Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2007

Design and implementation of an unstructured
overlay middleware to support MANET
applications

Mashael Saad Al-Sabah
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the OS and Networks Commons

Recommended Citation

Al-Sabah, Mashael Saad, "Design and implementation of an unstructured overlay middleware to support MANET applications”
(2007). Theses and dissertations. Paper 231.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/231?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

L 1776059

gﬁ'&\??

. OLS9
=)
DESIGN AND IMPLEMENTATION OF AN
UNSTRUCTURED OVERLAY MIDDLEWARE TO

SUPPORT MANET APPLICATIONS

By
Mashael Saad Al-Sabah

B.Sc. in Computer Science with High Honors
American University in Cairo, Egypt, 2004

A thesis
Presented to Ryerson University
In partial fulfillment of the
Requirements of the degree of
Master of Applied Science
In the program of
Computer Networks

Toronto, Ontario, Canada, 2007

© Mashael Saad Al-Sabah 2007

DPNPRERTV OF
RYERSON UNIVERSITY LIBRARY

UMI Number: EC53634

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

|

UMI

UMI Microform EC53634
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Author's Declaration:
I hereby declare that I am the sole author of this thesis

I authorize Ryerson University to lend this thesis or dissertation to other institutions or
individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis or dissertation by
photocopying or by other means, in total or in part, at the request of other institutions or
individuals for the purpose of scholarly research.

i

Acknowledgments

I would like to express my deep gratitude to my supervisor, Dr. Muhammad Jaseemuddin
for his great guidance and assistance throughout this research, never accepting less than
my best efforts.

I would also like to thank Dr. Bobby Ma for all his support.

Finally, I would like to thank my parents for their continuous encouragement.

iii

Abstract
Mashael Al-Sabah,
Design and Implementation of an Unstructured Overlay Middleware to Support
MANET Applications
M.A.Sc, Computer Networks, Ryerson University, 2007

Recently, mobile ad hoc networks (MANET) have gained an enormous popularity, which
has led to an increasing need for the development of MANET applications. Developing
MANET application, however, is not an easy task. Developers have to deal with

difficulties inherent from the wireless network environments.

In this thesis, the design of a middleware that abstracts the functionalities of an
unstructured overlay network is proposed. The main non-functional requirements that
our design tries to achieve is portability, efficiency, and usability. Portability is achieved
by following the J2ME platform specifications. The middleware has been implemented
and tested on a real time ad hoc network using different platform devices. The
performance measurements of the middleware show that it achieves its efficiency
requirements. Fi urthefmore, the middleware’s usability is validated by showing how
different applications can be designed and deployed easily on top of it. It provides a
simple MBR-based file-search and path establishment mechanisms which we have proved
to be the basis for implementing a wide range of applications, such as file sharing, ALM

and gaming applications.

iv

Table of Contents

1 Introduction 1
1.1 Challenges of Application Development 0Ver MANETSoueereremsemsensenens 2
1.1.1 NetWOrk DYNAmICScovuveurreernreensrernssesssessssesessssessssssessesssssessssssssesessssesens 2
1.1.2 Diversity Of PIAtfOrms.........cuucveerecrsceecensncsissencssesesscesescssessesesesnssssssssssses 2
1.1.3 Resource-Constrained DEVICESvv.rueeeueeeeeseneneneencsesseessnesesecssnsnssesens 2
1.2 Suggested Solutions to MANET Software Development Problem.................... 3
1.2.1 MIAAIEWATEcu.eecvneirrrreecse s s sssssssssssssssssassessssassesases 3
1.2.2 OVETIAY NELWOTKS ...t eeseeesesesssssesesessnsasssnssssscnesens 5
1.2.2.1 Structured OVerlay NEtWOTKSceeeeeeeereereereeeeseeseeeesessssnsensensessesaesasns 6
1.2.2.2 Unstructured OVerlay NEtWOIKScoeeeeeeverereeeeerereresenssessssseesssssessenesees 7

1.3 Structured Vs. Unstructured Overlay NetWOTKSccocvecucrrreerrcrersrnsnemsesssesnnns 11
L4 ODJECHIVE ..ttt sttt st sesssesensssssssasasasessssnssensossnss 11
2 Overview of Related Work and Technologies 14
2.1 Java 2 Platform, Micro Edition - J2ZME.......cccoouveeuieeieeeeeeereeseesesseessessssssssseseens 14
2.1.1 Java Networking for Small DEVICEScoevreererererererereerernssessseenesesnses 16
2.1.1.1 Peer-to-Peer NEtWOTKINGccccvvrerereererererererseresenesesssessnsesesssesssssesesens 17
2.1.1.2 TP Multicast NetWOIKING.........cecererrerreereerrnreerererersnssesesesesesesesesesesesesens 17
2.1.2 Java MUultitasking.....cccceueveeeeveeecreececeeerrcneeseeressesesessesesseesessessssseessessenne 18
2.2 Towards a Common API for Structured Peer-to-Peer Overlays.............cucue.... 19
2.2.1 Key-based ROUtING APL......cuoiiorrecerreeeereeteeeresesesenesessesessessessesessensenes 21
2.2.1.1 Data TYPES .ccueueeeruirreenereneeneerisseessssssssesassessesessssesssesessessesesssssssassssens 21
2.2.1.2 ROULING IMESSAZES....eeuerrreerererrerrerersersesessesseesesseseesesessessessessossessassassssses 21
2.2.1.3 ROULINE State ACCESS ...veuerrererrererecrecreesseeneesessenesessessessessessessessessessssses 22
222 Examples of How Applications Can Use KBRcccecvveereceeverececnennnens 24
2.2.2.1 DHT EXaMPIE....cccueerriiririrririnerenreeneessesaeesessessessesseesnessesssesssesssssseenes 24
2.2.2.2 CAST EXAMPIE....uouiiririiirieeireiinrcisnneeentsnssessesassesssssssssaesasssssessens 24
2.2.2.3 DOLR EXAMPIEcuriruiirririineinirisncsisssssesnssssssnssseseesssssssessnssssssansaens 24

3 Requirements and Design Issues 26
3.1 Non-functional Requirements for Mobile Application Middleware 26
3.1.1 POTtADILItY ... eecvereeeeererereeseerteceertetesrestesaestesteesaessesseessessessesssessensesssesssesens 26
3.1.2 EffICIEIICY «.ueeeereeneeeenerteteeereestenesesseesaestesneeseesaessssssessessesssesasesessessnsensens 26
3.2 Functional Requirements for mobile Application Middleware......................... 27
3.2.1 Assigning an Overlay Address to the Node........cocceeverreveerrecreerecrveceennens 29
3.2.2 Bootstrapping FUnNctionality.........cccccevevieerecnecnssenennecnecnesensencessnesseeneenennes 29
3.2.3 Establishing Neighbor Relations and Managing Connections.................. 32
3.24 RESOUICE DISCOVETY ..ccveieruierreecreierueesraesreessnneesseessssesssasesssesssssssssasssssssesnes 34
3.24.1 Link Coloring Scheme (LCS).....cccccceeurrurrrerrrrverrrenenrenneseessesseesssessnens 35
3.24.2 ROULNEG...ccrvuirieiniirininncisinnninteteestsesesssessesessessssssesssssessssessesssssssones 36

4 Design of an Unstructured Overlay Middleware for MANETSs 40
4.1 MiddIEWAre CONLEXL.....cceverrrerrrnrrsersensersunsnssnnsessanessassassassasssossssnssssossassssssassssans 40
4.2 Unstructured Overlay Middleware SubSystems.......ccceceeuerueecercneenerccesunscneesennne 41
4.2.1 Application-Support SubSYStemccceuvvievirerrivinriinreinininnieeeennnnn 42
4.2.2 Cross-Layer Services SUDSYSteM......cccuuecrurucevrrectensesenisennesnnseeneeneensenenes 43
4.2.2.1 Overlay-level Packetsccceeverecurnereneesursnnninccensennneseessecseesessessuesnens 45

4.2.2.2 DatabaSESc.cccvrereereenerenerenereseecieeeeeeeesesesesessssssssesesas eeteeeneeesesnans
4.2.2.3 Link Coloring Scheme (LCS)ocouueuerieueecennicseneisssesersssesesesesssens
423 Bootstrapping SUDSYStEML......c.ceueureuereerieieiece et seseseseassessesens
424 Neighbor Establishment Subsystemocoveeeenuveeeeerereseernseeesneserenenens
4.24.1 Establishing and Maintaining an Overlay Path..........ccceooeurvreemrmcnnnee

43 System Architecture and Subsystems Interaction.............ooeeueeveveveeeeveeerennnn..
4.4 Object IdentifiCatiONceveveeeeeceeeeececeeeeeeeeeeeeeseesesesesessesesessesessesesesssesessesasans
4.5 Design Models and SCENAIIOS..........c.ceueeeererereeeseresseressssseesessssesesssssesessssens

5 Evaluation and Validation of Design

5.1 Non-Functional Requirements AChi€Ved............oovvrueeueeeeureereresseesssssessssesans
5.1.1 ESE Of USE ...ucureeeeeeeeeeteteteee sttt e vevevesesssesasss s s s
5.1.2 POTability....coceuieiirienicintntreeeteeeeeesc et eesee e sesessesesssnessenesans

513 Independ

ence of underlying Ad Hoc Layer...........ccceuevueueevenceeeeeeeeeeenen.

514 EffICIBNCY ...ttt e eessessesesestsssssssesesasasseseessesaes

5.1.5 Network

FIENALY «.ovt ettt eas s e e

5.1.6 REHADILIEY......viuiteceeeeieeireree et ee s ses s naes

5.1.7 Usability

..

5.2 Middleware DEplOYMENLcuecververeecenieseneeeeeeeseesessseessesesssssessessesssesssessesens
5.2.1 Application-Level MultiCastcueueeeeeeecmemeeeeseeeeeeseseesessseeesssesen.
52.2 FAl€ Sharing.......ccvieeurereriniseennieseres et tesesesesssssesasesesesssssenees
523 Gaming or Chatting AppliCationseveceeeereeeeeeeeeeeeesessseeeeessesesens

53 Demonstration Using a Simple Data Transfer Application...............ooovn.........

54 Performance Measur€ments............cueueeeueveeceeeeceeeeeeseesssnssesssesesesssssssssenns

54.1 CPU.......
54.2 Memory.

..

..

5.5 Testing on HP iPAQ 1950cuouererereeieieeeeeieeeceeeseeessesesesesesssssss s s
5.6 Implementation Limitations..........eeeueveieeeeeeceeeeeeeeeeeeeeeseseseeeesees e
5.7 Performance Optimization using AODVcccceeueeueeeerererereeeesseeeoseeeeeeeeeeos
5.8 OverlayMiddleware and KBRc.oovuvueeeeeeeeeeenneeeeeseneseeeeseses e

6 Concluding Remarks and Future Work

References

vi

List of Tables

Table 1.1: Link Coloring FUNCHON [S]..........vuuueveeueemseeesesessseeesessesessesessesesesseseessesssesseees 9
Table 2.1 : Useful Classes from java.net Packageeeeueemeeeremersemesmeeemesssensessssnses 16
Table 2.2 : TIEr 1 INTETTACES..........cuueerrerrrsrerereesesessesssessssssases 19
Table 2.3 : Routing Messages Function in KBRe.cueueeeeeeeeseenesesemseessessssessesseses 21
Table 2.4 : Routing State AcCCESS FUNCHONSvv.eueveeeeeeeeeeeeeeeeseseeeesesesessssssessesssessasens 23
Table 5.1 : Memory allocated for Objects used by OverlayMiddleware............occuevennee. 88
Table 5.2 : KBR Functions Implemented by OverlayMiddleware.............coooevueruerrecrenee 95
List of Figures

Figure 1.1 : Middleware Layer in the application-application communication structure... 3
Figure 1.2: Overlay Network formed on top of the physical topology..........ce.eveevevererernnes 6
Figure 1.3 : Modified Biased Random Walk [5]cceecerereeernerereveeresesnesesrassesssesssaseannns 10
Figure 2.1 : J2ME PlatfOormcceiieieeeeercreeeeeceseeeceneesessessesessssssssssssssssssssessasssasssssens 15
Figure 2.2 : Client-Server Communication Sequence Diagramoceeevevererererenenens 17

Figure 2.3 : Basic abstractions and APIs, including Tier 1 interfaces: distributed hash
tables (DHT), decentralized object location and routing (DOLR), and group anycast

and multicast (CAST) [7]..ccevceuvrenrerrnrenrssssesessssssessssssssesssssesessssssssessssssessrssnssens 20
Figure 3.1 : System Requirements Use Case Diagram..........ccceceuevereeeereereereneressesesseneenns 28
Figure 3.2 : Centralized BOOtSIrapPing.........ccccereereresrrueressrreesesessssenesssssesesessssesssesessenees 30
Figure 3.3 : Distributed BOOStrappingcccccvveeererrenreereerseessessessesessessasssessesssesssssssessens 32
Figure 3.4 : Neighbor Establishment between Overlay Nodes ... 34
Figure 3.5 : Query reply over Overlay Network using the Reverse Path............ccceuneen. 37
Figure 3.6 : QUery Reply OVEr TCPcoevueeeeereeererrenennenreceeseneenessessesesssssesneesesseessessesaes 38
Figure 4.1 : System Layers DIiagrammcccocevcereerrereerensesseneseessesessessesssssessesesssessessessasses 41
Figure 4.2 : Subsystems-Layer Diagramccccceceeeerirrensinecreneenesscscsnsssssessnsssssssessssssnes 42
Figure 4.3 : Application-Support SUbSYStEM........covceirerrerrrrensesrensenseesessesssessnssnsssnsessens 42
Figure 4.4 : Cross-Layer Services SUDSYSIEIMccccvrrrerererirercseeecsenseeesssnsessnsssssasssssasses 44
Figure 4.5 1 OVerlay PaCKets.......cccevevveeeeverneeninreneeeneesesseneenessesssessesssesssssessessssosesssesssees 44
Figure 4.6 : Databases SUDSYSIEIMccevcevirerininininrinseeneniniessnsseseeeessessecssesseessesssees 46
Figure 4.7 : Bootstrapping SUDSYSIEIM......ccceuevveurreererrsursessersenesessesseesessessessssesssesessssssesses 48
Figure 4.8 : Neighbor Establishment Subsystem........cccoceeureuivucencncrecnnsinsensnsinsennennens 49
Figure 4.9 : Overlay Routing LOOP......cccovvuirirnriinieennirinisiiinissennesinesesnenessssesessessesnes 50
Figure 4.10 : Intermediate Node DiSCONNECES........coerrerinrinsinenriiisnniieniisnenesnesnesnesseesnens 52
Figure 4.11 : System ATChiteCtUrEcccccvurueeivrririnuirisinieiiinieceanessssineessessesessessesnes 53
Figure 4.12 : System Package-Use Case Diagram.........ocecvvuececrerererisnnercsessescsnssesesscanes 54
Figure 4.13 : OverlayMiddleware. AppSupport Package...........ccceueerererererereunncrenenenenenenen 55
Figure 4.14 : OverlayMiddleware.core Package.........ccecevueurueeisneeecnnineennnecnnneenennne. 56
Figure 4.15 : OverlayMiddleware.util Packagec.ccoeeueuereneeeerernirineeceeeeceecnnnen 57
Figure 4.16 : Application-Node Sequence Diagram............cceeeeeeeeeeenrensnnsnsnsnssnserenenns 60
Figure 4.17 : Join and Neighbor Establishment...........cccoeonmniieeeiia 61

vii

Figure 4.18 : Client.run() dispatches a separate thread for each peer.............cccevurrerenrnns 62
Figure 4.19 : Server.run() dispatches a separate thread for each incoming connection ... 62
Figure 4.20 : LCS Sequence DIagraml.ccoeeevereerereerenererersesessesessensssssssessssescssesesees 63
Figure 4.21 : Node.Query() called by the application Sequence Diagram..........cccececeune. 64
Figure 4.22 : File Transfer Sequence Diagram............ccceeeererereereeseeessenreseesersesscssessessssnne 66
Figure 4.23 : Path.SendData() issues a Data Packet Sequence Diagram..........ccceecevruenee 67
Figure 4.24 : Data Packet received at the Destination Sequence Diagram............ccceeu... 68
Figure 4.25 : Node.Leave() Sequence Diagram..............c.cveveverenrveererereesesssesessssesessesessases 68
Figure 5.1 : ALM AIOTItRINcoereeeeeeeeeeeeteteeecercesceteeescseenessesessesessessesesssssenes 73
Figure 5.2 : File Sharing AIGOIthIM.........ccoooiimiiieeeee ettt eeeeeeesaeeeneennns 74
Figure 5.3 : Gaming Application AIZOTithim...........ccueveveeerereerereeeerereceereeereeeneeseseseenenns 75
Figure 5.4 : SImulation TOPOIOZYcccerereerrrerrererrererererereneesnesesesessessesesesssessesessensessans 76
Figure 5.5 : Preferences Class........ccovuieeeceereecreeeeeeeneeeeressessesseessessesssessessesseessessassssnssanss 77
Figure 5.6 : Demo Application running on 10.1.1.1....ccueeveveeveeueeierireereeinreeneenesseeseeneeeens 78
Figure 5.7 2 10.1.1.1 OULPUL.....ceoueieeteeeeeeeteeteeete s et seaesssesesesesesesesesessessesenen 79
Figure 5.8 1 10.1.1.2 OULPUL.....c.ceicrerteinrireectertrenteeeesessessenesessessessessessessesessessessesssssssssons 80
Figure 5.9 : 10.1.1.3 OULPUL.....ccveeeeeeeeeeeeeesesercnereseserese s ssassesessssssesssessssasssesesease 81
Figure 5.10 : Ethereal Traces at 10.1.1.1 ...ccccoveeereeerererererereeerereeeeeeesesesenssesessensenenes 82
Figure 5.11 : Output of 10.1.1.1 when 10.1.1.2 diSCONNECEScuveereereeererrereneereeeneeneenes 83
Figure 5.12 : CPU Time per Threadccoceeeeereuerereereceeeeeeeneseesesesesssesesesssssseseseans 84
Figure 5.13 : CPU Time per Methodc.coeeeeueeeeeeeeeeeeeieeeetceeeeesseeeesseesesseesesanas 85
Figure 5.14 : Threads in the system during the 2 minutes execution of 10.1.1.1.............. 86
Figure 5.15 : Threads EXecution Details...........cceceevererrereereeeeieeenencenenesesessessescesessessesesens 87
Figure 5.16 : Memory allocated for OverlayMiddleware Objects............ccoeureeerererverennens 88
Figure 5.17 : MemOTrY (NEAP) ...cccceveeererrerrererrereeeerneesiesesesesesseeseesessessessessesssssessssssssasssnes 89
Figure 5.18 : Memory Garbage ColleCtion........cceeeeueuerereerernreeerereneiseseneseseeeseseesesesnens 91

viii

List of Abbreviations

ALM Application Level Multicast

AODV Ad hoc On demand Distance Vector

API Application Programming Interface

ARP Address Resolution Protocol

CAST Scalable group Multicast /Anycast

CDC Connected Device Configuration

CLDC Connected Limited Device Configuration

CORBA Common Object Request Broker
Architecture

CPU Central Processing Unit

DHTs Distributed Hash Tables

DOLR Decentralized Object Location and Routing

DSR Dynamic Source Routing

HP Hewlett Packard

IBSS Independent Basic Service Set

IDE Integrated Development Kit

IGMP Integrated Group Management protocol

IP Internet Protocol

J2ME Java 2 Micro Edition

JAR Java Archive

JCL Java Class Library

JVM Java Virtual Machine

KBR Key Based Routing

LAN Local Area Network

LCS Link Coloring Scheme

MANET Mobile Ad hoc Network

MBR Modified Biased Random Walk

MOM Message oriented middleware

OLSR Optimized Link State Routing

OO0D Object Oriented Design

oS Operating System

OSPF Open Shortest Path First

P2P

Peer to Peer

ix

PDA Personal Digital Assistant
RAM Random Access Memory
RAON Resource Aware Overlay Network
RREP Route Reply

RREQ Route Request

RTT Round Trip Time

SIP Session Initiation protocol
TCP Transmission Control Protocol
TTL Time To Live

UDP User Datagram Protocol

UML Unified Modeling Language
VolP Voice Over IP

1 Introduction

A Mobile Ad hoc network (MANET) is formed by mobile wireless nodes that can act as
hosts and routers at the same time. In contrast with cellular structure where a single base
station co-ordinates the link access and packet routing, no single node in MANET
performs the co-ordination, rather link access and routing are distributed. IEEE 802.11
defines Independent Basic Service Set (IBSS), which is used to form MANET. The
advantage of MANET over traditional infrastructure wireless LAN is that MANET can
be formed in any place and at anytime without the need for installing and configuring an
access point or a wireless router. However, the disadvantage of MANET is that control
of the network has to be distributed among nodes, which makes the network management
and administration tasks more complex; whereas in infrastructure wireless LANS, control
is regulated by a special node usually refereed to as an access point. With the enormous
availability and popularity of high end mobile devices, and with the widespread adoption
of these devices, the popularity of MANET has increased and has led to a growing
demand and interest in developing pervasive applications that can run on top of the ad
hoc mobile nodes. Such applications require the cooperation of the nodes to perform
distributed tasks. However, the characteristics of MANET impose many difficulties on

application development over these environments.

