
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2010

Unidirectional Multi-Bit FPGA Architecture For
Area Efficient Implementation of Datapath Circuits
Omesh Mutukuda
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Mutukuda, Omesh, "Unidirectional Multi-Bit FPGA Architecture For Area Efficient Implementation of Datapath Circuits" (2010).
Theses and dissertations. Paper 1440.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1440?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1440&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

 UNIDIRECTIONAL MULTI-BIT FPGA
ARCHITECTURE FOR AREA EFFICIENT

IMPLEMENTATION OF DATAPATH
CIRCUITS

by

Omesh Mutukuda

B. Sc. in Electrical and Computer Engineering,

University of Windsor, Windsor, ON, 2006

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science (MASc)

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010

© Omesh Mutukuda, 2010

iii

Author’s Declaration

I hereby declare that I am the sole author of this thesis

I authorize Ryerson University to lend this thesis to other institutions or individuals for the
purpose of scholarly research.

Signature

I further authorize Ryerson University to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose of
scholarly research.

Signature

v

Abstract

UNIDIRECTIONAL MULTI-BIT FPGA ARCHITECTURE FOR AREA EFFICIENT

IMPLEMENTATION OF DATAPATH CIRCUITS

Omesh Mutukuda

Master of Applied Science (MASc), 2010

Department of Electrical and Computer Engineering

Ryerson University

Field Programmable Gate Arrays (FPGAs) are increasingly being used to implement large

datapath-oriented applications that are designed to process multiple-bit wide data. Studies have

shown that the regularity of these multi-bit signals can be effectively exploited to reduce the

implementation area of datapath circuits on FPGAs that employ the traditional bidirectional

routing. Most of modern FPGAs, however, employ unidirectional routing tracks which are more

area and delay efficient. No study has investigated the design of multi-bit routing resources that

can effectively transport multiple-bit wide signals using unidirectional routing tracks. This paper

presents such an investigation of architectures which employ multi-bit connections and

unidirectional routing resources to exploit datapath regularity. It is experimentally shown that

unidirectional multi-bit architectures are 8.6% more area efficient than the conventional

architecture. Additionally, this paper determines the most are efficient proportion of multi-bit

connections.

vi

Acknowledgements

I would like to take this opportunity to express my gratitude and appreciation to my graduate

supervisors, my family and friends.

It has been a privilege to work with Dr. Andy Ye and Dr. Gul Khan as they have made my

post-graduate career a rewarding experience. I am especially grateful to Dr. Ye for his

generosity, patience and keeping an open door in order to help me see through the challenges in

my research. I would also like to thank Dr. Khan for the motivation and guidance on the practical

aspects of my research. Their extensive knowledge and thoughtful advice will have made a

remarkable influence on my entire engineering career.

This thesis would not have been possible if not for the moral and financial support from my

parents Indra and Soma Mutukuda. Since childhood, my parents sacrificed their chances at many

of life’s opportunities (sometimes even their own happiness) in ensuring I had the freedom and

ability to pursue my dreams. It is to them I would like to dedicate this thesis.

I would also like to thank my aunt Priyanthie for taking me out to enjoy the fine cuisine of

Toronto and looking out for my general well being all while keeping a cheerful smile.

Finally, I would like to thank my friends David, Mustafa, Thuan and Sebastian for the good

times full of youthful folly and hijinx. Their friendship, support and encouragement meant a

great deal to me.

vii

Table of Contents

Chapter 1 : Introduction .. 1

1.1 Thesis Motivation ... 4

1.2 Thesis Contribution ... 4

1.3 Thesis Organization .. 5

Chapter 2 : Background .. 6

2.1 FPGA Architecture ... 6

2.1.1 Single-bit Bidirectional Architecture ... 7

2.1.1.1 Logic Block Structure ... 7

2.1.1.2 Routing Architecture ... 9

2.1.2 Bidirectional Multi-bit Architecture .. 13

2.1.2.1 Multi-bit Logic Block ... 16

2.1.2.2 Multi-bit Routing .. 16

2.1.3 Single-bit Unidirectional Routing Architecture ... 18

2.2 FPGA CAD Algorithms and Tools ... 21

2.2.1 Synthesis & Packing .. 22

2.2.2 Placement & Routing ... 23

VPR Placement ... 23

VPR Routing ... 24

2.2.3 MB-FPGA CAD Flow ... 26

Chapter 3 : Unidirectional Bus Connections .. 28

3.1 The Conventional Routing Architecture ... 28

3.2 Unidirectional Routing Bus Connections and Their Advantages 29

Chapter 4 : Unidirectional Multi-bit Architecture & Modeling .. 37

4.1 Unidirectional Multi-bit Architecture ... 37

4.2 Buffer and Transistor Sizing ... 41

4.3 Parameters ... 42

4.4 Routing Resource Graph Generation .. 43

Chapter 5 : Experimental Results ... 50

5.1 Experimental Setup ... 50

5.2 Effect of Routing Buses on Area .. 52

viii

5.3 Delay and Track Segment Results .. 55

Chapter 6 : Conclusion.. 58

6.1 Summary ... 58

6.2 Future Work .. 59

Appendix A: Results for Fcif = .4 and Fcic = .4 .. 60

A.1 Area Results ... 60

A.2 Delay and Channel Width Results ... 62

Appendix B: Graphical Outputs of Circuit Implementations ... 64

References ... 79

ix

List of Tables

Table 3.1 Impact of Routing on Total FPGA Area ... 30

Table 3.2 Conventional and Multi-bit Area of an FPGA Tile .. 35

Table 4.1 Internal Multi-bit Logic Block Delays .. 42

Table 5.1. Architecture Parameters and Values .. 51

Table 5.2. Routing Area vs. Proportion of Routing Buses Per Circuit ... 54

Table 5.3. Critical Path Delays of Benchmark Circuits .. 56

Table A.1. Routing Area vs. Proportion of Routing Buses per Circuit (Fcif = Fcic = .4) 61

Table A.2. Critical Path Delays of Benchmark Circuits (Fcif = Fcic = .4) 63

x

List of Figures

Fig. 2.1. Layout of an (a) Island-style FPGA and (b) a FPGA tile ... 6

Fig. 2.2. Basic Logic Element (BLE) ... 7

Fig. 2.3. Internal logic block structure .. 8

Fig. 2.4. FPGA routing architecture with wire segments of length 2 ... 9

Fig. 2.5. A (a) switch block with (b) half and (c) full switch block connections 10

Fig. 2.6. Disjoint switch block topology (L=2) using half and full switch connections 11

Fig. 2.7. Connection block with (a) input and (b) output connections .. 12

Fig. 2.8. Output connections using configuration memory sharing (CMS).................................. 13

Fig. 2.9. Multi-bit FPGA .. 14

Fig. 2.10. Mapping of a 4-bit adder into a Multi-bit logic block .. 15

Fig. 2.11. Input and output connections of the connection block ... 17

Fig. 2.12. Conventional switch block with unidirectional wires of length 2 19

Fig. 2.13. Switch block connections for a horizontal channel .. 20

Fig. 2.14. FPGA CAD flow .. 21

Fig. 2.15. Modelling (a) a connection between two output pins on (b) a directed graph 24

Fig. 3.1. Bit-slice partitioned datapath circuit ... 31

Fig. 3.2. Bit-slice circuit implementation on a conventional FPGA tile 32

Fig. 3.3. Bit-slice circuit implementation on a FPGA tile with routing buses 34

Fig. 4.1. Multi-bit logic block input connections .. 39

Fig. 4.2. Switch block with multi-bit logic block output connections .. 40

Fig. 4.3. Input and routing switch multiplexors implemented as a pass-transistor tree 41

Fig. 4.4. Core switch block (disjoint topology) .. 45

xi

Fig. 4.5. Corner (a) and fringe (b) switch blocks (disjoint topology) ... 46

Fig. 4.6. Switch block connection pattern generation ... 47

Fig. 4.7. Input and Output connection buses from VPR (MB-FPGA) output 48

Fig. 5.1. Area as a function of the percentage of multi-bit tracks ... 52

Fig. 5.2. Number of track segments as a function of the percentage of multi-bit tracks 55

Fig. A.1. Area as a function of the percentage of multi-bit tracks (Fcif = Fcic = .4) 60

Fig. A.2. Channel width as a function of the percentage of multi-bit tracks (Fcif = Fcic = .4) 62

Fig. B.1. Routed nets of circuit: code_seq_dp .. 64

Fig. B.2. Routed nets of circuit: dcu_dpath .. 65

Fig. B.3. Routed nets of circuit: ex_dpath .. 66

Fig. B.4. Routed nets of circuit: exponent_dp .. 67

Fig. B.5. Routed nets of circuit: icu_dpath ... 68

Fig. B.6. Routed nets of circuit: imdr_dpath .. 69

Fig. B.7. Routed nets of circuit: incmod ... 70

Fig. B.8. Routed nets of circuit: mantissa_dp ... 71

Fig. B.9. Routed nets of circuit: multmod_dp .. 72

Fig. B.10. Routed nets of circuit: pipe_dpath ... 73

Fig. B.11. Routed nets of circuit: prils_dp .. 74

Fig. B.12. Routed nets of circuit: rsadd_dp .. 75

Fig. B.13. Routed nets of circuit: smu_dpath ... 76

Fig. B.14. Routed nets of circuit: ucode_dat .. 77

Fig. B.15. Routed nets of circuit: ucode_reg .. 78

xii

List of Abbreviations

FPGA Field Programmable Gate Array

CLB Configurable Logic Block

BLE Basic Logic Element

MUX Multiplexor

CAD Computer-aided Design

VPR Versatile Placement and Routing

CMS Configuration Memory Sharing

MB-FPGA Multi-bit Field Programmable Gate Array

LUT Look-up Table

SRAM Static Random Access Memory

ASIC Application Specific Integrated Circuit

I/O Input/Output

1

Chapter 1 : Introduction

Developed in 1984, Field Programmable Gate Arrays (FPGAs) are user programmable

integrated circuit devices which have the ability to implement almost any digital circuit. FPGAs

consist of blocks containing simple digital logic interconnected by channels of routing wires and

programmable electrical switches. Circuits are implemented on FPGAs by programming the

electrical switches to connect logic blocks together to form larger and more complex circuits.

Programming requires only a few minutes thus making hardware verification and upgrades

relatively effortless as design changes or corrections can be performed by reprogramming the

FPGA. Comparable technologies such as standard cell-based ASICs (Application-Specific

Integrated Circuit) require a new integrated circuit to be manufactured for each design.

Additionally, FPGAs are programmed via specialized Computer-Aided Design (CAD) tools

which are cheaper to obtain than comparable Electronic Design Automation (EDA) tools for

ASIC designs. In summary, circuits designed on FPGAs have an advantage of lower non-

reoccurring engineering (NRE) costs and shorter time-to-market. FPGAs are the ideal for

implementation of small to medium volume designs or prototyping digital circuits prior to

implementation using standard cell based technologies.

Modern FPGAs are densely packed devices, containing more than 800,000 logic elements

with the ability to operate at clock speeds of 600MHz or more [1] [2]. Despite these features, the

programmability of FPGAs incurs a cost. The addition of programmable logic and switches

forces circuit implementations on FPGAs to be slower and consume more area than those

implemented on ASICs. These programmable features contribute to the large size of FPGA

implementations and thus make it more expensive to design applications for mass-production.

Once programmed, it is observed that over 70% of the total FPGA area is devoted to the routing

2

resources which interconnect the logic blocks [3]. The actual computational logic occupies the

remaining FPGA area (which is typically less than 30%). This motivates FPGA designers to

consider ways to reduce the area impact of routing resources as well as that of computational

logic.

In general, FPGA are increasingly used to implement large arithmetic circuits which inturn

demand, from FPGA vendors, an increase in the amount of logic elements in each generation of

FPGAs. The wide range of applications employing arithmetic operations has also motivated

FPGA vendors to include a variety of multiple-bit wide computing elements including embedded

memory, Digital Signal Processors (DSP), processor cores and even hard intellectual property

(IP) blocks.

