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Abstract 

Updating prior information with new information in accordance with Bayesian principles 

is a difficult task. Younger adult decision makers deviate from Bayes’ theorem by either 

overweighting prior information (i.e., using a conservatism heuristic) or overweighting new 

information (i.e., using a representativeness heuristic) on decision tasks without feedback. 

Similar to younger adults, older adults make decisions that require belief updating. Given age-

related decrements in cognitive control, older adults may be at a disadvantage compared with 

younger adults when updating beliefs. Prior research shows no age differences when making 

decisions under risk, however older adults perform worse than younger adults when making 

decisions under ambiguity. Currently it is unknown how older adults use heuristics when 

updating beliefs about risk and ambiguous information compared with younger adults.  

The primary aim of this dissertation was to examine age-related differences in the use of 

heuristics during belief updating, as well as the cognitive processes and neural correlates that 

underpin behaviour. In three experiments, younger and older adults completed a belief updating 

task with and without feedback using an urn-ball paradigm. The main results showed that both 

younger and older adults committed the representativeness error more than the conservatism 

error, with no age differences observed when updating beliefs without feedback but with younger 

adults updating beliefs more accurately than older adults with feedback. Further, age differences 

in the neural correlates that underlie belief updating showed evidence that older adults recruit 
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additional resources in frontal regions of the brain to facilitate performance compared with 

younger adults. Event-related potentials showed evidence of cognitive control in response to 

conflicting information in both age groups, but a diminished neural response to feedback in older 

compared with younger adults. Additionally, while younger adults were not influenced by 

ambiguous information, older adults avoided committing the representativeness error only when 

new information was ambiguous. Last, individual differences in numeracy and cognitive 

reflection, but not thinking disposition, modulated belief updating performance. Together, the 

results show that younger and older adults can learn to update beliefs with feedback but with 

younger adults learning to a greater degree than older adults, especially when information is 

ambiguous. 
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Chapter 1: General Introduction 

 

Imagine being at home and the 10-year-old carbon monoxide (CO) detector alerts 

dangerous CO levels. One must decide whether to evacuate one’s home or not on the basis of a) 

knowing that high levels of CO can be poisonous and severely affect one’s health, and b) the 

probability of the alarm being false given that it is 10 years old. To complicate matters, imagine 

it is the summer, the windows are open in the house, the furnace is not running, and you do not 

have a gas stove (i.e., a false alarm is plausible). By conducting further research, you discover 

that even older CO detectors have low false alarm rates (i.e., a CO leak is plausible). On balance, 

this information makes it difficult to decide whether to evacuate your house or not. In order to 

judge the posterior probability (i.e., the likelihood of a leak given that the CO alarm went off) , 

prior beliefs (i.e., CO leak in your house)  must be updated with new information (i.e., the CO 

alarm going off).  

Judging posterior probabilities requires Bayesian inference. Bayes’ theorem is used as the 

formal standard for belief updating, in which one must update the odds of an event in light of 

new evidence (Bayes & Price, 1763; Knight, 1921). Although formal Bayesian statistics involve 

calculation, in the real world abiding by the conceptual logic of Bayes’ theorem can help avoid 

errors in probabilistic judgment. However, research shows that following the conceptual 

principles of Bayes’ theorem is a difficult task (Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, 

& Woloshin, 2007; Goodie & Fantino, 1999; Kahneman & Tversky, 1972; Simon, 1972). 

Instead, simpler strategies that promote fast and efficient information processing such as 

heuristics are commonly used in real world settings to judge probabilities (Grether, 1980, 1992; 

Kahneman & Tversky, 1972). 



2 

 

Heuristics are general decision making strategies that ignore part of the available 

information, diminish the work of retrieving and storing information in memory, and are based 

on minimal need for information search or analytic evidence evaluation (Gigerenzer, Todd, & 

ABC Research Group, 1999). Heuristics streamline the decision making process by reducing the 

amount of integrated information in order to make decisions quickly, frugally and without a 

heavy dependence on cognitive resources compared with complex decision making strategies 

(Gigerenzer & Gaissmaier, 2011). For example, when walking to work one may notice a 

construction worker hauling up a pallet of bricks on a pulley. Likely a snap judgment would be 

made to choose to walk around the construction area instead of walking directly under the bricks 

to avoid danger. This decision would be made without assessing the entire situation such as 

calculating the probability of the bricks falling while walking under the pallet or the chances of 

survival if the bricks fell. That is, a heuristic would likely be used to make a quick decision 

without the cost of much mental effort.   

Although heuristics speed up decision making processes, they can introduce errors and 

biased judgments (Todd, Gigerenzer, & ABC Research Group, 2011). Heuristics lead to error in 

judgment particularly when the heuristic is not suited for the structure of the environment, such 

as when the problem at hand requires the application of normative strategies (e.g., applying the 

conceptual principles of Bayes’ theorem; Gigerenzer et al., 1999). In fact, errors in judgment are 

commonly observed when heuristics are used to make Bayesian inferences (Savage, 1954). One 

such error involves overweighting prior information in which a base-rate only strategy is used. 

This heuristic used to make decisions has been termed conservatism (Edwards, 1968), and relates 

to the investment and commitment to prior beliefs (Klayman, 1995), also found in the anchoring 

phenomenon (Mussweiler & Strack, 1999). A second error involves overweighting new 
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information in which a base-rate neglect strategy is used, a decision making heuristic termed 

representativeness (Grether, 1980, 1992; Kahneman & Tversky, 1972). The representativeness 

heuristic has been described as making a comparison between new information and a parent 

population (Juslin, 2015; Juslin, Nilsson, & Winman, 2009; Juslin & Persson, 2002), engaging a 

“matching intuition” (Glöckner & Witteman, 2010).   

There is a vast literature showing that younger adults have difficulty making Bayesian 

inferences because they tend to base decisions on either prior or new information rather than the 

product of their integration (Grether, 1980, 1992; Juslin, Nilsson, Winman, & Lindskog, 2011; 

Kahneman & Tversky, 1972). Like younger adults, older adults are also confronted with 

decisions that require Bayesian inference. It has been postulated that older adults may be 

required to make Bayesian inferences that inform important decisions more often than younger 

adults, such as in medical and financial contexts that require informed decision making based on 

probabilistic information (Chen & Sun, 2003). Although research shows that older adults use 

heuristics to make decisions more than younger adults (Blanchard-Fields, Hertzog, Stein, & Pak, 

2001; Hess, 2001; Peters, Hess, Auman, & Västfjäll, 2007), much less is known about how age 

affects the use of heuristics during Bayesian inference. 

More generally, in the heuristics and biases literature cognitive reflection tasks are 

commonly used to examine the prevalence of making judgments based on automatic, intuitive, 

fast and effortless processing (i.e., Type 1 processing) compared with analytical, slow and 

effortful processing that burdens executive cognitive resources (i.e., Type 2 processing; 

Kahneman, 2011). Typically, cognitive reflection tasks are formatted as word problems and are 

deliberately designed to pit an automatic response generated by Type 1 processing against a 

normative response generated by Type 2 processing (Kahneman, 2011). In these tasks, intuitive 
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answers that are automatically generated by Type 1 processing are typically suboptimal 

responses (although there are exceptions; see Evans & Stanovich, 2013). In order to make a 

correct judgment, a conflict must be detected between the automatic response and a normative 

response (Stanovich, 2011). Inhibitory control is then engaged to suppress and override Type 1 

processing, in order to allow Type 2 processing to actively simulate hypothetical, alternative 

responses that may lead to a more optimal response than the response generated by Type 1 

processing (Evans, 2003, 2007, 2010; Evans & Stanovich, 2013; Oldrati, Patricelli, Colombo, & 

Antonietti, 2016). Importantly, simulating alternative responses must not be confused with the 

real world. Therefore, decoupling operations must be sustained to avoid confusion (Stanovich, 

2011). Simultaneously suppressing automatic responses while generating alternative responses is 

largely demanding of executive functions, specifically inhibitory control (Best, Miller, & Jones, 

2009; Miyake & Friedman, 2012) and working memory (Feldman Barrett, Tugade, & Engle, 

2004). In the context of a belief updating task in which Bayes’ theorem is the formal standard, 

Type 1 processing may automatically generate a conservatism or representativeness heuristic 

leading to an error in judgment. However, if a conflict is detected between using a conservatism 

or representativeness heuristic and a normative strategy, such as the principles of Bayes’ 

theorem, Type 2 processing may be engaged to simulate alternative responses that may lead to a 

more optimal response.  

Within the aging literature, there is consensus regarding the general pattern of age-related 

changes in cognition, with a linear decline particularly in working memory and executive 

functions such as cognitive control (Salthouse, 2019). Cognitive control is an umbrella term that 

describes the processes that are involved in controlling or managing other cognitive processes 

such as maintaining and updating information in working memory, sustaining attention when 
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confronted with interference, as well as inhibitory control (Diamond, 2013; Gassaley & Nobre, 

2012; Lenartowcz, Kalar, Congdon, & Poldrack, 2010). Age differences on behavioural 

measures of cognitive control have been associated with the anatomical and functional 

deterioration of the prefrontal cortex (PFC) with age (Braver & Barch, 2002). In particular, the 

inhibitory deficit hypothesis proposes that age-related declines in inhibitory efficiency due to 

weakened cognitive control with age, underlies the deficits observed in attentional and working 

memory tasks (Hasher & Zacks, 1988). Given the deficits in cognitive control in old age, older 

adults may perform worse than younger adults on tasks that require inhibiting automatic, 

heuristic-based responses in order to simulate alternative responses that follow normative 

principles, a process that involves working memory. However, how older adults use heuristics 

relative to normative strategies to update beliefs compared with younger adults has never been 

empirically examined.  

 As previously described, cognitive reflection tasks usually present a few word problems 

with no feedback. Research shows age differences in reinforcement learning, with younger adults 

using feedback more successfully than older adults (Eppinger, Kray, Mock, & Mecklinger, 2008; 

Fernandes et al., 2018; Nieuwenhuis et al., 2002). Some research attributes this age discrepancy 

to a decline in dopamine with age (see Bäckman, Nyberg, Lindenberger, Li, & Farde, 2006; 

Braver & Barch, 2002 for reviews), a neurotransmitter pivotal for learning from feedback 

(Mathewson, Dywan, & Segalowitz, 2005). Other research suggests that older adults may have 

difficulty learning from feedback compared with younger adults due to an age-related asymmetry 

in the processing of valence, such that older relative to younger adults show a preference for  

positive over negative information (Eppinger et al., 2008; Mather & Carstensen, 2005; Mather & 
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Johnson, 2000). Whether feedback would promote the use of normative strategies in younger and 

older adults over automatically generated heuristics when updating beliefs is unknown. 

In addition, cognitive reflection tasks typically require making decisions under risk, in 

which all relevant information is available and can be calculated (Volz & Gigerenzer, 2012). 

Bayesian inference in the real world requires updating beliefs based on ambiguous information, 

with some information unavailable or unattainable (Volz & Gigerenzer, 2012). Referring to the 

CO leak example described above, although one could research the false-alarm rate of a CO 

detector that is 10 years old, the probability of a CO leak is unknown. Older adults show an 

aversion to ambiguity (Tymula et al., 2013), possibly due to a deficit in making inferences about 

ambiguous information (Hämmerer et al., 2019) or a deficit in understanding how to assign 

weight to ambiguous information when making decisions (Nassar et al., 2016). The literature is 

currently mixed regarding whether there are age differences in decisions made based on 

ambiguous information. Some research shows that younger adults make more accurate decisions 

under ambiguity than older adults (Hämmerer, et al., 2019; Nassar et al., 2016). However, other 

research shows that younger adults have difficulty making decisions based on ambiguity and, 

similar to older adults, show an aversion to ambiguous information leading to decision errors 

(Seer, Lange, Boos, Dengler, & Kopp, 2016). Whether there are age-related differences when 

making Bayesian inferences based on risk information compared with ambiguous information is 

unknown.  

Beyond age differences, there is a voluminous literature on the individual differences 

associated with cognitive reflection. Specifically, the Cognitive Reflection Test (Frederick, 

2005) has previously been used to measure conflict detection and index the tendency to default 

to autonomous processing. In order to detect conflict between an automatic and normative 
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response, or to generate an alternative response that is better than the response generated by 

automatic processing, one must have the “mindware” to support these processes such as 

numeracy or probabilistic reasoning skills (Clark, 2001; Perkins, 1995). Additionally, research 

shows that cognitive reflection is modulated by thinking dispositions (i.e., intuitive versus 

reflective thinking styles) that stem from one’s goals, attitudes toward forming and changing 

beliefs, as well as one’s willingness to problem solve (Baron, Scott, Fincher, & Metz, 2015; 

Bruine de Bruin, McNair, Taylor, Summers, & Strough, 2015; Cacioppo, Petty, Feinstein, & 

Jarvis, 1996). Research shows that higher Cognitive Reflection Test and numeracy scores, and 

reflective thinking dispositions relate to higher decision accuracy on cognitive reflection tasks 

(Cacioppo & Petty, 1982; Cokely et al., in press; Pacini & Epstein, 1999; Toplak, West, & 

Stanovich, 2011; Tversky & Kahneman, 1983). At present however, it is unclear whether 

feedback would close the gap that would otherwise exist between those of high versus low 

numeracy, or those with more intuitive versus reflective thinking dispositions. Additionally, no 

research has examined whether individual differences in numeracy and thinking dispositions 

modulate performance on a belief updating task when decisions are based on risk information 

compared with ambiguous information.  

Examining the use of heuristics when normative strategies are required, such as in the 

case of Bayesian inference, is an important research endeavor with societal implications. For 

instance, work from my research program in the domain of medical decision making shows that 

when asked to judge the probability of having a disease given a positive test result (i.e., the 

positive predictive value; PPV), younger and older adults tend to make estimates that reflect  

high probabilities when the true probability is low. These results reflect heuristic-based 

judgments such that responses reflect the general belief that diagnostic tests are highly accurate 
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in lieu of considering all relevant information, that if integrated correctly would point towards a 

low probability (Armstrong & Spaniol, 2017; Armstrong, Sparrow, & Spaniol, under review). 

This argument is strengthened by results reported by Wegier, Armstrong, and Shaffer (2019) 

who showed that when asked to judge the PPV, high probability judgments were made even 

when a low PPV was explicitly presented (i.e., the answer was provided!). In the real world, 

erroneously judging the PPV to be high when it is actually low, as in the case of maternal serum 

screening for Down syndrome which has a PPV of 2.2%, may have negative effects on patients 

such as stress or overtreatment (Wegier et al., 2019).  

Beyond medical decision making, errors in probability judgment have also been found in 

pathological gambling (e.g., Toplak, Liu, Macpherson, Toneatto, & Stanovich, 2007), as well as 

in financial decision making resulting in problems of money management and economic life 

planning (e.g., Lusardi & Mitchell, 2014). Examining behaviour, as well as the neural 

underpinnings of belief updating amongst younger and older adults will shed new light on which 

processes support Bayesian inference. Interpreting data through the lens of dual-process theory 

of information processing, as well as the cognitive aging literature will also elucidate where there 

may be a breakdown in the information processing system in older age that results in using 

erroneous heuristics to make judgments.  

Dissertation Overview 

 

In the heuristics and biases literature, it is well-documented that younger adults default to 

Type 1 over Type 2 processing leading to the use of heuristics in lieu of normative strategies 

during Bayesian inference (Grether, 1980, 1992; Kahneman & Tversky, 1972). Although older 

adults use heuristics to make decisions more than younger adults (Blanchard-Fields et al., 2001; 

Hess, 2001; Peters et al., 2007), whether age affects the use of heuristics when heuristics conflict 
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with Bayes’ theorem has never been empirically tested. Further, whether there are age or 

individual differences in belief updating when feedback is presented, or when information is 

based on risk relative to ambiguity, are avenues of research that have never been empirically 

explored. In light of the gaps in the literature described, the overarching goal of this dissertation 

is to investigate how age and individual differences modulate sensitivity to the principles of 

Bayesian inference by pitting normative strategies (i.e., Bayes’ theorem) against error-prone 

heuristics (i.e., conservatism or representativeness) when feedback is provided compared with 

when feedback is not provided. Further, I examine the neural correlates that underlie decisions to 

elucidate the processes that take place before decisions are made.  

The primary goal of Chapter 2 is to orient the reader to the literature that is most relevant 

to the topic of the dissertation and to build the rationale for the series of experiments presented in 

the ensuing chapters. First, I will introduce the concept of Bayesian inference while highlighting 

some of my own work on this topic and describe the literature on the role heuristics play in 

decision making. Building on this foundation, I will then summarize the literature on how age 

may influence Bayesian inferences, as well as heuristic-based decisions. I will also briefly 

introduce the dual-process account of information processing and decision making. In addition, I 

will summarize the research on how age impacts reinforcement learning, as well as how age 

affects decisions made under risk compared with decisions made under ambiguity. Last, I will 

describe the research that has examined individual differences in cognitive reflection.  
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Chapter 2: Literature Review 

Bayesian Inference 

 

As briefly mentioned in Chapter 1, Bayes’ theorem can be used as a normative strategy of 

optimization for updating beliefs (Bayes & Price, 1763; Knight, 1921; Stigler, 1983, 1986). In 

order to generate a posterior judgment, prior information is combined with new information 

using the following formula:  

P(H|D) =
P(H) P(D|H)

P(H) P(D|H) + P(~H) P(D|~H)
 

 

In this formula “H” is the hypothesis under investigation, and “D” represents the data or new 

information that is relevant to the hypothesis. P(H) reflects the probability that the hypothesis is 

true prior to acquiring new information, and P(~H) is the probability that the alternative 

hypothesis is true prior to having acquired new information. The posterior probabilities in the 

formula include, P(H|D) which represents the probability that the hypothesis is true given new 

information, P(D|H) which represents the probability of observing new information given that 

the hypothesis is true, and P(D|~H) which represents the probability of observing new 

information given that the alternative hypothesis is true.  

It has been well documented that Bayesian inference is a difficult task (Gigerenzer et al., 

2007; Goodie & Fantino, 1999; Grether, 1980; Kahneman & Tversky, 1972). Even with the 

support of visual aids used to alleviate or simplify mental computation such as graphs, diagrams, 

or icon arrays (Garcia-Retamero & Cokely, 2013; Garcia-Retamero & Galesic, 2010), successful 

use of Bayes’ theorem is uncommon, and can require high levels of graph literacy and numeric 

ability (Galesic & Garcia-Retamero, 2011). It is important to note however that in the heuristics 

and biases literature, when errors in Bayesian inference are made, this does not reflect errors in 

calculation, but instead reflects large qualitative errors concerning the conceptual logic of the 
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rules of probability. It is rare that an individual would know or have access to Bayes’ theorem. 

Without access to explicit probabilities, Bayesian inferences are derived from beliefs about states 

of the world. Tasks that require Bayesian inference index whether individuals understand the 

principles of Bayes’ theorem, such as attending to the appropriate variables and integrating 

relevant information that approximate responses derived through normative strategies. In this 

sense, Bayes’ theorem is used as the formal standard of belief updating. Because people have 

difficulty following the principles of Bayes’ theorem, systematic violations are commonly 

observed (Fiedler, 2000; Garcia-Retamero, Galesic, & Gigerenzer, 2010; Grether, 1980; 

Kahneman & Tversky, 1972).  

To provide an example, below is the classic cab problem used in seminal studies of 

Bayesian inference (Bar-Hillel, 1980; Tversky & Kahneman, 1982).  

A cab was involved in a hit-and-run accident at night. Two cab companies, the Green and 

the Blue, operate in the city in which the accident occurred. There are a total of 85% Green 

cabs in the city, and 15% Blue cabs. A witness of the accident identified the cab as Blue. 

The court tested the reliability of the witness under the same conditions as the night of the 

accident by presenting the witness with a sample of cabs (half of which were Blue and half 

of which were Green), with the witness correctly identifying the colour of the cabs 80% of 

the time and erring 20% of the time. What is the probability (ranging from 0% to 100%) 

that the cab involved in the accident was Blue rather than Green? 

Bayes’ theorem provides a normative strategy for integrating relevant information in 

order to obtain an optimal answer. The equation below describes how a Bayesian inference could 

be made based on the information described in the cab problem: 
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P(H|D) =
P(H) P(D|H)

P(H) P(D|H) + P(~H) P(D|~H)
 

 

P(H|D) =
(. 15) (. 80)

(. 15) (. 80) + (. 85)(. 20)
=  .41 

 

Without access to the formula however, a solution to the cab problem can be reasoned as 

follows (Stanovich, West, & Toplak, 2016): 15% of the cabs are Blue and the witness, who is 

80% accurate, identified the cab as Blue. Given this information, it is known that in 100 

accidents involving cabs, 15 were Blue and the witness would identify 80% of the cabs as Blue 

(12/15). On the other hand, out of 100 accidents involving cabs, 85 were Green and the witness 

would identify 20% of the cabs as Blue (17/85). Therefore, the witness would identify 29 (12 + 

17) cabs as Blue, but only 12 would actually be Blue. That is, 12 out of 29 cabs (41%) that were 

identified as Blue, were actually Blue. Thus, it is more likely that the accident involved a Green 

cab (59%).  

Previous research shows that the most common answer to the cabs problem is ~80%, 

reflecting the witness’ accuracy of identifying the cab without integrating prior probability 

information (the base-rate probability of 15%), resulting in an overestimation of individual-case 

evidence (Bar-Hillel, 1980; Hamm, 1993). The systematic error of using the probability of the 

witness’ identification accuracy exemplifies the use of simple strategies to make decisions in lieu 

of normative strategies in a context that requires formal analysis, a common observation due to 

the difficulty of Bayesian inference (Kahneman, 2003). 

Heuristic-Based Decision Making 

 

Heuristics are simple strategies used to make judgments and decisions (Gigerenzer, & 

Gaissmaier, 2011). They are short-cuts or rules of thumb that do not follow normative methods 

of problem solving (Albar & Jetter, 2009). As briefly mentioned in Chapter 1, although 
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heuristics are usually effective and lead to good decisions (Gigerenzer, Hertwig, & Pachur, 

2011), there is a wealth of literature showing that they can also lead to errors in judgment if used 

in an environment that does not support simple cognitive strategies (Gigerenzer et al., 1999). 

That is, heuristics become the source of systematic bias when the environment is structured for 

the use of probability theory (Goldstein & Gigerenzer, 2002). When making probabilistic 

judgments, heuristics are commonly used to save effort such that the computational load is 

minimized at the expense of accuracy (Gigerenzer et al., 2011).  

Deviating from the principles of Bayes’ theorem can result in two errors: overweighting 

prior information reflecting use of a conservatism heuristic (i.e., a base-rate only rule; Edwards, 

1968) and overweighting new information reflecting use of a representativeness heuristic (i.e., a 

base-rate neglect rule; Kahneman & Tversky, 1972). When deciding whether an object belongs 

to Population A or to Population B, the conservatism heuristic is applied if the decision is based 

on the relative frequency of A and B without regard for the object. The conservatism heuristic 

demonstrates a commitment to prior beliefs (Klayman, 1995), also found in the anchoring 

phenomenon (Mussweiler & Strack, 1999). Suboptimal decisions result when only prior 

information is considered in situations that require the integration of information, such as 

Bayesian inference. In the cabs problem for example, a conservatism error is committed when 

the decision maker judges the probability that the cab in the accident was Blue as 15%, without 

regard for new information (i.e., 80% accuracy of witness identification) when making a 

decision. 

In contrast, the representativeness heuristic reflects the overweighting of new information 

in which a base-rate neglect rule is applied. Using a similar example as the above, when deciding 

whether an object belongs to Population A or to Population B, the representativeness heuristic is 
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applied if the decision is based on the degree to which the object seems representative of 

Population A or Population B, and the relative frequencies of A and B are ignored (i.e., the 

decision is based on a “matching intuition”; Glöckner & Witteman, 2010). Critically, it is not 

wrong to consider how similar an object is to a parent population, but only considering 

representativeness does not account for prior probabilities (Barbey & Sloman, 2007; Kahneman 

& Tversky, 1973; Tversky & Kahneman, 1974). As previously mentioned, a common error 

committed by decision makers in the cabs problem involves using the witness’ identification 

accuracy (i.e., 80%) as the probability that the cab in the accident was Blue, without regard for 

prior information (i.e., 15% of the cabs in the city are Blue) when making a decision.  

The voluminous literature on heuristics and biases has been built on the younger adult 

population. Bayesian inference is required to make important decisions particularly in the 

domains of medicine and finance (Chen & Sun, 2003; Worthy, Gorlick, Pacheco, Schyner, & 

Maddox, 2011). The prevalence of medical and financial decisions increase with age (Chen & 

Sun, 2003; Worthy et al., 2011). However, normal age-related cognitive decline may affect how 

decisions are made compared with decisions made by those who have not undergone cognitive 

decline.  

Cognitive and Neurophysiological Changes with Age 

The cognitive aging literature shows that multiple cognitive domains are affected by age, 

including declines in working memory (De Neys & Verschueren, 2006), processing speed 

(Salthouse, 1996), executive function (Mather & Knight, 2005), inhibitory control (Hasher, 

Lustig, & Zacks, 2007) and sustained attention (McDowd & Craik, 1988) – cognitive processes 

that place a heavy demand on cognitive control (Braver & Barch, 2002). In particular, the 

inhibitory deficit hypothesis proposes that older relative to younger adults are more susceptible 
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to interference effects and have more difficulty inhibiting information that is irrelevant to one’s 

goal (Hasher & Zacks, 1988). Baddeley’s (1996) characterization of the function of working 

memory refers to the capacity to sustain selective attention while inhibiting the disrupting effects 

of task-irrelevant information. It has been argued that the decline in working memory capacity 

commonly observed in old age is related to the increase in distractibility due to age-related 

declines in inhibitory control (Salthouse, 2019). In addition to the declines in cognitive control 

mechanisms, fluid intelligence declines markedly with age after peaking in the 20s or 30s, 

(Cattell, 1971; Hartshorne & Germine, 2015; Horn, 1970; Horn & Cattell, 1967; Horn & 

Donaldson, 1976; Salthouse, 2019). Fluid intelligence refers to the ability to reason and problem 

solve in novel contexts (Cattel, 1971; Gray, Chabris & Braver, 2003; Sternberg, 1985), and 

relates to metacognition (i.e., reflecting about one’s own ongoing mental processes; Sternberg, 

1985), working memory and attentional control (Kane & Engle, 2002). Fluid intelligence is 

commonly indexed using speeded measures such as the Digit Symbol Substitution Test 

(Wechsler, 1997), and shows a reliable slowing in processing speed with age (Salthouse, 2019).  

In addition to cognitive changes, subcortical and cortical neural circuits undergo 

structural, functional, and neuromodulatory changes as a function of healthy aging (Rajah, et al., 

2009). For example, overall brain volume decreases with age, and an attenuation of white-matter 

tract connectivity particularly in the frontal lobes (Madden et al., 2012), a brain region associated 

with executive function and strategic planning (Fjell & Walhovd, 2010). The PFC theory of 

aging (Park, 2000; West, 1996) argues that goal-oriented functions of the PFC (e.g., integrating 

information, executive control, inhibiting distracting or interfering information) are most 

susceptible to aging due to the neurophysiological changes that occur in this region. Further, 

some neurotransmitter systems, such as the dopaminergic system associated with reward 
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processing (i.e., learning from feedback) and motivation, also undergo decline with age (Erixon-

Lindroth et al., 2005).  

Although the research described above paints a “doom and gloom” picture of cognitive 

aging, age-related cognitive decline is not uniform across cognitive domains despite brain-level 

changes associated with age. That is, some aspects of cognition are spared from age-related 

decline (Cabeza, Nyberg, & Park, 2005). Cognitive functions that remain intact or improve with 

age include speech and language (Bopp & Verhaeghen, 2005), semantic memory (St-Laurent, 

Abdi, Burianova, & Grady, 2011), as well as crystallized intelligence (Cattell, 1971; Hartshorne 

& Germine, 2015; Horn, 1970; Horn & Cattell, 1967; Horn & Donaldson, 1976; Salthouse, 

2019; Strough, Karns, & Schlosnagle, 2011). Crystallized intelligence refers to knowledge of 

language, information and concepts specific to a culture that have been acquired over time (Horn 

& Cattell, 1967; McGrew; 2009), and is commonly indexed by vocabulary measures such as the 

Mill Hill Vocabulary Test (Raven, 1982) or general information measures that peak in late life 

(Salthouse, 2019). Additionally, changes in functional brain networks have been shown to 

compensate for neural degeneration (Cabeza et al., 2005), preserving certain cognitive abilities. 

For example, studies using neuroimaging have found an increase in bilateral brain activation in 

older adults for tasks that activate unilateral brain regions in younger adults (Grady, Bernstein, 

Beig, & Siegenthaler, 2002; Reuter-Lorenz et al., 2000). The increase of bilateral activation with 

age has been interpreted as a compensatory activity, in which the aging brain reorganizes 

regional recruitment in order to compensate for age-related losses (Cabeza et al., 2018; Grady, 

2012).  

In summary, aging is associated with neurophysiological changes of the PFC (West, 

1996) which has been linked to declines observed in cognitive control processes (Braver & 
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Barch, 2002) and fluid intelligence (Salthouse, 2019), as well as neurochemical changes such as 

the decline in dopamine function with age, a system important for learning from feedback 

(Erixon-Lindroth et al., 2005). In contrast, general knowledge acquired over time (i.e., 

crystallized intelligence) is preserved or improves with age (Salthouse, 2019). 

Age Differences in Decision Making 

 

It has been projected that the number of older adults over the age of 80 will double by 

2030 in North America (Carstensen & Hartel, 2006). As the global population ages, older adults 

will be required to take more responsibility for making decisions that concern their physical, 

psychological and financially well-being. The majority of older adults are unaffected by severe 

pathology such as dementia and are living at home well into the eighth decade of life (Qiu & 

Fratiglioni, 2018). Maintaining independence and well-being in old age requires the ability to 

make good decisions (Worthy et al., 2011). Further, the complexity and frequency of important 

decisions, especially within the domains of finance and medicine, increases with age (Banks & 

Oldfield, 2007; Chen & Sun, 2003; Worthy et al., 2011). While big decisions, such as choosing 

insurance coverage, have obvious long-term consequences, small everyday decisions also have a 

cumulative impact on quality of life (Worthy et al., 2011).  

Analytical processing of information to make decisions declines with age (Braver & 

Barch, 2002; Hanoch, Wood, & Rice, 2007). This is especially the case when tasks are complex 

and cognitively demanding (Yoon, Cole, & Lee, 2009). For example, Finucane, Mertz, Slovic, 

and Schmidt (2005) investigated the association between age and decision quality by varying the 

complexity of the task. As task complexity increased (i.e., number of choices increased), 

decision errors increased, with older adults showing more difficulty making decisions than 

younger adults. In addition, older adults have been shown to seek less information to make 
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decisions (Mather, 2006), apply simpler decision rules (Bruine de Bruin, Parker, & Fischhoff, 

2007, 2009; Johnson, 1990), are more likely to be swayed by changes in the framing of decision 

problems (Bruine de Bruin et al., 2007, 2009), and are less able to control the impact of 

automatic processing when making judgments (Hess, Waters, & Bolstad, 2000). For example, 

older adults have shown to exhibit larger belief-bias effects in syllogistic reasoning tasks 

(Gilinsky & Judd, 1994), such that they are less able to judge the logical validity of arguments 

independently of their prior knowledge about the truth of the premise and conclusion. 

Notably, an important skill that can underly the quality of decisions is numeracy (Peters 

et al., 2006). Numeracy has been defined as the “micro-strategies” that comprise one’s 

understanding and ability to assign meaning to mathematical concepts (Nelson, Reyna, Fagerlin, 

Lipkus, & Peters, 2008; Peters, 2012). Previous research shows that old age is correlated with 

worse performance on numeracy measures and numerical decision tasks, even after accounting 

for age-related differences in education and fluid abilities (Bruine de Bruin, Parker, & Fischhoff, 

2012; Bruine de Bruin et al., 2009; Finucance et al., 2005; Weller et al., 2013). However, Bruine 

de Bruin and colleagues (2015) recently showed that motivation to problem solve, measured by 

the Need for Cognition scale, mediated the negative relationship between age and numeracy, 

suggesting that older adults may show low numeracy due to lack of motivation.  

Although cognitive aging can negatively impact decision quality when making decisions 

that require analytical processing, older adults’ knowledge and experience seem to benefit their 

decisions in familiar life situations enabling them to avoid biased decisions. Previous research 

has shown that older adults are better than younger adults at discontinuing unprofitable 

investments reflecting a reduced susceptibility to sunk-cost effects with age (Bruine de Bruin et 

al., 2009). Through experience older adults may have learned when to adhere to sunk-cost rules, 



19 

 

which reduced reliance on analytical processes such as fluid abilities in order to avoid sunk-cost 

decision biases (Stanovich & West, 2008). Additionally, Tentori, Osherson, Hasher, and May 

(2001) reported that in a grocery-store context, older adults were less likely than younger adults 

to be influenced by a dominated option. The authors argued that older adults’ greater experience 

with a grocery-store context (i.e., more experience purchasing groceries) may have helped them 

discount irrelevant information (also see Kim & Hasher, 2005 for similar results). Additionally, 

Mata, Schooler and Rieskamp (2007) reported that older adults performed similarly to younger 

adults on a task that required learning conditional probabilities to make a decision. Although 

analysis of behavioural choices revealed no age differences, younger and older adults applied 

different strategies to make decisions, with older adults using more heuristic-based strategies 

compared with younger adults. This suggests that reliance on heuristics may play a 

compensatory role for the aging decision maker.  

Fuzzy-trace theory is another dual-process account suggesting that with age, decisions 

made are increasingly based on the “gist” or bottom line meaning of information, rather than 

basing decisions on verbatim details (Reyna, 2004). Similarly, Yates and Patalano (1999) posit 

an age-related shift from processing information analytically, to following a rule-based process 

in which a general rule is extracted from cumulative experience, to a final automatic style of 

making decisions in which judgment and decision rules become habitual. Moreover, Mata and 

Nunes (2010) conducted a meta-analysis that showed that older adults are more likely to use 

heuristic-based strategies to make decisions (e.g., seek less information to make a decision 

compared with younger adults), further supporting the prevalence of using heuristics when 

making decisions in late life.  
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Although the increase in reliance on experience and heuristic-based approaches to 

making decisions in old age may reflect compensation for cognitive decline, it may also reflect a 

developed skill for making decisions that have been optimized over the course of the lifespan. 

Liu, Wood and Hanoch (2015) investigated whether older adults’ accumulated crystallized 

intelligence could provide an alternate route for making good decisions in order to compensate 

for declines in fluid intelligence. Results support this idea by showing that older adults 

performed as well or better than younger adults on a variety of decision making tasks.  

Importantly, not all empirical evidence supports the notion that older adults use heuristics 

to make decisions. Delaney, Strough, Parker and Bruine de Bruin (2015) used a cluster-analytic 

approach to investigate whether rational, intuitive, spontaneous, dependent, and avoidant styles 

of decision making combined to form specific decision making profiles amongst younger and 

older adults. Results showed that older adults were less likely to belong to an experiential 

decision style cluster that was defined by rapid decisions based on heuristics and were more 

likely to belong to a cluster defined by a controlled, independent decision style. In light of this, it 

cannot be argued that older adults are universally more likely to use heuristic-based strategies to 

make decisions.  

In summary, older adults may be able to make good decisions if the decision requires 

experiential processing in familiar settings, or if the gist of information can be extracted in order 

to make a decision (Bruine de Bruin et al., 2009). However, if a decision requires analytical 

processing drawing on fluid intelligence or cognitive flexibility, decisions made in late life may 

be poor (Weller et al., 2013). Although younger adults have difficulty making Bayesian 

inferences, literature concerning how age affects the accuracy of decisions that require Bayesian 
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inference is scarce. Moreover, how heuristics are used to make Bayesian inferences in old age is 

unknown.  

Age Differences in Bayesian Inference 

 

Although most research has investigated Bayesian inference in younger adults, older 

adults are also confronted with risk information on which to base decisions. For instance, with 

age there is an increase in making medical decisions such as choosing medications or opting for 

surgery (Galesic, Gigerenzer, & Straubinger, 2009), as well as financial decisions such as 

retirement planning, selling one’s house, and organizing one’s will, all of which involve 

consideration of risk information (Chen & Sun, 2003). Evidence concerning whether age affects 

Bayesian inference is mixed. For example, Fiske (2005) employed a Bayesian inference task and 

showed that older adults performed better on two of three measures of Bayesian inference 

compared with younger adults, with higher working memory capacity and fluid intelligence 

correlating with lower decision accuracy for younger adults’ only (Fisk, 2005). The correlation 

observed suggests that working memory and fluid intelligence may underlie performance 

amongst younger adults, however older adults may not have relied on these mechanisms to make 

judgments due to age-related changes in cognition (Nyberg, Lovden, Riklund, Lindenberger, & 

Backman, 2012). Although counterintuitive, similar findings have been reported in previous 

research. For example, Stanovich and West (2000) showed that those with higher intellectual 

ability (i.e., operationalized through fluid intelligence and academic aptitude measures) produced 

less normative responses than those with lower intellectual ability. Those who are highly 

intellectual may have applied analytical strategies that led their judgments astray (e.g., when an 

incorrect normative rule is applied to make decisions such as incorrectly combining base-rate 

and diagnostic information).  
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A study conducted by Spaniol & Bayen (2005) examined younger and older adults’ 

conditional probability judgments by presenting participants with fictitious patients with one of 

two diseases and one of eight symptoms. The amount of time patient information was presented 

on the screen varied (i.e., 1 s, 2.5 s, or 5 s). Subsequent to encoding patient information, 

participants were presented with a multiple-choice quiz presenting patient information and were 

asked to choose the disease or symptom of the last patient they saw by choosing one of the 

response options. Results showed age-related differences in conditional probability judgments 

with older adults showing stronger judgment biases compared with younger adults. The results of 

this study were attributed to an age-related deficit in memory encoding, with age differences 

emerging when demands on memory were high (shorter encoding duration), and age differences 

disappearing when memory demands were reduced (longer encoding duration).  

A study conducted by Galesic and colleagues (2009) showed that, regardless of numeracy 

level, younger and older adults made more accurate Bayesian inferences when information was 

presented in a natural frequency format that preserved base-rate information (e.g., “48 out of 

50”) compared with a conditional probability format that presented single-event probabilities 

(e.g., “96%”). Younger and older adults showed more accurate Bayesian inferences in the former 

relative to the latter format. Although a difference in accuracy was observed between formats, 

judgments were low in accuracy overall (i.e., even in a natural frequency format, about 45% of 

younger and older adults made erroneous judgments).  

Building on the study by Galesic and colleagues (2009), my Master’s thesis showed that 

accurate Bayesian inferences were made when information was experienced compared with 

when information was described in a verbal summary, regardless of age or numeracy level 

(Armstrong & Spaniol, 2017). The experience format presented a slideshow of patient cases to 
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participants in which absolute frequency information was presented. Joint frequency information 

regarding each patients’ a) health status (i.e., actually having a disease or not) and b) test result 

(i.e., a positive or negative test result) was presented for each patient. In contrast, the description 

format presented a verbal summary of relative frequency information that could be used to make 

a Bayesian inference (i.e., the same natural frequency format used by Galesic et al., 2009). 

Whereas the experience format produced judgments that approximated correct posterior 

probabilities, the description format produced judgments that reflected the use of heuristics (i.e., 

making judgments that reflected probabilities explicitly provided in the summary such as the 

sensitivity of the diagnostic test). Making Bayesian inferences as if using heuristics have also 

been observed in younger adults in other experiments that comprise my research program 

(Armstrong, Sparrow, & Spaniol, under review; Wegier, Armstrong, & Shaffer, 2019), as well as 

expert populations, such as medical residents (Armstrong, Spaniol, & Persaud, 2018).  

In summary, the literature on aging and Bayesian inference is mixed, with some studies 

showing that older adults make more accurate judgments than younger adults (Fiske, 2005), 

some studies showing that older adults make less accurate judgments than younger adults 

(particularly when demand on memory is high; Spaniol & Bayen, 2005), and some studies 

showing no differences between age groups (Armstrong & Spaniol, 2017; Galesic et al., 2009). 

For the purpose of this dissertation, it is important to have a conceptual understanding of the 

cognitive architecture of information processing when confronted with conflict, in order to 

examine belief updating when error-prone heuristics conflict with Bayes’ theorem. The 

following section provides a summary of the processes that underlie cognitive reflection through 

the lens of dual-process theory.   
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Dual-Process Theory: Cognitive Architecture of Information Processing 

The dual-process theory of rational decision making postulates two processes that 

underlie decisions (Evans, 2008; Osman, 2004). One process reflects an experiential or affective 

mode of processing information, in which decisions are effortless, fast, automatic, heuristic-

based, and are typically based on intuition and experience (i.e., Type 1 processing; Epstein, 

1994; Kahneman, 2003). The other process reflects a more deliberative and analytical style of 

processing, and is described as effortful, conscious, time consuming, and demanding of cognitive 

resources (i.e., Type 2 processing; Kahneman, 2011). Both modes can be activated 

simultaneously and are interdependent, such that analytical processes use products of 

experiential processes as input (Kahneman, 2003) and experiential processes use products of 

analytical processes as input (Liu, Wood, & Hanoch, 2015).  

Prominent characteristics of Type 1 processing include automatic execution, detachment 

from high-level control systems, low dependence on central processing capacity, associative 

processing, with automatic processes working in parallel (Kahneman, 2011). Type 1 processing 

underlies emotion regulation, face recognition, frequency estimation, and implicit learning with 

little variance in these processes across individuals (Barrett & Kurzban, 2006; Carruthers, 2006; 

Evans, 2008, 2009; Moors & De Houwer, 2006). In contrast, Type 2 processing is slow, 

demanding of high-level control systems, computationally expensive, and processes information 

serially (Kahneman, 2011). Type 2 processes are recruited in situations of importance such as 

when making financial, employment or medical decisions. 

Although Type 1 processing provides an approximated response to solving problems, 

Type 2 processing is engaged when detailed analysis of a problem is required. Although a 

rational response can be generated by Type 1 processing if normative principles are overlearned 
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(Stanovich, 2011; Stanovich et al., 2016), engaging Type 1 processing can be costly when 

normative strategies have not been overlearned and Type 2 processing is required (Arkes & 

Ayton, 1999). In situations in which Type 1 processing produces a suboptimal response, a 

conflict might be detected between the automatic response generated by Type 1 processing and a 

normative response. Type 2 processing can then be engaged to suppress and override Type 1 

processing (Stanovich, 2011). In order to override Type 1 processing, Type 2 processing must be 

able to interrupt the automaticity of Type 1 processing requiring inhibitory control (Best, Miller, 

& Jones, 2009; Hasher, Lustig, & Zacks, 2007; Miyake & Friedman, 2012). Once Type 1 

processing has been suppressed, hypothetical alternative responses can then be generated by 

Type 2 processing, with the goal of generating a better response than the response generated by 

Type 1 processing. The generation of alternative responses is derived through hypothetical 

reasoning or “cognitive simulation” (Evans, 2007, 2010; Evans & Stanovich, 2013).   

Cognitive simulations allow one to mentally test alternative responses in order to gauge 

the fit of the response to the situation and the decision maker’s goals (Stanovich, 2011). 

Importantly however, representations of the real world must not be confused with representations 

generated from cognitive simulations. Sustaining separation between real and simulated 

representations is a process distinct to Type 2 processing that has been termed “cognitive 

decoupling operations” (Stanovich, 2011). Decoupling operations are taxing and must be 

continually enforced while generating hypothetical responses. Executive functions such as 

working memory capacity have been shown to predict one’s ability to sustain decoupling 

operations (Feldman Barrett, Tugade, & Engle, 2004), with fluid intelligence highly correlated 

with executive functioning and Type 2 processing (Burgess, Gray, Conway, & Braver, 2011; 
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Chuderski, 2014; Duncan et al., 2008; Hicks, Harrison, & Engle, 2015; McVay & Kane, 2012; 

Salthouse, Atkinson, & Berish, 2003).  