Application development on MANET faces challenges due to network dynamics
including ad hoc and unstable connectivity, abrupt disconnection; and due to resource
constraints including limited power and computing resources. Overlay network on
MANET is shown to be a promising approach for designing and deploying applications
on MANET [5]. In this thesis we propose a middleware for overlay network that
facilitates application design, development and deployment on MANET. The middleware
builds the overlay topology and performs a query-query reply resource discovery

mechanism on behalf of the user application.

In section 1.1, we introduce some of the challenges that application developers face when

they design and implement applications that run on top of MANETS. These challenges

have earned a great deal of concern by MANET researchers over the past few years.
Some key suggested solutions to these problems are presented in section 1.2. Then, we
discuss our objectives and approach to middleware design for MANET application

development.

1.1 Challenges of Application Development over MANETs

1.1.1 Network Dynamics

One difficulty that MANET application developers face is the dynamically changing
network topology. Since nodes are allowed to move freely, the topology of the network
changes accordingly and frequent disconnections may occur. Since management is
distributed among all the nodes forming the ad hoc network, the logic of fault
management must be examined and implemented by the developer, which would add

further complexity on software development.

1.1.2 Diversity of Platforms

Another difficulty comes from the fact that the devices used to form the ad hoc network
may be operated by different platforms, which introduces some portability issues. If an
application developer writes an application for a specific platform using a specific
programming language, the application may not work on a different platform. Example
PDA operating systems include Palm OS, Windows mobile OS, Blackberry OS, Symbian
OS, and Embedded Linux OS. Each operating system provides for developers its own set

of APIs which are specific to their own platforms.

1.1.3 Resource-Constrained Devices

Mobile devices are very heterogeneous in terms of the resources they are equipped with
like processing speed, power and memory capabilities and network interfaces. Mobile
devices vary from one to another in terms of resource availability. Devices like laptops
can offer fast CPUs and large amount of RAM and disk memory. For other mobile
devices like pocket PCs and phones, power and memory are considered gspecially scarce

resources because it is either expensive or impossible to augment these resources [20].

MANET application developers find this problem especially challenging because nodes

have to perform routing operations in addition to their work.

1.2 Suggested Solutions to MANET Software Development

Problem

1.2.1 Middleware

The term Middleware usually refers to a layer that acts an intermediate layer between
different application components, providing a more functional set of Application
Programming Interfaces (API) than the underlying platform. Mobile middleware allows
the implementation of distributed applications connecting mobile and enterprise

applications over wireless networks. Figure 1.1 depicts the middleware layer.

" Middleware APl : - Middleware API

Figure 1.1 : Middleware Layer in the application-application communication structure

The advantages of using middleware are many, most important of which are the

following:

e It allows two heterogeneous applications to work with each other because it
provides a translation layer between the two applications.

o It facilitates software development. With the use of middleware, application
developers will not need to go into the details of lower layer implementations,
rather, they can focus on developing their applications.

e It provides platform independency and portability. A middleware is often
designed so that it works as a cross-platform layer.

e It achieves location transparency. An application may communicate with other

applications across networks, independent of network protocols.

The term middleware first appeared in the late 1980s to describe network connection
management software [17]. Today, there are many categories of middleware, most

common of which are:

e Message oriented middleware (MOM) supports the communication between
distributed system components by facilitating message exchange [18]. It allows
separate, uncoupled applications to communicate reliably through the sending and
receiving of asynchronous messages. Messages are stored in a queue which can
be accessed across the network. This messaging system is very flexible because it
provides a high degree of anonymity between the message producer and the

message consumer.

e Object middleware provides the abstraction of an object that is remote yet whose
methods can be invoked just like those of an object in the same address space as
the caller [17]. It makes object-oriented principles, such as object identification
through references, inheritance, polymorphism, available for development of
distributed systems [18]. The communication between objects (client object and
server object) can be synchronous, deferred synchronous or asynchronous using
thread policies. The Common Object Request Broker Architecture (CORBA) is a

standard for distributed object computing.

Clearly, middleware is especially attractive for mobile and ad hoc networks applications.
Such applications have to deal with recurring tasks like resource discovery, fault
management, and communication handling. In [21], a survey of several research projects

related to next generation middleware systems is presented.

An example for a middleware that was developed to support MANET applications is
RUBI [4]. RUBI is a resource discovery framework for ubiquitous computing. It is
based on the idea that there are significant similarities between resource discovery in a
network and the operation of the routing algorithm since they both are concerned with the
dissemination of information about the availability and efficiency of access to resources.
¢ In areas of low mobility, RUBI uses a discovery mechanism based on a proactive
routing algorithm and resources are advertised throughout the network.
e In areas of high mobility, RUBI initiates a dynamic resource discovery using a

reactive protocol and discovers resources as needed.

Furthermore, RUBI relies on the services provided by the link layer protocol such as
802.11 but does not require a routing protocol. RUBI is based on a routing protocol, so it

can provide this functionality if needed.

Our middleware is different from RUBI in that it works independently of the routing
protocol. Any MANET routing protocol can be used. Secondly, resource discovery in
RUBI is based on announcing resources in areas of low mobility, but our middleware’s is
based on query and query reply resource discovery method similar to the ones used by

overlay networks presented in the next section.

1.2.2 Overlay networks

An approach that has been suggested to facilitate application development over MANET
is using overlay networks as viable application development architecture. An overlay
network is basically a peer-to-peer virtual network that is logically built on top of the
physical topology [1]. When a node attempts to join an overlay network, it has first to

discover other overlay peers, and then make neighbor relations with some overlay peers.

The overlay neighbors might not necessarily be physical neighbors; they can be one hop
away, or multiple hops away as shown in figure 1.2. Each overlay node can only

communicate with the overlay network through its overlay neighbors.

@ Overlay Node
O Non-Overlay Node

——— Node Connectivity

Figure 1.2: Overlay Network formed on top of the physical topology

Overlay network abstraction is especially attractive for MANET since it requires a subset
of nodes to maintain application specific states while other nodes perform only
underlying network functions such as routing. Thus, applications remain immune to the
transience and instability of the nodes that are not engaged in its execution [5]. Overlay

networks are categorized into two classes: the structured and unstructured networks.

1.2.2.1 Structured Overlay Networks
In a structured overlay network like CAN [10], Chord [11], Pastery [9] and Tapestry [12],

nodes organize themselves in a structured graph and usually distributed Hash Tables
DHTs are used as a substrate. Nodes are given NodeIDs which are populated from an ID
space. Data is placed at random peers but at specific locations in order to make the

search operation more efficient. Firstly, a hash function is used to generate keys from
content (data). For instance, Chord uses SHA-1 hash function which takes a maximum of
2% bits as input and generates a 160-bit output. The keys generated are a subset of the

ID space from which NodelDs are also distributed. The scheme of mapping keys to
nodes depends on the design of the system. For example, in the Chord architecture, the

node chosen to store the content of key K which belongs to the ID space is the one that

has a NodelD that is immediately greater than or equal to K (usually described as closest
clockwise). Such node is called the successor of K in Chord’s terminology. In Pastry,

keys are mapped to the closest node (clockwise or counterclockwise). Tapestry maps a

key to the node with the longest prefix match.

The graph of the overlay network is formed in the different structured overlay systems
because each node needs to keep track of the node whose NodelD is immediately greater
than itself, or smaller or even both. For example, in Chord, a node n keeps track of its
successor (the node which has the smallest NodeID that is greater than n’s nodeID);
therefore, nodes form a kind of a ring structure. This structure simplifies the overlay
network management since the events of a new node joining the network or an old node

leaving the network will have a complexity of O(log N)* performance [8].

1.2.2.2 Unstructured Overlay Networks

In the unstructured overlay networks like Freenet [13], Gnutella [15], Gia [6] and
Bittorrent [14], nodes are organized in random graphs. Searching for resources in this
class of overlay networks can be centralized or distributed. Napster [16] and Bittorrent
are examples for centralized-search distributed-download types of unstructured overlay
networks. In bittorrent, a client looking for a file would send a query to a server, known
as a tracker. The server would reply with the IP addresses and information needed of

other clients that are currently downloading or uploading the file.

However, centralized search introduces scalability and single-point-of-failure problems.
To solve these problems, distributed-search overlay architectures like Freenet and
Gnutella and Gia were introduced. The earlier decentralized systems like Freenet and
Gnutella used a TTL-controlled flooding paradigm to locate resources. Newer systems

like Gia use flow-controlled random walks to route queries and locate resources.

1.2.2.2.1 Gia ,
Gia is a scalable Gnutella-like P2P unstructured overlay network that is designed for the

internet. It introduces a lot of improvements over the design of Gnutella. Gia replaces

Gnutella’s flooding with random walks. A random walk is essentially a blind search in

that at each step a query is forwarded to a random node. Actually, the search protocol of
Gia biases its walks towards the high-degree nodes because those nodes have pointers to

a larger number of files and hence are more likely to have an answer that matches the

query.

When a node first starts up in Gia, it uses a bootstrapping algorithm similar to the one
used in Gnutella to locate other Gia nodes. Each Gia client maintains a host cache that
consists of other Gia nodes (their IPs, port number and capacity). The capacity of each

node is determined as a function of bandwidth, processing power, disk speed, etc.

To achieve topology adaptation, each node independently measures its level of
satisfaction which is a quantity between 0 and 1 that represents how satisfied a node is
with its current set of neighbors. A value of S=1 suggests that the node is fully satisfied.
The node tries to gather more neighbors as long as its capacity allows a higher level of

satisfaction.

To add a new neighbor, a node (say X) randomly selects a small number of candidate
entries from those in its host cache that are not marked dead and are not already
neighbors. From these randomly chosen entries, X selects the node with maximum
capacity greater than its own capacity. If no such candidate entry exists, it selects one at

random. Node X then initiates a three-way handshake to the selected neighbor, say Y.

During the handshake, each node makes a decision whether or not to accept the other
node as a new neighbor based upon the capacities and degrees of its existing neighbors
and the new node. In order to accept the new node, we may need to drop an existing
neighbor.

In order to implement biased random walks, each node forwards a query to its high
capacity neighbor as long as it has tokens from that neighbor. TTLs are used to control
the duration of the random walks and book-keeping is used to avoid redundant paths.

With book-keeping, each node generates a 16 bit random GUID and includes it to the

query msg. If a query with the same GUID arrives back at the node, it is forwarded to a
different neighbor.

Finally, Gia improves the efficiency of the search protocol by using a one-hop replication
scheme. Each Gia node actively maintains an index of the contents of each of its
neighbors. The indices are exchanged between neighbors when they establish
connections with each other and then periodically updated. When a node receives a

query, it answers based on its own content or its neighbors’ contents.

1.2.2.2.2 RAON
Resource Aware Overlay Network (RAON) [5] is a P2P system for MANET that

performs query-forwarding decision taking into account link instability and power
constraints. RAON is actually the adaptation of Gia network design for wireless ad hoc
networks. Therefore, it incorporates all the design features of Gia, but modifies the
biased random walk to incorporate dynamic factors in forwarding a query such as link

instability and node power constraints.

RAON defines the capacity of a node as a static function or CPU speed and memory.
Since bandwidth is irrelevant in wireless networks, it is removed from the definition of
the capacity of a node. RAON introduces a ranking scheme which classifies a link to a
node according to the power of the node and the link stability. Link stability can be
obtained by measuring the RTT on the link. Further, a node also receives the residual
power level of its neighbors. Based on energy and RTT, link coloring scheme function is

performed as shown in table 1.1.

Table 1.1: Link Coloring Function [5]

Link Color Indication Condition
Green Best Power is high and RTT is low
Yellow Average Energy is medium and RTT is not high
Or
RTT is medium and Energy is not low
Red Worst Energy is low or RTT is high

As shown in table 1.1, a link is colored green when energy of the other end node is high
and when the RTT is low. The other extreme color is red which is given to the link
whose other end node has a low energy and high RTT. Therefore, the rank of green
signifies a most efficient or best link, whereas a rank of red signifies a least efficient link.
Because of the dynamics of the ad hoc network, these colors are evaluated periodically
by sending probe messages to measure RTT and by exchanging power information

among neighbors.

Routing in RAON uses a modified version of the biased random walk that was originally
introduced in GIA. Modified biased random walk (MBR) algorithm, shown in figure 1.3,
tries to avoid unstable links and low-energy nodes for a better performance. MBR also
employs Gia’s flow control mechanism to control the number of queries a node sends to a
neighbor. It considers a neighbor node to be available if the node has token for the
neighbor. It then selects an available number with the highest color and capacity. It gives

color precedence over the capacity.

Algorithm MBR: Node x receives a query with qid and
determines the next hop for the query.

Let Col(i) be the color of the link to neighbor i
Let Cap(i) be the capacity of neighbor i

scolor=RED ;
scapacity =0 ;
snode =x ;

For every neighbor i such that x has not forwarded query with gid to i before {
If (Col(i) > max_color) or ((Col(i) == max_color) and (Cap(i) >max_capacity))
then {
scolor = Col(i);

scapacity = Cap(i);

snode =1i;
}
}

retum i;

Figure 1.3 : Modified Biased Random Walk [5]

Finally, the flow control mechanism at a node can assign tokens to a neighbor

proportional to the color of the link to the neighbor. For example, it can assign least

10

tokens to neighbors with RED link and more tokens to neighbors with green link. That is
actually very similar to the flow control scheme adopted in Gia, in which nodes assign

more tokens to neighbors with higher capacities.

1.3 Structured Vs. Unstructured Overlay Networks

It is important to first answer the question of which kind of overlay can perform better on
the ad hoc environment. Structured overlays which are based on DHTSs have proven their
efficiency over the wired environments. Actually, there are increasing efforts to utilize

structured overlays for wireless networks, such as [3].

However, building a DHT over MANET might not be the best option. The reason is that
in a structured overlay, a node must hold indices for the files located at other nodes in the
network regardless of its distance with them. If a node leaves the network or if a node is
disconnected, which can be fairly assumed as a usual event in wireless environments, an
expensive operation is invoked to relocate its file indices to another node. Frequent
disruption of nodes of connectivity in MANET would require full redundancy or

expensive relocation of file indices for a structured overlay network [5].

In unstructured overlay networks, the nodes do not form a logical graph and therefore,
joining and leaving the network have a smaller computational complexity. Overlay
routing can also be simplified in unstructured overlays so that it does not consume

network’s resources.

1.4 Objective

Gia’s unstructured overlay network architecture was originally introduced to improve on
the existing decentralized file sharing applications like Gnutella. RAON was introduced
later on as an adaptation of Gia for the ad hoc networks, in which decentralization is
required. A peer-to-peer overlay can provide a good substrate for creating large scale

data- sharing, streaming and application-level multicast, and other distributed

11

applications because it provides important services like topology formation and resources

discovery.

In addition to file sharing applications, overlay network abstraction can be used as a
substrate for several upper layer applications such as VoIP, multicast and multimedia
streaming, etc. However, in order to implement those applications on top of an overlay
network, each one of these applications has to deal with similar issues regarding
imﬁlementing the functionalities of the overlay network, such as joining the network,
searching for resources and files, sending and receiving data, and leaving the network,

which are tedious and recurring tasks to do.

Moreover, the concept of middleware as an intermediate layer between the ad hoc layer
and the distributed applications is also desirable and encouraged. It gives the application
developers great flexibility because it hides the lower layer implementation details. The
use of middleware is also encouraged as a base for mobile application development,

because it promotes portability and efficiency.

The objective of this thesis is to propose the design of a middleware that abstracts the
functionalities of the unstructured overlay network. With such middleware, we combine
the benefits of unstructured overlay networks in facilitating algorithm and application
design and middleware in facilitating application development and implementation.
Software development will be facilitated because developers will only have to deal with
their applications related issues, without having to worry about the lower layer details of

overlay network architecture.
Since the middleware targets ad hoc networks applications, the design of the middleware
will take into consideration the fact that the mobile devices that will be used to form an

ad hoc network will most likely by resource-constrained.

The rest of this thesis is organized as follows. In chapter 2, we present some related

concepts, work and technologies that will influence our design. In chapter 3, we present

12

and discuss the design goals and requirements of unstructured overlay network
middleware. In chapter 3, the design and implementation of the middleware is illustrated
with Unified Modeling Language (UML) diagrams, and finally, in chapter 5, we validate
our middleware by providing some examples on how different applications can be
implemented on top of our middleware. We also evaluate it by showing a demonstration

of how it works and provide its CPU and memory performance analysis.

13

2 Overview of Related Work and Technologies

This chapter is divided into two sections. The first section introduces the Java 2 Micro
Edition (J2ME) platform and some of its useful libraries which influence the design of
our middleware. The second section introduces an API for a structured overlay networks.
Although our middleware targets the implementation of an unstructured overlay networks
API, studying the structured networks counterpart API has been useful for our design. In
section 5.8, we elaborate more on which methods in our middleware implement similar

functions to some of the functions that the structured overlay API suggests.

2.1 Java 2 Platform, Micro Edition - J2ME

J2ME is a collection of Java technologies and specifications that can run on a consumer
wireless device platform (like a PDA or cell phone). Essentially, 2ME was introduced
to provide programmers with a programming language with the benefits of Java, such as
portability and familiarity, which would run on a large number of mobile devices. In
order to achieve this, J2ME is not simply a cut down version of Java, but is designed to
be modular, so as to best fit onto the full spectrum of resource availability [22]. Figure

2.1 depicts the J2ME platform components and its relationship with other java platforms.

The Java ME platform is composed of three elements:

e A configuration provides the most basic set of libraries and virtual machine
capabilities for a broad range of devices. Currently, J2ME provides two
configurations, which are namely, Connected Limited Device Profile (CLDC),
and Connected Device Profile (CDC). CLDC targets smaller devices like 16/32
bit processor mobile phones. It only requires from 128K to 512KB for J2ME
environment and applications. On the other hand, CDC targets more capable
devices like high-end PDAs or smart phones. Typically, these devices include a
32-bit microprocessor/controller and require about 2 MB of RAM and 2.5 MB of

ROM for the Java application environment.

14

* Aprofileis a set of APIs that support a narrower range of devices. These APIs
include a broad range of built-in network protocols, and extensive support for
networked and offline applications that can be downloaded dynamically. For
example, CLDC can be complemented by Mobile Information Device Profile
(MIDP), where as CDC can be complemented by the Foundation Profile (FP), or
Personal Profile (PP).

* Anoptional package is a set of technology-specific APIs. Examples for those
APIs include Wireless Messaging API, Mobile Media API, Bluetooth API, etc.

Profile Level

Configuration level

J2ME <

Figure 2.1 : J2ME Platform

The reason why Java code written according to J2ME platform can run on many devices
is because of the Java Virtual Machine (JVM) concept. A JVM is actually a software that
emulates the Central Processing Unit (CPU) of the physical computer which is

responsible for running Java programs. Java programs are built to run on a virtual

15

machine, allowing them to run on any real machine that has a JVM. Most mobile device

vendors support their products with their own implementations of JVM.