 Many of the applications implemented on FPGAs are arithmetic intensive and include large

fractions of regularly structured components called datapaths. Typically, datapaths are composed

of identical blocks of logic which process and transport several bits of data as a unit (called a

multi-bit signal) at one time. The correlation between individual bit-based signals travelling from

a common source to a common end introduces regularity among datapath circuits. This

regularity can be preserved and exploited to increase FPGA area efficiency by employing

multiple bit processing (multi-bit) architectural features. Specifically, multi-bit signals can be

transported as a single unit on multi-bit based routing tracks to be processed by multi-bit based

logic blocks. Unlike single-bit logic blocks which treat the signals at the input and output pins as

independent bits of data, the signals at the input and output pins of multiple-bit logic blocks are

processed as multiple-bit wide data. Subsequently, the signals at each pin are considered as

unique bit positions of a wider multi-bit signal.

3

Since the release of Altera’s Stratix II series of FPGAs [4], most commercial FPGAs have

replaced bidirectional routing resources with buffered unidirectional routing resources.

Unidirectional routing resources have been shown to be more area efficient while reducing delay

and wire capacitance over bidirectional routing resources [5]. The work done in [5] also outlines

the two major optimizations of unidirectional routing over bidirectional routing: 1) Using pairs

of directional wires 2) Replacing tri-state drivers and track to track connections with non-tristate

drivers and multiplexers respectively. While multi-bit connections using bidirectional routing

have resulted in FPGA area savings, the behaviour of multi-bit connections employing

unidirectional components is unknown.

The multi-bit architecture described in this work is an adaptation of the MB-FPGA

architecture presented in [6] and contains groups of multi-bit unidirectional routing buses as well

as singular unidirectional tracks (independent tracks to route non-mult-bit signals). We

experimentally evaluate the area efficiency and performance of this architecture based on the

methodology proposed in [7].

In order to experimentally investigate the effects of multi-bit signals on unidirectional

routing, a set of datapath-rich benchmark circuits are implemented on multi-bit and non-multi-bit

architectures. To this end, the Virtual Place and Route (VPR) CAD tool [8] employing placement

and routing algorithms is used while modifications are made to support both multi-bit and

unidirectional architectural features. In order to preserve the regularity (amount of related signals

travelling from a common source to a common destination) of the benchmark circuits, datapath-

oriented synthesis [9] and packing [10] tools are used to generate the netlists used during the

placement and routing operations in this thesis.

4

1.1 Thesis Motivation

The motivation of this thesis centres on investigating how using multi-bit based connections

on unidirectional routing resources affect FPGA area efficiency. In this research we determine

the theoretical area savings of a purely routing bus-based FPGA tile over that of a conventional

tile; both of which employ unidirectional routing. We then introduce the multi-bit architecture

which employs both bus-based and singular unidirectional routing elements. In practical FPGAs,

architectural aspects such as channel width and I/O connectivity are pre-fabricated and therefore

the goal of this research is to determine a suitable architecture to efficiently implement datapath-

oriented applications. Previous studies [11] [12] [13] [14] [15] have proposed various FPGA

architectures containing specialized computing elements that are designed to process multiple-bit

wide data. None of the studies, however, have investigated the design of multi-bit routing

resources that can effectively transport multiple-bit wide signals using unidirectional routing

tracks.

1.2 Thesis Contribution

This thesis investigates the area and delay performance of a multi-bit FPGA architecture

using unidirectional routing tracks and is the first study to do so. Furthermore, this research

reflects the transition undertaken by academic and commercial FPGA designers towards

conventional unidirectional routing architectures employing directional wires and non-tristate

drivers.

In this research an analysis on the effect of routing resources on total FPGA area is

presented. These area results are then compared to those of an equivalent architecture utilizing

only routing buses and related connections. Both analyses take into account a transistor sizing of

5

a modern process technology. Modifications to the routing resource graph and output display of

the VPR tool are made to reflect the architecture under investigation. To conduct an empirical

investigation, this work places and routes a set of pre-synthesized and pre-packed benchmark

circuits of varying datapath regularities to measure the active area, track count and critical path

delay. As it shall be shown, the multi-bit architecture is found to be more area efficient when

implementing a wide range of datapath rich circuits over the conventional architecture without a

significant effect on delay.

1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 presents a background on FPGA architectures

relevant and leading up to this work including two previous architectural studies regarding multi-

bit based connections and unidirectional routing. Additionally, a review of the relevant academic

CAD tools is presented. Chapter 3 analytically compares the theoretical advantages of an

architecture using multi-bit connections over the conventional routing architecture. Chapter 4

describes the unidirectional multi-bit architecture including a description of logic and routing

components modeled using a modern process technology (predictive technology models) to

generate accurate area and delay results. Chapter 4 also presents the modeling of this architecture

on a modified version of the VPR CAD tool (introduced in Chapter 2) to be used in evaluating

the unidirectional multi-bit architecture described earlier in Chapter 4. Chapter 5 presents the

results and analysis of the experiments. Finally, Chapter 6 concludes this thesis by providing a

summary of the results and proposes future work.

6

Chapter 2 : Background

This chapter presents background information on the architectural aspects of FPGAs, the

CAD flow and related academic CAD tools used to implement circuits. Section 2.1 briefly

reviews the various programmable technologies followed a discussion on the structure of logic

components and routing networks of the bidirectional FPGA architecture. Furthermore, two prior

architectures relevant to this work are reviewed. Section 2.2 describes the typical CAD flow used

to implement circuits on FPGAs with bidirectional single-bit routing. Lastly, the CAD flow to

implement datapath circuits on bidirectional multi-bit routing resources will be reviewed.

2.1 FPGA Architecture

The majority of modern FPGAs, including devices from Xilinx [16] and Altera [1], rely on

static random access memory (SRAM) based programming technology. SRAM cells are used to

program FPGA logic and routing components such as pass transistors, multiplexors and look-up-

tables (LUTs). Other programming technologies include one-time programmable antifuses,

I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O

Fig. 2.1. Layout of an (a) Island-style FPGA and (b) a FPGA tile

7

erasable programmable read-only memories (EPROMs) and flash-erase EPROMs. This research

focuses particularly on FPGAs employing SRAM cells.

The FPGA architectures considered in this research are based on the island style topology

shown in Fig. 2.1 (a) which is segmented into tiles as shown in Fig. 2.1 (b). An FPGA tile

consists of a logic block, one vertical and one horizontal routing channel containing a finite

number of routing tracks and a switch block where the routing channels intersect. Connections

between the routing tracks in a channel and the input/output pins of an adjacent logic block are

made inside of a connection block. Finally the I/O blocks allow for external circuitry to interact

with the FPGA.

2.1.1 Single­bit Bidirectional Architecture

2.1.1.1 Logic Block Structure

 Logic blocks contain the basic digital logic required to implement sequential or

combinational circuits. Most current commercial FPGAs and academic architectures employ

logic blocks containing a LUT paired with a register element. As such, this research will focus

on these LUT-based logic blocks. Fig. 2.2 illustrates how a 4 input LUT and a D flip-flop are

used to form a Basic Logic Element (BLE) which is situated inside a logic block. In general, an

k-input LUT is implemented using a 2k:1 multiplexor and 2k SRAM cells, where any function of

Fig. 2.2. Basic Logic Element (BLE)

8

k-inputs (reflecting the truth-table values of the function) can be programmed into the 2k SRAM

cells. The inputs to the LUT connect directly to the selection inputs of the multiplexor and the

output of the multiplexor is synonymous with the LUT output. The work in [17] has shown that

using a 4-input LUT (4-LUT) in FPGAs achieves the greatest area-efficiency by providing the

most functionality per pin. Additionally, attaching a D flip-flop to the output of the 4-LUT

results in a registered BLE output and allows for the implementation of sequential logic. As

shown in Fig. 2.2, the output of the BLE is wired in such a way that either a registered or

unregistered version of the 4-LUT function implementation can be chosen. Therefore this

research employs the 4-LUT based BLE shown in Fig. 2.2 for the remainder of this thesis.

 A typical logic block contains several BLEs connected together by local routing resources

and is alternatively known as either a logic cluster or configurable logic block due to its ‘cluster-

like’ topology. While the terms logic block and logic cluster are synonymous for this

Fig. 2.3. Internal logic block structure

9

architecture, Section 2.1.2.1 will show how several logic clusters can be combined to form a

multi-bit logic block. As shown in Fig. 2.3, a logic cluster can be described as having I inputs, N

BLEs of size 4 and N cluster outputs. Each BLE input has access to any of the logically

equivalent cluster inputs through the use of a multiplexor. The same multiplexors also allow

BLE outputs to connect to any BLE input. Logic clusters are know to be ‘fully connected’ when

the flexibility of BLE inputs allows connections to any of the cluster inputs or BLE outputs.

2.1.1.2 Routing Architecture

Routing tracks and programmable switches enable logic blocks to be interconnected and

allow signals to traverse the FPGA. The routing tracks are contained in routing channels which

run adjacent to the logic blocks both horizontally and vertically. Each channel contains a fixed

number of routing tracks on which signals travel in a bidirectional fashion. The number of

routing tracks in a channel is represented by W – its channel width. Every routing track is

composed of a series of wire segments of length L, where the L is the number of logic blocks that

each wire segment spans. Fig. 2.4 (a) shows a 3x3 size FPGA layout with each routing channel

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

(a) (c)

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

(b)
wire segment start wire segment end

Fig. 2.4. FPGA routing architecture with wire segments of length 2

10

containing 4 routing tracks which consist of wire segments of length 2. It can be seen that the

wire segments in every channel are staggered [18] (adjacent wire segments start and end at

different locations in a channel), as some wires will continue through a switch block while others

end. Fig. 2.4 (b) shows this staggering clearly as the logic block in the middle is able to connect

to the adjacent logic blocks on either side using a single wire segment. Hence, the staggering of

wire segments significantly increases the routing flexibility of the FPGA. Furthermore, Fig. 2.4

(c) shows wire segments which are staggered and shift upwards (called track shifts).

Incorporating wire segments with track shifts and staggering start positions simplify the layout

process of FPGAs, since a single tile is replicated to construct the complete FPGA. At the

intersection of a vertical and horizontal channel, there exists a switch block, where individual

wire segments are connected together allowing signals to continue on the same track or turn. The

dashed lines in Fig. 2.4 (a) indicate connections from the end of one wire segment to the

beginning of another inside a switch block. The I/O pins of logic blocks are connected to the

routing network via programmable switches inside connection blocks.

Groups of connections within a switch block can be classified as either full-switch

Fig. 2.5. A (a) switch block with (b) half and (c) full switch block connections

11

connections or half-switch connections. Fig. 2.5 (a) illustrates these two types of switches in a

simplified FPGA tile. Internal connections between wires that continue through a switch block

are made using the half-switch shown in Fig. 2.5 (b). The full-switch pictured in Fig. 2.5 (c)

shows the end point of a wire segment in any direction drives up to three other wire segments, all

of which also end at this location. Both types of switch connections employ tri-state buffers.

The number and arrangement of both full-switch and half-switch connections inside a switch

block are the function of its topology. Furthermore, the topology describes how many and

specifically which tracks an ending wire segment can connect to. The most common switch

block topologies include the disjoint topology [19] and the Wilton topology [20]. The results in

[7] show that the disjoint topology is more area-efficient than the Wilton topology for wire

segment lengths greater than 2 and have the same area efficiency as the Wilton for segment

lengths equal to 2. Hence, the disjoint topology is used in this work, since the focus of this work

is on architectures containing wire of length 2 and laying the foundation of longer wire lengths in

future work. Fig. 2.6 (a) and (b) illustrate the connections of the disjoint topology in a switch

block using half-switch and full-switch connections. A wire segment ending at this switch block

3

2

1

0

3

2

1

0

0 1 2 3

0 1 2 3

3

2

1

0

3

2

1

0

0 1 2 3

0 1 2 3

(a) (b)

Fig. 2.6. Disjoint switch block topology (L=2) using half and full switch connections

12

location connects to exactly 3 other wire segments beginning at this switch block with the same

track position. To demonstrate this, take for example the horizontal wire segment 3 entering the

switch block from the left in Fig. 2.6 (a). This segment connects to: the horizontal wire segment

3 on the opposite side, vertical wire segment 3 entering from the top and vertical wire segment 3

entering from the bottom. As mentioned before, full-switch connections are employed at wire

segment endpoints, while half-switch connections occur at internal locations along a wire

segment.

The final aspect in the architectural description of this FPGA is the connection block. The

connection block house the individual connections from the routing tracks to the logic block

output pins and the logic block input pins to the routing tracks. As shown in Fig. 2.7 (a),

individual routing tracks connect to the inputs of a multiplexor whose output connects directly to

a logic block input pin. The inputs and outputs are shown separately for clarity and simplicity.

