter while preserving the 

edges of the prostate boundaries, at the same time also applies image smoothing and reduces 

the speckle noise (Figure 2-2b). Although a significant improvement in signal to noise ratio 

is achieved by applying the stick-shaped filter, the filtered image still suffers from speckle 

noise. Since the boundary edges are detected with the use of the Canny edge detector, it is 

essential to completely remove the impact of the speckle noise from the image. For this 

purpose, prior to applying the edge detector filter, a weak membrane fitting algorithm is 

utilized in the stick-shaped filtered image (Figure 2-2c).  Weak membrane fitting algorithm is 

very similar to nonlinear anisotropic diffusion filtering technique which treats each pixel of 

the image depending on the neighborhood pixels information. A great advantage of 

anisotropic diffusion filter is that it has control on the blurring. That is, it prevents smoothing  

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2-2 Edge-based boundary segmentation using stick-shaped and anisotropic filter (a) Original 

TRUS image (b) Stick-shaped filtered image (c) Result of weak membrane fitting on stick-shaped 

filtered image (d) Canny edge detector before a priori knowledge (e) result after a priori knowledge 

(f) final boundary segmentation result  
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across boundaries by applying less blurring. Canny edge detector filter is then applied on the 

image to highlight the boundaries. As illustrated in Figure 2-2c, there exist many false edges 

around the prostate gland. Using a priori knowledge of a bean-shaped of the prostate, the 

false boundaries are removed from the image (Figure 2-2e). Final boundary outlining is 

accomplished manually by the guide of the remaining edges.       

2.1.2 Texture-based algorithms 

Texture-based algorithms are another approach for prostate gland segmentation in TRUS 

images. These algorithms, based on texture measurements, categorize each region of the 

image into the prostate and non-prostate regions. Prater and Richard [18] proposed a texture-

based algorithm in which four different micro texture energies were measured for each pixel. 

The idea behind the feature extraction and texture energies was that the prostate gland is 

surrounded by a bright halo and the intensity distribution inside the prostate is completely 

different from the other areas. For this purpose, local window means in four directions were 

calculated and considered as the input feature vector for a neural network system. In order to 

train the network and determine the network weights, a set of manually segmented images is 

utilized first in the training process (Figure 2-3b). In order to evaluate the classification, the 

authors trained the network with mid-gland images and tested with adjacent images 

(Figure 2-3c and Figure 2-3d). It was shown that the accuracy of the segmentation is directly 

related to the number of the network’s layers. A significant improvement was observed by 

increasing the number of the input features and the number of the hidden layers. However, 

there was a huge trade-off between accuracy and computational complexity. 
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(a) (b) (c) (d) 
Figure 2-3 Prostate gland segmentation using neural networks (a) Original TRUS image (b) Manually 

segmented image (c) Segmentation of training image (d) Segmentation of adjacent image 

           

2.1.3 Model-based algorithms 

Model-based algorithms have been proposed as a third approach to prostate boundary 

segmentation. These algorithms use a priori knowledge of the shape of the object. Model-

based algorithms are divided into two sub-categories: a) Deformable contour models b) 

Statistical modeling.  

Active contour models (ACM or snakes) have been commonly used in segmentation 

algorithms and were first developed by Kass et al. [21]. In this technique, based on the 

energy minimization problem, the surface of the model deforms until it reaches the edges. 

The minimization problem consists of two main energy functions referred to as Internal and 

External energy terms. The model deformation is performed under influence of the external 

energy. One of the common external energy terms is the image intensity gradient along 

perpendicular direction to the model surface. In order to preserve contour curvature and 

smoothness, Internal energy is utilized to constrain the model deformation from being 

widespread. 

The other model-based technique, Statistical modeling was first introduced by Cootes et al. 

[22] and has been widely used in segmentation of the objects with the well-defined shapes 
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and appearances. The statistical prostate boundary modeling technique consists of two major 

parts: 1) Boundary modeling, and 2) Local search procedure. These steps are described in the 

following paragraphs. 

1) Boundary modeling refers to a shape descriptor function which is a representative of a set 

of manually segmented boundaries. In order to construct a prostate model from training 

images, first it is essential to represent the manually outlined boundaries with a set of 

landmark points. Since there is no significant landmark point in prostate shape (e.g. no 

corner, no high curvature and etc.), the prostate contours are sampled into a fixed number of 

points. Equally spaced distance-based (ESD) and equally spaced rotation-based (ESR) are 

two common surface sampling techniques which are illustrated in Figure 2-4a and 

Figure 2-4b respectively. In order to reduce the variability in the shape and location of the 

prostate contours (Figure 2-4c), the sampled contours should be aligned to a reference shape 

by using geometric transformations (Figure 2-4d). Finally, the Point Distribution Model 

(PDM) is constructed based on the statistical information provided by aligned sampled 

contours. The statistical parameters including mean, covariance matrix, eigenvectors and 

their corresponding eigenvalues are obtained using the location of sampled points [22].       

(a) (b) (c) (d) 
Figure 2-4 Construction of the Point distribution model (PDM) (a) Equally spaced distance-based 

(ESD) shape modeling (b) Equally spaced-rotation based (ESR) shape modeling (c) a set of manually 

outlined boundaries (d) a set of aligned prostate contours   
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2) Local search procedure is performed on each one of the sampling points in order to detect 

the location of strong edges. The location of the sampled points is further adjusted with the 

location of the detected edges. The resulting shape is a deformed version of the prostate 

model and may no longer resemble to the prostate shape. In order to return the deformed 

model into a prostate shape, optimization problems are employed to construct the closest 

prostate shape. 

Wu et al. [19] proposed a new model based algorithm in which the Genetic Algorithm (GA) 

was utilized to find the optimum pose parameters. The author claimed that a significant 

reduction in computational complexity can be achieved by employing GA instead of search 

algorithms. A complete explanation about GA algorithms and their application in model-

based algorithms is given in section 2.2.8. 

 Prostate boundary Segmentation algorithms (2002-2012) 2.2

In late June 2012, Ghose et al. [9] provided a complete survey on prostate segmentation 

algorithms that had been developed for all imaging modalities including ultrasound, magnetic 

resonance, and computed tomography. All recent proposed algorithms were analyzed and 

briefly discussed in order to find the most efficient and reliable method. In this literature 

review, only those algorithms that are designed for ultrasound images are considered. Based 

on the methods and materials used in algorithms, the segmentation techniques were divided 

into four broad categories including 1) Contour and shaped based, 2) Region based, 3) 

Supervised and unsupervised classification, and 4) Hybrid. A brief explanation of each 

category is given in the following paragraphs. 
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Contour and shape based algorithms use a priori knowledge of the prostate shape in order to 

segment the boundaries. These methods based on the energy information calculated from the 

edges, fit a shape model or a contour onto the prostate boundaries. These algorithms are 

again divided into three sub-categories including edge-based, probabilistic filters, and 

deformable models. 

Region based algorithms use an energy minimization framework by comparing the local 

statistical parameters in training and testing images.  Local intensity distribution and standard 

deviation are the parameters that are commonly considered in the energy minimization 

problem. Level sets and graph partition based algorithms are the sub-categories of the region 

based algorithms. 

Supervised and unsupervised classification methods label each pixel of the ultrasound image 

into the prostate or non-prostate area. Supervised methods classify the pixels based on a 

priori knowledge obtained from the training set. Unsupervised methods perform clustering 

by grouping similar pixels together based on the feature measurements.      

Hybrid algorithms are referred to those techniques that combine some of the above 

mentioned categories to achieve prostate boundary segmentation. The main goal of the 

hybrid algorithms is to use the advantages of other categories in order to obtain more reliable 

and robust segmentation results. 

Taxonomy of the developed prostate boundary segmentation algorithms is given in 

Table 2-2.  
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Table 2-2 Prostate boundary segmentation algorithms (2002-2012) 

Method Sub-category Sub-sub-category 

Contour and shaped based  

Edge based 

Probabilistic filters 
 

Deformable filters 

Deformable mesh 

Level sets 

Active shape models 

Curve based 

Active contour model 

Region based 

 

Level sets 

Graph partition based 

 

 

Supervised and unsupervised 

classifications 

 

Cluster based 

Classifier based 

 

 

Hybrid methods   

   

 

In this literature review, in order to cover each category and explain their related works in 

detail, an attempt has been made to describe the methods based on the order of publishing 

year. The most important and interesting works since 2002 are listed in Table 2-3. Also, for 

each algorithm, it is shown that whether it is fully automated or not.  

 



22 

 

Table 2-3 Semi-automatic and automatic prostate boundary segmentation algorithms (since 2002)  

Reference Year Methodology Automatic 

Shen et al. [23] 2003 DM-ASM (Gabor features) Yes 

Abolmaesumi [24] 2004 Probabilistic filters (Kalman, PDAF and IMM) No 

Gong et al. [25] 2004 DM-Curve fitting No 

Sahba et al. [26] 2005 Probabilistic filter No 

Zaim [27] 2005 Classifier-ANN Yes 

Badiei et al. [28] 2006 DM-Curve fitting No 

Mohamed et al. 2006 Classifier-SVM Yes 

Zaim et al. [29] 2007 DM-ACM Yes 

Cosio [30] 2008 EM and ASM Yes 

Yan et al. [31] 2010 ACM and ASM Yes 

Ghose et al. [32] 2010 Wavelets and AAM No 

Ghose et al. [33] 2011 EM and AAM Yes 

Ghose et al. 2012 Quadrature filter and AAM No 

   

In the following sub-sections a complete explanation of each one of the above algorithms is 

provided.     