It is important to point out that Java code that complies with J2ME platform specification
will only run on a device if and only if a vendor-supplied JVM is available on the device.
Furthermore, CDC programs run on a different virtual machine than the one that CLDC
programs run on. Sun Microsystems has developed two virtual machines for the J2ME

~ platform. KVM is a virtual machine for CLDC, whereas CVM is a virtual machine for
CDC. Therefore, CDC and CLDC programs do not interoperate. A java code written on
top of CDC configuration will not run on a device if it only supports CLDC virtual
machine. The opposite is true; a CLDC program will not run on top of a CDC virtual

machine.

Because CDC configuration provides a richer set of APIs that can support implementing
more advanced applications like distributed applications, the design of our unstructured
overlay middleware will be based on CDC and Foundation Profile. In the next section,

we present some concepts and APIs supported by CDC, which influenced our design.

2.1.1 Java Networking for Small Devices

Java provides a rich and comprehensive networking interface which supports many
network protocols. Table 2.1 lists the most important networking APIs provided by the

java.net package, which CDC supports for small devices.

Table 2.1 : Useful Classes from java.net package

Class Description

java.net.InetAddress A class that abstracts an Internet Protocol (IP) address

java.net.Socket This class abstracts a client endpoint of a TCP communication
channel

java.net.ServerSocket This class abstracts a server endpoint of a TCP communication
channel

java.net.MulticastSocket The multicast datagram socket class is useful for sending and
receiving IP multicast packets.

16

2.1.1.1 Peer-to-Peer Networking

The classes shown in table 2.1 provide methods and functions that are useful for
distributed networking applications. For example, Socket and ServerSocket classes allow
the implementation of client/server TCP application, or even peer-to-peer applications.
The sequence diagram in figure 2.2 shows how a connection can be established between
a client and a server. The server first binds a listening socket to a transport address (IP
address and port number). Then the client connects to that transport address. After the
server accepts the connection, the client and server can exchange data until one of them

closes the connection.

Client Server
:Socket :ServerSocket
i 1
]
- 1: bind(IP,Port) i

2: connect(IP, Port)

3: accept()—]

4: Excha'ﬁge Data
5:close()

Figure 2.2 : Client-Server Communication Sequence Diagram

2.1.1.2 IP Multicast Networking

IP multicast is a network layer service, which is usually used with UDP as a transport
layer protocol. The java.net library supports multicast transmission through instances of
the java.net.MulticastSocket class, which extends the UDP java.net.DatagramSocket

class with multicast-specific operations, such as joining and leaving a multicast group.

17

The MulticastSocket class provides an interface to the underlying Internet Group
Management Protocol (IGMP) API which allows a host to join or leave specific multicast
groups. The MulticastSocket.joinGroup(InetAddress grp) method is used to request
subscription for the multicast group address specified as a parameter, grp. Once the
joinGroup method has been invoked, the MulticastSocket periodically transmits IGMP
membership reports, and responds to IGMP membership queries as specified by the
IGMP protocol. Finally, applications can request to leave a group by invoking the
MulticastSocket.leaveGroup(InetAddress grp) method.

2.1.2 Java Multitasking

Most modern operating systems support multitasking; they can run several processes or
programs at the same time. In reality, if the operating system utilizes only one CPU, only
one process can be executed at a time. Operating systems, therefore, solve this problem
with scheduling. In scheduling, only one process is executed at any given time, while
other processes wait for their turns. Similarly, The JVM allows an application to have
multiple threads of execution running concurrently. Threads exist within a process and

are sometimes called lightweight processes [23].

There are three main situations in which a software developer needs concurrency [24]:

e Non-blocking I/O: concurrency is important when the program performs a
blocking call. For example, if a program sends and receives data over the
network, it will need to perform a read operation from the network socket. A read
operation blocks the program until there is data available. The data could be
delayed in transit over the network. If the program is blocked, then it can not do
anything else. It would be more efficient for the program to spawn a separate
thread to perform the read operation from the network socket.

e Alarms and Timers: The program might need to set a timer so that it executes a
specific task when the timer expires. In that case, concurrency solves that

problem by allowing the programmer to simulate a timer in a separate thread.

18

* Independent Tasks: if the programmer wishes to execute two or more independent

tasks simultaneously to improve the performance of the program, then he/she will

have to resort to concurrency.

There are two ways to create a new thread of execution in java, either by extending (or
inheriting from) the java.lang.Thread, and override its run() method, or by implementing
the Runnable interface. In [23], a comprehensive tutorial on how to program with threads

is provided.

2.2 An API for Structured Peer-to-Peer Overlays

In [7], the fundamental abstractions provided by structured overlays are highlighted.
Based on these abstractions, a common API for structured P2P overlays is defined. As
the first step, a key-based routing API (KBR) is defined. It represents basic (tier 0)
capabilities that are common to all structured overlays. Actually, it is shown that KBR
can be easily implemented by existing overlay protocols and that it allows the efficient
implementation of higher level services and a wide range of applications. Thus, the KBR

forms the common denominator of services provided by existing structured overlays.

Table 2.2 : Tier 1 Interfaces [7]

DHT DOLR CAST
put(key,data) publish(objectld) join(groupld)
remove(key) unpublish(objectld) leave(groupld)

value = get(key) sendToObj(msg,objected,[n]) multicast(msg,groupld)
anycast(msg,groupld)

A number of higher level (tier 1) abstractions that can be built upon the basic KBR have
been identified, as shown in table 2.2. These abstractions include distributed hash tables
(DHT), group anycast and multicast (CAST), and decentralized object location and

routing (DOLR). Efforts to define common APIs for these services are currently

underway.

19

The DHT abstraction provides the same functionality as a traditional hash table, by
storing the mapping between a key and a value. This interface implements a simple store
and retrieve functionality, where the value is always stored at the live overlay node(s) to

which the key is mapped by the KBR layer. Values can be objects of any type.

The DOLR abstraction provides a decentralized directory service. Each object replica (or
endpoint) has an objectID and may be placed anywhere within the system. Applications
announce the presence of endpoints by publishing their locations. A client message
addressed with a particular objectID will be delivered to a nearby endpoint with this
name. Note that the underlying distributed directory can be implemented by annotating
trees associated with each objectID; other implementations are possible. One might ask
why DOLR is not implemented on top of a DHT, with data pointers stored as values; this
is not possible because a DOLR routes messages to the nearest available endpoint—
providing a locality property not supported by DHTs. An integral part of this process is
the maintenance of the distributed directory during changes to the underlying nodes or
links. Figure 2.3 depicts the basic abstractions and the KBR API.

CFS PAST I3 Scribe SplitStream Bayeux OceanStore

Tier1

Tier 0

Key—based n Layer (KBR)

Figure 2.3 : Basic abstractions and APIs, including Tier 1 interfaces: distributed hash tables (DHT),
decentralized object location and routing (DOLR), and group anycast and multicast (CAST) [7]

The CAST abstraction provides scalable group communication and coordination.
Overlay nodes may join and leave a group, multicast messages to the group, or anycast a

message to a member of the group. Because the group is represented as a tree,

20

membership management is decentralized. Thus, CAST can support large and highly
dynamic groups. Moreover, if the overlay that provides the KBR service is proximity-
aware, then multicast is efficient and anycast messages are delivered to a group member

near the anycast originator.

Most applications and higher-level (tier 2) services use one or more of these abstractions.
Some tier 2 systems, like i3, use the KBR directly [7]. Scribe [26] is an application level

multicast application that can use CAST implementation at tier 1.

2.2.1 Key-based Routing API

The KBR API is composed of two types of functions, which are, the routing messages
functions and the routing state access functions. In the next sections, we summarize the

APIs data types and the API functions.

2.2.1.1 Data Types

A key is a 160-bit string. A nodehandle encapsulates the transport address and nodelD
of anode. The transport address is the IP address and the port number. A msg type

contains application data of arbitrary length.

2.2.1.2 Routing Messages

A parameter p will be denoted as — p if it is a read-only parameter and < p if it is read-
write parameter. An ordered set p of objects of type T'is denoted by T/] p. Table 2.3

lists the functions that are used to route messages.

Table 2.3 : Routing Messages Functions in KBR

Function Return Parameters Description
Type
route void key— K, This operation forwards a

msg— M, nodehandle— hint | message, M, towards the root of
key K. The optional hint argument
specifies a node that should be
used as a first hop in routing the
message. A good hint, e.g. one that
refers to the key’s current root, can

21

result in the message being
delivered in one hop; a bad hint
adds at most one extra hop to the
route. Either X or hint may be
NULL, but not both. The operation
provides a best-effort service: the
message may be lost, duplicated,
corrupted, or delayed indefinitely.
The route operation delivers a
message to the key’s root.
Applications process messages by
executing code in upcalls which
are invoked by the KBR routing
system at nodes along a message’s
path and at its root. To permit
event-driven implementations,
upcall handlers must not block and
should not perform long-running
computations.

JSorward

void

key & K
msg < M,
nodehandle—nextHopNode

This upcall is invoked at each node
that forwards message M,
including the source node, and the
key’s root node (before deliver is
invoked). The upcall informs the
application that message M with
key K is about to be forwarded to
nextHopNode. The application
may modify the M, K, or
nextHopNode parameters or
terminate the message by setting
nextHopNode to NULL. By
modifying the nextHopNode
argument the application can
effectively override the default
routing behavior.

deliver

void

key — K
msg — M

This function is invoked on the
node that is the root for key K
upon the arrival of message M.
The deliver upcall is provided as a
convenience for applications.

2.2.1.3 Routing State Access

The API allows applications to access a node’s routing state via the following calls. All

of these operations are strictly local and involve no communication with other nodes.

Applications may query the routing state to, for instance, obtain nodes that may be used

by the forward upcall above as a next hop destination.

22

Some of the operations return information about a key’s r-root. The r-root is a
generalization of a key’s root. A node is an r-root for a key if that node becomes the root
for the key if all of the i-roots fail for i<r. The node may be the r-root for keys in one or

more contiguous regions of the ID space. Table 2.4 lists the functions that help

applications access the routing state information.

Table 2.4 : Routing State Access Functions

Function

Return Type

Parameters

Description

Locallookup

nodehandle[]

key — K,
int — num
boolean—safe

This call produces a list of nodes that can
be used as next hops on a route towards
key K, such that the resulting route satisfies
the overlay protocol’s bounds on the
number of hops taken. If safe is true, the
expected fraction of faulty nodes in the list
is guaranteed to be no higher than the
fraction of faulty nodes in the overlay; if
false, the set may be chosen to optimize
performance at the expense of a potentially
higher fraction of faulty nodes.

neighborSet

nodehandle[]

int — num

This operation produces an unordered list
of nodehandles that are neighbors of the
local node in the ID space. Up to num node
handles are returned.

replicaSet

nodehandle[]

key — k
int — maxrank

This operation returns an ordered set of
nodehandles on which replicas of the
object with key & can be stored. The call
returns nodes with a rank up to and
including max rank. If max rank exceeds
the implementation’s maximum replica set
size, then its maximum replica set is
returned.

Update

nodehandle —n
boolean—joined

This upcall is invoked to inform the
application that node _ has either joined or
left the neighbor set of the local node as
that set would be returned by the
neighborSet call.

range-

boolean

Nodehandle—N
rank = r

key < lkey

key « rkey

This operation provides information about
ranges of keys for which the node N is
currently an r-root. The operations returns
false if the range could not be determined,
true otherwise. It is an error to query the
range of a node not present in the neighbor
set as returned by the update upcall or the
neighborSet call.

23

2.2.2 Examples of How Applications Can Use KBR

Table 2.2 shows application level (tier 1) abstractions. In the following section, we cite
some examples from [7] that elaborate on how the KBR API can be used to implement

tier 1 abstractions.

2.2.2.1 DHT Example

route(K,[PUT,V,S], NULL)
This call routes the message [PUT, value, S] to the root of the key K (i.e the node that

stores the value that corresponds to the key K). The PUT function asks the receiving
node to store the value V as a corresponding value for the key K. S is a nodehandler for

the sender node.

route(key, [GET,S], NULL)
This call routes the message [GET, S] to the root of the key K. The GET function asks

the receiving node to return to the node that has the nodehandler S, the value

corresponding to the key K.

2.2.2.2 CAST Example

To implement the multicast/anycast functionality, a key is associated with each group and

a key’s root becomes the root of the group’s multicast tree.

A node joins the group by routing a SUBSCRIBE message containing its nodehandler

At the intermediate nodes which work as relays, when forward function is invoked, either
the node is a member, so it terminates the SUBSCRIBE or it inserts its nodehandler and
forwards the message towards the group’s key root if it is interested in joining the group.
Finally, a node may multicast or anycast a message to the group using group’s key. For
Multicast, the group key’s root, upon receiving the message, forwards it to its children,
but for anycast, the first node on the path of the group key’s root forwards the message to

its children.

2.2.2.3 DOLR Example
route (objectID,[PUBLISH, objectID, S], NULL)

24

This call routes the message [PUBLISH, objectID, S]. The purpose of the publish
function is to announce the availability of an object. At each hop, an application stores

the mapping between the object ID and the Nodehandler S of the sender.

The unpublish operation shown in table 2.2 walks through the same path and re moves
mappings. The sendToObj operation shown in table 2.2 delivers a message to n nearby
replicas of a named object. It begins by routing the message towards the object root
using route(objectld, [n, msg], NULL). At each hop, the upcall handler searches for
local object references matching objectd and sends a copy of the message directly to the
closest n locations. If fewer than n pointers are found, the handler decrements n by the
number of pointers found and forwards the original message towards objectID by again
calling route(objectld, [n, msg], NULL).

25

3 Requirements and Design Issues

In this chapter we will discuss non-functional and functional requirements of a
middleware for mobile applications. Following that we will discuss issues related to the

middleware design.

3.1 Non-functional Requirements for Mobile Application
Middleware

3.1.1 Portability
With the huge variety and diversity of available high end mobile devices and PDAs today

in the market, it is fair to assume that different nodes in MANET would come with
different software specifications and platforms. Therefore, a key non-functional

requirement to achieve is portability.

After careful investigation, J2ME platform is found to be the best choice for software
development that will help us meet our requirements. It provides a robust, flexible
environment for applications running on a broad range of other embedded devices, such
as mobile phones and PDAs. Applications based on Java ME specifications are portable
because they are written once for a wide range of devices. The creators of J2ME
platform, Sun Microsystems, claim that the Java ME platform is deployed on millions of
devices and supported by leading tool vendors. For more information about J2ME

platform, please refer to 2.1.

3.1.2 Efficiency
Since the middleware will most likely be used by high-end mobile devices, PDAs and

laptops, and since energy and memory are considered limited resources for such devices,
both time and space efficiency must be taken care of. The choice of implementing the
middleware in the Java programming language also helps improving the efficiency

requirements for the many reasons.

26

Firstly, Java takes care of memory because it provides garbage collection. In addition to
executing code, the JVM is responsible for managing memory, like allocating memory
from the operating system, and remove garbage objects. An object is considered garbage
if there are no more references to the object after it has been created in the heap.

Deallocating unused objects is very important especially for small devices so that other

applications can utilize the deallocated memory.

Multithreading enables concurrent execution of several threads within the same program.
Thus, it is a convenient way to decompose large programs into relatively independent
smaller tasks and increase the overall efficiency [18]. It is an important requirement for

efficient distributed peer-to-peer applications. Java has support for multithreading.

3.2 Functional Requirements for mobile Application Middleware

After studying the existing unstructured overlay networks such as Gia and RAON, the
common functional requirements that the unstructured overlay middleware must provide,

can be highlighted as follows:

1. An application that runs on top of the overlay middleware will be represented as a
single overlay node. One or more nodes may be hosted by a single physical host.
With the aid of the middleware, the application shall be able to learn its assigned
overlay address from the middleware. The overlay address is generated by the
middleware. It is composed of two parts, a transport address (IP and port) and a
node ID. The overlay address must be unique across the overlay network.

2. The middleware shall perform a bootstrapping functionality. Before the node can
join the network, it must first learn which nodes in the MANET are actually
overlay peers. It must also announce to other nodes about its willingness to join
the overlay.

3. The application shall be able to ask the middleware to join the overlay network.

After the middleware learns which nodes in the MANET are overlay peers, it

27

starts communicating with them to establish a neighborhood relationships. It
must also be able to monitor and manage its links to its néighbors.

4. The application should be able to specify to the middleware, the maximum
number of overlay neighbors it can have at a time. The overlay node is
considered to be satisfied if its number of neighbors is equal to the maximum
number of neighbors it can have.

5. The middleware should provide the application with a means to route an
application-layer message to an overlay peer, whether or not the address of the
destination overlay peer is given.

6. The middleware should allow the application to search for resources such as files
or people in the overlay network.

7. The middleware should allow the application to leave the network without

disrupting the overlay network.

Return Overlay
Address
@
Send Data
Query Network
Resources
Download File

Figure 3.1 : System Requirements Use Case Diagram

Application

Figure 3.1 shows the system requirements use case diagram. In the coming sections,
each of these functional requirements is examined thoroughly and then the suggested

implementation of each of these functional requirements is presented.

28

3.2.1 Assigning an Overlay Address to the Node

An overlay network is constructed by end hosts, each of which runs an overlay protocol
to communicate with other overlay nodes. An overlay node represents an application that
runs on top of the overlay middleware. Therefore, one or more overlay nodes can be

hosted by a single physical host.

The first service that the middleware is expected to provide its user applications with is
assigning them with overlay addresses. An overlay address could be a combination of
the transport address and a node ID. The node ID can be assigned to the application
randomly. The transport address can be the IP address of the physical host and a port

address that an application chooses to set.

3.2.2 Bootstrapping Functionality

Bootstrapping is a key service that the application expects from our middleware. In order
for the node to join the net.work and build the overlay topology, it must first learn about
the existing overlay peers. The node must also announce its availability for other nodes
in case it is willing to join the network. There are several ways by which bootstrapping
can be implemented; all of these ways can be categorized as either centralized or

distributed.

Centralized bootstrapping can be implemented with the aid of a server node that is known
to all other nodes. For example, the server node can announce itself to other overlay
peers by broadcasting a message to the overlay network. When a node wants to join the
overlay network, it will first contact the server node. The server node will store the
overlay address of the newly joining node and will send it the list of existing overlay
nodes that are interested in making neighbors. The node can then select from the list the

peers it wants to make neighbor relationships with.

Figure 3.2 depicts a centralized bootstrapping mechanism. When node E attempts to join

the overlay network, nodes A, C and D are already overlay neighbors. Nodes A and C

29

are connected to each other through the ad hoc layer (Node B). Node D announces itself
to the ad hoc network as a bootstrapping server periodically. When node E learns about
D, it sends a request to join the overlay network to D. Then, D replies with the list of
unsatisfied overlay peers, for example, A and D. Node C does not appear in the list

because it is satisfied with the number of neighbors it has.

Ad HoeNode B Overlay E

Overlay Node C

Figure 3.2 : Centralized Bootstrapping

A problem that rises with the centralized bootstrapping approach is how to select the
server. If the server was chosen to be an overlay peer, then this will give birth to other
problems. Firstly, how is the server node elected? It is true that algorithms similar to the
ones used by OSPF [42] routers to elect a designated router can be used, but such
algorithms will introduce ﬁirther complexity which will exhaust small device resources
like memory and processing power. Furthermore, such algorithms will require the nodes
to exchange excessive traffic for the election process, which can consume the network
bandwidth.

30

Another problem that is introduced with the centralized approach is the single-point-of-
failure problem. If the server node fails, then newly arriving nodes can no longer join the
network. Even if a backup server node exists in the network, there are no guarantees in
ad hoc networks that a node will not disconnect at any time. Alternatively, the server
node can be a fixed server on the internet, but with this approach, the advantage of the ad

hoc network is lost because forming the overlay network would be conditioned by having

internet accessibility for the ad hoc nodes.

A better approach is to implement a distributed bootstrapping. When a node wants to
become a part of the overlay network, it can multicast to other overlay peers a joining
message, that contains its overlay address, to let other nodes know about its willingness
to make neighbors. If there are other unsatisfied overlay nodes in the network, then they
can contact the newly joining node to make neighbor relations with it. When the newly

joining node becomes satisfied, it will stop announcing itself to its overlay peers.