To summarize, when Type 1 processes produce an automatic and suboptimal response, a 

conflict between this automatic response and a normative response may be detected (i.e., conflict 

detection). Type 2 processes may then suppress and override Type 1 processes (i.e., suppression 

and override). Subsequently, Type 2 processes may then generate and simulate alternative 

responses, while also decoupling simulated and real representations of response options.  

Override operations for Type 2 processing require both procedural (inhibiting Type 1 

processing) and declarative knowledge (generating alternative responses based on stored 

knowledge; Stanovich et al., 2016). Detecting a conflict between automatic and normative 

responses, as well as generating alternative responses that are better than responses generated 

automatically requires proficient knowledge (Stanovich et al., 2016). The knowledge, strategies, 

and rules acquired from experience that are used for decoupling operations have been termed 

“mindware” (Clark, 2001; Perkins, 1995). There is large variance in the quality of mindware 

across individuals because this process is based on specialized knowledge derived from 

experience in domains such as probabilistic, causal, and scientific reasoning, as well as numeracy 

(Stanovich et al., 2016)1. As previously mentioned, just as Type 1 processing can lead to a 

normative response, Type 2 processing can lead to a normatively incorrect response due to errors 

in knowledge or “contaminated mindware”. An example of contaminated mindware is the well-

documented gambler’s fallacy, in which one believes the probability of an event is lowered when 

that event recently occurred, even though the probability of the event is independent from trial to 

 
1 Of note, crystallized intelligence as traditionally measured is nonspecialized, and does not 

relate to mindware (Stanovich et al., 2016). 
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trial (Jarvik, 1951). Although Type 2 processing is engaged in this example, the knowledge of 

the rules of probability are incorrect. Importantly, no task purely separates problems in 

processing from problems in mindware (Stanovich et al., 2016). However, inferences can be 

made regarding what the task may depend on more. The Cognitive Reflection Test (discussed 

more later), for example, depends more on conflict detection and override, whereas numeracy 

tasks depend more on proficient mindware.  

Control mechanisms of Type 2 processing have been differentiated into two positively 

correlated components: algorithmic and reflective processing (Stanovich, 2009). Different from 

algorithmic processing that reflects what cognitive mechanisms underlie behaviour such as 

computational processing, reflective processing reflects why processes were engaged such as 

one’s goals and beliefs that give reason to behaviour. Algorithmic processing can be assessed by 

fluid intelligence measures and cognitive ability such as numeracy tasks, whereas reflective 

processing can be assessed by thinking dispositions that capture belief structure, attitudes 

towards beliefs and goals, such as the Need for Cognition or Faith in Intuition scales (Cacioppo 

& Petty, 1982; Cacioppo, Petty, & Feinstein, 1996; Epstein, Pacini, Denes-Raj, & Heier, 1996; 

Pacini & Epstein, 1999). Individual differences in thinking dispositions reflect variance in goal 

management, values and self-regulation (Stanovich & West, 1998).  

It is important to note that simulating alternative responses does not mean all alternative 

responses are generated. A cognitive simulation may for instance be inflexible and associative, 

and thus generate an alternative response that is easily accessible without constructing a different 

response that may challenge the first response generated (i.e., partial cognitive simulation; 

Stanovich, 2009). Alternative responses are usually simple, reflect one’s beliefs or have 

previously been generated and are easily accessible (Stanovich et al., 2016). An example of this 
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phenomenon is when heuristics are used to make decisions about probabilistic information (e.g., 

base-rate neglect; Kahneman & Tversky, 1973). This concept has been termed serial associative 

cognition with a focal bias (Stanovich, 2009). Therefore, although there is a general preference 

to process information automatically, when situations require Type 2 processing such as in novel 

contexts, decision makers commonly default to serial associative processing with a focal bias. 

For instance, framing effects show that the way information is framed is taken as focal and 

subsequent processing is based on how that information was framed with alternative ways of 

framing information left unexplored. Reflective processing has been shown to initiate the 

interruption of serial associative cognition by either triggering a new or more comprehensive 

serial associative process in which more alternative responses are generated (Stanovich et al., 

2016).  

In summary, when Type 1 processes produce a suboptimal response, a conflict may be 

detected between an automatic and normative response. Detecting a conflict can be initialized by 

reflective processing, which can be captured by thinking disposition measures such as the Need 

for Cognition or Faith in Intuition scale (Bruine de Bruin et al., 2007; Toplak et al., 2011, 2014a, 

2014b), as well as measures of cognitive reflection such as the Cognitive Reflection Test 

(Frederick, 2005). Reflective processing also initiates the override of Type 1 processes, requiring 

inhibitory control to suppress automatic processes so that Type 2 processes can be engaged 

(Toplak et al., 2011). Generating alternative responses that are superior to the automatic response 

heavily depends on proficient mindware such as numeracy. Sustaining decoupling operations 

while simultaneously overriding Type 1 processes and engaging Type 2 processes to generate 

responses is supported by algorithmic processes and is largely demanding of executive functions, 

particularly inhibitory control and working memory (Stanovich, 2011). Additionally, rather than 
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exhausting all possible alternative responses, decision makers typically default to serial 

associative cognition with a focal bias, a phenomenon commonly observed when heuristics are 

used to make decisions when formal analysis is required.  

Dual-process theory: Base-rate neglect. The representativeness heuristic has been 

shown to be a strong influencer of probabilistic judgment (Barbey & Sloman, 2007; Brainerd, 

2007; Kahneman & Tversky, 1973; Tversky & Kahneman, 1974). For instance, if a male U.S. 

citizen was randomly sampled and described as being shy and introverted, prior research shows 

that it is more prevalent to judge him to be a librarian than a farmer, even though there are 20 

times more farmers in the United States than librarians (Kahneman, 2011). Committing a 

representativeness error (i.e., using a base-rate neglect strategy) has been found to be more 

prevalent than committing a conservatism error (i.e., using a base-rate only strategy; see Barbey 

& Sloman, 2007, for review).  

Dual-process theorists have argued that base-rate neglect occurs because individual-case 

evidence cues an intuitive response that reflects more concrete and tangible information that is 

vivid and difficult to override (Kahneman & Frederick, 2002; Kahneman & Tversky, 1973; 

Tversky & Kahneman, 1974). In contrast, prior probabilities may require some degree of slower, 

analytical processing (Bonner & Newell, 2010; De Neys & Glumicic, 2008; Ferreira, Garcia-

Marques, Sherman, & Sherman, 2006; Kahneman & Frederick, 2002), with most decision 

makers showing a general preference to forego analytical processing for less cognitively 

expensive processing (Evans, 2008; Evans & Stanovich, 2013; Kahneman, 2003; Sloman, 1996; 

Thompson, 2009). Similarly, fuzzy-trace theorists argue that base-rate neglect occurs because 

new information cues intuitive gist-based associations in memory, whereas base-rates are 

processed through more analytical, verbatim-based reasoning (Reyna, 2004; Reyna & Brainerd, 
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2008; Wolfe & Fisher, 2013). That is, the discrepancy between the ease with which base-rates 

and individual-case evidence are processed is the source of base-rate neglect2. 

As previously discussed, it is unknown how older adults would perform on a belief 

updating task that pits error-prone heuristics against Bayes’ theorem relative to younger adults. 

Given the literature that details the cognitive architecture of reflective processing in combination 

with the literature on cognitive aging, one may expect older adults to be at a disadvantage when 

updating beliefs compared with younger adults. However, it is unknown whether there are age 

differences in the stages of cognitive reflection such as conflict detection, inhibiting automatic 

processes, or generating alternative responses. Additionally, whether younger and older adults 

can learn to engage reflective processes to improve decision making is a topic that remains 

unexplored.  

Reinforcement Learning 

 

 Tasks that measure cognitive reflection in the heuristics and biases literature are usually 

structured as non-repeatable word problems related to a fictitious situation, without the decision 

maker learning whether they are correct or not. One reason for this may be that investigators do 

not want to popularize answers to assessment items. For instance, an assessment commonly used 

as a predictor of rational thinking is the three-item Cognitive Reflection Test (Frederick, 2005). 

However, the items on the original Cognitive Reflection Test have become well known and have 

been included in classroom demonstrations, magazines, and best-seller books such as Daniel 

Kahneman’s Thinking, Fast and Slow (Kahneman, 2011). An extended 15-item version of the 

Cognitive Reflection Test that measures rational thinking has been proposed by Toplak, West, 

 
2 But see De Neys, 2007; 2012; Pennycook & Thompson, 2012, who argue that conflicts between 

prior and new information may tap a conflict between two Type 1 processes. 
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and Stanovich (2014a) in order to avoid potential confounds of familiarity. However, due to 

cognitive reflection tasks not including feedback or numerous trials to observe whether 

performance changes with more opportunities, it is currently unknown whether more effortful, 

reflective processing could be learned in order to improve judgments and decisions.  

 Reinforcement learning theory posits that actions followed by positive outcomes are 

more likely to be repeated in the future, whereas actions followed by negative outcomes are less 

likely to reoccur (Sutton & Barto, 1998). Dopamine plays a critical role in reinforcement 

learning, such that dopaminergic neurons signal how much an outcome deviates from a predicted 

outcome (Schultz, Dayan, & Montague, 1997). It has been argued that learning takes place when 

an outcome is better than predicted, reflected in a phasic increase in dopamine neuron activity, 

whereas an outcome that is worse than expected leads to the extinction of the learned behaviour, 

reflected in a phasic decrease of dopamine neuron activity (Eppinger et al., 2008).  

Age differences in reinforcement learning. Aging is associated with a marked decline 

in mesencephalic dopamine neurons, which may contribute to the impairments in cognitive 

control observed in old age, such as conflict monitoring and error processing (Braver & Barch, 

2002; Eppinger, Hämmerer, & Li, 2011; Eppinger et al., 2008; Paus, 2001). Critically, some 

research suggests that older adults show deficits in processing errors and reinforcement learning 

due to attenuated signaling in the mesencephalic dopamine system (de Boer, et al., 2017; 

Mathewson, Dywan, & Segalowitz, 2005; West, 2004). In contrast, other research suggests that 

these deficits stem from an age-related asymmetry in the processing of feedback valence3 

(Eppinger, & Kray, 2011; Eppinger et al., 2008; Mather & Carstensen, 2005). More specifically, 

 
3However, some studies show no age differences between positive and negative feedback (see Di 

Rosa et al., 2017; Pietschmann, Endrass, Czerwon, & Kathmann, 2011).   
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positive information is processed more than negative information as older adults put more effort 

into regulating their emotions by preferring to process positive information and diminishing the 

processing of negative information, a phenomenon termed the positivity bias (Charles, Mather, 

& Carstensen, 2003; Reed & Carstensen, 2012). Evidence supporting the latter theory shows that 

older adults learn better in errorless learning conditions (Heldmann, Markgraf, Rodríguez-

Fornell, & Münte, 2008).  

The heuristics and biases literature typically use word problems such as the bat-and-ball 

problem from the Cognitive Reflection Test. The bat-and-ball problem is described as follows: A 

bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball 

cost? (Frederick, 2005). The correct answer is $0.05, with prior research showing that only a 

small portion of participants provide the correct answer (e.g., about 30.3% of Canadian 

undergraduates; Pennycook, Cheyne, Koehler, & Fugelsang, 2016). The most common answer to 

this question is $0.10 (e.g., approximately 64.9% among Canadian undergraduate students 

provide this answer; Pennycook et al., 2016). However, a cursory check indicates that the ball 

cannot cost $0.10 because the bat would then cost $1.10, with the bat and ball totalling $1.20. 

Many respondents give the wrong answer because $0.10 easily comes to mind and is an 

automatic response. Under these circumstances, Type 2 processing may not be engaged at all, or 

so little that a discrepancy between automatic and normative responses goes undetected. Conflict 

detection is more likely to occur when participants receive feedback on their responses. 

Although research shows that both younger and older adults have a preference for 

making heuristic-based decisions (Peters et al., 2007), it is unknown whether feedback would 

bolster the avoidance of using error-prone heuristics to make decisions and encourage reflective 

processing in a belief updating task, or whether age differences in performance would emerge. 
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Given the difficulty of making Bayesian inferences, it is unclear whether younger adults would 

use feedback to make decisions that closer reflect normative responses. Additionally, in light of 

previous literature showing that older adults learn less from feedback than younger adults 

possibly due to a decline in the dopaminergic system with age (de Boer et al., 2017) or due to a 

tendency to devalue negative feedback in late life (Reed & Carstensen, 2012), it may be expected 

that older adults would benefit from feedback less than younger adults in a belief updating task. 

However, this too is a topic that remains unexplored and deserves empirically testing.  

Many decisions made in real life are based on ambiguous information (Savage, 1954; 

Volz & Gigerenzer, 2012). Thus far, I have discussed decisions made under risky conditions, in 

which all information is known and the answer can be derived through calculation. Decisions 

made under ambiguous conditions, however, have received far less empirical study in the 

heuristics and biases literature.  

Decisions Under Risk and Ambiguity  

The terms risk and ambiguity carry specific meaning in the decision making literature. 

Decisions made under risk are decision situations in which all relevant information is known and 

calculation of the correct choice is possible. Decisions made under ambiguity are decision 

situations in which some relevant information is unknown or unknowable (i.e., calculation of the 

correct choice is impossible), and the future is uncertain (Knight, 1921; Savage, 1954). Savage 

(1954), the author of Bayesian Decision Theory, referred to situations involving risk as “small 

worlds” in which all information is known, and possible alternatives and consequences can be 

enumerated and ordered according to subjective preferences, particularly reflecting simplified 

environments such as when making monetary gambles or applying Bayes’ theorem to determine 

an optimal choice (Binmore, 2009; Savage, 1954). In contrast, “large worlds” refer to situations 
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involving ambiguity, in which some of the information is unknown, and/or judgments must be 

made from small samples (Binmore, Stewart, & Voorhoeve, 2012; Savage, 1954). The majority 

of decisions made in real life are based on uncertain situations (Volz & Gigerenzer, 2012), with 

known probabilities and outcomes being quite rare. Examples of making decisions under 

ambiguity include deciding whom to marry or how to raise your children (Volz & Gigerenzer, 

2012).  

Bayes’ theorem can only be applied to small worlds in which probabilities are known and 

alternatives (e.g., probabilities for multiple options) are minimal. Typically, in large world 

settings, Bayes’ theorem cannot be applied (Savage, 1954). Other strategies must be used such as 

heuristics to make optimal decisions when some information is ambiguous (Volz & Gigerenzer, 

2012). The financial crash in 2008 is a strong example demonstrating how statistical estimates of 

risk do not always predict the uncertain world of finance (Taleb, 2010). Therefore, applying the 

calculus of probability in uncertain environments such as the real world may not always lead to 

good decision making.  

 Typically researchers studying decision making investigate decision abilities in small-

world environments, with a heavy reliance on gambling paradigms in which the individual must 

make binary decisions on monetary gambles with payoffs precisely defined (i.e., varying 

magnitudes of reward and probabilistic outcomes; Gigerenzer, 2016; Volz & Gigerenzer, 2012). 

However, when a portion of the information is removed from the situation, ambiguity increases, 

and probabilistic judgments must be represented appropriately. The focus of decisions under risk 

is problematic considering decisions made under ambiguity are more prevalent in real life than 

decisions made under risk (Gigerenzer et al., 2011). The strategies used in small worlds are 

different than those used in large worlds. In other words, the underlying cognitive processes that 
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support statistical manipulation of information (e.g., monetary gambles) are different from the 

processes that support judging ambiguity (e.g., whom to marry). Although decisions made under 

risk compared with ambiguity should be distinguished, there may also be a distinction between 

how younger and older adults use heuristics in situations of risk and ambiguity to inform 

decisions.  

Age differences in decisions under risk vs. ambiguity. Of course, decisions made 

under risk and ambiguity apply to both younger and older adults. Older adults for example, may 

have to assess the risks and benefits when deciding whether to undergo surgery (decision under 

risk) or to sell their house and move into an assisted living facility (decision under ambiguity). 

Interestingly, younger and older adults show similar levels of performance when making 

decisions under risk (Armstrong & Spaniol, 2017; Mata et al., 2007; Zamarian, Sinz, Bonatti, 

Gamboz, & Delazer, 2008). However, older compared with younger adults show deficits in 

learning when information is ambiguous, a finding that has been associated with an increased 

aversion to ambiguous information with age (Eppinger, et al., 2008; Hämmerer, Li, Müller, & 

Lindenberger, 2011; Herbert, Eppinger, & Kray, 2011; Pietschmann, Endrass, Czerwon, & 

Kathman, 2011; Samanez-Larkin, Worthy, Mata, McClure, & Knutson, 2014). Older adults may 

be averse to spending the mental effort to maintain accurate representations of ambiguity 

because resources are limited relative to processing risk information that is explicitly described 

(Westbrook, Kester, & Braver, 2013). 

Recent research investigating age differences in decisions made under ambiguity have 

shown that older adults relative to younger adults show a deficit in making inferences about 

information that is masked in order to reduce uncertainty (Hämmerer et al., 2019). Other 

research has reported that older adults show a reduced ability to represent ambiguous 
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information such that older adults assign more weight to unmasked information and less weight 

to masked information, whereas younger adults are more likely to consider masked information 

and develop accurate subjective representations of ambiguity (Nassar et al., 2016).  

Decisions under ambiguity have been studied at the brain level using fMRI to examine 

the brain regions associated with processing ambiguous information. Specifically, there is 

evidence suggesting the prefrontal regions including the anterior PFC (aPFC) and orbitofrontal 

cortex (OFC) are involved in representing uncertainty (Badre, Doll, Long, & Frank, 2012; Daw, 

O'Doherty, Dayan, Seymour, & Dolan, 2006; Schultz et al., 2008). As described earlier, the 

structure and function of the frontal lobe deteriorates with age (Nyberg et al., 2010). Eppinger, 

Heekeren and Li (2015) showed an age-related deficit in learning how to predict future rewards 

that were ambiguous. The results were attributed to the under-recruitment of prefrontal regions in 

older relative to younger adults. McGuire, Nassar, Gold and Kable (2014) have argued that the 

under-recruitment of prefrontal areas may limit the function of the cortical learning system, 

making it difficult for older adults to represent ambiguous information. 

Although older adults show more difficulty learning from ambiguous information and 

making decisions under ambiguity compared with younger adults, it is currently unknown how 

ambiguous information impacts cognitive reflection in a belief updating task with younger and 

older adults. This is an important research question considering the daily use of heuristics when 

making decisions based on ambiguous information in real life. 

Individual Differences in Cognitive Reflection 
 

Investigating individual differences in judgment and decision making have important 

implications for the real world because this heterogeneity indicates that some people may make 

better judgments or decisions in domains such as medicine, law, or policy than others. 
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Identifying those who make better judgments and decisions than others may improve outcomes 

and benefit the broader society by placing good decision makers in leadership positions (Nelson 

et al., 2008; Reyna & Farley, 2006). Although there is a wealth of evidence showing that 

cognition declines with age (Salthouse, 2019), just as age-related changes in brain function are 

not uniform across individuals, age-related changes in cognition are also not uniform across 

individuals (Morse, 1993). In fact, previous research shows that cognitive abilities are more 

heterogeneous in older compared with middle-aged adults (Morse, 1993; Spreng, Wojtowicz, & 

Grady, 2010). Therefore, investigating individual differences in judgment and decision making 

across both younger and older adults is important. In light of this, assessments commonly used to 

predict individual differences in cognitive reflection in the heuristics and biases literature such as 

numeracy scales, the Cognitive Reflection Test, and thinking disposition scales, are also included 

in this dissertation (Frederick, 2005; Reyna, Nelson, Han, & Dieckmann, 2009).  

Numeracy. Numeracy has been shown to be important in a range of everyday tasks, such 

as making medical decisions (Galesic, Gigerenzer, & Straubinger, 2009). Numeracy has been 

used to predict performance on decision making tasks within the heuristics and biases literature, 

with low numeracy associated with increased susceptibility to a variety of cognitive biases, even 

when general intelligence is partialled out (Cokely et al., in press; Peters, Västfjäll et al., 2006). 

In the context of cognitive processing, numeracy measures used in the literature heavily depend 

on declarative knowledge in which percentages and probabilities are derived (see Cokely, 

Galesic, Schultz, Ghazal, & Garcia-Retamero, 2012; Lipkus, Samsa, & Rimer, 2001; Schwartz, 

Woloshin, Black & Welch, 1997) and have been associated with the generation of alternative 

responses that are superior to heuristic-based, automatic responses when confronted with 

conflicting information on cognitive reflection tasks (Stanovich et al., 2016).  
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The numeracy assessments index the ability to effectively solve everyday problems such 

as evaluating medical treatment or financial options, and political claims (Cokely et al. 2012; 

Cokely, Ghazal, & Garcia-Retamero, 2014; Reyna et al., 2009). Particularly the Berlin 

Numeracy Test (Cokely et al., in press) has demonstrated that numeracy (i.e., practical 

probabilistic reasoning) across varying levels of expertise uniquely predicts decision making 

skill and risk literacy across tasks that tap real world settings (e.g., HIV prevention, 

cardiovascular risk mitigation), as well as tasks that elucidate thinking dispositions (e.g., framing 

resistance, sunk-cost biases; Cokely et al., 2014; Cokely et al., in press; Garcia-Retamero, & 

Cokely, 2013; Garcia-Retamero, Wicki, Cokely, & Hanson, 2014). Numeracy level is a robust 

predictor of both numerical and nonnumerical decisions, with many causal mechanisms linking 

numeracy to decision making skill such as heuristic, intuitive, gist-based and number-sense 

processes (Cokely & Kelley, 2009; Ghazal, Cokely, & Garcia-Retamero, 2014; Peters & 

Bjalkebring, 2015; Traczyk & Fulawka, 2016). Cokely and colleagues (in press) have argued that 

the reason for this robust predictive power is because numeracy tests are reflective of judgment 

and decision making tasks that engage inductive reasoning and cognitive control in settings of 

risk and uncertainty.  

In the context of Bayesian inference, Armstrong and Spaniol (2017) showed that amongst 

younger and older adults, numeracy did not modulate the accuracy of Bayesian inferences. 

Specifically, correlational analyses were run on the scores from the 12-item Lipkus Numeracy 

Task and the mean absolute error of the participants’ judgment of the PPV and the true PPV 

(with large deviations observed as younger and older adults vastly overestimated the PPV when 

the true PPV was small). That is, correlational analyses were conducted between numeracy 

scores and only one judgment. Future work should further examine the link between numeracy 
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and Bayesian inference by obtaining a more representative measure of Bayesian inference. For 

example, rather than Bayesian inference being measured by one question, multiple questions 

could be used to obtain a measure of average performance that may better index belief updating 

performance.  

Cognitive Reflection Test. The Cognitive Reflection Test is a widely used assessment 

that is designed to measure cognitive reflection. Cognitive reflection has been defined as one’s 

ability or disposition to suppress a response that is based on an idea that has automatically come 

to mind (Frederick, 2005). The Cognitive Reflection Test is comprised of word problems that 

evoke intuitive, yet erroneous responses. If the decision maker engages reflection, they may be 

able to realize the error and generate a better response (Frederick, 2005; Stanovich et al., 2016). 

Oechssler, Roider, and Schmitz (2009), and Hoppe and Kusterer (2011) showed that higher test 

scores on the Cognitive Reflection Test were correlated with lower incidences of falling prey to 

certain biases such as the conjunction fallacy (Campitelli & Labollita, 2010; Cokely & Kelley, 

2009; Tversky & Kahneman, 1983), with low Cognitive Reflection Test scores indicating a 

tendency for one to act on impulse and provide intuitive responses (Toplak, et al., 2011).  

In the context of cognitive reflection, performance on the Cognitive Reflection Test depends 

heavily on conflict detection and the overriding Type 1 processes and depends less on specific 

knowledge (Stanovich et al., 2016).  

Thinking dispositions. Thinking dispositions relate to belief formation and decision 

making. Baron (1985) argued that examples of thinking dispositions that relate to rational 

decision making include weighting new evidence against one’s prior beliefs, the time spent on a 

problem before giving up, or assigning weight to others’ opinions when forming one’s own 

opinions. Common thinking disposition scales used in the literature include the Faith in Intuition 
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and Need for Cognition scales, which have been used to predict a wide range of psychological 

measures in the judgment and decision making literature (e.g., Cacioppo & Petty, 1982; 

Cacioppo et al., 1996; Epstein et al., 1996; Pacini & Epstein, 1999).  

The Faith in Intuition assessment was developed to assess how much individuals trust 

their intuitions and instincts (i.e., preference for Type 1 processing; Epstein, et al., 1996; Pacini 

& Epstein, 1999). In contrast, the Need for Cognition scale was developed to assess how much a 

person engages in and prefers to think effortfully (i.e., preference for Type 2 processing; 

Cacioppo & Petty, 1982; Cacioppo, et al., 1996). Both assessments are self-report measures and 

typically emerge as separate factors and are generally not negatively correlated as one may 

assume (Epstein et al., 1996). Shiloh, Salton, and Sharabi (2002) showed that individual 

differences in thinking dispositions predicted the likelihood of heuristic-based responses, as well 

as the framing effect. As previously described, Bruine de Bruin and colleagues (2015) showed 

that older adults were associated with both lower numeracy and lower Need for Cognition, with 

the negative relationship between age and numeracy mediated by Need for Cognition. This 

suggests that older adults’ lower numeracy performance may be driven by a lack of motivation 

or willingness to perform the task (Hess, 2014; Hess & Queen, 2014; Norris, McGeown, 

Guerrini, & Castronovo, 2015).  

However, this effect does not always replicate when these scales are associated with 

probabilistic judgment tasks. For instance, Alós-Ferrer and Hügelschäfer (2012) reported that the 

Faith in Intuition scale correlated with susceptibility to the representativeness, but not the 

conservatism heuristic. Alós-Ferrer, Garagnani, and Hügelschäfer (2016) reported that these 

scales did not predict performance on tasks used to study decision biases in probability 

judgments, and Lu (2015) showed that both scales did not correlate with performance on the 

https://www.sciencedirect.com/science/article/pii/S0167268112001564#!
https://www.sciencedirect.com/science/article/pii/S0167268112001564#!
https://www.sciencedirect.com/science/article/pii/S0167268112001564#!
https://www.sciencedirect.com/science/article/pii/S0167268112001564#!
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conjunction fallacy problem. That is, although literature is mixed concerning whether thinking 

disposition scales predict performance on tasks that require cognitive reflection, it is important to 

glean whether performance is affected by motivation or the decision maker’s beliefs. 

In sum, individual differences in numeracy, cognitive reflection, and thinking 

dispositions have been found to modulate performance on heuristics and biases tasks (although 

there is mixed evidence concerning whether thinking dispositions underlie decision biases). The 

current dissertation also includes these measures to examine whether these effects extend to a 

belief updating task of probability information, as well as older individuals. 
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Chapter 3: Synthesis of Dissertation Goals 

 

 The primary goal of this dissertation is to continue my research program of examining the 

processes that underlie belief updating in the context of Bayesian inference and illuminate how 

age affects these processes. However, rather than investigate the ways in which Bayesian 

inference can be improved as I have previously (e.g., Armstrong & Spaniol, 2017; Armstrong, 

Spaniol, & Persaud, 2018; Armstrong, Sparrow, & Spaniol, under review; Wegier, Armstrong, & 

Shaffer, 2019), in this dissertation I examine the cognitive processes that underlie decisions that 

pit error-prone heuristics against Bayes’ theorem. That is, similar to the cognitive reflection tasks 

used in the heuristics and biases literature, I examine decisions in a context in which using 

heuristics leads to error, and using normative strategies leads to correct decisions. Specifically, I 

examine use of the representativeness and conservatism heuristics when younger and older adults 

make decisions under risk and ambiguity, with and without feedback in a belief updating task, as 

well as examine the individual differences and neural correlates that underlie these decisions.  

 To briefly reiterate the relevant literature: 1) Bayes’ theorem is used to update prior 

information with new information (Bayes & Price, 1763; Knight, 1921) and has been shown to 

be a notoriously difficult task (Grether, 1980; Kahneman & Tversky, 1972). 2) Due to the 

complexity of making Bayesian inferences, heuristics are used (Kahneman & Tversky, 1972). 

However, using heuristics to make Bayesian inferences when formal analysis (i.e., abiding by the 

principles of Bayes’ theorem) is required leads to systematic biases in judgments such as 

committing a representativeness or conservatism error (Achtziger, Alós-Ferrer, Hügelschäfer, & 

Steinhauser, 2014). 3) Cognitive aging is associated with the increased use of heuristics when 

making decisions (Peters, Hess, Västfjäll, & Auman, 2007). Older adults may be required to 

make decisions that require Bayesian inference more often than younger adults such as in the 
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domains of finance or medicine (Chen & Sun, 2003). 4) Evidence is mixed concerning whether 

age affects Bayesian inferences (Armstrong & Spaniol, 2017; Fiske, 2005; Spaniol & Bayen, 

2005). 5) In cognitive reflection tasks, an intuitive, yet suboptimal response is pit against a 

normative, optimal response (Kahneman, 2011). Type 1 processes generate automatic responses 

and can be interrupted by Type 2 processes when a conflict is detected between an automatic and 

normative response, with Type 2 processes also engaged to generate alternative responses 

(Stanovich, 2011). These stages of information processing are dependent on reflective 

processing, proficient mindware (e.g., knowledge of numeracy) and thinking dispositions 

(Stanovich et al., 2016). 6) Committing a representativeness error is more common than 

committing a conservatism error because diagnostic evidence (i.e., new information) has been 

argued to be more intuitive and concrete than base-rate (i.e., prior) information (Barbey & 

Sloman, 2007). 7) Cognitive reflection tasks do not provide the decision maker with feedback. 

Although older adults learn less successfully from feedback than younger adults potentially due 

to a deficiency in the dopaminergic system (Eppinger et al., 2008; Paus, 2001), or due to 

devaluing negative feedback with age (Mather & Carstensen, 2005), it is unknown whether 

feedback would provoke reflective processing in a belief updating task. 8) Cognitive reflection is 

commonly examined when making decisions under risk. However, most decisions made in the 

real world are based on ambiguous information. Although older adults show an aversion to 

ambiguous information relative to younger adults (Ellsberg, 1961; Seer et al., 2016), it is 

unknown how ambiguous information affects how heuristics are used by younger and older 

adults during belief updating. 9) There is now a voluminous literature on how individual 

differences in younger adults relate to performance on cognitive reflection tasks (Stanovich et 
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al., 2016). However, there is minimal research on how individual differences relate to 

performance on a belief updating task of probability amongst younger and older adults.   

 Several research questions have emerged from this literature. Specifically, it is unclear 

how older adults use heuristics compared with younger adults, how feedback affects decisions  

that depend on reflective processing, whether the neural correlates that underlie belief updating 

differ as a function of age, how ambiguity impacts belief updating amongst younger and older 

adults, or how individual differences relate to belief updating.  

Dissertation Experiments  

 

To address these questions, a series of experiments was conducted using a belief updating 

task. Specifically, participants were required to make a binary decision about which of two urns 

a sample of balls was drawn from on the basis of a) the likelihood a sample was drawn from each 

urn (prior information), and b) the sample of balls drawn (new information). In Experiment 1, I 

employed the urn-ball paradigm without feedback to examine the use of heuristics in younger 

and older adults, as well as the role of potential predictors of decision accuracy including 

numeracy, inhibitory control, and thinking dispositions. Experiment 2 was similar, however, 

participants received feedback following each response, and both behavioural responses and 

event-related potentials (ERPs) were examined to compare cognitive processes between younger 

and older adults. Specifically, I tested the hypothesis that younger adults would use feedback to 

improve decision accuracy more than older adults. I also sought to elucidate potential age 

differences in the neural processes that underlie belief updating. Finally, in Experiment 3, I 

employed a modified version of the belief updating task in which prior and new information 

varied in certainty (i.e., certain vs. uncertain), in order to investigate how ambiguity affects the 

use of heuristics by younger and older adults.  
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 In the ensuing chapters, I first provide a General Methods section that describes the 

methods that are common across all experiments. I then describe each experiment in a separate 

chapter. Within each experiment chapter, a literature review is provided that is specific to that 

experiment in order to describe the relevant literature in detail, highlight the rationale for the 

experiment and list the respective a-priori hypotheses. The General Discussion section links the 

main results observed across all experiments, situates the main findings in the existing literature, 

and discusses the theoretical and empirical implications of the results. Finally, limitations of the 

experiments are discussed, directions for future research are suggested and a brief conclusion 

synthesizing the dissertation is provided.   
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Chapter 4: General Method 

The purpose of this chapter is to provide an overview of the methods, procedures and 

analyses that are common to all three experiments in the dissertation. Details specific to 

experiments are described in each respective experiment chapter. All procedures met ethical 

standards for conducting human psychological research and were approved by the Research 

Ethics Board at Ryerson University (see Appendices I-VI for consent and debriefing forms). The 

decision situations of interest are abbreviated in the experiments for simplicity. That is, the 

situation in which the representativeness heuristic conflicts with Bayes’ theorem is abbreviated 

as “RconfB”, the situation in which the conservatism heuristic conflicts with Bayes’ theorem is 

abbreviated as “CconfB”, and the situation in which the representativeness heuristic aligns with 

Bayes’ theorem is abbreviated as “RalignB”. 

Participants 

Power analysis. Sample-size estimates were calculated a priori using G*Power 3.1.9.2 

(Faul, Erdfelder, Buchner, & Lang, 2013). Using a mixed ANOVA with one between-subject 

factor with two levels (age: young, old), and one within-subject factor with three levels (decision 

situation: RconfB, CconfB, RalignB), and with a two-tailed alpha level set to .05, G*Power 

analysis estimated that a sample of n = 22 per group would provide 95% power to detect a small-

to-medium between-within interaction effect (f = .25). To increase power for detecting effects, 

samples above this estimate were collected for each experiment.  

Participant recruitment. A total of 85 healthy younger (ages 18 to 35) and 85 healthy 

older adults (ages 65 and above) participated in Experiments 1 to 3. Younger adults were 

recruited from the community through paper flyers posted around Ryerson University campus 

and online flyers posted on Facebook, Craigslist and Kijiji. Older adults were recruited from the 
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Ryerson Senior Participant Pool. Participants were compensated for their participation based on 

experiment duration. For a 1.5-hour session (Experiment 1) participants received $20 ($15 + $5 

bonus payout) CAD. For a 2.5-hour session (Experiment 3) participants received $30 ($25 + $5 

bonus payout) CAD. For a 3-hour session (Experiment 2) participants received $35 ($30 + $5 

bonus payout) CAD4. Informed consent was collected from all participants prior to participation. 

Participants in Experiments 1 and 3 completed the study in a testing room in the Memory and 

Decision Processes Lab, and participants in Experiment 2 were tested in the EEG lab in the 

Psychology Research and Training Centre at Ryerson University.  

Inclusion and exclusion criteria. Participants’ data were excluded and later replaced 

based on the following health-related criteria: (1) history of neurological abnormalities, 

neurodegenerative disorders or psychiatric disorders (e.g., traumatic brain injury, stroke, 

dementia, prolonged periods of unconsciousness); (2) a current diagnosis of uncontrolled 

medical conditions that might affect cognitive performance (e.g., diabetes, cardiovascular 

diseases, autoimmune disorders); (3) a current diagnosis of a mood disorder (e.g., depression or 

anxiety); (4) current prescription of medications that impact mental functioning; and (5) visual or 

hearing impairments (including awareness of colour-blindness). Only participants who met the 

above criteria were included in analyses for each experiment.  

Additionally, participants’ data was also excluded and later replaced if their performance 

did not meet certain criteria on specific cognitive and affective assessments, such as: (1) scoring 

below 26 on the Mini-Mental Status Examination (MMSE; Folstein, Folstein, & McHugh, 1975) 

suggesting mild cognitive impairment (only older adults completed this assessment); (2) scoring 

 
4 Participants were told that if they made 80% or more correct decisions on the task, they would 

receive an extra $5 in each experiment. Unbeknownst to participants, all participants were told 

they made over 80% of their decisions correctly and received the extra $5. 
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28 or above on the depression subscale of the 21-item Depression Anxiety Stress Scale (DASS-

21; Lovibond & Lovibond, 1995) suggesting extremely severe depressive symptoms within the 

past week; and/or (3) scoring 20 or above on the anxiety and stress subscales of the DASS, 

suggesting extremely severe anxiety symptoms within the past week. Participants who provided 

extreme scores on these assessments were excluded as previous research shows that extreme 

depression, anxiety, andstress impact attention and memory (Dalgleish et al., 2003; MacLeod & 

McLaughlin, 1995), potentially confounding results. Last, to ensure participants included in 

analyses understood the belief updating task, younger and older adults were excluded if they 

scored below 70% in decision accuracy on the alignment decision situations, as the difficulty 

level of these decisions was low and participants’ performance would reveal whether task 

instructions were comprehended or not.  

Materials 

 

Belief updating task. All experiments used an urn-ball paradigm, similar to those used 

by Achtziger et al. (2014) and Grether (1980, 1992). The task required participants to make a 

binary decision about which of two urns a sample of balls was drawn from on the basis of a) the 

likelihood of each urn chosen to draw a sample from (prior information), and b) the sample of 

balls drawn (new information). Upon arrival to the lab, participants were introduced to the 

experiment and informed consent was obtained. The experiment commenced with the belief 

updating task conducted on the lab computer, which was programmed and presented using 

Presentation version 20.0 software (Neurobehavioral Systems, Inc., Berkeley, CA). The 

experimenter provided each participant with a demonstration of the urn task using two jars that 

contained blue and green gumballs with their proportions reflecting that of the task. The 

experimenter explained the colour proportions in each urn and stated that there was a 75% 
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likelihood that they would draw a sample from the left urn, and a 25% likelihood they would 

draw a sample from the right urn. The experimenter drew four predetermined gumballs out of 

one of the jars without the participant looking, showed the sample to the participant, and asked 

them to decide which urn they believed the experimenter had drawn the sample from5. Once the 

participant chose an urn, the experimenter asked them if they had any questions. The 

experimenter then showed the participant printed sheets of paper of what the stimuli would look 

like on the computer and explained how the stimuli was representative of the colour proportion 

of balls in each jar used in the demonstration and answered any questions the participant had. 

Participants were then asked to carefully read through instructions presented on the computer 

screen and were subsequently asked to repeat the instructions of the task in their own words to 

the experimenter. Once the experimenter felt the participant understood the task, participants 

began the practice task consisting of 15 practice trials that included each combination of prior 

and sample information. If there were no questions after completing the practice task, 

participants began the belief updating task (see Appendices VII-IX for belief updating 

instructions for each experiment).  

The task consisted of 424 trials (i.e., 120 trials per decision situation, with 64 filler trials), 

with a 2-minute break in the middle of the computer task separating counterbalancing blocks, 

and three optional 30 second breaks within each block (six 30 second breaks total). Specifically, 

the 2-minute break was presented after the 212th trial, and 30-second breaks were presented 

within each block on the 53rd, 106th, and 159th trial. After the 2-minute break, the majority colour 

of the urns and sample changed. Trials were presented in random order within each 

counterbalanced block. 

 
5 The representativeness situation was presented in the demonstration.  
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In a single trial sequence, participants were presented with a) the distribution of coloured 

balls within two urns, b) prior information (i.e., the probability the computer would choose either 

urn), and c) sample evidence (i.e., 4 balls drawn from one of the two urns by the computer). The 

belief updating task employed by Achtziger et al. (2014) presented prior and sample information 

independently of one another. The modified belief updating task used in this dissertation series 

presented information on each trial sequentially, layering on the previous information presented, 

such that the urn distributions were presented first, then the prior, then the sample, and then the 

decision prompt, for two reasons: 1) to ensure participants paid attention to each individual 

component of information, and 2) to avoid effects being confounded with memory constraints 

(e.g., attenuated memory for prior information). After the sample was presented, a decision 

prompt was presented requiring participants to decide which urn they believe was more probable 

that the sample was drawn. In Experiment 1 a blank screen followed by a fixation cross was 

presented subsequent to a response that separated trials, and in Experiment 2 and 3 a feedback 

window followed by a fixation cross was presented subsequent to a response that separated trials.  

The belief updating task used causal rather than noncausal prior information. In the cabs 

problem described above, noncausal base-rates were used (i.e., base-rates with no obvious causal 

link to the new evidence; Ajzen, 1977; Barbey & Sloman, 2007; Bar-Hillel, 1980; Koehler, 

1996; Tversky & Kahneman, 1982). The causal version of the cabs problem states that the two 

cab companies have the same number of cabs, however 85% of accidents in the city involving 

cabs are Green cabs and 15% involve cabs that are Blue, rather than stating that 85% of the cabs 

in the city are Green. The former statement emphasizes the potential involvement of a Green cab 

in the accident compared with the latter statement. Research has shown that causal base-rates are 

used more than noncausal base-rates because they seem more related to the new evidence 



51 

 

presented. The belief updating task employed in the current dissertation presented the number of 

urns, the number of balls in each urn, the proportion of coloured balls and the likelihood the 

computer will choose either urn (i.e., causal base-rate information). 

In keeping with the method introduced by Achtziger and colleagues (2014), in order to 

measure reliance on the representativeness heuristic, six decision situations were of interest: 2 

alignment situations in which the representativeness heuristic led to the correct urn choice (i.e., 

the heuristic and Bayes’ theorem were aligned), 2 conflict situations in which the 

representativeness heuristic led to the incorrect urn choice (i.e., the heuristic and Bayes’ theorem 

were in conflict), and 2 neutral situations in which the representativeness heuristic did not apply. 

Further, decision situations were also designed to test for use of the conservatism heuristic. 

Specifically, there were two decision situations (i.e., the neutral decision situations described 

above) in which the most likely urn was not the urn with the higher prior probability. That is, the 

neutral situations did not involve a conflict between the representativeness heuristic and Bayes’ 

theorem but did involve a conflict between the conservatism heuristic and Bayes’ theorem. 

Participants who use prior information to make decisions and underweight sample evidence are 

likely to choose the incorrect urn in these decision situations. In line with Achtziger et al. (2014), 

across Experiments 1-3, dependent variables included decision accuracy and reaction times 

(RTs).  

Single trial sequence. The trial began when a fixation cross was presented cueing the 

beginning of the trial for 1000 ms. Next a representative distribution of 4 blue and green balls in 

two urns (“urn distributions”) were presented vertically on the left and right sides of a grey 

background on the computer screen with a fixation cross in the center of the screen for 1500 ms. 

After 1500 ms, the probability of either urn being chosen by the computer to draw a sample of 4 
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random balls (“the prior”) was presented for 3000 ms with the urn distributions. Achtziger et al. 

(2014) used a rule to define the prior probabilities such that the computer would draw a random 

number between 1 and 4 that would not be revealed to participants. For example, if the computer 

randomly draws a 1 the left urn will be chosen (25% chance), however if the computer randomly 

draws a 2, 3, or a 4, the right urn will be chosen (75% chance). In order to reduce cognitive load, 

the current dissertation diverged from Achtziger et al.’s (2014) design, and presented prior 

probabilities as percentages. Specifically, prior probabilities for the left urn consisted of 25% 

(75% right urn), 50% (50% right urn), and 75% (25% right urn), and were presented with equal 

frequency. Next, the sample of 4 balls drawn by the computer (“the sample”) from one of the 

two urns was presented in the middle of the screen in vertical alignment in addition to the urn 

distributions and prior information. The sample remained on the screen until the participant 

pressed one of two corresponding keys (“F” for the left urn and “J” for the right urn) to indicate 

their urn choice. There was no response deadline and no feedback. Once the participant made a 

decision a blank screen was presented for 1000 ms6, and the sample was put back into the urn it 

was drawn from (i.e., sampling 4 balls with replacement). See Figure 1 for a schematic of a 

single trial sequence. 