2.2.1 Boundary segmentation using Gabor filters (Deformable model-2003) 

A fully automated model-based boundary segmentation method was introduced by Shen et 

al. [23] in 2003 where Gabor features were utilized for model deformation. In order to 

perform the feature extraction in a multi-scale and multi-orientation manner, they generated a 

Gabor filter bank by dilating and rotating the Gabor’s mother function in three scaling stages 

and six different orientation directions (Figure 2-5a). The Gabor filter has the ability of 

simultaneously performing both edge detection and noise reduction (smoothing). This is 

because the Gabor function is a modulation of a Gaussian kernel and a sinusoidal wave as 

defined below,  

  (   )  (
 

      
)    ( 

 

 
(

  

  
 
 

  

  
 
)       ) 

Eq. 2.1 
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The Gaussian factor in the real part performs the image smoothing and to some extent 

removes the speckle noise in TRUS images (Figure 2-5d). The imaginary part exactly acts as 

an edge detector filter and due to the multi-orientation nature of the Gabor filter it also 

provides the edge directions (Figure 2-5e). Figure 2-5b illustrates one-dimensional Gabor 

filter where the edge detector and smooth filters are shown in dashed and solid lines 

respectively.  In their method, polar coordinate system with the origin at the probe center was 

preferred to the Cartesian coordinate system and the Gabor features were extracted along 

radial directions. In order to obtain valid Gabor responses in the polar coordinate system, the 

rotation of the probe in each radial direction was also considered in the regular Gabor 

function. This resulted in obtaining a set of rotation non-invariant Gabor features which were 

further utilized in the model deformation. Similar to the other model-based algorithms, 

prostate boundary detection was performed by minimizing the total energy function. The 

total energy function is a weighted summation of the external and internal energies. In their 

method, both real and imaginary parts of the rotation non-invariant Gabor features were used 

to determine the external energy. This makes the algorithm more robust in boundary 

detection since in the case that the imaginary part detects a false boundary; the real part will 

modifies the false detection by checking the intensity distribution around the prostate 

boundaries. In order to preserve the model curvature, a vector of geometric attributes was 

proposed to be considered as the internal energy. Also, another novel technique was used for 

preserving the shape of the model in the deformation strategy. If a model point is forced to be 

displaced by the external energy, its neighbors will be displaced consequently. The 

propagation of the neighbors’ displacement obeys a Gaussian function in such a way that the 



24 

 

deformed model point locates on the peak and the right and left neighbors lie on the Gaussian 

bell curve (Figure 2-5c).                

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2-5 Prostate boundary segmentation using Gabor filter bank features  (a) frequency spectrum 

of the multi-scale and multi-orientation Gabor filter (b) one-dimensional Gabor filter consists of 

smooth and edge detector filters (c) Gaussian displacement propagation of a deformed model point 

and its neighbors  (d) smooth image (Real part) (e) edge detected image (Imaginary part) (f) 

segmented boundary    

Although their fully automated algorithm had many advantages, the feature extraction 

computations were extremely intensive due to the multi-scale and multi-orientation manner 

of the Gabor filter bank; therefore, it was not appropriate for real time therapy. Also, 

according to the author’s claim, the model initialization was not accurate enough. 

2.2.2 Boundary segmentation using PDAF and IMM (Probabilistic filters-2004) 

In order to overcome the disadvantages of the aforementioned method, Abolmaesumi and 

Sirouspour [24] proposed a probabilistic filter segmentation technique which utilized 
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interactive multiple model (IMM) and probabilistic data association filter (PDAF) for 

outlining the prostate boundaries. Since their algorithm unlike the model-based algorithms 

did not have any optimization problems, it was computationally more efficient and it was 

able to segment the prostate boundaries in a significantly shorter amount of time. In the 

preprocessing part of their methodology, the stick filter was used to reduce the speckle noise 

and enhance the boundary edges (similar to the proposed method by Pathak et al. [20] 

described in section 2.1.1). Figure 2-6b shows the boundary enhanced image resulted by 

applying the stick filter to the original TRUS image. The edge detection procedure was 

performed along the radii starting from a seed point located inside the prostate gland. The 

authors assume that the detected edges are a trajectory of a moving object whose motion 

forms a particular model. However, due to the low contrast and the speckle noise in TRUS 

images, there is always a random vibration in the trajectory of the detected edges 

(Figure 2-6c). This random vibration (error) was further modeled by a zero-mean white 

Gaussian noise in the Kalman filter algorithm. The statistical Kalman filter was used in order 

to estimate the optimal boundary locations based on the predicted boundaries. Since it was 

possible that two or more edges be detected on each radius, the authors utilized PDAF and 

IMM in order to solve the multi model problem. The PDAF algorithm followed by the IMM  

(a) (b) (c) (d) 
Figure 2-6 Prostate boundary segmentation using probabilistic filters (a) Original TRUS image (b) 

Stick filtered image (c) Edged detected image prior to Kalman estimator (d) Final segmentation result 
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estimator finds the optimum prostate boundary edges based on a set of Kalman filters outputs 

(Figure 2-6d). Their proposed algorithm suffers from two important disadvantages. First, the 

algorithm is not fully automated such that the position of the seed points should be 

determined by a user. Second, the selected seed point should have direct access to all prostate 

boundaries. The later disadvantage does not occur for the majority of TRUS images, 

however, there exist some images in which the prostate gland appears as a more complicated 

shape. 

2.2.3 Boundary segmentation using deformable super-ellipse (Hybrid-2004) 

In contrast to the last described method, Gong et al. [25] preferred to use deformable shape 

models in their boundary segmentation algorithm. One of the great advantages of the 

deformable models is their ability to remove the gap between prostate boundaries caused by 

shadowing artifacts. This task can be obtained by incorporating additional knowledge of the 

prostate shape into the deformable model algorithms. These shape constraints restrict the 

model from false deformation leading to a significant improvement in the segmentation 

performance. In their method, the parametric super-ellipse model was proposed as an 

alternative parametric shape modeling approach such that the walnut shape and the near-

convex surface of the prostate gland was considered as the prior shape knowledge. The 

advantage of the ellipse parametric model is the capability of constructing a variety of natural 

shapes with only a few parameters.  The initial model position is defined by the model pose 

parameters including scaling (  ), rotation ( ), and translation (  ,  ). In order to incorporate 

the capability of constructing the walnut shape models, the authors added the square-ness 

(  ), aspect ratio (  ), tapering ( ), and bending ( ) parameters to the model parameters. As 
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a result, by varying only 8 parameters, deformable super-ellipse can construct a variety of 

prostate shapes (Figure 2-7).  

 
                                                          

Figure 2-7 Deformable super-ellipse models 

An area minimizing problem was further utilized to fit the parametric super-ellipse model on 

the boundaries. The evaluation results of the fitting the parametric model on around 600 

manually segmented images indicated that the deformable super-ellipse models are 

adequately reliable to be used in prostate boundary segmentation. Also, they compared the 

parametric super-ellipse model with the Fourier descriptor. Even with increasing the number 

of harmonics, both Hausdorff distance and mean absolute distance of the super-ellipse model 

was less than Fourier descriptor. Moreover, Fourier descriptor compared to super-ellipse 

models needs more parameters to extract the prostate boundaries. For instance, a Fourier 

descriptor with three harmonics has 14 parameters leading to a high computation load and is 

far away from real-time segmentation. 

A boundary segmentation algorithm based on the Bayesian framework was utilized to obtain 

8 optimize super-ellipse deformation parameters. The shape and pose prior were modeled 

with Gaussian distributions and the edge-map of the image was considered as the likelihood 

in the Bayes rule. An edge detection methodology exactly similar to the technique proposed 

by Pathak et al. [15] was employed to strengthen the prostate boundaries. In this robust 

technique, Stick filter, edge-preserving weak membrane, and Canny edge detector 

respectively perform the contrast enhancement and true edge preservation in noisy images. 
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The parametric deformation supper-ellipse model has many advantages in prostate boundary 

segmentation including low computation burden and the ability in modeling a variety of 

prostate shapes. However, in the model initialization step, it is required that more than two 

initial points be selected by a user. This drawback causes the algorithm to be categorized as a 

semi-automatic prostate boundary segmentation algorithm. 