Figure 3.3 depicts how distributed bootstrapping takes place. Node E, simply announces
itself to the overlay peers. In the meantime, unsatisfied overlay peers like Node A also
continue to announce themselves periodically. After the unsatisfied nodes learn about
each others add;esses, they can communicate through ad hoc in order to establish

neighbor relationships with each other in a pure distributed manner.
The advantage of this approach is twofold. Firstly, it is totally distributed, so nodes do not

relay on a server to get them connected to the overlay. This in turn solves the single-

point-of-failure problem that is inherent from relaying on servers.

31

Oz J-
g “x

Overlay Node C

Figure 3.3 : Distributed Bootstrapping

Another advantage of this approach is that it achieves some degree of locality-awareness.
That is, a node will most probably establish neighbor relations with its physically closest
overlay peers first. The reason is that the physically closer overlay peers are most likely
the first to hear the newly joining nodes’ announcements. It is desirable for overlay
neighbors to be also physical neighbors because the communication cost between overlay

neighbors will be significantly decreased.

3.2.3 Establishing Neighbor Relations and Managing Connections

An overlay network, by deﬁnitioh, involves peer-to-peer communication. Peer-to-peer
means that one peer acts as a client and contacts the second peer, which acts as a server
that is waiting for incoming connections. When a node performs the distributed
bootstrapping discussed in the previous section, the node will discover overlay peers and

will make itself discovered by them. Thus, at any instance of time after bootstrapping,

32

the node can connect to overlay peers, or expect peers to connect to it simultaneously, for
the purpose of neighbor relations establishment. The maximum number of neighbors an

overlay node can have should be specified by the user application.

Therefore, to perform the neighbor establishment and connection management
functionality, the node must have two components-- a client and a server. The client gets
the addresses of the overlay peers that are discovered by the bootstrapping functionality.
It can then connect to them using TCP connections. On the other hand, the server listens

on a port for incoming connections from other peers.

The sequence diagram in figure 3.4 illustrates the connection establishment mechanism.
Node B’s client first connects to node A’s server and requests neighbor establishment.
Node A checks if it is unsatisfied and if node B is not a neighbor. Since both conditions
are true, node A’s server returns an Accept message to node B’s server. Similarly, node
B’s client sends a request to node C’s server. Before C’s server sends a reply, node C’s
client sends a request message to B’s server. Since node B is not node C’s neighbor yet,
node C’s server sends an accept message to node B’s client. Finally, node B’s server
sends a deny message to the pending request that was sent in order for node C’s client to

close the connection.

After the neighbors relations are established. It is important to have the client and server
components monitor and manage the connections. Actually, both components have to
perform similar tasks such as forwarding queries, or replying to overlay control
messages. Therefore, we can group the client and server components to be under a

connection manager subsystem.

33

Overlay Node A Overlay Node B Overlay Node C

1 1 . , ' ' :
A - n n L s
1: Request
2: Accept
3 : Request
-J _,J 4: Deny
: g | | i i

Figure 3.4 : Neighbor Establishment between Overlay Nodes

3.2.4 Resource Discovery

Most of the applications on overlay networks need to search for resources. In structured
overlay networks, the nodes form an overlay logical graph which gives them a level of
topology-awareness. Moreover, each node has an overlay routing table. This gives them

a degree of knowledge of where a resource may be located in the overlay.

On the other hand, nodes in unstructured overlay networks do not have that knowledge.
Many unstructured overlay system designs, such as Napster and Gnutella, suggested the
use of central servers to search for queries. In addition to the scalability and the single-
point-of-failure problems introduced with the use of central servers, the idea of a central
server that has to be always available for an ad hoc network is pointless since ad hoc

nodes are expected to disconnect at any time.

Therefore, searching for resources has to be done blindly. Flooding the network with
search queries is an example of blind search, where the query is propagated to all
neighbors within a certain radius [30]. However, flooding behavior is especially hostile

to wireless ad hoc environments since it consumes a lot of bandwidth. Flooding can also

34

raise some scalability issues as the network grows. Finally, flooding-based techniques

are effective for locating highly replicated items, but they are poorly suited for locating
rare items [2].

Random walk is another well-known technique, which forwards a query message to a
randomly chosen neighbor at each step until the item in question is found [30]. RAON
suggests a blind search mechanism based on Modified biased random walks (MBR).
Simulation results presented in [5] show that query success rate, when the number of
peers is around 30, is around 90%. The success rate degrades to 80% when the number
of peers increases to 50. In the worst case scenario, like when the network is highly
dynamic, success rate varies from 70% to 60%. Hence, MBR al gorithm can be

implemented in the middleware to meet the routing and resource discovery requirements.

In order for the unstructured middleware to implement an MBR algorithm similar to
RAON?’s, a Link Coloring Scheme (LCS) needs to be implemented as well. LCS is used
to categorize the links to neighbors according to the power of the neighbor and the link
stability. Table 1.1 shows how the link coloring function works. MBR actually bases its

decision of routing on the colors that LCS assigns to the links to overlay neighbors.

From the discussion above, our unstructured middleware has to provide an MBR
functionality that is also based on LCS functionality. Such functionalities will not
interact directly with the user program, but they will be used in order to discover

resources or route data for the user application.

3.2.4.1 Link Coloring Scheme (LCS)

Since LCS is a function of round-trip-time (RTT) of a link to a neighbor and the power
level of that neighbor, our middleware must provide an LCS functionality to
communicate with the neighbor in order to measure RTT and power. Since the overlay
middleware establishes TCP connections with neighbors, the middleware can simply use

the same connection to measure RTT and query the neighbor for its power level.

35

LCS can be implemented by two ways, which are namely, reactive or proactive. In the
reactive approach, LCS colors the links to neighbors when the middleware needs to make
an MBR decision. That is, it communicates with all of its neighbors to measure RTT and
power only when it has data to route. On the other hand, in the proactive approach, the

LCS component periodically measure RTT and power from the neighbor.

The advantage of the reactive approach is that it saves more bandwidth when compared
to the proactive approach in which communication with the neighbors is required on a
periodic basis. However, we could argue that a proactive approach is more efficient
because it provides a faster response. MBR will not have to wait for the LCS component
to communicate with all of its neighbors and wait for their responses. Rather, links will

be already colored whenever the middleware needs to execute MBR.

Secondly, the middleware can be designed so that the application developer can set how
often LCS is executed depending on the requirements of the user application. For
example, if the application only routes data occasionally, the LCS proactive execution

periods can be made larger than if the application needed to route data more often.

3.2.4.2 Overlay Routing

Routing is invoked in one of two states. The first state is the one in which the
middleware needs to route data for the user application. The second state is when the
middleware receives from a neighbor an overlay query or data that is destined for another
overlay peer. In both cases, the middleware will route the overlay traffic to the next hop

which is its best neighbor.

One issue we have to consider when we talk about routing is whether our middleware
should have an overlay routing table or not. Obviously, when a node first joins the
network, it has no clue where the resources it is looking for are located, but as it starts to

search for them, it discovers the paths to some of the network resources.

36

For example, say that the application needs to send data periodically to a person in the
network. Every time the application asks the middleware to send data to a specific
person, MBR forms a random path depending on the colors of the links at each hop.

Because of the randomness, there is a probability that data does not arrive to the

destination every time.

Query

—

Query Reply
-

Overlay
Link

Figure 3.5 : Query reply over Overlay Network using the Reverse Path

Alternatively, the middleware can save in a cache the information of the next hop, the
previous hop, and the status of the path. Saving the previous hop can help the destination
send data to the source through the reverse path. When the source receives the response
from the destination, it can set the status of the path to ready, meaning that the
middleware can continue to use the same path to the destination. The advantage of this

approach is that it increases the middleware’s reliability and responsiveness.

Actually, saving the information can improve the responsiveness and reliability of the
whole overlay network. In figure 3.5, node A is looking for a resource X in the overlay,
so it sends out a query for the resource X. The query travels from A to B to C and finally
to D where X is located. At each hop in the path, each node saves in a cache, the source

address of the query, the previous hop, the queried resources X, and the next hop it used.

37

When the query arrives at D, it sends out a query reply through the reverse path to the
source of the query, A. Each hop, upon receiving the query reply, sets the status of the
path to true so that it can use it for the future for other X queries. Now say that node E is
looking for X, if its query hits any node that participated in the path between A and D, E’s
query could be routed through the correct path.

-~
-
P
-

Overlay
Link

Figure 3.6 : Query Reply over TCP

The advantage of establishing the overlay path is that its formation is based on the best
links at each hop in terms of power level of the next hop and its RTT. Secondly, some
applications require the establishment of overlay paths. For example, an application level
multicast application needs to establish overlay paths in order to build a multicast tree.
Furthermore, an overlay reverse path is shown to perform better for some applications
like file download in networks like CAON [44] because the reverse overlay path is less

congested than the shortest TCP path between two overlay nodes.

The disadvantage of using it is that in ad hoc, intermediate nodes in the path are not
guaranteed to be available all the time. For example, in figure 3.5, after B forwards the
query to C, it gets disconnected. A problem occurs when the query reply arrives at C
from D. C will have to route the query reply randomly towards the source, and the

response might not reach the source.

38

For this reason, communication over overlay might be undesirable for the application
after the destination is discovered. Another approach is shown in figure 3.6 , after the
query arrives at the destination D using MBR, D can then rely on the TCP layer to
connect to the source of the query, A to send it a query reply. To accommodate for
different requirements that different applications need, our middleware should give the

application the flexibility of choosing whether to use the reverse-overlay or TCP path

after the resource has been discovered.

39

4 Design of an Unstructured Overlay Middleware for
MANETs

In this chapter, we discuss the design of our unstructured overlay middleware. The
purpose of our proposed design is to meet the functional and non-functional requirements
that were discussed in the previous chapter. Since we will be developing in java, our
design steps will be influenced by the Object-Oriented Design (OOD) concepts. In OOD,
objects are abstractions of real-world or system entities. They allow us to express system

functionality in terms of object services.

In order to carry out the system design process, we proceed with the following steps, as
suggested in [25]:

e Define the context of our system.

e Design the system architecture.

e Identify the principal objects in the system and group them into packages.

e Develop design models and show scenarios of how objects interact with each

other.

4.1 Middleware Context

The aim of our middleware is to implement the overlay layer, and provide an interface to
a wide range of ad hoc network applications. Figure 4.1 depicts the system layer model.
Our middleware resides between the application and the network layers. It implements
the application-support layer and the overlay layer and it may depend on the ad hoc layer.
For example, the ad hoc layer could provide an interface to retrieve some information
needed for the operation of the overlay layer, such as RTT of a link and power level of an_
ad hoc peer, from the underlying network layer. The network layer can be any ad hoc
routing protocol which supports multicast. A user application will be added on top of the

application-support and will only interact with its simple interface.

40

The overlay layer carries the core of the middleware and implements the logic of the
unstructured overlay network and its services, such as bootstrapping, establishing
neighbors, routing, and overlay network resource discovery. In the next section, we

identify the different subsystems in our middleware based on these services.

Middleware <

Figure 4.1 : System Layers Diagram

4.2 Unstructured Overlay Middleware Subsystems

At this step, we can map each service our middleware must provide to a subsystem.
Figure 4.2 shows the possible subsystems the middleware can have. Application-support
subsystem can be thought of as an implementation of the application support layer.
Likewise, neighbor-establishment and bootstrapping subsystems correspond to the
overlay layer. Services subsystem can be considered an implementation of a cross-layer

that provides services to the other two layers.

In the next few sections, we further elaborate on the components of each subsystem. The

components could be services that a subsystem provides, such as LCS, or they could be

41

abstractions of entities that exist in the overlay network, such as Node, Neighbor and

Peer.

vaui

T

Neighbor-Establlshmentf

'Provides an hterface - S rdsubsyStemy st (Applicatnon
to appﬁcatlons : E}Appllcatio-Suppor \Ejpport Layer I
_—.’"‘ l
; t\"'\
- i «Lisen»

+
[]
iy
%
s
1

Provides different =
services and utilities to

‘

connectlons &
:manages them

L L e——

i Establishes nelghbor %

other subsy'stems

' Provides overlay
- peer discovery
5 service

§
.7

S S S

H

Figure 4.2 : Subsystems-Layer Diagram

4.2.1 Application-Support Subsystem

5\1‘3’4 K SFECIES

»u«m.?;’}*«SLbSYStem»

f&'”“*’fftﬁﬁg GO .
" &]Node '{]MessageHandIer ‘

Application

Figure 4.3 : Application-Support Subsystem

The application-support subsystem shown in figure 4.3 is the only subsystem in our

middleware which interacts directly with the application. It provides an interface to the

42

applications for the underlying unstructured overlay layer. It is mainly composed of three

components, which are namely, Node, MessageHandler and Path.

The Node component abstracts a node in an unstructured overlay network. It provides the
functionalities which an overlay node is capable of, such as getting an overlay address,
joining the network, searching and locating resources, such as files, returning a path to a
resource on the network, and leaving the network. Typically, each application is
represented by a single node. The Node component generates a random 1D for the

application. Therefore, any application in the overlay can be identified by its NodelD,
and host IP address.

The MessageHandler component is provided by the user application and is registered
with the Node component. It is invoked by the overlay layer when an application-level
message is received. It actually gives the application a means of communicating with
other overlay nodes at the application-level. MessageHandler is also triggered when the

overlay layer needs to report errors and exceptions to the application.

The Path component abstracts a path to a resource on the overlay network. After the
application issues a query to a file for example, the overlay layer proceeds with the
resource discovery functionality. An overlay query packet is forwarded, and if the
resource is found, a query reply would arrive. The application might want to use the path
traversed by the query and query reply to send and receive data to and from the
destination of the file using the same path. Furthermore, the application might wish to
perform some functions on the path, such as refresh the path or measure its RTT. The

Path component is returned to the application through the Node component.

4.2.2 Cross-Layer Services Subsystem

As its name implies, this subsystem, depicted in figure 4.4, provides different services to
the other two layers. The services include providing the other layers with storage
databases. Other useful utilities that the system needs is generating overlay packets,

caching query routing information and allowing global preference configuration for the

43

whole system. In the next three sections, we further discuss the design of three important
utilities that this subsystem must provide, which are namely, packet, databases, and LCS

components.

AIKZ’." i E,,r .;tw. =3 &54“ 3

" g3 Databases

dia st "",

i T kit by oA Es
¥ Prefereénces

Overlay Join Packet

Neighbor Establishment Request

Neighbor Establishment Reply

LCS Query packet

LCS Query Reply

LCS ACK

Feedback

Data Packet

Overlay Query Packet

Overlay Query reply

Urgent Data Packet

Figure 4.5 : Overlay Packets

4.2.2.1 Overlay-level Packets

In order for overlay nodes to communicate and understand each other, it is clear that a

common language must be defined between them. The packets component is essential

for creating overlay-level packets (shown in figure 4.5), which are:

Overlay join packet: when an overlay node receives this multicast packet, it
understands that the sender is looking for neighbors. Therefore, this packet only
carries its sender’s overlay address.

Neighbor establishment request packet: when an overlay node receives this
packet, it understands that the sender is willing to establish a neighbor relation.
This packet carries the capacity of the physical host of the sender overlay node.
Neighbor establishment reply packet: sent when a node receives a neighbor
establishment request packet. The reply could either be “Accept” or “Deny”. If
the reply is accept, it will carry the capacity of the physical host of the sender.
LCS query packet: Sent to a neighbor in order to measure the RTT of the link to
that neighbor, and also to request the neighbor’s power level. This packet contains
the sender’s host power level.

LCS reply packet: sent to a neighbor as a reply to the LCS query packet. It carries
the sender’s host power level.

LCS ACK packet: sent to a neighbor to acknowledge the receipt of an LCS reply.
Resource query packet: sent when a node is looking for a resource in the overlay
network. The query packet sets up a path between the source and destination.
Resource reply packet: if the resource query packet arrives at a node that has the
resource, the middleware generates a resource reply packet towards the source of
the resource query packet. This packet sets up the reverse path from destination to
source.

Data packet: issued from source to destination after a path has been set up by
query and query reply packets.

Error feedback packet: issued by the overlay layer for path maintenance and to

report errors and problems to the MessageHandler component.

45

o Urgent data: delivers a message to a node which has a specific file. Therefore, it
does not require sending a prior query packet for path setup. It is also TTL

controlled and not dropped when a loop occurs.

4.2.2.2 Databases

In addition to Node, there are other key entities in the overlay network, like Neighbor,
Peer and File (or Resource). Peer abstracts an overlay network peer. An overlay peer is
an ad hoc node that runs an instance of our middleware program and is not necessarily an
overlay neighbor. Neighbor entity abstracts an overlay network neighbor. Finally, a File
component abstracts a file or a resource in the overlay network. A Node can have zero or

more File, Peer or Neighbor entities. Those entities are shown in figure 4.6.

- t» 7
:jNelghbor

Figure 4.6 : Databases Subsystem

The databases subsystem is important to store, delete or search for peer, neighbor or file
information. The databases subsystem also provides a means by which the application-
support, the bootstrapping and the neighbor-establishment subsystems can communicate
and cooperate with each other. For instance, after the bootstrapping subsystem discovers
an overlay peer, it adds that peer information to the PeerDB component. Once the
neighbor-establishment subsystem learns about the newly added peer, it retrieves its
information from PeerDB, connects to it and sends it a neighbor establishment request

packet. If the peer accepts, then its information will be added to the NeighborDB.

46

4.2.2.3 Link Coloring Scheme (LCS)

For every pair which has established neighbor relationship, one of them is considered to
be the client side of the connection, while the other is considered the server side. Instead
of having an LCS component associated with the two sides of the connection, a case in
which the two parties will send LCS query packets and replies, our system is better off
when only one of the two sends the LCS queries. In our system, triggering LCS is only

associated with the server side of the connection.

Since the LCS component implements a functionality that is performed periodically, it
will be associated with a timer, which when it expires, LCS component performs its task,
and goes back to wait for the timer’s expiry. In java, periodic operations can be
implemented by extending (or inheriting from) the java.lang. TimerTask class, and

implementing its run() method. The operation of LCS proceeds as follows:

e The LCS component at the server side saves the current time stamp, and then
sends an LCS query packet, which contains the power level of its physical host.

e The client retrieves the power level from the LCS query and saves it. It also
takes the current time stamp and sends out an LCS reply packet, which contains
its own power level.

e When the server receives the LCS reply, it retrieves the power level of the
client’s host. It then calculates the RTT by subtracting the current time stamp
from the previous one. Finally it sends an LCS ACK to the client.

e The client calculates the RTT of the link to the server as well by subtracting the
time stamps.

e Both client and server save a number of consecutive RTTs so that they can
measure the average RTT value, on which they base, along with the power, the

color of the link.

47

4.2.3 Bootstrapping Subsystem

Figure 4.7 : Bootstrapping Subsystem

One of the functional requirements that our system has to support is a distributed
bootstrapping service. Each node announ(;es itself to its overlay peers, and it also receives
their announcements. Therefore, the bootstrapping subsystem will have two components
as shown in figure 4.7, a client and a server. The client is responsible for multicasting
overlay join requests to its peers. The Server’s duty is to listen for incoming overlay join
requests sent by other overlay peers. Multicasting is supported in java through the

java.net.MulticastSocket API, which we have discussed in section 2.1.1.

In order for the bootstrapping subsystem to operate properly, it needs support from the
underlying ad hoc layer. The ad hoc layer should have a routing protocol with a multicast
support. Alternatively, a small program can be added to non-overlay ad hoc nodes to

propagate the multicast packets across the network.

4.2.4 Neighbor Establishment Subsystem

Because neighbor establishment is also distributed, the corresponding subsystem is
composed of two components, a client and a server (as shown in figure 4.8). The client
component is responsible for establishing the TCP connections, while the Server
component is responsible for listening for incoming TCP connections. The Connection
Manager component is in charge of monitoring the connections established by client or

server and managing them.

48

«usey \‘«use»
,’l \‘
T PR T B ARG
S A (X4 ompon__‘ W
'ﬂ Chent ij Server

Figure 4.8 : Neighbor Establishment Subsystem

The Connection Manager component also performs overlay routing and handling of
overlay packets. For example, if a resource query packet is received by the client or
server, the connection manager either generates a resource query reply or it forwards the
resource query to the next hop. This means that client and server components heavily rely

on the connections manager, as it performs tasks for both of them.

Another important task that the connection manager is in charge of is setting up an
overlay path between source and destination and maintaining the path. In the next
section, we discuss the mechanism by which paths are established and maintained by the

system.