 
6The blank screen was used as a placeholder in Experiment 1 for the feedback screen presented 

in Experiment 2 and 3.  
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Figure 1. Sample trial of the representativeness heuristic conflicting with Bayes’ theorem in 

Experiment 1. 

Decision situations. The combinations of prior and sample information were designed to 

form decision situations that would test the use of the representativeness and conservatism 

heuristics. Prior-sample combinations included three possible priors (i.e., 25% chance of left urn 

and 75% chance of right urn; 50% chance of left urn and 50% chance of right urn; 75% chance 

of left urn and 25% chance of right urn) and five sample outcomes (0-4 majority colour balls), 

for a total of 15 possible decision situations. The representativeness heuristic is used when a 

decision is made on the basis of the match between the sample and the parent population. In light 

of this, the representativeness heuristic influenced the correct urn in two decision situations 

(aligned: prior 50% left urn and 2 blue balls drawn; prior 50% left urn and 3 blue balls drawn), 

the incorrect urn in two decision situations (conflict: prior 75% left urn and 2 blue balls drawn; 

prior 25% left urn and 3 blue balls drawn), and did not influence a decision in two decision 
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situation (neutral: prior 75% left urn and 1 blue ball drawn; prior 25% left urn and 4 blue balls 

drawn). The conservatism heuristic is used when a decision is made on the basis of prior 

information. To examine use of the conservatism heuristic, there were two decision situations in 

which the higher prior probability was not indicative of the correct choice (i.e., Bayes’ theorem 

conflicts with the conservatism heuristic). These decision situations were composed of the 

following prior-sample combinations: prior 75% left urn and 1 blue ball drawn, and prior 25% 

left urn and 4 blue balls drawn. Following Achtziger et al. (2014), the posterior odds7 for the left 

urn for each prior-sample combination, and the prescriptions of Bayesian updating, using the 

representativeness or conservatism heuristic are presented in Table 1. 

Table 1. Posterior Odds for all Decision Situations 

Note. Prior = prior probability for the left urn. For each prior-sample combination, the posterior 

odds are given for the left urn (upper left), and the remaining three entries are the prescriptions 

for Bayesian updating (upper right), conservatism heuristic (lower left) and the 

representativeness heuristic (lower right). Dark grey and black shaded cells indicate cases in 

which Bayesian updating conflicts with the representativeness and conservatism heuristics, 

respectively, and light-grey cells indicate cases in which Bayesian updating aligns with the 

representativeness heuristic.   

 

 
7 The posterior odds were calculated by multiplying the prior odds ratio by the sample odds ratio. 

 Number of majority colour balls in the sample 

Prior 0 1 2 3 4 

 

75% 

0.19            R 

 

L                 - 

0.56            R 

 

L                 - 

1.69            L 

 

L                 R 

5.06            L 

 

L                 L 

15.19          L 

 

L                 - 

 

50% 

0.06            R 

 

 -                 - 

0.19            R 

 

 -                 - 

0.56            R 

 

 -                 R 

1.69            L 

 

 -                 L  

5.06            L 

 

 -                 -  

 

25% 

0.02            R 

 

R                 -  

0.06            R 

 

R                 -  

0.19            R 

 

R                R  

0.56            R 

 

R                 L  

1.69            L 

 

 R                -  
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Importantly, the six shaded decision situations of interest approximate the same level of 

difficulty (see Appendix X for the posterior probabilities and corrected odds for each decision 

situation of interest). 

Stimuli. Blue and green balls (image size 60 × 60 pixels) were shown on the computer 

screen to reflect the probabilistic distributions of the urns and sample evidence. Numbers were 

presented on the computer screen indicating the rule of the trial (i.e., prior information), and 

were presented in black (RGB value: 0, 0, 0) 24-point Arial font against a grey (RGB value: 100-

100-100) background. All stimuli were presented in the center of the computer screen within a 

space of 220 × 220 pixels. In addition, to control for brightness, coloured stimuli were equated 

on luminance (blue, [RGB value: 0-0-255]; green [RGB value 0-255-0]).  

 Both urns were always presented in the same location on the computer screen (i.e., 

vertically on the left and right sides). The original urn task paradigm conducted by Grether 

(1980, 1992) used two urns filled with 6 balls each. However, Achtziger et al. (2014) validated a 

task version with urns filled with 4 balls each, which was the design employed in the current 

series of studies. The majority colour was counterbalanced, with the majority colour always 

presented at the top, and the minority at the bottom. Counterbalancing Condition 1 used 3 blue 

balls and 1 green ball in the left urn, and 2 blue balls and 2 green balls in the right urn. 

Counterbalancing Condition 2 used 3 green balls and 1 blue ball in the left urn, and 2 green balls 

and 2 blue balls in the right urn (see Table 2 for an illustration). The distribution of the balls 

within each urn was constant throughout each trial (i.e., the left urn always reflected a 75% - 

25% colour distribution and the right urn always reflected a 50% - 50% colour distribution). 
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Table 2. Colour Counterbalancing of Urn Distributions 

 

Demographic, health, cognitive and affective assessments. A battery of paper-and-

pencil assessments were completed after the belief updating task in all experiments to measure 

individual differences related to demographic information, as well as cognitive and affective 

characteristics. Information obtained from these assessments was used to ensure that the younger 

and older adult samples in each experiment were representative of these age groups (e.g., 

expected age-related differences), and was used to determine whether individual differences in 

these variables were associated with the dependent variables being investigated. The assessments 

were administered to participants in the order listed below in each experiment. 

Demographic and health assessment. All participants completed a demographic and 

health questionnaire administered by the experimenter via phone or email to screen for 

eligibility. Concerning demographic information, participants were asked about their age, 

gender, and years of formal education. Health-related queries included prior and/or current 

diagnoses of medical conditions (e.g., heart conditions, neurological disorders, or psychiatric 

disorders), visual or hearing impairments (e.g., awareness of colour blindness), and current 

medication use (see Appendix XI). 

Cognitive assessments. 

Numeracy. As the primary goal of the current dissertation is to examine the underlying 

processes of belief updating, it was important to determine whether numeracy level contributes 

to decision accuracy in the belief updating task. In order to measure numeracy, two numeracy 

 Left Urn Right Urn 

Counterbalancing 1   

Counterbalancing 2    
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assessments, namely the Lipkus Numeracy Task (Lipkus et al., 2001; Schwartz et al., 1997) and 

the Berlin Numeracy Test (Cokely et al., 2012) were included.  

Lipkus Numeracy Task. The 11-item Lipkus Numeracy Task (Lipkus et al., 2001) with 

one coin toss item (12-items total) by Schwartz and colleagues (1997) was used to assess 

numeric ability (e.g., “If the chance of getting a disease were 10%, how many people would be 

expected to get the disease out of 100?”). Questions were presented in a multiple-choice (2-

items) or fill-in-the-blank (10-items) format. Correct answers were summed to derive a score out 

of 12. Higher scores indicated higher levels of numeracy. 

Berlin Numeracy Test. A fill-in-the-blank version of the 4-item Berlin Numeracy Test 

(Cokely et al., 2012) was also used to assess levels of numeracy (e.g., “Imagine we are throwing 

a five-sided die 50 times. On average, out of these 50 throws how many times would a five-sided 

die show an odd number [1, 3, or 5]?”). Correct answers were summed together to derive a score 

out of 4. Higher scores indicated higher levels of numeracy. 

Digit Symbol Substitution Test (DSST). The DSST is a neuropsychological test from the 

revised version of the Wechsler Adult Intelligence Scale (WAIS-R; Wechsler, 1997) and 

measures processing speed, a component of fluid intelligence. In the task, nine digits are paired 

with unique symbols. Participants are asked to match as many of the symbols with their 

corresponding digits as possible in 2-minutes, working from left to right down each row. The 

total number of correct number-symbol pairings provided an index of processing speed. 

Mill Hill Vocabulary Test. The Mill Hill Vocabulary Test assessment (Raven, 1982) is a 

34-item vocabulary measure that served as an index of crystallized intelligence. During the task, 

participants are instructed to choose one of six words that has the same meaning as a prompt 
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word. Item difficulty gradually increases from items 1 to 34. Correct answers are summed, with 

higher scores indicating higher verbal intelligence. 

Mini-Mental Status Examination (MMSE). The MMSE (Folstein et al., 1975) was used as 

a screening test for potential cognitive impairment amongst older adult participants. The 11-item 

assessment with 30 possible points to earn required the experimenter to verbally ask questions in 

which the participant had to provide a verbal response (e.g., “What is today’s date?” or “How do 

you spell the word ‘world’ backwards?”), and required the participant to answer questions via 

paper-and-pencil (e.g., “Write a complete sentence.”) or perform an action (e.g., “Take this paper 

in your right hand, fold it in half, and lay it on your lap.”). Scores for correct answers were added 

across items, for a maximum score of 30. Participants scoring below 26 were excluded from the 

experiments. 

Thinking disposition assessments. 

Faith in Intuition. A 15-item version of the Faith in Intuition scale developed by Keller, 

Bohner and Erb (2000), a subscale from the Rational-Experiential Inventory (REI; Epstein et al., 

1996), was used to measure how much decisions are based on gut feelings and intuition. 

Participants were asked to indicate the degree to which each of the 15 items related to them using 

a 10-point Likert scale ranging from 1 (“completely false”) to 10 (“completely true”) on items 

such as “When it comes to making decisions, I often follow my gut feelings”. Following Alós-

Ferrer and Hügelschäfer (2012), participant responses across items were summed and divided by 

15 to obtain a total score ranging from 0 to 10. Higher scores indicated higher faith in intuition. 

Need for Cognition. The Need for Cognition assessment (Cacioppo & Petty, 1982), a 

subscale from the REI (Epstein et al., 1996), was used to measure motivation to engage in 

effortful cognitive activities. Participants were asked to indicate the degree to which each 
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statement related to them using a 5-point Likert scale ranging from 1 (“extremely 

uncharacteristic of me”) to 5 (“extremely characteristic of me”) on items such as “I like to have 

the responsibility of handling a situation that requires a lot of thinking”. Nine of the 18 items are 

reverse-score items. The appropriate items were first reverse-scored and were then added 

together to obtain a summary score out of 90. Higher scores indicated higher need for cognition. 

Preference for Intuition and Deliberation (PID). The PID assessment was used to 

measure the extent to which decisions are made based on intuition or deliberation. Although the 

PID was completed by participants across all experiments, the authors of the PID reported 

several weaknesses of the assessment such as the explicit use of the terms intuition and 

deliberation artificially increasing the correlation between scales and the subscales did not 

capture individual differences in decision mode that were identified by a factor analysis (Betsch 

& Iannello, 2010). The authors developed a new scale (i.e., the Unified Scale to Assess 

Individual Differences in Intuition and Deliberation [USID]; Betsch & Ianneloo, in preparation), 

that combines the PID scale with the Rational-Experiential Inventory (Pacini & Epstein, 1999), 

the General Decision Making Style inventory (GDMS; Scott & Bruce, 1995), the Cognitive Style 

Indicator (CoSI; Cools & Van den Broeck, 2007), and the Perceived Modes of Processing 

Inventory (PMPI; Burns & D’Zurilla, 1999). Due to the critical weaknesses of the PID, the scale 

was dropped from analysis and will not be discussed in the ensuing chapters.  

Affective assessments. 

Depression Anxiety Stress – 21 item (DASS-21) scale. The DASS-21 scale was designed 

to measure depression, anxiety, and stress over the past week (Lovibond & Lovibond, 1995).  

The depression subscale includes seven items that measure dysphoria, sense of hopelessness,  

self-deprecation, devaluation of life, lack of interest/motivation, and anhedonia. The anxiety 

subscale includes items that measure autonomic arousal, skeletal/muscle effects, and subjective  
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experience of anxious affect. The stress subscale includes items that target difficulty with  

relaxing, the tendency to be irritable and/or over-react, and nervousness. Participants were asked 

to indicate the degree to which each statement has related to them over the past week on a 4-

point Likert scale ranging from 0 (“did not apply to me at all”) to 3 (“applied to me very much or  

most of the time”). Scores for each scale were summed and multiplied by two with a possible 

range of 0 to 42 for each subscale. These scores were then grouped into classifications of 

severity for each subscale to classify symptoms as normal, mild, severe, or extremely severe. In 

the current dissertation, only estimates of depression and anxiety were analyzed, given prior 

research suggesting that such symptoms can elicit different emotional biases during cognitive 

processing (e.g., Dalgleish et al., 2003; MacLeod & McLaughlan, 1995). 

Positive and Negative Affect Schedule (PANAS). The PANAS quantifies experience with 

two dimensions of mood—positive and negative affect (Watson, Clark, & Tellegan, 1988). The 

20-item scale consists of 10-items reflecting positive emotions and 10-items reflecting negative 

emotions. Participants were asked to rate the extent to which they were experiencing each 

emotion in that moment on a 5-point Likert scale ranging from 1 “very slightly or not at all” to 5 

“extremely”. The sum of ratings for positive items was used to index positive affect and the sum 

of ratings for negative emotion items provided an index of negative affect. Possible scores 

ranged from 10 to 50 for each dimension with higher scores indicating higher levels of positive 

or negative affect. 

Self-Assessment. A self-assessment was completed following the belief updating task 

that required participants to reflect on their performance on the task. Participants were asked 1) 

what information influenced their decisions the most, 2) what strategy they used to make their 

decisions, 3) how accurate they believed their decisions were, 4) how difficult they found the 
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task, and 5) how confident they were working with numbers in general. Questions in the self-

assessment were formatted in multiple-choice, and an open space was also provided for 

comments about the task. Participant responses were examined to gauge how participants 

assessed their own performance (see Appendices XII-XIII). 

Experimental Design 

The experiments employed different designs resulting in differing ANOVAs conducted. 

However, dependent variables included decision accuracy and RT for all experiments.  

Dependent Variables 

Decision accuracy and RT. Average accuracy and RT for each of the 15 decision 

situations in the experiment was calculated for each block. Of the 15 prior-sample combinations, 

6 were decision situations of interest, corresponding to 2 representativeness situations, 2 

conservatism situations, and 2 alignment situations (see shaded decision situations in Table 1). 

To examine whether decision accuracy statistically differed between similar situations, paired-

sample t tests on accuracy were conducted for each pair of similar situations (e.g., 2 

representativeness situations). Similar situations were aggregated regardless of whether these 

situations differed from each other in decision accuracy in order to yield 3 decision situations 

(representativeness, conservatism, and alignment). Alignment situations were examined to 

ensure participants understood the task (i.e., participants had to score a minimum of 70% or more 

in alignment decision situations, otherwise participants were excluded from the final sample). To 

investigate the rate of learning, trials were blocked (i.e., 4 blocks in Experiment 1, 2 blocks in 

Experiment 2, and with rate of learning not examined in Experiment 3). To investigate whether 

accuracy improved or whether RT became faster across trial blocks and whether this differed 

across age group or decision situation, 2 (age) × 3 (decision situation) × 4 (trial block) mixed 
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ANOVAs were conducted. To unpack significant interactions, planned comparisons, derived 

from a-priori hypotheses, were conducted. 

Data Analysis 

Data analysis was conducted using both IBM SPSS version 24 (IBM Corp., 2014) and R 

(R Core Team). Across all experiments, results were interpreted in terms of statistical 

significance (α = .05), effect sizes, and odds ratios. When ANOVAs were conducted, partial eta 

squared (ηp
2) values (i.e., the proportion of variance explained by a variable that cannot be 

explained by other variables in the model) were interpreted. When two means were compared via 

independent or paired-sample t tests, Cohen’s d was used to estimate effect sizes, with .20 (small 

effect), .50 (medium effect), and .80 (large effect) thresholds used for interpretation. When 

multi-leveling modeling was conducted, odds ratios were used to estimate effect sizes, with 0 

(perfect) and 1 (no effect) thresholds used for interpretation.  

When a significant Mauchly’s test indicated that the assumption of sphericity was 

violated, the Greenhouse-Geisser correction was used to correct degrees of freedom of the F-

distribution. In addition, tests of normality and checks for outliers were conducted on decision 

accuracy and RT in each experiment. Data points that fell beyond three standard deviations from 

the mean were considered outliers. Outliers were removed from the dataset, and the analysis was 

rerun. Results from analysis with outliers included were reported when results were the same 

regardless of whether outliers were removed from the dataset or not, with outliers described 

where applicable in the ensuing experiment sections. To probe significant interactions, planned 

comparisons were conducted based on a-priori hypotheses. Type I errors were controlled by 

adjusting the alpha-levels using Benjamini-Hochberg corrections when post-hoc comparisons 

were made.  
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Decision strategy. Separate Pearson bivariate correlations were conducted to examine 

associations between accuracy in the representativeness and conservatism situations for each age 

group. Correlations were informative with respect to the relationship between the two heuristics 

across individuals.  

Individual differences. Given that the data was clustered at the participant variable (i.e., 

each participant made repeated binary decisions), and to add multiple predictors to control for 

these variables and examine whether they would predict performance, logistic multi-level 

modeling was performed. Prior to running analyses, individual differences indexed by the 

assessments were used as predictor variables of decision accuracy. First, predictor variables were 

grand-mean centered. Second, the intraclass coefficient (ICC) was calculated in order to observe 

how much variability in decision accuracy was due to clustering (i.e., the ratio of the between-

cluster variance of decision accuracy to the total variance of decision accuracy). The ICC is used 

to summarize the degree to which the values of a variable can be characterized by the grouping 

of individual observations into clusters (Flora, 2018). Specifically, the ICC represents the ratio of 

variance resulting from clustering relative to the total variance. Ranging from 0 to 1, an ICC of 0 

indicates perfect independence (i.e., the outcome does not depend on cluster and a traditional 

regression can be used), and an ICC of 1 indicates perfect interdependence (i.e., the outcome 

only varies between clusters; Flora, 2018). The ICC was calculated by dividing the intercept 

variance by the sum of the intercept and residual variance. When a substantial ICC value was 

observed (e.g., 10%), a multi-level modeling (MLM) approach was used to examine predictor 

variables of accuracy data.  

Next, empty models with no predictor variables added were run to assess how much 

variance in decision accuracy existed due to clustering. Then, a random-intercepts model and a 
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random-slopes model on accuracy within representativeness and conservatism decision 

situations, with age included as a Level 2 predictor were compared in order to observe which 

model fit the data better. A random-intercepts model assumes that the effect of decision situation 

is constant across participants, and a random-slopes model assumes that the effect of decision 

situation differs across participants. The model that derived the lowest Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), and deviance values indicated the model 

that best fit the data. Predictor variables were then added to the model separately to determine 

the variance they contributed to decision accuracy. Of note, in the effort to keep the results 

concerning individual differences concise, only significant interactions and important or 

surprising null effects are reported. See Appendix XIV for the R script used for multi-level 

modeling.



65 

 

Chapter 5: Experiment 1 

Although there is a general tendency to forego Type 2 processing for Type 1 processing 

for all decision makers (Kahneman, 2011; Stanovich, 2011), older adults have been shown to 

rely on Type 1 processes more than younger adults in situations that require Type 2 processing 

(Peters et al., 2007). It has previously been argued that due to cognitive decline, older adults may 

lack motivation to engage processes that are cognitively taxing (Bruine de Bruin et al., 2015), 

and instead may process information in ways that save cognitive resources, which can result in 

the overuse of heuristics (Bruine de Bruin, Parker, & Fischoff, 2012; Johnson, 1990; Peters et al., 

2007). At present, how age affects the processes that underlie belief updating when Type 2 

processing is required is unknown.  

Dual-process literature uses simple data such as decision response time to investigate 

decision processes (Kahneman, 2011). Tasks used to examine cognitive reflection in the 

heuristics and biases literature typically use non-repeatable word problems to examine decisions. 

However, these tasks do not allow for repetition and after having read a short paragraph about a 

fictitious scenario, response times are typically long. Using paradigms that have a large number 

of trials for each participant affords the opportunity to compare average response times from 

different decision situations within an individual in order to make predictions about decision 

processes (Alós-Ferrer et al., 2016). For example, if a response is generated from an intuitive 

process and another response is generated from a normative process, one may predict the former 

response to be faster on average than the latter response because intuitive processes are faster 

than normative processes (Kahneman, 2011). Longer response times are observed particularly in 

situations in which the decision maker faces strong trade-offs and there is an inner struggle 

resulting in a slower decision (Dashiell, 1937). In contrast, if one alternative is clearly preferred 
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or generated automatically, a faster decision ensues. To examine process data associated with 

conflict and cognitive reflection, conflict situations should be compared with non-conflict 

situations. Whereas intuitive and normative processes prescribe different choices in conflict 

situations, intuitive and normative processes prescribe the same choice in non-conflict situations 

(i.e., intuitive and normative responses are aligned).  

Response times in cognitive tasks slow with age (Brinley, 1965; Salthouse, 2019). As 

previously described however, older adults are more likely than younger adults to rely on 

automatic processes to make decisions (Peters et al., 2007), which have been linked to fast 

decisions (Kahneman, 2011). It is possible that even though older adults rely on automatic 

processes to make decisions, response execution may be slow. Given the wealth of evidence 

showing the general slowing in decision response time in older relative to younger adults 

(Brinley, 1965; Salthouse, 2019), it may be expected that older adults would make decisions 

slower than younger adults, regardless of whether a decision situation influences intuitive or 

reflective processing. 

Additionally, older adults may be less likely to engage reflective processes compared 

with younger adults, especially on tasks that rely heavily on inhibitory control, working memory, 

and fluid intelligence – components of cognition that decline with age (Braver & Barch, 2002). 

As described in Chapter 2, individual differences in specialized knowledge such as numeracy, 

and thinking dispositions such as a preference to make decisions based on analytical reasoning or 

intuition, have been shown to modulate performance on cognitive reflection tasks. Less explored 

in the heuristics and biases literature are individual differences in inhibitory control and how 

these differences may relate to cognitive reflection.  
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Theories of conflict monitoring, and cognitive control have been primarily based on 

interference effects observed in the Stroop task (MacLeod, 1991; Stroop, 1935) and the Eriksen 

Flanker task (Eriksen & Eriksen, 1974), in which stimuli are either in conflict or not. Interference 

effects derived from incongruent stimuli are evident in response times with incongruent trials 

producing longer response times than congruent and neutral trials, and with congruent trials 

producing shorter response times than incongruent or neutral trials. Using neutral response times 

to index a baseline of processing speed, the difference in response times between incongruent 

and neutral trials (i.e., the Stroop effect) reflects a measure of inhibitory control (Stroop, 1935).  

The Stroop task has been used to study the age-related declines in inhibitory processes 

(MacLeod, 1991), with older adults reliably showing a larger Stroop effect than younger adults, 

due to a decline in the efficiency of inhibitory processes (West & Alain, 2000). Given the 

literature showing that executive functions such as inhibition are required to successfully 

suppress Type 1 processing in order to engage Type 2 processing when confronted with conflict, 

those with greater inhibitory control may associate with higher decision accuracy on a belief 

updating task. However, at present it is unknown whether the Stroop effect would be associated 

with belief updating in younger and older adults.  

 Achtziger and colleagues (2014) conducted a study using an urn ball paradigm, in which 

prior information should be updated with new information in order to make a binary decision. 

Specifically, the authors related individual differences in representativeness and conservatism 

errors to individual differences in ERP amplitudes. The authors, however, did not report which 

heuristics were used most often or whether multiple heuristics were used by participants. Results 

of the study showed that younger adults’ decisions improved over time without the presentation 

of feedback. This result is unsurprising as numerous studies have demonstrated younger adults’ 
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ability to learn without feedback (e.g., Kelley & Mclaughlin, 2012). In contrast, older adults 

show a deficit in the ability to learn without feedback (Eppinger, Heekeren, & Li, 2015; Herbert 

et al., 2011). However, older adults also show evidence of adapting to decision contexts 

(Gigerenzer et al., 2011; Mata, Josef, Samanez-Larkin, & Hertwig, 2011; Mata et al., 2007). 

Some research shows that the quality of decisions made by older adults have been shown to be 

comparable to younger adults’ decisions, however the strategies used to make decisions differ 

between age groups (Mata et al., 2007). Currently it is unknown whether older adults would 

learn to update beliefs without feedback by showing an increase in decision accuracy over time. 

In addition, research shows that younger and older adults do not differ on decisions that are 

based on risk information (Zamarian et al., 2008), particularly on decision tasks that require 

Bayesian inference (Armstrong & Spaniol, 2017). Whether improvements in decision accuracy 

over time differ as a function of age on a belief updating task that requires cognitive reflection 

about risk information is unknown.  

In light of the research described above, the current experiment used a version of 

Achtziger et al.’s (2014) paradigm to investigate the effects of age and individual differences in 

numeracy, thinking dispositions, and inhibitory control on decision accuracy and response times 

in a belief updating task in which error-prone heuristics were pit against Bayes’ theorem. The 

primary goals of Experiment 1 were to, 1) elucidate how older adults use heuristics in a belief 

updating task relative to younger adults, 2) examine whether representativeness errors are more 

commonly made compared with conservatism errors, 3) examine whether there are age 

differences in decision accuracy over time without feedback, 4) test whether longer (shorter) 

response times associate with conflict (alignment) situations and whether age slows decision 
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time; and 5) investigate whether numeracy, thinking dispositions, and inhibitory control 

modulate performance on the belief updating task.  

Hypotheses 

 

As described above, older adults show evidence of relying on automatic processes more 

than younger adults, leading to the overuse of heuristics with age (Besedes, Deck, Sarangi, & 

Shor, 2012; Johnson, 1990; Peters et al., 2007) and with younger but not older adults improving 

decision quality without feedback over time (Eppinger et al., 2015). As such, results are expected 

to reveal age differences, such that older adults were predicted to associate more with decision 

errors than younger adults, with younger but not older adults predicted to show evidence of 

learning over time (i.e., increased decision accuracy and response time). Further, given the 

literature showing that diagnostic information (i.e., new information) is perceived as more 

concrete and intuitive than base-rate (i.e., prior) information (Barbey & Sloman, 2007), it was 

predicted that both younger and older adults would commit representativeness errors more than 

conservatism errors, but with older adults more likely to commit both types of errors than 

younger adults.  

Additionally, it was hypothesized that decision situations that evoke reflective, Type 2 

processing would be associated with slower response times compared with decision situations 

that evoke intuitive, Type 1 processing. Further, given the evidence of age-related slowing in 

decision response times (Brinley, 1965; Salthouse, 2019), it was also predicted that older adults 

would produce slower response times than younger adults overall.  

In light of research showing that inhibition is required for reasoning ability (Stanovich & 

West, 2000), it was hypothesized that inefficient inhibitory control indexed by larger Stroop 

effects, would be associated with lower decision accuracy in conflict relative to alignment 
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situations. Given that inhibitory mechanisms decline with age (Hasher & Zacks, 1988), older 

adults are expected to have difficulty with decisions that evoke automatic processes that must be 

inhibited in the course of reasoning. Further, numeracy, processing speed (an index of fluid 

intelligence) and thinking dispositions were expected to modulate performance in belief 

updating. Specifically, higher scores on the Berlin Numeracy Test, Lipkus Numeracy task, DSST 

and Need for Cognition, and lower scores on the Faith in Intuition assessments were expected to 

predict higher decision accuracy. Lower scores on the Berlin Numeracy Test, Lipkus Numeracy 

task, DSST and Need for Cognition, and higher scores on the Faith in Intuition assessments were 

expected to predict lower decision accuracy (see Table 3 for the list of hypotheses for 

Experiment 1).  

Table 3. Hypotheses for Experiment 1 

Note. RconfB = Representativeness heuristic conflicts with Bayes’ theorem; ConcfB = 

Conservatism heuristic conflicts with Bayes’ theorem; RalignB = Representativeness aligns with 

Bayes’ theorem; BNT = Berlin Numeracy Test; Lipkus = Lipkus Numeracy Task; Digit Symbol 

Substitution Test; NFC = Need for Cognition; FI = Faith in Intuition; RT = response time. 

List of Hypotheses 

 1 Younger adults were expected to show higher decision accuracy than older 

adults across decision situations. 

 2 The RconfB situation was expected to produce lower decision accuracy 

than the CconfB and RalignB situations. 

 3 Older adults were predicted to make less accurate decisions in the RconfB 

situation than younger adults, with no age difference in decision accuracy 

in the CconfB situation. 

 4 Younger, but not older adults, were expected to show an increase in 

decision accuracy and faster response times across trial blocks. 

 5 The RconfB and CconfB situations were expected to produce slower RTs 

than the RalignB situation, with older adults producing slower RTs than 

younger adults overall. 

 6 Larger Stroop effects (i.e., lower inhibitory control) were hypothesized to 

associate with lower decision accuracy in conflict situations, with older 

adults showing larger negative correlations than younger adults. 

Assessments 7 Higher (lower) scores on the BNT, Lipkus, DSST and NFC, and lower 

(higher) scores on the FI scales were expected to associate with higher 

(lower) decision accuracy, regardless of age. 
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Method 
 

Participants 

The final sample included 30 younger adults (ages 18-33) and 30 older adults (ages 66-

84). Participants completed the battery of assessments described in the General Methods section 

(pages 56-61). These data show that older adults were more educated, had fewer symptoms of 

stress, higher positive affect, slower processing speed, higher vocabulary, and lower numeracy 

levels on the Lipkus numeracy task, compared with their younger counterparts. One younger 

adult was excluded and replaced for scoring too high on the depression and anxiety subscales of 

the DASS-21, and six older adults were excluded and replaced for not meeting the decision 

accuracy criteria for the alignment situations (i.e., scoring below 70%) described in the General 

Methods section (pages 47-48). The characteristics of the final sample are presented in Table 4.  
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Table 4. Characteristics of the Final Sample in Experiment 1 

Note. Between-group comparisons were made using independent-sample t tests, aside from 

gender and handedness which were examined using Pearson’s chi square. Standard deviations 

are in parentheses. aSubscales of the 21-item Depression Anxiety and Stress Scale; bSubscales of 

the Positive and Negative Affect Schedule; cScores reflect number of correct solutions; MMSE = 

Mini-Mental State Examination; DSST = Digit Symbol Substitution Test; Mill Hill = Mill Hill 

Vocabulary Test; BNT = Berlin Numeracy Test; Lipkus Numeracy = Lipkus Numeracy Task. d 

= Cohen’s d for standardized effect size estimates of the mean difference between groups. 

  

  Younger Adults 

(n = 30) 

 Older Adults 

(n = 30) 

  

  M (SD)  M (SD) p d 

Demographics       

 Age in Years 23.27 (4.21)  74.00 (4.31) <.001 -11.89 

 Age Range 18-33  66-84 - - 

 Male/Female 

Ratio 

10/20  7/23 .28 - 

 Education in 

Years 

15.30 (1.18)  16.67 (3.01) .02 -0.59 

 Right/Left 

Handed 

27/3  28/2 .50 - 

Emotion       

Assessments Depressiona 5.60 (4.91)  3.40 (4.90) .09 0.45 

 Anxietya 3.73 (3.27)  3.13 (3.31) .48 0.18 

 Stressa 9.87 (5.92)  6.60 (6.24) .04 0.54 

 Positive Affectb 23.20 (6.26)  31.70 (8.38) <.001 -1.15 

 Negative Affectb 12.47 (3.25)  11.97 (3.02) .54 0.16 

Cognitive       

Assessments MMSEc -  29.20 (.714) - - 

 DSSTc 96.67 (14.81)  58.90 (17.99) <.001 2.29 

 Mill Hillc 14.43 (4.80)  22.57 (3.38) <.001 -1.96 

 BNTc 1.43 (1.19)  0.90 (1.37) .11 0.41 

 Lipkus 

Numeracyc 

10.13 (1.74)  8.20 (2.76) <.01 0.84 

 Faith in Intuition 4.94 (1.30)  5.54 (1.59) .12 -0.41 

 Need for 

Cognition 

61.87 (11.15)  61.53 (12.09) .91 0.03 
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Experimental Design 

 The experiment was a 2 (age: young, old) x 3 (decision situation: RconfB, CconfB, 

RalignB) mixed factorial design. Factors and dependent variables included in this experiment are 

described in the General Methods section (pages 53-55, 61-62).   

Procedure  

Belief updating task. Instructions for the belief updating task were provided and 

participants completed the practice task, with trials in the belief updating task following the exact 

sequence described in the General Methods section (pages 48-53). See Figure 1 for a schematic 

of a single trial sequence.  

Cognitive and affective assessments. All participants completed the battery of 

assessments outlined in the General Method section (pages 56-61), in addition to the Stroop task. 

Stroop task. The Stroop task (MacLeod, 1991) was unique to Experiment 1 and was 

added to provide an index of inhibitory control and examine whether the Stroop effect associated 

with performance on the belief updating task. The Stroop colour-naming task was administered 

to participants to obtain a measure of prepotent response inhibition. Participants first completed a 

practice task consisting of 40 trials, in which participants had to press a key that corresponded to 

the colour of a string of X’s on the computer screen. A second practice task consisting of 24 

trials was completed, and built on the first practice trial by adding words of colours that were 

either congruent or incongruent with the colour they were presented in. Once the two practice 

tasks were complete and the experimenter clarified any questions the participant had, the 

experimental Stroop task, consisting of 216 trials, began. In the Stroop task, participants were 

required to make a decision in response to the colour of the word by pressing a corresponding 

key on the keyboard. The meaning of the word would either be congruent with the colour (the 

word “Blue” presented in the colour blue) or incongruent with the colour of the word (the word 
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“Blue” presented in the colour purple; Stroop, 1935). In neutral trials, participants were required 

to respond to the colour of a string of X’s by pressing the corresponding key on the keyboard. 

After every response, participants received feedback on whether they were correct or incorrect, 

as well as their RT. Upon completion of the Stroop task, the experimenter then debriefed the 

participant by explaining the goals of the study, followed by appropriate compensation. 

Stroop stimuli. Concerning stimuli in the Stroop task, colour words were presented in 

Arial font, size 35, in colours: yellow (RGB value: 255, 255, 0), brown (RGB value:165, 42, 42), 

blue (RGB value: 0-0-255) and purple (RGB value: 128, 0, 128) on a black background (RGB 

value: 0-0-0), with instructions presented in white (RGB value: 255-255-255). The Stroop task in 

Experiment 1 was programmed and presented using E-Prime 2.0 software (Psychology Software 

Tools, Pittsburgh, PA). 

Data Analysis 

 Data analysis for Experiment 1 followed the procedures outlined in the General Methods 

section (pages 62-64), with the addition of analyzing data obtained from the Stroop task. First, 

RT data from neutral trials was subtracted from incongruent trials to obtain the Stroop effect 

(MacLeod, 1991). To test whether Stroop effect data was associated with decision accuracy in 

the belief updating task, separate Pearson bivariate correlational analyses for younger and older 

adults were conducted on Stroop effect data and decision accuracy in the RconfB situation, and 

Stroop effect data and decision accuracy in the CconfB situation.  

Results 

 

Decision Accuracy for All Decision Situations 

 Table 5 presents the average decision accuracy for each decision situation amongst 

younger and older adults. Collapsing across age group, independent sample t tests were 
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conducted across counterbalancing version on decision accuracy for each decision situation of 

interest within each condition. No differences in counterbalancing version were observed in the 

decision situations or conditions (ps > .05). 

Table 5. Means and Standard Deviations for Accuracy in Experiment 1 

Note. Values represent proportion (%) of correct decisions; Prior = prior probability for the left 

urn; Sample = number of majority colour balls of sample; Younger adults’ accuracy is shown on 

the top line of each row, older adults’ accuracy is shown on the second line. Standard deviations 

are in parentheses. The number of trials are indicated on the third line of each row. Bold font 

indicates decision situations of interest.  

 

Combining like-situations. Collapsing across age groups, paired-sample t tests were 

conducted to examine whether decision accuracy of like-situations differed from each other. 

Results showed a significant difference between RconfB situations, such that the prior: 25, 

sample: 3 situation produced lower accuracy than the prior: 75, sample: 2 situation, t (59) = -

2.44, p = .02, d = -0.31. A significant difference was also observed between CconfB situations, 

such that the prior: 25, sample: 4 situation produced lower accuracy than the prior: 75, sample: 1 

situation, t (59) = -2.14, p = .04, d = -0.29. Last, a significant difference was also observed 

between RalignB situations, such that the prior: 50, sample: 2 situation produced lower accuracy 

than the prior: 50, sample: 3 situation, t (59) = -3.56, p = .001, d = -0.50. Decision situations 

Prior Sample 

 0 1 2 3 4 

75 89.17 (22.19) 

76.25 (31.72) 

8 

82.94 (28.28) 

69.83 (34.55) 

60 

53.67 (33.24) 

56.78 (39.58) 

60 

97.78 (7.24) 

93.89 (12.75) 

6 

97.22 (8.84) 

96.11 (11.32) 

6 

50 96.25 (10.46) 

92.50 (19.59) 

8 

96.25 (10.46) 

90.42 (17.58) 

8 

91.56 (12.91) 

87.95 (14.45) 

60 

96.39 (5.55) 

94.27 (8.73) 

60 

97.50 (6.05) 

91.25 (17.11) 

8 

25 96.11 (11.32) 

94.44 (11.01) 

6 

93.33 (19.07) 

95.42 (8.36) 

8 

93.89 (16.65) 

95.55 (9.72) 

6 

49.55 (33.62) 

52.66 (37.94) 

60 

73.94 (28.96) 

67.49 (30.95) 

60 
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were collapsed regardless of these differences, as the primary interest was to investigate 

differences in decision accuracy across categories of situations.  

Decision Accuracy  

To assess whether participants’ decision accuracy increased over time, trials were first 

segmented into 4 blocks for each decision situation. A 2 (age: young, old) × 3 (decision 

situation: RconfB, CconfB, RalignB) × 4 (trial block: Block 1, Block 2, Block 3, Block 4)  

mixed ANOVA on decision accuracy was conducted and results showed a main effect of 

decision situation, F (1.20, 69.77) = 25.64, p < .001, ηp
2 = .318. Planned comparisons showed 

that the RconfB situation (M = .53, SD = .35) promoted less accurate decisions than the CconfB 

situation (M = .74, SD = .29), t (59) = -1.97, p = .01, d = 0.36, and the RalignB situation (M = 

.93, SD = .09), t (59) = -2.73, p < .001, d = 1.03, with the CconfB situation promoting less 

accurate decisions than the RalignB situation, t (59) = -1.39, p < .001, d = 0.71. Critically, no 

significant main effect of age was observed, F (1, 58) = 1.22, p = .27, ηp
2 = .02, nor any other 

significant effects. These results suggest that decision accuracy did not change over time or as a 

function of age (see Figure 2). 

 
8 Two outliers in the younger adult group were identified (see Figure 4, bottom right corner of 

scatterplot). The mixed ANOVA was rerun with these outliers excluded and results did not 

change from the description above. Therefore, the two outliers were included in analysis. 
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Figure 2. Accuracy proportion for each decision situation across trial block in Experiment 1. 

Decision RT 

To assess whether participants’ decision RT increased across trial blocks, a 2 (age: 

young, old) × 3 (decision situation: RconfB, CconfB, RalignB) × 4 (trial block: Block 1, Block 2, 

Block 3, Block 4) mixed ANOVA on RT was conducted, with results revealing a main effect of 

age, F (1, 58) = 18.49, p < .001, ηp
2 = .24 such that younger adults (M = 2112.27, SD = 1525.96) 

made faster decisions than older adults (M = 4053.07, SD = 3156.59), a main effect of trial 

block, F (1.50, 86.88) = 15.33, p < .001, ηp
2 = .21, and a main effect of decision situation, F 

(1.51, 87.79) = 24.01, p < .001, ηp
2 = .29.  

There was also a significant Decision Situation by Age interaction, F (1.51, 87.49) = 

5.03, p < .01, ηp
2 = .08. In order to unpack the interaction, independent sample t tests were 

conducted to examine potential age differences in each decision situation, and repeated-measure 

ANOVAs with pairwise comparisons were used to probe decision situation effects within each 
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age group. Independent sample t-tests showed that younger adults (M = 2298.76, SD = 1024.57) 

made faster decisions in the RconfB situation compared with older adults (M = 4326.97, SD = 

2601.10), t (58) = -3.97, p < .001, d = 1.03. Similar results were observed in the CconfB 

situation, such that younger adults (M = 2344.21, SD = 1525.96) made faster decisions compared 

with older adults (M = 4833.71, SD = 3156.59), t (58) = -3.89, p < .001, d = 1.00, and the 

RalignB situation, with younger adults (M = 1692.18, SD = 746.41) making faster decisions than 

older adults (M = 2971.51, SD = 1500.61), t (58) = -4.18, p < .001, d = 1.08. A repeated-

measures ANOVA showed significant RT differences across decision situations for younger 

adults, F (2, 58) = 7.75, p < .001, ηp
2 = .21. Pairwise comparisons showed no RT differences 

between the RconfB and CconfB situations, t (29) = -.24, p =.81, d = -0.03. However, significant 

RT differences were observed between RconfB and RalignB situations, t (29) = 2.51, p = .001, d 

= 0.76, as well as between CconfB and RalignB, t (29) = 2.91, p = .02, d = 0.55. For older adults, 

results showed significant RT differences across decision situations, F (1.37, 39.70) = 16.26, p < 

.001, ηp
2 = .36. Differing from younger adults, pairwise comparisons showed differences in RT 

between the RconfB and CconfB situations, t (29) = -1.80, p =.02, d = -0.44. Similar to younger 

adults, pairwise comparisons showed differences between the RconfB and RalignB, t (29) = 

3.97, p = .002, d = 0.71, as well as between CconfB and RalignB situations, t (29) = 4.18, p < 

.001, d = 0.81. 

Further, a significant Decision Situation by Trial Block interaction on RT was observed, 

F (2.51, 145.86) = 3.39, p = .003, ηp
2 = .06. To probe the interaction, repeated-measures 

ANOVAs with pairwise comparisons were conducted to examine potential trial block effects 

within each decision situation on RT, as well as potential differences in RT for each decision 

situation within each trial block. For the RconfB situation, trial block was significant, F (1.63, 
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96.13) = 16.73, p < .001, ηp
2 = .22. Pairwise comparisons showed a significant difference 

between trial Block 1 (M = 4234.38, SD = 2843.38) and 2 (M = 3383.04, SD = 2429.49), t (59) = 

3.41, p = .01, d = 0.44, between Block 2 and 3 (M = 2989.23, SD = 2336.75), t (59) = 2.21, p = 

.03, d = 0.29, and between Block 3 and 4 (M = 2657.19, SD = 2224.24), t (59) = 3.55, p = .001, d 

= 0.46, such that RT became faster over time. Concerning the CconfB situation, trial block was 

significant, F (1.39, 82.05) = 9.53, p < .01, ηp
2 = .14. Specifically, pairwise comparisons revealed 

a significant difference between trial Block 1 (M = 4600.13, SD = 3913.97) and 2 (M = 3471.50, 

SD = 2692.45), t (59) = 3.24, p = .002, d = 0.42, no difference between Blocks 2 and 3 (M = 

3305.13, SD = 3111.36), t (59) = .90, p = .37, d = 0.12 , as well as a significant difference 

between Blocks 3 and 4 (M = 2987.07, SD = 2673.49), t (59) = 2.09, p = .04, d = 0.27, such that 

RT became faster over time. Last, for RalignB situations, trial block was significant, F (1.98, 

116.58) = 9.68, p < .001, ηp
2 = .14. Pairwise comparisons revealed no differences between trial 

Block 1 (M = 2766.86, SD = 1612.12) and 2 (M = 2502.83, SD = 1856.31), t (59) = 1.86, p = .07, 

d = 0.24, but a significant difference between Blocks 2 and 3 (M = 2123.11, SD = 1453.61), t 

(59) = 2.19, p = .03, d = 0.28, and no difference in RT between Blocks 3 and 4 (M = 1971.49, SD 

= 1246.24), t (59) = 1.69,  p = .10, d = 0.22.  