2.2.4 Boundary segmentation using Fuzzy Inference system (Probabilistic filters-

2005 ) 

In 2005, Sahba et al. [26] proposed a new method that probabilistic filters and a fuzzy 

inference system (FIS) were utilized to perform the automatic boundary outlining. Their 

segmentation strategy was based on the fact that the prostate boundaries can be extracted 

more accurately in a perfectly contrast enhanced image. Therefore, they performed several 

sequential steps in order to enhance the contrast of the prostate gland. A coarse estimation of 

the prostate boundary was the main prerequisite for their proposed contrast enhancement 

fuzzy system. For this purpose, a probabilistic method similar to the algorithm described 

earlier (Abolmaesumi [24]) was utilized in order to roughly segment the gland.  In their 

method, Kalman filter was used to estimate the location of the boundary edges on the radial 

lines drawn from a seed point located inside the prostate. The position of the seed point had 

to be selected manually in [24] but in the present work this task is accomplished 

automatically. To obtain the position of the seed point, first, the ultrasound image were 

smoothed using median and average filter. Next, Top-hat and Bottom-hat filters were utilized 

to enhance the contrast of the image. These filters are a combination of morphological 

operations and their principal application is in correcting the non-uniform background 

illumination [34]. Due to the presence of the speckle noise, the authors considered the 
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background of the ultrasound images as a non-uniform illumination region and then 

employed the Top-hat and Bottom-hat filters together to isolate the surrounding tissues. 

Afterward, the filtered image was converted to the binary image and the holes inside the 

bright objects were filled using morphological operations. Finally, after applying multiple 

erosions, the center of the remaining bright object was considered as the position of the seed 

point. Using Kalman estimator, the polar coordinates (with the origin at the seed point) of the 

prostate boundaries in the thresholded image were estimated. Kalman estimator was utilized 

to prevent the fault edge detection and also to predict the position of unclear edges caused by 

shadow artifacts. A course prostate contour was then obtained by connecting the estimated 

boundary edges together. In order to determine a prostate boundary region, two more 

contours were further constructed in such a way that the course contour exactly place 

between them. A fuzzy inference system was further utilized to manipulate the gray-level 

values of the pixels located inside the boundary region.  The fuzzy regulations in their 

proposed method are listed as follows: 1) If the pixel is not located inside the prostate region 

then its gray-level remains the same 2) If the pixel is located inside the prostate region and it 

is a dark pixel then change its gray-level to a darker pixel 3) If the pixel is located inside the 

prostate region and it is a gray pixel then change its gray-level to a dark pixel 4) If the pixel 

is located inside the prostate region and it is a bright pixel then change its gray-level to a 

brighter pixel. Figure 2-8 compares the contrast of the original image, the enhanced image by 

Top-hat and Bottom-hat filter, and the enhanced image by FIS technique.  
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(a) (b) (c) 

Figure 2-8 Prostate contrast enhancement using Fuzzy Inference System (FIS) (a) Original TRUS 

image (b) Top-hat and Bottom-hat filtered image (c) FIS contrast enhanced image   

As illustrated in Figure 2-8c, a significant contrast enhancement is achieved in the prostate 

region. The boundary extraction can now be performed by utilizing the Canny edge detector 

on the enhanced image. The edges around the coarse contour are considered as potential 

prostate boundaries. The discontinuous boundaries are further connected by a straight line in 

order to obtain a continuous contour. 

Although the position of the seed point in the described method was determined 

automatically, the first required data for the Kalman estimator had to be provided manually. 

Therefore, this algorithm cannot be considered in the category of the fully automated 

algorithms. 

2.2.5 Gland segmentation using Self-organizing maps (Classifier based-2005) 

In 2005, Zaim [27] developed a fully automated prostate gland segmentation based on Self-

organizing maps (SOM). SOM is an unsupervised Artificial Neural Networks (ANN) used 

when the output answer is not known and it is desired to find the structure and pattern of 

data. SOM uses both competitive and cooperative training to cluster and classify the input 

data. Each input vector was formed by four different features. The pixel intensity value and 

its coordinates (   ) were assigned to the first three features of the input vector. The last 

feature was a texture feature and it was calculated by applying morphological and texture 
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filters. First, median and top-hat filters were utilized to outline the speckle pattern in TRUS 

images. The second-order Gray level co-occurrence (GLCM) filter was further used to find 

the homogenous regions. GLCM is a very powerful texture filter which specifies the 

occurrence probability of all pixel combinations in an image. Since in the homogenous areas 

there is no significant gray-level difference, it is expected to find large probability values in 

the vicinity of the GLCM matrix diagonal. Based on the texture information in the GLCM 

matrix, the author found the best threshold value that gives the highest contrast. The forth 

feature of the input vector is derived from the high contrast thresholded image (Figure 2-9b). 

In the competitive training procedure of the SOM, every four dimensional input vector is 

presented to every neuron of the neural network. The neurons adjust their weights in each 

epoch to become more like the input data. Epoch is referred to as the number of the times 

that the input data is fed to the neurons. The advantage of SOM compared to the regular 

Neural Networks is that the neurons not only adjust themselves to the input data but also 

adjust themselves to neighbouring neurons as well. A two layer SOM was constructed to map 

the four dimensional data in to the two-class output, i.e., prostate and non-prostate. In the 

first layer, a 2 3 network classifies the input data into 6 different categories. In each 

category, those input data that are more topologically close are grouped together. The second 

layer of SOM then performs the final classification and assigns a binary label to each pixel of 

the TRUS image. As illustrated in Figure 2-9c, there exist many misclassified pixels inside 

and outside of the prostate gland. The author utilized morphological filters to modify the 

misclassified pixels. The false positive scattered pixels located outside of the prostate gland 

are destroyed by erosion. The false negative holes inside the gland are filled by dilation 

Figure 2-9 (d).   



32 

 

(a) (b) (c) (d) 
Figure 2-9 Prostate gland segmentation using Self-organizing maps  (a) Original TRUS image (b) 

GLCM thresholded image (c) Classified image using SOM (d) Final segmentation using 

morphological operations  

The main advantage of the described method is its capability in segmenting the prostate 

gland without any user-interaction. However, from the segmentation results, it is clear that 

the accuracy of the algorithm is not satisfactory. It is essential to combine a model-based 

algorithm to obtain a smooth surface. The extensive computational burden in extracting the 

texture features is another disadvantage of this method. Although the size of the images were 

reduced by a factor of five, the GLCM algorithm and SOM network are time consuming 

approaches which is in contrast to real- time processing.      

2.2.6 Boundary segmentation using image warping (Curve based-2006) 

In 2006, Badiei et al. [28] presented a new 2D prostate boundary segmentation technique 

based on image warping and ellipse fitting. The idea behind their method is that the prostate 

gland shape (bean-shape) can be considered as a warped version of an ellipse. The pressure 

of the ultrasound probe during imaging procedure causes the mid-anterior of the prostate to 

change its shape from oval to a deformed shape. In order to remove the impact of this 

pressure, the authors proposed a warping function that was capable of converting the prostate 

shape into an ellipse model. For this purpose, a polar coordinate system at the origin of the 

ultrasound probe was first defined. In the new coordinate system each pixel of the image is 

represented by a radius and an angle (   ). In order to warp the mid-anterior of the prostate, 
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only those pixels of the image that are close to the probe center (small radius) and their angle 

is around   ⁄   should be warped. To provide these conditions, the warping function consists 

of a combination of sinusoidal and exponential function was proposed as below 

          ( )    (
   

   
) 

Eq. 2.2 

where   determines the amount of stretch in the radial direction.  As is clear from the Eq. 2.2, 

the amount of stretch is minimum for those pixels with large radius and the angle around 0 or 

 . Prior to the image warping, a user selects 6 boundary points on the original TRUS images 

(unwarped images). By applying the warping function, the selected boundary points in the 

warped image lie on an ellipse function (Figure 2-10b). The authors obtained the parameters 

of the ellipse function by solving the least square elliptical fit problem. The elliptical fit 

optimization problem calculates the ellipse function parameters in such a way that the 

selected boundary points in the warped image have the minimum distance from the ellipse 

contour. This ellipse contour was then utilized as an initial contour in the prostate boundary 

detection technique proposed by Abolmaesumi [24] (described earlier). In this technique 

Probabilistic Data Association Filter (PDAF), Kalman estimator and Interactive Multiple 

Model (IMM) are employed to predict the unclear prostate boundaries in shadow areas 

(Figure 2-10c). After performing edge detection, the inverse warping function is utilized to 

convert back the warped image to the original TRUS image (Figure 2-10d). 
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(a) (b) (c) (d) 
Figure 2-10 Prostate boundary segmentation using image warping and ellipse fitting (a) Initialization 

(b) warped image (c) boundary detection using PDAF and IMM (d) reverse warped image 

 The advantages of the described algorithm can be listed as 1) low computational burden 2) 

does not require training models  3) the segmented boundary is smooth, continues, with no 

sharp edge, and it is symmetric. However, its major disadvantage is the need of manually 

selecting six boundary points in the initialization part. The other disadvantage of the 

described method is that the value of   in Eq. 2.2 must also be selected manually. The value 

of   in warping function determines the amplitude of the stretch and has a direct impact on 

the overall segmentation process. For each image, the value of   was selected separately, this 

is a time consuming process and is not suitable for real-time applications. 