4.2.4.1 Establishing and Maintaining an Overlay Path

Because the destination is unknown to the source when a query packet is sent, locating
the destination starts with a blind search, which has to be done on top of overlay. On the
other hand, when the query packet arrives at its destination, the source of the query will
be known and the query reply can be sent over TCP or UDP. However, sending a reply
over overlay has its advantages as well, so an application might need to keep all

communication at the overlay level.

49 PROPERTY OF
RYERSON UNIVERSITY LIBRARY

To achieve this requirement, our middleware should allow the source of the query or data
packet to specify its preferable layer of communication. In our design, this information is

indicated to the destination in the last field of the query packet (as shown in figure 4.5).

When the application needs to send data to a specific node in the overlay, it first has to
establish an overlay path to that node. The application may not know which overlay node
exactly it wants to communicate with, but it knows initially that its target node has a
specific file, X. The source node then sends a query packet similar to the one shown in
figure 4.5 with a sequence number. The packet then is handed to the overlay layer, which
performs MBR to find out which neighbor is the next hop for the packet. Before sending
out the packet, it saves its information in the cache, such as, the source IP and ID, the
next hop calculated, the sequence number, and the current time stamp. Every hop, upon

receiving the query, caches its information before sending it to the next hop.

Figure 4.9 : Overlay Routing Loop

Because the next hop calculation is based on MBR, a loop such as the one shown in
figure 4.9 could be created. To solve this problem, if a query packet hits a node which it
has previously visited, the node simply forwards the query packet to a different neighbor.
The node keeps track of all the neighbors to which it forwards the query. If the node has
already sent the query to all of its neighbors, it drops the query. For example, in figure
4.9, A forwards the packet to E.

There are other scenarios in which the overlay path establishment could fail. A node
could receive a query, but disconnect before it forwards it to the next hop. Another case is
one in which a node fails in the path before a query reply arrives at the source. We solve
these problems by allowing the application to indicate the number of transmissions it
requires the middleware to perform for a specific query. The middleware issues a query
Iﬁacket and waits for a time duration, which depends on the size of the overlay network,
before it sends the subsequent query packets. The time duration should typically be equal
to the Round-Trip Time (RTT) of the longest loop-free path from the source to any other

node. When a new query packet is generated, it will have a different sequence number.

When the query packet arrives at a node that has file X, the overlay layer generates a
query reply packet and sends it to the source using the reply method desired by the
source. If the reply method specified is TCP, the destination establishes a TCP
connection to the source and sends it the query reply. If, however, the method required
was the overlay reverse path, every node along the path uses its cache information to

forward the query reply towards the source. They also record the destination information.

Only when the query reply packet arrives can the source exchange data with the
destination. Any end can issue a data packet to the other end of the path. Data packets
refresh the path, as each node in the path takes a new time stamp whenever the data
packet traverses it. When the data packet arrives at any end, its message part is passed to
the MessageHandler component, which is implemented by the application and registered
with the middleware. If data packets exchange stops, the cache entry of the path expires

and is no longer useable.

A problem occurs if a node in the intermediate path disconnects. For example, in figure
4.10, node S sent a data packet to D. Before D’s reply reaches S via the reverse path,
node B disconnects. The problem is that not only the path to S is lost, but also other
nodes in the path, such as A, still have stale information of the broken path until the
information expires. This means that if S keeps sending data packets, it will refresh the

invalid information stored at A’s cache even though they will not be delivered correctly

51

to D. We solve these problems by sending an error feedback packet from the node prior

to the disconnected node towards the sender of the data packet.

Query

—_—
Query Reply
_9

Overlay
Link

Figure 4.10 : Intermediate Node Disconnects

For example, when C discovers the failure of B, it issues an error feedback packet
towards D that removes the stale cached routes from the nodes traversed. When D
receives the feedback packet, it understands that the initial established path no longer
works, a situation in which S has to send a new query packet to establish a new overlay

path.

Feedbacks are important because they allow the system to recover in case paths fail. They
are also important because they involve the application in solving the problem. A

feedback always causes the MessageHandler component to be invoked.

4.3 System Architecture and Subsystems Interaction

The diagram in figure 4.11 depicts the overall system architecture which is composed of
all the subsystems we discussed in the previous section. The diagram shows how the
components of different subsystems interact with each other. The application only

interacts with Node, MessageHandler and Path components. Node acts as an intermediary

52

between the application and the underlying subsystems. When the application asks the
Node to join, the Node allocates memory for the databases and then it starts the

bootstrapping and the Neighbor establishment subsystems.

£ Application-Support
. ¥ :é"""«“":“ —““‘c ~-"vt:‘f“‘*
T . ¥Node ;. IIMessageHandler

¢ $]packet —;']PeerDB

Application
. “usen
“usen s

- wsubsystemm i 3 Cross-Layer Services , £ Neighbor-Establishment
1 Bootstrapping : | pre—— S X
N : : (Cg‘[mtj : :.\70‘..',.4_:;:‘., ""‘y‘:’“'?‘;;:’:\: ‘,I, .:(. rtumants “w v .t;ﬂ:.,:?'“(‘_
i mjtadhe £4Databases . .._:_j_ncf:qul‘,“" nager |

lases, Fammorais [<components | [fecomponente] P I

: ! ZIFleDB - ; w“ser ' eUse»

M T RS
Fecomponents| [acomponents |

JER—— T ompenents Lo ' Dsever | fctent

* scomponent» NeighborDB C ‘
Jws o ﬂ . T

Figure 4.11 : System Architecture

When the application needs to search for a file in the overlay network, the Node
component generates a resource query packet and passes it to the Connection Manager
component to forward it. The Connection Manager also performs routing when Client
and Server receive resource queries from their overlay connections. Finally, both
bootstrapping and neighbor-establishment subsystems will use the databases subsystem
to store the overlay peer and neighbor information. Node also interacts with FileDB to
retrieve information about the queried files and resources. When a resource is found, its

destination is updated in FileDB. Then, the application can retrieve the discovered Path

from the Node component.

53

4.4 Object Identification

Having the overall system architecture diagram deduced in the previous section, object
identification process can be carried out easily. We clearly need to associate an object
with each component or entity, which provides a service, in our system. Firstly, the

middleware objects are divided into three packages as shown in figure 4.12.

et ar

Application

e ’ P
wusey” “yse»
¢ & ause» AN

¥
‘

Figure 4.12 : System Package-Use Case Diagram

OverlayMiddleware.AppSupport implements the application-support layer of our
middleware and contains object classes that provide an interface to the user application.
OverlayMiddlewar.core implements the overlay layer and contains object classes that
implement the bulk of the overlay layer. It combines the functionalities of the
bootstrapping and the neighbor-establishment subsystems. Finally,
OverlayMiddleware.util contains object classes that provide utilities to the other two

packages.

There are three classes in the OverlayMiddleware. AppSupport, shown in figure 4.13,
which are namely, Node, MessageHandler and Path. A Node object abstracts a node in an
overlay network. It provides applications with a list of methods such as Join, Leave,
Query, Download, ReturnPath and SendljrgentData. When an application instantiates a
new Node object, it must specify the maximum number of neighbors it can have at a

time. This value is passed by Node to the overlay layer. A Node object has a unique

54

NodelD which is composed of the hosts IP address and a higher level overlay ID. The
node object also keeps track of the available overlay peers/ neighbors which are

discovered by the overlay layer.

\ﬁ}O\mthldcﬂewaa.Am&umt:
P
e d\
e \

/ . PDB : PeerDB , '
CaD:int ‘ !
/ . © cmServer : Setver g \
;’ . = cmClient : Chent s \
/ : o bServer : BootStrapper
/ o bClent : BootStrapper | s T G T
/ ' o FS : FleServer | Desg P;:'m
ﬁa T L FDB : FieDB !)
é«:‘:&m 3 & Qache : QueryCache | o DestiD : Sting
e @, ... o MsgHander : MessageHander | o Sequence : String |
PR (T o LoDiecfle ugns] e NoddD: htSm 3
: ; - . ‘
epumBnl)) I
- @ Leave() : | @ SendData ()
‘o Query () ' ! @ Refresh ()
i @ RetumnFiePaths () , - @ RetumnDestP ()
@ ReturPath () i o RetumDestD ()
o SendhgentData () o ReturSeauence ()
@ Dowrlaod () :
::lﬂtePowet ()
H |
| @ RetunOvedayAddress ()
: @ Createfie ()

Figure 4.13 : OverlayMiddleware.AppSupport Package

Applications launch search for a resource through the Query method of the Node object.
ReturnPath() returns a Path object to the application. A Path object is an abstraction of an
overlay path from the node where the query is launched to the node where the sought
after resource is discovered. It provides a set of functions that can be performed on the
overlay path such as SendData(), Refresh(), and other methods to retrieve the sequence of
the path and retrieve destination overlay address. An application can use the Path object
to utilize the overlay path for application-specific purposes. For example, a VOIP
application can use the overlay path for SIP signaling, or Application-Level Multicast

(ALM) application can use the overlay path for multicast delivery etc.

55

e e e e A

i_w NodelD : Int | o group : InetAddress
i & ConnManager () : : a PDB: PeerDB
; m ForwardEsror () P i o NDB : NeighborD8
; m ForwardData () H i s NodelD : int
: m ForwardQuery () i fOSetAﬂ'\ou'lce()
H ¢ m ForwardUrgentData () : gchoot(S)tra:per()
: H . ForwardQueryRi f ; arun
e E;Forw:d() e) | @ StopBootStrapper ()

%, {
i

3
(ST «Bava s Aty
T S et
a server : ServerSocket | o s : Soclet
a data : Soctet o runClient : boolean
o _funserver : boolean apeaPeer o
FSever ()T Fhent ()
& StartServer () & StartClent ()
< StopServer () H u HandleLCSRequest ()
emun() t a.run t ;
- run
e rnt) ! | @Stoedent ()

Figure 4.14 : OverlayMiddleware.core Package

The MessageHandler interface has two methods and they are to be implemented by the
user and registered with Node. One method is ProcessMessage(), which is invoked when
application-level data is to be delivered to the application. The second method is
ProcessException(), which is called when the overlay layer reports an error to the
application, such as reporting about a lost path when an error feedback packet is received.

The main significance of the MessageHandler object is to enable application-level

communication.

56

[osequerke:int
T &Fileinfo () H
" atoSting () g
i @ FetunLocation ()
© @ RewrnSiza () !

! qyIsNotPeer {)

gtherrmePeer()z ,'
| qnotSatsfied () ¢ f

. & SourcelP 1 Sting

| ¢;Pemovetiighbar () :ﬁ""mm MM " ')ss 0 [orkiy x_ns;s';m
! & IsNotheightor () i) &Clean () SUP* »; & DestiD : St
I Beeirc A L | eRefesh() T sy
U e avenapRTT () i L e () > Norvep bt
| GAvailblteibors () | eySetDestnation () * & Previoustop : It
| & PeumilmCanddates ()| i@ ReumDestnaton() | ' 4 TimeStamp : by
: @ RetunCandidates () . @ PathExists (CacheEntr
© & RetunCandidates () i | _epatEss() . SCahebnry ()
" @ Findextop () | | : !
© Write () t } '
|| QRewminder() : :
B i
i : .
t Vspae:stig i
i & Packet () H ;
| e CreataQuery () : ;
i | o CreateData 4] : ;
.| @ reattrgeniData () Zees
. jeCreateQuenRepy ()| ' ¢
i | ecCreatelcs() !
+ @ CreatelCSACK () |
e geytes () 1 v
= Capactty : it e ’ ; ;
. u DataSochet : Sodet s o
: & client : bookan 3 ‘ o
BT v s R e h L
O preferences
(Vs :stng
U FileServerPort ; int
gaootsvm it [
ComManagerpart : Int
. ¥ multicastAddress : Sting ’
V FileDBstze : It
¥ MutticastTimer : long |
-V onTiL: it |
-, ’ VOIerIgEadnSize : nt ;
| m SeRTT () o > V CacheSte : nt '
TePewrmRTT() e ¥ (CSTimer : it |
: @ Disconnect () ¥ [CSTimerOffset : int
; Write () ¥ QueryTimer : nt
‘o zeﬁg Y RTTwindowsSke : Int
: @ Rel fticastRequests : Sting .
| @ SePowerRTT () ¥ StarfFilsServer : Sting i
@FemCor () o* Capaciy : it ;
Shower:mt_
of Preferences ()

Figure 4.15 : OverlayMiddleware.util Package

57

OverlayMiddleware.core package, shown in figure 4.14, is composed of six object
classes, Client, Server, ConnManager, FileServer, Bootstrapper and QuerySender. The
first two classes use the java.net.Socket and java.net.Serversocket API to establish TCP
connections. ConnManager provides connection management methods and functions
such as routing and overlay packet handling. Since both Client and Server need these

functionalities for their connections, they both extend (or inherit from) ConnManager.

In order for the Bootstrapper to work properly, Node class instantiates two Bootstrapper
objects and sets the Bootstrapper.Type value so that one of them acts as a client and the
other acts as a server. The server Bootstrapper object uses java.net.MulticastSocket API
to join a multicast group and capture Overlay join packets sent by the client Bootstrapper.
The client Bootstrapper keeps multicasting Overlay joins until the number of neighbor
connections the node has is equal to the Node.Max_Neighbors value, specified by the

application to the instance of Node it uses.

All of the five classes in OverlayMiddleware.core package extend java.lang.Thread class
and override its run() method. This allows them to run in parallel each on a separate
thread. QuerySender extends TimerTask class because it performs a periodic task of

sending a query packet a number of transmissions if a query reply is not heard.

OverlayMiddleware.util whose class diagram is shown in figure 4.15, provides utilities
that the other packages need to function properly. For example, it provides four types of
data structures NeighborDB, FileDB, PeerDB and QueryCache. Each one of these data
structures is used to add, delete, retrieve and search for Neighbor, FileInfo, Peer and

CacheEntry objects, respectively. It also provides LCS and packet generation services.

A Neighbor object abstracts an overlay neighbor; it holds the state of an overlay neighbor
such as, its overlay address (NodeID and IP), power level, RTT, and color of its link. A
Neighbor object is also associated with a LinkColorScheme object, which inherits from

java.lang.TimerTask and implements its run() method to send LCS Request packets

58

periodically. Neighbor object also provides the Write() method which allows other
threads to send packets to a neighbor.

As its name implies, the Preferences class is used to set the application preferences. For
example, the developer can set the ports that the middleware operates on. The developer
can also set the query cache size, the different timers that the middleware uses, such as
the MulticastTimer attribute, which defines in milliseconds how often the client
Bootstrapper object sends out overlay join packets. Another timer that can be set in
Preferences class is the LCSTimer attribute, which defines in milliseconds how often

LCS query packets are sent.

4.5 Design Models and Scenarios

In this section, we discuss in details how the system objects interact with each other and
how nodes interact with other nodes over the overlay network. We use one of the most
expressive dynamic models that documents, for each mode of interaction, the sequence of
object interactions that take place in a sequence model. We will also adopt a specific
notation to refer to instances of objects. For example, :ClassName is an object that is an

instance of the class ClassName.

In order for an application to utilize the services provided by our middleware, it will only
deal with the simple API provided by the OverlayMiddleware.AppSupport package.
Figure 4.16 illustrates the interaction between the application main object and our

middleware’s Node and Path objects.

When the application instantiates a Node object, :Node, it passes to it a Max_Neighbors
parameter, which is an integer value that represents the maximum _number of neighbors a
node can have at a time. :Node passes this value to the overlay layer to restrict the

number of neighbors it can have. The application can then ask :Node to join the network,
return its assigned overlay address and query a resource (messages 2-5). The application
can also ask the Node object to return the discovered path (message 6-7). The application

can use the Path object to send data or download the file (message 8-9). Finally, when the

59

application has no more interest in being connected to the overlay network, it can ask

Node to leave the network (message 10)

1:new(Max_Neighbors)

2:Join()

3:Retum_NodelD

4:NodelD
T T
5:Query(file,ReplyMethod, t issions);
6:RetumPath(file)
7:Path
e m e e e e

8:Download(file,path)
9:SendData(Message) :|
10:Leave() H

Figure 4.16 : Application-Node Sequence Diagram

The sequence diagram in figure 4.17 shows the interaction between :Node,
:Bootstrapper, :Server, and :Client. :Node instantiates each one of these objects and
starts them running, each on a separate thread, so that they can run in parallel. When
:Bootstrapper starts working, it discovers the overlay peer B, and it adds it to :PeerDB
(message 5). :Client requests the peer from :PeerDB with the ReturnPeer() method
(message 6). :PeerDB then returns a Peer object to :Client. A Peer object holds the

overlay address of the peer B.

Finally, :Client of node A establishes a TCP connection to Node B on a port where there
is a :Server waiting for the incoming connection. Once the TCP connection is made, the
:Client sends a neighbor establishment request to :Server at node B. If node B is willing

to have more neighbors, it sends a neighbor establishment reply that indicates its

60

acceptance. Then both :Server and :Client objects at both ends create a new Neighbor

object and add it : NeighborDB. The peer entry for node B in :PeerDB is then deleted
(message 12).

Node A Node B
;application Node :Bootstrapper Server Client Server
1)]
') ' ! H !
e "])
i E E E i
)
t30n) [] ! E |
o '
2:Start() E H
r H
1
3:Start()]
4: Start()
PeerDB
5:AddPeer(B)
T T —
H H 6: RetumPeer()
] 1 T
_____ ZpeerB
8:Request to Make Neighbors
12.RemovePeer(B)

Figure 4.17 : Join and Neighbor Establishment

For each created neighbor TCP connection, a separate thread is dispatched. That is why
both Client and Server objects inherit from java.lang.Thread. Figure 4.18 shows a
snapshot of the Client.run() method. The variable runClient is a Boolean variable that is
initialized to true. As long as the node is not satisfied, the Client object retrieves a peer

object from PDB, the PeerDB object. It then clones itself, and calls Client.run(peer) to

61

establish the connection and manage it on a separate thread. Figure 4.19, shows the
Server.run() method. Again, runServer is a Boolean variable that is set to true to turn on
the server, which listens for incoming TCP connections. When a connection arrives, the
object clones itself in order to dedicate the cloned object on separate thread to take care
of the incoming connection, and it goes back to listening for more incoming TCP

connections.

public void run()(
int PDBsize = PDB.ReturaSize():
if (peer == null)({
while (runClient)(
1f (NDB.motSatistied()) {
for (int 1=0; i<PDBsize ;i++)(
Peer peer = PDB.ReturnPeer(i):
/71 the returned peer 1s rot null and if it is not an elrzeady existing neighbor
if (peer !'= null «¢ NDB.IsNotNeighbor(peer))({
try(
/7clone the curvent Client object
Client newClient = (Client) clome():
Jieall man(pesr) of the newly created Client ubject
nevClient.runner = mew Thread(newClient):
newClient.peer = peer:
nevClient.runner.start(); .
try(Thread.sleep(5000) :)catck(InterruptedException e){)
Jcatch(Exception e) ()

Yo/
}s/tax
y/oAL
}//while
Jelse {rum(peer):)

)//run

Figure 4.18 : Client.run() dispatches a separate thread for each peer

public void run(){
if (server != null){ //only the first rwnner server will execute this part
while (runServer)(
try {

Socket datasocket = server.accept():
Server newSocket = (Server) clone():
nevSocket, server = null;

newSocket.data = datasocket;
nevwSocket.runner = new Thread(newSocket):
newSocket. runner.start ();

} catch (Exception e){}

}
}) else { // the other thresds will come here.
run(data);

}

Figure 4.19 : Server.run() dispatches a separate thread for each incoming connection

62

When a Neighbor object is created, it instantiates a LinkColorScheme object, which
inherits from java.lang. TimerTask and overrides its run() method. The Neighbor object
starts a timer which when it expires, LinkColorScheme.run() method executes. The
duration of the timer can be set in Preferences.LCSTimer. The LinkColorScheme

periodic execution is triggered only from the server side of the connection.