Notice in this example that each input connection multiplexor can select from 2 routing tracks in

the channel. The selection of tracks is staggered to offer greater overall routing flexibility and

reduce the amount of loading capacitance. In general, the proportion of tracks any input pin can

connect to is denoted by Fci. Additional buffers called isolation buffers are added to the input

Fig. 2.7. Connection block with (a) input and (b) output connections

13

connections to isolate the routing tracks from the capacitive effects of the input connections. Fig.

2.7 (a) shows how logic block output pins connect directly to the routing tracks using a driving

buffer to propagate the output signal and a SRAM based pass transistor switch to control the

connection. Here, Fco represents the proportion of tracks the output pin can connect to.

2.1.2 Bidirectional Multi­bit Architecture

Prior research regarding an FPGA architecture optimized for datapath applications (DP-

FPGA architecture) is described in [14]. The DP-FPGA study focused on designing

heterogeneous blocks including a memory block, control block and a datapath block. The

memory block could be configured to implement various types of memory architectures. The

control and datapath blocks implemented non-datapath and datapath circuits respectively. The

DP-FPGA architecture is the first study to make use of configuration memory sharing (CMS). As

its name implies, configuration memory sharing involves sharing a single set of SRAM memory

bits over multiple switch connections. Take for example the output connections in Fig. 2.7 (b) of

the previous section. Fig. 2.8 shows how employing CMS on these output connections would

reduce amount of SRAM bits required from 4 to 1 resulting in significant area savings. However,

Fig. 2.8. Output connections using configuration memory sharing (CMS)

14

the DP-FPGA study did not specify the architecture in detail or investigate the effectiveness of

CMS utilization on the routing architecture.

The multi-bit architecture, proposed and described in [21], is a continuation of the DP-FPGA

work and is also based on the island style topology. Similar to the DP-FPGA architecture, the

purpose of this architecture was to exploit the significant proportion of datapath signals in

modern circuits to achieve overall FPGA area-efficiency. As Fig. 2.9 shows, the multi-bit

architecture employs the same components described in the previous section (including logic

Fig. 2.9. Multi-bit FPGA

15

blocks, routing channels, connection blocks and switch boxes), their detailed composition and

functions are somewhat different. The multi-bit architecture in Fig. 2.9 employs a special type of

logic block called the multi-bit logic block which are connected to other multi-bit logic blocks

using single bit routing tracks and groups of routing buses called multi-bit routing tracks.

A0 B0A1 B1A2 B2A3 B3

C0C1C2C3

Bit Slice 0Bit Slice 1Bit Slice 2Bit Slice 3

BLE 1BLE 0

A0 B0

BLE 1BLE 0

A1 B1

C0C1

Cluster 1 Cluster 0

BLE 1BLE 0

A2 B2

BLE 1BLE 0

A3 B3

C2C3

Cluster 3 Cluster 2

Cluster 0 Cluster 1

Cluster 2 Cluster 3

A0.. A3 B0.. B3

C0.. C3

M
ulti-bit Lo

gic B
lo

ck

Fig. 2.10. Mapping of a 4-bit adder into a Multi-bit logic block

16

2.1.2.1 Multi­bit Logic Block

Recall in Section 2.1.1.1, how several BLEs can be grouped together using internal routing to

form a logic cluster (or logic block). Similarly a multi-bit logic block involves grouping M logic

clusters together to process M-bit computation, where M is known as the granularity of the

architecture. Take for example, a 4-bit addition operation with inputs A0-A3, B0-B3 and the sum

C0-C3. Fig. 2.10 shows how this addition operation can be partitioned into bit-slices, where each

bit-slice encompasses a 2-bit adder with a carry signal feeding the next bit-slice. Assuming the

logic in each bit-slice can fit 2 interconnected BLEs, these two BLEs form a logic cluster. The

resulting 4 logic clusters form a multi-bit logic block with 2 4-bit wide input connection buses

and 1 4-bit wide output connection bus. In general, the number of inputs and outputs are still

represented by I and N respectively. Recall from Section 2.1.1.1, the number of logic block

outputs reflects the exact number of BLEs the logic block contains. In the multi-bit architecture,

N, actually represents the number of output buses, while the total number of output pins is N x

M. Similarly, I represent the number of input buses and the total number of input pins is I x M.

2.1.2.2 Multi­bit Routing

The routing network of the multi-bit architecture is similar in design to the bidirectional

single-bit routing architecture described in Section 2.1.1.2. The difference lies in the addition of

M-bit wide routing buses to the existing channels containing the single-bit routing tracks as

described in Section 2.1.1.2. The individual tracks in a routing bus are known as multi-bit

routing tracks. The multi-bit routing tracks transport the datapath oriented signals from one

multi-bit logic block to another as a single unit. The single-bit routing tracks transport controls

signals or any other single-bit signal throughout the FPGA. The amount of multi-bit routing

17

tracks in a channel (the channel width) is represented by Wc, while the amount of single-bit

routing tracks in a channel is defined as Wf.

A simplified version of the input and output connections of a multi-bit logic block is shown

in Fig. 2.11 and shown separately for clarity. Each input pin of the multi-bit logic block is

connected to a fixed number of single-bit tracks and multi-bit routing tracks. The proportion of

single-bit tracks an input pin connects to is represented by Fcif while the number of routing buses

that an input pin connects to is represented by Fcic [21]. Similarly the output pins are connected

to a fixed proportion of single-bit tracks and routing buses represented by Fcof and Fcoc

respectively. While the single-bit tracks can follow any connection pattern, routing bus

connectivity requires the input and output pins to be restricted to the specific bus index (or bit

position) they represent. Take for example the output of cluster 0 in Fig. 2.11. Cluster output 0 is

the 0th bit in the output connection bus; therefore, it may only connect to 0th track of the routing

Routing Bus

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Single-bit
Routing Tracks

Multi-bit Logic Block

Driving Buffer

O
u

tp
ut

 C
on

ne
ct

io
n

 B
us

3 2 1 0 1 00 1 2 30 1

Inpu
t C

onn
ection B

us

Fig. 2.11. Input and output connections of the connection block

18

bus. Similarly, multi-bit logic block inputs must connect to routing buses with the same bus

index.

The multi-bit switch block accommodates both single-bit switch connections and multi-bit

switch connections. Within the switch block, each type of routing track is segregated from the

other, meaning multi-bit tracks connect only to other multi-bit tracks and single-bit tracks

connect only to other single-bit tracks. While this allows the flexibility to implement different

switch block topologies for each routing track type, the disjoint switch topology [19] defines the

switch arrangement for both multi-bit and single-bit switch connections. The single-bit tracks are

connected together in the same manner as outlined in Section 2.1.1.2 using half and full switch

block connections. Conversely the switches connecting each M-bit wide routing bus to another

share a single set of configuration memory (CMS). Similar to the input and output connections,

the multi-bit routing tracks in a bus must connect to other multi-bit tracks with the same index

within a switch block.

2.1.3 Single­bit Unidirectional Routing Architecture

In both the bidirectional single-bit and multi-bit architectures, the bidirectional wire segments

are connected together and driven using tri-state buffer switches inside a switch block (one for

each direction). The study done in [5] demonstrates that 50% of these switches remain unused

once the FPGA has been fully configured. Conversely, unidirectional wires only employ a single

driver per direction per wire. This results in a much higher utilization of the programmable

switches, especially if CAD tools can approximately match the amount of signals to the number

of tracks in each direction. It is important to note that the number of tracks W inside a channel

must be a multiple of 2. Given an FPGA tile with 1 track (2 wire segments connected using

bidirectional switches); it can be observed that an equivalent tile with the same amount of

19

unidirectional switches requires twice as many wires. The work in [5] shows that in order for

unidirectional routing to be area efficient, the total number of routing tracks must be less than

twice the amount of equivalent bidirectional tracks.

In this architecture, the programmable switches within the switch blocks (routing switches)

are implemented using non-tristate drivers and multiplexors. Using non-tristate driver offers an

advantage of greater area savings due to the removal of the SRAM based tri-state functionality.

The multiplexor offers greater track connection flexibility within a switch block. The use of a

multiplexor eliminates the need for full and half type connections as a multiplexor can switch

Driving Buffer

Switch
Multiplexor

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7

Fig. 2.12. Conventional switch block with unidirectional wires of length 2

20

between wire segment midpoints and ends. As in both the general and multi-bit architecture, the

conventional architecture employs the disjoint topology inside switch blocks. Fig. 2.12 illustrates

switch block containing unidirectional wire segments of length 2 and associated programmable

switches. The staggered routing is exemplified in this example as tracks 2, 3, 6 and 7 in both

channels end at this switch block, while tracks 1, 2, 4 and 5 continue through. The arrows at the

fringes of the switch block mark the directions of each track. The multiplexors in Fig. 2.12 show

connections from the midpoints and endpoints of nearby wires with a single input line and black

circles to indicate individual connections. The unconnected input line represents connections to

logic block outputs which will be discussed next.

The connection blocks in the conventional architecture lack direct connections to tracks from

logic block outputs, containing only input connections. Due to design restrictions, the outputs of

multi-bit logic blocks can only connect to the multiplexors of wire segments that begin nearby.

Fig. 2.13 shows a multiplexor base switch and its connectivity to a multi-bit logic output in a

horizontal channel. The SRAM cells can be programmed to select between the multi-bit logic

block output and any of the three track to track connections. The input connections are structured

exactly as in the single-bit bidirectional architecture.

Fig. 2.13. Switch block connections for a horizontal channel

21

2.2 FPGA CAD Algorithms and Tools

In order to practically implement circuit designs on an FPGA, the use of CAD tools are

necessary. CAD tools allow a designer to input a high-level description of a circuit which is then

converted into a programming file or alternatively, in the case of VPR, a textual and graphical

description of the FPGA implementation. The programming file specifies the state of every

programmable switch and configuration bit on the FPGA. These CAD tools, both commercial

and academic, follow a set of steps called a CAD flow as illustrated in Fig. 2.14. This section

will first briefly describe the synthesis, packing, placement and routing elements of the CAD

flow. A more in-depth discussion of the routing step, where the architectural changes of this

research are made, will then be presented.

Fig. 2.14. FPGA CAD flow

22

2.2.1 Synthesis & Packing

Given a circuit, described in either a hardware description language or schematic form, the

synthesis stage converts such a description into a netlist of simple gates (NAND, NOR, Inverter,

etc.). The netlist of gates then undergoes a process of optimization, independent of any

technology process, where the logic is reduced to a minimum or near-minimum amount of gates.

This process of logic minimization must be completed within a reasonable amount of computing

time. The new optimized netlist of gates is then technology-mapped into look-up tables and flip-

flops [22] [23] [24]. If in the case of the VPR CAD flow, the circuit is described in Verilog

hardware description language, the open-source tool Odin [25] can be used to initially synthesize

the circuit into a basic netlist of gates. This netlist can then be optimized using the ABC [26]

synthesis and verification tool.

The second step in the CAD flow, called packing, groups LUTs and flip-flops (up to a limit

of N) into logic clusters. The packer must take into consideration pre-determined architectural

parameters such as the maximum number of inputs, the maximum number of outputs and

whether clock signals are needed (and how many distinct clock signals) to implement sequential

logic. The packing operation attempts to minimize the amount of routing connections between

logic blocks. In addition, the packing process attempts to pack as many highly connected LUTs

into logic blocks (up to their limit N) therefore reducing the total number of total logic blocks

required. Timing driven packing involves attempting to reduce the number of connections

between logic clusters on the critical path in addition to the packing process described above. In

the case of the VPR CAD flow, T-VPack is the stand alone packing tool described in [27] which

can perform timing or non-timing driven packing.

23

2.2.2 Placement & Routing

The placement and routing operations in Fig. 2.14 are performed by a single program – VPR and

will be described in further detail in this section. Also illustrated in Fig. 2.14 are two necessary

inputs to this process: 1) The packed and optimized logic block netlist from the previous step and

2) a file containing architectural specific information about the target FPGA – the architectural

description file.

VPR Placement

The placement process of VPR is conducted using the simulated annealing algorithm [28].