Additionally, a repeated-measures ANOVA was conducted with decision situation and 

trial block as factors on RT and showed a significant effect, F (1.28, 75.84) = 19.13, p < .001, ηp
2 

= .25. To probe this effect further, within the first trial block, decision situation was significant, 

F (1.27, 72.27) = 18.83, p < .001, ηp
2 = .25, such that RTs did not differ between the RconfB and 

CconfB situations, t (59) = -1.54, p = .13, d = -0.20, but did significantly differ between the 

RconfB and RalignB situation, t (59) = 5.65, p < .001, d = 0.73, and the CconfB and RalignB 

situation, t (59) = 4.43, p < .001, d = 0.57. Similarly, within the second trial block, decision 



80 

 

situation was significant, F (1.76, 100.56) = 12.29, p < .001, ηp
2 = .18, such that RTs did not 

differ between the RconfB and CconfB situations, t (59) = -.50, p = .62, d = -0.06 but did show a 

significant difference between the RconfB and RalignB situation, t (59) = 4.06, p < .001, d = 

0.52, and the CconfB and RalignB situation, t (59) = 3.92, p < .001, d = 0.51. Decision situation 

was also significant in the third trial block, F (1.55, 88.19) = 13.83, p < .001, ηp
2 = .20. Similar to 

the other two blocks, no difference was observed between the RconfB and CconfB situations, t 

(59) = -1.77, p = .08, d = -0.23 but a significant difference was observed between the RconfB 

and RalignB situation, t (59) = 4.02, p < .001, d = 0.52, and the CconfB and RalignB situation, t 

(59) = 4.17, p < .001, d = 0.54. Last, decision situation was significant in the fourth trial block, F 

(1.62, 92.30) = 12.70, p < .001, ηp
2 = .18. In line with the pattern of results above, no difference 

was observed between the RconfB and CconfB situations, t (59) = -1.19, p = .10, d = -0.15, but a 

significant difference was observed between the RconfB and RalignB situations, t (59) = 3.22, p 

= .01, d = 0.42, and the CconfB and RalignB situation, t (59) = 4.23, p < .001, d = 0.55 (see 

Figure 3).  
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Figure 3. Reaction time for each decision situation across trial block in Experiment 1. 

Interestingly, accuracy did not correlate with RT in the RconfB situation, r = .15, p = .27, 

or in the CconfB situation, r = -.17, p = .20. However, accuracy significantly correlated with RT 

in the RalignB situation, r = -.37, p = .004.  

Together, the results show that the RconfB situation produced the most inaccurate 

decisions, the CconfB situation produced intermediate decision accuracy, and the RalignB 

situation produced the most accurate decisions, with accuracy unaffected by age or trial block. 

Concerning RT, younger adults made faster decisions than older adults for each decision 

situation. Younger adults showed no difference in RT between conflict situations but did show 

slower RTs in conflict situations compared with the RalignB situation. Older adults showed the 

slowest RTs in the CconfB situation, intermediate RTs for the RconfB situation, and the fastest 

RTs for the RalignB situation. RTs became comparably faster across trial blocks for conflict 

situations but not for the RalignB situation. Last, only accuracy and RT in the RalignB situation 

correlated. 
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Relationship Between Representativeness and Conservatism 

Pearson bivariate correlational analyses were conducted on decision accuracy between 

the RconfB and CconfB situations separately for younger and older adults to elucidate whether 

there was a relationship between reliance on representativeness and conservatism. A significant 

negative correlation between conflict situations emerged for younger adults, r = -.43, p = .02, 

however, after removal of the two outliers (bottom right of scatterplot; see Figure 4) the 

correlation was no longer significant, r = -.21, p = .29. Further, a significant negative correlation 

between the RconfB and the CconfB situation emerged for older adults, r = -.58, p = .001 (see 

Figure 5). The negative correlation implies that as accuracy increases in one decision situation, 

accuracy decreases in the other decision situation. This suggests that younger adults may have 

switched strategies to make decisions, whereas older adults may have chosen one decision 

strategy (e.g., overweighting new information). 
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Figure 4. Association of accuracy in conflict situations in Experiment 1 for younger adults. 

 

 

 

Figure 5. Association of accuracy in conflict situations in Experiment 1 for older adults.
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Concerning self-assessment data, chi-square tests were conducted on categorical items 

(i.e., items 1 and 2) of the self-assessment and independent-sample t tests were conducted on 

scaled items (i.e., items 3-5) of the self-assessment for each age group. Results showed that most 

participants reported using “both” the prior and sample to make decisions, “switching” decision 

strategies, reporting that they felt “somewhat accurate” in the decisions they made, that the task 

was “somewhat difficult”, and that they are “somewhat confident” or “confident” working with 

numbers in general. No age differences were observed (see Table 6).  

Table 6. Self-Assessment for Experiment 1 

Item Younger Adults 

(n = 30) 

Older Adults 

(n = 30) 

p-value d 

1. Influence Decision     

Likelihood 5 (16.7%) 6 (20%) .08 0.28 

Sample 2 (6.7%) 8 (26.7%)   

Both 23 (76.7%) 16 (53.3%)   

2. Decision Strategy     

Consistent 6 (20%) 13 (43.3%) .08 0.29 

Switched 24 (80%) 16 (53.3%)   

Neither 0 (0%) 1 (3.3%)   

3. Accuracy     

Very inaccurate 1 (3.3%) 0 (0%) .75 0.07 

Somewhat inaccurate 4 (13.3%) 3 (10%)   

Neither inaccurate nor accurate 1 (3.3%) 7 (23.3%)   

Somewhat accurate 23 (76.7%) 20 (66.7%)   

Very accurate 1 (3.3%) 0 (0%)   

4. Task Difficulty     

Very difficult 0 (0%) 3 (10%) .29 0.28 

Somewhat difficult 13 (43.4%) 12 (40%)   

Neither difficult nor easy 11 (36.7%) 10 (33.3%)   

Somewhat easy 3 (10%) 4 (13.3%)   

Very easy 3 (10%) 1 (3.3%)   

5. Confidence with Numbers     

Not at all confident 4 (13.3%) 4 (13.3%) 1.00 0.94 

Somewhat confident 14 (46.7%) 11 (36.7%)   

Confident 7 (23.3%) 12 (40%)   

Very confident 4 (13.3%) 3 (10%)   

Extremely confident 1 (3.3%) 3 (10%)   
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In summary, correlational analyses showed no relationship in decision accuracy between 

conflict situations in younger adults after two outliers were removed, however the negative 

correlation observed for older adults suggests that decisions made may have been primarily 

based on new information (i.e., the sample). Finally, most participants reported using both prior 

and sample information to make decisions, making “somewhat accurate” decisions, reported that 

the task was “somewhat difficult” and that they are “somewhat confident” working with numbers 

in general, with no age differences emerging in the self-assessment questionnaire.  

Individual Differences on Accuracy 

First, the ICC was calculated to observe how much variability in the outcome was due to 

clustering. Results showed that approximately 11% of the variance in decision accuracy was due 

to clustering. Although there is no hard rule indicating how large an ICC is large enough to 

suggest non-negligible nesting, these results suggest a portion of the variability of accuracy is 

due to clustering. In light of this, a multi-level modeling approach was used to examine whether 

assessments were good predictors of decision accuracy on the belief updating task.  

Next, a random-intercepts model and a random-slopes model on accuracy within RconfB and 

CconfB decision situations, with age included as a Level 2 predictor, were compared. Based on 

the AIC, BIC, and deviance values, the random-slopes model produced better model fit than the 

random-intercepts model. Therefore, individual difference measures of interest were included as 

predictors separately in the random-slopes models (see Table 7). 
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Table 7. Multi-Level Model Comparison on Accuracy in Experiment 1 

 Parameters Model 

  Random-intercepts Random-slopes 

Fixed effects    

 Intercept  1.27 (0.16)* 1.89 (0.43)* 

 OR 3.57 6.65 

 Younger adults -0.15 (0.23) -0.36 (0.61) 

 OR 0.86 0.69 

 RconfB -1.01 (0.04)* -1.5 (0.89)* 

 OR 0.36 0.21 

 Interaction - -0.02 (1.27) 

  - 0.98 

Fit statistics    

 deviance 16,719 11,187 

 AIC 16,727 11,199 

 BIC 16,758 11,245 

 df 4 6 

Model comparison   χ2 = 5,531.9* 

Note. Standard errors and deviations in fixed and random effects parentheses, respectively; RconfB = Representativeness heuristic 

conflicts with Bayes’ theorem; Younger adults and RconfB were used as the reference group; OR = odds ratios; AIC = Akaike’s 

Information Criterion; BIC = Bayesian Information Criterion; df = degrees of freedom; Subscript χ2 denotes the two models being 

compared. *p < .05. 
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Berlin Numeracy Test. Including the Berlin Numeracy Test (BNT) as a predictor 

revealed a significant BNT by Decision Situation interaction on decision accuracy (β = 1.24, SE 

= 0.84; p = .02). To probe this interaction, BNT scores were centered around the median to 

examine how scores on the BNT related to decisions situations, specific to those who score 

around the median level on the BNT. To investigate the relation between BNT and decision 

situation on decision accuracy for those scoring below and above the median on the BNT, the 

model was re-estimated three times after centering the BNT variable at the 25th percentile, the 

median and the 75th percentile. As presented in Table 8, beta estimates for the effect of decision 

situation increase as scores on the BNT increase. This suggests that the effect of decision 

situation is strongest amongst those with lower BNT scores. The odds ratios suggest that among 

those with lower BNT scores, the odds of a correct response in the RconfB situation are only 4% 

of the odds of a correct response in the CconfB situation. However, among those with higher 

BNT scores, the odds of a correct response in the RconfB situation are 41% of the odds of a 

correct response in the CconfB situation. Together, the results indicate that the effect of decision 

situation becomes greater with lower scores on the BNT.
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Table 8. Berlin Numeracy Test as a Predictor of Accuracy in Experiment 1 

 BNT centered at 25th percentile  BNT centered at median  BNT centered at 75th percentile 

 β SE Z p OR  β SE Z p OR  β SE Z p OR 

Intercept  2.45  0.64 3.81  11.56  2.06  0.43 4.75  7.85  1.67  0.45 3.71  5.33 

BNT -0.39  0.35 -1.10 .04 0.68  -0.39  0.36 -1.08 .04 0.68  -0.39  0.35 -1.11 .04 0.68 

RconfB -3.21  1.28 -2.51 .01 0.04  -2.06 0.87 -2.37 .01 0.13  -0.90  0.91 -0.99 .01 0.41 

age -0.70  0.81 -0.87 .36 0.49  -0.55  0.59 -0.93 .36 0.58  -0.39  0.68 -0.57 .36 0.68 

BNT:RconfB 1.15  0.70 1.64 .02 3.16  1.15  0.72 1.59 .02 3.16  1.15  0.69 1.65 .02 3.16 

BNT:age 0.16  0.47 0.34 .47 1.17  0.16  0.47 0.34 .47 1.17  0.16  0.46 0.35 .47 1.17 

RconfB:age 0.65 1.61 0.40 .61 1.91  0.63 1.18 0.53 .59 1.87  0.61  1.36 0.44 .60 1.83 

BNT:RconfB:age -0.02  0.93 -0.02 .98 0.98  -0.02  0.95 -0.02 .98 0.98  -0.02  0.92 -0.02 .98 0.98 

Note. BNT = Berlin Numeracy Test; RconfB = Representativeness heuristic conflicts with Bayes’ theorem (reference group); β = beta 

estimate; SE = standard error; Z =z-score; OR = odds ratio 
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The Need for Cognition, Faith in Intuition, Lipkus Numeracy Task, Mill Hill Vocabulary 

Test assessments, as well as years of education did not significantly predict decision accuracy. In 

addition, the multi-level model with DSST as a predictor of decision accuracy failed to converge. 

Therefore, to examine whether DSST scores were related to decision accuracy, bivariate 

correlations were computed. DSST scores did not correlate with decision accuracy in the RconfB 

situation, r = -.09, p = .52, but DSST scores correlated with decision accuracy in the CconfB 

situation, r = .31, p = .02. I also examined correlations between DSST scores and decision 

accuracy within each age group. For younger adults, DSST scores did not correlate with 

accuracy in the RconfB situation, r = -.17, p = .37, or the CconfB situation, r = .13, p = .49. 

Similarly, for older adults, scores on the DSST did not correlate with decision accuracy in the 

RconfB situation, r = -.04, p = .82, or the CconfB situation, r = .28, p = .14. 

Stroop performance. To test the hypothesis concerning whether the Stroop effect was 

associated with decision accuracy, an independent t-test on the Stroop effect in younger and 

older adults was first conducted to confirm age-related differences in inhibitory control. Results 

showed that older adults (M = 211. 04, SD = 134.27) produced a larger Stroop effect than 

younger adults (M = 89.27, SD = 73.45), t (58) = -4.36, p < .001, d = 1.13. Next, Pearson 

bivariate correlational analyses were conducted across age group, as well as separately for 

younger and older adults9. Analysis revealed no correlation between the Stroop effect and 

accuracy in the RconfB situation, r = -.08, p = .52, or the CconfB situation, r = -.08, p = .55. 

Further, results showed no correlation between the Stroop effect and decision accuracy in the 

 
9 Stroop effect data was first included into a multi-level model to predict decision accuracy. 

However, the model would not run due to the amount of data in the dataframe. Therefore, I 

resorted to correlational analyses to examine the relationship between the Stroop effect and 

decision accuracy.  
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RconfB situation for younger adults, r = .10, p = .64, nor for older adults, r = -.25, p = .57. 

Similarly, results showed no correlation between the Stroop effect and decision accuracy in the 

CconfB situation for younger adults, r = .04, p = .32, nor for older adults, r = .19, p = .18. 

Correlational analyses were also conducted across age group, as well as separately for younger 

and older adults between the Stroop effect and decision RT on the belief updating task. Similar 

to analyses conducted on decision accuracy, no significant correlations were observed on 

decision RT. 

In summary, the results showed that numeracy, as indexed by the Berlin Numeracy Test, 

is a good predictor of decision accuracy, such that those with higher Berlin Numeracy Test 

scores showed smaller differences in decision accuracy between RconfB and CconfB situations 

(higher accuracy in both), and those with lower Berlin Numeracy Test scores showed greater 

differences in decision accuracy between RconfB and CconfB situations (lower accuracy in the 

RconfB situation and higher accuracy in the CconfB situation). Additionally, collapsing across 

age, scores on the DSST correlated with accuracy in the CconfB situation only. No other 

assessments, including the Stroop task, were associated with decision accuracy on the belief 

updating task. 

Summary of Results 

 The RconfB situation produced the most errors, followed by the CconfB situation and the 

RalignB situation. Accuracy was unaffected by age or trial block. Although younger adults did 

not show a correlation in accuracy between conflict situations, older adults did, such that reliance 

on the representativeness heuristic was associated with non-reliance on the conservatism 

heuristic. Concerning RT, younger adults made faster decisions than older adults overall, and 

responses became faster in conflict situations across blocks in both age groups. Whereas younger 
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adults showed no difference in RT in conflict situations, the CconfB situation produced longer 

RTs than the RconfB situation in older adults. Additionally, most participants reported using 

both the “prior and sample” to make decisions, making “somewhat accurate” decisions, reporting 

the task was “somewhat difficult” and that they were “somewhat confident” working with 

numbers in general, regardless of age. Last, scores on the Berlin Numeracy Test predicted 

decision accuracy in the belief updating task. Additionally, collapsing across age, scores on the 

DSST correlated with accuracy in the CconfB situation only. No other assessments were 

associated with belief updating performance, including the Stroop task. 

Discussion 

The heuristics and biases literature show that younger adults are prone to systematic 

biases in cognitive reflection tasks because heuristics are used in lieu of formal analysis 

(Kahneman & Tversky, 1972). For example, Achtziger and colleagues (2014) showed that 

younger adults commonly committed representativeness and conservatism errors rather than 

following the principles of Bayes’ theorem in a belief updating task. However, it remained 

unknown how age would affect the use of heuristics when updating beliefs, or whether 

individual differences such as numeracy, thinking dispositions, or inhibitory control modulate 

performance in belief updating in younger and older adults. In light of this gap in the literature, 

the goal of the current experiment was to test hypotheses about the influence of age, as well as 

individual differences in the use of heuristics during belief updating. 

Given the evidence showing that older adults rely on automatic processes and use 

heuristics more than younger adults (Johnson, 1990; Peters et al., 2007), I hypothesized that 

reliance on heuristics to make decisions would be greater in older than in younger adults 

(Hypothesis 1). In contrast to this hypothesis, no age differences in the use of heuristics were 
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observed in this experiment. These results are the first to show that when updating beliefs, 

younger and older adults use heuristics to the same degree. The results also support previous 

findings that show no age differences when making decisions under risk (Armstrong & Spaniol, 

2017). These results exemplify the difficulty of following the principles of Bayes’ theorem and 

the tendency to resort to heuristics in both young and old age when updating beliefs. 

 Additionally, it has been argued that base rate-neglect is commonly observed because 

base-rates (i.e., prior information) are usually expressed as probabilities that engage Type 2 

processes, and diagnostic (or new) information tends to evoke Type 1 processes because this 

information is perceived as more concrete and vivid (Barbey & Sloman, 2007). Thus, I 

hypothesized that the representativeness error would be committed more than the conservatism 

error over all (Hypothesis 2), but with older adults committing the representativeness error more 

than younger adults, and with no age differences in committing the conservatism error 

(Hypothesis 3). The results revealed a main effect of decision situation, such that susceptibility to 

the representativeness heuristic was greater than susceptibility to the conservatism heuristic. 

These results not only replicate prior findings that have examined younger adults’ use of the 

representativeness and conservatism heuristics in belief updating (Achtziger et al. 2014; Grether, 

1980; Dave & Wolfe, 2003), they extend this literature to the older adult population and show 

evidence that the representativeness heuristic is more influential than the conservatism heuristic. 

However, in contrast to Hypothesis 3, no Age by Decision Situation interaction was observed. 

Younger and older adults used both heuristics to the same degree.  

The results partially supported Hypothesis 4. Prior literature shows that younger adults 

can learn without feedback (Achtziger et al. 2014; Kelley & Mclaughlin, 2012) whereas older 

adults have difficulty learning without feedback (Eppinger et al. 2015; Herbert et al. 2011). It 
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was therefore hypothesized that younger adults would show an increase in decision accuracy and 

faster RTs across trial blocks, whereas older adults would show stable levels of accuracy and RT 

across trial blocks. However, given that accuracy did not improve across trials, the results do not 

provide evidence of a learning effect10 in either age group. Although RT decreased in younger 

and older adults across trial blocks, this may reflect familiarity with the task over time. Why did 

younger adults show a learning effect in Achtziger et al.’s (2014) study but not in the current 

experiment? An important methodological difference between the two studies concerns how 

prior and new information were presented. Whereas Achtziger et al. (2014) presented the urn 

distributions and prior information separately from new information, the current study presented 

all information simultaneously. As a reminder, the representativeness heuristic has been 

described as comparing new information to an existing parent population (Grether, 1980). 

Therefore, simultaneous presentation of information may have made using the representativeness 

heuristic more compelling compared with presenting new information and then having to recall 

the urn distributions and prior information from memory. In other words, perhaps presenting 

relevant information together supported committing representativeness errors throughout the 

task, whereas forcing participants to recall the parent population distributions and prior 

information from memory gradually influenced reflective processing over time, as was observed 

in Achtziger et al. (2014).  

Further, age differences may not have been observed because feedback was not 

presented. Prior research shows that younger adults are more successful at using feedback to 

improve performance compared with older adults (Eppinger et al., 2008; Nieuwenhuis et al., 

2002). In the belief updating task, it may be too difficult to gauge performance or strategize 

 
10 I refer to “learning” as making more accurate decisions over time.  
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about ways to improve performance without feedback. At present, it is unknown whether 

younger and older adults would show a learning effect in a belief updating task with feedback. 

 Supporting Hypothesis 5, younger adults showed faster RTs than older adults (Salthouse, 

2019), with younger adults showing no difference in RT between conflict situations, but with 

older adults showing slower RTs when the conservatism heuristic conflicted with Bayes’ 

theorem relative to the representativeness heuristic. Although speculative, this may be evidence 

that older adults reflect more when the conservatism heuristic conflicts with Bayes’ theorem. 

More research is needed to further examine differences that may underlie use of the 

representativeness and conservatism heuristics when making decisions in old age. Last, both 

younger and older adults made faster decisions across trial blocks, which could be due to 

increased familiarity with the task. 

Concerning decision strategies, after two outliers were removed, no relationship was 

observed in decision accuracy between conflict situations in younger adults. However, a negative 

correlation was observed in older adults indicating that reliance on the representativeness 

heuristic predicted non-reliance on the conservatism heuristic. Although initially it may seem as 

though younger and older adults are less susceptible to the conservatism heuristic compared with 

the representativeness heuristic, an alternative explanation may underlie these results. Drawing 

the reader’s attention to the six decision situations of interest prior to collapsing across like-

situations (Table 1), one may take the perspective of choosing one strategy over the other and 

applying this to each of the six decision situations of interest to the current experiment.   

Consider first applying the conservatism heuristic to each decision situation (i.e., using 

only the prior with the higher probability to make each decision). One would make correct 

decisions in the RconfB situations, incorrect decisions in the CconfB situations, and given 
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chance performance due to equal priors, one would make 50% of the decisions correctly in the 

RalignB situations. Next, apply the representativeness heuristic to each decision situation (i.e., 

using only new information to make decisions by comparing the sample to each urn distribution). 

One would make incorrect decisions in the RconfB situations, correct decisions in the CconfB 

situations, and correct decisions in the RalignB situations. The critical point here is that if one 

consistently uses new information to make decisions across all decision situations, by default one 

would obtain 100% accuracy in the CconfB and RalignB situations. Mean decision accuracy in 

the CconfB situation may not be indicating an avoidance of the conservatism error, but rather 

indicating use of the representativeness heuristic, which in this situation leads to correct 

responses. That is, younger and older adults may be applying the representativeness heuristic 

more and the conservatism heuristic less than what the means suggest. This possibility was not 

discussed in Achtziger et al. (2014) who reported similar results concerning decision errors in 

younger adults.  

Research shows that the ability to inhibit inappropriate responses is paramount for 

reasoning (De Neys, Schaeken & d’Ydewalle, 2005; Handley, Capon, Beveridge, Dennis & 

Evans, 2004; Houdé, 1997; Markovits & Doyon, 2004; Moutier, Plagne-Cayeux, Melot, & 

Houdé, 2006; Stanovich & West, 2000). It has been posited that older adults may make more 

heuristic-based decisions than younger adults (De Neys, & Van Gelder, 2008) because inhibitory 

control decreases with age (Hasher & Zacks, 1988; Lustig, Hasher, & Zacks, 2007). Concerning 

the processes that may underlie belief updating, it was of interest to examine whether inhibitory 

control, indexed by the Stroop effect, associated with performance (Hypothesis 6). 

As expected, older adults showed a larger Stroop effect than younger adults (West, 2004; 

West & Alain, 2000), however the Stroop effect was not associated with performance on the 
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belief updating task. One reason for this result could be due to task differences. Although not a 

word problem, the belief updating task, like other dual-process tasks, requires reasoning and 

rational decision making, whereas the Stroop task specifically indexes inhibiting a prepotent 

response (Pennycook, 2017). In the current experiment, decisions in the belief updating task took 

approximately 3 seconds for younger and 5 seconds for older adults, whereas the Stroop effect 

was approximately 90 milliseconds for younger and 200 milliseconds for older adults. Decision 

accuracy or RTs on the belief updating task may not relate to Stroop effect scores because 

engaging inhibitory control is only one process of the many processes that underlie updating 

beliefs. As previously described, once Type 1 processing is suppressed (i.e., inhibited), Type 2 

processing is engaged to generate alternative responses which depends on proficient mindware 

such as numeracy, and the ability to sustain cognitive decoupling operations (Stanovich, 2011). 

That is, inhibitory control captured by the Stroop effect may only partially underlie belief 

updating. However, because inhibitory control in the belief updating task was not captured in 

isolation, an association between the Stroop effect and performance on the belief updating task 

may have been washed out. Tasks that more closely index reflective processing such as the 

Cognitive Reflection Task (Frederick, 2005) or examining inhibitory control activity at the brain 

level when updating beliefs may further illuminate the processes that underlie this task.  

Concerning individual differences captured by the battery of cognitive assessments, it 

was hypothesized that numeracy, and reflective rather than intuitive thinking dispositions would 

predict decision accuracy (Hypothesis 7). First, given that highly numerate individuals are less 

susceptible to some decision biases (Klaczynski, 2014; Peters et al., 2006), and are more likely to 

engage in deliberation (Pennycook, Trippas, Handley, & Thompson, 2013), it was expected that 

individual differences in numeracy would predict the use of heuristics in the current experiment. 
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Supporting this hypothesis, results showed that the Berlin Numeracy Test predicted decision 

accuracy on the belief updating task, such that higher numeracy was associated with less 

susceptibility to both heuristics and lower numeracy associated with more prevalent use of 

heuristics to make decisions, especially the representativeness heuristic. Performance on the 

Lipkus Numeracy Task did not predict decision accuracy in the belief updating task, replicating 

findings reported by Hügelschäfer (2011). These results could be due to a ceiling effect and low 

variability in the scores on the Lipkus Numeracy Task (see Table 4). Future research should 

further examine why the Berlin Numeracy Test but not the Lipkus Numeracy Task predicted 

belief updating, and whether there are differences between these two measures of numeracy.  

 Concerning thinking dispositions, results presented here converge with literature 

reporting that the Faith in Intuition and Need for Cognition scales do not predict performance on 

probability judgment tasks (e.g., Alós-Ferrer & Hügelschäfer, 2012; Alós-Ferrer et al., 2016; Lu, 

2015). One reason for this could be due to unshared method variance between the two tasks such 

that the Faith in Intuition and Need for Cognition scales are self-report measures of preferences 

for using intuition or effortful cognition when making decisions. In contrast, the belief updating 

task measures cognitive reflection and the ability to avoid decision biases. Tasks that measure 

intuitive-analytical thinking dispositions through performance-based ability rather than self-

report measures may provide a better one-to-one comparison for examining whether individual 

differences in thinking dispositions associate with performance on the belief updating task. Last, 

results showed that scores on the DSST correlated with accuracy in the CconfB situation only, 

and that the Mill Hill Vocabulary Test and years of education did not predict decision accuracy. 

These results suggest that perceptual-motor speed (i.e., an index of fluid intelligence; 

Lindenberger, Mayr, & Kliegl, 1993) may associate with updating beliefs and that crystallized 

https://www.sciencedirect.com/science/article/pii/S0167268112001564#!
https://www.sciencedirect.com/science/article/pii/S0167268112001564#!
https://www.sciencedirect.com/science/article/pii/S0167268112001564#!
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cognitive abilities do not underlie the use of heuristics when updating beliefs. However, these 

results should be replicated to bolster the generalizability of these findings.  

In summary, younger and older adults use heuristics that lead to decision errors to the 

same degree when updating beliefs, with committing the representativeness error more often 

than the conservatism error, without learning over time in the absence of feedback. Results from 

Experiment 1 replicate previous literature, as well as provide novel findings that extend the 

literature on aging and cognitive biases when updating beliefs about probability information. 

First, the results replicate evidence that younger adults use representativeness and conservatism 

heuristics to make decisions (Achtziger et al., 2014; Kahneman & Tversky, 1972) and provides 

the novel contribution of extending these results to the older population. Second, the results 

reveal the prevalence of base-rate neglect in both young and old age, supporting prior literature 

suggesting that diagnostic (or new) information is more intuitive than base-rate (or prior) 

information, and therefore is more compelling to use when updating beliefs (Kahneman & 

Frederick, 2002). Finally, these results show that higher numeracy levels may protect individuals 

from being susceptible to error-prone heuristics when updating beliefs. Although the results from 

Experiment 1 shed new light on how younger and older adults use heuristics when updating 

beliefs, the processes that underlie belief updating and how they may change with age remains 

unclear. Building on the results of Experiment 1, Experiment 2 of this dissertation examines 

whether feedback influences reflective processing and the use of heuristics in the belief updating 

task, while also using ERPs to elucidate the processes that underpin belief updating. 
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Chapter 6: Experiment 2 

 Experiment 1 of this dissertation showed that both younger and older adults used 

heuristics to the same degree when updating beliefs with no feedback. Further, the 

representativeness error was committed more than the conservatism error, with numeracy 

moderating this outcome, such that higher numeracy predicted less susceptibility to using error-

prone heuristics, and lower numeracy predicted more susceptibility to using error-prone 

heuristics, particularly the representativeness heuristic. However, it remains unknown whether 

age differences would surface when updating beliefs with feedback. In addition, although age 

differences in decision accuracy were not observed in Experiment 1, no study has examined 

whether younger and older adults differ in the neural correlates that underlie belief updating. 

Moreover, to my knowledge no study has investigated whether individual differences in 

numeracy, thinking disposition or cognitive reflection associate with differences in the neural 

correlates that underlie belief updating with feedback. To fill this gap in the literature, the 

purpose of Experiment 2 was to investigate whether there are age differences in belief updating 

when feedback is provided, and whether the neural processes that underlie belief updating are 

modulated by age or individual differences. Thus, Experiment 2 builds on Experiment 1 by a) 

including feedback in the belief updating task, b) capturing the neural correlates that underlie 

belief updating, and c) including the Cognitive Reflection Task, an index of reflective 

processing, to examine whether Cognitive Reflection Task scores associate with performance. 

 Investigating how age impacts neural activity is important as age differences in task-

related brain activity are well documented even when no age differences in behavioural 

performance emerge (Cabeza & Dennis, 2012; Friedman, 2003, 2012; Grady, 2012). 

Neuroimaging research shows that in addition to age-related declines in whole-brain volume, 

reduced connectivity of white matter tracts, and changes in neurotransmitter systems (e.g., 
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dopamine; Erixon-Lindroth et al., 2005; Hedden & Gabrieli, 2004), there are marked declines in 

the structure and function of the PFC, a cortical region that supports executive functions (Band, 

Ridderinkhof, & Segalowitz, 2002; Raz, 2005; West, 1996). Aging also changes the operation of 

large-scale functional brain networks. Specifically, while some research shows age-related 

reductions in brain activity due to declines in cognitive processing (see Grady, 2012), other 

research shows increases in brain activity with age (Davis, Dennis, Daselaar, Fleck, & Cabeza, 

2008, Grady et al. 1994; Rizio & Dennis, 2014) that have been attributed to compensatory 

(Reuter-Lorenz, 2002; Vallesi, 2011), as well as dedifferentation mechanisms (Dennis & Cabeza, 

2008; Grady, 2012; Park & Reuter-Lorenz, 2009). In particular, a posterior-anterior shift has 

been observed with age (PASA; Davis et al., 2008), posited to reflect functional compensation of 

higher-order cognitive resources in the PFC to offset age-related deficits in other brain regions 

(Cabeza, et al., 2018; Dennis & Cabeza, 2008; Grady, 2012).  

 Existing studies on belief updating have employed functional magnetic resonance 

imaging (fMRI), as well as ERPs to investigate the neural correlates that underpin belief 

updating. The following section provides a brief overview of this literature.  

fMRI Literature 

 Within the fMRI literature, a variety of paradigms have been used to examine the neural 

correlates of belief updating. Studies using versions of the urn-ball paradigm have found that the 

striatum, amygdala, insula and orbitofrontal cortices activated when prior information was 

presented, whereas the accumulation of new information has been observed in the anterior 

cingulate cortex (ACC) and parietal regions (Furl & Averbeck, 2011), as well as regions 

comprising the default mode network such as the angular gyri, posterior cingulate, and medial 

frontal cortex (d’Acremont, Schultz, & Bossaerts, 2013; Vilares, Howard, Fernandes, Gottfried, 
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& Kording, 2012). The ACC, frontal, and occipital cortices have been shown to activate in 

response to the presentation of new information, and the insula, striatum, ACC, frontal and 

parietal regions activate during Bayesian updating (i.e., when an observer detects a change in the 

environment and updates prior with new information; d’Acremont et al., 2013; Furl & Averbeck, 

2011; Poudel, Bhattarai, Dickinson, & Drummond, 2017; Stern, Gonzalez, Welsh, & Taylor, 

2010). Together, research shows that prior information activates insular, striatal and frontal 

regions that have been associated with cognitive control processes (Furl & Averbeck, 2011; 

Jiang, Beck, Heller, & Egner, 2015), while the presentation of new information has been 

associated with activation in the ACC, frontal, and parietal cortices (Poudel et al., 2017), regions 

that associate with conflict monitoring processes and the executive control of information such 

as response inhibition and attentional control (Braver, Barch, Gray, Molfese, & Snyder, 2001). In 

addition, belief updating associates with activation of the insula and striatum, in addition to the 

ACC, frontal and parietal cortices, with the insula-frontostriatal network activated during tasks of 

cognitive control. Specifically, this network has been shown to mediate flexible cognitive control 

by adapting to predictions of changing control demands (D’Acremont et al., 2013; Jiang et al., 

2015; Uddin, Nomi, Hebert-Seropian, Ghaziri, & Boucher, 2017).  

 Belief updating tasks that diverge from the commonly used urn-ball paradigm have used 

probability tasks that present sensory stimuli that require participants to make inferences about 

probabilistic perceptual or auditory stimuli, or the visuospatial orientation of stimuli. For 

example, in a visual-perceptual inference task, Summerfield and Koechlin (2008) showed that 

expectations for prior information were associated with activity in the extrastriate and anterior 

temporal lobe regions. In addition, the posterior parietal cortex and prefrontal regions (e.g., 

presupplementary motor area and the dorsal cingulate cortex) activated when new information 
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was presented, whereas the ACC, putamen, the temporoparietal junction and dopaminergic-rich 

midbrain regions activated during Bayesian updating (O’Reilley et al., 2013; Schwartenbeck, 

FitzGerald, & Dolan, 2016; Vossel, Mathys, Stephan, & Friston, 2015). Last, Trapp, Lepsien, 

Kotz, and Bar (2016) conducted a study using face and object (e.g., house) stimuli, and showed 

that whereas the fusiform face area activated more for faces that were associated with higher 

prior probabilities, the parahippocampal place area did not show modulated activation associated 

with prior probability, suggesting sensitivity to stimulus material.  

 Localization of regions activated during different stages of belief updating within a 

Bayesian inference context is inconsistent in the fMRI research reviewed above, likely due to the 

wide variety of tasks used, with some tasks only indirectly related to Bayesian updating. 

However, the data suggests that prior information may be represented in the insula-frontostriatal 

network, and the processing of new information and belief updating may be represented in the 

ACC and parietal regions, in addition to the insula-frontostriatal network.   

ERP Literature 

 The ERP technique has a high temporal resolution that can track neural activity on a 

millisecond time scale (Albert, Lopez-Martin, Hinojosa, & Carretie, 2013), representing a 

continuous measure of processing (Luck, 2014). ERPs are derived from scalp-recorded 

electroencephalography (EEG) and take form in voltage fluctuations that arise from sensory, 

motor or cognitive processes that are time-locked to specific events or stimuli (Pires, Leitão, 

Guerrini, & Simões, 2014). These voltage fluctuations represent a summation of a large number 

of primarily cortical postsynaptic potential activity (Luck, 2014) that are represented by positive 

and negative peaks and troughs that vary in amplitude (i.e., magnitude of activity) and latency 

(i.e., timing of activity; Luck, 2014). An ERP component is a scalp-recorded voltage change 
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reflecting specific neural and psychological processes (Luck, 2014). For example, an ERP 

component important for the current dissertation is the N2, with amplitude modulations of the 

N2 thought to index conflict monitoring processes (Donkers & van Boxtel, 2004; Grützmann, 

Riesel, Klawohn, Kathmann, & Endrass, 2014). ERP components have traditionally been 

classified as either exogenous sensory components that are automatically reactive to external 

factors (e.g., presentation of stimuli) or endogenous components that represent internal factors 

(e.g., task-related brain processes; Luck, 2014). Analyzing the amplitudes and latencies of ERP 

components help shed light on the higher-order cognitive processes that underlie behaviour in 

real time.  

 Several studies have examined the neural underpinnings of belief updating using ERPs. 

For example, in a belief updating task, Achtziger et al. (2014) investigated deviations from 

Bayes’ theorem by overweighting prior information (i.e., committing a conservatism error). 

Results showed that committing the conservatism error was associated with a bias toward one of 

two options before the presentation of new information, indexed by the lateralized readiness 

potential (LRP; Leuthold, Sommer, & Ulrich, 1996; Steinhauser, Hübner, & Druey, 2009). The 

LRP represents a lateralization or shifting of activation in motor cortices to a greater degree on 

the contralateral side of the response hand (De Jong, Coles, Logan, & Gratton, 1990; Eimer, 

1998; Kutas & Donchin, 1980). For example, when the LRP amplitude is stronger in the right 

hemisphere this suggests increased motor preparedness to choose the left option.  

 The N2, a fronto-central negative deflection peaking between 200-400 ms after stimulus 

onset, has been associated with response inhibition (Falkenstein, Hoormann, & Hohnsbein, 1999; 

Groom & Cragg, 2015), and is considered an index of conflict detection (Donkers & van Boxtel, 

2004; Grützmann et al., 2014) on trials that trigger a tendency to make incorrect prepotent 
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responses (e.g., No-Go trials in the GO/No-Go task). Individual differences in N2 amplitude 

correspond to the degree of sensitivity toward a response conflict, with larger amplitudes 

corresponding to higher sensitivity (Amodio, Devine, & Harmon-Jones, 2008; Kirmizi-Alsan et 

al., 2006). The extent to which the N2 reflects inhibitory control (i.e., regulation of prepotent 

responses; Bruin, & Wijers, 2002) or conflict monitoring and detection (i.e., contention for the 

output of two or more response representations; Botvinick, Braver, Barch, Carter, & Cohen, 

2001), or both, on conflict trials is still debated (see Smith, Johnstone, & Barry, 2007).  

 In Achtziger et al.’s (2014) study, committing a representativeness error was associated 

with less sensitivity to conflict detection indexed by a smaller N2, whereas avoiding the 

representativeness error was associated with greater sensitivity of detecting conflict, indexed by 

a larger N2 deflection. Achtziger and colleagues (2014) noted that the results likely do not reflect 

an explicit detection of conflict between a heuristic and Bayes’ theorem because it is unlikely 

participants were able to make the mental calculations using Bayes’ theorem within the ~300 ms 

time interval of the N2. Rather, the authors speculate that the enlarged N2 amplitude may reflect 

a distinction between relying on a representativeness heuristic and engaging inhibitory processes 

when faced with conflict (Achtziger et al., 2014). In another study using a belief updating task, 

results showed that N2 amplitude increased when prior information was ambiguous (Seer et al., 

2016). These results support the notion that the N2 is a marker of different types of conflict such 

as when information is incompatible or when information is ambiguous.   

 In the context of belief updating, the role of the P300 component has also been 

investigated. The P300 encompasses two subcomponents, the P3a and P3b (O’Connell et al., 

2012; Polich, 2007). The P3a is observed around 250 ms following stimulus onset and has a 

fronto-central distribution, whereas the P3b is evoked around 300-600 ms following stimulus 
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onset and has a more parietal distribution (Fjell, & Walhovd, 2001). The P3a component has 

been associated with involuntary attention and the processing of novelty, whereas the P3b has 

been linked to the need for more attentional resources after a conflict has been detected on 

conflict trials (Larsen, Clayson, Primosch, Leyton, & Steffensen, 2015; Ostwald et al., 2012; 

Polich, 2007).  

 Within the context of belief updating, the P3b component has commonly been associated 

with the unexpectedness of new information (Kolossa, Kopp, & Fingscheidt; 2015; Mars et al., 

2008; Seer et al., 2016), as well as stimulus evaluation in order to select appropriate responses 

(Huster, Enriquez-Geppert, Lavallee, Falkenstein, & Herrmann, 2013; Polich, 2007). Relative to 

the N2, the functional meaning of the P3b during conflict trials has more consistently been 

related to inhibition and goal-directed attention (Enriquez-Geppert, Konrad, Pantev, & Huster, 

2010; Fallgatter & Strik, 1999; Huster et al., 2013; Smith, Johnstone, & Barry, 2008). Achtziger 

et al. (2014) observed a significant P300 deflection following the N2. Specifically, in situations 

in which the representativeness heuristic conflicted with Bayes’ theorem, a large N2 amplitude 

was associated with a small P300 amplitude. Conversely, in situations in which the conservatism 

heuristic conflicted with Bayes’ theorem, a small N2 amplitude was associated with a large P300 

amplitude. These findings may suggest that a conflict between the representativeness heuristic 

and Bayes’ theorem is detected at any earlier time point, compared with inhibitory processes 

engaged at a slightly later time point in situations in which the conservatism heuristic conflicts 

with Bayes’ theorem. 

 Additionally, Kolossa et al. (2015) using a belief updating task, and Bennett, Murawski, 

and Bode (2015) using a perceptual-learning task, showed that the enhancement of the P3a was 

associated with Bayesian updating, referring to changes in probability distributions given new 
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observations (i.e., the belief update size calculated as the difference between prior and posterior 

beliefs). Last, higher prior probabilities have been related to larger P3a amplitudes compared 

with lower prior probabilities, and more ambiguous likelihoods have been related to larger P3b 

amplitudes (Kopp et al., 2016).  

 In comparison to the results of the existing fMRI research, results from the ERP research 

on belief updating are more consistent. Based on the research reviewed, belief updating tasks are 

commonly used, with results showing that the P3a associates with belief updating and the P3b 

associates with inhibitory control for further information processing. More research is required to 

interpret the role of the LRP and N2 during belief updating.  

 The fMRI and ERP literature converge by both reporting neural responses that associate 

with conflict monitoring (e.g., N2 and ACC; Botvinick et al., 2011; Braver et al., 2001) and 

response inhibition (P3b, frontoparietal regions; Poudel et al., 2017; Smith et al., 2008). 

Importantly, the fMRI and ERP research summarized above has been exclusively conducted 

within the younger adult population. It is unknown whether older adults would show similar ERP 

modulations or whether there are important age-related differences in the neural correlates that 

underlie performance during belief updating. 

 Age differences in ERPs. Previous research is mixed regarding age differences in LRP 

amplitude, with some studies showing smaller LRP amplitudes in older compared with younger 

adults (Sterr & Dean, 2008), and others showing larger LRP amplitudes with age (Roggeveen, 

Prime, & Ward, 2007). Importantly however, most of these studies employed RT tasks such as 

visual motion processing or modified versions of the Go/No-Go task that require an immediate 

response following stimulus presentation (Roggeveen, Prime, & Ward, 2007; Vallesi & Stuss, 

2010). To my knowledge, no study has investigated the LRP in older adults during a belief 
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updating task. In light of this, one of the goals of Experiment 2 was to elucidate whether there 

are age differences in LRP amplitude following the onset of prior information, and to examine 

whether LRP amplitudes correlate with conservatism errors.  

 Within the conflict monitoring literature, studies examining age-related differences in 

ERP components are limited to paradigms that engage conflict using perceptual stimuli such as 

the Go/No-Go task (e.g., Go: X’s; No-Go: O’s; Vallesi, Stuss, McIntosh, & Picton, 2009), the 

Stroop task (congruent: the word BLUE coloured in blue; incongruent: the word BLUE coloured 

in purple; MacLeod, 1991), and the Flanker task (congruent: middle arrow pointing in the same 

direction as peripheral arrows; incongruent: middle arrow pointing in the opposite direction as 

peripheral arrows; Eriksen & Eriksen, 1974). Typically, these paradigms do not evoke age-

related differences in accuracy, however older adults tend to respond slower than younger adults. 