Node A Node B
‘LinkColorScheme Packet :Neighbor Client ‘ConnManager Packet Neighbor
: : : ! : : :
iR ! L A ! ! !
1.CreateLCS() | T i T
|
)
]
]
)
1
]
]
]
]
]
]
]
]
. E 4:LCS query H
]
5 ' 5:WitePower() \
1]
H E f 6:CreateLCSreply E
Server '
[}
T]
H !
H |
| |
' ' 9: LCS reply !
B R dememeeead B B R N B attterteded B R O L L TP
10:CreateLCS ACK() | !
i} N [}
11: LCS ACK '
e-pomomeeeod | :
! 12:Wme(LCSIA.K) '
]
H L 13: LCS ACK '
L LJ----- e B SR T S LR e et A-meesmemeeoa- U
)
1 J

Figure 4.20 : LCS Sequence Diagram. Node A is the Server side of the connection, whereas Node B is the
Client side.

For example, in figure 4.20, node A acts as the server side of the connection, while node
B acts as the client side. Node A has a :Neighbor which abstracts its neighbor, node B.
:Neighbor is associated with the :LinkColorScheme as shown the figure. When the timer

63

expires, LinkColorScheme.run() method executes on a separate thread. It first saves the
current time stamp. It then contacts the Packet object to create an LCS query packet
(message 1). When the LCS query packet is created, LinkColorScheme object calls
Neighbor.Write() method in order to send the packet to Node B (message 3).

When the LCS query packet arrives at the Client object of node B, the Client object asks
its parent, :ConnManager to handle the packet (message 5). :ConnManager retrieves the
poWer value of node A written in the packet. It also takes the current time stamp of the
system. Then, it contacts :Packet to create an LCS query reply that includes node B’s
power. In message 8 in figure 4.20, :ConnManager contacts the :Neighbor which
represents node A in order to send the LCS query reply to node A. :Neighbor then sends
the packet to :Server of node A. From the LCS query reply, node A retrieves the power
value of node B, and calculates the RTT value by subtracting the current time stamp from
the time stamp it took before sending the LCS query packet. The final step for node A is
to send an LCS ACK packet, so that node B can calculate the RTT value as well.

H 1 1 V 1
1 1 1 1)

1:Query(ﬂe.Rep!yMelhod.lransmissions:l_

—}--

2:Start()

5 Forwad(Q.uery)

i

]

]

- i

H 6:FindNextHop()
. |
| | Qeache H 7: NextHop
Y ! .
8:AddEntry(Query)

9:Write(Query,nextHop)

L 10:Write(Query)

Figure 4.21 : Node.Query() called by the application Sequence Diagram

64

For each overlay node, the RTT, power level and capacity values of each overlay
neighbor is stored in the corresponding Neighbor object. To have a better and more
accurate measurement of RTT, each Neighbor object keeps track of a number of
consecutive RTT measurements. Then the average RTT value is calculated and used
along with the power value of the neighbor in order to classify the link to the neighbor,

using the color function illustrated by table 1.1.

After Neighbor objects are created, and LCS is performed, the system is ready to perform
routing or forwarding. There are two types of overlay packets that can invoke routing,
resource query and data packets. Those packets are either created in the same system
because the user application needs to route them, or received through the overlay network

and need to be handled.

Figure 4.21 shows the sequence of events when an application calls the Query() method.
The query method takes three parameters, the file name, the method of reply preferred,
and the number of query packet retransmissions, in case a reply is not received within a
certain time limit. The method of reply can be TCP or resource query reverse path from

the destination. In message 3, :Node asks the :Packet to create a resource query packet.

When the newly created packet is returned (message 4), :Node asks :ConnManager to
forward the packet (message 5). :ConnManager asks the :NeighborDB to find the next
hop (message 6). The next hop returned is an integer value that represents the index of
the :Neighbor to which the resource query packet is forwarded. When the next hop is
returned (message 7), : ConnManager adds an entry to the query cache (message 8), and
asks the :NeighborDB to send the query to the next hop (message 9). Finally,
:NeighborDB sends the packet to the neighbor whose index is equal to next hop (message
10).

65

Q

Node C: Intermediate Node
Node A: Source of the Query Node B: Target of the Query
iNode Server iFileDB {ConnManager [1:Queny] iChent ConnManager
M —a— —— .
T Packet
2: CheckFile(Query) .
3:CreateQueryreply i
4:QueryReply
R ————
I—5:Forward()
6:QueryReply
7:HandleQueryReply
8: AddFile() iFileServer —
1
9:Dwrioa|d(:‘ile,DesllP)
L| 10:Connect
11:Accept
e et ——-—
12:file Name
-
13: file
| | _e---_

Figure 4.22 : File Transfer Sequence Diagram

Figure 4.22 shows the sequence of events that take place between objects when a
resource query packet arrives at an overlay node that has the resource queried. In the
diagram, node A is the source, node C is an intermediate node and node B is the
destination. Node B, when it receives the resource query, it checks if it has the resource
(message 2). :ConnManager of node B finds out that the resource exists in its host
system, in a predefined directory, so it asks :Packet to create a query reply packet

(message 3). The query reply packet is returned to :ConnManager (message 4).

When a resource query hits a node in which the resource in question exists, there are two
ways to send back the query reply, either through the reverse path to the source, or by
contacting the source directly through TCP. In figure 4.22, the second approach is
adopted. Node B sends the query reply directly to the source through TCP. The Server

66

object of Node A receives the reply (message 5), and then asks :ConnManager to handle

the query reply (message 6).

:ConnManager creates a new file database entry and adds it to :FileDB (message 8).
When the application calls Node.Download(file) function, : ConnManager proceeds with
downloading the file (message 9). It connects to the :FileServer of node B using the
address specified in the query reply packet over TCP (message 10), ahd it requests the
file by its name (messages 11 and 12). Finally, the :FileServer of node B sends the file to
:ConnManager of node A (message 13).

[1:RetumPath(file) | | H H G !
2:Path Packet r r
=== -Patt ;
]
3:SendData(msg) ! H
> 4: CreateData() '
5: Data Packet
- T ——
6: Forward(Data Packet)
]
H 7:PathExists()
]
i 8:index
! e
: 9:Refresh(index)
j 10:Wite(Data Packet,nextHop)
11:Write(Data Packet)
L L L

Figure 4.23 : Path.SendData() issues a Data Packet Sequence Diagram

Node interface also allows the application to send data to node after the overlay path
between source and destination has been established. Figure 4.23 shows the sequence of
events that occur when the application calls SendData() method. :Path uses :Packet to
create a data packet (messages 4 and 5). :Path passes the packet to :ConnManager to
forward the packet (message 6). If a route exists in :QCache, it is refreshed and the next
hop is retrieved (messages 7-9). Finally, :ConnManger contacts :Neighbor to send the
packet (message 10-11).

67

Target of the Query

Intermediate Node
Overlay Client ConnManager Qcache :MessageHandler
network T T H T
[1:Data Packet] F'
2: Forward(Data)
3:Refresh()
4:ProcessM ge(M ge,Path)

Figure 4.24 : Data Packet received at the Destination Sequence Diagram

Figure 4.24 shows what happens to the target system when the data packet is received.
The Client object of the target receives the data packet (message 1). :Client passes the
data packet to :ConnManager to forward it. :ConnManager finds out that this node is the
destination node and refreshes the corresponding path entry in :Qcache (message 3).
Finally, :ConnManager passes the message port of the data packet to the application
support layer by calling ProcessMessage() method of MessageHandler, an interface that

is implemented by the user.

:Application Node Bootstrapper. Server Client FieServer
: : ; : i E
1:Leave() F T]]
2:Stop()
3: Stop()
4:Stop()
5:Siop() |
: | §]

0 T T ¥

Figure 4.25 : Node.Leave() Sequence Diagram
The overlay leave operation is depicted by the sequence diagram in figure 4.25. When

the application calls the Leave() method of Node object. The Node object stops all of the

running threads including :Bootstrapper, :Server, :Client and :FileServer threads.

68

5 Evaluation and Validation of Design

In the previous chapter, we presented the design of our unstructured overlay middleware.
We proceed in this chapter as follows; we evaluate the design by showing how our
middleware meets its non-functional requirements. Middleware validation is illustrated
by showing how developing different applications can be significantly simplified with the
use of our API. We illustrate how our middleware works by presenting ethereal
simulations and execution traces. Finally, we present our middleware’s CPU and memory

performance measurements.
5.1 Non-Functional Requirements Achieved

5.1.1 Ease of Use

Our middleware implements an easy-to-use application-support layer API, which
interfaces the underlying complex overlay layer. Actually, developers can gain the

benefits of the overlay without really having to understand how it works in details.

5.1.2 Portability

Portability is a key non-functional requirement, which our middleware achieves since it
conforms to the specification of the J2ME platform. Please refer to section 3.1.1 for an

explanation how J2ME helps us achieve portability.

5.1.3 Independence of underlying Ad Hoc Layer

Our middleware can run on top of any MANET routing protocol such as OLSR [43],
AODV or DSR [43]. The only condition required is that the routing protocol must
support multicast. However, it is important to point out that our system can perform best
on top of AODV or on top of a routing protocol that can provide the overlay layer with
link RTT and power values of neighbors. In section 5.7, we elaborate on how to optimize

performance by utilizing the underlying routing protocols.

69

5.1.4 Efficiency

Our middleware achieves two efficiency parameters, which are namely, time and space.
As for time efﬁéiency, since our middleware is multithreaded; each main component runs
on a separate thread concurrently with other components. No one component delays the
other. In addition, a simple routing algorithm is adopted at the overlay layer. Space
efficiency is also improved because overlay routing does not use a routing table. Rather,
caching is used. Secondly, JVM’s garbage collection makes sure unneeded memory is

deallocated.

5.1.5 Network Friendly

Our resource discovery mechanism relies on a single query packet, unlike some other ad
hoc middlewares, such as [29], in which resource discovery is based on broadcasting
resources. Announcing resources and services periodically is hostile to the wireless
network, since it consumes bandwidth. Also, maintaining the overlay path does not
require the transmission of keepalive packets or heartbeats. Rather, a path remains in
caches as long as it is being used by the application, because data packets refresh the

path.

5.1.6 Reliability

Reliability is achieved in two ways. Firstly, our routing algorithm is power-aware. This is
because routing is based on link colors. A link color is based on RTT of a link to a
neighbor, and the neighbor’s current power level. This can guard against loosing packets

as higher power nodes are less likely to disconnect.

Secondly, routing is improved with the use of error feedback packets that are sent from
the first node that discovers a broken link towards the sender of the data packet. The error
feedback packet not only informs the application of lost data packets, but also removes
the stale routes from caches along the way to the source, resulting in an overall more

reliable and robust system.

70

5.1.7 Usability

Our middleware can support the development of a wide range of MANET applications.

We shall show how different applications can use our API in the next section.

5.2 Middleware Deployment

From an application’s perspective, our middleware provides a mechanism for locating
files in the overlay network through queries and query replies. Also, the file locating
process involves a path establishment between source and destination of queries. How
can this simple mechanism provide a base for developing different applications? We
answer this question in the following few sections by providing example applications that

can be built on top of our middleware.

5.2.1 Application-Level Multicast

Application-level multicasting (ALM) is one popular application that has been suggested
in many systems, such as [26], [27], [28], and [7], to scale well on top of overlay
networks. In this section, we explain how we can build an ALM application using our

system.

Basically, a multicast group is created when a node, referred to as the root, creates a file
with the name that is equal to the group ID. Creating a group ID file can be done with a
call to Node.CreateFile() method. If any node is interested in joining the group, it first
issues an overlay query packet, by calling Node.Query() method, to locate the group ID
file (e.g. Query(grpID, ReplyMethod , Transmissions) where ReplyMethod is reverse-
overlay path). If the query packet arrives at the root, its overlay layer generates a query

reply that is sent towards the source through the overlay reverse path.

When the querying node receives the query reply packet sent from the root, it sends to the
root a join meséage (e.g Path.SendData(JOIN,grpID)). When the root (or any other
member node) receives the join message, it adds the overlay address of the newly joining

node to its list of multicast children. The newly joining node saves the overlay address of

71

the root as its multicast parent. It then creates a group ID file. Thus, the file will be
replicated in the network as more nodes join the multicast group. Whenever a member
node receives an application level join message, it adds the sender to its list of children

and then sends it a query reply.

To multicast data to the group members, each node simply sends an overlay data packet
which carries ALM message to its multicast parent towards the root (e.g.
SendData(MULTICAST,gthD,msg)). When the root receives the multicast message, it
sends out the overlay data packet to all of its children. Similarly, a node can anycast by
sending an overlay data packet carrying anycast message to its parent, which in turn
propagates overlay data packets to all of its children. A non member node that wishes to
multicast data to a specific group can send an overlay urgent data packet whose
destination is a node that has the group ID file. The first group member node that

receives the packet will propagate the multicast message to its parents towards the root.

Finally, a node can leave a multicast group by sending an overlay data packet carrying an
application-level leave message to its multicast parent and children (e.g.
SendData(LEAVE,grpID,msg)). Its parent simply removes the leaving node from the list
of its children. The leaving nodes children search for a new parent. Furthermore, if a
node disconnects without sending a leave message, overlay error feedback packets report
to the application about broken paths whenever a child sends a data packet over the path.
When the application receives an error feedback, it can issue a new query packet to find a

new path to a new multicast parent.

It is important to point out that developing some applications paves the way for other
applications. For example, ALM can be used as a base application that allows the
implementation of streaming applications like video and voice conferencing. Figure 5.1

shows how ALM algorithm can be implemented using our API.

72

Class MessageHandlerimp impl ts M Handler{

DB = [grouplD -parent children[]]
DB[] GroupsDB;

Node node;

KU oked by (he overlay Iayer when’ an an appl:wﬁon-level message is rece ved .

JOIN{ B O

) GmupsDBAddchild(n)essage.GrpID.paﬂ\):' o
LEAVE(. . Ce .
’ if (path I= parent) GroupsDB_.RemoveChild(message.GrplD.pam);

parent = null; .
JoInGroup(message GrplD). :

wmle(mote children, avanlabIeO){
7. Path'path =.DB. GetNextChud(message GrplD). i
path SendDala(message))

}

}

void JomGroup(GrpID)(. '
ReplyMethod = 2 :Reverse Ovenay Path
Transmissions = 1;
node.Query(GrplD, ReplyMethod , Transmnssnons)
-Want(Preferenoes QueryTimer); o

}
void Mummleata(GrplD){ -
: " Path parent = GroupsDB GetParent(GrplD)
whlle (more_data_available() && parent |- null){
-byte[] DATA = getData(); :
byte[] message = [MULTICAST GRPID DATA].
parentSendData(message)

th parent’= psDB, GetPamnt(GrplD)
: parent.SendData(messag :
taToChild

Vold CreateGroup(GrplD
: node. CreateFule(GrplD)
" Path parent = null; .
GroupsDB. add(GrplD Paren ;

}
IiStart Here
void ALM(DB slze. imax nelghbors GrplDX -
.GroupsDB new database(DB_size); -
. node= newNode(max nelghbors) R
Node.Join(); ° .
S 'JolnGroup(GrplD).
- MulticastData(); -
LeaveGroup(GrplD
Node Leave|

Figure 5.1 : ALM Algorithm

73

5.2.2 File Sharing

One straightforward application that can be easily built on top of our middleware is a file
sharing app]icati'on. The user of the application can store the files to be shared in a
specific directory. First, the application can search for the location of the file on the
overlay network by making a call to Node.Query() method which issues an overlay query
packet. Because file download does not require keeping a path between the source and

destination of the query, the source can set the reply method of the query packet to TCP.

When the query arrives at a node that has the file, it sends a query reply to the source
over TCP. The query reply packet contains the overlay address of the destination. It also
contains the file information. If the source is willing to download the file, it can make a
call to Node.Download() method to download the file. Figure 5.2 shows an algorithm of

file sharing application that uses our API.

Vo StarthleShanng(max nelghbors)

.'walt(Preferenoes QueryTimer); o
_ Path path =node. RetumPath(ﬂower JPG)
if (path I= null){ .
_ node. Download(ﬂower JPG path)'
o} [P TP _

Figure 5.2 : File Sharing Algorithm

5.2.3 Gaming or Chatting Applications

Gaming and chatting applications implementation will also be straightforward if our API
is used. Basically, each game has a certain game ID and a corresponding ID file. When
the end user wants to play a certain game with other players on the overlay network, it
can inform its application. The application then uses Node.CreateFile() method to create

a file whose name is equal to the game ID.

74

To find other players on the network, the application can use Node.Query() method to
search for the game ID file on the network (e.g. Query(GamelD, ReplyMethod,
Transmissions)). The path establishment between two players will be complete when the
source receives a query reply packet. Next, the application can use Path.SendData()
method in order to send data between the two players, like invitation and permission to

play and game data as well.

Class MessageHandIerImp |mplemenls MessageHandIer{
Node node; .
Ilinvoked by the overlay layer when an apphcation level message anives
Void ProcessMessage(byetf] 1 message. Path path){ - S -

.. else DATA = [DENY GamelD]};
: path.SendDala(DATA);

R, ACCEPT{
ST . : : - ‘Launch Game(palh)

SearchPlayer(); ;

):

-Void LaunchGame(path){
byte[] GAME_DATA = GelNext();-
. byte[] DATA = [GAME (GamelD GAME DATA].
pam SendData(DATA) .

}
Void SearchPlayer(GamelD)(
- Transmissions:=.1;
i-‘.ReplyMethod :2; C
node.Query(GamelD, RepIyMethod Transmussuons). .
’ .want(Preferences Quermier) e G

ath, SendData(DATA

}

-’IlStart Heére " .-

Void’ StartGammg(max nelghbors GamelD)(E
node = new Node(max nenghbors).

node.join(); R

node. CreateFale(GamelD).

SearchPlayer(GamelD);

Figure 5.3 : Gaming Application Algorithm

75

For example, if a player is willing to play Tic-Tac-Toe with another player. It makes a
request to its application to start a new game. The application will have a table that
associates each game with an ID. The application will create a file whose name is equal
to the ID of Tic-Tac-Toe and places it in a specific directory. Then, it will start looking
for other players by sending a query packet that will be looking for the same file in the
network. Figure 5.3 shows the structure of a gaming application that is based on our APIL

If another player on the network is willing to play the same game, then the same file will
also exist in its program directory and a query reply will be sent towards the first player.
Once the path is established, the first player can send data packet carrying invitation
message to the second player, if the second player sends acceptance message in the data
packet, Tic-Tac-Toe interface will be launched at both sides. Every time a player makes a
move, its move information is sent as a message in the data packet to the other player.

Winning, losing or draw information is also sent to both players at the end of the game.

5.3 Demonstration Using a Simple Data Transfer Application

Figure 5.4 : Simulation Topology

This section provides a demonstration of how our middleware works on the real network.
Due to the nature of ad hoc network, simulating on the real world environment with a
large number of nodes is very difficult. Therefore, we will use a simple topology

consisting of three laptops with their wireless cards configured to run in ad hoc mode.

76

publlc as‘Preferenoes{ T
 private Preferences() . . R S N Jh et
IHostIP can either be an IP in Stnng formal or null' if |t is null, lhe boo(slrapper w:ll choose an interfaoe to announoe' '
public static final String HostIP= "null®; ‘
Ihe port on which the File Server operates
public static final int FileServerPort = 5555;
1l The port on which the bootstrapper operates
public static final int BootStrapperPort = 1111,
1l The port on which the Client and server operate
. public static final int ConnManagerport = 4444;
- lThe, multncasl group \ used for bootstrappmg :

public static ﬁnal Iong MitticastTimer = 10000; - T
1Join packet TTL," used if propagahng mumaasi pack s Is requlred
" public static final int Jom‘lTL A NN
- lThe overlay packet size in byles, 40 byles mus(be allowed lor header
public static final int OverlayPackelSue 100
_lIThe size of the Query Cache .
public static final int CacheSize = 10; - . o
IThe duration of time between sending an LCS request and the next, spedified in mllnseoonds
. public static final int LCSTimer = 30000;
- IThe duration of time before the first execution of the LCSTimer objed when anew neighbor si created o
.~ public static final int LCSTimerOffset = 10000; o

27 public static final String StartFileServer = YES®; . .
* IlThe capacity setting used in MBR can be changed lhrough N x
public staticint Capacity =1; * -) N : -
IIThe power setting used in link oolonng scheme and can be ohanged through Node UpdalePawer()

pubhc static int Power 1 -

Figure 5.5 : Preferences Class

All of three stations run our middleware, and a test application. Our middleware was
originally developed using NetBeans Integrated Developmer;t Environment (IDE) [36] in
a project named, OverlayMiddleware. The test application specifies that nodes 10.1.1.1
and 10.1.1.2 can have only one neighbor, while 10.1.1.3 can have two neighbors.
Applications running on 10.1.1.3 and 10.1.1.2 are started first so that they m.ake
neighbors with each other first before starting 10.1.1.1. When 10.1.1.1 runs the test
application, it makes neighbors with 10.1.1.3 because it is the only node that can make 2
neighbor connections. Our purpose of this test is to form the overlay topology shown in
figure 5.4. Also, the application in 10.1.1.1 will query a file, me.txt, which only exists in
10.1.1.2. All of the timers and preferences setting of our middleware are configured as

shown in OverlayMiddleware.util.Preferences class depicted in figure 5.5.