This algorithm is derived from the annealing process in metallurgy wherein metals are heated

and then slowly cooled to alter the materials’ physical properties (improve strength, soften for

cutting and shaping etc.). Initially the placer will randomly position all the logic blocks in the

netlist to available locations on an FPGA. It will then move a randomly selected logic block

either by swapping it with another logic block’s physical location or moving it to an unoccupied

spot to create a new placement. The move is then evaluated based on a cost function which

measures the quality the new placement against the previous placement. The process is repeated

multiple times in order to reach a final placement solution. After each iteration, a decision is

made to either keep or reject each move based on the change in the cost before and after the

move. If the cost is less after the move, it will always be accepted. Should the cost increase, the

move may still be accepted even though the placement is worse in the hope that subsequent

moves may yield a better placement result. This probability is modeled mathematically and a key

parameter called the temperature determines how likely a move is accepted despite the cost

increase the placement causes. Initially, the temperature is set very high allowing almost all

moves to be accepted. The temperature is then gradually reduced at each subsequent move

24

allowing fewer bad moves to be accepted till at a temperature of zero, where only good moves

are accepted. The rate at which the temperature is reduced and the number of moves attempt at

each set temperature value is defined in the annealing schedule.VPR uses an adaptive annealing

schedule, which adapts to a wide range of FPGA architectures, cost functions and circuit sizes

[7] while consuming a reasonable amount of computation time.

VPR Routing

The VPR router has the flexibility of implementing a variety of architectures through the use

of directed graphs. A directed graph, or routing-resource graph (as it is know in VPR) [29], is

generic and simple enough for any architecture to be represented. Given the architectural

description file, an internal graph generator creates a detailed routing resource graph

representation of the desired FPGA [7]. The architectural description file (described fully in [7])

contains parametric information of the architecture such as the number of logic block input pins

(I), the switch block topology and Fc values for logic block outputs. The actual routing operation,

graphical output and performance analysis all rely on the routing-resource graph. Should the

need arise to use a new FPGA architecture, only the routing-resource graph requires

w
ire

 4

w
ire

 5

wire 1

wire 0

w
ire

 6

w
ire

 7

wire 3

wire 2

ipin 0 ipin 1 ipin 2 ipin 3

op
in

 0

op
in

 1

Logic Block 0 Logic Block 1

Source

opin 1

wire 6

wire 2

wire 0

ipin 1

Sink

(a) (b)

Node

Edge

Fig. 2.15. Modelling (a) a connection between two output pins on (b) a directed graph

25

modification. This is particularly convenient since this research involves investigating the effects

of unidirectional and multi-bit architectural features.

Inside the routing-resource graph, wires and logic block pins are represented by nodes while

connections between two nodes (or switches) are represented by edges. Fig. 2.15 (a) illustrates a

path originating from ‘opin 1’ of logic block 1 and terminating at ‘ipin 1’ of logic block 0, where

the resources required to connect these two points are highlighted in red. Fig. 2.15 (b) shows the

directed graph equivalent of the path in Fig. 2.15 (a). Recall in Section 2.1.1.1, the input and

output pins of logic blocks are logically equivalent. This logical equivalence is represented in the

routing-resource graph by having connections originating and terminating at common logical

points called sources and sinks respectively. Accordingly, the pins ‘opin 1’ and ‘ipin 1’ are

labeled as the source and sink respectively in Fig. 2.15 (b). Since Fig. 2.15 (a) depicts a

bidirectional routing architecture, the connections between wire 6, wire 2 and wire 0 are drawn

as pairs of directed edges in Fig. 2.15 (b).

VPR uses the negotiated congestion based method of the Pathfinder algorithm [29] with

optimizations to better optimize delay. When searching for the best path for each net, conflicts

will inevitably occur when choosing routing resources which can only be assigned to a single

net. When a particular routing resource is temporarily assigned to several nets, it is called a

congested routing resource. The Pathfinder algorithm executes multiple routing iterations to

resolve this contention for routing resources. In the first routing iteration, each connection is

routed on a minimum delay path and ignores routing congestion. In subsequent routing

iterations, each net is ripped up and re-routed using a maze routing algorithm [30] until all

occurrences of congestion are resolved. After each iteration, the costs of congested routing

resources are increased to give more timing-critical nets priority when multiple nets compete for

26

the same routing resources. These costs take into account the net delays (Elmore delay of each

source to sink connection) and congestion of routing resources from all previous iterations.

2.2.3 MB­FPGA CAD Flow

The MB-FPGA CAD flow is similar to the CAD flow described in Fig. 2.14 but also contains

support for recognizing datapath components and preserving their regularity through the CAD

process. The distinguished features of each step in the CAD flow are outlined as follows:

 The EMC (Enhanced Module Compaction) synthesis algorithm [9] attempts to optimize

logic across bit-slices for area efficiency while retaining their regularity.

 The CNG (Coarse-Grain Node Graph) packing algorithm [10] packs identical LUTs and

register elements (flip flops) from neighboring bitslices. The packer optimizes the packed

clusters for area efficiency and delay of critical nets.

 The MB-FPGA Placer [31] is similar to the VPR placer described in Section 2.2.2 as it

contains the same annealing schedule and cost functions. The MB-FPGA placer differs in

that it moves blocks of logic (within a square grid) on two hierarchal levels: as bit-sized

clusters and multi-bit sized logic blocks.

 The CGR (Coarse-Grain Resource) Routing Algorithm routes two different types of

tracks (multi-bit and single-bit). The router compensates overused tracks by committing

signals to under used tracks, even if it means routing single-bit signals on multi-bit tracks

(or vice versa – multi-bit wide signals on single-bit tracks). In doing so, the router

balances the overall usage of all routing tracks.

This chapter has presented background information on basic FPGA architectural components

along with a review of previous work on mult-bit architectures and unidirectional routing

27

architectures. It is shown how the proposed features of both these architectures can improve

routing area efficiency. The information on the VPR and MB-FPGA CAD flows will serve as a

basis for the design of a unidirectional multi-bit compatible CAD tool for empirical evaluation.

28

Chapter 3 : Unidirectional Bus Connections

This chapter defines the conventional unidirectional routing architecture and discusses

unidirectional bus connections in detail. The theoretical area savings of an ideal architecture

using unidirectional bus connections is compared to those of the conventional routing

architecture. This serves as a motivation to empirically determine the actual performance of the

unidirectional multi-bit architecture in Chapter 6.

3.1 The Conventional Routing Architecture

The conventional architecture employs the same multi-bit logic block of granularity M as

discussed in Section 2.1.2.1. The choice of using a multi-bit logic block over the general logic

block (consisting of a single cluster) is justifiable for two reasons: 1) Consider if both the

unidirectional multi-bit architecture and the conventional architecture employ multi-bit logic

blocks. Therefore the investigation can focus on the effect of the routing fabric on area-

efficiency rather than a 2 dimensional problem involving variations in both routing and logic

block design. 2) In addition to the studies in [11], [12], [13], [14], [15] and [21] which employ

multi-bit logic blocks, commercial FPGAs from Xilinx [16] and Altera [1] already use similar

block types, such as DSPs and multi-bit addressable memory blocks, to process multi-bit signals.

Motivated by this trend, this work compares the efficiency of the conventional architecture

against the unidirectional multi-bit routing architecture for connecting multi-bit logic blocks.

Unidirectional routing tracks and related switch block resources are employed in the

conventional architecture with routing channels consisting of W unidirectional routing tracks.

Recall from Section 2.1.3, W must always be an even number of tracks to accommodate signals

travelling in both the forward and reverse directions. In this research, M=4, L=2, I=10 and N=4

29

are used because the previous work in [21] has shown this combination of values results in good

area results. Since this architecture uses a multi-bit logic block, it is important to note that N and

I actually represent the number of output buses and input buses of size M respectively. However

since the conventional architecture does not include any routing bus tracks to specifically route

datapath signals, all individual input and output bus connections are treated as fully independent

one-bit wide input and output connections. The total number of input connections is ቒܨ௖௜ ൈ ௐ

ଶ
ቓ ൈ

2 where Fci represents the fraction of routing tracks each input pin connects to. The total number

of output connections is ቒܨ௖௢ ൈ ௐ

ଶ
ቓ ൈ 2 where Fco represents the fraction of routing tracks each

output pin connects to. Recall from Section 2.1.3, the output connections can only be made to the

routing switch multiplexors of wire segments that begin nearby. Also recall from Section 2.1.1.2,

in order to create a tile-based FPGA design, the starting points of wire segments must be

staggered and shifted in fixed intervals. These two factors determine the number of available

routing tracks that an output pin can connect to. The number of wire segments beginning in

switch blocks on either side of a logic block is represented by
ௐ

௅
. The parameters Fci and Fco are

set to 0.5 and 0.25 respectively and the disjoint switch block topology is used.

3.2 Unidirectional Routing Bus Connections and Their Advantages

In this research, the active area (the area occupied by transistors) is measured to estimate the

total FPGA area including computational logic and routing resources. Specifically, this area is

measured in terms of minimum-width transistor area and calculated using the following

equation:

Area = ෍ ൬0.5 +
Drive Strength of Current Transistor

2 × Drive Strength of Minimum Width Transistor
൰

All Transistors

30

While the previous work in [21] has confirmed the large impact of bidirectional single-bit

routing resources on total FPGA area (previously discovered by [3]), no study has found the

impact of unidirectional single-bit routing resources on total FPGA area. Therefore, Table 3.1

summarizes the routing resource area (input and switch block connections) and the total area of

an FPGA tile (including the area of a single-bit logic block) employing unidirectional single-bit

routing resources for increasing values of W.

Table 3.1 Impact of Routing on Total FPGA Area

W Ainput Asw.block Arouting AFPGA Arouting / AFPGA

4 396 262 658 8,507.72 7.73%

8 873 524 1397 9,246.96 15.11%

12 1350 845 2195 10,044.64 21.85%

16 1587 1049 2635 10,485.44 25.13%

20 2064 1369 3433 11,283.12 30.43%

24 2301 1573 3874 11,723.92 33.04%

28 2538 1894 4432 12,281.61 36.08%

32 2775 2098 4872 12,722.40 38.30%

36 3252 2418 5670 13,520.09 41.94%

40 3489 2622 6111 13,960.88 43.77%

48 3963 3146 7109 14,959.36 47.52%

52 4200 3467 7667 15,517.05 49.41%

64 4911 4195 9106 16,956.32 53.70%

88 6574 5768 12342 17,754.01 55.78%

100 7285 6613 13898 20,191.77 61.12%

120 8470 7866 16336 21,747.94 63.90%

The transistor sizing of routing resources for all area calculations in Table 3.1 are based on the

90nm process specifications in [32]. The sizes of transistors within a logic block are determined

by following the methodology described in [7]. Columns 2 and 3 list the input and switch

31

connection area (both of which are illustrated later in Fig. 3.2) while column 4 lists the total area

of all routing resources. Column 5 lists the total FPGA area including that of the multi-bit logic

block while the final column shows the percentage of total FPGA area that the routing resources

occupy. It can be observed that the input connection area, the output connection area and the

percentage of total area that routing resources occupy in Table 3.1 increase as a function of W.

The routing resources consume between 8% and 20% of total FPGA area for small channel

widths. For large channel widths (ie. Over W = 64 routing tracks), the programmable routing

resources occupy a substantial amount (over 54%) of the total FPGA area. The bold rows in

Table 3.1 represent a typical track count range (32 to 64) for circuits with the given architectural

values where the routing resources consume from 38% to 54% of the total FPGA area. It is

important to note that the contribution to area savings from unidirectional routing as described in

[5] accounts for the lower proportional values of routing area results (Column 6) with respect to

the results obtained from the bidirectional architecture in [21].