2.2.7 Boundary segmentation using dot-pattern selective cells (Deformable model-

2007) 

In 2007, Zaim and Jankun [29] proposed a new model-based prostate boundary segmentation 

algorithm where dot-pattern texture energy map was utilized as an external energy to deform 

the model. Since most model-based algorithms use gradient information in model 

deformation strategy, their goal was to develop a more robust external energy function to 

work well even in poor contrast TRUS images. Due to the presence of speckle noise in 

ultrasound images, the use of one directional gradient can result in false edge detections and 

ultimately inaccurate segmentation. Instead, analysing a local neighborhood in both x and y 
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directions can significantly improve the boundary detection algorithm. For this purpose, the 

authors utilized a texture-based feature extraction technique referred to as Dot-pattern 

selective cells. Dot-pattern is a set of equidistant distributed cells forming a 2D geometric 

lattice. The first step of the dot-pattern feature extraction technique is the response 

computation of center-surround cells to the input image. Center-surround cells show a heavy 

reaction to the bright spots of a certain size and a weak reaction to the other regions. 

Therefore, center-surround cells can be modelled with a Difference of Gaussians (DOG) 

function  

    (   )  
  

  
 

 
     

         
 

     

    Eq. 2.3 

where    and    are normalizing constants and   is the standard deviation of the Gaussian 

function (Figure 2-11a). In order to obtain the dot-pattern responses, the input image and 

DOG functions with different standard deviation values are then convolved together. The 

texture feature extraction is highly sensitive to the image pixel intensities; therefore, it is 

necessary to normalize the convolution values. The contrast normalization is performed by 

dividing the convolution values to the local average gray-level intensities. This normalization 

guarantees that the texture features are dependent to the intensity values.  

After calculating a set of dot-pattern responses, the spot detection algorithm is utilized to 

obtain the textural features. The spot detection process consists of four main steps: 1) Non-

maxima suppression, 2) low response removal, 3) lateral inhibition, and 4) winner-takes-all 

competition. Each one of these steps examine a threshold rule and produces a binary mask 

[35], [36]. The pixel-wise multiplication of all four binary masks produces a dot-pattern 
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image such that the pixels with intensity value equal to +1 indicate the position of the spots. 

The constructed dot-pattern image is further considered as an energy map to guide the model 

deformation (Figure 2-11c). Similar to other model-based algorithms, the location of the 

prostate model contour was determined by solving an energy minimization problem between 

the external and internal energies. External energies pull the model surface toward the 

locations with high dot-pattern energy (Figure 2-11d) while internal energy preserves the 

model curvature and smoothness.  

 

(b) (c) (d) (a) 
Figure 2-11 Prostate boundary segmentation using dot-pattern selective cells  (a) Plot of 2D 

Difference of Gaussians (b) input TRUS image (c) Energy map image using dot-pattern selective 

cells (d) final model-based segmentation  

Although the proposed algorithm is fully automated, it suffers from two major disadvantages. 

First, the accuracy of the boundary segmentation is not satisfying as compared to earlier 

algorithms. Second, the texture-based feature extraction methods are generally 

computationally expensive and are not suitable for real-time applications. Since there is no 

discussion about algorithm complexity, it seems that the proposed method also has a huge 

computational burden. 

2.2.8 Boundary segmentation using Genetic Algorithms (Hybrid method-2008) 

In 2008, Cosío [30] employed Multi-population Genetic Algorithm (MPGA) to fully 

automatically segment the prostate boundaries in Transurethral images. The shape of the 
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prostate gland in transurethral images is slightly different from the prostate shape in 

transrectal images (Figure 2-12a). However, due to the similarity of the challenges faced in 

both imaging techniques, the proposed method is considered in this literature review. In this 

work, unlike most model-based algorithms, a new automatic model pose initialization 

method was utilized to overcome the drawback of user interaction dependency. In this 

method, a pixel classification technique is first employed to label each pixel of the image as a 

prostate or non-prostate area. A group of the labeled pixels in the binary image forms a 

closed object which is an acceptable estimation of the prostate gland. Next, the pose 

parameters of an Active Shape Model (ASM) are calculated in such a way that the surface of 

the model lies on the object boundaries.  

The pixel classification is accomplished by utilizing Bayes’ discriminant functions. For this 

purpose, each training ultrasound image is subdivided into three regions including 1) 

prostate, 2) surrounding tissue (hale), and 3) background. A set of three components samples 

is then extracted from each region of the image to train the classifier. The components of 

each sample consist of pixel grey level intensities and their corresponding coordinates (x,y). 

By collecting the samples of all training images, a statistical population can be obtained. In 

order to find the statistical parameters of each region, the pixel intensity distribution of 

ultrasound images was modelled with a mixture of three Gaussian models. Expectation 

Maximization (EM) algorithm is then utilized to obtain the mean and standard deviation 

values of the model of each class. The calculated statistical parameters form the likelihood 

functions which are one of the requisites of Bayes’ classifier. The other term required for 

Bayes’ classifier is the prior probability values of each class. This term can also be calculated 

from the training set by dividing the number of samples of a particular region by the total 
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number of samples. Now, based on the prior probabilities and likelihood functions, the 

posterior probability of each region can be calculated. The label of each pixel is determined 

by a comparison of the posterior probability values of all three regions. If the posterior 

probability of the prostate region is greater than two other regions, that pixel is identified as a 

target and its label is set to +1 (Figure 2-12b). 

The model pose parameters including scaling, translation (in both directions), and rotation 

determine the location of the ASM in the binary image. The aim of the model initialization is 

to find the optimum pose parameter values in such a way that the distance between the 

constructed ASM surface and the object boundaries is minimized. These optimum values are 

obtained by solving a fitting optimization problem. Since there are many unknown variables 

and the search space is too large in the optimization problem, the author utilized Multi-

population Genetic algorithm (MPGA) to solve the objective function. Genetic algorithm 

(GA) is an optimization technique that mimics the evolution of the natural systems [37]. GA 

is not a calculus-based algorithm and the optimum values are found by a heuristic search 

technique. Genetic algorithm follows five sequential phases in an iterative manner to find the 

optimum solution. These phases are ordered as follows: 1) Initial population, 2) Fitness 

function, 3) Selection, 4) Crossover, and 5) Mutation. The initial population begins with 

randomly generated states. The randomly generated states should fall in the range of model 

parameters. Since the GA algorithm only works in a binary system, it is first required to 

convert the parameter values into a stream of binary numbers. In the next step, the numerical 

values of the objective function are calculated using fitness function and the worst string 

based on the relative fitness values are eliminated from the population. In the crossover 

phase, each pair of the selected strings exchanges a portion of their information to create a 
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new population. The average objective function value of the new generated strings indicates 

a significant improvement after only one iteration. In the Mutation step, in order to preserve 

good strings from being destroyed in the cross over phase, a few numbers of bits (maximum 

5% of the total number of bits) are changed from 1 to 0 or vice versa. These phases 

iteratively will be applied to the population until the objective function value converges to 

the optimum value. The main advantage of GA is that in each generation there is a 

progressive improvement on the objective function. In order to prevent the algorithm to be 

trapped in the local minima, the Multi-population GA was utilized in the model pose 

initialization. The only difference between MPGA and GA is that the calculations are 

performed on a set of parallel populations and some strings frequently migrate from one 

population to another.  

After finding the approximate location of the ASM in the binary image, the final prostate 

boundary contour is obtained by adjusting the initial model to the gray level ultrasound 

image. The Contour adjustment is achieved by solving another MPGA optimization problem. 

The objective function is to minimize the average gray level difference along the lines 

perpendicular to the ASM surface. The perpendicular lines are drawn from the inside to the  

(a) (b) (c) (d) 
Figure 2-12 Prostate boundary segmentation using Multi-populations Genetic Algorithm (MPGA) (a) 

a typical transurethral image (b) Classified binary image and the initial model contour (c) pixel profile 

sampling along perpendicular lines (d) Comparison between fully automated (black) and manually 

(white) segmentation  
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outside of the prostate contour in such a way that the center of each line lies onto the model 

surface (Figure 2-12c). Although the proposed method by Cosío is fully automated and the 

final segmentation results are adequately accurate (Figure 2-12d), the computational load of 

the algorithm is extremely high.  The processing time of around 14 minutes is completely 

unacceptable for real time applications. 

2.2.9 Boundary segmentation using Partial active shape model (Hybrid method 

2010) 

In 2010, Yan et al. [11] proposed a fully automatic TRUS image segmentation method, 

where a partial active shape model (PASM) was used in order to improve the defects of 

previous algorithms specially in shadow areas. The difference of PASM method with 

common deformation strategies is that only partial salient contours are used for shape 

estimation and non-salient parts are removed. Therefore, the energy function consists of an 

extra energy term PASME  to prevent the fault deformation in the missing boundaries. The 

PASM term is a positive weighted parameter of distance between a point from the model and 

the corresponding point on the estimated shape.  Similar to most of prostate segmentation 

algorithms, dark to bright transition from the inside to the outside of the prostate gland was 

considered as the main feature for computing the external energy. For this purpose, Normal 

Vector Profile (NVP) which is a set of sticks perpendicular to the initial model contour was 

used for removing non-salient contour points. The model continuity and curvature was 

preserved by the internal energy term which in turn was dependent on the average distance 

between all the model points and the position of two adjacent points. 
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2.2.10 Boundary segmentation using Graph cuts (Hybrid method-2011) 

In 2011, Ghose et al. [33] presented a new statistical shape model approach using graph cuts 

in a Bayesian framework for automatic prostate outlining. K-means clustering was used to 

provide initial parameters required for Expectation Maximization (EM). The obtained 

posterior probabilities from EM were utilized in Markov Random Field (MRF) modeling to 

apply spatial constraints. The output of the MRF modeling was a labeled image consisting of 

a foreground (the prostate) and background (non-prostate). A method similar to the 

traditional Active Appearance Model (AAM) was used for the prostate segmentation. The 

aim of the AAM is matching the statistical model to a new image. For this purpose, the sum 

of squared difference of intensity between the model and the final shape is minimized. 