77

Figure 5.6 shows the source code of the application running in 10.1.1.1. All the
application has to do is to import OverlayMiddleware. AppSupport package. As we have
mentioned already in the previous chapter, any application using our middleware must
first implement the MessageHandler interface. The MessageHandlerImp class is an
implementation of MessageHandler, and it also adds the method Start(). This method is
called by the main function to start the program.

dass MessageHandIerlmp |mplements MessageHandIer{
" Node node; - RO o
public void ProcessMessage{byte{] Mess: Pathpalh){
. Loglog(new Stnng(Message) trim()+" Rece:eved from:");, .
Log. log(path RetumDesuP+" “+path. RetumDesﬂD+" “+path. RetumSequence)

-}
pubhc void PmoessExcepbon(Excepbon e, byle[] message, Path path){

node.Query("me.txt",ReplyMethod transmissions); - :
try{Thread. sleep(40000);)catch(lntenuptedExoepbon e)D
Path path = node.RefumPath("me.tet”);
. byte[] msg = "PING".getBytes();. .. - -

ty{ . o :

. pam'sé'ndoam(ms'g)'
‘path. Refresh().

MessageHandlerimp Mngandler new MessageHandlerlmp(), '
" MsgHandier.Start(); . .

Figure 5.6 : Demo Application running on 10.1.1.1

When Start() is invoked, it first instantiates a new Node object. It passes the maximum
number of neighbors which is equal to 1, and it also passes a reference to itself to the
newly created Node object. It then calls Node.Join() to join the overlay network. After a
wait of 40 seconds, Node.Query() is called to locate the file “me.txt” which only exists in
10.1.1.2. After another wait of 40 seconds, the application calls Node.ReturnPath(). This

78

function returns a path object, which the application uses to send the message, “PING”,
to the destination via the Path.SendData() method. Finally, the application refreshes the
path to 10.1.1.2 using Path.Refresh() and then leaves using Node.Leave().

m:

A

ki
T ARG 4
d to become feighbors
hbors Database; at in
TR s

Eains
.LC
P
- Cl

¥

i
u

farg oo
3l

PRy
e

RS ‘f‘

ecelev

e

Figure 5.7 : 10.1.1.1 Output

The applications running in 10.1.1.2 and 10.1.1.3 are simpler. They both instantiate a new
Node object and call Node.Join() to join the overlay network. The only difference
between them is that when 10.1.1.2 receives a message, it sends the reply message

“PONG”. Figures 5.7, 5.8 and 5.9 show an execution trace of each node. We have used

79

print statements throughout the middleware program in order to be able to trace its

execution.

P v il A
:OverlayM

i*’

) 5o ;5‘
S Il
manager:se

VLR) T T

Vi £
‘rrecieved fre

i fyaed o
ing’a’m

AR P s Yy Y

ti
2R AR
nnection' manager.cl

RS RGN

B YAt 4
to:Nei
I e L)
recieved fro
-4\):-'-1\" n.g?\'igwi» L RS o g by ot %‘%17’% ;’S%,
;LCSipacket reciev =
. (.'2"11:.@.1«%_*‘enf«g:».v%:ﬁ

e LA L
:ECS!
FRATRY G
*CU

PR

S A
ifileex
!

I

R

2N 2 My d

‘previou

S with Se

STV Ry i e
et recieved::1
RN

Figure 5.8 : 10.1.1.2 Output

80

ing
g.,'po ”ctlon managenserver
aMLﬂllCaSt joinr

IR LR

Staruﬁg'

R St

Mulhcast tjoin. request reueved fron?
'BoG =

VR fr X
;amu go)ast)om /(

cast: j_gg ;gc‘equest récieved from’s

T Y ENEY

01514 dded o, Peers
T e 5
jomn ;request«rep:eved from

3R,

TG

a2

w.xu«’.,‘ X

4.,1; _1 0,151

Bootstrapper' en&mg qumsT oin reques ‘ s

Figure 5.9 : 10.1.1.3 Output

81

Figure 5.10 shows a snapshot of packets captured by Ethereal [38] that we ran in
10.1.1.1. The first packet that 10.1.1.1 sent was an IGMP membership report to
destination 224.0.0.22 as shown in packet number 5 captured in the figure. Packets 6 and
7 are overlay bootstrapping join packets that were being multicast in the network. After
10.1.1.1 learns about 10.1.1.3 using ARP as shown in packets 8 and 9, 10.1.1.1

establishes a TCP connection to 10.1.1.3, as shown in the 3-way handshake in packets 10,
11 and 12.

.658422,*, 1$C0’dl 80:05; {&,»«‘”Broadcast?é:’:{,y_“ o ARP"M .f%ﬂ\ﬂ,h&S‘lO.’l"*L"‘Z?&Teﬂ.
.1 I3 V3 Herpership REpIrt

//.O;'\\J J.'l

4. 17

972 [PSH; SACK] Sequd? Ack=4 - wln-1751 7:0Le
4444 [PSH,% ACK] Seqed . Ack=104 . Win=17417: Len-1oo 3
4 ~1097‘:-EPSHi ACK] :Seq=104" Ack-104 Win=17417:Len=10

£25/70.783231°10: 15153
6]0.‘908698 10315151

eassemb]ed PDU]

:[PS -;ACKLSeq-704 "Ack= na=17017:Len=10

; 097.0> 4444 [ACK) S8q=504- Ack=804; Vin-lﬁ?l?‘Len-O SR
Flgure 5 10 Ethereal Traces at 10.1.1.1

In packet 13, 10.1.1.1 sends an overlay neighbor establishment request packet to 10.1.1.3,
which sends an overlay neighbor establishment reply as shown in packet 14. This makes
10.1.1.1 the client side of the connection. Because LCS starts executing 10 seconds after
a new neighbor is created, as configured in Preferences class, shown in figure 5.5, and
because 10.1.1.3 is the server side of the connection, it sends an LCS query packet as

shown in packet 16. The following two packets, 17 and 18 are also LCS reply and LCS

acknowledgement packets exchanged.

Other important packets captured include packet number 27, which is the query packet
sent from 10.1.1.1. Packet 32 is the query reply packet that comes from 10.1.1.3. Finally,

82

packets 37 and 38 are the data packets that were sent to and from 10.1.1.1 to 10.1.1.2
through 10.1.1.3.

s e e iy
‘Multicast join request recieved from
iD,9:110,1 4. RING

Figure 5.11 : Output of 10.1.1.1 when 10.1.1.2 disconnects

Figure 5.11 shows the output of 10.1.1.1s application when 10.1.1.2 disconnects from the
network after the overlay path has been established and before the overlay data packet is
sent from 10.1.1.1. Since 10.1.1.3 is the intermediate node between 10.1.1.1 and 10.1.1.2,
it receives the data packet sent from 10.1.1.1 and tries to send it to 10.1.1.2. Because
10.1.1.2 is disconnected, 10.1.1.3 sends an error feedback packet towards 10.1.1.1. The
effect of the error feedback is that it removes the stale cache information and invokes

MessagHandler.ProcessException().

5.4 Performance Measurements

In this section, we present the statistics collected by NetBeans IDE profiler [35] that was
used, in station 10.1.1.1, to analyze the performance of our system when it was running in
a set up similar to the one in section 5.3. The same application shown in figure 5.6 will
be used to perform performance measurements of our system. The only difference is that
in this section we added a call to Node.Download(“me.txt) to 10.1.1.1 application in

order to actually download the file after a query reply is received from 10.1.1.2.

83

The NetBeans Profiler is a powerful tool that provides important information about the

runtime behavior of an application. Imposing relatively little overhead, the NetBeans

Profiler tracks thread state, CPU performance, and memory usage [34]. The performance

is mainly concerned with how our system utilizes resources such as CPU time and

memory.

5.4.1 CPU

Figure 5.13 shows the total CPU execution time and number of invocations for some
methods of our middleware. The figure does not show CPU time for all methods in the
system. The rest of our middleware’s methods were left out because they use 0% CPU
time. The first four methods, FileServer.run(), Server.run(),Bootstrapper.run() and
Client.run() take up most of the CPU time because they start concurrently and each one
of them has an infinite loop which only stéps when Node.Leave() is called. Although
NeighborDB.notSatisfied() and PeerDB.ReturnPeer() have the highest numbers of
invocations (24275710 and 1024661, respectively), they do not take up any CPU time
because they are of complexity O(1).

C Cal Tree - Method C v Tmel[%]] Time . J(Invocations)
=] Arttveads &k 507148 ms (100w 1
@ 33 ServerBootStrapper I 125980 ms (100 1
2 FloServer 1 125574ms (100%)] 1]
-5 Server] 125946 ms {100%) 1;
@533 Thread-9 . 1 116563ms (100%)} + -~ - 1
- &= main I 5911 ms (100x) 1.
@ &3 Timer-0 | 4609 ms (100%): 2:
{8 =3 GientBootStrapper I 1757 ms 1 10rs) 1,
@-&=a Chent .| 405 ms (1% 5

Figure 5.12 : CPU Time per Thread

It is worth pointing out that CPU performance can be further improved in applications in

which the FileServer object is not needed. The FileServer is optional and can be turned
off at OverlayMiddleware.util.Preferences class. Furthermore, Log.log is optional and is

used to log the print statements into a file, which is an I/O operation that takes

approximately 16.3 milliseconds of CPU times for 43 invocations. Figure 5.12 shows the

total execution time per thread.

84

e Dok Spoks - ethed__— -)(se e). Se¥tie) Ivocabors]
Ovedaywddeware core., FlleServef run (i | | " 125974 ms {z45%)! 1
OverlayMiddleware. core.Server.run (i [] 125946 ms (245%) - 1
OverlayMiddleware..core.BootStrapper.run (}] 122503 ms (242%) 2
OverlayMiddleware.core.Client.run iCverlayiiddaware. .uti. Peer) | | 113513 ms (::.4%)§ 1
OverlayMiddeware.AppSupport.Path.SendData (bwte{Ji | S372ms (11%) 2
OverlayMiddleware.uti.PeerDB.IsNotPeer (Jverisyltddizware Ut Peer) | 8240ms (1) 3
OverlayMiddleware.core.Clent.run ()] 3064 ms (06%4) 2
OverlayMiddleware.core.ConnManager.ForwardQueryReply ibytel], GverlayMddiawa. .. | © o 3031ms (06%) 1
OverlayMiddeware.core.ConnManager ForwardQuery (byte[], OverlayMiddieware utl.... * 15ms i05%)] 1
OverlayMiddleware. core.QuerySender.run () L 2093ms (04%)’ 2
OverlayMiddieware. core.BootStrapper.StopBootStrapper () : 22ms (0%)) 2
OverlayMddieware.core.ConnManager.Download (String, Strireg, int) v C 1Bms (@), 1
OverlayMiddeware. AppSupport.Node. Query (String, int, int) ? 658ms (0%)" 1
OverlayMiddleware. AppSupport.Node, <init> (t, Overlsytiddewsre. ArpSupport Mess. ., - 41.0ms (0%) 1
OverlayMiddeware.core.BootStrapper., <init> (nt, irt, OverlayWiddleware.uti.PeerDR, ... © 249ms (0%]? 2
OverlayMiddleware.uti.Log.log {String) Cot62ms (0%) 43
OverlayMiddeware. AppSupport.Node. Join (J ; 9.7ms (0%) 1
OverlayMiddleware.core.Server . StartServer (it, it) : 2.61ms (¥5) 1
OverlayMiddleware.core.Chent.HandleL CSRequest (byte[], OverlayMiddizware.utiNei... . 26ms (0%)i 4
OverlayMiddleware utl,FieDB. <init > {irt) : L L6Tms (0%)] 1
OverlayMiddeware. AppSupport.Node.ReturnPath (String) 145ms (0%)] 1
OverlayMiddleware.uti.Neighbor. Write {(byte[], Strirg) . 1.28ms (0%)§ 7
OverlayMiddleware.core.FileServer.Stop () | Litms (0%) % 1
OverlayMiddleware.core.Server.StopServer ()) 1.4ms (0%) ; |
OverlayMiddeware.uti. NeighborDB. <init> (int) : S Lims (0%) 1
OverlayMiddleware.AppSupport.Node.Leave (1 0.952ms (0%) 1
‘OverlayMiddeware.core.ConnManager. <init > {Crverlayiiddieware utd Neighba OB, Ove... . 09Bms () 2
0verlayIVicheware core.ConnManager. ForwardData {byte{], Qversyliddzware wtiN... . 0.82ms (0%) 3
-OverlayMiddeware.utd. QueryCache. <init> () ©0.808ms (0%) 1
:OverlayMiddleware.uti.PeerDB. <init> {irt, int) : . 0727ms (0%) 1
;OverlayMidcleware uti.Log.create i) e o i 0Sl4ms (09%) : 1
0ver|ayﬁddewae core.ConnManager.Forward (bytel], OverlayMiddleware.util, Nenghbor) © o 0492ms (0%) 5
“OverlayMiddeware.uti.Neighbor.Disconnect) ; 0467ms (0%)’ 1
OverlayMiddeware.core.Client. StartClient (irt, int)) i 0433ms (0%) 1
OverlayMiddeware.core.ConnManager,HandleQueryReply (byte[]) : | 0410ms (0% 1
OverlayMiddeware.uti. Neighbor.SetPowerRTT (int, biyte) ‘ C03lims (0%) 4
OverlayMiddeware.uti.Log.close () ©0465ms (0%) 1
OverlayMiddleware.util.Packet. CreateLCSreply (tvte[], int, QverlaviAddieware.utd Nei... _0.461ms () 4
OverlayMiddeware.uti.Packet. CreateQuery (String, int, String, rt) . 0.402ms (0%) 1
OverlayMiddeware.uti.NeighborDB. IsNotNeighbor iCverlayiiddeware util.Peer) . 0.001ms (0%) 3
OverlayMiddeware.uti.NeighborDB.notSatisfied () . 0.001ms (33) 24275710
OverlayMiddeware.uti,PeerDB.ReturnPeer (int) : i 0.000ms 109%) 1024661 -
OverlayMiddeware.uti. QueryCache.Refresh (int) : | o0.000ms (%) 4

Figure 5.13 : CPU Time per Method
The total threads executed in the system are shown in figure 5.14. The first one belongs

to the JVM and it starts the main thread which belongs to the user application of our

middleware. The main thread calls Node.Join(), which then spawns the five threads:

85

ServerBootstrapper, ClientBootstrapper, Server, Client and FileServer. The Client thread
spawns Thread-9 to monitor the connection with its neighbor. After a wait of 40 seconds
(please refer to 10.1.1.1 application, figure 5.6), main thread calls Node.Query() which

uses a Timer thread, Timer-0, to send the query packet.

i
| _ i
10 e e e E iy m e e s s e e b oo o e
i !
84 —r . f
i
H
2 O S, ,..u__._v-..m,______._..,-‘;,,_--_" S
ol —; ;
3:54:00 3:55:00 3:56:00

P

Figure 5.14 : Threads in the system during the 2 minutes execution of 10.1.1.1

Figure 5.15 shows the detailed thread states during the application execution. FileServer,
Thread-9, Server and SeverBootstrapper graphs show that they were running 100% of the
time during the application lifetime. The ClientBootstrapper thread state graph shows that
it was sleeping 98.9% of its life time. The reason is that the way the ClientBootstrapper
works is that it sends out an overlay join packet, and then sleeps for a duration of time

that is set in Preferences.MulticastTimer (set to 10 seconds as shown in figure 5.5).

86

Dumba‘vavla'\qmaad](ﬁd\ed) KRR O] &

T it v (S s o o v i,

0 Seeping 0:00.600 (0.5%). "
jak ™ 0:00.000 (0.0%)"

DRunng . 0:04.015 (4.7%)
81 Sieeping, 0:00.000 (0.0%),.
20,

T

R SRS O R SR T I SSRGS T Y T

Figure 5.15 Threads Execution Details

The thread state graph of Timer-0 thread shows that it is waiting 95.2% of the time, and
running for only 4.7%. The reason why a timer thread is used to send a query packet is to
resend the packet if a reply is not received after a certain query timer expires. The query
timer is configurable in Preferences.QueryTime member, which is set to 70 seconds as
shown in figure 5.5. Since the call to Node.Query is issued 40 seconds after the
application starts, and since the application only runs for approximately 120 seconds, this

means that QuerySender.run() is executed twice, which in turn means that Timer-0 thread

87

state is changed to running state twice. The two executions of QuerySender.run() method

only take 2093 milliseconds (approximately 0.4% of CPU time as shown in figure 5.14).

5.4.2 Memory

Ls -..Class Name - Allocated Obpcts [Bytes Alocated --»][. Bytes Allocated -][- Objects Allocated: ..
Overlaylviddeware uti. FileInfo[] . . {l T 4168 (19%)| - S)]
OverlayMiddieware. core. BootStrappcr ;l ~ 128B (04%) 2 (01%)!
OverlayMiddleware. core, Filﬁerver ' ‘I <. 104B (o.s%)i ST e (o%)é
OverlayMiddieware.uti.Neighbor i 72B (03%)! 1 (o%):
OverlayMiddieware.AppSupport.Node i 64B (0.3%) 1 (0%):
OverlayMiddleware.core.Server | 64B (0.3%): 1 (o)
OverlayMiddieware.core.Client i 568 (03%) 1 (0%%)
OverlayMiddieware.uti.CacheEntry[] | 56B (023 1 (0%
OverlayMiddieware.uti.CacheEntry i 56B (0.29) 1(o%)
OverlayMiddleware.core.QuerySender i S6B (039 1 (%)
OverlayMddieware.uti.FileInfo [32B (0.19%) 1 (%)
OverlayMiddleware.AppSupport.Path | 32B (0.136): 1 (0%):
OverlayMiddieware.uti.NeighborDB - ! 16B (0.1%) 17 (0%)1
OverlayMiddleware.uti. FileDB 5 16B (0.1%) 1 o)
OverlayMiddeware.uti.QueryCache i 168 (0.1%) 1 (0%)
OverlayMiddleware.uti.Peer[] 16 B (0.1%) 1 (0%):
OverlayMiddleware. uti.PeerDB { 16B (0.195) 1 (%)
OverlayMiddleware.uti.Peer 168 (0.193) 3 (0.19) !
OverlayMiddleware.uti, Packet 16B (0.193) 3 (01%)
OverlayMiddleware.uti.Neighbor[] 16B (0.13%): 1 (0%)%
Figure 5.16 : Memory allocated for OverlayMiddleware Objects
Table 5.1 : Memory allocated for Objects used by OverlayMiddleware
Class Name Bytes Allocated Objects Allocated
charf] 11,384 B (48.3%) 860(31.7%)
byte[] 2,808B (11.9%) 132(4.9%)
String 1,560B (6.6%) 591(21.8%)
TimerTask 528 B (2.2%) 1 (0%)
StringTokenizer 40B (0.2%) 9(0.3%)
DatagramPacket 32B (0.1%) 5(0.2%)
MulticastSocket 48B (0.2%) 2 (0.1%)
-Socket 24B (0.1%) 4 (0.1%)
ServerSocket 24B (0.1%) 2(0.1%)
Timer 24B (0.1%) 1(0%)

Figure 5.16 displays a list of all OverlayMiddleware classes, with the total size and

number of instances allocated. It can be seen that OverlayMiddleware.util.FileInfo[] is

the biggest memory consumer among the other classes. FileInfo[] is an array of FileInfo

objects that is allocated for the FileDB object. The size of the FileInfo array can be

88

increased or decreased by changing Preferences.FileDBsize as desired by the developer.