It is possible to alleviate some of this area by replacing conventional unidirectional tracks

with multi-bit oriented unidirectional routing buses that employ multi-bit based connections to

more efficiently transport multi-bit signals from a common source to a common destination. In

order to clearly illustrate the advantages of multi-bit routing, we first consider mapping a generic

datapath circuit onto a conventional FPGA tile. The circuit is segmented into 4 bit-slices in

Fig. 3.1. Bit-slice partitioned datapath circuit

32

which each bit-slice has 4 inputs and 4 outputs as shown in Fig. 3.1. Assuming the computational

logic of each bit-slice can fit within a single logic cluster, for M=4, a multi-bit logic block is used

to house the 4 logic clusters containing the entire datapath circuit. Fig. 3.2 shows, at a minimum,

a 16-bit wide routing channel is required to transport all the signals to and from the multi-bit

logic block. Each of the white circles in Fig. 3.2 represent a routing switch where each switch

includes a X:1 multiplexor and its associated driving buffer. X represents the amount of

multiplexor input connections which consist of all the black circles on the associated track (line

segment) and the track itself. These switches are arranged in accordance with the disjoint

topology. The white squares represent input multiplexors of size Y:1 where Y equals the number

of connections between tracks in a channel and a particular input pin (marked with an ‘x’). This

example assumes 50% connectivity of the inputs and 100% connectivity of the outputs wherever

G
3

H
3

C
3

D
3

G
2

H
2

C
2

D
2

G
1

H
1

C
1

D
1

G
0

H
0

C
0

D
0

Fig. 3.2. Bit-slice circuit implementation on a conventional FPGA tile

33

possible (Fci = 50% and Fco = 100%). According to Fig. 3.2, there are 16 switch block

connections and 16 input connections. Each switch block connection includes a 9:1 multiplexor

while each input connection includes an 8:1 multiplexor. The multiplexors situated at the switch

block each incorporate 4 output connections, 4 connections from adjacent tracks in the

perpendicular channel and the track continuing straight through the multiplexor (hence 9

multiplexor inputs in total). While the bit-slices of Fig. 3.1 show a total of 16 input and output

connections, Fig. 3.2 shows only 8 connections in total. The remaining 8 connections would be

distributed among the other two sides of the multi-bit logic block (not pictured) and were also

intentionally left out to preserve the clarity of the illustration.

Fig. 3.2 illustrates the two essential details of a practical design using one common tile layout

as discussed in Section 2.1.1.2. The first being a staggered starting position of wires leaves tracks

labeled A0-A3, B0-B3, C0-C3 and D0-D3 (in this example) without any switch block

connections. These tracks do not begin on this tile and therefore do not have any switches

associated with them to make connections. This leads to the next detail of requiring track shifts

between pairs of 2L wires as shown at the bottom and right edges of Fig. 3.2. Specifically in this

example, track shifts occur in groups of 4 wires. Additionally, in order to achieve a tile-based

design with unidirectional wires, the channel width must be a multiple of 2L.

Alternatively Fig. 3.3 illustrates an architecture which replaces the routing tracks in each

channel of Fig. 3.2 with 4 4-bit wide routing buses and groups the existing input and output

connections into 4-bit wide input buses and output buses. The same multi-bit logic block of the

previous example is used. Multi-bit based connection patterns are then used to connect the

input/output connection buses and routing buses together. In particular, a bit in one bus can only

be connected to a bit of the same bit position from another bus. Like the conventional tile of the

34

previous example, this example assumes Fci = 50% and Fco = 100%. Additionally, Fig. 3.3

illustrates a tile employing track shifts and staggered start positions of wires as seen in the

previous example. This time, however, the staggering of wires occur in groups of M (or as buses)

while the track shifts are made between groups of 2L buses (between a group of 4 buses in this

example) as shown in Fig. 3.3. Notice how both the tiles in Fig. 3.2 and Fig. 3.3 require the same

number of switches (white circles and white squares) and routing tracks to implement the circuit.

Fig. 3.3 however requires smaller input and switch block multiplexors, specifically of size 2:1

and 6:1 respectively. This constitutes a 75% reduction in input multiplexor size and a 33%

reduction in the switch block multiplexor size. This reduction occurs due to a much sparser

Switch block
mux connection

Input mux connection

Input mux

Switch block mux

A3
A2
A1
A0

B3
B2
B1
B0

E3
E2
E1
E0

F3
F2
F1
F0

C
0

C
1

C
2

C
3

D
0

D
1

D
2

D
3

G
0

G
1

G
2

G
3

H
0

H
1

H
2

H
3

6:1 MUX

B
u

s
B

us
B

u
s

B
us

BusBusBusBus

Multibit
Logic
Block

Input BusOutput Bus

Fig. 3.3. Bit-slice circuit implementation on a FPGA tile with routing buses

35

switch block and input connection pattern where bit positions in one bus only connect to the

same bit positions in another bus.

Given the area results in Table 3.1 for a conventional tile, the same methodology is used to

generate results for a purely routing bus based tile. Table 3.2 lists the active area of a

conventional tile and that of a unidirectional routing bus-based tile for increasing values of W

and Wbus, where is the number of equivalent M-bit wide routing buses. The area calculations use

M=4, N=4, I=10, L=2, Fci = .5, Fco = .25 and a disjoint switch topology. For the purpose of this

Table 3.2 Conventional and Multi-bit Area of an FPGA Tile

Conventional Bus-based
ABUS / ABIT

W ABIT WBUS ABUS

8 9,246.96 2 8,685.98 94%

16 10,485.44 4 9,155.50 87%

24 11,723.92 6 10,096.50 86%

32 12,722.40 8 10,425.64 82%

40 13,960.88 10 10,732.42 77%

48 14,959.36 12 11,025.08 74%

56 15,957.84 14 11,307.98 71%

64 16,956.32 16 11,583.74 68%

72 18,194.81 18 13,113.11 72%

80 19,193.29 20 13,379.11 70%

88 20,191.77 22 13,641.64 68%

96 21,190.25 24 13,901.29 66%

104 22,188.73 26 14,158.53 64%

112 23,187.21 28 14,413.72 62%

120 24,185.69 30 14,667.13 61%

analysis, these examples are assumed to only implement circuits containing M-bit wide

interconnected datapath components. As shown in column 5, the use of buses to route datapath

36

signals can reduce area by 23% (for W=40 channel width) and 30% for (W=80). Larger area

savings can be obtained for larger channel widths.

In summary, this chapter has presented a theoretical analysis on the effect of employing

unidirectional routing buses to implement an ideal (only M-bit wide multi-bit signals) datapath

circuit. In doing so, the conventional architecture has been defined for comparison to an

architecture employing purely unidirectional routing buses. When employing only unidirectional

routing buses a reduction of 23% to 30% in total FPGA area can be seen. It is shown that this

area savings is attributed to a reduction in multiplexor sizes in the unidirectional routing bus-

based architecture (75% reduction in input multiplexor size and a 33% reduction in routing

switch multiplexor). Furthermore, the conventional architecture described earlier is modeled later

in this thesis for an empirical comparison against the unidirectional multi-bit architecture

(defined in Chapter 4).

37

Chapter 4 : Unidirectional Multi-bit Architecture & Modeling

This chapter describes the unidirectional multi-bit architecture given the motivations and

background information in the previous chapters. First, Section 4.1 describes the architecture in

detail, including the types of resources and connectivity. Section 4.2 presents a description of the

buffer and transistor sizing information based on a modern technology process, in order to

generate accurate results. Section 4.3 outlines the parameters and their values used to describe

the architecture parametrically. Finally, Section 4.4 describes how this architecture is modeled

on a modified version of the VPR CAD tool.

4.1 Unidirectional Multi­bit Architecture

As shown thus far, implementing ideal datapath circuits on a purely bus based routing

architecture can significantly improve the area efficiency of FPGAs. Practical datapath circuits

also contain highly regular components which can be adequately partitioned into bit-slices as

demonstrated in the examples, in the previous chapter. These bit-slices can then in turn be placed

and routed using only multi-bit logic and routing resources. However, practical circuits also

contain irregular signals (single-bit wide signals, control signals or multi-bit wide signals that

shift bit positions between their source logic blocks and their destination logic blocks).

Implementation of circuits containing non-datapath logic which use irregular signals is achieved

by using the individual clusters within the multi-bit logic block to implement a segment of the

non-datapath logic. Conversely, routing the associated irregular signals on purely bus based

routing resources can cause a loss in area efficiency. To accommodate these irregular signals,

pairs of conventional routing tracks (using the same connection patterns as those used in the

conventional unidirectional routing architecture) are used to augment the routing buses to form

38

the multi-bit routing architecture [21]. For the remainder of this thesis the conventional routing

tracks will be referred to as singular tracks.

The unidirectional multi-bit architecture is composed of multi-bit logic blocks interconnected

by vertical and horizontal channels of routing tracks. The routing channels consist of both

singular tracks and M-bit wide buses of channel widths Wf and Wc respectively. The multi-bit

logic blocks each contain M configurable logic blocks whose input and output connections

connect directly to those of the multi-bit logic block. Each configurable logic block is composed

of N basic logic elements (BLE) and share I inputs.

Although previous works (DP-FPGA [14] and MB-FPGA [6]) have employed configuration

memory sharing (CMS) among their bus based routing connections, the work done in [33] shows

experimentally that using CMS routing has no significant advantage on area savings for

bidirectional multi-bit architectures. Additionally, when routing circuits with a small percentage

of multi-bit signals, the architecture employing CMS routing consumes more area than the same

architecture employing non-CMS routing (each connection is controlled by an individual

switch). Therefore, this research opts-out of employing configuration memory sharing on multi-

bit routing connections. Practically, modifications to the MB-FPGA place and route tool by [33]

already introduce the boolean variable CMSSw to control the application of configuration

memory sharing. This CMSSw controls whether CMS is applied on multi-bit switch block

connections. The MB-FPGA tool reads a value of either 1 (CMS) or 0 (no CMS – value which is

set for this research) from the architecture file and builds the architecture accordingly.

Fig. 4.1 illustrates a simplified input connection block consisting of a single input bus of size

M=4. The horizontal routing channel contains two 4-bit buses travelling in opposite directions as

39

well as two singular tracks also travelling in opposite directions. Each individual connection of

the input bus employs a multiplexor which selects between routing bus connections and singular

connections. The size of each multiplexor is dependent on the combined values singular input

connections and multi-bit input connections and determined by Fcic and Fcif. It can be seen in Fig.

4.1 that application of CMS to the input connection buses is not possible if selection of both

multi-bit bus connections and singular connections are required. In the even singular connections

are made, the input connection bus no longer functions as a ‘bus’, rather a group of individual

connections which require independent control of each multiplexor. Given that two types of

routing tracks (multi-bit and singular) are present within a routing channel, the length of each

routing type can be specified. Lf denotes the length of singular tracks while Lc denotes the length

of multi-bit routing tracks. Also pictured are isolation buffers which are used to isolate the tracks

from the electrical effects of the input connections. While not pictured, additional input buses

would be distributed evenly along the four sides of the multi-bit logic block. This is possible due

to the logical equivalency between the input buses of the multi-bit logic blocks.

Bus
Tracks

Singular
Tracks

Isolation Buffer

....
....

....
....

Multibit Logic Block

Fig. 4.1. Multi-bit logic block input connections

40

Fig. 4.2 illustrates the switch block connections for a single direction on a horizontal channel.

Unlike Fig. 4.1, only a single bus travelling in one direction is pictured (while two singular

unidirectional tracks are still included) in Fig. 4.2 to simplify the example. Also pictured is a

single group of output connections from the multi-bit logic block output pins. The switch block

multiplexors illustrate the three types of possible switch block connections: connections from

tracks in the vertical channel, output connections from the nearest multi-bit logic blocks and a

connection for the track travelling through the switch. Note, all tracks travelling to the right are

assumed to end at this switch block location. Similar to the previous example, the logical

equivalence among the output buses allow additional output buses (though not pictured) to be

distributed evenly along the multi-bit logic block sides.

Singular
Tracks

Bus Tracks

Bus
Tracks

Singular
Tracks

 Output Connections

Multibit Logic
Block

Driving
Buffer

SRAM

.....

.....

.....

.....

.....

.....

Fig. 4.2. Switch block with multi-bit logic block output connections

41

4.2 Buffer and Transistor Sizing

In order to generate realistic data on the behavior of the unidirectional multi-bit architecture

on unidirectional routing, logic and routing components must be modeled based on a modern

process technology. In this research, accurate area and timing estimates for 90nm CMOS

technology are employed and optimized for N=4, I=10 and L=2. The area and delay information

is extracted from [32] and [34], whose transistor-level models are based on the Berkeley

Predictive Technology Model (BPTM) [35]. As shown in Fig. 4.3 (a), the input multiplexors are

built as a tree of pass-transistors and sized 1.01907 times that of a minimum-width transistor.