However, in their methodology, posterior probabilities obtained from MRF modeling were 

replaced with intensity. 
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Chapter 3 

 

3 Methodology 

The proposed fully automated prostate boundary segmentation method consists of two main 

phases: 1) Prostate model pose parameters estimation 2) Model deformation strategy. In the 

first phase, the approximate location of the prostate in a TRUS image is estimated. The 

prostate model pose parameters including scaling, rotation, and translation are obtained from 

a new pattern recognition and template matching techniques. In the second phase, the initial 

model with the estimated pose parameters is deformed in order to best fit on the prostate 

boundaries. Numerous probabilistic techniques including Expectation Maximization (EM) 

and Markov Random Field (MRF) are utilized as an external force to deform the initial 

model and a new internal force based on the geometric transformation is used to preserve the 

curvature and smoothness of the model and prevent the fault deformation. The schematic 

diagram of the methodologies and algorithms implemented in the proposed prostate 

boundary segmentation is illustrated in Figure 3-1. 
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Figure 3-1 The schematic diagram of the proposed prostate boundary segmentation algorithm 
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 Model pose parameters 3.1

In the TRUS images, all the edges and speckle noises are approximately perpendicular to the 

line drawn from the center of the probe. The main idea behind the proposed method is that 

the image can be analyzed as a set of strips such that all the edges and speckle noises appear 

as a horizontal line in each strip. This characteristic leads to a significant reduction in the 

computation time as compared to all multi-orientation techniques. 

3.1.1 Pre-processing 

The strips or radial windows are running from the exterior of the probe location to the image 

margins. For this purpose, a semicircle is drawn from the center of the ultrasound probe. 

Radius length of the semicircle depends on the probe size. The radii of the semicircle have an 

angle with the horizontal axis of the image. For each angle, a tangent line to the semicircle is 

considered as a starting point of a perpendicular line. Figure 3-2 shows the method of 

drawing the perpendicular lines in an image.  

 

Figure 3-2 Perpendicular lines drawn from the starting point on the tangent line to the endpoint at 

image margins  

Each strip is formed by considering each perpendicular line drawn from the tangent line as a 

column of a matrix. In order to cover the entire image data inside the field of view of the 
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ultrasound images, the strips are formed at every one degree from       to        as 

shown in Figure 3-3. 

  
(a) (b) 

 
(c) 

Figure 3-3 Strip structure  (a) strip position at      (b) edges and speckle noises appear as 

horizontal lines in the strip (c) a set of strips from 15 to 165 degree (the red window is the strip shown 

in (b)) 

One of the important factors that directly impacts the segmentation results is the width of the 

strip. The parameters that determine the width of the strip are the number of active transducer 

elements in the ultrasound probe and the width of the transducer [38].After extracting the 

strips from the TRUS images, a concise and efficient template, best representative of the 

prostate boundaries is required in the template matching procedure. Studies on the properties 

of prostate shape in ultrasound images show that upper and lower boundaries of the prostate 

have different features. One of the most effective features of the upper boundaries is the dark 
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to bright transition of pixel gray-levels from the inner gland to outer region of the prostate. In 

contrast to upper boundaries, lower boundaries are always close to the ultrasound probe and 

there is a bright to dark transition of the intensities. Therefore, it is required to construct two 

distinct representative patterns for the upper and lower boundaries. 

3.1.2 Representative patterns 

A set of prostate boundary templates collected from training images with known background 

truths are required to construct a set of representative patterns. This pattern construction is 

performed using a conventional dictionary learning method. These methods are capable of 

generating an optimized dictionary from a set of training data. Among a variety of dictionary 

learning algorithms, the iterative least squares dictionary learning algorithm (ILS-DLA) 

presented by Engan et al [39] is applied in our approach, because of its simplicity and 

efficiency. In ILS-DA, an optimized dictionary   is iteratively updated from a set of training 

templates by solving the optimization problem defined by 

          ‖    ‖ 
   subject to ‖  ‖           Eq. 3.1 

where                 is a training matrix including training  data vectors and   is the 

coefficient matrix consisting  of a set of sparse coefficient vectors            . The 

cardinality is denoted by ‖ ‖  which determines the sparseness factor of the coefficient 

vectors. In order to form the training matrix, each prostate boundary template (Figure 3-4a) is 

divided into a column-wise vector      . The training matrix is then obtained by vertically 

concatenating a set of these column-wised vectors. The straight forward solution for the 

optimization problem (Eq. 3.1) is the minimization of the Frobenius norm. In cases where 

there is an existing solution, the minimization problem demands a tedious computation. To 
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overcome this issue, a two-step iterative solution approach is proposed as an alternative 

strategy. In the first step, the coefficient matrix   is computed by 

  ( )   ( ( ))  ( )   ( ( ))   Eq. 3.2 

where an initial dictionary  ( ) provided by a user is used in the first iteration. In the next 

step, the dictionary   is updated by utilizing the computed coefficient matrix obtained from 

the first step. Thus, 

  (   )   ( ( ))   ( )( ( ))     Eq. 3.3 

The iterative process continues until the difference between updated dictionaries converges 

to a pre-set error. An example of representative pattern construction from a set of upper  

  
(a) (b) 

   
(c) (d) (e) 

Figure 3-4 Representative pattern construction  (a) an upper boundary observation at        (b) 

zoom to region of interest (c) A set of upper boundary observations from different images (d) upper 

boundary representative pattern (e) result of the same procedure for the lower boundary  
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boundary observations is illustrated in Figure 3-4. The next section explains how these 

constructed representative patterns are utilized in prostate boundary recognition. 

3.1.3 Template Matching using Normalized Cross-correlation 

Cross-correlation is commonly used for similarity measurement between two signals and it is 

the basic statistical approach to image registration. The cross-correlation of the image   and 

the template   is defined by 

  (   )  ∑ (   ) (       )

   

 Eq. 3.4 

where   and   are the location of the template on the image. Cross-correlation is very 

sensitive to bright spots and linear changes of intensities in the template and the image. This 

drawback can cause an inaccurate matching result. Therefore, normalized cross-correlation 

(NCC) [40] has been extensively used in the template matching applications due to its 

advantages over traditional cross-correlation. Normalized cross-correlation is indicated by 

 
  

∑ [ (   )      
̅̅ ̅̅̅]  (       )   ̅    

√∑   (   )      
̅̅ ̅̅̅  ∑   (       )   ̅        

 
Eq. 3.5 

where     
̅̅ ̅̅̅ is the mean of the image under the template window and   is the mean of the 

template. The value of  (   ) varies between -1.0 to 1.0. In our method,   is the strip 

formed in the preprocessing part (Figure 3-5a) and   is the representative pattern 

(Figure 3-5b). The normalized cross-correlation of a strip and the upper representative 

pattern is computed and illustrated in Figure 3-5c. The threshold value for the cross 

correlation determines whether the region under the template window belongs to the prostate 

boundary. The target is identified when   (   )exceeds the threshold value (Figure 3-5d). 
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Due to the difference in the dimensions of the NCC matrix (Figure 3-5c) and the input strip 

(Figure 3-5a), relative offsets displace the peaks of the NCC matrix to the corresponding 

position in the boundary highlighted strip (Figure 3-5d).  

 

 

 

  
(a) (b) (c) (d) 

 
(e) 

Figure 3-5 Template matching using Normalized cross-correlation  (a) an extracted strip (b) upper 

boundary representative pattern (c) result of normalized cross-correlation (d) processed strip resulted 

from thresholding (e) a set of processed strips from 15 to 165 degree (the red window is the strip 

shown in (d))  

 

The heuristic threshold value in our proposed method is defined by 

       (   )  Eq. 3.6 
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where 

   
 

  
 ∑ ∑   (   )

 

   

 

   

  Eq. 3.7 

and          (   )                   . In the above equations,   and   

are the row and column size of the computed normalized cross-correlation and          

    determines the sensitivity of the matching process. Alternating   from 0 to 1 results in 

sweeping the threshold from mean to maximum of NCC. Figure 3-6a and Figure 3-6b depict 

the reconstruction procedure resulting from processing the strips separately and putting them 

back into a circular shape. A similar technique is applied to lower boundary detection. The  

  
(a) (b) 

  
(c) (d) 

Figure 3-6 Boundary highlighted image construction  (a) putting back the strips into the circular shape 

(b) upper boundary highlighted image (c) lower boundary highlighted image (d) boundary highlighted 

image resulted from the lower and upper boundary addition  
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only difference is that the lower boundary representative pattern is replaced for normalized   

cross-correlation (Figure 3-6c). Final boundary detected image is achieved by adding the 

output of the upper and lower boundary detected images together (Figure 3-6d). 