 Concerning age differences in the N2 component, older adults show a smaller amplitude 

than younger adults (Bokura, Yamaguchi, Matsubara, & Kobayashi, 2002; Hämmerer, Müller, & 

Lindenberger, 2010; Hsieh, Wu, & Tang, 2016; Korsch, Frühholz, & Herrmann, 2016; Lucci, 

Berchicci, Spinelli, Taddei, & Di Russo, 2013). Lucci et al. (2013) employed a Go/No-Go 

paradigm and observed no age differences in accuracy but showed that amongst older adults the 

frontal No-Go N2 was nearly undetectable compared with younger adults. However, within the 

same time window, scalp topographies showed significant activity in posterior and prefrontal 

regions, suggesting that frontal involvement during response inhibition becomes deficient with 

age and other brain regions are required to compensate for this degradation in order to reach the 

accuracy levels of younger adults. In light of this, another goal of Experiment 2 was to examine 

whether there are age differences in the N2 amplitude following the onset of new information in 

http://frontiersin.org/people/u/303899
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the belief updating task, and whether N2 amplitude correlates with avoiding the 

representativeness error.  

 In addition, most studies report smaller P3b amplitudes on conflict trials in older 

compared with younger adults (Bokura et al., 2002; Falkenstein, Hoorman, & Hohnsbein, 2002; 

Korsch et al., 2016; Lucci et al., 2013; Schmeidt-Fehr, & Basar-Eroglu, 2011), however some 

studies have reported larger P3b amplitudes in older than younger adults (Hämmerer et al., 2010; 

Vallesi, 2011), and other studies report no age-related changes in P3b amplitude (Enriquez-

Geppert et al., 2010; Fjell, & Walhovd, 2001). Based on the studies reviewed, it is unclear 

whether the P3b is affected by age. Given that the P3b relates to response inhibition and 

attentional control (Smith et al., 2008), a component of executive control that declines with age 

(Hasher & Zacks, 1988), it was of interest to examine whether there are age differences in the 

amplitude of the P3b component following the onset of new information in conflict situations, 

and whether P3b amplitude correlates with decision accuracy. 

 In line with research showing the PASA effect (Lucci et al., 2013; Vallesi, McIntosh, & 

Stuss, 2011), it was also of interest to examine prefrontal electrode sites in the same time 

window during which the N2-P3 was evaluated to examine whether older adults recruit the PFC 

more than younger adults when updating beliefs. 

 In contrast to Achtziger et al., (2014) who showed that decision accuracy increased over 

time without feedback in younger adults, Experiment 1 of this dissertation showed no increase in 

decision accuracy over time without feedback in younger and older adults. Although these two 

studies report conflicting results, at present no study has examined whether belief updating is 

supported by feedback. It was of interest in the current experiment to investigate whether 
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accuracy would increase in the presence of feedback, and whether age-related differences would 

emerge under these circumstances.  

 Reinforcement learning theory posits that actions followed by positive outcomes are 

more likely to be repeated in the future, whereas actions followed by negative outcomes are less 

likely to reoccur (Sutton, & Barto, 1998). Dopamine plays a critical role in reinforcement 

learning. Dopaminergic neurons from the ventral tegmental area signal how much an outcome 

deviates from a predicted outcome during learning (Schultz et al., 1997). Learning occurs when 

an outcome is better than predicted (positive prediction error), reflected in a phasic increase in 

dopamine neuron activity, whereas an outcome that is worse than expected (negative prediction 

error) leads to the extinction of the learned behaviour, reflected in a phasic decrease of activity in 

these neurons (Eppinger et al., 2008). Mesencephalic dopamine neurons are important for the 

function of the ACC, a brain region involved in conflict monitoring (Botvinick et al., 2001), 

error (Scheffers, & Coles, 2000), and reward processing (Matsumoto, Suzuki, & Tanaka, 2003), 

that contain neurons that respond to expected and unexpected rewards (i.e., deviations from 

predicted outcomes; Ito, Stuphorn, Brown, & Schall, 2003). 

Aging is associated with a marked decline in mesencephalic dopamine neurons, which 

may contribute to the impairments in cognitive control observed in old age, such as conflict 

monitoring and error processing (Braver & Barch, 2002; Eppinger et al., 2008; Paus, 2001). 

Feedback-related negativity (FRN) is an ERP component maximal at central and fronto-central 

electrodes produced by the dorsal ACC (Hauser et al., 2014; Holroyd, & Krigolson, 2007) and is 

observed between 200 and 300 ms after the onset of feedback (Miltner, Braun, & Coles, 1997). 

The FRN typically shows a decrease with learning, due to the decreased value of feedback 

(Holroyd & Coles, 2002). An outcome worse than expected (i.e., an error) evokes a phasic 
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decrease in the mesencephalic dopaminergic system, and the FRN is generated when this 

decrease in dopamine disinhibits neurons in the ACC (Eppinger et al., 2008). Nieuwenhuis and 

colleagues (2002) suggest that older adults show deficits in processing errors and reinforcement 

learning due to attenuated signaling in the mesencephalic dopamine system (de Boer et al., 2017; 

Mathewson et al., 2005; West, 2004). Supporting this, Chowdhury and colleagues (2013) 

showed that dopaminergic drugs are able to restore prediction-error signals in older adults, 

boosting performance to levels comparable to younger adults. However, others attribute deficits 

in learning from feedback to an age-related asymmetry in the processing of feedback valence 

such that positive feedback is over-valued and negative feedback is under-valued11 (i.e., evidence 

of a positivity bias in older adults; Eppinger et al., 2008; Mather & Carstensen, 2005).  

 In light of the age differences observed in reinforcement learning, a goal of Experiment 2 

was to investigate the potential age differences in decision accuracy during belief updating with 

feedback. I also sought to investigate age differences in feedback-related neural activity for 

positive and negative feedback to determine whether older adults are deficient at processing 

feedback in general regardless of valence (Mathewson et al., 2005), or whether older adults show 

a deficiency in processing negative feedback specifically (Mather & Carstensen, 2005). 

Cognitive Reflection Test 

 In addition to the assessments described in the General Methods section (pages 56-61), 

the extended version of the Cognitive Reflection Test (Toplak et al., 2014a) was also used in 

Experiment 2. The extended Cognitive Reflection Test consists of a set of seven math problems 

that lure misleading but intuitive answers (Frederick, 2005; Toplak et al., 2014a). As the name 

 
11 However, some studies show no age differences in the FRN between positive and negative 

feedback (see Di Rosa et al., 2017; Pietschmann et al., 2011).   
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suggests, correct answers are thought to require reflective thought in order to overcome an initial 

intuitive response. The Cognitive Reflection Test correlates with a wide variety of tasks within 

the heuristics and biases literature, as these tasks also require overcoming of an intuitive 

response (Baron et al., 2015), and has been shown to be a stronger predictor of rational thinking 

relative to measures of intelligence and executive functioning (Toplak et al., 2011). The 

inclusion of the Cognitive Reflection Test in Experiment 2 was motivated by the literature 

showing that cognitive reflection underlies susceptibility to heuristics and decision errors (Baron 

et al., 2015). Specifically, the Cognitive Reflection Test served to index individual differences in 

cognitive reflection, with scores expected to predict performance on the belief updating task. 

 Altogether, the literature suggests that the neural processes that underlie belief updating 

may change with age, however this has never been empirically examined. In addition, there is no 

research on whether age differences emerge during belief updating with feedback or whether 

individual differences in numeracy, thinking dispositions or cognitive reflection underlie 

performance on a belief updating task. To fill this gap in the literature, the purpose of 

Experiment 2 was to investigate whether there are age differences in belief updating with 

feedback, and whether decision accuracy or the neural correlates that underlie belief updating are 

modulated by age or individual differences. 

Hypotheses  

 Behavioural data. Age differences in accuracy were expected in light of research 

showing that younger adults are able to learn from feedback more successfully than older adults 

(Eppinger et al., 2008; Fernandes et al., 2018; Nieuwenhuis et al., 2002). I predicted an Age by 

Block by Decision Situation interaction such that younger adults would show an increase in 

accuracy across blocks, and older adults would show no increase in accuracy across blocks. 
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Further, I hypothesized that the representativeness error would be committed more than the 

conservatism error, regardless of age or block. Similar to Experiment 1, RTs were expected to 

decrease across blocks as the task becomes more familiar, but with older adults producing longer 

RTs compared with younger adults overall.  

 Additionally, higher scores on the Cognitive Reflection Test - Reflection subscale, 

Lipkus, BNT, Need for Cognition, DSST and lower scores on the Cognitive Reflection Test -

Intuition subscale and Faith in Intuition assessments were hypothesized to predict higher 

decision accuracy. Conversely, lower scores on the Cognitive Reflection Test - Reflection 

subscale, Lipkus, BNT, Need for Cognition, DSST and higher scores on the Cognitive Reflection 

Test - Intuition subscale, and Faith in Intuition assessments were hypothesized to predict lower 

decision accuracy. Although the Lipkus, Need for Cognition and Faith in Intuition assessments 

were nonsignificant predictors of decision accuracy in Experiment 1, they were hypothesized to 

predict decision accuracy in Experiment 2 given that the belief updating task included feedback, 

affording the opportunity to learn from past decision errors – with learning potentially related to 

individual differences in these assessments.   

 ERP data. The ERP technique provided the opportunity to investigate neural activity 

evoked by the prior and sample before a behavioural response, and neural activity evoked by 

feedback after a behavioural response. Analysis of ERPs elicited by prior information provided 

insight into what extent participants were biased toward an option before new information was 

presented; ERPs elicited by new information elucidated the extent to which conflict detection or 

inhibitory control mechanisms were engaged before a decision was made; and ERPs evoked 

following feedback provided insight into the extent to which participants were sensitive to 
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positive and negative feedback. In light of this, the ERP effects described below were organized 

according to whether they were time-locked to the prior, new information, or feedback.  

 ERPs time-locked to prior information. Despite mixed findings concerning age 

differences in the LRP, I hypothesized that older adults would show larger LRP amplitudes 

compared with younger adults in the CconfB situation given the research that shows an increase 

in automatic processing with age (Peters et al., 2007). I also predicted that LRP amplitude would 

attenuate over time across both age groups. In line with Achtziger et al. (2014), greater LRP 

amplitudes were also predicted to associate with committing the conservatism error. 

 ERPs time-locked to sample information. Given that older adults show smaller N2 

components than younger adults (Hsieh et al., 2016; Lucci et al., 2013) and research reports 

mixed results concerning how age affects the P3b (Fjell, & Walhovd, 2001; Korsch et al., 2016; 

Vallesi, 2011), it was hypothesized that older adults would evoke smaller N2 and P3b amplitudes 

compared with younger adults in conflict situations. In line with results reported by Achtziger et 

al. (2014), decision accuracy in conflict situations was predicted to correlate with the amplitude 

of the N2 and P3b, with avoidance of the representativeness and conservatism errors correlating 

with larger N2 and P3b amplitudes and committing the representativeness and conservatism 

errors correlating with smaller N2 and P3b amplitudes. Further, in light of literature showing the 

PASA effect (Davis et al., 2008; Lucci et al. 2013), it was predicted that older adults would show 

more prefrontal positivity (pP) in the same time window as the N2-P3 compared with younger 

adults, which would provide evidence of an age-related compensatory mechanism used to make 

decisions in the belief updating task. It was also hypothesized that the N2, P3b, and pP 

components would attenuate over time due to familiarization of the task.  
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 ERPs time-locked to feedback. In line with reinforcement learning theory, it was 

hypothesized that feedback-related activity in response to positive and negative feedback would 

decrease from the first to the second block of the task suggesting that participants learned to 

make accurate decisions and relied less on feedback over time (Holroyd & Coles, 2002). It was 

also hypothesized that younger adults would elicit a more pronounced FRN than older adults due 

to a deficit in error processing with age (Mathewson, et al., 2005; Nieuwenhuis et al., 2002; see 

Appendix XV for the MATLab script used for signal processing and ICA). 

 See Table 9 for a summary of the hypotheses for Experiment 2. 
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Table 9. Hypotheses for Experiment 2 

Note. RconfB = Representativeness heuristic conflicts with Bayes’ theorem; CconfB = 

Conservatism heuristic conflicts with Bayes’ theorem; RT = reaction time; CRT-R = Cognitive 

Reflection Test – Reflection subscale; CRT-I = Cognitive Reflection Test – Intuition subscale; 

BNT = Berlin Numeracy Test; Lipkus = Lipkus Numeracy Task; Digit Symbol Substitution Test; 

Behavioural Hypotheses 

 

  1 Younger adults were expected to show higher decision accuracy 

than older adults across decision situations. 

  2 Younger, but not older adults, were expected to show an increase 

in decision accuracy across blocks. 

  3 The RconfB situation was expected to produce more decision 

errors than the CconfB situation. 

  4 Older adults were expected to show longer RTs than younger 

adults overall. 

  5 RTs were expected to decrease across blocks regardless of 

decision situation. 

 Assessments 6 Higher (lower) scores on the CRT-R, Lipkus, BNT, NFC, DSST 

and lower (higher) scores on the CRT-I, and FI scales were 

expected to associate with higher (lower) decision accuracy. 

ERP and Behavioural Hypotheses 

 

 LRP 7 Older adults were expected to associate with larger LRP than 

younger adults in the CconfB situation, with LRP amplitude 

attenuating across blocks regardless of age, and correlating with 

decision accuracy in the CconfB situation. 

 N2, P3b 8 Older adults were expected to associate with smaller N2 and P3b 

amplitudes than younger adults in conflict situations, with 

amplitudes of both components attenuating across blocks, 

regardless of age. Also, N2 and P3b amplitude were expected to 

correlate with decision accuracy in conflict situations. 

 pP 9 Older adults were expected to associate with greater pP compared 

with younger adults, with pP expected to decrease across blocks 

for older but not younger adults. 

 FRN 10 Younger adults were expected to associate with a more 

pronounced FRN than older adults, with FRN amplitude expected 

to attenuate over time regardless of age group. 

 Assessments 11 Higher (lower) scores on the CRT-R, Lipkus, BNT, NFC, DSST 

and lower (higher) scores on the CRT-I, and FI scales were 

expected to associate with larger (smaller) N2, P3b, and FRN 

amplitudes, and smaller (larger) LRP amplitudes. 
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NFC = Need for Cognition; FI = Faith in Intuition; LRP = lateralized readiness potential; pP = 

prefrontal positivity; FRN = feedback-related negativity.  

Method 

Participants 

 The final sample included 25 younger adults (ages 18-34) and 25 older adults (ages 65-

87). All participants completed the battery of assessments described in the General Methods 

section (pages 56-61), with the addition of the extended Cognitive Reflection Test (Toplak et al., 

2014a). In line with previous literature, as well as Experiment 1, several age differences were 

observed (see Table 10). Older adults were more educated, had higher vocabulary scores, and 

lower self-reported symptoms of anxiety and negative affect, as well as slower processing speed 

as indexed by the DSST, compared with younger adults. 
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Table 10. Characteristics of the Final Sample in Experiment 2 

Note. Between-group comparisons were made using independent-sample t tests, aside from 

gender and handedness which were examined using Pearson’s chi square. Standard deviations 

are in parentheses. aSubscales of the 21-item Depression Anxiety and Stress Scale; bSubscales of 

the Positive and Negative Affect Schedule; cScores reflect number of correct solutions; MMSE = 

Mini-Mental State Examination; DSST = Digit Symbol Substitution Test; Mill Hill = Mill Hill 

Vocabulary Test; BNT = Berlin Numeracy Test; Lipkus Numeracy = Lipkus Numeracy Task; 

CRT-R = Cognitive Reflection Test – Reflection; CRT-I = Cognitive Reflection Test – Intuition; 

d = Cohen’s d for standardized effect size estimates of the mean difference between groups. 

  
Younger Adults 

(n = 25) 
 

Older Adults 

(n = 25) 
  

  M (SD)  M (SD) p d 

Demographics       

 Age in Years 22.92 (4.10)  74.28 (5.92) <.001 -10.11 

 Age Range 18-34  65-87 -- -- 

 
Male/Female 

Ratio 
13/12  12/13 .50 -- 

 
Education in 

Years 
14.96 (1.99)  18.00 (2.92) <.001 -1.22 

 
Right/Left 

Handed 
20/5  21/4 .50 -- 

Emotion       

Assessments Depressiona 5.04 (5.42)  4.40 (5.13) .67 0.12 

 Anxietya 4.88 (6.30)  2.08 (3.34) .06 0.56 

 Stressa 7.20 (7.30)  6.88 (4.69) .85 0.05 

 Positive Affectb 30.16 (9.06)  33.20 (7.23) .19 0.37 

 Negative Affectb 12.20 (2.71)  10.88 (1.72) .04 0.58 

Cognitive       

Assessments MMSEc 29.40 (.816)  -- -- -- 

 DSSTc 89.64 (16.13)  69.16 (11.56) <.001 1.46 

 Mill Hillc 17.6 (2.96)  24.72 (3.27) <.001 -2.28 

 BNTc 2.16 (1.46)  1.88 (1.33) .48 0.20 

 
Lipkus 

Numeracyc 9.56 (2.12)  9.72 (1.99) .78 0.08 

 Faith in Intuition 6.09 (1.52)  5.75 (1.93) .49 0.20 

 
Need for 

Cognition 
53.88 (5.95)  53.56 (5.03) .84 0.06 

 CRT-R 2.44 (1.94)  1.80 (1.82) .24 0.34 

 CRT-I 3.28 (1.72)  3.68 (1.75) .42 0.23 
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 A total of four participants were excluded and later replaced. Two younger adults were 

excluded because they scored above the cut-off on the depression and anxiety subscales of the 

DASS-21 (see General Methods section pages 47-48 for a description of the inclusion and 

exclusion criteria). One older adult was excluded due to technical issues with the stimulus 

delivery program, and another older adult was excluded due to issues with EEG equipment.  

EEG Recording and Processing  

 The EEG was recorded from 64 Ag/AgCI electrodes arranged in accordance with the 

International 10/20 configuration (see Figure 6), with data referenced to the posterior Common 

Mode Source (CMS) and Driven Right Leg (DRL) sites.  

 

Figure 6. Schematic of the 64-channel International 10/20 system. 

 Horizontal electrooculograms (EOGs) were recorded by electrodes attached to the outer 

canthi of each eye, and vertical EOG was recorded via electrodes placed at the inferior orbits to 

measure horizontal and vertical eye movements respectively, as well as eye blinks. The EEG and 

EOG were digitized continuously at a 512 Hz sampling rate using a Biosemi ActiveTwo AD-

Box (Bio-Semi; Wilmingston, NC). Data were downsampled to 256 Hz and bandpass filtered 
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using a 0.1 Hz high-pass cut-off (12db/octave) to reduce low-frequency noise such as drifting, 

and a 30 Hz low-pass cut-off (24db/octave) to reduce high-frequency noise such as muscle 

tension. Following this step, data were then re-referenced to the average of the left and right 

mastoids, -100 ms baseline corrected, and segmented into 1000 ms epochs that were separately 

time-locked to the onset of the prior, sample, and feedback stimuli. Signal processing was 

performed using the EEGLAB/ERPLAB toolbox (Delorme & Makeig, 2004) via MATLAB 

software.  

 To correct for data contamination, artifacts were removed from the segmented epochs 

using independent components analysis (ICA). The purpose of ICA is to separate multivariate 

signals into additive, independent subcomponents (Luck, 2014). Specifically, the raw EEG and 

EOG data are fed to a neural network in which a learning algorithm generates a matrix of 

independent components that are equal to the total number of channels of EEG/EOG data and 

correspond to the time course of the original data, such that for each time point in the EEG/EOG 

data, each component has a magnitude that indicates the strength of the component at that time 

point. These components may reflect true neural components or reflect contaminated data (i.e., 

artifacts) such as eye blinks, eye movements, or muscle activity. Artifacts are removed by setting 

its contribution to zero and recalculating the voltage at each electrode site. Critically, ICA is a 

good method for rejecting artifacts due to the independence of the decomposed components. 

That is, rejected components are more likely to reflect artifacts rather than neural activity (see 

Luck 2014, online supplementary material for a review of ICA).  

 In light of the above, the artifact rejection procedure in the current experiment involved 

identifying and rejecting components that showed horizontal (e.g., saccades) or vertical eye 

movements (e.g., blinks) via visual inspection of the scalp topographies for each participant. 



120 

 

Once the identified artifacts were removed, the matrix of independent components was 

multiplied by the original matrix, which recovers the original artifact-corrected EEG/EOG data 

(Luck, 2014). The artifact-corrected data were then averaged across participants and mean 

amplitudes (μV) were extracted for analysis. 

Materials  

 Stimuli. The stimuli and number of trials for the combinations of prior and sample 

information described in the General Methods section (pages 51-56) were also employed in the 

current experiment, with the addition of a feedback window that indicated whether the 

participant made a “correct” or “incorrect” decision on each trial. Feedback was presented in the 

center of the screen (i.e., within a space of 220 × 220 pixels) in 24-point Arial font against a grey 

(RGB value: 100-100-100) background, with the word “correct” in green font (RGB value: 0, 

255, 0) and the word “incorrect” in red font (RGB value: 255, 0, 0). 

Procedure 

 Belief updating task. The experimenter proceeded to describe the belief updating task 

using the same method as outlined in the General Methods section (pages 48-51), with the added 

explanation that feedback would be presented after every decision made. Subsequent to the EEG 

capping procedure, participants were seated in front of a PC computer inside a quiet room. The 

single trial sequence presenting urn distributions, prior, and sample information in the belief 

updating task was identical to that of Experiment 1, with the exception of a feedback window12 

that replaced the blank screen after a decision was made in Experiment 1. Including task 

instructions, ERP capping, the practice and experimental task, the belief updating task took 

 
12 Practice trials did not include feedback in order to avoid learning prior to beginning the 

experiment.  
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approximately 1.5 hours to complete.  

 Stimuli were presented in the sequence with the same presentation timing as outlined in 

the General Methods section (pages 51-53). Different from Experiment 1 however, following a 

response, a feedback window was presented for 1000 ms indicating whether the participant made 

a “correct” or incorrect” decision. Figure 7 provides a sample of a single-trial sequence for 

Experiment 2. 

 

Figure 7. Sample trial of the representativeness heuristic conflicting with Bayes’ theorem in 

Experiment 2 

 Cognitive and affective assessments. After the task, the EEG cap was removed and the 

battery of assessments outlined in the General Methods section (pages 56-61) was administered, 

with the addition of the extended Cognitive Reflection Test.  
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Data Analysis 

 Behavioural data. Analysis of behavioural data used the same independent and 

dependent variables as Experiment 1 and followed the same analysis procedures outlined in the 

General Methods section (pages 61-64), with the addition of the data from the extended 

Cognitive Reflection Test. Although the standard way to score the Cognitive Reflection Test is 

to add correct responses, responses can also be organized into three categories – correct, 

“intuitive” incorrect and “other” incorrect. The “intuitive” incorrect category, which tends to 

make up most incorrect answers (see Campitelli & Gerrans, 2014; Frederick, 2005), represent 

errors made as if using a heuristic to make decisions. The “other” incorrect category represents 

errors that differ from the cued intuitive answer, such as a mathematical error or no answer. 

Therefore, in the current experiment, correct answers are referred to as Cognitive Reflection Test 

- Reflection, as this subscale describes the ability to detect and override an intuitive but incorrect 

response. In line with recent research (Brosnan, Hollinworth, Antoniadou, & Lewton, 2014; 

Piazza & Sousa, 2014; Pennycook et al., 2016; Shenhav, Rand, & Greene, 2012), “intuitive” 

incorrect answers are referred to as the Cognitive Reflection Test - Intuition subscale 

representing the inverse of the typical use of the Cognitive Reflection Test by using it to index 

the failure to detect and override an intuitive, incorrect response. 

 ERP data. 

 LRP. In line with prior research, to make inferences about conservatism the LRP was 

analyzed (Achtziger, et al., 2014; Eimer, 1998). Specifically, disproportionate priors (e.g., Urn 

A: 25%; Urn B: 75%) were compared independent of sample information. Mirroring Achtziger 

et al. (2014), stimulus-locked data were segmented into epochs 3100 ms before to 200 ms after 

presentation of the sample. A 100 ms time interval before prior information was presented was 
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used for baseline correction. Epochs for the three prior probabilities (25, 50, 75) were averaged 

separately producing three average waveforms per participant. In line with prior research, the 

LRPs were determined in two steps following a double-subtraction method (Achtziger et al., 

2014; Eimer, 1998). In a first step, difference waveforms for electrode sites C3-C4 were 

computed for each situation with disproportionate priors (i.e., Urn A: 25%; Urn B: 75%, and vice 

versa). In a second step, LRPs were computed by subtracting the waveforms for the prior: Urn A: 

25%; Urn B: 75%, from the waveform for the prior: Urn A: 75%; Urn B: 25%. The resulting 

LRP provides an index of conservatism such that positive values indicate stronger motor 

preparedness for the option of the urn with the higher prior probability (De Jong et al., 1990). 

Younger and older adult waveforms were averaged, respectively, to produce grand average 

waveforms for each age group. To quantify the LRP for each participant, the mean amplitude 

during the 100 ms time interval preceding presentation of the sample was calculated. This time 

window was chosen because it reflects participants’ left-to-right bias for an option immediately 

preceding sample presentation and was used in previous literature employing the same paradigm 

(Achtziger et al., 2014).    

 N2, pP, and P3b. Analysis of the N2 and pP was modeled after previous literature 

(Achtziger et al., 2014; Lucci et al., 2013), as well as guided by visual inspection of the data. 

Stimulus-locked data were segmented into epochs from 100 ms before to 1000 ms after sample 

onset, with 100 ms used for baseline correction. In line with previous studies (Achtziger et al., 

2014; Bartholow et al., 2005), only trials with correct responses were analyzed to observe 

conflict monitoring. Epochs locked to the RconfB situation and CconfB situation were averaged 

separately, producing two average waveforms per participant. The difference waveform was 

computed by subtracting RconfB situation waveforms from CconfB situation waveforms. Grand 
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averages were derived by averaging these ERPs across younger and older adults.  

 To quantify the N2 in the averaged ERP waveforms for each participant within each age 

group, the mean amplitude in the 50 ms interval centered around the peak latency between 220-

270 ms after sample onset was calculated. This time window was chosen based on visual 

inspection of the data, previous research that has found the N2 to be maximal within this interval 

(i.e., typically between 200-400 ms; Bartholow & Dickter, 2008; Nieuwenhuis et al., 2002), and 

Achtziger et al. (2014) used a comparable time window (i.e., 235-285 ms) to capture the N2 in a 

similar paradigm. Similar to previous research, the N2 mean amplitude was evaluated by 

averaging frontocentral channels (i.e., FCz and Fz), where it has been found to be maximal in 

both younger and older adults (Achtziger et al., 2014; Bartholow, et al., 2005; Bartholow, 

Riordan, Saults, & Lust, 2009; Lucci et al., 2003; Niewenhuis et al., 2003).  

 Centroparietal sites (i.e., Cz, Pz) were averaged in order to quantify the P3b in the 

averaged ERP waveforms for each participant within each age group and block for trials with 

correct responses only. Following previous aging literature, peak amplitudes were determined 

between 300-600 ms (Falkenstein et al., 1999; Hsieh et al., 2016) following sample presentation. 

Mean amplitudes were then obtained using 100 ms windows centered around the peak latencies 

(405-505 ms for younger adults; 425-525 ms for older adults). Mean amplitudes for each age 

group and block were then analyzed.  

 Scalp topographies also showed prefrontal positivity (pP) amongst older adults in the 

same time windows in which the N2 (200-400 ms) and P3b (300-600 ms) are typically observed. 

Therefore, to examine pP in addition to the N2 and P3b, mean amplitudes from averaged anterior 

recordings (i.e., AF3, AFz, AF4) were also analyzed within a 50 ms epoch centered around the 

peak latency (i.e., 375-425 ms) following the onset of the sample in order to quantify pP in the 
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averaged ERP waveforms for each participant within each age group and block for trials with 

correct responses only. The epochs and electrode sites selected for analysis of pP in younger and 

older adults were based on prior research (Lucci et al., 2013), as well as visual inspection of the 

data.   

 FRN. Analysis of the FRN was modeled after previous literature (Eppinger et al., 2008; 

Forder & Dyson, 2016), as well as visual inspection of the data. Epochs were defined relative to 

the onset of the feedback, were baseline corrected according to a 100 ms pre-stimulus interval, 

with neural activity examined 1000 ms post-feedback. The FRN was measured as the mean 

amplitude within a 50 ms window centering the peak latency of the FRN at the electrode Cz for 

younger (between 240-290 ms) and older adults (between 325-375 ms) for correct and incorrect 

responses separately.  

 Of note, peak latencies for each ERP component (except the LRP) were analyzed using 

mixed ANOVAs. However, the latency results did not contribute to the main results and 

therefore were placed in the appendix (see Appendix XVI for latency results).  

 Brain-behaviour correlations. If between– or within-subject differences were observed 

in ERP activity (e.g., age or block differences), correlational analyses were used to investigate 

the association between ERP activity and decision accuracy in the belief updating task, and 

between ERP activity and individual differences measured by the assessments included in the 

experiment. 

Results 

Decision Accuracy for All Decision Situations 

 Decision accuracy for each of the 15 prior and sample combinations are described in 

Table 11 for younger and older adults. As described in the General Methods section (pages 53-

55), the six bolded situations are of interest in the current dissertation. Independent sample t tests 
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were conducted across counterbalancing versions on decision accuracy for each decision 

situation of interest. No differences in counterbalancing version were observed in the decision 

situations or conditions (ps > .05). 

Table 11. Means and Standard Deviations for Accuracy in Experiment 2 

Note. Values represent proportion (%) of correct decisions; Prior = prior probability for the left 

urn; Sample = number of majority colour balls of sample; Younger adults’ accuracy is on the top 

line, older adults’ accuracy is on the bottom line. Total number of trials are indicated on the third 

row. Standard deviations are in parentheses. Bold indicates decision situations of interest. 

 

 Combining like-situations. To examine whether there were differences in decision 

accuracy across like-decision situations, paired-samples t tests were conducted across age group. 

Results showed no difference in decision accuracy within RalignB situations t (50) = -1.27, p = 

.21, d = -0.18. However, differences in decision accuracy were observed in the RconfB 

situations, t (50) = -4.84, p < .001, d = -0.68, and CconfB situations, t (50) = -2.34, p = .02, d = -

0.33. Following Achtziger and colleagues (2014), like-situations were combined regardless of 

these differences as it was important to maximize the total number of trials for each like-situation 

to increase the signal-to-noise ratio for ERP analysis.  

Decision Accuracy 

 Concerning whether participants’ decision accuracy increased over time, trials were first 

segmented into two blocks (i.e., 207 trials in the first and second block). Then, a 2 (age: young, 

Prior Sample 

 0 1 2 3 4 

75 98.66 (4.62) 

94.00 (15.13) 

8 

92.47 (10.15) 

87.20 (10.97) 

60 

84.67 (13.61) 

74.27 (19.37) 

60 

99.33 (3.34) 

94.66 (9.29) 

6 

99.33 (3.34) 

96.66 (6.82) 

6 

50 99.33 (3.34) 

98.00 (5.54) 

8 

97.33 (7.88) 

98.00 (7.33) 

8 

96.20 (7.49) 

88.46 (16.15) 

60 

97.26 (4.41) 

92.33 (13.86) 

60 

98.00 (5.54) 

95.33 (10.23) 

8 

25 96.00 (8.72) 

96.66 (6.82) 

6 

98.00 (7.33) 

95.33 (14.85) 

8 

96.00 (11.04) 

95.34 (13.19) 

6 

74.13 (21.92) 

63.81 (19.44) 

60 

87.66 (11.43) 

80.73 (16.88) 

60 
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old) × 3 (decision situation: RconfB, CconfB, RalignB) × 2 (trial block: Block 1, Block 2) mixed 

ANOVA on decision accuracy was conducted and results showed a main effect of decision 

situation, F (1.68, 80.87) = 50.29, p < .001, ηp
2 = .51. Pairwise comparisons showed that the 

RconfB situation (M = .74, SD =.18) promoted less accurate decisions than the CconfB (M = .87, 

SD = .09), t (49) = -5.92, p < .001, d = -0.84, and RalignB situations (M = .94, SD = .09), t (49) =  

-8.99, p < .001, d = -1.28, and CconfB situations promoted less accurate decisions than RalignB 

situations, t (49) = -4.49, p < .001, d = -0.64. A main effect of trial block was also observed, F 

(1, 48) = 66.74, p < .001, ηp
2 = .58, with less accurate decisions made in the first block (M = .81, 

SD = .11) compared with the second block (M = .89, SD = .10). Additionally, a main effect of 

age was observed, F (1, 48) = 8.00, p = .01, ηp
2 = .14, with younger adults (M = .89, SD = .09) 

making more accurate decisions than older adults (M = .81, SD = .10).   

 Finally, a Decision Situation by Trial Block interaction was observed, F (1.70, 81.80) = 

21.22, p < .001, ηp
2 = .31. To probe the interaction, paired-samples t tests and repeated-measures 

ANOVAs with pairwise comparisons were conducted to examine potential block effects within 

each decision situation, as well as potential differences in accuracy for each decision situation 

within each block. Specifically, accuracy improved from the first (M = .67, SD = .19) to the 

second block (M = .81, SD = .19), t (49) = -8.41, p < .001, d = -1.2, in the RconfB situation. 

Similarly, within the CconfB situation, accuracy improved from the first (M = .84, SD = .12) to 

the second block (M = .90, SD = .09), t (49) = -4.04, p < .001, d = -0.57. However, accuracy did 

not improve from the first (M = .93, SD = .10) to the second block (M = .95, SD = .11), t (49) = -

1.82, p = .07, d = -0.26, in the RalignB situation. Within the first trial block, decision situation 

was significant, F (1.70, 83.48) = 75.14, p < .001, ηp
2 = .61. The RconfB situation resulted in less 

accurate decisions than the CconfB situation, t (49) = -7.29, p < .001, d = -1.03, and the RalignB 
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situation, t (49) = -11.03, p < .001, d = -1.56, and the CconfB situation resulted in less accurate 

decisions than the RalignB situation, t (49) = -5.16, p < .001, d = -0.73. Within the second trial 

block, decision situation was significant, F (1.66, 81.55) = 17.67, p < .001, ηp
2 = .27. The 

RconfB situation resulted in less accurate decisions than the CconfB situation, t (49) = -3.49, p = 

.003, d = -0.50, and the RalignB situation, t (49) = -5.16, p < .001, d = -0.67. The CconfB 

situation resulted in less accurate decisions than the RalignB situation, t (49) = -2.85, p = .02, d = 

-0.41. No Decision Situation by Age interaction, F (1.68, 80.83) = .75, p = .10, ηp
2 = .02, and no 

Block by Age interaction was observed, F (1, 48) = .58, p = .45, ηp
2 = .01. See Figure 8 for an 

illustration of these effects. 

 

 
 

Figure 8. Accuracy proportion for each decision situation across trial block in Experiment 2.  
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Decision RT   

 In addition to examining decision accuracy over time, RT across blocks was also 

examined. A 2 (age: young, old) × 3 (decision situation: RconfB, CconfB, RalignB) × 2 (trial 

block: Block 1, Block 2) mixed ANOVA on RT was conducted. Results showed a main effect of 

decision situation, F (1.58, 75.62) = 52.73, p < .001, ηp
2 = .52. Planned comparisons showed that 

RconfB situations (M = 2425.67, SD = 1067.70) produced longer RTs than the CconfB (M = 

2262.93, SD = 1101.50), t (49) = 3.18, p = .01, d = 0.45, and RalignB situations (M = 1639.77, 

SD = 612.58), t (49) = 8.84, p < .001, d = 1.25, with CconfB situations producing longer RTs 

than the RalignB situation, t (49) = 6.62, p < .001, d = 0.95. Additionally, a main effect of age 

was observed, F (1, 48) = 6.49, p = .01, ηp
2 = .12, such that younger adults (M = 1748.25, SD = 

842.00) produced faster RTs than older adults (M = 2346.79, SD = 818.66). A main effect of trial 

block was also observed, F (1, 48) = 8.34, p = .01, ηp
2 = .15, such that the first block (M = 

2133.51, SD = 968.82) produced longer RTs than the second block (M = 1961.53, SD = 826.38). 

 Finally, an Age by Decision Situation by Block three-way interaction was observed, F 

(1.65, 79.15) = 13.30, p < .001, ηp
2 = .22. In order to unpack this interaction, stratifying by age, 

paired-samples t tests and repeated-measures ANOVAs with pairwise comparisons were 

conducted to examine potential block effects within each decision situation on RT, as well as 

potential differences in RT for each decision situation within each block.  

 Within the younger adult group, RTs were slower in the first block (M = 2448.74, SD = 

1190.48) compared with the second block (M = 1930.08, SD = 1085.12) in the RconfB situation, 

t (24) = 4.28, p < .001, d = 0.86. There was no difference in RT between the first (M = 1486.56, 

SD = 995.68) and second block (M = 1720.99, SD = 860.35) in the CconfB situation, t (24) = -

1.99, p = .06, d = 0.28. In the RalignB situation, RTs were slower in the first (M = 1603.58, SD = 
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717.58) compared with the second block (M = 1272.56, SD = 513.38), t (24) = 4.83, p < .001, d 

= 0.96. Further, within the first block, decision situation was significant, F (2, 48) = 39.59, p < 

.001, ηp
2 = .62. The RconfB situation resulted in longer RTs compared with the CconfB situation, 

t (24) = 8.16, p < .001, d = 1.63, and the RalignB situation, t (24) = 6.64, p < .001, d = 1.33. 

However, the CconfB situation did not differ in RT compared with the RalignB situation, t (24) 

= -1.33, p = .66, d = -0.19. Similar to Block 1, decision situation was significant in Block 2, F (2, 

48) = 19.43, p < .001, ηp
2 = .45. Specifically, the RconfB situation did not differ from the CconfB 

situation, t (24) = 2.12, p = .23, d = 0.30, however the RconfB situation showed longer RTs than 

the RalignB situation, t (24) = 5.28, p < .001, d = 1.06. The CconfB situation also produced 

longer RTs than the RalignB situation, t (24) = 4.58, p < .001, d = 0.92.  

 Within the older adults, RT did not differ between the first (M = 2713.80, SD = 1137.06) 

and second block (M = 2610.07, SD = 912.19) of the RconfB situation, t (24) = 1.09, p = .16, d = 

0.15, the first (M = 2637.06, SD = 1239.83) or second block (M = 2463.85, SD = 908.98) of the 

CconfB situation, t (24) = 1.16, p =. 35, d = 0.16, nor the first (M = 1884.30, SD = 627.83) or 

second block (M = 1771.64, SD = 591.78) of the RalignB situation, t (24) = 1.51, p = .98, d = 

0.21. Within the first block, decision situation was significant, F (1.51, 36.14) = 19.37, p < .001, 

ηp
2 = .45. The RconfB and CconfB situation did not differ in RT, t (24) = 0.75, p = .65, d = 0.11, 

however the RconfB situation produced longer RTs than the RalignB situation, t (24) = 5.51, p < 

.001, d = 1.10, and the CconfB situation produced longer RTs than the RalignB situation, t (24) = 

4.21, p = .001, d = 0.84. Decision situation was also significant in Block 2, F (2, 48) = 28.92, p < 

.001, ηp
2 = .54. Specifically, no differences were observed in RT between the RconfB and 

CconfB situation, t (24) = 1.64, p = .22, d = 0.23. However, longer RTs were produced in the 

RconfB compared with the RalignB situation, t (24) = 6.15, p < .001, d = 1.23, and longer RTs 
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were produced in the CconfB compared with the RalignB situation, t (24) = 5.39, p < .001, d = 

1.08. See Figure 9 for an illustration of these effects.  

 

Figure 9. Reaction time for each decision situation across trial block in Experiment 2. 

 To summarize, the RconfB situation produced the lowest level of accuracy, the CconfB 

situation produced an intermediate level of accuracy, and the RalignB situation produced the 

highest level of accuracy, with younger adults making more accurate decisions than older adults 

overall, and with accuracy increasing across blocks, regardless of age or decision situation. 