Similarly, the switch block multiplexors are built as trees of pass-transistors adjoined by a

driving buffer. As shown in Fig. 4.3, each transistor is 1.82646 times that of a minimum-width

transistor while the driving buffer is designed as a three-stage buffer of size 12.324 minimum-

width transistor area units. In both examples, each SRAM cell controlling the multiplexor select

lines are assumed to be composed of 6 minimum-width transistors. The delay of an input

connection starting from the routing track through the isolation buffer and the multiplexor to the

1.
01

90
7x

1

.0
1

90
7x

1.
0

19
07

x

1
.0

1
90

7x
 S

R
A

M

S
R

A
M

Fig. 4.3. Input and routing switch multiplexors implemented as a pass-transistor tree

42

multi-bit logic block is 0.07428ns. The switch block switch consisting of a multiplexor and

driving buffer have an intrinsic delay of 0.07115ns.

Table 4.1 Internal Multi-bit Logic Block Delays

Delay Description Delay (ns)

BLE output to CLB ouput pin 0

CLB input pin to BLE input 0.6077

BLE output to BLE input in the same CLB 0.05793

BLE input to BLE in combinational mode 0.2391

BLE input to storage component within BLE in sequential mode 0.2347

BLE storage component to BLE input in sequential mode 0.140

Furthermore Table 4.1 lists the delay values obtained from [32] for signals travelling through

various logic block components such as input pins, output pins, BLEs and internal storage

components (flip-flops). Also listed are timing estimates for specific paths when the BLEs are in

sequential or combinational states.

4.3 Parameters

Overall, there are 12 variables used to parametrically describe the unidirectional multi-bit

architecture. These parameters can be categorized as follows: multi-bit logic block parameters,

routing track dimensions and connection parameters. N, I, k, M as defined before describe the

size of the multi-bit logic block, the number of BLEs and their size. Lf, Lc, Wf and Wc describe

the dimensions of the routing tracks. Finally Fcif, Fcic, Fcof, Fcoc and Ts define the input and switch

block connectivity of the routing tracks. Ts specifically describe the number of programmable

connections and their topological arrangement within the switch block.

These parameters allow for a highly realistic modelling of the unidirectional multi-bit

architecture. However, the combination of these parameters generates an extremely large design

43

space requiring exploration that is both difficult and beyond the scope of this study. Therefore,

most of these parameters are selected based on values determined to be optimal from previous

architectural FPGA studies. Internal logic block parameters N and I are set to 4 and 10

respectively as the work in [36] has shown these to be efficient for bidirectional CLB based

FPGAs. Additionally the value of k is set to 4 since [17] and [37] have shown a size 4 LUT

yields a minimum in total routing area. The granularity M is set to 4 since it has been

experimentally shown to yield the most area efficient results by [21]. Ts, for the unidirectional

multi-bit architecture, is the disjoint switch block topology as it is ideal for segmented

architectures [7] and widely used. Fcif = Fcic = .5, Fcof = Fcoc = .25, Lc = 2 and Lf = 2 are used in

this work. The studies done in [7] and [21] find these parameter values result in efficient area

results for both singular-bidirectional and multi-bit-bidirectional architectures. While typically

Wf and Wc are dependent variables whose values are determined by the binary search algorithm

in the routing portion of the CAD flow.

4.4 Routing Resource Graph Generation

Many of the modifications to the VPR CAD tool involve changes to the routing resource

graph. Specifically, the algorithms tasked with automatically generating the architecture based

on architectural parameters (outlined in Section 4.3) are modified. The routing architecture is

generated as directed graph where components including wires segments, input pins and output

pins are represented as nodes while connections between these components are represented by

edges. Once generated the process of routing a given circuit can proceed.

Initially, all data structures necessary for the storage of nodes and edges are allocated and

initialized. One particular data structure, seg_details, is loaded with information about each wire

44

segment. Examples of such information including wire segment length, start location (in x,y

coordinates), end location (in x,y coordinates) and bit-wise position on a bus (if the wire segment

is a multi-bit track) to name a few [6] [8]. This data structure was modified to include aspects of

unidirectional routing such as directionality and a new switch type (multiplexor based) [8].

Next, the switch block connection patterns for the entire FPGA are generated. As mentioned

in Section 4.3, the disjoint switch block topology is used in both conventional and multi-bit

architectures. The switch blocks are generated by specifying each connection in the switch block

with respect to the disjoint switch pattern. The connections can be made in an organized and

predictable fashion by identifying three distinct switch block types in an FPGA: the core block,

the corner block and the fringe block [8]. The core block is the most common type of switch

block which consists of wires segments ending, beginning or passing through each of the four

sides. Fig. 4.4 illustrates the VPR graphical output of a corner block for the unidirectional multi-

bit architecture. If Fig. 4.4 is viewed in colour, then the purple lines indicate multi-bit

connections while the green lines indicate singular connections. If not viewed in colour, the

multi-bit connections account for the 8 tracks from the left on the vertical channel and bottom on

the horizontal channel. The remaining tracks are singular tracks. The dark arrows indicate wire

segments (the word segments is sometimes dropped to ease discussion) which end at this switch

block location while the light grey arrows represent wires which pass through this switch block.

The directions of the arrows indicate the directions in which the wires are driven. Fig. 4.4 also

displays the multiplexors (black trapezoids with select lines) at the start positions of wire

segments beginning at this switch block. Notice that the amount of wires which end on each side

equals the amount of wires which start on each side. The staggering of wire segments results in

an ideal N-to-N assignment of connections (for each type of routing track) involving ending

45

wires and multiplexors of starting wires. The corner block as the name implies is the set of

connections existing on the four corners of the FPGA. A corner block is similar to a core block

but only contains two sides where all the wires on both sides either end or begin. Fig. 4.5 (a)

illustrates the corner switch block with multi-bit and singular connections. Similar to the core

block, each of the two sides contains the same number of ending wires and starting wires

allowing for an N-to-N assignment of perfectly balanced connections. Additionally, Fig. 4.5 (a)

clearly shows how mutli-bit connections and singular connections are segregated from each

other. Finally, Fig. 4.5 (b) illustrates a fringe block which consists of three sides and is

positioned along the edges of the FPGA. Two of the sides are similar to the core and corner

block in that each type of routing track has an equal number of starting and ending wires. One

side however, contains a different number of ending and beginning wires. In this case, staggering

ensures M-to-N connectivity between the multiplexors of the starting wires and the ending wires

Fig. 4.4. Core switch block (disjoint topology)

46

of each routing track type. This results in the amount of inputs between multiplexors being

imbalanced by no more than one connection. This imbalance can be seen in Fig. 4.5 (b) where

the multiplexors on the left side of the switch block have 1 less connection than the multiplexors

on the top and bottom sides. Notice that for all three types of switch blocks, the multi-bit bus

connections are made in a manner that maintains their bit positions. The algorithm which

generates these connection patterns for each switch block on the FPGA is outlined in Fig. 4.6.

The algorithm begins with determining the switch block type and then proceeds to indentify

which wires end and start at this switch block location for each of the applicable sides along with

their respective directions. The algorithm then iterates for each side, the generation of the

connections for the remaining three sides (2 sides for fringe or 1 side for corner) depending on

the switch block type. Sub-processes in generating connections are performed independently for

multi-bit buses and singular tracks as indicated in Fig. 4.6.

Fig. 4.5. Corner (a) and fringe (b) switch blocks (disjoint topology)

47

The same switch multiplexors are referenced again as edges are generated to represent

connections from output pins. First, the absolute values for Fcof, Fcoc, Fcif and Fcic are determined

from the fractional values (in architecture file) since the number of mutli-bit and singular tracks

are known. The equations used to calculate the absolute values of each are listed below:

௖௜௙_௔௕௦ܨ ൌ ඄ܨ௖௜௙ ൈ ௙ܹ

2
ඈ ൈ 2, ௖௜௖_௔௕௦ܨ ൌ ቜܨ௖௜௖ ൈ ௖ܹ ⁄ܯ

2
ቝ ൈ 2

௖௢௙_௔௕௦ܨ ൌ ඄ܨ௖௢௙ ൈ ௙ܹ

2
ඈ ൈ 2, ௖௢௖_௔௕௦ܨ ൌ ቜܨ௖௢௖ ൈ ௖ܹ ⁄ܯ

2
ቝ ൈ 2

FOR each switch block in the FPGA
 Determine switch type (core, fringe or corner)

 FOR tracks of each type (multi-bit and singular)
 FOR each side
 Determine ending wire segments and direction
 Determing starting wires segments and direction
 END FOR
 END FOR

 FOR each side with starting wires
 Determine the orientation of the other 3 sides (cw, ccw, opp)

 FOR each of the 3 sides with ending wires
 IF side is clock-wise (cw)
 FOR tracks of each type (multi-bit and singular)
 Generate connections between ending and
 starting wires as per switch block type
 END FOR
 END IF
 IF side is counter clock-wise (ccw)
 FOR tracks of each type (multi-bit and singular)
 Generate connections between ending and
 starting wires as per switch block type
 END FOR
 END IF
 IF side is opposite (opp)
 FOR tracks of each type (multi-bit and singular)
 Generate connections between ending and
 starting wires as per switch block type
 END FOR
 END IF
 END FOR
 END FOR
END FOR

Fig. 4.6. Switch block connection pattern generation

48

 These calculations consider that the absolute values Fcof, Fcoc, Fcif and Fcic must be a multiple

of 2. Additionally these values must at a minimum be a value of 2, due to unidirectional routing

requirements. It is important to note that Fcic_abs and Fcoc_abs represent the number of bus

connections while Fcif_abs and Fcof_abs represent the number of singular connections. The edges are

then generated from output pins to an Fcof_abs or Fcoc_abs amount of drivers on wire segments

traversing both directions.

Fig. 4.7 shows a typical VPR graphical output of a routing channel with input and output

connection buses from two multi-bit logic blocks (located at the top and bottom). The output bus

connections are shown as two 4-bit wide buses (in red) from the right side of the figure, while

the remaining 4-bit wide buses (in blue) from the left are the input buses. Although output

Fig. 4.7. Input and Output connection buses from VPR (MB-FPGA) output

49

connections electrically connect directly to routing switch multiplexors, this becomes visually

congested for large designs. Therefore, these connections are drawn perpendicular to the tracks

that begin at either side of a logic block even though logically the connections are made to the

routing switch multiplexors. Notice in Fig. 4.7, that the first and fourth singular wires from the

top are not connected to the output buses as these wires do not begin at this location.

Finally the switch block patterns discussed earlier in this chapter are used to create the edges

between wire segments within the switch block. Furthermore the values of Fcif_abs and Fcic_abs are

used to create the appropriate amount of edges representing connections from the routing tracks

to multi-bit logic block input pins.

In conclusion, this chapter has described the unidirectional mutli-bit architecture. The

parameters defining this architecture are described along with references to previous works that

have found them to be most optimal. Finally, a detailed description of the process and algorithms

used to model the unidirectional multi-bit architecture in a CAD tool are presented. This CAD

tool is then used to empirically determine the area and delay efficiency of the unidirectional

multi-bit architecture.

50

Chapter 5 : Experimental Results

This chapter will present a description of the experiments conducted using the modified CAD

tools as well as an analysis of the results. The purpose of these experiments is to address the

following questions:

1. How area efficient (or inefficient) is the unidirectional multi-bit architecture in

comparison to the conventional architecture?

2. What proportion of multi-bit routing tracks results in the greatest average area-efficiency

given the sample set of benchmark circuits?

3. How does the timing performance of the unidirectional multi-bit architecture compare to

that of the conventional one?

Section 5.1 describes the experimental setup. Section 5.2 discusses the effects of

unidirectional multi-bit connections on area efficiency and address questions 1 and 2. Finally

Section 5.1 presents results pertaining to the timing analysis and track count which ultimately

addresses question 3.

5.1 Experimental Setup

To experimentally evaluate the effect of multi-bit connection patterns on the area efficiency

of unidirectional routing architectures, 15 benchmark circuits [6] consisting of datapath

components from Sun Microsystems’ Pico-Java processor [38] are implemented. Each of these

circuits are synthesized and mapped onto multi-bit logic blocks using datapath-oriented synthesis

and packing tools described in Section 2.2.3. In this investigation, the benchmark circuits are

implemented on both conventional and unidirectional multi-bit architectures to compare their

performance. In order to fairly assess the area results, the same routing tool (the multi-bit routing

51

tool described in Chapter 5) is used for every experiment, eliminating any effects arising due to

routing algorithm variations. The 13 architectural parameters outlined and rationalized in Section

4.3 are entered appropriately in the architectural file. Table 5.1 summarizes all these architectural

parameters and their values.