3.1.4 Prostate Model Construction 

The prostate model construction method consists of three main parts: 1) Manual prostate 

boundary segmentation of a set of training examples 2) Aligning the training set 3) Capturing 

the statistics of a set of aligned shapes. In the manual segmentation step, a trained observer 

places a set of points on the prostate boundary. The points will be automatically sorted by the 

minimum possible distance. Therefore, it is not necessary to place the points in any 

particularly order. Cubic interpolation is then applied on the located points in order to form a  

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 3-7 Prostate model construction  (a) selected points by an expert (b) cubic interpolation (c) a 

set of boundaries (d) translation alignment (e) scale alignment (f) constructed model  
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continuous contour on the prostate boundary. To build a model, a set of manually segmented 

training examples is required. These shapes must be aligned together by translating, scaling 

and rotation to be as close as possible. Alignment is performed by minimizing the distance 

between equivalent points on different shapes. Finally, the prostate model is constructed from 

a set of aligned shapes based on the point distribution model (PDM) and principal component 

analysis (PCA) described in [22] and [41] (Figure 3-7). The final step of the boundary 

segmentation method is the computation of the model pose parameters. For this purpose, a 

set of sliding inner products of the constructed model (Figure 3-7f) (with different scales in   

and   directions) and the highlighted boundary image (Figure 3-6d) are calculated.    and    

are selected to be the scaling parameters of the model when the inner product of that scale is 

the global maximum among all other scales. The displacement of the centers of the TRUS 

image and the scaled model in the location that best fit the boundaries determines the 

translation parameters    and   . 

 
Figure 3-8 Finding the model pose parameters using sliding inner product of the model and boundary 

highlighted image  
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 Model deformation 3.2

The initial model which is obtained is a reliable approximation of the prostate location. 

However, with precise inspection on model boundaries, it was realized that some prostate 

boundaries are far from the initial model. Therefore, these distances should be reduced as 

much as possible by utilizing a model deformation strategy. In deformation strategies, based 

on impact of internal and external forces, the location of each initial model point is displaced 

so that the new point exactly situate on the prostate boundary. 

3.2.1 Prostate model important points 

The question that now arises is which points of the contour model should be designated for 

the model deformation procedure? Two important parameters that directly impact the 

deformation results are position of each selected point and the total number of the selected 

points. The more selected points result in higher computational time which is in contrast to 

real time applications. On the other hand, if the number of selected points is not chosen 

adequately, the performance of the deformation strategy will significantly reduce. For this 

purpose, Mahdavi et al. [42] offered six fundamental points that are best representative of the 

prostate shape. These points which are depicted in Figure 3-9 are: 1) mid-posterior (P.1) 2) 

lowest posterior lateral (P.3) 3) extreme right (P.7) 4) mid anterior (P.11) 5) intersection of 

the perpendicular line drawn from the midpoint of P.3 and P.7 with the model boundary (P.5) 

6) intersection of the perpendicular line drawn from the midpoint of P.7 and P.11 with the 

model boundary (P.9). In order to increase the accuracy of the deformation procedure, we 

added one more point between each pair of the adjacent aforementioned points. Thus, for the 
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right side of the prostate, the total number of points is increased to 11 points (Figure 3-10) 

and with regard to the presence of bilateral symmetry, overall the number of the designated 

points for both sides of the prostate extents to 20 points. 

 
Figure 3-9 Prostate six important points (Mahdavi et al. [42])  

 
Figure 3-10 Prostate 11 fundamental points for each side of the prostate  

After determining the position of the fundamental points, a local search is performed on the 

surrounding points in order to detect the prostate boundaries. The most common external 

force used in deformation algorithms is the gradient of pixel gray levels in the normal 

direction of the model surface. However, it is proven that gradient is not a reliable external 

force due to the presence of shadow artifacts and micro-calcifications in ultrasound   images.   

In order to overcome the stated drawback, we utilized Markov Random Field (MRF). The 

MRF is a powerful statistical modeling framework which has been widely used in image 
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processing and computer vision applications. In our case, the use of MRF provides two 

advantages. First, it removes remarkable amounts of micro-calcifications and the bright spots 

inside the prostate gland. Second, it fills the gaps and dark spots existing in the surrounding 

tissue. Consequently, the surrounding tissue becomes more homogenous and significant 

improvement in discontinuous boundaries is achieved. 

One of the prerequisites for MRF is the initial classification, that is, each pixel of the image 

is required to be labeled as prostate or non-prostate tissue. Due to the wide gray- level 

intensity variation in TRUS images, a global constant threshold does not provide an 

appropriate classification. Therefore, an adaptive threshold is required for every single 

image. The other prerequisites for MRF are the probability distribution parameters of each 

class. For instance, for a set of Gaussians, these parameters might be the means and 

covariance. Expectation maximization (EM) algorithm is a powerful method in order to solve 

the maximum-likelihood parameter estimation problem. In our case, the EM algorithm [43] is 

utilized for estimating the distribution parameters and computing the adaptive threshold 

value. 

3.2.2 Adaptive threshold and Probability distribution parameters via EM algorithm  

To find the probability distribution parameters, it is necessary to determine the type of the 

distribution functions in advance. This task should be accomplished by analyzing the image 

histogram.  An investigation on the histogram of TRUS images indicates that a significant 

amount of pixels have low intensity value (Figure 3-11). Most of these pixels are 

uninformative and located outside of the field of view. By excluding these pixels, the data set 

is reduced to a vector of image intensities, i.e.,                . A study on the histogram 

of the reduced data set shows that a mixture of two Gaussian models can be suitable 
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representation of the intensity distribution (Figure 3-12). In general, a mixture model is a 

probabilistic model for M component densities mixed together. That is, 

  (   )  ∑    (    )

 

   

 Eq. 3.8 

where     is a set of parameters for the probability distribution function   . The mixing 

coefficient of each component is defined by    such that ∑   
 
     . In order to find the 

probability distributions parameters, the EM algorithm optimizes the incomplete-data log-

likelihood expression 
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 Eq. 3.9 

by applying a two-step iterative approach. These steps are referred to as expectation step (E-

step) and maximization step (M-step). First, the algorithm computes the expected value of 

the likelihood with respect to the initial distribution parameters and the given data set. In the 

second step, the values of the parameters that maximize the expected likelihood are updated. 

A summary of the parameter estimation equations [44] for a set of Gaussian component 

distributions with mean   and covariance   are given below 
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Eq. 3.12 

where     are a set of appropriate parameters which are guessed for the     component in the 

expectation step.   

In the above equations, every single pixel    is considered as an individual data point. In 

other words, the upper bound of all summations is equal to the total number of pixels  . 

Since the EM algorithm updates the distribution parameters in an iterative manner, the large 

value of   will cause high computation load. In order to reduce the computational 

complexity, we propose a faster approach for image processing applications. The new 

approach is based on the property that all image intensities are integer and limited to a 

particular range. In our approach, instead of utilizing each image pixel as an individual data, 

the total number of identical intensity pixels is considered. As a result, the upper bound of all 

summations is decreased to the number of image gray-levels (e.g. 256). That is, all pixels 

with identical gray-level are only employed once in the computations.  For this purpose, we 

derive the distribution parameters based on the expected value theorem as follows: 

           ∑     (     )
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 (    ) Eq. 3.13 

where     is the total number of pixels that their intensity value is   such that ∑   
   
     . 

From Bayes’ theorem, we can write the posterior probability of the component   as 

  (      )  
 (       )  

 (    )
 Eq. 3.14 

and by substituting (Eq. 3.14) in (Eq. 3.13), we obtain 
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 (      ) Eq. 3.15 

Similarly, it is easy to show that 
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 (      ) Eq. 3.16 

The left hand sides of equations (Eq. 3.15) and (Eq. 3.16) are the nominator and denominator 

of equation (Eq. 3.11). Hence, we can express the mean value by 

   
    

∑     (      )   
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 Eq. 3.17 

A similar technique is applied for calculating the variance.  That is, from the expected value 

formula defined by 

   
    (    )

             (      )  Eq. 3.18 

we obtain 
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   )  Eq. 3.19 

Finally, by substituting equation (Eq. 3.16) in equation (Eq. 3.10), the mixing coefficient 

parameters becomes 
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 (      ) Eq. 3.20 

The upper summation bound in equations (Eq. 3.17), (Eq. 3.19) and (Eq. 3.20) clearly 

indicates a significant computation complexity reduction compared to the traditional EM 
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algorithm.  These equations perform both E-step and M-step simultaneously until 

convergence occurs. 

Now that we have the probability distribution parameters, we can obtain the adaptive 

threshold value. The threshold value, as illustrated in Figure 3-12, is determined by the 

intersection between prostate and non-prostate probability distribution functions.  Initial pixel 

labeling required for MRF is performed by assigning a label -1 to the intensities less than the 

threshold value, and +1 to those pixels that have intensity greater than the threshold.  

 

 
Figure 3-11 Typical histogram of TRUS images  
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Figure 3-12 The histogram of the pixels inside the field of view and the probability distributions of 

the prostate and non-prostate regions  

Figure 3-13b shows the binary image resulting from applying the threshold on an original 

TRUS image.   

  
(a) (b) 

Figure 3-13 Binary image resulting  from adaptive threshold (a) an original TRUS image (b) Binary 

image resulting from applying the adaptive threshold   
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3.2.3 Markov Random Field (MRF) modeling 

In image analysis, contextual constraints are very crucial in interpreting visual information. 