The current setting is 100 elements as shown in figure 5.5.

Table 5.1 shows the bytes and objects allocated to be used by our middleware. Actually,
char[] class, for which the JVM allocated around 11,300 bytes, is not used directly by our
middleware, but it was used by J2ME API which our system used. The classes byte[],
and String are two important types that our system used heavily as indicated by bytes and
objects allocated in table 5.1. They were mainly used to create overlay packets. The rest
of the classes listed in the table were used by different threads in our system and used up

insignificant amount of memory.

Figure 5.17 : Memory (heap)

The overall memory that the sample application required for its execution is shown in
figure 5.17. The lighter shade represents the overall memory that the JVM allocated for
its heap (2 Megabytes in the graph). The heap is basically the amount of memory that is
allocated dynamically during the program runtime. The darker shade in the graph

89

represents the amount of heap that is actually in use by the program, which stays close to
0.5 Megabytes. The amount of heap allocated and used does not include the JVM.

The amount of the heap being used by our system could slightly rise depending on its
overlay state. For example, our middleware which was running in 10.1.1.1 formed a
neighbor relationship with 10.1.1.3, and it was the client side of the connection. Had it
been the server, one more Timer thread would have been allocated to perform LCS
functionality. Moreover, the memory needed by our system could rise depending on the
user application’s requirements. If the application specified a higher number of
neighbors, more threads will be spawned to manage the connections to these neighbors.
The more threads our system spawns, the more CPU and memory resources will be used
up. Therefore, it is important that the application specifies a maximum number of
neighbors that does not overwhelm the capacity of the application’s target device. The

following equation estimates the number of the threads, ¢, spawned by our system:
t=(1+c)n+k

Where c is the percentage of neighbors for which the node serves as a client for LCS. n is
the number of neighbors, and % represents a constant number of threads used for

administrative purposes.

Finally, figure 5.18 shows two important heap statistics [37]:

» The lower line is the percentage of execution time spent by the JVM doing
garbage collection and is graphed against the y-axis on the right edge of the
graph. Time spent by the JVM doing garbage collection is time that is not
available for it to run the user application. Since the line is close to zero during
the lifetime of the application, our middleware did not exhaust heap memory,
which proves that our system is memory-efficient.

e The upper line is surviving generations and is graphed against the y-axis scale on
the left edge of the graph. The count of surviving generations is the number of

different ages of all the Java objects on the JVM's heap, where "age" is defined as

90

the number of garbage collections that an object has survived. When the value for
surviving generations is low it indicates that most of the objects on the heap have
been around about the same amount of time. If, however, the value for surviving
generations is increasing at a high rate over time then it indicates that our
middleware is allocating new objects while maintaining references to many of the
older objects it already allocated. If those older objects are in fact no longer
needed then the application is wasting (or "leaking") memory. In our middleware,
the allocated resources are mainly the databases that are needed throughout the

lifetime of the application. Therefore, our middleware does not leak memory.

4] : 100%
3]
240 wg e F50%
|
|
: 1
1_,, - - AU __-.___._E__ —
H i
0l
3:54:40

Figure 5.18 : Memory Garbage Collection

5.5 Testing on HP iPAQ 1950

Because our middleware was developed in accordance with the J2ME CDC, Personal
Profile 1.0 specifications, and since CDC personal profile is supported by most Personal
Digital Assistants (PDAs) and many mobile phones, we decided to experiment executing
it on the Hewlett Packard PDA, iPAQ 1950 in order to prove that we have achieved our

portability requirement.

91

HP iPAQ 1950 is a pocket pc powered by windows mobile 5.0 Premium Edition. It is
based on new Samsung SC32442 processor which runs at a speed of 300 MHz. It has 64
MB ROM and 32MB SDRAM (up to 33 MB user available persistent storage memory).
It is also equipped with a WiFi 802.11b connectivity.

In order to be able to run our java program on the PDA, a J2ME run time environment
was installed first. We have installed IBM’s J9 runtime environment [39], which is an
implementation of the J2ME platform and is composed of a JVM and some Java Class
Libraries (JCL). Microsoft’s ActiveSync [40] program was used to launch J9 on the
iPAQ.

Because print statements can no longer be used to trace the execution of our program on
the PDA, events were saved on a log file. IBM’s Websphere Studio Device Developer
[41] IDE was used to generate a Java Archive (JAR) file of the application. The JAR file
was then ported to the PDA, and was tested for execution. To test our middleware on the
PDA, we carried out the same demonstration application of section 5.3. Only this time,
the PDA was given the role of 10.1.1.1 in the previous experiment and its execution was

no different from the laptop.

5.6 Implementation Limitations

One limitation encountered while using J2ME platform is that it does not support any
API that can retrieve local host device information, such as current battery or power
level, or any CPU information. To overcome this problem, two methods were added to
Node interface, which are SetPower(), and SetCapacity(), which can be used to set the

power and capacity values for the node respectively.
At the time of development, the user might have an idea which platform is being targeted.

In that case, platform specific native API can be used in order to read the power and

capacity level of the node and feed it to our system. Another get around that the

92

developer can do is to use PersonalJava platform which supports some API that can
retrieve battery level and capacity. We have not used PersonalJava because it has reached
its end-of-life-cycle which means that it will no longer be supported in next generation

java-enabled devices.

5.7 Performance Optimization using AODV

In section 3.2.4, we have compared between flooding and random walk techniques as
resource discovery techniques for MANETs. We have chosen to employ random walks
rather than flooding because flooding generates excessive traffic, and because biased
random walks can find the best path based in link stability and neighbor capacity, which
suits MANET nodes properties.

However, in order to perform MBR, our system generates some overhead traffic. For
example, nodes exchange LCS packets in order to measure the link stability to their
neighbors. A question that rises itself is whether we have achieved what we are hoping to
achieve when we favored biased random walks over flooding. One might think that
instead of generating LCS traffic, we can simply flood the network with queries, which
might have the same overhead, if not less. We can argue that we can achieve better
results than that of flooding, in terms of decreasing network load, if our system was used

on top of Ad hoc On Demand Distance Vector AODV routing protocol [31].

AODV is a reactive on-demand routing protocol designed for ad hoc mobile networks. It
discovers routes when the node needs to send the data packets to an unknown destination.
Hello messages are used to detect and monitor links to neighbors. If Hello messages are
used, each active node periodically broadcasts a Hello message that all its neighbors
receive. Because nodes periodically send Hello messages, if a node fails to receive

several Hello messages from a neighbor, a link break is detected [31].

A node wishing to discover a new route broadcasts a route request (RREQ) to all of its

neighbors. The receiver of a RREQ searches its cache for a match of the request. If it

93

finds a hit, it unicasts a route reply (RREP) to its next hop in the direction of the source;
otherwise, it continues to broadcast the RREQ after saving the return route to the source
in the cache. Each node that propagates a RREP saves the route to the destination. After
the source receives the RREP, it begins sending data. AODV maintains routes for as long
as they are active [33]. This means that data packets destined to a specific route will

refresh the route in the AODV cache.

How does AODV help optimize the performance of our system? If we set our LCS and
multicast timers to be less than of the AODV cache expiry timer, then our LCS and
multicast traffic will refresh the routes in AODV cache and will save the network from

RREQ packets that AODV floods the network with when it needs to discover a route.

On the other hand, if we consider the scenario of query flooding, the ad hoc network
does not only get flooded at the overlay-level, but it also gets flooded with AODV RREQ
that some nodes send to rediscover routes to their neighbors , since queries are issued by

the application in at unpredictable times.

Performance of our system can be further improved if it can get the RTT and power
information of the overlay neighbors from the underlying routing protocol. For example,
some routing protocols are power-aware. Because we prefer not to constraint our
middleware with such routing protocols and because it is important for our middleware to
be independent of underlying layers, the LCS functionality was fully implemented at the

overlay layer.

5.8 OverlayMiddleware and KBR

In section 2.2, we summarized the work of [7] which introduces a common unified API
for structured overlay networks. Despite the fact that their work targets a different class
of overlay networks than ours, some methods in our middleware implement similar

functions that their API suggests, as shown in table 5.2.

94

Table 5.2 : KBR Functions Implemented by OverlayMiddleware

KBR function OverlayMiddleware method
route(), forward() Implemented by our ConnManager.Forward() method
deliver() Implemented by MessageHandler.ProcessMessage()
locallookup() Implemented by our NeighborDB.ReturnCandidates()

95

6 Concluding Remarks and Future Work

Because of the flourishing market of high-end mobile devices, MANET have gained an
enormous popularity over the past few years, which led to an increasing need for
development of applications to run on these devices. Developing MANET application,
however, is not an easy task. It faces challenges due to network dynamics including ad
hoc and unstable connectivity, abrupt disconnection; and due to resource constraints

including limited power and computing resources.

Solutions such as, overlay networks or middleware have been suggested to facilitate
software development over MANETSs. Middleware usually refers to a layer that acts an
intermediate layer between different application components, providing a more functional
set of Application Programming Interfaces (API) than the underlying platform. An
overlay network, on the other hand, is basically a peer-to-peer virtual network that is
logically built on top of the physical topology. Both structured and unstructured overlay
networks have shown a promising approach for designing and deploying applications

over MANET.

In this thesis, the design of a middleware that abstracts the functionalities of an
unstructured overlay network is proposed. The most important functionalities that our
middleware supports include the following:

e Bootstrapping or joining the overlay network: multicast is used so that overlay
peers discover each other.

e Neighbor establishment: TCP connections are established between overlay peers
simultaneously, where each neighbor is assigned a separate thread to monitor the
connection and to forward the overlay traffic coming from that neighbor.

e Resource discovery: queries and query replies are used to discover a resource.
The forwarding decision of each node is based on MBR.

e Path establishment: during the overlay query forwarding phase, each hop caches
the next and previous hops in order to establish the path and the reverse path

between source and destination.

96

¢ File download: A simple TCP file server is implemented.

The design of the middleware is influenced by the fact that a MANET is formed out of
resource-challenged devices of different platforms. In addition, our middleware is
designed so that it supports the implementation of a wide range of applications. These
facts mainly indicate that our middleware has to meet three key non- functional

requirements, which are namely, portability, efficiency and usability.

Firstly, portability is achieved by our middleware because it is implemented according to
the J2ME CDC platform specifications, which allows it to run on several platforms.
Secondly, using java threads allows us to achieve speed efficiency. Memory efficiency is
taken care of by JVM because of its garbage collection facility. Finally, usability is
achieved by implementing the simple MBR-based file-search and path establishment
mechanisms which we have proved to be the basis for implementing a wide range of

applications, such as file sharing, ALM and gaming applications.

There are some future improvements that can be incorporated into our middleware. One
improvement that would be desirable for our system is to implement a proactive neighbor
replacement algorithm based on link RTTs. Selecting neighbors based on RTT can ensure
that each node will remain connected to its physically closest nodes, which can help build
a more locality-aware topology. The reason is that links to physically closest nodes are
more likely to have shorter RTTs. This can be advantageous because if overlay neighbors
are also physical neighbors, then messages sent between neighbors will be reduced. It is
true that at the overlay level, a packet from a node to its neighbor is one hop away, but in

reality, at the transport layer, this neighbor could be multiple hops away.

One hop replication might be considered as a future improvement as well. If each node
keeps track of the files that exist at each of its neighbors, the overall systems performance
can be improved. The reason is that it increases the number of nodes that know where a
file is located, which increases the query success rate. Actually, exchanging file names

should not introduce more traffic in the network, because such information can be

97

piggybacked on other overlay packets. However, there are some issues that should be
studied first before introducing one hop replication to the system. For example, if each
overlay node were to keep track of the file indices of all of its neighbors, this might

exhaust the memory of the node.

One important future improvement is securing the overlay network against malicious
nodes. For example, a malicious node can listen to the overlay joins that overlay nodes
send during bootstrapping. The malicious node can then use the information in the join
packet, such as the IP, in order to connect to the server port. This can cause a denial-of-
service attack. A malicious node can also attack the TCP file server. Therefore, a
thorough investigation on overlay middleware must be made in order to guard against

such attacks.

Finally, one improvement to the system is to use a credit-based flow control such as the
one used in Gia. In Gia’s flow control algorithm, a node can only send a query to its
neighbor if it has credits or tokens from that neighbor. This approach guards against the
problem of hot spots which could occur because each node takes capacity into

consideration when forwarding a query.

98

References

[1] Doval, D ,0’Mahony, D, “Overlay Networks: A scalable alternative for P2P,” IEEE
Internet computing, jul-aug 2003.

[2]1 K. Lua, J. Crowcroft, M. Pias, R. Sharma and S. Lim. “A Survey and Comparison of

Peer-to-Peer Overlay Network Schemes,”in IEEE communications survey and tutorial,
March 2004.

[3]1 F. Araujo, J Kaiser,C. Mitidieri, C Liu and L. Rodrigues. “CHR: a Distributed Hash
Table for Wireless Ad Hoc Networks,” in 25" international conference on distributed
computing schemes, Columbus, Ohio, USA, June 2005.

[4] R. Harbird, S. Hailes and C. Mascolo. “Adaptive Resource Discovery for Ubiquitous
Computing,” in 2 workshop on Middleware for Pervasive and Ad-Hoc Computing,
Toronto, Canada.

[5] G. Lau, M. Jaseemuddin, and G. Ravindran “RAON: A P2P Network for MANET,”
Proceedings of 2™ IEEE/IFIP International Conference on Wireless and Optical
Communications Network (WOCN), March 2005.

[6] Y. Chawathe, S. Ratnasamy,L. Breslau, N. Lanham and S. Shenker. “Making
Gnutella-like P2P Systems Scalable,” in Proceedings of SIGCOMM 2003, August 2003.

[7] F. Dabek, B. Zhao, P. Druschel, J Kubiatowicz and I. Stoica. “Towards a Common
API for Structured Peer-to-Peer Overlays”, Second International Workshop on Peer-to-
Peer Systems (IPTPS 2003), February 2003.

[8] I. Chlamtac, M. Conti, and J. Liu, "Mobile Ad Hoc Networking: Imperatives and
Challenges," Ad Hoc Networks, vol. 1, no. 1, 2003, pp. 13-64.

[9] Antony Rowstron and Peter Druschel, “Pastry: Scalable, Distributed Object Location
and Routing for Large-Scale Peer-to-Peer Systems,” in Proceedings of the IFIP/ACM
Middleware 2001, Heidelberg, Germany, Nov. 2001.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable
Content Addressable Network,” in Processings of the ACM SIGCOMM, 2001, pp. 161—
172. .

[11] L Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A
Scalable Peer-to-Peer Lookup Protocol for Internet Applications,” IEEE/ACM
Transactions on Networking, vol. 11, no. 1, pp. 17— 32, 2003.

99

[12] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz,
“Tapestry: A Resilient Global-Scale Overlay for Service Deployment,” IEEE Journal on
Selected Areas in Communications, vol. 22, no. 1, pp. 41-53, January 2004.

[13] I Clarke, O. Sandberg, B. Wiley, and T. W. Hong. “Freenet: A Distributed
Anonymous Information Storage and Retrieval System,” In Proceedings of the ICSI
Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA, 2000.

[14] B. Cohen, "Incentives Build Robustness in BitTorrent," May 22, 2003.
http://www.bittorrent.org/bittorrentecon.pdf

[15] Gnutella Development Forum, "The Gnutella v0.6 Protocol,"
http://www.gnutellaforums.com/

[16] Napster, http://www.napster.com/

[17] D. Bakken, “Middleware,” Chapter in Encyclopedia of Distributed Computing, J.
Urban and P. Dasgupta, eds., Kluwer Academic Publishers, 2002,
http://www.eecs.wsu.edu/~bakken/middleware.pdf.

[18] S. Nilsen, “A CORBA Service for the OSA+ Real-Time Middleware,” M.S. thesis,
University of Oslo, October 2005.

[19] H. Pinus, “Middleware: Past and Present a Comparison,”
http://www st.informatik.tu-darmstadt.de/database/seminars/data/middleware.pdf?id=79
June 2004

[20] C. Mascolo, L. Capra, and W. Emmerich, “Middleware for Mobile Computing (A
Survey),” Networking 2002 Tutorial Papers, 2002.

[21] A. Gaddah and T. Kunz. “A Survey of Middleware Paradigms for Mobile
Computing,” Technical Report SCE-03-16, Carleton University Systems and Computing
Engeneering, July 2003.

[22] E. Vollset, “Extending an Enterprise Messaging System to Support Mobile
Devices,” M.S. thesis, University of Newcastle upon Tyne, September 2002

[23] Sun Microsystems, 1995-2006. “The Java Tutorials: Concurrency, Processes and
Threads,” http://java.sun.com/docs/books/tutorial/essential/concurrency/procthread.html

[24] S. Oaks and H.Wong, Java Threads, O’reilly, January 1997
[25] I. Sommerville, Software Engineering, Addison-Wesley Publishing Company, 5th

edition, chapter 12.

100

[26] M. Castro, P.Druschel, A. Kermarrec, A. Rowstron. “SCRIBE: A Large-Scale and
Decentralized Application-Level Multicast Infrastructure”.in JEEE Journal on selected
areas in communications, Vol. 20, NO. 8, October 2002

[27] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Application-Level Multicast using Content-Addressable Networks,” in Proceedings

of the Third International Workshop on Networked Group Communication,
London, UK, Nov. 2001, pp. 14-29.

[28] S. Kandula, J. Lee, and J. Hou.“LARK: A Light-weight, Resilient Application-Level
Multicast Protocol,” in Proceedings of IEEE Computer Communication Workshop,
November 2003. ‘

[29] P.Engelstd, G. Egeland, S. Bygdas,R. Geers and T. Urnes. “Middleware Supporting

Adaptive Services in On-Demand Ad hoc Networks,”in Proceedings of 9th International
Conference on Intelligence in service delivery Networks (ICIN'2004), Bordeaux (France),
October 18-21, 2004.

[30] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker. “Search and Replication in
Unstructured Peer-to-Peer Networks,” in Proceedings of the 16th international
conference on Supercomputing, pp. 84-95, 2002.

[31] RFC3561, Ad hoc on Demand Distance Vector Routing, July 2003.
http://www.ietf.org/rfc/rfc3561.txt

[32] C. Perkins, E. Belding-Royer, and Ian Chakeres. "Ad Hoc On Demand Distance
Vector (AODV) Routing," In Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications, New Orleans, LA, February 1999, pp. 90-100.

[33] Mobility Management and Networking (MOMENT) Laboratory, "AODV,"
http://moment.cs.ucsb.edu/AODV/aodv.html.

[34] Tool Report: NetBeans Profiler, January 2007,
http://www.javaperformancetuning.com/tools/netbeansprofiler/.

[35] NetBeans Profiler, http:/profiler.netbeans.org/.
[36] NetBeans IDE, http://www.netbeans.org/products/ide/.

[37] G. Sporar and R. Kusterer. "NeatBeans IDE tutorial".
http://www.netbeans.org/kb/articles/nb-proﬁler-tutor-8.html.

[38] Ethereal, www.ethereal.com.

101

[39] J9 IBM JVM for PocketPC PDA's. http://www.berka.name/stan/jvm-
ppe/little j9_howto.html.

[40] Microsoft’s ActiveSync 4.5
http://www.microsoft.com/windowsmobile/activesync/activesync45.mspx.

[41]Websphere Studio Device Developer www.ibm.com/software/wireless/wsdd/.

[42] "Link State Routing Protocol — OSPF," class notes for CN 8813, Department of
Electrical and Computer Engineering, Ryerson University, Fall 2006.

[43] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, "A review of routing protocols for
mobile ad hoc networks," Ad Hoc Networks, vol.2, no.1, pp.1-22, Jan. 2004.

[44] M. Bhuiyan, and M. Jaseemuddin, Congestion-Aware Overlay Networks,

accepted to appear in Proceedings of the 64th IEEE Vehicular
Technology Conference Fall 2006 (VTC), Sept. 25-28, 2006 Montreal, Canada.

102

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2007

	Design and implementation of an unstructured overlay middleware to support MANET applications
	Mashael Saad Al-Sabah
	Recommended Citation

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113