Table 5.1. Architecture Parameters and Values

Parameter Type Parameter Value

Multi-bit
Logic Block
Parameters

N 4

I 10

k 4

M 4

Routing Track
Dimensions

Lf 2

Lc 2

Wf -

Wc -

Connection
Parameters

Fcif .5

Fcic .5

Fcof .25

Fcoc .25

Ts disjoint

 Analysis of both implementations is achieved by constraining the routing bus channel width

Wc and then attempt to successfully route the circuit with a minimum number of singular tracks

Wf using the binary search algorithm of the router. The conventional implementation involves

constraining Wc to zero, thereby routing the benchmark circuits using only singular

unidirectional tracks. Conversely the unidirectional multi-bit architecture is evaluated over a

range of values of Wc. Here, the router is executed for fixed values of Wc starting with 2M bus

tracks (8 tracks in this experiment) and incremented by 2M tracks to an upper limit of 120 tracks

(30 buses). Each of these circuit implementations are then sorted according to various percentile

52

ranges. Each percentile range represents the proportion of routing bus tracks as a function of the

total routing tracks in a routing channel. The minimum area results are chosen for all 15

benchmark circuits and arithmetically averaged for each percentile range. This allows a designer

to gauge how many tracks to include in physical hardware for the given sample of circuits.

Similarly the minimum amount of total track segments are determined for each circuit

implementation and arithmetically averaged for each percentile range. Finally the best critical-

path delays of the multi-bit implementation are determined for each circuit and compared against

the conventional implementations.

5.2 Effect of Routing Buses on Area

Fig. 5.1 is a graph of the average area consumed by 15 benchmark circuits over a series of 8

percentile ranges. The percentile ranges are (10% to 20%], (20% to 30%], (30% to 40%], (40%

8.0

8.3

8.5

8.8

9.0

9.3

9.5

9.8

10.0

10.3

10.5

10.8

11.0

10‐20 20‐30 30‐40 40‐50 50‐60 60‐70 70‐80 80‐90

A
re
a
(M

in
. W

id
th
 T
ra
n
si
st
o
r
C
o
u
n
t)

% of Bus Tracks

Multibit Conventional

x 105

Fig. 5.1. Area as a function of the percentage of multi-bit tracks

53

to 50%], (50% to 60%], (60% to 70%], (70% to 80%] and (80% to 90%] The solid curve

represents the average multi-bit implementation area while the dashed curve represents the

average conventional implementation area. Notice, the percentile range (0% to 10%] is not

present in the plot since there are only a few circuit designs in the benchmark set utilizing this

range of routing bus tracks. When 10% - 30% of the tracks in a channel are routing bus tracks, an

increase in area is observed. This occurs due to the inability of input pins to connect such few

routing buses at the current value of Fcic. The generated number of routing buses remains unused

while the router attempts to reroute these signals using singular routing tracks, resulting in an

increase routing area. A similar observation is made for the bidirectional multi-bit architecture in

[21]. The 50% - 60% range of routing bus tracks achieves the greatest area efficiency with an

8.6% routing area reduction over the conventional architecture. As the percentage of bus tracks

increase past 70%, the number of constrained bus tracks will exceed the amount actually

required by each circuit by a factor of 2 (recall unidirectional routing requires an even number of

tracks/buses). The router uses these excess bus tracks to route singular signals, resulting in

drastically higher area consumption.

Table 5.2 displays the best implementation area results of each benchmark circuit for both

multi-bit and conventional implementations. The results are then categorized into percentile

ranges based on the regularity of each circuit. These categories are listed in Column 1. Column 3

lists this regularity (in ascending order) as the percentage of total signals in each circuit that are

grouped into 4-bit wide multi-bit buses. Columns 4 and 5 list the effective routing areas of circuit

implementations on both the unidirectional multi-bit architecture and conventional architecture.

Arithmetic averages are computed and displayed for each percentile range and implementation

type. As shown, almost all benchmark circuits routed on the multi-bit architecture are more area

54

efficient than those routed on the conventional architecture for every proportion of multi-bit

signals listed in Table 5.2. Column 6 lists the percentage difference in routing area of the

unidirectional multi-bit implementation over the conventional one. Every circuit implemented

using unidirectional multi-bit resources consumes less routing area with the exception of the

circuit code_seq_dp. Additionally, it can be seen that larger circuits containing a higher

proportion of datapath components tend to realize larger area savings.

Table 5.2. Routing Area vs. Proportion of Routing Buses Per Circuit

% Range of
Multibit
Signals

Benchmark
Circuit

% of
Multibit
Signals

Routing Area (min. width
transistor count)

% Difference in
Area over

Conventional
Implementation

Multibit Conventional

10-20%
multmod_dp 18.71 912194 946289 3.6

Average 912194 946289 3.6

20-30%

prils_dp 29.14 214759 233488 8.0

code_seq_dp 29.37 315211 298276 -5.7

Average 264985 265882 0.3

30-40%

exponent_dp 31.36 238851 274516 13.0

incmod 37.41 431668 465967 7.4

pipe_dpath 39.42 217886 255391 14.7

Average 296135 331958 10.8

40-50%

smu_dpath 41.08 332538 353157 5.8

imdr_dpath 42.88 571594 628280 9.0

mantissa_dp 44.11 7.81E+05 8.56E+05 8.7

icu_dpath 48.60 1590000 1910000 16.8

ucode_dat 48.93 952775 1140000 16.4

Average 845655.2 977410 13.5

50-60%

ex_dpath 50.25 4.01E+06 4.88E+06 17.8

rsadd_dp 51.06 147503 1.67E+05 11.5

dcu_dpath 54.01 871663 1010000 13.7

Average 1.68E+06 2.02E+06 17.0

60+%
ucode_reg 65.64 6.88E+04 8.33E+04 17.4

Average 6.88E+04 8.33E+04 17.4

55

5.3 Delay and Track Segment Results

Fig. 5.2 plots the number of wire segments utilized per circuit, averaged over 15 benchmark

circuits as a function of the percentage of routing bus tracks. The total number of track segments

is an ideal metric to monitor as it takes into account both channel width and size of the FPGA. It

is observed that the best unidirectional multi-bit architecture (with 50% to 60% multi-bit tracks)

employs 14.6% more track segments over the conventional architecture. Fig. 5.2 shows that even

though the total number of routing segments of the unidirectional multi-bit architecture (for the

20% to 80% range of multi-bit tracks) is greater, routing area savings can still be achieved. This

is due to the multi-bit connections employing smaller multiplexors than the conventional ones.

The difference in multiplexor size is attributed to the sparse input and output connection patterns

of the unidirectional multi-bit architecture where buses are connected to other buses on the same

bit positions.

7,000

9,000

11,000

13,000

15,000

17,000

19,000

10‐20 20‐30 30‐40 40‐50 50‐60 60‐70 70‐80 80‐90

Tr
ac
k
Se
gm

en
ts

% of Bus Tracks

Multibit Conventional

Fig. 5.2. Number of track segments as a function of the percentage of multi-bit tracks

56

The focus of this research is on FPGA area efficiency. Although no theoretical gains in

timing performance can be hypothesized, it is essential to determine how critical path delay is

affected by the implementation of multi-bit routing resources. Specifically, it is important to

determine whether the gains in area efficiency described in Section 5.2 come at the cost of

decreased performance. Table 5.3 summarizes the critical path delays of the entire set of

benchmark circuits implemented on the most area efficient conventional and multi-bit

architectures. The geometric mean is calculated for each type of architectural implementation

and is displayed. As shown by the geo-mean values, the multi-bit architectures perform slightly

better than the conventional architecture. Furthermore, each of the multi-bit circuit

implementations performs equally or demonstrates a slight performance increase.

Table 5.3. Critical Path Delays of Benchmark Circuits

Benchmark Circuit
Critical Path Delay (s)

Conventional Multi-bit

code_seq_dp 6.05E-09 5.36E-09

dcu_dpath 3.38E-09 2.76E-09

ex_dpath 1.64E-08 1.62E-08

exponent_dp 8.20E-09 8.00E-09

icu_dpath 1.17E-08 1.17E-08

imdr_dpath 1.55E-08 1.54E-08

incmod 1.59E-08 1.48E-08

mantissa_dp 4.35E-09 3.90E-09

multmod_dp 1.29E-08 1.20E-08

pipe_dpath 6.09E-09 5.85E-09

prils_dp 9.78E-09 7.08E-09

rsadd_dp 1.34E-08 1.32E-08

smu_dpath 1.28E-08 1.27E-08

ucode_dat 3.58E-09 3.12E-09

ucode_reg 1.42E-09 1.42E-09

Geometric Mean 7.78E-09 7.21E-09

57

In conclusion, this chapter has addressed the question of routing area efficiency of the

unidirectional multi-bit architecture. The experiments described in this chapter have also

determined the percentage range of multi-bit routing tracks necessary to achieve the greatest

average area efficiency. The critical path delays of the best 15 benchmark circuits have shown

that the unidirectional multi-bit architecture performs equally or slightly better than the

conventional architecture. Furthermore, Appendix A contains the results for the same

experiments conducted in this chapter but with Fcif and Fcic set to values of 0.4. Finally,

Appendix B contains the best (least active routing area) FPGA implementations for each of the

15 benchmark circuits.

58

Chapter 6 : Conclusion

6.1 Summary

This study has explored the effect on FPGA area efficiency of multi-bit connections using

unidirectional routing in order to efficiently implement arithmetic intensive circuits. To this end,

this work is the first to study the effects of implementing datapath circuits on unidirectional

multi-bit architecture. Initially a simple theoretical datapath circuit is mapped onto conventional

and bus-only architectures where the total area results of each are compared. From these results,

the estimates and limits on area efficiency by using routing buses are found. In order to

accommodate the use of non-ideal signals in modern circuits, pairs of singular signals are added

to the routing buses to form the unidirectional multi-bit routing architecture.

The actual effectiveness of this multi-bit architecture is determined by comparing the

implementation area of 15 benchmark circuits mapped on multi-bit and conventional

architectures. It is found that the best architecture consists of 50% to 60% routing bus tracks with

an average routing area reduction of 8.6% over the best conventional architecture. The track

segment results show that despite a higher amount of total routing segments, the unidirectional

multi-bit architecture still achieves routing area savings from the use of smaller multiplexors due

to sparse connection patterns. Finally, larger circuits containing a higher proportion of datapath

components tend to realize larger area savings.

The best critical-path delays of the multi-bit and conventional implementations are

determined for comparison. It is found that each of the multi-bit circuit implementations

performs (timing wise) equally or demonstrates a slight performance increase.

59

6.2 Future Work

The work done in this thesis is considered an initial investigation into unidirectional multi-bit

routing. Several opportunities to conduct research arise from this thesis which should be pursued.

One such line of research is the full or partial exploration of the design space that is defined

by the architectural parameters M, Lf, Lc, Fcif, Fcic, Fcof and Fcoc. As noted in Section 4.3, the

values of these parameters in this research are intelligently selected based on previous FPGA

studies which have shown them to be optimal. Although the results in this thesis are a positive

indication of possible reductions in routing area consumption, further investigation into this large

design space may reveal more optimal values of these parameters.

The configuration memory sharing of routing connections was not employed in this research

as previous research on bidirectional multi-bit architectures has shown area increases from CMS

connectivity. However, an actual comparison of unidirectional multi-bit architectures with and

without CMS should be performed to conclusively determine their usefulness.

Lastly, new academic CAD tools support the use of heterogeneous logic blocks or ‘hard

blocks’ (ie. memory or multipliers) intermixed with standard logic blocks. These blocks can be

of various sizes (with restrictions) but would have to be a multiple of the area occupied by a

multi-bit logic block. Research could be conducted into creating or modifying the existing

architecture to practically accommodate heterogeneous logic blocks, multi-bit logic blocks,

unidirectional multi-bit routing tracks and routing connections.

60

Appendix A: Results for Fcif = .4 and Fcic = .4

This appendix presents the area, delay and channel width results for the following

architectural parameters N = 4, I = 10, k = 4, M = 4, Fcif = Fcic = .4, Fcof = Fcoc = .25, Lc = 2, Lf

= 2 and Ts = disjoint. These results supplement those presented in Section 5.2 and Section 5.3.

Section A.1 presents results in a format identical to Fig. 5.1 and Table 5.2. Similarly Section A.2

presents results in a format identical to Fig. 5.2 and Table 5.3.