The reason that Markov Random Field (MRF) theory [45] has been widely used in low-level 

and high-level computer vision problems is that it models context-dependent image pixels. In 

order to utilize the MRF theory, first it is essential to determine three fundamental MRF 

components: Site, neighborhood and clique. In 2D images, each image pixel represents the 

site of a rectangular lattice. For an image of size    , a set of sites is denoted by   

 (   )              .   A neighborhood system   relates each site to its neighbors. 

In our approach, we used the second-order neighborhood system so that every single site is 

surrounded by 8 of its neighbors. For each site, a clique   is referred to a subset of 

neighborhood sites. Depending on the order of the neighborhood system, a clique can be 

either in the form of a single-site, a pair of neighboring sites, a triple of neighboring sites and 

so on.   

By utilizing the adaptive threshold value obtained from the EM algorithm, we assigned a 

label value     to each site in  . In MRF, the probability that a random variable takes the 

value      obeys a Gibbs distribution. That is, for a set of labeled random variables denoted 

by             , the probability is 

  ( )  
 

 
   

 
 
  ( )

 Eq. 3.21 

where   is a global control parameter called temperature and   is a normalizing constant . 

The function  ( ) is the energy over all potential cliques    and is given by 
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  ( )  ∑  ( )

   

 Eq. 3.22 

where   is a set of all considered clique forms. 

Once we have the a priori probability  ( ) and the likelihood density  (   ) of the 

observation  , we use Bayesian rule to update the label values [46]. The posterior probability 

then becomes 

  (   )  
 (   ) ( )

 ( )
 Eq. 3.23 

A comparison between the posterior probabilities determines the class of each pixel. The 

density function  ( ) does not affect the labeling process since it has the same value for both 

observations. The iterative labeling process continues until no more alterations apply to any 

label. A comparison between the initial thresholded image and the MRF labeled image is 

illustrated in Figure 3-14. As expected, the surrounding tissue has become more homogenous 

and a large number of the micro-calcifications are removed from the inside of the prostate  

  
(a) (b) 

Figure 3-14 A comparison between binary image and MRF labeled image (a) Binary image resulting 

from applying the adaptive threshold (b) MRF labelled image 
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gland. These improvements positively impact on the accuracy of the model deformation 

strategy.  

3.2.4 Model deformation strategy 

In the deformation procedure, a local search displaces the initial model points in order to best 

fit on the prostate boundaries. The search area around each model point, as illustrated in 

(Figure 3-15), is a window perpendicular to the model surface. Each pixel inside the 

windows takes a value of -1 or +1 based on its corresponding label in the MRF image. To 

find the new boundary points, we need to define a representative pattern for the prostate 

boundaries. This pattern should detect the transition line between the prostate and non-

prostate regions. For this purpose, we assigned -1 (prostate label) to each lower half element 

of the pattern and +1 (non-prostate label) to the upper half elements. The pattern is then 

correlated with the labeled pixels located inside the windows to find the best match 

coordination. 

 
Figure 3-15 Perpendicular windows in deformation strategy 
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The points with updated coordinates outline a deformed boundary surface. A comparison 

between the initial model and the deformed model is shown in Figure 3-16. It can be seen 

that a significant improvement is achieved in detecting the boundaries by deforming the 

initial model. However, still some points are far away from the prostate boundaries and the 

deformed model is no longer similar to the prostate shape. In order to overcome these 

drawbacks, we used 2D geometric transformations [47] for returning back the deformed 

model into the prostate shape.  

  
(a) (b) 

Figure 3-16 Model deformation  (a) Initial model (DSC 93.0%) (b) The deformed model after one 

iteration (DSC 94.39%) 

 It is required to obtain the transformation parameters in such a way that the transformed 

initial model points   be as close as possible to the deformed model points  . These 

parameters can be obtained by solving the minimization problem defined by 

     ‖    ‖  Eq. 3.24 

where   is a combination of  translation, rotation and scaling parameters. That is, 
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Eq. 3.25 

Consequently, 
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] Eq. 3.26 

In the ideal case, the transformation matrix   maps exactly each model point       
into its 

corresponding reference point       
. Therefore, it can be expressed as 
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Eq. 3.27 

For each point, the matrix multiplication gives 

 

   
          

          
    

   
          

          
    

Eq. 3.28 

Then, by adding both sides of the above equations for all the points we obtain 
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 Eq. 3.29 

The equation (Eq. 3.29) is a linear system that can be easily solved using LU factorization. 
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Although the assumption made in equation (Eq. 3.27) does not always occur, the proposed 

solution is a close approximation of estimating the transformation parameters. Now, as 

illustrated in Figure 3-17, we can obtain a prostate shape model that its surface has minimum 

distance from the deformed model. This transformed model is then considered as an initial 

model to be used in the deformation procedure. The iterative deformation process continues 

until the changes in the surface of the prostate boundary converge (Figure 3-18). 

 

 

  
(a) (b) 

Figure 3-17 Model smoothing (a) The deformed model after one iteration (DSC 94.39%) (b) 

Transformed model (DSC 95.0%) 
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Figure 3-18 Iterative deformation procedure  (DSC values 1) 93.0% 2) 94.3% 3) 95.8% 4) 95.8% 5) 

96.4% 6) 96.1%)  
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Chapter 4 

4 Experimental results 

 Model pose parameters 4.1

The proposed segmentation method has been applied to 50 TRUS images. The size of the 

images is 768 by 1024 pixels. In order to demonstrate the effectiveness and robustness of the 

approach, the training images used in the pattern construction step (Figure 3-4) are kept 

separate from the testing images (Figure 4-2). To speed up the process in the model pose 

parameter determination step, the boundary highlighted images and the constructed model 

are resized to 1/8 of their original size.  Shrinking the model and the boundary highlighted 

image drastically reduces the computation time. Dice similarity coefficient (DSC) is adopted 

to evaluate the reliability of the method performance. DSC quantifies the overlap between the 

automatic and manual segmentations and the correspondence between two images. DSC is 

defined as    (   )   (   ) (   )⁄  where   and   represent binary label images. 

The final segmentation result of the proposed algorithm is directly related to the value of the 

sensitivity factor (  in Eq. 3.6). To find the optimum sensitivity value,  , different values of 
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  are applied to all of the testing images. The resulting box plot illustrated in Figure 4-1 

indicates the impact of the sensitivity factor on the segmentation results. Optimum value is 

selected as       based on the values of the median, lower and upper quartile, smallest and 

largest observations.  

 
Figure 4-1 Box plot showing the relationship between the sensitivity factor and Dice coefficient 

values for all testing images  

 

The transformation parameters and the DSC values of 10 testing images computed using 

optimum sensitivity are given in Table 4-1. The computation times are obtained from running 

the program in MATLAB environment using an Intel core i7 processor (3.4 GHz - 12GB 

RAM). 
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Table 4-1 affine transformation parameters and Dice similarity measurement results 

Image No. 
xt  

(pixels) 

yt  

(pixels) 

xs  ys  DSC % Time (sec) 

1 40 48 0.41 0.46 93.2% 3.08 

2 40 8 0.41 0.57 92.4% 3.16 

3 8 40 0.53 0.48 92.7% 3.06 

4 24 80 0.41 0.41 90.8% 3.05 

5 48 32 0.44 0.55 93.6% 3.10 

6 48 -8 0.54 0.62 92.8% 3.05 

7 112 0 0.55 0.61 92.1% 3.03 

8 32 32 0.41 0.57 91.2% 3.12 

9 16 64 0.48 0.42 92.0% 3.08 

10 0 0 0.55 0.61 93.0% 3.07 

 

 

The comparison of manual and automatic segmentation results of 10 testing images in 

Table 4-1 is illustrated in Figure 4-2. Manually segmented boundaries are shown in green 

and the automatically segmented regions are depicted in red. 
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Figure 4-2 Manual and automatic prostate boundary segmentation results in model initialization 
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 Model deformation 4.2

The proposed fully automated segmentation algorithm has been applied to 50 TRUS images. 