Younger adults showed the longest RTs in the RconfB situation, intermediate RTs in the CconfB 

situation and the shortest RTs in the RalignB situations, with RT becoming faster from the first 

to the second block. In contrast, older adults did not show differences in RT across conflict 

situations or blocks.  
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(i.e., whether an increase in accuracy in one decision situation was associated with an increase in 

accuracy in the other decision situation). For younger adults, decision accuracy in the RconfB 

and CconfB situations were significantly correlated in the first (r = .77, p < .001) and second 

block (r = .69, p < .001). However, for older adults, decision accuracy was not correlated 

between the RconfB and CconfB situations in the first block (r = .08, p = .70), nor in the second 

block (r = .25, p = .23). These results show that as accuracy increases in one decision situation, 

accuracy also increases in the other decision situation for the younger adults but not the older 

adults (see Figure 10).  
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Figure 10. Association of accuracy in conflict situations in Experiment 2. 
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Self-Assessment 

Chi-square tests were conducted on categorical items (i.e., items 1 and 2) and 

independent-samples t tests were conducted on scaled items (i.e., items 3-5) of the self-

assessment for each age group. Results showed that younger adults (M = 4.44, SD = 0.71) were 

more likely to report that their decisions were accurate compared with older adults (M = 3.48, SD 

= 0.87), t (48) = 4.26, p < .001, d = 1.2, and older adults (M = 2.56, SD = 0.92) were more likely 

to report that they felt the task was difficult relative to younger adults (M = 3.96, SD = 0.93), t 

(48) = 5.35, p < .001, d = 1.5. No other age-related differences were observed (see Table 12). 
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Table 12. Self-Assessment for Experiment 2 

Item Younger Adults 

(n = 25) 

Older Adults 

(n = 25) 

p-value d 

Influence Decision   .86 -- 

Likelihood 2 (8%) 2 (8%)   

Sample 0 (0%) 2 (8%)   

Both 23 (92%) 21 (84%)   

Decision Strategy   .19 -- 

Consistent 11 (44%) 8 (32%)   

Switched 13 (52%) 16 (64%)   

Neither 1 (4%) 1 (4%)   

Accuracy   < .001 1.2 

Very inaccurate 0 (0%) 0 (0%)   

Somewhat inaccurate 1 (4%) 6 (24%)   

Neither inaccurate nor 

accurate 

0 (0%) 1 (4%)   

Somewhat accurate 11 (44%) 18 (72%)   

Very accurate 13 (52%) 0 (0%)   

Task Difficulty   < .001 1.5 

Very difficult 0 (0%) 2 (8%)   

Somewhat difficult 2 (8%) 11 (44%)   

Neither difficult nor easy 5 (20%) 9 (36%)   

Somewhat easy 10 (40%) 2 (8%)   

Very easy 8 (32%) 1 (4%)   

Confidence with Numbers   .08 0.34 

Not at all confident 0 (0%) 1 (4%)   

Somewhat confident 9 (36%) 15 (60%)   

Confident 8 (32%) 3 (12%)   

Very confident 4 (16%) 5 (20%)   

Extremely confident 4 (16%) 1 (4%)   

 

Individual Differences on Accuracy 

 Multi-level modeling was used to examine whether individual differences in numeracy, 

cognitive reflection, thinking disposition, processing speed, verbal intelligence, and years of 

education predict decision accuracy in the RconfB or CconfB situations. Only significant 

interactions that include the decision situation factor are further interpreted.  
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 In a first step, the ICC was calculated and showed that approximately 9% of the variance 

in decision accuracy was due to clustering. In light of the ICC value suggesting at least a portion 

of the variability of accuracy was due to clustering, a multi-level modeling approach was taken 

to examine predictors of decision accuracy. Similar to Experiment 1 analysis, random-intercepts 

and random-slopes models on accuracy in RconfB and CconfB decision situations, with age 

included as a Level 2 predictor, were conducted to observe which model best fit the data. Based 

on the AIC, BIC, and deviance values, the random-slopes model improved the model fit over the 

random-intercepts model (see Table 13). In light of this, assessment scores were included in the 

random-slope models as predictor variables separately, along with age and decision situation on 

decision accuracy. 
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Table 13. Multi-Level Model Comparison on Accuracy in Experiment 2 

 Parameters Model 

  Random-intercepts Random-slopes 

Fixed effects    

 Intercept 2.54 (0.17) 2.58 (0.19) 

 OR 12.74 13.16 

 Younger adults -0.74 (0.24)* -0.72 (0.24) 

 OR 0.48 0.49 

 RconfB -0.93 (0.05)* -0.93 (0.14) 

 OR 0.39 0.39 

Fit statistics    

 deviance 10,510 10,329 

 AIC 10,518 10,341 

 BIC 10,548 10,386 

 df 4 6 

Model 

comparison 

  χ2 = 181.14* 

Note. Standard errors and deviations in fixed and random effects parentheses, respectively; RconfB = Representativeness heuristic 

conflicts with Bayes’ theorem; Younger adults and RconfB were used as the reference group; OR = odds ratios; AIC = Akaike’s 

Information Criterion; BIC = Bayesian Information Criterion; df = degrees of freedom; Subscript χ2 denotes the two models being 

compared. *p < .05.
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 Berlin Numeracy Task. Results showed a significant Berlin Numeracy Task (BNT) by 

Decision Situation interaction (β = 0.15, SE = 0.13; p = .02), as well as a significant BNT by Age 

interaction (β = -0.35, SE = 0.17; p = .01). However, there was no BNT by Decision Situation by 

Age interaction (β = 0.11, SE = 0.18; p = .54). In line with Experiment 1, data were centered at 

the 25th percentile, the median, and the 75th percentile, and multi-level models were rerun on 

these data to probe this interaction. As presented in Table 14, beta estimates for the effect of 

decision situation increase as scores on the BNT increase. This suggests that the effect of 

decision situation is strongest among those with lower BNT scores. The odds ratios suggest that 

among those with low BNT scores, the odds of a correct response in the RconfB situation were 

33% of the odds of a correct response in the CconfB situation. However, among those with 

higher BNT scores, the odds of a correct response in the RconfB situation were 45% of the odds 

of a correct response in the CconfB situation. These results suggest that the effect of decision 

situation becomes greater with lower scores on the BNT.
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Table 14. Berlin Numeracy Test as a Predictor of Accuracy in Experiment 2 

 BNT centered at 25th percentile  BNT centered at median  BNT centered at 75th percentile 

 β SE Z p OR  β SE Z p OR  β SE Z p OR 

Intercept  2.00 0.21 9.51 - 7.41  2.51 0.17 14.48 - 12.29  3.02 0.21 14.16 - 20.39 

BNT 0.51 0.12 4.17 <.001 1.66  0.51 0.12 4.18 <.001 1.66  0.51 0.12 4.18 <.001 1.66 

RconfB -1.11 0.22 -4.97 <.001 0.33  -0.96 0.19 -5.15 <.001 0.38  -0.81 0.23 -3.49 <.001 0.45 

age -0.28 0.29 -0.99 <.001 0.75  -0.64 0.24 -2.68 <.001 0.53  -0.99 0.30 -3.28 <.001 0.37 

BNT:RconfB 0.15 0.15 1.16 .03 1.16  0.15 0.13 1.16 .02 1.16  0.15 0.13 1.16 .03 1.16 

BNT:age -0.35 -0.35 -2.03 .01 0.70  -0.35 0.17 -2.04 .14 0.70  -0.25 0.17 -2.04 .10 0.70 

RconfB:age -0.05 -0.05 -0.18 .85 0.95  0.06 0.25 0.23 .85 1.06  0.17 0.33 0.53 .85 1.19 

BNT:RconfB:age 0.11 0.11 0.61 .54 1.12  0.11 0.19 0.61 .54 1.12  0.11 0.19 0.61 .54 1.12 

Note. BNT = Berlin Numeracy Test; RconfB = Representativeness heuristic conflicts with Bayes’ theorem (reference group); β = beta 

estimate; SE = standard error; Z = z-score; OR = odds ratio.
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 Lipkus Numeracy Task. Results showed a significant Lipkus Numeracy Task (Lipkus) 

by Decision Situation interaction (β = 0.15, SE = 0.13; p = .02), as well as a significant Lipkus 

by Age interaction (β = -0.35, SE = 0.17; p = .01). However, there was no Lipkus by Decision 

Situation by Age interaction (β = 0.11, SE = 0.18; p = .06). In line with analyses conducted on 

the BNT interaction, Lipkus data were centered at the 25th percentile, the median, and the 75th 

percentile, and multi-level models were rerun on these data to probe this interaction. As shown in 

Table 15, beta estimates for the effect of decision situation increase as scores on the Lipkus 

increase. This suggests that the effect of decision situation is strongest among those with lower 

Lipkus scores. The odds ratios suggest that among those with lower Lipkus scores, the odds of a 

correct response in the RconfB situation were 38% of the odds of a correct response in the 

CconfB situation. However, among those with higher Lipkus scores, the odds of a correct 

response in the RconfB situation were 40% of the odds of a correct response in the CconfB 

situation. These results suggest that the effect of decision situation becomes greater with lower 

scores on the Lipkus.
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Table 15. Lipkus Numeracy as a Predictor of Accuracy in Experiment 2 

 Lipkus centered at 25th percentile  Lipkus centered at median  Lipkus centered at 75th percentile 

 β SE Z p OR  β SE Z p OR  β SE Z p OR 

Intercept  2.41 0.18 13.22 - 11.16  2.72 0.19 14.47 - 15.20  3.03 0.22 13.35 - 20.69 

Lipkus 0.31 0.08 3.66 <.001 1.36  0.31 0.08 3.66 <.001 1.36  0.31 0.08 3.67 <.001 1.36 

RconfB -0.95 0.18 -5.21 <.001 0.38  -0.93 0.19 -4.87 <.001 0.39  -0.91 0.23 -3.93 <.001 0.40 

age -0.49 0.26 -1.94 <.001 0.61  -0.89 0.25 -3.51 <.001 0.41  -1.28 0.30 -4.24 <.001 0.28 

Lipkus:RconfB 0.02 0.08 0.29 .02 1.02  0.02 0.08 0.29 .02 1.02  0.02 0.08 0.29 .02 1.02 

Lipkus:age -0.19 0.12 -3.21 .10 0.68  -0.19 0.12 -3.22 .10 0.68  -0.19 0.12 -3.22 .10 0.68 

RconfB:age -0.16 0.26 -0.64 .87 0.85  0.07 0.25 0.28 .87 1.07  0.31 0.30 1.00 .88 1.36 

Lipkus:RconfB:age 0.23 0.12 1.94 .06 1.26  0.23 0.12 1.94 .06 1.26  0.23 0.12 1.94 .06 1.26 

Note. Lipkus = Lipkus Numeracy Task; RconfB = Representativeness heuristic conflicts with Bayes’ theorem (reference group); β = 

beta estimate; SE = standard error; Z = z-score; OR = odds ratio.



142 

 

 Cognitive Reflection Test – Reflection subscale. Results showed a significant 

Cognitive Reflection Test – Reflection (CRT-R) by Decision Situation interaction (β = 0.08, SE 

= 0.09; p = .03). However, there was no CRT-R by Age interaction (β = -0.27, SE = 0.15, p = 

.13), nor a CRT-R by Decision Situation by Age interaction (β = 0.15, SE = 0.14; p = .28). To 

probe the CRT-R by Decision Situation interaction, data were centered at the 25th percentile, the 

median, and the 75th percentile and multi-level models were rerun on these data. As presented in 

Table 16, beta estimates for the effect of decision situation increase as scores on the CRT-R 

increase. This suggests that the effect of decision situation is strongest among those with lower 

CRT-R scores. The odds ratios suggest that among those with lower CRT-R scores, the odds of a 

correct response in the RconfB situation were 36% of the odds of a correct response in the 

CconfB situation. However, among those scoring higher on the CRT-R, the odds of a correct 

response in the RconfB situation were 45% of the odds of a correct response in the CconfB 

situation. These results suggest that the effect of decision situation becomes greater with lower 

CRT-R scores.
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Table 16. Cognitive Reflection Test-Reflection as a Predictor of Accuracy in Experiment 2 

 CRT-R centered at 25th percentile  CRT-R centered at median  CRT-R centered at 75th percentile 

 β SE Z p OR  β SE Z p OR  β SE Z p OR 

Intercept  2.38 0.24 9.88 - 10.77  2.38 0.24 9.88 - 10.77  2.78 0.25 10.90 - 16.12 

CRT-R 0.13 0.10 1.32 .20 1.14  0.13 0.10 1.32 .20 1.14  0.13 0.10 1.32 .20 1.14 

RconfB -1.03 0.23 -4.55 <.001 0.36  -1.03 0.23 -4.55 <.001 0.36  -0.81 0.24 -3.31 <.001 0.45 

age -0.41 0.32 -1.29 .01 0.66  -0.41 0.32 -1.29 .01 0.66  -1.22 0.38 -3.15 .01 0.29 

CRT-R:RconfB 0.07 0.09 0.78 .03 1.09  0.07 0.09 0.78 .03 1.09  0.08 0.09 0.78 .03 1.08 

CRT-R:age -0.27 0.14 -1.85 .13 0.76  -0.27 0.14 -1.85 .13 0.76  -0.27 0.14 -1.86 .13 0.76 

RconfB:age -0.08 0.29 -0.29 .76 0.92  -0.08 0.29 -0.29 .76 0.92  0.36 0.36 0.99 .76 1.44 

CRT-R:RconfB:age 0.15 0.14 1.08 .28 1.16  0.15 0.14 1.08 .28 1.16  0.15 0.14 1.09 .28 1.16 

Note. CRT-R = Cognitive Reflection Test – Reflection subscale; RconfB = Representativeness heuristic conflicts with Bayes’ theorem 

(reference group); β = beta estimate; SE = standard error; Z = z-score; OR = odds ratio
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 The Need for Cognition, Faith in Intuition, Mill Hill Vocabulary Test, Cognitive 

Reflection Test – Intuition subscale and years of education did not predict decision accuracy. In 

addition, the multi-level model with DSST as a predictor of decision accuracy failed to converge. 

However, to examine whether DSST scores were related to decision accuracy, correlational 

analyses were conducted. Results showed that scores on the DSST were positively correlated 

with decision accuracy in the RconfB situation, r = .47, p = .001, and the CconfB situation, r = 

.45, p = .001. Additionally, analyses were conducted for each age group separately. For younger 

adults, correlations between DSST scores and decision accuracy did not reach significance in the 

RconfB situation, r = .37, p = .07, or the CconfB situation, r = .37, p = .07. However, for older 

adults, DSST scores and decision accuracy were correlated in the RconfB situation, r = .42, p = 

.04, but were not correlated in the CconfB situation, r = .33, p = .10. 

To summarize, the multi-level modeling results show that those who scored lower on the 

Berlin Numeracy Test, Lipkus Numeracy Task, and the Cognitive Reflection Test – Reflection 

subscale made less accurate decisions in the RconfB situation compared with the CconfB 

situation. Those who scored higher on the Berlin Numeracy Test, Lipkus Numeracy Task, and 

Cognitive Reflection Test – Reflection subscale were less affected by decision situation, scoring 

higher in both the RconfB and CconfB situations. These results suggest that the Berlin Numeracy 

Test, Lipkus Numeracy Task and the extended Cognitive Reflection Test were good predictors of 

individual differences in decision accuracy in the belief updating task. Last, DSST scores in 

older adults correlated with decision accuracy in the RconfB situation, with correlations between 

DSST scores and decision accuracy in conflict situations not reaching significance in younger 

adults. 
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ERP Data: Prior Information Effects 

 LRP. The LRP was used to indicate lateralization of ERP activity over motor cortices in 

order to examine bias toward attending to the higher prior probability in the CconfB situation 

(Achtziger et al., 2014; Leuthold et al., 1996; Steinhauser et al., 2009). It was hypothesized that 

committing the conservatism error would evoke a larger LRP, relative to not committing the 

conservatism error. Grand-average LRP waveforms were examined, with positive values 

reflecting attending to the prior with the higher probability. Results showed that mean LRP 

amplitudes for younger adults were not significantly different from zero in the first block (M = 

0.74 μV, SD = 2.27), t (24) = 1.64, p = .18, d = 0.23, but were significantly different from zero in 

the second block (M = 0.98 μV, SD = 2.10), t (24) = 2.34, p = .03, d = 0.47. This suggests that 

younger adults were biased toward attending to the higher prior probability in the second but not 

the first block. Within the older adults, mean LRP amplitudes were significantly different from 

zero in both the first (M = 1.4 μV, SD = 2.29), t (24) = 3.01, p = .01 d = 0.60, and the second 

block (M = 0.91 μV, SD = 1.85), t (24) = 2.46, p = .02, d = 0.49, suggesting that older adults 

were biased toward attending to the higher prior probability throughout the belief updating task 

(see Figure 11).  

 To examine whether younger and older adults differed in mean LRP amplitude, a 2 (age: 

young, old) × 2 (trial block: Block 1, Block 2) repeated-measures ANOVA was conducted13. 

Results showed no main effect of block, F (1, 48) = .12, p > .05, ηp
2 = .003, no main effect of 

age, F (1, 48) = .31, p > .05, ηp
2 = .01, and no Block by Age interaction, F (1, 48) = 1.16, p > .05, 

ηp
2 = .02.  

 
13 Of note, decision situation was not included as a factor in the ANOVA because LRP amplitude 

is only relevant to the CconfB situation.  
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 Further, Pearson bivariate correlations were conducted to examine whether mean LRP 

amplitude associated with decision accuracy in CconfB situations for each age group. Younger 

adults showed no correlation between mean LRP amplitude and decision accuracy in CconfB 

situations in the first (r = -.16, p = .36) or second block (r = .30, p = .58). Similar results were 

observed for the older adults (r = .22, p = .10; r = -.09, p = .12, respectively). 

 Exploratory analysis showed that Berlin Numeracy Test scores correlated with mean LRP 

amplitude in the first block (r = -.41, p = .04), but not in the second block (r = .03, p = .89) for 

younger adults. No other significant correlations were observed. 

 To summarize, the results showed that younger adults were biased toward attending to 

the higher prior probability in the second half of the task, whereas older adults were biased 

toward attending to the higher prior probability throughout the task. Further, higher numeracy 

scores on the Berlin Numeracy Test were associated with smaller LRP amplitudes in the first 

block amongst younger adults. 
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Figure 11. LRP: Grand averaged ERPs from C3-C4, time-locked to urn distribution onset. Time is on the x-axis and bias-related 

amplitude are highlighted in a 100 ms epoch before presentation of the sample. 
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ERP Data: Sample Information Effects 

 N2, pP. In a first step, one-sample t tests were conducted to examine whether N2 and pP 

mean amplitudes of the difference wave for RconfB vs. CconfB situations were significantly 

different from zero in the first and second blocks for each age group. Results showed that for the 

younger adults, N2 mean amplitude was not significantly different from zero in the first block (M 

= 0.00 μV, SD = 2.81), t (24) = 0.10, p = .26, d = 0.01, but was significantly different from zero 

in the second block (M = 1.28 μV, SD = 2.77), t (24) = 2.31, p = .03, d = 0.46. pP mean 

amplitude was not significantly different from zero in the first (M = - 0.06 μV, SD = 4.57), t (24) 

= -0.07, p = .24, d = -0.01, or the second block (M = 0.84 μV, SD = 3.70), t (24) = 1.13, p = .35, 

d = 0.16. Concerning older adults, N2 mean amplitude was not different from zero in the first (M 

= -0.04 μV, SD = 2.56), t (24) = -0.07, p = .99, d = -0.01, or second block (M = 0.31 μV, SD = 

2.79), t (24) = 0.55, p = .33, d = 0.08. pP mean amplitude was not different from zero in the first 

block (M = 0.45 μV, SD = 3.62), t (24) = 0.62, p = .49, d = 0.09, but was significantly different 

from zero in the second block (M = 0.95 μV, SD = 2.35), t (24) = 2.02, p = .05, d = 0.29. These 

results suggest that the RconfB situation produced a larger N2 mean amplitude compared with 

the CconfB situation for younger adults in the second block, and the CconfB situation produced a 

larger pP mean amplitude for older adults compared with the RconfB situation in the second 

block.  

 The 2 (age: young, old) × 2 (decision situation: RconfB, CconfB) × 2 (trial block: Block 

1, Block 2) × 2 (region: N2, pP) mixed ANOVA on N2 and pP mean amplitude revealed a main 

effect of region, F (1, 48) = 11.69, p = .001, ηp
2 = .19, such that the N2 (M = 4.27 μV, SD = 2.90) 

showed a more positive amplitude than the pP (M = 2.95 μV, SD = 4.61). Further, a main effect 

of age was observed, F (1, 48) = 8.70, p = .01, ηp
2 = .15, such that older adults (M = 4.99 μV, SD 
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= 2.54) produced more positive amplitudes than younger adults (M = 2.30 μV, SD = 3.76). 

Additionally, an Age by Region interaction was observed, F (1, 48) = 21.61, p < .001, ηp
2 = .31. 

To probe this interaction, independent- and paired-samples t tests were conducted to examine 

potential differences in region within each age group, as well as the potential age differences for 

each region. For younger adults, the N2 (M = 3.80 μV, SD = 3.07) showed a more positive mean 

amplitude than pP (M = 0.66 μV, SD = 4.94), t (24) = 4.73, p < .001, d = -0.95. For older adults, 

no difference was observed between the N2 (M = 4.75 μV, SD = 2.70), and pP (M = 5.25 μV, SD 

= 2.84), t (24) = -1.13, p = .27, d = -0.16. Further, younger and older adults showed no difference 

in N2 amplitude, t (24) = -1.15, p = .25, d = -0.16, but did show a difference in pP amplitude, t 

(24) = -4.03, p < .001, d = 1.14, with older adults showing a more positive pP amplitude than 

younger adults.  

 Pearson bivariate correlations were conducted to examine potential associations between 

N2 and pP mean amplitudes and decision accuracy for each age group and block. For younger 

adults within the first block, N2 mean amplitude was significantly correlated with accuracy in 

the RconfB situation (r = -.39, p = .05), such that higher accuracy was associated with larger N2 

amplitude. pP amplitude showed a correlation with accuracy in the RconfB situation in the first 

block (r = -.41, p = .04), such that higher accuracy was associated with smaller pP amplitude. 

However, within the second block, younger adults did not show a correlation between accuracy 

in the RconfB situation and N2 (r = -.19, p = .34) or pP amplitude (r = -.17, p = .43).  

 Additionally, for younger adults within the first block, N2 mean amplitude was 

significantly correlated with accuracy in the CconfB situation (r = -.40, p = .04), such that higher 

accuracy was associated with larger N2 amplitudes. pP amplitude also showed a correlation with 

accuracy in the CconfB situation (r = -.51, p = .01), such that higher accuracy was associated 
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with smaller pP amplitudes. However, within the second block, younger adults did not show a 

correlation between accuracy in the CconfB situation and N2 (r = -.13, p = .54) or pP amplitude 

(r = -.06, p = .78).  

 Concerning older adults within the first block, no correlation between accuracy in the 

RconfB situation and N2 (r = -.05, p = .62) or pP amplitude (r = -.05, p = .88) was observed. 

Similar results were observed in the second block (r = -.05, p = .23; r = -.12, p = .93, 

respectively). Further, within the first block, no correlation was observed between accuracy in 

the CconfB situation and N2 (r = .01, p = .45). No correlations were observed between pP 

amplitude and decision accuracy in the CconfB situation in the first (r = -.03, p = .88) or second 

block (r = .13, p = .55; Figures 12 and 13). 

 Exploratory correlations between the Lipkus Numeracy Test and N2 mean amplitude in 

the RconfB situation in the first block did not reach significance (r = -.34, p = .09), but a 

significant correlation was observed in the second block (r = -.39, p = .05) for younger adults. pP 

amplitude also correlated with the Lipkus Numeracy Test in the first block (r = -.43, p = .03) in 

the RconfB situation, but not the second block (r = -.44, p = .19). Scores on the Lipkus 

Numeracy Test were also correlated with N2 (r = -.45, p = .02), and pP (r = -.41, p = .04) 

amplitude in the CconfB situation in the first, but not in the second block (r = -.27, p = .53; r = -

.29, p = .64, respectively). Last, younger adults showed a significant correlation between N2 

mean amplitude and the Cognitive Reflection Test - Intuition subscale in the first (r = -.43, p = 

.03) and second block (r = -.41, p = .04) in the CconfB situation. However, the correlation 

between pP amplitude and the Cognitive Reflection Test - Intuition subscale did not reach 

significance (r = -.35, p = .08) in the second block. No other correlations were observed between 

N2 or pP amplitudes and assessment scores in younger adults.  
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 Concerning older adults, N2 mean amplitude was correlated with Lipkus scores in the 

first block in the CconfB situation (r = -.41, p = .04), and N2 amplitude was correlated with 

Lipkus scores in the second block in the RconfB situation (r = -.41, p = .04). Similarly, pP 

amplitude was correlated with Lipkus scores in the first block in the RconfB situation (r = .43, p 

= .03), and the second block (r = .49, p = .01). pP amplitude was correlated with Lipkus scores in 

the first block in the CconfB situation (r = .39, p = .05), and the second block (r = .54, p = .01). 

Additionally, within the second block in the RconfB situation, older adults showed a significant 

correlation between N2 amplitude and the Cognitive Reflection Test -Reflection subscale (r = 

.42, p = .04) and the Cognitive Reflection Test - Intuition subscale (r = -.45, p = .02). A similar 

result was observed between pP amplitude and the Cognitive Reflection Test - Intuition subscale 

(r = -.41, p = .04) in the second block for the RconfB situation. No other significant correlations 

were observed.  

 In summary, a larger N2 was observed in the second block in the RconfB situation 

amongst younger adults, with larger N2 and smaller pP amplitudes correlating with decision 

accuracy in the RconfB and CconfB situations in the first block. For older adults, a larger pP was 

observed in the second block in the CconfB situation. Additionally, N2 amplitude was more 

positive than pP amplitude in younger adults demonstrating the low neural activity observed in 

anterior regions, with older adults showing greater pP compared with younger adults. Further, in 

younger adults, higher Lipkus Numeracy Test scores correlated with a) larger N2 amplitudes in 

the second block in the RconfB situation, b) smaller pP amplitudes in the first block in the 

RconfB situation, and c) larger N2 and smaller pP amplitudes in the first block in the CconfB 

situation. Lower Cognitive Reflection Test – Intuition subscale scores were correlated with 

larger N2 amplitudes in the first and second block in the CconfB situation. In older adults, higher 
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scores on the Lipkus Numeracy Task were correlated with a) larger N2 amplitudes in the first 

block in the CconfB situation, b) larger N2 amplitudes in the second block in the RconfB 

situation, and c) larger pP amplitudes in the first and second blocks in both the RconfB and 

CconfB situations. In addition, smaller N2 amplitudes were correlated with higher Cognitive 

Reflection Test – Reflection subscale scores, larger N2 and smaller pP amplitudes were 

correlated with higher Cognitive Reflection Test – Intuition subscale scores in the second block 

in the RconfB situation. 
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Figure 12. N2: Grand averaged ERPs from FCz and Fz, time-locked to sample onset. Time is on the x-axis and sample-related 

amplitude differences are highlighted in the 220-270 ms epoch. 
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Figure 13. pP: Grand averaged ERPs from AF3, AFz, and AF4, time-locked to sample onset. Time is on the x-axis and sample-related 

amplitude differences are highlighted in the 375-425 ms epoch. 
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 P3b. In a first step, one-sample t tests were conducted to examine whether P3b mean 

amplitudes of the difference wave for RconfB vs CconfB situations were significantly different 

from zero in the first and second blocks. Concerning younger adults, results showed that P3b 

mean amplitude of the difference wave was not significantly different from zero for the first 

block (M = 0.33 μV, SD = 3.93), t (24) = 0.41, p = .28, d = 0.06, but was significantly different 

from zero in the second block (M = 2.10 μV, SD = 3.61), t (24) = 2.10, p = .01, d = 0.58. 

Concerning older adults, the difference wave in the first (M = -0.29 μV, SD = 3.12), t (24) = -

0.47, p = .29, d = -0.07, or second block (M = 0.47 μV, SD = 2.47), t (24) = 0.95, p = .38, d = 

0.13, was not different from zero, suggesting no difference in P3b mean amplitude between 

conflict situations in the first or second block. 

 The 2 (age: young, old) × 2 (decision situation: RconfB, CconfB) × 2 (trial block: Block 

1, Block 2) mixed ANOVA on P3b mean amplitude showed no main effect of decision situation, 

F (1, 48) = 0.92, p = .34, ηp
2 = .02, no main effect of block, F (1, 48) = 2.97, p = .09, ηp

2 = .06, 

and no main effect of age F (1, 48) = 0.84, p = .36, ηp
2 = .02. Additionally, no Decision Situation 

by Age interaction was observed, F (1, 48) = 1.95, p = .17, ηp
2 = .04, and no Block by Age 

interaction was observed, F (1, 48) = 2.21, p = .14, ηp
2 = .04. However, a significant Block by 

Decision Situation interaction was observed, F (1, 48) = 5.02, p = .03, ηp
2 = .09. To probe this 

interaction, paired-sample t tests were conducted. Results showed a significant difference in P3b 

mean amplitude in the RconfB situation across blocks, such that a more positive P3b was 

observed in the first block (M = 4.79 μV, SD = 4.28) compared with the second block (M = 3.84 

μV, SD = 4.40), t (49) = 2.40, p = .02, d = 0.34. No mean amplitude change was observed across 

blocks for the CconfB situation, t (49) = -0.69, p = .67, d = -0.10. In addition, no difference in 

P3b amplitude between decision situations was observed in the first block, t (49) = -0.03, p = .32, 
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d = -0.00. However, the CconfB situation elicited a more positive P3b mean amplitude (M = 5.12 

μV, SD = 4.99) than the RconfB situation (M = 3.84 μV, SD = 4.39), t (49) = -2.86, p = .01, d = -

0.40, in the second block, supporting the results from the one-sample t-test on the difference 

wave (see Figure 14).  

 It was also of interest to examine whether the N2 and P3b components were associated. 

Within the younger adults, N2 amplitude was significantly correlated with P3b amplitude in the 

first block (r = .45, p = .02) but did not reach significance in the second block (r = .38, p = .06) 

in the RconfB situation. N2 amplitude was also correlated with P3b amplitude in the first block 

(r = .40, p = .04) and second block (r = .39, p = .05) in the CconfB situation. Concerning older 

adults, N2 amplitude was correlated with P3b amplitude in the first block (r = .46, p = .02) and in 

the second block (r = .51, p = .01) in the RconfB situation. N2 amplitude was not correlated with 

P3b amplitude in the first block (r = .30, p = .19), but was correlated in the second block (r = .44, 

p = .03) in the CconfB situation. These results suggest a functional relationship between N2 and 

P3b components for younger and older adults, such that smaller N2 amplitudes were associated 

with larger P3b amplitudes. 

 Correlation analyses showed that P3b mean amplitude was associated with decision 

accuracy in the RconfB situation in the first block for younger adults (r = -.48, p = .02), 

suggesting that higher accuracy in the RconfB situation was associated with smaller P3b mean 

amplitude within the first block. However, this effect did not hold in the second block (r = -.04, p 

= .98). Further, decision accuracy in the CconfB situation within the first block did not correlate 

with P3b mean amplitude (r = -.24, p = .25), with similar results concerning the second block (r 

= .05, p = .80). Concerning older adults, the correlation between P3b mean amplitude and 

decision accuracy in the RconfB situation did not reach significance in the first block (r = -.35, p 
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= .09) and was not correlated in the second block (r = -.31, p = .13). Similarly, P3b mean 

amplitude did not correlate with decision accuracy in the CconfB situation in the first (r = .21, p 

= .30) or second block (r = .01, p = .96).  

 Exploratory analysis showed a significant correlation between Berlin Numeracy Task 

scores and P3b mean amplitude in the RconfB situation within the first block for younger adults 

(r = -.39, p = .05), such that those with higher Berlin Numeracy Task scores produced smaller 

P3b mean amplitudes. No other significant correlations were observed.  

 In summary, younger adults showed a greater P3b amplitude in the second block in the 

CconfB relative to the RconfB situation. The Block by Decision Situation interaction showed 

that the P3b mean amplitude was smaller in the second compared with the first block for the 

RconfB situation, and with the CconfB situation producing a larger P3b amplitude than the 

RconfB situation in the second block. This result may be driven by younger adults, as the 

difference wave of the conflict situations was only significantly different from zero in the second 

block for the younger adults only. Further, results showed that the P3b and N2 were correlated, 

suggesting a functional relationship between these components, such that a smaller N2 was 

correlated with larger P3b amplitudes in both younger and older adults. Also, analysis showed 

that smaller P3b mean amplitudes correlated with higher decision accuracy in the belief updating 

task and higher scores on the Berlin Numeracy Test in the first block in the RconfB situation for 

younger adults. 
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Figure 14. P3b: Grand averaged ERPs from Pz and Cz, time-locked to sample onset. Time is on the x-axis and sample-related 

amplitude differences are highlighted in the 405-505 ms epoch for younger adults, and 425-525 ms epoch for older adults.
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ERP Data: Feedback Effects 

 FRN. The 2 (age: young, old) × 2 (decision situation: RconfB, CconfB) × 2 (trial block: 

Block 1, Block 2) × 2 (valence: positive, negative) mixed ANOVA on FRN mean amplitude 

revealed a main effect of block, F (1, 48) = 54.78, p < .001, ηp
2 = .53, such that the second block 

(M = 4.99 μV, SD = 7.07) evoked more negative mean amplitudes than the first block (M = 8.75 

μV, SD = 7.40), a main effect of decision situation, F (1, 48) = 7.20, p = .01, ηp
2 = .13, such that 

the CconfB situation (M = 6.18 μV, SD =  6.96) produced more negative mean amplitudes than 

the RconfB situation (M = 7.57 μV, SD =  7.52), a main effect of valence, F (1, 48) = 9.86, p = 

.003, ηp
2 = .17, such that negative feedback (M = 5.67 μV, SD = 7.28) produced more negative 

mean amplitudes than positive feedback (M = 8.08 μV, SD = 7.73), and a main effect of age, F 

(1, 48) = 15.19, p < .001, ηp
2 = .24, such that younger adults (M = 3.47 μV, SD = 5.37) produced 

more negative mean amplitudes than older adults (M = 10.28 μV, SD = 6.89).  

 Results revealed an Age by Block by Valence three-way interaction, F (1, 48) = 13.57, p 

= .001, ηp
2 = .22. In order to unpack the three-way interaction, stratifying by age, paired-sample t 

tests were conducted to examine mean amplitude in response to positive and negative feedback 

within each block, as well as across blocks. Concerning younger adults, negative feedback (M = 

3.09 μV, SD = 5.61) produced larger FRN mean amplitudes than positive feedback (M = 8.01 

μV, SD = 8.41), t (24) = 3.56, p = .002, d = 0.71, in the first block. However, no differences in 

FRN mean amplitude were observed between negative (M = 1.49 μV, SD = 6.22) and positive 

feedback (M = 1.29 μV, SD = 7.01) in the second block,  t (24) = -0.12, p = .23, d = -0.02. 

Further, positive feedback elicited more negative mean amplitudes in the second block compared 

with the first block, t (24) = 7.09, p < .001, d = 1.42, however no differences were observed in 

FRN for negative feedback between the first or second block, t (24) = 1.47, p = .34, d = 0.21.  
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 Concerning older adults, negative feedback (M = 10.90 μV, SD = 7.71) produced larger 

FRN than positive feedback (M = 13.00 μV, SD = 7.09) in the first block, t (24) = 2.75, p = .01, d 

= 0.55. Similarly, negative feedback (M = 7.19 μV, SD = 7.93) evoked larger FRN than positive 

feedback (M = 10.01 μV, SD = 6.56) in the second block, t (24) = 3.61, p = .001, d = 0.71. 

Further, positive feedback elicited larger FRN in the second block compared with the first block, 

t (24) = 3.99, p = .001, d = 0.80. Similarly, negative feedback evoked larger FRN in the second 

block compared with the first block, t (24) = 4.44, p < .001, d = 0.89.  

 For younger adults within the first block for negative feedback, decision accuracy in the 

RconfB situation did not correlate with the FRN (r = .04, p = .54) but did correlate with the 

CconfB situation (r = -.42, p = .04). In the second block, younger adults did not show a 

correlation with FRN mean amplitude in the RconfB situation (r = .32, p = .85) or the CconfB 

situation (r = .15, p = .19). Concerning older adults in the first block for negative feedback, no 

correlation was observed between the FRN and the RconfB situation (r = -.33, p = .32) or the 

CconfB situation (r = -.12, p = .14). However, a significant correlation was observed in the 

second block between FRN amplitude and decision accuracy in the RconfB situation (r = -.40, p 

= .04) but the correlation did not reach significance between FRN amplitude and accuracy in the 

CconfB situation (r = -.37, p = .06). The significant negative correlations suggest that higher 

accuracy was associated with larger FRN mean amplitudes, with younger adults showing an 

association in the first block between FRN and accuracy in the CconfB situation, and with older 

adults showing an association between FRN and decision accuracy in the RconfB situation in the 

second block. 

 Further, for younger adults in the first block, FRN in response to positive feedback 

correlated with accuracy in the RconfB situation (r = -.48, p = .01), and the CconfB situation (r = 
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-.45, p = .03). However, FRN in response to positive feedback did not correlate with accuracy in 

the RconfB situation (r = -.37, p = .19), or in the CconfB situation (r = -.26, p = .10) for younger 

adults in the second block. Concerning older adults in the first block, FRN in response to positive 

feedback correlated with accuracy in the RconfB situation (r = -.41, p = .04), but did not 

correlate with accuracy in the CconfB situation (r = -.11, p =. 37). In the second block, older 

adults showed a correlation between FRN in response to positive feedback and accuracy in the 

RconfB situation (r = -.53, p = .01), but did not show this correlation in the CconfB situation (r = 

-.24, p = .56). The significant negative correlations suggest that higher accuracy is associated 

with larger negative mean amplitudes in response to positive outcomes, with younger adults 

showing this pattern in the first block for both conflict situations, and older adults showing this 

pattern of results for the RconfB situation in the first and second block. 

 To summarize, larger FRN mean amplitudes were observed in the second compared with 

the first block, in younger compared with older adults, in the CconfB situation compared with 

the RconfB situation, and in response to negative compared with positive feedback. Interestingly, 

positive feedback elicited larger FRN in the second compared with the first block in younger 

adults with no difference in FRN amplitude across blocks in response to negative feedback – 

results that converge with past research (Forder & Dyson, 2016). A larger FRN was also 

observed in response to negative relative to positive feedback in the first block with no 

difference in the second block for younger adults. Additionally, a larger FRN was observed in 

response to negative feedback in the first and second block for older adults relative to positive 

feedback, with a larger FRN in response to both negative and positive feedback in the second 

than the first block. Further, FRN amplitude in response to negative feedback was correlated 

with accuracy in the CconfB situation in the first block for younger adults and was correlated 
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with accuracy in the RconfB situation in the second block for older adults, such that higher 

accuracy was associated with larger FRN. Last, FRN in response to positive feedback was 

correlated with accuracy in both conflict situations in the first block for younger adults and was 

correlated with accuracy in the RconfB situation in the first and second block for older adults 

(see Figure 15). 
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Figure 15. FRN: Grand averaged ERPs from Cz, time-locked to sample onset. Time is on the x-axis and sample-related amplitude 

differences are highlighted in the 240-290 ms epoch for younger adults, and 325-375 ms epoch for older adults.  
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Summary of Results 

 The RconfB situation produced the lowest level of accuracy, the CconfB situation 

produced intermediate decision accuracy, and the RalignB situation produced the highest level of 

accuracy. Younger adults made more accurate decisions than older adults overall, and accuracy 

increased across blocks, in both age groups and in all decision situations. Younger adults showed 

the longest RTs in the RconfB situation, intermediate RTs in the CconfB situation and the 

shortest RTs in the RalignB situations, with RT becoming faster from the first to the second 

block. In contrast, older adults did not show differences in RT across decision situations or 

blocks. Decision accuracy in conflict situations was positively correlated in the first and second 

block for younger, but not older adults. Data from the self-assessment showed that younger 

adults were more likely to report that their decisions were “accurate” compared with older adults, 

and older adults were more likely to report that they felt the task was “difficult” relative to 

younger adults. Concerning individual differences, results showed that higher scores on the 

Berlin Numeracy Test, the Lipkus Numeracy Task and the Cognitive Reflection Test – 

Reflection subscale predicted higher decision accuracy in both conflict situations, whereas lower 

scores on these assessments predicted a larger difference in accuracy between conflict situations 

(with lower scores produced more by the RconfB situation compared with the CconfB situation) 

on the belief updating task. 

 Concerning the results from ERP analysis, younger adults were biased toward attending 

to the higher prior probability in the second block, whereas older adults were biased toward 

attending to the higher prior in both blocks, as indexed by LRP mean amplitude. Further, a larger 

N2 was observed in Block 2 in the RconfB situation in younger adults, with larger N2 and 

smaller pP amplitudes correlating with accuracy in the RconfB and CconfB situations in Block 1. 

For older adults, a larger pP was observed in Block 2 in the CconfB situation. N2 amplitude was 
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more positive than pP amplitude in younger adults, reflecting low neural activity recruited from 

anterior regions, with older adults showing greater pP than younger adults. Concerning 

individual differences, higher scores on the Lipkus Numeracy Task and lower scores on the 

Cognitive Reflection Test – Intuition subscale showed a general pattern of correlating with larger 

N2 and smaller pP amplitudes in younger adults. In older adults, higher scores on the Lipkus 

Numeracy Task were correlated with larger N2 and pP amplitudes. Concerning the P3b 

component, younger adults showed a larger P3b in Block 2 in the CconfB compared with the 

RconfB situation. In both younger and older adults, smaller N2 amplitudes were correlated with 

larger P3b components. Further, smaller P3b amplitudes were associated with higher decision 

accuracy and Berlin Numeracy Test scores in the RconfB situation in younger adults.  

Last, larger FRN amplitudes were observed in Block 2 compared with Block 1, in 

younger compared with older adults, in the CconfB compared with the RconfB situation, and in 

response to negative compared with positive feedback. In younger adults, a larger FRN was 

produced in response to positive feedback in Block 2 compared with Block 1, with no FRN 

amplitude change across blocks for negative feedback. Additionally, a larger FRN was observed 

in response to negative feedback in Block 1 and 2 for older adults relative to positive feedback, 

with a larger FRN in response to both negative and positive feedback in Block 2 than 1. Further, 

larger FRN amplitude in response to negative feedback was correlated with higher accuracy in 

the CconfB situation in Block 1 for younger adults and was correlated with higher accuracy in 

the RconfB situation in Block 2 for older adults. Last, larger FRN amplitude in response to 

positive feedback was correlated with higher accuracy in both conflict situations in Block 1 for 

younger adults and was correlated with higher accuracy in the RconfB situation in both blocks 

for older adults. 
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Discussion 

 The goal of Experiment 2 was to build on the results of Experiment 1 by examining the 

potential age differences in the susceptibility to heuristics that lead to error in a belief updating 

task, with the addition of examining the effect of trial-by-trial feedback. In addition, I sought to 

investigate the neural activity that underlies belief updating in younger and older adults. The 

ERP technique was used to index cognitive control and response to feedback at the brain level 

given that it records event-related processing in real time. Moreover, a battery of assessments 

was used to measure individual differences in numeracy, thinking disposition, and cognitive 

reflection in order to examine how they relate to decision accuracy in the belief updating task. 

The main findings are discussed in the following sections and are organized according to 

behavioural and ERP results.  

Behavioural Results 

 In line with Hypothesis 1, results showed that younger adults made more accurate 

decisions than older adults in conflict situations. In contrast to Hypothesis 2 (i.e., accuracy was 

expected to increase across trials in younger adults only), decision accuracy improved from the 

first to the second block in both age groups and in both decision situation. This suggests that 

younger and older adults can learn to update their beliefs from feedback, but with younger adults 

learning from feedback to a greater degree than older adults. These results support prior research 

showing that younger adults learn from feedback more successfully than older adults and that 

older adults require more trials to learn from feedback relative to younger adults (Eppinger et al., 

2008; Mather & Carstensen, 2005). Replicating Experiment 1, as well as prior literature 

(Achtziger et al., 2014; Dave & Wolfe, 2003; Grether, 1980), the representativeness error was 

committed more than the conservatism error, demonstrating the prevalence of base-rate neglect 

(Kahneman & Frederick, 2002; Kahneman & Tversky, 1973), a result that supports Hypothesis 
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3. In line with Hypothesis 4, younger adults made faster decisions than older adults. However, 

younger adults showed a decrease in RT from the first to the second block, whereas older adults 

did not show a difference in RT across blocks, a finding in contrast to Hypothesis 5.   

 In line with Hypothesis 6, the Berlin Numeracy Test, Lipkus Numeracy Task, and the 

Cognitive Reflection Test - Reflection subscale predicted decision accuracy such that higher 

numeracy, and cognitive reflection scores predicted a smaller gap in decision accuracy between 

conflict situations (i.e., less likely to commit the representativeness error). Moreover, processing 

speed scores correlated with decision accuracy in conflict situations. These results are consistent 

with Experiment 1, as well as prior literature showing that numeracy and measures of fluid 

intelligence modulate susceptibility to decision biases (Cokely et al., in press), and for the first 

time shows that cognitive reflection, as indexed by the extended Cognitive Reflection Test, is a 

good predictor of belief updating in younger and older adults. Replicating results from 

Experiment 1, the Need for Cognition and Faith in Intuition scales did not predict decision 

accuracy. Together these results suggest that individual difference measures of ability rather than 

self-report measures were stronger predictors of performance on the belief updating task. 

Measures of ability such as numeracy level may share more method variance with the belief 

updating task compared with self-report measures of thinking dispositions. 

 Taken together, given the increase in accuracy across blocks, the results suggest that 

feedback may have cued reflective processing in younger and older adults. That is, older adults 

can learn to avoid committing heuristic-based errors when updating beliefs with feedback, but to 

a lesser extent than younger adults. It is also possible that an increase in decision accuracy could 

be due to instrumental conditioning, such that decision situations were paired with correct 

outcomes in memory. If instrumental conditioning underlies learning from feedback one may 
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expect approximately equal decision accuracy across decision situations. However, results show 

evidence that the representativeness error was more difficult to avoid than the conservatism 

error. This suggests that the increase in accuracy over time may not be due to instrumental 

conditioning, but rather learning to suppress and override automatic responses in certain decision 

situations. In addition, these results further support literature showing that numeracy underlies 

cognitive reflection and decision biases (Klaczynski, 2014; Pennycook et al., 2013; Peters, 

Diefenbach, Hess, & Västfjäll, 2008; Peters et al., 2006), and for the first time demonstrates that 

the extended Cognitive Reflection Test (Toplak, et al., 2014a) is a good predictor of decision 

accuracy in a belief updating task in younger and older adults.   

ERP Results 

 Younger adults showed a bias towards attending to the higher prior probability in the 

second, but not the first block, as indexed by the LRP. This may be evidence of younger adults 

inhibiting a preference towards prior probabilities and waiting for sample information before 

contemplating a decision in the first block, whereas in the second block younger adults may have 

learned to attend to the higher prior. These results are in line with the notion that younger adults 

are adaptive decision makers that change strategies in order to improve decisions (Gigerenzer & 

Gaissmaier, 2011). In contrast, older adults showed a bias toward attending to the higher prior 

throughout the task. These results support literature showing an age-related decrease in 

inhibitory control (Hasher & Zacks, 1988), as well as an age-related increase in automatic 

processing (Peters, Finucane, MacGregor, & Slovic, 2000). Thus, in contrast to Hypothesis 7, 

LRP amplitude did not attenuate across blocks. 