A.1 Area Results

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.50

11.00

10‐20 20‐30 30‐40 40‐50 50‐60 60‐70 70‐80 80‐90

A
re
a
(M

in
. W

id
th
 T
ra
n
si
st
o
r
C
o
u
n
t)

% Multibit Tracks

Multibit

Conventional

x 105

Fig. A.1. Area as a function of the percentage of multi-bit tracks (Fcif = Fcic = .4)

61

Table A.1. Routing Area vs. Proportion of Routing Buses per Circuit (Fcif = Fcic = .4)

% Range
of Multibit

Signals

Benchmark
Circuit

% of
Multibit
Signals

Routing Area (min. width
transistor count)

Multibit Conventional

10‐20%
multmod_dp 18.71 848639 897133

Average 848639 897133

20‐30%

prils_dp 29.14 198782 216042

code_seq_dp 29.37 306395 275055

Average 252589 245549

30‐40%

exponent_dp 31.36 240505 252498

incmod 37.41 412007 432337

pipe_dpath 39.42 213892 240417

Average 288801 308417

40‐50%

smu_dpath 41.08 301166 332538

imdr_dpath 42.88 549582 589023

mantissa_dp 44.11 763716 810918

icu_dpath 48.60 1539910 1841830

ucode_dat 48.93 860405 1091800

Average 802956 933222

50‐60%

ex_dpath 50.25 3738560 4411750

rsadd_dp 51.06 134185 148802

dcu_dpath 54.01 823324 1050760

Average 1565356 1870437

60+%
ucode_reg 65.64 60799 76219

Average 60799 76219

62

A.2 Delay and Channel Width Results

The first result presented here is the channel widths (independent of FPGA size) of both the

unidirectional multi-bit architecture and the conventional architecture. Furthermore Table A.2

lists the critical path delays for both unidirectional multi-bit and conventional circuit

implementations.

4,000

4,050

4,100

4,150

4,200

4,250

4,300

4,350

4,400

4,450

4,500

10‐20 20‐30 30‐40 40‐50 50‐60 60‐70 70‐80 80‐90

C
h
an

n
e
l W

id
th

% Multibit Tracks

Multibit

Conventional

Fig. A.2. Channel width as a function of the percentage of multi-bit tracks (Fcif = Fcic = .4)

63

Table A.2. Critical Path Delays of Benchmark Circuits (Fcif = Fcic = .4)

Benchmark Circuit
Critical Path Delay (s)

Conventional Multibit

code_seq_dp 6.05E-09 5.36E-09

dcu_dpath 3.38E-09 2.76E-09

ex_dpath 1.64E-08 1.62E-08

exponent_dp 8.20E-09 8.00E-09

icu_dpath 1.17E-08 1.17E-08

imdr_dpath 1.55E-08 1.54E-08

incmod 1.59E-08 1.48E-08

mantissa_dp 4.35E-09 3.90E-09

multmod_dp 1.29E-08 1.20E-08

pipe_dpath 6.09E-09 5.85E-09

prils_dp 9.78E-09 7.08E-09

rsadd_dp 1.34E-08 1.32E-08

smu_dpath 1.28E-08 1.27E-08

ucode_dat 3.58E-09 3.12E-09

ucode_reg 1.42E-09 1.42E-09

Geometric Mean 7.77889E-09 7.20765E-09

64

Appendix B: Graphical Outputs of Circuit Implementations

This appendix presents the graphical layouts from the modified MB-FPGA CAD tool of

placed and routed circuit nets. Each figure displays the best (least active routing area) FPGA

implementations for each of the 15 benchmark circuits.

Fig. B.1. Routed nets of circuit: code_seq_dp

65

Fig. B.2. Routed nets of circuit: dcu_dpath

66

Fig. B.3. Routed nets of circuit: ex_dpath

67

Fig. B.4. Routed nets of circuit: exponent_dp

68

Fig. B.5. Routed nets of circuit: icu_dpath

69

Fig. B.6. Routed nets of circuit: imdr_dpath

70

Fig. B.7. Routed nets of circuit: incmod

71

Fig. B.8. Routed nets of circuit: mantissa_dp

72

Fig. B.9. Routed nets of circuit: multmod_dp

73

Fig. B.10. Routed nets of circuit: pipe_dpath

74

Fig. B.11. Routed nets of circuit: prils_dp

75

Fig. B.12. Routed nets of circuit: rsadd_dp

76

Fig. B.13. Routed nets of circuit: smu_dpath

77

Fig. B.14. Routed nets of circuit: ucode_dat

78

Fig. B.15. Routed nets of circuit: ucode_reg

79

References

[1] “Altera Documentation Library,” Altera Corporation, San Jose, CA, 2004 [Online].

Available: http://www.altera.com

[2] “Xilinx UG190 Virtex-5 FPGA User Guide,” Xilinx Inc., San Jose, CA, 2004 [Online].

Available: www.xilinx.com/support/documentation/user_guides/ug190.pdf

[3] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, "Architecture of Field-

Programmable Gate Arrays," Proc. IEEE, vol. 81, pp. 1013-1029, Jul. 1993.

[4] D. Lewis et al., "The Stratix II logic and routing architecture," in Proc. ACM Int. Symp.

Field-Programmable Gate Arrays, 2005, pp. 14-20.

[5] G. Lemieux, E. Lee, M. Tom, and A. Yu, "Directional and single-driver wires in FPGA

interconnect," in Proc. Int. Conf. Field-Programmable Tech., 2004, pp. 41-48.

[6] A. Ye, "Field-Programmable Gate Array Architecture and Algorithms Optimized for

Implementing Datapath Circuits," Ph.D. dissertation, Univ. of Toronto, Toronto, ON, Canada,

2004.

[7] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep Submicron FPGAs.

Norwell, MA: Kluwer, 1999.

[8] J. Luu et al., "VPR 5.0: FPGA cad and architecture exploration tools with single-driver

routing, heterogeneity and process scaling," in Proc. ACM/SIGDA Int. Symp. Field-

Programmable Gate Arrays, 2009, pp. 133-142.

[9] A. Ye, J. Rose, and D. Lewis, "Synthesizing datapath circuits for FPGAs with emphasis on

area minimization," in Proc. Int. Conf. Field-Programmable Tech., 2002, pp. 219 - 226.

[10] A. Ye and J. Rose, "Using multi-bit logic blocks and automated packing to improve field-

programmable gate array density for implementing datapath circuits," in Proc. Int. Conf. Field-

Programmable Tech., 2004, pp. 129-136.

[11] C. Ebeling, D.C. Cronquist, and P. Franklin, "RaPiD - Reconfigurable Pipelined Datapath,"

in Proc. Int. Workshop Field-Programmable Logic Appl., 1996, pp. 126-135.

80

[12] D.C. Chen and J.M. Rabaey, "A reconfigurable multiprocessor IC for rapid prototyping of

algorithmic-specific high-speed DSP data paths," IEEE J. of Solid-State Circuits, vol. 27, pp.

1895-1904, Dec. 1992.

[13] K. Leijten-Nowak and J. van Meerbergen, "An FPGA architecture with enhanced datapath

functionality," in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2003, pp.

195-204.

[14] D. Lewis and D. Cherepacha, "DP-FPGA: An FPGA Architecture Optimized for

Datapaths," J. VLSI Des., vol. 4, pp. 329-343, 1996.

[15] A. Marshall et al., "A reconfigurable arithmetic array for multimedia applications," in Proc.

ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, 1999, pp. 135-143.

[16] “Xilinx Data Sheets,” Xilinx Inc., San Jose, CA, 2004 [Online]. Avaliable:

http://www.xilinx.com

[17] J. Rose, R.J. Francis, D. Lewis, and P. Chow, "Architecture of field-programmable gate

arrays: the effect of logic block functionality on area efficiency," IEEE J. Solid-State Circuits,

vol. 25, pp. 1217-1225, Oct. 1990.

[18] S. Brown, M. Khellah, and Z. Vranesic, "Minimizing FPGA Interconnect Delays in Array-

Based FPGAs," in CICC, 1994, pp. 181-184.

[19] H. Hseih et al., "Third-generation architecture boosts speed and density of field-

programmable gate arrays," in Proc. IEEE Custom Integrated Circuits Conf., 1990, pp. 31.2/1 -

31.2/7.

[20] S. Wilton, "Architecture and Algorithms for Field-Programmable Gate Arrays with

Embedded Memories," University of Toronto, Ph.D. Dissertation 1997.

[21] A. Ye and J. Rose, "Using bus-based connections to improve field-programmable gate-array

density for implementing datapath circuits," IEEE Trans. Very Large Scale Integr. (VLSI) Sys.,

vol. 14, pp. 462-473, May 2006.

[22] K. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, "DAG-Map: Graph-Based FPGA

Technology Mapping for Delay Optimization," Design Test of Comput., IEEE, pp. 7 -20, Sept.

1992.

81

[23] R. J. Francis, J. Rose, and K. Chung, "Chortle: a technology mapping program for lookup

table-based field programmable gate arrays," in Proc. 27th Design Automation Conf. , 1990, pp.

613 -619.

[24] S. Cho, S. Chatterjee, A. Mishchenko, and R. Brayton, "Efficient FPGA Mapping using

priority cuts," in Proc. FPGA ‘07, 2007.

[25] P. Jamieson and J. Rose, "A Verilog RTL synthesis tool for heterogeneous FPGAs," in

IEEE Field Programmable Logic and Applications, 2005, pp. 305-310.

[26] Berkeley Logic Synthesis and Verification Group. (2005). ABC: A System for Sequential

Synthesis and Verification [Online]. Avaliable: http://www.eecs.berkeley.edu/~alanmi/abc/

[27] A. Marquardt, V. Betz, and J. Rose, "Using Cluster-Based Logic Blocks and Timing-Driven

Packing to Improve FPGA Speed and Density," in ACM/SIGDA Int. Symp. FPGAs, 1999, pp. 37-

46.

[28] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, "Optimization by Simulated Annealing," in

Science, vol. 220, pp. 671-680, 1983.

[29] C. Ebeling, L. McMurchie, S.A. Hauck, and S. Burns, "Placement and Routing Tools for the

Triptych FPGA," in IEEE Trans. VLSI Syst., pp. 473-482, Dec. 1995.

[30] C.Y. Lee, "An Algorithm for Path Connections and its Applications," IRE Trans. on

Electron. Comput., vol. EC-10, pp. 346-365, 1961.

[31] A. Ye and J. Rose, "Measuring and utilizing the correlation between signal connectivity and

signal positioning for FPGAs containing multi-bit building blocks," in Proc. Int. Con. Field

Programmable Logic and Applications, 2005, pp. 159-166.

[32] I. Kuon and J. Rose. (2008, February). iFAR – intelligent FPGA Architecture Repository

[Online]. Available: http://www.eecg.utoronto.ca/vpr/architectures/

[33] P. P. Chen and A. Ye, "The Effect of Multi-Bit Correlation on the Design of Field-

Programmable Gate Array Routing Resources," IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 99, p. 1, October 2009.

[34] I. Kuon and J. Rose, "Area and delay trade-offs in the circuit and architecture design of

FPGAs," in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2008, pp. 149-158.

82

[35] W. Zhao and Y. Cao, "New Generation of Predictive Technology Model for Sub-45nm

Design Exploration," IEEE Trans. on Electron. Devices, vol. 53, pp. 585-590, Nov. 2006.

[36] V. Betz and J. Rose, "How much logic should go in an FPGA logic block," IEEE Des. Test

of Comput. Mag., vol. 15, pp. 10 -15, 1998.

[37] E. Ahmed and J. Rose, "The Effect of LUT and cluster size on deep-submicron FPGA

performance and density," IEEE Trans. VLSI Syst., vol. 12, pp. 288 - 298, Mar. 2004.

[38] Pico-Java Processor Design Documentation, Sun Microsystems, 1999.

[39] G. Lemieux and D. Lewis, "Circuit design of routing switches," in Proc. ACM/SIGDA Int.

Symp. Field-Programmable Gate Arrays, 2002, pp. 19-28.

[40] G. Lemieux and S. Brown, "A detailed router for allocating wire segments in field-

programmable gate arrays," in Proc. ACM/SIGDA Physical Design Workshop, 1993, pp. 215-

226.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2010

	Unidirectional Multi-Bit FPGA Architecture For Area Efficient Implementation of Datapath Circuits
	Omesh Mutukuda
	Recommended Citation