In order to find the optimum value for the variables used in the methodology, we considered 

20 images as a training set and 30 images as a testing set. We have examined the impact of 

each variable on the performance of the algorithm by analyzing the Dice Similarity 

Coefficient (DSC). According to the boxplot in Figure 4-3, it can be observed that the DSC 

median value is almost identical for all global controls greater than 2 and there exist many 

false deformations in this range. Therefore, the optimum value for the global control 

parameter   in MRF equation is selected to be 0.75. The width and length of the 

perpendicular windows are other important parameters in determining the algorithm 

accuracy. The boxplot in Figure 4-4 shows that the interval between 120 and 160 pixels is a 

proper choice for window’s length. Due to the fact that the size of the perpendicular windows 

directly impacts on the computation complexity, we selected the window’s length of 120 

pixels. This length also has the greatest DSC median value among all other choices. The 

optimum value of the last parameter is selected based on the data shown in Figure 4-5. Since 

this boxplot does not provide a certainty about selecting the window’s width, we made our 

decision based on a trade-off between accuracy and computation complexity. It can be 

observed that the interval between 21 and 25 pixels is the best width choice because of the 

high median DSC value and less computation complexity. After obtaining the optimum 

parameters from the training set, the algorithm is evaluated on the testing set. The 

segmentation results of 10 testing images are listed in Table 4-2. 
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Figure 4-3 The boxplot of the global control parameter   in MRF 

 

 
Figure 4-4 The boxplot of the perpendicular window’s length 
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Figure 4-5 The boxplot of the perpendicular window’s width 

 

Table 4-2 Comparison between the initial model and the deformed model 

Image # 
DSC% Initial 

model 
Time (sec) 

DSC % 

Deformed 
Time (sec) DSC% Improved 

Total Time 

(sec) 

1 93.2% 3.08 96.3% 6.43 3.1% 9.51 

2 92.4% 3.16 95.7% 6.35 3.3% 9.51 

3 92.7% 3.06 93.6% 6.51 0.9% 9.57 

4 90.8% 3.05 89.2% 6.67 -1.6% 9.72 

5 93.6% 3.10 95.7% 6.15 2.1% 9.25 

6 92.8% 3.05 94.1% 6.23 1.3% 9.28 

7 92.1% 3.03 96.3% 6.25 4.2% 9.28 

8 91.2% 3.12 94.7% 6.37 3.5% 9.49 

9 92.0% 3.08 93.4% 6.30 1.4% 9.38 

10 93.0% 3.07 96.6% 6.49 3.6% 9.56 
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Segmentation results comparison before and after the deformation strategy indicates a 

noticeable DSC improvement. The average DSC value is improved to 93.9% compared with 

the average DSC value 90.6% of the initial model before deformation. Figure 4-6clearly 

shows the improvement in segmenting the prostate boundaries. In this figure, manually 

segmented boundaries are shown in green and the automatically segmented regions are 

depicted in red.  
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Figure 4-6 Comparison between the initial model (Left) and the deformed model (Right) 
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 Validation and performance evaluation 4.3

According to the explanation given in the 2012 survey [9] and most of the published papers, 

the quantitative comparison among the proposed algorithms is extremely difficult due to the 

lack of access to the public datasets and availability of software. Therefore, vast majority of 

the published papers have compared their results with the gold standard method, i.e., 

manually segmented images. Numerous error-based measurement methods have been 

utilized in order to accomplish the quantitative evaluation. These evaluation metrics are 

summarized as follows [9]: 

Hausdorf distance (HD): Given a set of finite points                and B 

              

 

  (   )      ( (   )  (   ))  

Where  (   )      (   ‖   ‖) 

Eq. 4.1 

Mean Distance (MD): Given signed distance    between each corresponding points   

between the algorithmic segmented surface and ground truth. 

    
 

 
∑   

 

   
 Eq. 4.2 

Mean absolute distance (MAD): 

     
 

 
∑ |  |

 

   
 Eq. 4.3 

Maximum distance (MaxD): 
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         |  | Eq. 4.4 

Dice similarity coefficient (DSC): TP=true positive, TN=true negative, FP=false positive, 

and FN=false negative 

     
   

(     )  (     )
 Eq. 4.5 

Sensitivity (SN): 

    
  

     
 Eq. 4.6 

Accuracy (AC): 

    
     

           
 Eq. 4.7 

Overlap (OV) and overlap error (OE): 

 

   
  

     
 

        

Eq. 4.8 

 

A quantitative comparison of performance evaluation between the reviewed algorithms 

(given in Chapter 2) and our proposed method is listed in Table 4-3. The segmentation time 

comparison among existing algorithms is given in Table 4-4.  
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Table 4-3 Quantitative evaluation of prostate boundary segmentation in TRUS imaging 

Reference Year Metric Performance Value Validation 

Shen et al. [23] 2003 MD 3.2( 1.28mm) 0.87 pixels 8 images 

Abolmaesumi [24] 2004 OV 98% 6 images 

Gong et al. [25] 2004 
MD 

HD 

1.36      mm 

3.42 1.52 mm 
125 images 

Sahba et al. [26] 2005 MD 3.3 1.3 pixels 19 images 

Zaim [27] 2005 OV 91% 10 images 

Badiei et al. [28] 2006 

SN 

AC 

MAD 

MaxD 

97.4 1% 

93.5 1.9% 

0.67      mm 

2.25 0.56 

17 images 

Zaim et al. [29] 2007 OV 92% 10 images 

Cosio [30] 2008 
MAD 

MaxD 

1.65      mm 

3.93     mm 
22 images 

Yan et al. [31] 2010 MAD 2.01      mm 10 datasets 

Ghose et al. [33] 2011 DSC 97 0.01 % 23 datasets 

     

Proposed method 2012 DSC 93.9±2.7% 
3 datasets 

50 images 
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Table 4-4 Segmentation time comparison  

Reference Year Image size Processor Time 

Shen et al. [23] 2003 N/A 500 MHz 64 sec 

Abolmaesumi [24] 2004 512x512 N/A N/A 

Gong et al. [25] 2004 256x256 P4 – 2GHz 5 sec 

Sahba et al. [26] 2005 N/A N/A N/A 

Zaim [27] 2005 489x382 789MHz 12 sec 

Badiei et al. [28] 2006 480x640 P4 – 1.7 GHZ 25.35 sec 

Zaim et al. [29] 2007 489x382 N/A N/A 

Cosio [30] 2008 512x512 2 GHz 14 min 

Yan et al. [31] 2010 640x480 Core 2 1.86GHz 0.3 sec (C++) 

Ghose et al. [33] 2011 348x237 Core 2 Duo 1.5 GHZ 5.97 sec 

     

Proposed method 2012 768x1024 i7 – 3.4 GHz 9.5 sec 
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Chapter 5 

5 Conclusion and Future work 

 

In this study, a novel fully automated prostate boundary segmentation method for ultrasound 

images is presented. The comprehensive literature review shows that hybrid algorithms 

which combine the edge-based, texture-based and model-based techniques for prostate 

boundary segmentation are more robust compared to algorithms that only employ one of 

these steps. The two-phase proposed hybrid method first utilizes edge-based and model-

based techniques to estimate the initial model position in TRUS images and then in the 

deformation strategy, a combination of texture-based and model-based techniques determine 

the final prostate boundary contour.        

 Discussion on initial model pose parameters 5.1

We have presented a new model initialization technique that automatically estimates the 

model pose parameters. In order to reduce the computational complexity, we first decompose 

TRUS images into a set of strips running from the ultrasound probe, because template 

matching is performed only in one direction. In each strip, a representative pattern identifies 

the prostate boundaries based on normalized cross correlation. The other advantage of our 

proposed algorithm is that the final results are obtained without applying any preprocessing 
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filter which imposes a massive computation. The obtained results demonstrate that the 

template matching based on a combination of normalized cross-correlation and optimized 

representative patterns reliably performs in noisy images.    

 Discussion on model deformation strategy 5.2

We have presented a new model deformation strategy based on probabilistic approaches. 

Markov Random Field (MRF) theory is utilized in order to strengthen the boundary edges 

and to remove the micro-calcifications inside the prostate gland. The probability distribution 

parameters are obtained from Expectation Maximization algorithm. In order to reduce the 

computational complexity, we propose a faster EM approach. In this method, instead of 

considering each image pixel as individual data, we used the number of pixels that have 

identical intensity values. We also exclude all uninformative pixels located outside of the 

field of view to obtain more accurate probability distribution parameters. Furthermore, we 

develop a new internal force energy for our model deformation strategy where 2D geometric 

transformations are utilized to preserve the prostate model shape. The results of this study 

have shown that the proposed deformation strategy is a reliable technique especially for the 

images with shadow artifacts. 

 Limitations 5.3

It is shown that the segmentation results are promising for most of our TRUS images. 

However, there are a few limitations in the proposed algorithm that should be considered. For 

instance, the final prostate boundary contour is highly dependent to the position of the initial 

model. That is, if the model pose parameters are inaccurately estimated in the first phase, the 

model deformation strategy in the second phase cannot detect the prostate boundary edges 
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precisely. The fault model initialization is observed when the upper boundary of the bladder 

is also presents in the TRUS images. In this case, the upper boundary of the bladder is 

mistakenly identified as a prostate upper boundary and the pose parameters will be estimated 

based on the position of the bladder.         

 Future work  5.4

In order to overcome the drawback mentioned in the previous section, we plan to remove the 

negative impact of the presence of the bladder by applying some constraints to the algorithm. 

Since the lower boundary of the prostate is always close to the ultrasound probe, the distance 

between the model surface and the probe center can be considered as a constraint for the 

algorithm. This distance should not exceed beyond a specific level. Another important 

consideration is the issue of the process computation time. Despite the fact that we 

significantly reduced the computation complexity, the algorithm still is not fast enough to 

meet the real time therapy. In order to speed up the computations, instead of applying MRF 

on the entire image, we can consider only those pixels that are located inside the 

perpendicular windows. Moreover, in our future work we plan to optimize the codes and 

implement them in C++. We also plan to provide more TRUS images from different datasets. 

Our TRUS image database is now limited to only three datasets (50 images). A more 

completed database can significantly improve our evaluations and it may also highlight the 

possible limitations of the algorithm.         
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