 Further, in contrast to Achtziger et al. (2014) who showed that larger LRP amplitudes 

were correlated with committing a conservatism error, in the current experiment no correlation 
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was observed. Given that decision accuracy increased across blocks in the CconfB situation, and 

LRP amplitude either increased (younger adults) or larger LRP amplitudes were sustained (older 

adults) across blocks, attending to the higher prior may be an adaptive reasoning strategy, rather 

than evidence of conservatism as argued by Achtziger et al. (2014). Critically, Achtziger et al. 

(2014) did not present feedback, whereas feedback was presented in this experiment. This 

indicates that without feedback biasing towards the higher prior associates with committing the 

conservatism error. However, with feedback, younger and older adults learn to attend to the 

higher prior and use this information in such a way as to avoid committing this error. Critically, 

these findings are the first to show that the conservatism error can be avoided by younger and 

older adults when given the opportunity to learn, via feedback, to orient to the higher prior 

before, but not in lieu of, considering the sample.  

 Consistent with findings reported by Achtziger et al. (2014) and partially consistent with 

Hypothesis 8, younger adults showed a larger N2 for the RconfB compared with the CconfB 

situation in the second relative to the first block, with larger N2 amplitudes associating with 

higher accuracy in conflict situations in the first block. These results fall in line with research 

showing that younger adults with a higher sensitivity to detecting a conflict between using a 

heuristic and engaging inhibitory processes for reflection, as indexed by the N2, associate with 

higher decision accuracy in conflict situations (Donkers & van Boxtel, 2004; Grützmann et al., 

2014). An association between N2 amplitude and decision accuracy was not observed in the 

second block possibly due to lack of variance in decision accuracy in conflict situations in the 

second block. In line with Hypothesis 9, older adults showed larger positivity in prefrontal 

regions (i.e., pP) for the CconfB compared with the RconfB situation in the second block. 

Consistent with the compensatory hypothesis (Cabeza et al., 2018; Kropotov, Ponomarev, 
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Tereshchenko, Müller, & Jäncke, 2016; Morcom & Johnson, 2015) and the PASA effect (Davis 

et al., 2008), older adults showed more prefrontal activity than younger adults possibly to 

compensate for deficits in other brain regions in order to engage cognitive control (Braver & 

Barch, 2002) and sustain good performance, albeit not to the same degree as younger adults. 

However, pP did not correlate with decision accuracy in older adults. 

 There may have been no difference in N2 amplitude for younger adults or pP for older 

adults between conflict situations in the first block because they were in the process of learning 

which situations comprise conflicting information (i.e., reflective processing was not as engaged 

when confronted with conflict situations in Block 1 as it was in Block 2). These results go 

beyond the results reported by Achtziger et al. (2014) by showing that conflict detection or 

engaged cognitive control, as indexed by the N2 and pP for younger and older adults 

respectively, also occurs when the conservatism heuristic conflicts with Bayes’ theorem. 

Although speculative, younger adults may have shown larger N2 amplitudes for the RconfB 

situation, and older adults may have shown larger pP for the CconfB situation in the second 

block due to an age difference in perceived problem solving ability. That is, younger adults may 

have registered the RconfB situation more within their means of solving (i.e., a challenge 

compared with the CconfB situation), whereas older adults may have registered the CconfB 

situation as more within their means of solving (with the RconfB situation more difficult for 

older adults to solve).  

 The larger P3b amplitude observed in the CconfB situation in the second block may 

reflect top-down allocation of attention, given that the P3b has been associated with attentional 

control (Friedman, 2003, 2012; O’Connell et al., 2012). A larger P3b may have been observed in 

the CconfB relative to the RconfB situation in Block 2 because younger adults may have 
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perceived this situation as attainable to solve (i.e., a conflict situation they have learned to 

respond accurately to over time). Attention may be more engaged in the CconfB relative to the 

RconfB situation to ensure a correct decision. No difference in P3b amplitude was observed 

between conflict situations for older adults perhaps because older adults engaged goal-directed 

attention for both conflict situations. No age differences were observed in P3b amplitude, 

however the results suggest that younger adults’ P3b activity was associated with task 

performance, whereas older adults’ P3b activity was not. Interestingly, smaller N2 amplitudes 

were associated with larger P3b amplitudes for the RconfB situation in the first block and the 

CconfB situation in the second block for younger and older adults. For the RconfB situation, 

these results may suggest that when a conflict goes undetected and inhibitory processes are not 

engaged, attentional control is engaged in a later processing stage. However, given that decision 

accuracy is almost at ceiling in the CconfB situation, inhibitory control is less necessary. Rather, 

attentional control may be engaged in order to ensure a correct decision is made in the CconfB 

situation (Friedman, 2003, 2012; O’Connell et al., 2012).   

 Concerning Hypothesis 10, although older adults showed less sensitivity to feedback, as 

indexed by the decrement in FRN in response to positive and negative feedback in older relative 

to younger adults (Eppinger et al., 2008; Hämmerer et al., 2010; Mathewson et al., 2008; 

Nieuwenhuis et al., 2002; Pietschmann, Simon, Endrass, & Kathman, 2008), older adults still 

showed evidence of learning from Block 1 to Block 2. Specifically, both younger and older 

adults showed larger FRNs in the second compared with the first block, suggesting stronger 

representations of expected outcomes as the task advanced, results in line with the increase in 

decision accuracy in the second block. 
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 Further, younger adults’ decision accuracy in conflict situations correlated with FRN 

amplitude on correct and incorrect trials in the first block, such that larger FRN amplitudes were 

associated with higher decision accuracy, with no correlation observed in the latter half of the 

task perhaps due to a ceiling effect of decision accuracy. Older adults’ accuracy correlated with 

FRN amplitude on correct trials across blocks but correlated with FRN amplitude on incorrect 

trials only in the second block in the RconfB situation. Although this could be due to a positivity 

bias in which older adults show a delay when learning from negative feedback (Mather & 

Carstensen, 2005), the data are more in line with a general decrement in learning from feedback 

with age. These results support research showing that older adults have difficulty learning from 

both positive and negative feedback due to ontogenetic changes in dopaminergic 

neuromodulation with age (Hämmerer et al., 2010; Nieuwenhuis et al., 2002). The results are 

also in line with research showing that older adults need more trials than younger adults to learn 

from feedback (Eppinger et al., 2008, 2009; Marschner et al., 2005). 

Neural Correlates of Individual Differences 

 Supporting Hypothesis 11, the Lipkus Numeracy Task correlated with a number of ERP 

components. In younger adults, Lipkus Numeracy Task scores correlated with larger N2, and 

smaller pP amplitudes in both conflict situations in the first block. In older adults, Lipkus 

Numeracy Task scores were correlated with larger N2 and pP amplitudes in the first and second 

block. These results suggest that higher numeracy, as indexed by the Lipkus Numeracy Task, 

associates with engaging cognitive control during belief updating in both younger and older 

adults, with numeracy associated with neural activity in the beginning of the task for younger 

adults, and throughout the task for older adults. Further, as the Lipkus Numeracy Task was a 
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predictor of decision accuracy, together these results support the notion that numeracy underlies 

reflective processing (Klaczynski, 2014; Peters et al., 2006) in both younger and older adults. 

 The Cognitive Reflection Test – Reflection and - Intuition subscales also correlated with 

neural activity in both age groups, however the results are counterintuitive. For younger adults, 

higher scores on the Cognitive Reflection Test - Intuition subscale associated with larger N2 

amplitudes in the first and second blocks in the CconfB situation. For older adults, higher 

Cognitive Reflection Test - Intuition (Cognitive Reflection Test - Reflection) subscale scores 

correlated with larger N2 (smaller pP) amplitudes in the RconfB situation in the second block. 

These results could suggest that those who fall prey to decision biases, as indexed by the 

Cognitive Reflection Test - Intuition subscale, may still detect conflict and engage inhibitory 

processes. Together, the results show that the Reflection subscale of the extended Cognitive 

Reflection Test predicts decision accuracy of belief updating. Although the Intuition subscale of 

the assessment did not predict decision biases, the correlates between this subscale and neural 

activity suggest that even those who engage reflective processes less still detect conflict and 

engage cognitive control processes.  

 Taken together, these results fall in line with two theoretical frameworks. First, similar to 

other conflict monitoring studies (e.g., Lucci et al., 2013), greater prefrontal activity was 

observed in older compared with younger adults in the same time window as the N2-P3 complex 

when updating beliefs in conflict situations. However, it is unclear whether this prefrontal 

activity represents age-related neural compensation or dedifferentiation. Age-related neural 

compensation is observed when older adults show more activity in a brain region (typically 

prefrontal areas) than younger adults when they perform a task at the same level as younger 

adults or when increased prefrontal activity is positively correlated with performance in older 
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adults but not in younger adults (termed “successful compensation”; Cabeza & Dennis, 2012; 

Grady, 2008, 2012). However, the results do not suggest that this activity reflects successful 

compensation because older adults performed worse than younger adults, and because prefrontal 

positivity was not correlated with task performance amongst older adults. Some researchers 

suggest that compensatory mechanisms might still be involved, even if performance in older 

adults is worse than younger adults such that older adults’ performance might be even worse 

without this over-recruitment (termed “attempted compensation”; Grady, 2012). If greater 

prefrontal activity with age is not compensatory, than what does this reflect? It could be argued 

that the prefrontal activity observed amongst older adults represents extraneous noise and the 

reduced selectivity in the recruitment of specialized neural processes (i.e., age-related 

dedifferentiation; Grady et al., 2002; Grady, 2012), especially because positive-going slow 

waves were also observed in older adults in more posterior brain regions (see P3b waveforms in 

Figure 14), evidence against a posterior-to-anterior shift in neural activity with age (Davis et al., 

2008).  

 To examine whether the prefrontal positivity in older compared with younger adults is 

due to age-related neural compensation, future research could use transcranial magnetic 

stimulation (a technique that applies a series of focally directed magnetic pulses to the scalp to 

stimulate the underlying neural tissue; Grady, 2012) to deactivate PFC processing to observe 

whether this negatively effects older adults’ and not younger adults’ performance. In addition, to 

examine whether this activity is due to age-related dedifferentiation, fMRI could be used to show 

whether older adults show widespread, non-specific activation during belief updating, given that 

fMRI has high spatial resolution.  
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 Second, the cognitive architecture of information processing framework postulates three 

main stages of cognitive reflection: Stage 1) detecting a conflict between an intuitive lure and a 

normative response; Stage 2) engaging Type 2, reflective processes to suppress and override 

Type 1 processes; Stage 3) simulating hypothetical alternative responses that are superior to the 

response generated by Type 1 processes (requiring declarative knowledge such as numeracy), 

while sustaining decoupling operations that keep hypothetical simulations and the real world 

separate (Stanovich, 2011; Stanovich & Evans, 2013). Given that older adults show a tendency 

to process information automatically rather than reflectively (Peters et al., 2007; important for 

Stage 1), show a deficit in inhibitory control (Hasher & Zacks, 1988; important for Stage 2), 

show lower numeracy skills than younger adults (Peters et al., 2006; important for Stage 3), and 

diminished executive functions and fluid intelligence (Salthouse, 2019; important for Stage 3) 

compared with younger adults, age differences in decision accuracy were expected.  

 Although speculative, younger and older adults may have learned to detect conflict in 

conflict situations from feedback, given that decision accuracy increased over time (i.e., Stage 1 

of cognitive reflection). In addition, younger and older adults showed evidence of cognitive 

control, indexed by the N2 and pP components, as well as the slow RTs in conflict situations 

relative to alignment situations (i.e., Stage 2 of cognitive reflection). Reflective processing and 

engagement of inhibitory control may have been cued by feedback, with younger and older 

adults showing stronger evidence of cognitive control in the second compared with the first 

block as making correct decisions was learned over time. As previously described, the Cognitive 

Reflection Test measures the ability to suppress and override automatic processes (Stanovich et 

al., 2016), numeracy has been used as a measure of declarative knowledge (Clark, 2001; Perkins, 

1995), and processing speed has been used to index fluid intelligence (Kane & Engle, 2002) in 
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cognitive reflection tasks. Results from this experiment show that cognitive reflection and 

numeracy predicted decision accuracy, and speed correlated with decision accuracy, regardless 

of age. These results support prior literature showing that reflective information processing, 

proficient knowledge (e.g., numeracy) and fluid intelligence underlies performance on cognitive 

reflection tasks.  

 In sum, both younger and older adults showed evidence of conflict detection (Stage 1) 

and cognitive control (Stage 2), with individual differences in numeracy, cognitive reflection and 

processing speed relating to decision accuracy regardless of age, but with younger adults 

performing better than older adults overall. At what stage during cognitive reflection does 

processing differ in younger and older adults? As a reminder, no age differences were observed 

on the numeracy measures or on the extended Cognitive Reflection Test. However, age 

differences were observed in processing speed, an index of fluid intelligence, which also 

correlated with decision accuracy. Age and processing speed have been shown to be highly 

correlated in the literature (e.g., Bors & Forrin, 1995; Manard, Carabin, Jaspar, & Colletee, 2014; 

Salthouse, 2019). Therefore, the association between speed and accuracy observed in the current 

experiment may simply reflect the association between age and decision accuracy. Sustaining 

decoupling operations have previously been shown to be modulated by inhibitory control, 

working memory capacity, and fluid intelligence (Kane & Engle, 2002), cognitive processes that 

decline with age (Harada, Natelson Love, & Triebel, 2013; Salthouse, 2012). Therefore, although 

the processing speed results could reflect the link between age and accuracy, the results may also 

suggest that older adults have difficulty sustaining decoupling operations (Stage 3) due to 

diminished fluid abilities compared with younger adults. However, future research is required to 
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further investigate at which stage in the process of cognitive reflection older adults differ than 

younger adults, as well as the role of fluid intelligence in cognitive reflection in old age.  

 In conclusion, the results from Experiment 2 replicate and add several important findings 

to the literature. In line with previous research, the representativeness error was committed more 

than the conservatism error (Achtziger et al., 2014; Grether, 1980, 1992). Further, both younger 

and older adults were able to learn to avoid committing heuristic-based errors with feedback, but 

to a lesser degree in older adults likely due to a delay in learning from feedback relative to 

younger adults. Additionally, the neural correlates that underpin belief updating differ as a 

function of age, with older adults engaging more anterior regions than younger adults and 

younger adults engaging more frontocentral regions than older adults during belief updating. The 

behavioural and ERP results also indicate that younger and older adults detected conflict in 

conflict situations and engaged cognitive control processes. Moreover, individual differences in 

cognitive reflection and numeracy predicted decision accuracy, with processing speed correlating 

with decision accuracy. Given that no age differences were observed in cognitive reflection or 

numeracy, but age differences were observed in processing speed, age differences in belief 

updating may stem from sustaining decoupling operations, a process heavily dependent on fluid 

abilities. Taken together, these data suggest that: a) different neural processes support belief 

updating in younger and older adults; b) individual differences in ability such as numeracy, 

cognitive reflection and processing speed, rather than self-reports of thinking disposition, 

modulate performance in belief updating; and c) although speculative, decision biases may stem 

from diminished fluid abilities in old age.  



178 

 

Chapter 7: Experiment 3 
 

To briefly summarize, Experiment 1 of this dissertation showed no age differences and 

no increase in accuracy over time in belief updating without feedback, with numeracy predicting 

decision accuracy in both conflict situations and processing speed associating with the avoidance 

of committing the conservatism error. Building on Experiment 1, Experiment 2 employed the 

same belief updating task but with the addition of trial-by-trial feedback, and the recording of 

neural activity. Results from Experiment 2 showed that accuracy increased in both age groups 

over time but with younger adults updating beliefs more accurately than older adults overall. 

ERP and behavioural data showed evidence of conflict detection and cognitive control processes 

(N2, pP, P3b, and slower RTs) in conflict situations in both age groups, but with older adults 

responding to feedback less than younger adults (FRN). Numeracy and cognitive reflection 

predicted decision accuracy, with no age differences on these assessments. Last, processing 

speed, an index of fluid intelligence, associated with decision accuracy such that higher scores in 

processing speed associated with higher scores in decision accuracy, with younger adults 

performing better on this assessment than older adults. Together, these results show that younger 

and older adults can learn to update beliefs if feedback is presented, with older adults updating 

beliefs less accurately than younger adults potentially due to a failure in sustaining decoupling 

operations, which depend on fluid intelligence, or from learning from feedback less successfully 

than younger adults, or some combination of the two, and with numeracy and cognitive 

reflection modulating performance, regardless of age. 

Experiments 1 and 2 require making decisions under conditions of risk. However, there 

are two types of decisions that are made under uncertain conditions – decisions under risk and 

decisions under ambiguity (Knight, 1921). Whereas decisions under risk are situations in which 
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probabilities of possible outcomes are known or can be estimated, decisions under ambiguity are 

situations in which the probabilities of possible outcomes are unknown or are not well defined, 

and are reducible such that estimates become more accurate as the number of observations 

increase (Ellsberg, 1961; Huettel, Stowe, Gordon, Warner, & Platt, 2006; Knight, 1921; Payzan-

LeNestour, & Bossaerts, 2011; Volz & Gigerenzer, 2011). A distinction between making 

decisions under risk and ambiguity was illustrated by the Ellsberg Paradox (Ellsberg, 1961). The 

Ellsberg Paradox shows that decision makers violate the postulates of subjective expected utility 

(Savage, 1954), such that a known probability (i.e., measurable risk) is preferred over an 

unknown probability (i.e., unmeasurable risk), even when the known probability is low (e.g., a 

50% chance of winning $100) and the unknown probability may be high (e.g., an unknown 

chance of winning $100) - a phenomenon in decision theory termed ambiguity aversion 

(Ellsberg, 1961; Heath & Tversky, 1991; Seer et al., 2016).  

Older adults show a deficit in learning tasks that involve ambiguity, a finding that has 

been associated with a greater aversion to ambiguous information with age (Tymula et al., 2013). 

Specifically, older adults show deficits in probabilistic compared with deterministic learning 

tasks (Eppinger et al., 2008; Samanez-Larkin, et al., 2014; Weiler, Bellebaum, & Daum, 2008), 

in situations where feedback is ambiguous (Eppinger et al., 2011; Herbert et al., 2011), and when 

changes in learning are required such as reversal learning (Eppinger et al., 2008; Eppinger & 

Kray, 2011; Hämmerer et al., 2011; Herbert et al., 2011; Pietschmann et al., 2011; Weiler et al., 

2008) compared with their younger adult counterparts. However, older adults perform similarly 

to younger adults when making decisions under risk with no feedback (Armstrong & Spaniol, 

2017; Denburg, Tranel, & Bechara, 2005; Mata et al., 2011; Zamarian et al., 2008). Evidence 

across several cognitive domains point towards a deficit in forming adequate task representations 
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about ambiguous information in old age (Gazzaley, 2011; Hämmerer et al., 2014; Hämmerer et 

al., 2010; Störmer, Winther, Li, & Andersen, 2013). Specifically, age-related impairments in 

representing ambiguous information have been attributed to a diminished ability to infer 

unknown information (Hämmerer et al., 2019) or incorporate requisite levels of ambiguity to 

guide learning whereby certain information is overvalued and uncertain information is 

undervalued (Nassar et al., 2016).  

For example, Nassar and colleagues (2016) gave younger and older adults a predictive 

inference task in which they had to infer the mean of a noisy variable that underwent change 

points. The task required participants to estimate where a helicopter would drop a bag from the 

sky by adjusting the location of a bucket on the ground. Participants had to infer the mean 

location of the helicopter that occasionally changed locations and dropped bags from the sky on 

each trial. Results of the study revealed that older adults assigned weight to certain information 

and neglected to assign weight to unknown information, providing evidence of underestimating 

uncertainty with age. Younger adults, in contrast, showed evidence of representing ambiguous 

information more accurately, by acknowledging missing information and incorporating its 

relevance when making decisions. Whereas younger adults showed an adjusted learning rate 

over time, older adults did not show improvement in learning about ambiguous information. This 

was also true after accounting for working memory and reasoning abilities. That is, age-related 

deficits in learning from ambiguity were dissociated from normal decline in fluid abilities with 

age (Nassar et al., 2016). 

Additionally, in a recent study, Hämmerer and colleagues (2019) investigated whether 

younger and older adults differ in their ability to form adequate task representations to make 

decisions using a novel probabilistic reversal learning paradigm. The task required participants to 
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infer the current season (i.e., winter or summer) which was not explicitly stated to participants, 

and to detect switches between seasons based on sales of winter-specific and summer-specific 

items. Compared with younger adults, older adults were less efficient at learning from feedback, 

and were less certain about their inferences. Further, participants’ pupil diameter was measured 

to index increased activity of the noradrenergic system (i.e., increased neuronal firing in the 

locus coeruleus; Joshi, Li, Kalwani, & Gold, 2016), with increased noradrenergic modulation 

occurring when events or stimuli are deemed relevant to the task context (Dayan, 2012). For 

younger adults, larger pupil diameters were associated with informative outcomes relative to 

uninformative outcomes. However, for older adults, larger pupil diameters were associated with 

both informative and uninformative feedback, as well as less efficient belief updating and less 

accurate inferences about the current season relative to the younger adult group.   

The reason for the age differences observed in decisions made under ambiguity compared 

with decisions made under risk has been attributed to the different neural structures and cognitive 

mechanisms these decisions rely on (Brand, Labudda, & Markowitsch, 2006). Specifically, the 

“limbic” loop includes the orbitofrontal cortex (OFC), ventromedial PFC (VMPFC), and limbic 

structures such as the amygdala, ventral striatum, and their associated neurotransmitter systems. 

These brain structures support decisions under ambiguity, regulating emotion processing, 

feedback processing, and reward-based learning (Brand et al., 2006). The “cognitive” loop 

comprises the dorsolateral PFC (DLPFC), lateral OFC, dorsal striatum and supports decisions 

under risk that rely on executive functions (Brand et al., 2006). Both the PFC, part of the 

“cognitive” and “limbic” loops, and the neural systems that support feedback processing and 

reward learning, part of the “limbic” loop, have been shown to decline with age (Eppinger et al., 

2008; West, 2000). Older adults may be less efficient at making decisions under ambiguity 
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compared with younger adults because the systems that support feedback processing, which is 

required for learning to infer about ambiguous information, declines with age. However, this is 

speculative and requires empirical testing in future research.  

Of importance to this dissertation, it is currently unknown how older adults use heuristics 

to make decisions when relevant information is ambiguous and needs to be inferred. As 

previously described, Experiments 1 and 2 of this dissertation employed an urn-ball paradigm in 

which participants made decisions under risk such that probability distributions (i.e., the prior 

and sample) were defined and could be used to make normative, Bayesian inferences about the 

riskiness of a decision (Savage, 1954), such as the probability of the computer drawing a sample 

from Urn A relative to Urn B. Given the age-related increase in the aversion to ambiguous 

information (Tymula et al., 2013), it is possible that ambiguous information would modulate the 

use of heuristics differently in older compared with younger adults (decision under uncertainty), 

than when information is certain (decision under risk).  

Concerning individual differences, although Nassar et al. (2016) reported that age-related 

deficits in uncertainty-driven learning are dissociated from general decline in fluid abilities, it 

was of interest to examine whether fluid intelligence would associate with performance in a 

belief updating task, as found in the previous experiments of this dissertation. Additionally, 

Experiments 1 and 2 showed that numeracy and cognitive reflection predicted accuracy when 

making decisions under risk, however it is unknown whether individual differences in these 

assessments would predict accuracy when making decisions under ambiguity. 

To fill these gaps in the literature, the current experiment sought to examine potential age 

differences concerning how decisions under ambiguity influence the use of heuristics compared 

with decisions under risk. Experiment 3 employed a modified version of the urn-ball paradigm 
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used in the previous experiments that comprised three different conditions. One condition 

presented the probability distributions for both the prior and sample information (i.e., certain 

prior, certain sample condition), which served as a control condition and was analogous to the 

urn-ball task used in Experiments 1 and 2. The second condition presented the probability 

distribution of prior information but presented ambiguous sample information (i.e., certain prior, 

uncertain sample condition). The third condition presented ambiguous prior information and the 

probability distribution of sample information (i.e., uncertain prior, certain sample condition). In 

line with Experiment 2, participants had to avoid committing the representativeness and 

conservatism errors by learning through feedback in the certain prior, certain sample condition. 

In the two conditions that presented uncertain information however, participants had to infer the 

unknown information and avoid committing heuristic-based decision errors by learning from 

feedback.  

Hypotheses 

 

 In light of the results of Experiment 2 and research showing an aversion to ambiguity 

with age (Hämmerer et al., 2019; Nassar et al., 2016), I expected to replicate results from 

Experiment 2, such that younger adults would make more accurate decisions than older adults, 

and the representativeness error would be committed more than the conservatism error. 

However, I hypothesized that older adults would use prior information to make decisions in the 

certain prior, uncertain sample condition leading to higher accuracy in the RconfB situation and 

lower accuracy in the CconfB situation compared with accuracy in the certain prior, certain 

sample condition. In contrast, I hypothesized that older adults would use sample information to 

make decisions in the uncertain prior, certain sample condition leading to lower accuracy in the 

RconfB situation and higher accuracy in the CconfB situation compared with accuracy in the 
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certain prior, certain sample condition. I expected no difference in accuracy across conditions in 

younger adults.  

Last, I predicted that higher scores on the Lipkus Numeracy Task, Berlin Numeracy 

Task, DSST, Cognitive Reflection Test – Reflection subscale, and Need for Cognition 

assessments and lower scores on the Cognitive Reflection Test – Intuition subscale and Faith in 

Intuition assessments would associate with more accurate decisions across decision situations, 

and lower scores on the Lipkus Numeracy Task, Berlin Numeracy Task, DSST, Cognitive 

Reflection Test – Reflection subscale, and Need for Cognition assessments and higher scores on 

the Cognitive Reflection Test – Intuition subscale and Faith in Intuition assessments would 

associate with less accurate decisions across decision situations, regardless of age. Although the 

thinking disposition assessments did not predict performance in the two previous experiments, it 

was of interest to examine whether they would predict performance when making decisions 

under ambiguity. See Table 17 for a summary of the hypotheses set for Experiment 3.  
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Table 17. Hypotheses for Experiment 3 

Note. RconfB = Representativeness heuristic conflicts with Bayes’ theorem; CconfB = 

Conservatism heuristic conflicts with Bayes’ theorem; RalignB = Representativeness heuristic 

aligns with Bayes’ theorem; CPCS = certain prior, certain sample; CPUS = certain prior, 

uncertain sample; UPCS = uncertain prior, certain sample; RT = reaction time; BNT = Berlin 

Numeracy Test; Lipkus = Lipkus Numeracy Task; DSST = Digit Symbol Substitution Test; 

CRT-R = Cognitive Reflection Test – Reflection subscale; CRT-I = Cognitive Reflection Test – 

Intuition subscale; NFC = Need for Cognition; FI = Faith in Intuition. 

 

 

Method 

 

Participants 

The final sample included 30 younger adults (ages 18-35) and 30 older adults (ages 65-

85). All participants completed the battery of assessments described in the General Methods 

section (pages 56-61), with the addition of the extended Cognitive Reflection Test. Consistent 

with Experiments 1 and 2, several age differences emerged. Older adults were more educated, 

had higher vocabulary scores, lower self-reported symptoms of anxiety and negative affect, and 

slower processing speed as indexed by the DSST, compared with younger adults. A total of six 

List of Hypotheses 

 1 Younger adults were predicted to make more accurate decisions than older 

adults. 

 2 The representativeness error was expected to be committed more than the 

conservatism error. 

 3 Older adults were expected to make less decision errors in the RconfB 

situation and more decision errors in the CconfB situation in the certain 

prior, uncertain sample condition compared with the certain prior, certain 

sample condition. 

 4 Older adults were expected to make more decision errors in the RconfB 

situation and less decision errors in the CconfB situation in the uncertain 

prior, certain sample condition compared with the certain prior, certain 

sample condition. 

 5 Younger adults were predicted to show no difference in decision accuracy 

across conditions. 

 6 Younger adults were predicted to produce faster RTs than older adults. 

Assessments 7 Higher (lower) scores on the BNT, Lipkus, DSST, CRT-R and NFC, and 

lower (higher) scores on the CRT-I and FI scales were expected to 

associate with higher (lower) decision accuracy, regardless of age. 
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participants were excluded and later replaced. Two younger adults were excluded because they 

scored above the cut-off on the depression and anxiety subscales of the DASS-21, one younger 

adult and three older adults were excluded because they scored below the cut-off in the RalignB 

situations (i.e., below 70%), an index of task comprehension. See the General Methods section 

(pages 47-48) for a description of the inclusion and exclusion criteria. The characteristics of the 

final sample are presented in Table 18.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



187 

 

Table 18. Characteristics of the Final Sample in Experiment 3 

Note. Between-group comparisons were made using independent-sample t tests, aside from 

gender and handedness which were examined using Pearson’s chi square. Standard deviations 

are in parentheses. aSubscales of the 21-item Depression Anxiety and Stress Scale; bSubscales of 

the Positive and Negative Affect Schedule; cScores reflect number of correct solutions; MMSE = 

Mini-Mental State Examination; DSST = Digit Symbol Substitution Test; Mill Hill = Mill Hill 

Vocabulary Test; BNT = Berlin Numeracy Test’ Lipkus Numeracy = Lipkus Numeracy Task; 

Cognitive Reflection Test – Reflection subscale; Cognitive Reflection Test – Intuition subscale. 

d = Cohen’s d for standardized effect size estimates of the mean difference between groups. 

  
Younger Adults 

(n = 30) 
 

Older Adults 

(n = 30) 
  

  M (SD)  M (SD) p d 

Demographics       

 Age in Years 24.57 (4.88)  72.63 (5.18) < .001 -9.55 

 Age Range 18-35  65-85 - - 

 
Male/Female 

Ratio 

15/15 
 

15/15 1.0 - 

 
Education in 

Years 

15.63 (2.08) 
 

17.87 (2.81) .001 -0.91 

 
Right/Left 

Handed 

27/3 
 

25/5 .71 - 

Emotion       

Assessments Depressiona 4.93 (5.22)  3.67 (4.90) .34 0.25 

 Anxietya 5.13 (4.22)  1.73 (3.10) .001 0.92 

 Stressa 8.73 (6.29)  5.73 (5.84) .06 0.49 

 Positive Affectb 31.80 (8.53)  33.70 (8.40) .39 -0.22 

 Negative Affectb 13.77 (5.06)  11.20 (1.94) .01 0.67 

Cognitive       

Assessments MMSEc -  28.73 (1.20) - - 

 DSSTc 86.87 (10.42)  60.33 (11.13) < .001 2.46 

 Mill Hillc 17.53 (4.28)  21.60 (3.95) < .001 -0.99 

 BNTc 1.57 (1.28)  1.20 (1.24) .27 0.29 

 
Lipkus 

Numeracyc 

10.47 (1.93) 
 

9.63 (2.39) .14 0.39 

 Faith in Intuition 5.84 (1.59)  5.88 (1.98) .93 -0.02 

 
Need for 

Cognition 

65.93 (11.08) 
 

62.20 (9.97) .18 0.35 

 CRT-R 2.93 (2.18)  2.30 (1.84) .23 0.31 

 CRT-I 3.00 (1.87)  2.90 (1.58) .82 0.06 
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Materials 

 The stimuli in Experiment 3 were presented differently than the previous experiments in 

order to vary the certainty of the prior and sample information. In Experiments 1 and 2, the prior 

was presented in the form of numbers that indicated the probability of the computer choosing an 

urn to draw a sample (e.g., there is a 75% likelihood the computer will choose the left urn; 25% 

right urn). In Experiment 3, however, twelve urns were presented, along with a representative 

proportion of eight blue and green balls within each urn. Of the twelve urns, two types of urns 

existed – one type of urn contained 75% of one colour and 25% of another colour, the other type 

of urn contained 50% of one colour and 50% of another colour. Additionally, there were two 

different types of urn proportions – one type of urn proportion consisted of 75% in one urn 

(9/12) and 25% in the other urn (3/12), and the other type of urn proportion consisted of 50% in 

one urn (6/12) and 50% in the other urn (6/12). The urns were presented in two horizontal rows 

with six urns per row. The majority colour was counterbalanced, and always presented on top, 

and the minority colour was always presented on the bottom. Sample stimuli consisted of four 

balls positioned vertically and were presented below the two rows of prior information in the 

middle of the screen. Below the sample, the two urn types were presented indicating the two 

decision options, with one positioned on the left and one on the right in the center of the screen. 

 The certain prior, certain sample condition presented all prior and sample information 

(see Figure 16A). The certain prior, uncertain sample condition presented all the prior 

information, but presented only a portion of the sample information, such that one of the four 

balls were half blue and half green representing a “masked” ball (i.e., the ball was either blue or 

green), with the majority colour as the top half of the ball and minority colour the bottom half of 

the ball. The masked ball was always positioned as the first ball of the sample (see Figure 16B). 
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The actual colour of the masked ball of the sample was always the majority colour. The 

uncertain prior, certain sample condition presented all the sample information but masked some 

of the prior information. Specifically, eight of the twelve priors were masked. Eight balls with 

half blue and half green balls represented the urns that were masked (see Figure 16C). The actual 

urn proportions of the masked urns were either one of the two types of urns (i.e., 75%-25% or 

50%-50%). In line with Experiment 2, feedback was provided indicating whether the participant 

made a “correct” or “incorrect” decision on each trial. 

 The colours of the stimuli were the same as the previous experiments (see pages 55-56 in 

the General Method section), however the size differed such that the blue and green balls were 

smaller (image size 40 × 40 pixels) in the current study compared with Experiments 1 and 2 

because there were more stimuli to present simultaneously. However, in line with the previous 

experiments, all stimuli were presented in the center of the computer screen within a space of 

220 × 220 pixels. 

 In Experiments 1 and 2, participants completed 424 trials total. Experiment 3, in contrast, 

included 330 trials total, with 110 trials per condition (i.e., 30 trials per decision situation of 

interest, and 20 filler trials), with two mandatory 1-minute breaks separating each condition, and 

three 30-second breaks in the middle (i.e., 55th trial) of each condition separating 

counterbalanced colour (i.e., majority blue [green] and minority green [blue] balls 

counterbalanced in each condition).  

Procedure 

 Belief updating task. The practice task included a total of 16 trials, with 4 trials per 

condition, and with conditions counterbalanced14. The concept of the belief updating task in the 

 
14 No feedback was included in the practice task in order to avoid learning effects prior to the 

experiment beginning. 
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current experiment was the similar to Experiments 1 and 2. That is, participants had to decide 

from which of two urns a computer-drawn sample had most likely originated, given the prior and 

sample information. However, two conditions were added that varied the certainty of prior and 

sample information. In the certain prior, certain sample condition, participants were first 

presented with prior information (i.e., twelve urns containing eight representative blue and green 

balls), then the sample of four balls drawn from one of the urns, and then the decision prompt 

indicating decision options.  

In the certain prior, uncertain sample condition the same trial sequence applied, except 

that the top ball of the sample was masked. In this condition, participants were told that the 

masked ball drawn by the computer could either be blue or green. Unbeknownst to participants, 

the masked ball in the sample was the majority colour ball. The participants’ goal was to learn 

through feedback that the masked ball represented the majority colour in order to reduce 

uncertainty of the sample information (i.e., infer hidden sample information) and increase 

decision accuracy. In the uncertain prior, certain sample condition the same trial sequence 

applied except that eight of the twelve urns were masked. In this condition, participants were told 

that the masked urns contained proportions of blue and green balls that represented one of the 

two types of urns (i.e., 75%-25% or 50%-50%), however the number of each type of urn 

remained unknown. Unbeknownst to participants, the four urns with their contents visible 

reflected the same information as all twelve urns presented in the certain prior, certain sample 

condition. That is, if the four unmasked urns showed three 75%-25% urn types and one 50%-

50% urn type, the masked urns reflected the same proportions, such that there were nine 75%-

25% urn types, and three 50%-50% urn types. The participants’ goal was to learn through 

feedback that the eight masked urns represented the same information the four unmasked urns 
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represented in order to reduce uncertainty of the prior information (i.e., infer the hidden prior 

information).  

Single trial sequence. First, a fixation cross was presented for 1000 ms to cue the 

beginning of a trial. Next, twelve urns with eight half blue, half green balls were presented for 

1000 ms in two rows at the top of the screen15. Prior information was then presented for 3000 

ms. Subsequently, sample information was presented in addition to prior information for 2000 

ms, and then the decision prompt was presented at the bottom of the screen (there was no time 

maximum to make a decision). Sample information was presented for 2000 ms before the 

participant could make a decision because this experiment presented more stimuli than the 

previous experiments, and I wanted to ensure participants attended to both the prior and the 

sample before a decision could be made. Once a decision was made, feedback (“correct” or 

“incorrect”) was presented for 1000 ms. Figure 16, Panels A-C illustrates a single-trial sequence 

of the situation in which the representativeness heuristic conflicts with Bayes’ theorem in each 

condition of Experiment 3. 

 
15 The half blue-half green balls reflected masked information within the twelve urns and was 

used to cue the participant that prior information was about to be presented. 
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Figure 16. Sample trial of the representativeness heuristic conflicting with Bayes’ theorem in Experiment 3. Panel A demonstrates this decision 

situation in the certain prior, certain sample condition; Panel B demonstrates this decision situation in the certain prior, uncertain sample; Panel C 

demonstrates this decision situation in the uncertain prior, certain sample condition. The labels described in Panel A also apply to Panels B and C. 
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 Cognitive and affective assessments. Upon task completion, the battery of assessments 

outlined in the General Methods section (pages 56-61) was administered, including the extended 

Cognitive Reflection Test (Toplak et al., 2014a). 

Data Analysis 

Data analysis for Experiment 3 followed the procedures outlined in the General Methods 

section (pages 62-64). In addition to decision situation and age, condition (certain prior certain 

sample, certain prior uncertain sample, uncertain prior certain sample) was also included as a 

factor in the omnibus ANOVA.  

Results 

Decision Accuracy for All Decision Situations 

 Decision accuracy for each of the 15 prior and sample combinations is provided in Table 

19, separately for each age group and condition. Following the previous experiments, the 

situations of interest are bolded in the table. In line with the previous experiments, independent 

sample t tests were conducted across counterbalancing version on decision accuracy for each 

decision situation of interest within each condition. No differences in counterbalancing version 

were observed in the decision situations or conditions (ps > .05).  
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Table 19. Means and Standard Deviations for Accuracy in Experiment 3 

Note. CPCS = certain prior, certain sample; CPUS = certain prior, uncertain sample; UPCS = uncertain prior, certain sample. Values 

represent proportion (%) of correct decisions; Prior = prior probability for the left urn; Sample = number of majority colour balls of 

sample; Younger adults’ accuracy is on the top line, older adults’ accuracy is on the bottom line. Standard deviations are in 

parentheses. Bold indicates decision situations of interest. Total number of trials are indicated on the third row. 

Prior  Sample 

  0 1 2 3 4 

75       

 CPCS 95.00 (15.26) 

85.00 (32.56) 

94.20 (9.47) 

83.93 (25.46) 

71.93 (29.57) 

50.20 (27.63) 

98.33 (9.13) 

96.67 (18.26) 

100.00 (0.00) 

91.67 (18.95) 

 CPUS 91.67 (18.95) 

83.33 (30.32) 

92.37 (11.40) 

78.87 (25.30) 

54.50 (26.82) 

53.07 (22.56) 

90.00 (20.34) 

81.67 (27.80) 

98.33 (9.13) 

90.00 (24.21) 

 

 

UPCS 95.00 (15.26) 

85.00 (29.80) 

2 

91.10 (13.16) 

86.77 (19.14) 

15 

72.20 (28.25) 

49.97 (25.51) 

15 

100.00 (0.00) 

91.67 (23.06) 

2 

98.33 (9.13) 

88.33 (21.51) 

2 

50       

 CPCS 100.00 (0.00) 

96.67 (12.68) 

100.00 (0.00) 

86.67 (29.16) 

97.07 (7.23) 

87.07 (16.56) 

97.53 (5.09) 

91.70 (11.58) 

100.00 (0.00) 

93.33 (22.16) 

 CPUS 98.33 (9.13) 

86.67 (29.16) 

96.67 (12.68) 

91.67 (23.06) 

90.23 (11.20) 

87.33 (15.57) 

75.73 (25.58) 

62.13 (23.65) 

97.80 (8.37) 

90.07 (17.76) 

 UPCS 98.33 (9.13) 

98.33 (9.13) 

2 

100 (0.00) 

91.67 (23.06) 

2 

95.07 (7.43) 

84.00 (16.50) 

15 

97.73 (4.77) 

84.67 (16.68) 

15 

98.90 (6.03) 

90.00 (25.02) 

3 

25       

 CPCS 98.33 (9.13) 

93.33 (17.29) 

93.40 (13.43) 

93.37 (16.11) 

96.67 (12.68) 

83.33 (27.33) 

58.83 (32.13) 

37.23 (30.31) 

88.40 (14.86) 

77.93 (26.48) 

 CPUS 95.00 (20.13) 

93.33 (17.29) 

94.50 (12.51) 

91.13 (23.04) 

90.00 (24.21) 

86.67 (22.49) 

74.57 (21.45) 

67.57 (19.74) 

84.80 (13.90) 

64.00 (26.89) 

 UPCS 100.00 (0.00) 

93.33 (21.71) 

2 

97.80 (8.37) 

87.80 (28.34) 

3 

90.00 (20.34)  

73.33 (31.44) 

2 

65.67 (28.67) 

36.50 (29.16) 

15 

87.07 (15.06) 

78.00 (27.68) 

15 
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Combining like-situations. Collapsing across age, within the certain prior, certain 

sample condition, paired-sample t-tests showed no difference in the RalignB situation, t (59) = -

1.32, p = .19, d = -0.17. However, differences between RconfB situations, t (59) = -4.05, p < 

.001, d = -0.52, and CconfB situations, t (59) = -2.39, p = .02, d = -0.32, were observed. Within 

the certain prior, uncertain sample condition, the RalignB situation, t (59) = 5.96, p < .001, d = 

0.77, the RconfB, t (59) = 5.12, p < .001, d = 0.65, and the CconfB situations, t (59) = -3.62, p < 

.001, d = -0.46, showed significant differences. Within the uncertain prior, certain sample 

condition, the RalignB situation, t (59) = -0.73, p = .47, d = 0.07, showed no differences, 

however the RconfB, t (59) = -2.89, p = .01, d = -0.37, and the CconfB situations, t (59) = -2.20, 

p = .03, d = -0.26, showed significant differences. Like-situations were combined regardless of 

these differences as the primary interest was to examine decision situation type, and not 

variations within decision situation type. 

Decision Accuracy  

 A 2 (age: young, old) × 3 (decision situation: RconfB, CconfB, RalignB) × 3 (condition: 

certain prior certain sample, certain prior uncertain sample, uncertain prior certain sample) mixed 

ANOVA on decision accuracy was conducted. Analyses revealed a main effect of decision 

situation, F (1.28, 74.22) = 83.66, p < .001, ηp
2 = .59, with pairwise comparisons showing that 

the RconfB (M = .58, SD = .22) led to less accurate decisions than the CconfB (M = .84, SD = 

.15), t (59) = -7.96,  p < .001 , d = -1.03 and the RalignB situations (M = .88, SD = .09), t (59) = -

12.72, p < .001 , d = -1.64, with no differences between the CconfB and RalignB situations, t 

(59) = -0.66, p = .12, d = -0.09, a main effect of age, F (1, 58) = 25.32, p < .001, ηp
2 = .30, such 

that younger adults (M = .83, SD = .10) made more accurate decisions than older adults (M = .70, 

SD = .09), as well as a main effect of condition, F (2, 116) = 7.65, p = .001, ηp
2 = .12, such that 
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the certain prior, certain sample condition (M = .78, SD = .14) led to more accurate decisions 

than the certain prior, uncertain sample condition (M = .74, SD = .12), t (59) = 3.33, p = .01, d = 

0.43, the uncertain prior, certain sample condition (M = .77, SD = .13) led to more accurate 

decisions than the certain prior, uncertain sample condition, t (59) = -3.01, p = .01, d = -0.38, and 

with no difference between the certain prior, certain sample and uncertain prior, certain sample 

condition, t (59) = 0.66, p = .90, d = 0.09.  

 Additionally, a Decision Situation × Age × Condition three-way interaction was 

observed, F (3.26, 189.28) = 6.42, p < .001, ηp
2 = .10. In order to unpack this interaction, I 

conducted follow-up two-way ANOVAs of decision situation and condition on accuracy, 

separately for younger and older adults. Concerning younger adults, a main effect of decision 

situation was observed, F (1.40, 40.61) = 41.42, p < .001, ηp
2 = .59, a main effect of condition 

was observed, F (2, 58) = 9.91, p < .001, ηp
2 = .26, and a Decision Situation by Condition 

interaction was observed, F (2.34, 67.75) = 4.21, p = .003, ηp
2 =.13.  

 To probe the interaction, pairwise comparisons showed that decision situation differed 

within the certain prior, certain sample condition, F (1.17, 34.01) = 29.87, p < .001, ηp
2 = .51, 

such that the RconfB situation (M = .65, SD = .29) produced less accurate decisions than the 

CconfB situation (M = .91, SD = .10), t (29) = -4.77, p < .001, d = -0.87, and the RalignB 

situation (M = .97, SD = .05), t (29) = -6.39, p < .001, d = -1.17, and the CconfB situation 

produced less accurate decisions than the RalignB situation, t (29) = -3.30, p = .01, d = -0.61. 

Decision situation also differed in accuracy in the certain prior, uncertain sample condition, F (2, 

58) = 27.57, p < .001, ηp
2 = .49, such that the RconfB situation (M = .65, SD = .20) produced less 

accurate decisions than the CconfB situation (M = .89, SD = .09), t (29) = -7.58, p < .001, d = -

1.38 and the RalignB situation (M = .83, SD = .15), t (29) = -4.82, p < .001, d = -0.88, however 
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the CconfB and RalignB situations did not differ in accuracy, t (29) = 1.82, p = .22, d = 0.26. 

Similarly, decision situation also differed in accuracy in the uncertain prior, certain sample 

condition, F (1.34, 39.99) = 25.58, p < .001, ηp
2 = .47, such that the RconfB situation (M = .69, 

SD = .26) produced less accurate decisions than the CconfB situation (M = .89, SD = .12), t (29) 

= -4.27, p = .001, d = -0.78, and the RalignB situation (M = .97, SD = .04), t (29) = -6.14, p < 

.001, d = -1.12, and the CconfB situation produced less accurate decisions than the RalignB 

situation, t (29) = -3.21, p = .01, d = -0.59.  

 Further, the RconfB situation did not differ across conditions, F (2, 58) = .66, p = .52, ηp
2 

= .02, the CconfB situation did not differ across conditions, F (1.65, 47.72) = 1.25, p = .29, ηp
2 = 

.04, however differences were observed within the RalignB situation across conditions, F (1.29, 

37.34) = 23.97, p < .001, ηp
2 = .45, such that decision accuracy was higher in the certain prior, 

certain sample (M = .97, SD = .05) compared with the certain prior, uncertain sample condition 

(M = .83, SD = .15), t (29) = 5.25, p < .001, d = 0.96, decision accuracy was higher in the 

uncertain prior, certain sample (M = .96, SD = .04) compared with the certain prior, uncertain 

sample condition, t (29) = -4.97, p < .001, d = -0.91, and with no differences in accuracy between 

certain prior, certain sample and uncertain prior, certain sample conditions, t (29) = 0.71, p = .86, 

d = 0.10.  

 Concerning older adults, a main effect of decision situation was observed, F (1.12, 32.56) 

= 43.16, p < .011, ηp
2 = .60. Although there was no main effect of condition, F (2, 58) = 1.08, p = 

.35, ηp
2 = .04, a significant Decision Situation by Condition interaction was observed, F (4, 116) 

= 12.75, p < .001, ηp
2 = .31. Pairwise comparisons showed that decision situation differed within 

the certain prior, certain sample condition, F (1.36, 39.50) = 42.19, p < .001, ηp
2 = .59, such that 

the RconfB situation (M = .44, SD = .25) produced less accurate decisions than the CconfB 
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situation (M = .81, SD = .24), t (29) = -5.42, p < .001, d = -0.99, and the RalignB situation (M = 

.90, SD = .10), t (29) = -10.27, p < .001, d = -1.87, however there was no difference in accuracy 

between the CconfB situation and the RalignB situation, t (29) = -1.06, p = .14, d = -0.15. 

Decision situation differed within the certain prior, uncertain sample condition, F (2, 58) = 5.03, 

p = .01, ηp
2 = .15, such that the RconfB situation (M = .60, SD = .17) did not differ in accuracy 

from the CconfB situation (M = .71, SD = .22), t (29) = -1.96, p = .17, d = -0.28, and the CconfB 

situation did not differ from the RalignB situation (M = .75, SD = .15), t (29) = -0.83, p = .80, d = 

-0.12, however the RconfB produced less accurate decisions than the RalignB situation, t (29) = -

3.26, p = .01, d = -0.59. Decision situation also differed within the uncertain prior, certain sample 

condition, F (1.34, 38.73) = 45.23, p < .001, ηp
2 = .61, such that the RconfB situation (M = .43, 

SD = .23) produced less accurate decisions than the CconfB situation (M = .83, SD = .19), t (29) 

= -6.19, p < .001, d = -1.13, and the RalignB situation (M = .84, SD = .12), t (29) = -9.57, p < 

.001, d = -1.74, however no difference in accuracy was observed between the CconfB and the 

RalignB situations, t (29) = -0.48, p = .95, d = -0.07.  

 Critically, the RconfB situation significantly differed across conditions, F (2, 58) = 10.70, 

p < .001, ηp
2 = .27, such that the certain prior, uncertain sample condition (M = .60, SD = .17) 

produced higher accuracy than the certain prior, certain sample (M = .44, SD = .25), t (29) = 

3.58, p = .004, d = 0.65, and uncertain prior, certain sample conditions (M = .43, SD = .23), t (29) 

= 4.38, p < .001, d = 0.80, however no differences in accuracy were observed between the certain 

prior, certain sample and the uncertain prior, certain sample conditions, t (29) = 0.16, p = 1.0, d = 

0.02. The CconfB situation also differed across conditions, F (2, 58) = 5.68, p = .01, ηp
2 = .16, 

such that the certain prior, uncertain sample condition (M = .71, SD = .22) produced less accurate 

decisions than the uncertain prior, certain sample condition (M = .83, SD = .19), t (29) = -2.85, p 
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= .02, d = -0.52, with no differences observed between the certain prior, uncertain sample 

condition and the certain prior, certain sample condition (M = .81, SD = .24), t (29) = -2.41, p = 

.06, d = -0.34, and with no difference in accuracy was observed between the certain prior, certain 

sample and uncertain prior, certain sample conditions, t (29) = -0.59, p = .92, d = -0.08. Last, 

accuracy in the RalignB situation differed across conditions, F (1.59, 46.23) = 15.30, p < .001, 

ηp
2 = .35, such that the certain prior, certain sample condition (M = .90, SD = .10) produced more 

accurate decisions than the certain prior, uncertain sample condition (M = .75, SD = .15), t (29) = 

5.12, p < .001, d = 0.94, and the uncertain prior, certain sample condition (M = .84, SD = .12), t 

(29) = 2.71, p = .03, d = 0.50, and the uncertain prior, certain sample condition produced more 

accurate decisions than the certain prior, uncertain sample condition, t (29) = -3.03, p = .02, d = 

0.56.  

 In summary, condition did not affect decision accuracy in conflict situations for younger 

adults. Critically however, condition influenced decision accuracy amongst older adults, 

particularly in the RconfB situation, with higher accuracy produced by the certain prior, 

uncertain sample condition compared with the certain prior, certain sample and uncertain prior, 

certain sample conditions, and with no difference between the latter conditions (see Figure 17).  
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Figure 17. Accuracy proportion for each decision situation and condition in Experiment 3. Error 

bars represent standard error of the mean. RconfB = representativeness heuristic conflicts with 

Bayes’ theorem; CconfB = conservatism heuristic conflicts with Bayes’ theorem; RalignB = 

representativeness heuristic aligns with Bayes’ theorem; CPCS = certain prior, certain sample; 

CPUS = certain prior, uncertain sample; UPCS = uncertain prior, certain sample 

 

Decision RT  

 A 2 (age: young, old) × 3 (decision situation: RconfB, CconfB, RalignB) × 3 (condition: 

certain prior certain sample, certain prior uncertain sample, uncertain prior certain sample) mixed 

ANOVA on decision RT was conducted and revealed a main effect of decision situation, F (1.65, 

95,82) = 9.12, p < .001, ηp
2 = .14, a main effect of condition, F (1.65, 95.82) = 9.12, p < .001, ηp

2 

= .14, as well as a main effect of age, F (1, 58) = 35.08, p < .001, ηp
2 = .38, such that younger 

adults (M = 2009.37, SD = 1167.45) made faster decisions than older adults (M = 5207.60, SD = 

2717.56).  

 Further, a significant Decision Situation by Condition interaction on RT emerged, F (4, 

232) = 8.48, p < .001, ηp
2 = .13. To probe this interaction, repeated-measures ANOVAs with 
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pairwise comparisons were conducted to examine potential decision situation effects within each 

condition on RT, as well as potential differences in RT for each condition within each decision 

situation. Within the certain prior, certain sample condition, a main effect of decision situation 

was observed, F (1.81, 106.79) = 4.14, p = .02, ηp
2 = .07. Specifically, the RconfB situation (M = 

3646.91, SD = 3112.79) produced longer RTs than the RalignB situation (M = 2998.06, SD = 

2690.23), t (59) = 3.36, p = .004, d = 0.43, however no differences in RT were observed between 

the RconfB and the CconfB situations (M = 3232.17, SD = 3537.36), t (59) = 1.81, p = .21, d = 

0.26, or between the CconfB and RalignB situations, t (59) = 0.91, p = .75, d = 0.12. Within the 

certain prior, uncertain sample condition, a main effect of decision situation was observed, F 

(1.77, 104.68) = 16.10, p < .001, ηp
2 = .21. Pairwise comparisons showed that the RconfB 

situation (M = 4873.45, SD = 3803.95) produced longer RTs than the CconfB situation (M = 

3492.29, SD = 2743.82), t (59) = 4.76, p < .001, d = 0.61, the RalignB situation (M = 4615.49, 

SD = 3605.82) produced longer RTs than the CconfB situation, t (59) = -4.16, p < .001, d = -

0.54, however no differences were observed between the RconfB and RalignB situations, t (59) = 

1.23, p = .53, d = 0.16. Within the uncertain prior, certain sample condition, a main effect of 

decision situation was observed, F (2, 118) = 9.47, p < .001, ηp
2 = .14. Pairwise comparisons 

showed that the RconfB situation (M = 3719.63, SD = 3209.15) produced longer RTs than the 

CconfB situation (M = 2917.50, SD = 2462.93), t (59) = 3.59, p = .002, d = 0.46, and the 

RalignB situation (M = 2980.86, SD = 2466.99), t (59) = 3.91, p = .001, d = 0.50, and with no 

differences in RT between the CconfB and RalignB situations, t (59) = -3.20, p = .98, d = -0.41.  

 Further, within the RconfB situation, a main effect of condition was observed, F (1.69, 

99.56) = 7.08, p = .001, ηp
2 = .12. Specifically, the certain prior, certain sample condition 

produced faster RTs than the certain prior, uncertain sample condition, t (59) = -2.85, p = .02, d 



202 

 

= -0.37, the uncertain prior, certain sample condition produced faster RTs than the certain prior, 

uncertain sample condition, t (59) = 3.19, p = .01, d = 0.41, however no RT differences emerged 

between certain prior, certain sample and uncertain prior, certain sample conditions, t (59) = -

0.25, p = .99, d = -0.32. Within the CconfB situation, no main effect of condition was observed, 

F (1.69, 99.46) = 1.66, p = .20, ηp
2 = .03. However, within the RalignB situation, a main effect of 

condition was observed, F (1.50, 88.75) = 21.49, p < .001, ηp
2 = .27. Pairwise comparisons 

showed that the certain prior, certain sample condition produced faster RTs than the certain prior, 

uncertain sample condition, t (59) = -4.61, p < .001, d = -0.59, but did not differ in RT from the 

uncertain prior, certain sample condition, t (59) = 0.08, p = 1.0, d = 0.01, and the uncertain prior, 

certain sample condition produced faster RTs than the certain prior, uncertain sample condition, t 

(59) = 5.74, p < .001, d = 0.74.  

 In summary, the results show that the RconfB situation produced longer RTs than the 

CconfB and RalignB situations, and the certain prior, uncertain sample condition produced 

longer RTs than the certain prior, certain sample and uncertain prior, certain sample conditions 

(see Figure 18).  
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Figure 18. Reaction time for each decision situation and condition in Experiment 3. Error bars 

represent standard error of the mean. RconfB = representativeness heuristic conflicts with Bayes’ 

theorem; CconfB = conservatism heuristic conflicts with Bayes’ theorem; RalignB = 

representativeness heuristic aligns with Bayes’ theorem; CPCS = certain prior, certain sample; 

CPUS = certain prior, uncertain sample; UPCS = uncertain prior, certain sample. 

 

Relationship between Representativeness and Conservatism  

Separate Pearson bivariate correlational analyses were conducted for younger and older 

adults. No significant correlation between RconfB and CconfB decision accuracy was observed 

for younger adults (r = .13, p = .49) or older adults (r = -.21, p = .27) within the certain prior, 

certain sample condition. Within the certain prior, uncertain sample condition, younger adults 

showed a significant positive correlation (r = .49, p = .01) between RconfB and CconfB decision 

accuracy (see Figure 19), however older adults did not show a significant correlation (r = -.29, p 

= .12). Last, within the uncertain prior, certain sample condition, younger adults did not show a 

significant correlation (r = .26, p = .17), however older adults showed a negative correlation 

between RconfB and CconfB decision accuracy (r = -.38, p = .04; see Figure 20).  
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Figure 19. Association of accuracy in Experiment 3 in CPUS condition for younger adults. 

 

 

Figure 20. Association of accuracy in Experiment 3 in UPCS condition for older adults. 

 

Self-Assessment 

Chi-square tests were conducted on categorical items (i.e., items 1-6) of the self-
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decisions the most, whereas older adults reported that the “sample” influenced their decisions the 

most, χ2 (2) = 14.22, p = .001, d = 0.49. Further, younger adults (M = 4.13, SD = .86) were more 

likely to report that their decisions were “accurate” compared with older adults (M = 3.57, SD = 

.97), t (58) = 2.39, p = .02, d = 0.61, and older adults (M = 2.73, SD = .99) were more likely to 

report that they felt the task to be “difficult” relative to younger adults (M = 3.30, SD = .99), t 

(58) = 2.23, p = .03, d = 0.58. Last, younger adults (M = 3.47, SD = 1.01) were more likely to 

report that they felt more “confident working with numbers in general” compared with older 

adults (M = 2.73, SD = 1.17), t (58) = 2.60, p = .01, d = 0.68. No other age-related differences 

were observed (see Table 20).  

The self-assessment also included an item where participants could provide any other 

comments about the task (e.g., detailing how decisions were made). In the participant comments, 

11 (36.7%) younger and 2 (6.7%) older adults explicitly stated that they inferred the masked ball 

in the sample to be the majority colour ball in the certain prior, uncertain sample condition, and 

19 (63.3%) younger and 4 (13.3%) older adults explicitly stated that they inferred the masked 

urns (i.e., unknown prior information) in the uncertain prior, certain sample condition to be the 

same as the four unmasked urns.  

In summary, older adults were more likely to report that they used the sample to make 

decisions in the uncertain prior, certain sample condition compared with younger adults who 

reported using both the prior and sample to make decisions. Older adults were also more likely to 

report that they felt they made less accurate decisions, felt the task to be more difficult, and were 

less confident working with numbers in general compared with younger adults. Further, 

participants’ comments about their task performance revealed that more younger adults than 
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older adults explicitly stated that they were able to make inferences about prior and sample 

information that was masked. 
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Table 20. Self-Assessment for Experiment 3 

Item Younger Adults 

(n = 30) 

Older Adults 

(n = 30) 

p-value d 

CPCS - Influence Decision     

Likelihood 3 (10%) 2 (7%) .64 0.12 

Sample 2 (7%) 4 (13%)   

Both 25 (83%) 24 (80%)   

CPCS - Decision Strategy     

Consistent 23 (77%) 25 (83%) .52 -0.08 

Switched 7 (23%) 5 (17%)   

Neither 0 (0%) 0 (0%)   

CPUS - Influence Decision     

Likelihood 13 (43%) 16 (53%) .08 0.29 

Sample 1 (3%) 5 (17%)   

Both 16 (53%) 9 (30%)   

CPUS - Decision Strategy     

Consistent 21 (70%) 27 (90%) .11 0.27 

Switched 7 (23%) 3 (10%)   

Neither 2 (7%) 0 (0%)   

UPCS - Influence Decision     

Likelihood 9 (30%) 5 (17%) .001 0.49 

Sample 4 (13%) 18 (60%)   

Both 17 (57%) 7 (23%)   

UPCS - Decision Strategy     

Consistent 20 (67%) 26 (87%) .07 -0.24 

Switched 10 (33%) 4 (13%)   

Neither 0 (0%) 0 (0%)   

Accuracy     

Very inaccurate 1 (3%) 1 (3%) .02 0.61 

Somewhat inaccurate 1 (3%) 5 (17%)   

Neither inaccurate nor accurate 0 (0%) 2 (7%)   

Somewhat accurate 19% (63%) 20 (67%)   

Very accurate 9 (30%) 2 (7%)   

Task Difficulty     

Very difficult 0 (0%) 2 (7%) .03 0.58 

Somewhat difficult 9 (30%) 12 (40%)   

Neither difficult nor easy 5 (17%) 9 (30%)   

Somewhat easy 14 (47%) 6 (20%)   

Very easy 2 (7%) 1 (3%)   

Confidence with Numbers     

Not at all confident 0 (0%)  6 (20%) .01 0.68 

Somewhat confident 5 (17%) 6 (20%)   

Confident 12 (40%) 9 (30%)   

Very confident 7 (23%) 8 (27%)   

Extremely confident 6 (20%) 1 (3%)   
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Note. CPCS = certain prior, certain sample; CPUS = certain prior, uncertain sample; UPCS = 

uncertain prior, certain sample.  

 

Individual Differences on Accuracy 

 In line with Experiments 1 and 2, multi-level modeling was used to examine whether 

individual differences in numeracy, cognitive reflection, thinking dispositions, processing speed, 

verbal intelligence, and years of education predicted decision accuracy in the RconfB and 

CconfB situations. The ICC was calculated and showed that approximately 9% of the variance in 

decision accuracy was due to clustering. In light of the ICC value suggesting at least a portion of 

the variability of accuracy was due to clustering, a multi-level modeling approach was taken to 

examine predictors of decision accuracy. Random-intercepts and random-slopes models on 

accuracy in RconfB and CconfB decision situations, with age included as a Level 2 predictor, 

were conducted to observe which model best fit the data. Based on the AIC, BIC, and deviance 

values, the random-slopes model improved the model fit over the random-intercepts model (see 

Table 21). In light of this, predictor variables were included in separate random-slopes models. 
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Table 21. Multi-Level Model Comparison on Accuracy in Experiment 3 

 Parameters Model 

  Random-intercepts Random-slopes 

Fixed effects    

 Intercept 2.31 (0.15) 2.45 (0.18) 

 OR 10.05 11.55 

 Younger adults -0.93 (0.19) -0.89 (0.19) 

 OR 0.39 0.41 

 RconfB -1.49 (0.05) -1.64 (0.19) 

 OR 0.23 0.19 

 CPCS 0.02 (0.03) 0.02 (0.03) 

 OR 1.02 1.02 

Fit statistics    

 deviance 11,183 10,596 

 AIC 11,193 10,610 

 BIC 11,229 10,661 

 df 5 7 

Model 

comparison 

  χ2 = 586.97*** 

Note. Standard errors and deviations in fixed and random effects parentheses, respectively; RconfB = Representativeness heuristic 

conflicts with Bayes’ theorem; CPCS = certain prior, certain sample. Younger adults, RconfB and CPCS were used as the reference 

groups; OR = odds ratios; AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion; df = degrees of freedom; 

Subscript χ2 denotes the two models being compared. *p < .05, **p < .01, ***p < .001.
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 The purpose of using multi-level modeling in this experiment was to examine whether 

assessments of individual differences predict decision accuracy in the RconfB and CconfB 

decision situations, and whether age influences these effects. Only significant interactions that 

included the decision situation factor were analyzed further, with nonsignificant results not 

reported. Interactions observed outside of this were further elucidated with Pearson bivariate 

correlations. 

Lipkus Numeracy Task. A significant Lipkus by Decision Situation interaction was 

observed (β = -0.31, SE = 0.21; p = .05). To unpack this interaction, Lipkus data were centered at 

the 25th percentile, the median, and the 75th percentile. As Table 22 shows, beta estimates for the 

effect of decision situation increase as scores on the Lipkus increase. This suggests that the effect 

of decision situation is strongest for those with lower Lipkus scores. The odds ratios suggest that 

those with lower Lipkus scores, the odds of a correct response in the RconfB situation are 16% 

of the odds of a correct response in the CconfB situation. However, those with higher Lipkus 

scores, the odds of a correct response in the RconfB situation are 23% of the odds of a correct 

response in the CconfB situation (i.e., those with higher Lipkus scores show less of a gap in 

accuracy between conflict situations). These results suggest that the effect of decision situation 

becomes greater with lower scores on the Lipkus.  
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Table 22. Lipkus Numeracy as a Predictor of Accuracy in Experiment 3 

Note. Lipkus = Lipkus Numeracy Task; RconfB = Representativeness heuristic conflicts with Bayes’ theorem (reference group); 

CPCS = certain prior, certain sample (reference group); β = beta estimate; SE = standard error; Z =z-score; OR = odds ratio. 

 

 

 

 

 Lipkus centered at 25th percentile  Lipkus centered at median  Lipkus centered at 75th percentile 

 β SE Z p OR  β SE Z p OR  β SE Z p OR 

Intercept  2.31 0.24 9.54  10.05  2.55 0.20 12.53  12.81  2.67 0.25 10.55  14.45 

Lipkus 0.12 0.10 1.18 <.001 1.13  0.12 0.10 1.18 <.001 1.13  0.12 0.10 1.18 <.001 1.13 

RconfB -1.83 0.32 -5.68 <.001 0.16  -1.59 0.27 -5.92 <.001 0.20  -1.47 0.33 -4.41 <.001 0.23 

age -0.84 0.31 -2.73 .01 0.43  -0.71 0.30 -2.37 .02 0.49  -0.64 0.37 -1.74 .08 0.53 

CPCS -0.14 0.09 -1.53 .56 0.87  -0.12 0.09 -1.38 .55 0.89  -0.11 0.11 -0.97 .55 0.90 

Lipkus:RconfB 0.12 0.14 0.87 .05 1.13  0.12 0.14 0.87 .05 1.13  0.12 0.14 0.87 .05 1.13 

Lipkus:age 0.07 0.13 0.53 .59 1.07  0.07 0.13 0.53 .59 1.07  0.07 0.13 0.53 .60 1.07 

RconfB:age 0.33 0.41 0.81 .42 1.40  -0.30 0.39 -0.76 .42 0.74  -0.62 0.48 -1.27 .20 0.54 

Lipkus:CPCS 0.01 0.04 0.28 .08 1.01  0.01 0.04 0.28 .08 1.01  0.01 0.04 0.28 .08 1.01 

RconfB:CPCS 0.19 0.12 1.65 .44 1.21  0.24 0.10 2.30 .44 1.27  0.26 0.13 1.98 .45 1.30 

age:CPCS 0.19 0.11 1.71 .85 1.21  0.19 0.12 1.66 .85 1.21  0.19 0.15 1.31 .85 1.21 

Lipkus:RconfB:age -0.32 0.17 -1.84 .85 0.73  -0.32 0.17 -1.84 .85 0.73  -0.32 0.17 -1.84 .85 0.73 

Lipkus:RconfB:CPCS 0.02 0.05 0.46 .50 1.02  0.02 0.05 0.46 .50 1.02  0.02 0.05 0.45 .50 1.02 

Lipkus:age:CPCS -0.00 0.05 -0.00 .87 0.99  -0.00 0.05 -0.00 .87 1.00  -0.00 0.05 -0.01 .87 0.99 

RconfB:age:CPCS -0.27 0.14 -1.91 .03 0.76  -0.29 0.14 -2.00 .03 0.75  -0.29 0.18 -1.63 .03 0.75 

Lipkus:RconfB:age:CPCS -0.01 0.06 -0.12 .91 0.99  -0.01 0.06 -0.12 .91 0.99  -0.01 0.06 -0.11 .91 0.99 
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 To further describe the relationships between decision accuracy and condition, Pearson 

bivariate correlations were conducted to investigate the linear relationship between Lipkus 

Numeracy Task scores and decision accuracy within each condition for each age group. For 

younger adults, significant correlations were observed between Lipkus Numeracy Task scores 

and the RconfB situation in the certain prior, uncertain sample condition, r = .35, p = .05, the 

uncertain prior, certain sample condition, r = .46, p = .01, but did not reach significance for the 

correlation between accuracy and the certain prior, certain sample condition, r = .33, p = .07. 

Further, no correlations were observed between Lipkus scores and the CconfB situation in any 

condition for younger adults. For older adults, no correlations were observed between Lipkus 

scores and the RconfB situation in any condition. However, a significant correlation was 

observed between Lipkus scores and the CconfB situation in the uncertain prior, certain sample 

condition, r = .41, p = .02. The correlation did not reach significance between accuracy in the 

CconfB situation and Lipkus scores in the certain prior, certain sample condition, r = .32, p = 

.09, and no correlation was observed between these variables in the certain prior, uncertain 

sample condition, r = .19, p = .31.  

 Berlin Numeracy Task. A significant Berlin Numeracy Task by Age by Condition (β = 

0.06, SE = 0.10; p = .01), and a significant Decision Situation by Age by Condition (β = -0.29, 

SE = 0.13; p = .01), was observed. However, the model with BNT as a predictor of decision 

accuracy failed to converge. 

 To shed light on the effects of the interactions, Pearson bivariate correlations were 

conducted on Berlin Numeracy Task scores and decision accuracy within each decision situation, 

condition and for each age group. For younger adults, significant correlations were observed 

between Berlin Numeracy Task scores and the RconfB situation in the certain prior, certain 
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sample condition, r = .49, p = .01, the certain prior, uncertain sample condition, r = .40, p = .03, 

and in the uncertain prior, certain sample condition, r = .40, p = .03. Correlations were also 

observed between Berlin Numeracy Task scores and the CconfB situation in the uncertain prior, 

certain sample, r = .44, p = .01, certain prior, certain sample condition, r = .35, p = .05, and no 

correlation in the certain prior, uncertain sample condition, r = .28, p = .13. For older adults, no 

correlations were observed between Berlin Numeracy Task scores and the RconfB situation in 

any condition. However, significant correlations were observed between Berlin Numeracy Task 

scores and accuracy in the CconfB situation in the certain prior, uncertain sample condition, r = 

.39, p = .03, the uncertain prior, certain sample condition, r = .37, p = .04. The correlation did not 

reach significance between these variables in the certain prior, certain sample condition, r = .39, 

p = .08. 

 Cognitive Reflection Test – Reflection subscale. A significant Cognitive Reflection 

Test – Reflection subscale (CRT-R) by Decision Situation interaction (β = -0.38, SE = 0.23; p = 

.05) emerged. To unpack this interaction, CRT-R data were centered at the 25th percentile, the 

median, and the 75th percentile. As Table 23 shows, beta estimates for the effect of decision 

situation increase as scores on the CRT-R increase. This suggests that the effect of decision 

situation is strongest for those with lower CRT-R scores. The odds ratios suggest that among 

those with lower CRT-R scores, the odds of a correct response in the RconfB situation are 10% 

of the odds of a correct response in the CconfB situation. However, for those with higher CRT-R 

scores, the odds of a correct response in the RconfB situation are 27% of the odds of a correct 

response in the CconfB situation (i.e., those with higher CRT-R scores show less of a gap in 

accuracy between conflict situations). These results suggest that the effect of decision situation 

becomes greater with lower scores on the CRT-R.
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Table 23. Cognitive Reflection Test - Reflection as a Predictor of Accuracy in Experiment 3 

Note. CRT-R = Cognitive Reflection Test – Reflection subscale; RconfB = Representativeness heuristic conflicts with Bayes’ theorem 

(reference group); CPCS = certain prior, certain sample (reference group); β = beta estimate; SE = standard error; Z =z-score; OR = 

odds ratio. 

 

 CRT-R centered at 25th percentile  CRT-R centered at median  CRT-R centered at 75th percentile 

 β SE Z p OR  β SE Z p OR  β SE Z p OR 

Intercept  2.13 0.30 6.99  8.39  2.49 0.25 9.89  12.05  3.20 3.3.1 9.70  24.84 

CRT-R 0.36 0.13 2.76 <.001 1.44  0.36 0.13 2.76 <.001 1.44  3.60 1.31 2.75 <.001 1.44 

RconfB -2.35 0.42 -5.64 <.001 0.10  -2.25 0.34 -6.61 <.001 0.11  -2.10 4.16 -4.95 <.001 0.27 

age -1.00 0.39 -2.54 <.001 0.37  -1.09 0.33 -3.31 <.001 0.34  -1.30 4.52 -2.78 <.001 0.28 

CPCS -0.10 0.09 -1.05 .56 0.91  -0.13 0.08 -1.60 .56 0.88  -1.80 1.19 -1.56 .56 0.83 

CRT-R:RconfB -0.38 0.17 0.57 .04 1.10  -0.38 0.17 0.57 .04 1.10  -0.38 1.68 0.57 .04 1.10 

CRT-R:age -0.09 0.18 -0.48 .19 0.92  -0.09 0.18 -0.48 .19 0.92  -0.09 0.18 -0.48 .19 0.92 

RconfB:age 1.22 0.55 2.23 .88 3.41  0.84 0.45 1.87 .88 2.33  7.90 5.91 0.14 .89 1.08 

CRT-R:CPCS -0.03 0.05 -0.63 .42 0.97  -0.03 0.05 -0.63 .42 0.97  -2.90 4.59 -0.63 .42 0.97 

RconfB:CPCS 0.24 0.12 2.05 .34 1.27  0.24 0.10 2.46 .34 1.27  2.40 1.38 1.75 .34 1.27 

age:CPCS 0.16 0.12 1.39 .86 1.18  0.18 0.10 1.76 .86 1.20  2.10 1.53 1.34 .86 1.23 

CRT-R:RconfB:age -0.03 0.24 -1.62 .95 0.68  -0.03 0.23 -1.62 .95 0.68  -0.03 2.36 -1.62 .95 0.68 

CRT-R:RconfB:CPCS 0.00 0.05 0.00 .70 1.00  0.00 0.05 0.00 .70 1.00  -5.40 5.42 -0.00 .70 0.99 

CRT-R:age:CPCS 0.01 0.06 0.24 .37 1.01  0.01 0.06 0.24 .37 1.01  1.40 5.84 0.24 .37 1.01 

RconfB:age:CPCS -0.33 0.15 -2.19 .02 0.72  -0.31 0.13 -2.42 .02 0.74  -2.60 1.82 -1.44 .02 0.77 

CRT-R:RconfB:age:CPCS 0.02 0.07 0.32 .75 1.02  0.02 0.07 0.32 .75 1.02  2.30 7.06 0.32 .75 1.02 
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 Pearson bivariate correlations were also run to investigate the linear relationship between 

CRT-R scores and decision accuracy within each condition for each age group. For younger 

adults, significant correlations were observed between CRT-R scores and the RconfB situation in 

the certain prior, certain sample condition, r = .67, p < .001, the certain prior, uncertain sample 

condition, r = .61, p < .001, and the uncertain prior, certain sample condition, r = .65, p < .001, 

as well as between CRT-R scores and the CconfB situation in the certain prior, certain sample 

condition, r = .45, p = .01, the certain prior, uncertain sample condition, r = .53, p = .003, and the 

uncertain prior, certain sample condition, r = .39, p = .04. For older adults, no correlations were 

observed between CRT-R scores and the RconfB situation in any conditions, ps > .05. However, 

significant correlations were observed between CRT-R scores and the CconfB situation in the 

certain prior, certain sample condition, r = .41, p = .04, the certain prior, uncertain sample 

condition, r = .54, p = .03, and the uncertain prior, certain sample condition, r = .33, p = .05. 

 Faith in Intuition. A Faith in Intuition by Decision Situation interaction (β = 0.41, SE = 

0.26; p = .02) was observed, as well as a Decision Situation by Age by Condition interaction (β = 

-0.30, SE = 0.13; p = .02).  

 To unpack the Faith in Intuition by Decision Situation interaction, the model was re-

estimated three times after centering the Faith in Intuition variable at the 25th percentile, the 

median, and finally the 75th percentile. As Table 24 shows, beta estimates for the effect of 

decision situation decrease as scores on the Faith in Intuition increase. This suggests that the 

effect of decision situation is strongest among those with higher Faith in Intuition scores. The 

odds ratios suggest that among those with higher Faith in Intuition scores, the odds of a correct 

response in the RconfB situation are 9% of the odds of a correct response in the CconfB 

situation. However, among those with lower Faith in Intuition scores, the odds of a correct 
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response in the RconfB situation are 16% of the odds of a correct response in the CconfB 

situation (i.e., those with lower Faith in Intuition scores show less of a gap in accuracy between 

conflict situations). These results suggest that the effect of decision situation becomes greater 

with higher scores on the Faith in Intuition (see Table 24).  
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Table 24. Faith in Intuition as a Predictor of Accuracy in Experiment 3 

Note. FI = Faith in Intuition; RconfB = Representativeness heuristic conflicts with Bayes’ theorem (reference group); CPCS = certain 

prior, certain sample (reference group); β = beta estimate; SE = standard error; Z =z-score; OR = odds ratio. 

 

  

 FI centered at 25th percentile  FI centered at median  FI centered at 75th percentile 

 β SE Z p OR  β SE Z p OR  β SE Z p OR 

Intercept  2.92 0.34 8.63  18.58  2.76 0.26 10.66  15.78  2.61 0.32 8.25  13.61 

FI -0.13 0.17 -0.78 <.001 0.88  -0.13 0.17 -0.78 <.001 0.88  -0.13 0.17 -0.78 <.001 0.88 

RconfB -1.83 0.42 -4.34 <.001 0.16  -2.13 0.32 -6.60 <.001 0.12  -2.40 0.40 -6.08 <.001 0.09 

age -1.20 0.44 -2.73 <.001 0.30  -1.27 0.34 -3.69 <.001 0.28  -1.34 0.41 -3.27 <.001 0.26 

CPCS -0.18 0.11 -1.69 .56 0.84  -0.13 0.08 -1.67 .56 0.88  -0.09 0.10 -0.95 .56 0.91 

FI:RconfB -0.24 0.21 -1.15 .83 0.79  -0.24 0.21 -1.15 .83 0.79  -0.24 0.21 -1.15 .83 0.79 

FI:age -0.06 0.20 -0.28 .14 0.94  -0.06 0.20 -0.28 .14 0.94  -0.06 0.20 -0.28 .14 0.94 

RconfB:age 0.11 0.55 0.21 .91 1.12  0.63 0.44 1.45 .90 1.89  1.11 0.52 2.13 .92 3.02 

FI:CPCS 0.04 0.05 0.72 .94 1.04  0.04 0.05 0.72 .94 1.04  0.04 0.05 0.72 .94 1.04 

RconfB:CPCS 0.28 0.13 2.16 .38 1.32  0.23 0.10 2.39 .38 1.26  0.19 0.12 1.63 .38 1.21 

age:CPCS 0.23 0.13 1.72 .87 1.26  0.18 0.10 1.81 .87 1.20  0.14 0.12 1.22 .87 1.16 

FI:RconfB:age 0.41 0.26 1.61 .02 1.51  0.41 0.26 1.61 .02 1.51  0.41 0.36 1.61 .02 1.51 

FI:RconfB:CPCS -0.04 0.06 -0.60 .62 0.96  -0.04 0.06 -0.60 .62 0.96  -0.04 0.06 -0.60 .62 0.96 

FI:age:CPCS -0.04 0.06 0.58 .66 0.97  -0.04 0.06 -0.58 .66 0.97  -0.04 0.06 -0.58 .66 0.97 

RconfB:age:CPCS -0.33 0.16 -2.04 .02 0.72  -0.30 0.13 -2.35 .02 0.74  -0.26 0.15 -1.79 .02 0.77 

FI:RconfB:age:CPCS 0.03 0.08 0.39 .69 1.03  0.03 0.07 0.40 .69 1.03  0.03 0.08 0.40 .69 1.03 
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 The multi-level model with Faith in Intuition as a predictor of decision accuracy failed to 

converge when probing the Decision Situation by Age by Condition interaction. Thus, Pearson 

bivariate correlations were conducted on Faith in Intuition scores and decision accuracy within 

each decision situation, condition, and for each age group. For younger adults, correlations were 

observed between Faith in Intuition scores and decision accuracy in the RconfB situation in the 

certain prior, certain sample, r = -.45, p = .01, certain prior, uncertain sample, r = -.40, p = .03, 

and uncertain prior, certain sample conditions, r = -.49, p = .01. However, no correlations were 

observed between Faith in Intuition scores and the CconfB situation in any condition. For older 

adults, Faith in Intuition scores did not correlate with decision accuracy in the RconfB situation, 

nor in the CconfB situation in any condition (ps > .05).  

 Last, the Cognitive Reflection Test – Intuition subscale, Need for Cognition assessment, 

Mill Hill Vocabulary Test and years of education did not predict performance on the belief 

updating task. In addition, the multi-level model with DSST as a predictor of decision accuracy 

failed to converge. However, to examine whether DSST scores were related to decision 

accuracy, correlational analyses were conducted. Results showed that scores on the DSST were 

correlated with decision accuracy in the RconfB situation, r = .39, p = .002, and in the CconfB 

situation, r = .30, p = .02. Additionally, correlations between DSST scores and decision accuracy 

were conducted separately for each age group. Younger adults did not show a correlation in the 

RconfB situation, r = .02, p = .92, or in the CconfB situation, r = .24, p = .19. Similarly, older 

adults did not show a correlation in the RconfB situation, r = .26, p = .16, or in the CconfB 

situation, r = -.08, p = .69. 

 In summary, results from the multi-level models showed that the Lipkus Numeracy Task, 

the Cognitive Reflection Test - Reflection subscale and Faith in Intuition assessments were good 
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predictors of decision accuracy in the belief updating task such that higher scores on the Lipkus 

Numeracy Task and Cognitive Reflection Test - Reflection subscale and lower scores on the 

Faith in Intuition assessment predicted a smaller gap in decision accuracy between conflict 

situations (i.e., higher scores in both conflict situations). Further, correlational analyses showed 

that higher scores on the Lipkus Numeracy Task and Berlin Numeracy Test were associated with 

higher decision accuracy in the RconfB situation for younger adults and the CconfB situation for 

older adults, and with higher scores on the DSST correlating with higher scores in both conflict 

situations. In addition, higher scores on the Cognitive Reflection Test – Reflection, and lower 

scores on the Faith in Intuition assessments were associated with higher decision accuracy in the 

conflict situations in all conditions for younger adults only (with Faith in Intuition scores only 

correlating with accuracy in the RconfB situation).  

Summary of Results  

Younger adults’ decision accuracy was unaffected by condition. However, for older 

adults, the certain prior, uncertain sample condition produced higher accuracy compared with the 

uncertain prior, certain sample and the certain prior, certain sample conditions in the RconfB 

situation, with no difference in accuracy between the latter conditions. Additionally, older adults 

made more accurate decisions in the uncertain prior, certain sample condition compared with the 

certain prior, uncertain sample condition, and with no difference between uncertain prior, certain 

sample and certain prior, certain sample conditions in the CconfB situation. Concerning RT, the 

RconfB situation produced longer RTs than the CconfB and RalignB situations, and the certain 

prior, uncertain sample condition produced longer RTs than the uncertain prior, certain sample 

and the certain prior, certain sample conditions. Decision accuracy between conflict situations 

was positively correlated in the certain prior, uncertain sample condition for younger adults, and 
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decision accuracy between conflict situations was negatively correlated in the uncertain prior, 

certain sample condition for older adults. Concerning the self-assessment, older adults were more 

likely to report using the “sample” to make decisions in the uncertain prior, certain sample 

condition, whereas younger adults reported using “both the prior and sample” to make decisions 

in this condition. In contrast to younger adults, older adults were more likely to report that they 

felt they made less accurate decisions, felt the task to be more difficult, and were less confident 

working with numbers in general. Further, more younger adults than older adults explicitly stated 

that they were able to make correct inferences about prior and sample information that was 

masked. Additionally, higher scores on the Lipkus Numeracy Task, and Cognitive Reflection 

Task – Reflection subscale, and lower scores on the Faith in Intuition assessment predicted a 

smaller gap in decision accuracy between conflict situations (i.e., higher scores in both conflict 

situations). Finally, higher numeracy scores were associated with higher accuracy in the RconfB 

situation for younger adults, and the CconfB situation for older adults, with higher DSST scores, 

collapsed across age, being associated with higher accuracy scores in both conflict situations. 

Higher Cognitive Reflection Test – Reflection scores were associated with higher accuracy in 

both conflict situations and lower Faith in Intuition scores correlated with higher accuracy in the 

RconfB situation in younger adults only. 
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Discussion 
  

 The purpose of this experiment was two-fold. First, I sought to test the hypothesis that older 

adults’ decisions would be influenced by ambiguous information more than younger adults’ decisions, 

such that when prior information was ambiguous older adults would be more likely than younger 

adults to use the sample to make decisions, and when sample information was ambiguous older adults’ 

would be more likely than younger adults to use prior information to make decisions. Second, I sought 

to examine whether individual differences in numeracy, cognitive reflection, thinking disposition and 

processing speed would predict decision accuracy. These results would build on the previous 

experiments by providing further evidence that, beyond age disparities, differences in individuals 

modulate the accuracy of belief updating when making decisions under risk and ambiguity. 

 In line with Hypotheses 1 and 2, results showed that younger adults made more accurate 

decisions than older adults, and with the representativeness error committed more than the 

conservatism error – findings that replicate Experiments 1 and 2, and support prior literature 

(Achtziger et al., 2014; Grether, 1980; Peters et al., 2007). Supporting Hypothesis 3, older adults 

showed more accurate decisions in the certain prior, uncertain sample condition compared with the 

certain prior, certain sample and uncertain prior, certain sample condition for the RconfB situation, 

with no difference between the latter conditions, and less accurate decisions in the certain prior, 

uncertain sample condition compared with the certain prior, certain sample and uncertain prior, certain 

sample conditions for the CconfB situation, with no differences between the latter conditions. These 

results demonstrate a preference to make decisions based on certain information, such that when 

sample information was ambiguous, older adults used prior information to make decisions. These 

results are consistent with findings showing that older adults have an aversion to ambiguity and rely 

more strongly on certain information to make choices (Hämmerer et al., 2019; Nassar et al., 2016; 

Tymula et al., 2013). The current findings build on this literature by demonstrating that older adults 
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use certain information to make decisions even when provided with negative feedback indicating that 

this strategy leads to error. These results suggest that older adults do not learn how to make inferences 

about ambiguous information as younger adults do, at least within the context of belief updating.  

 In contrast to Hypothesis 4, although the uncertain prior, certain sample condition produced 

less accurate decisions in the RconfB situation and more accurate decisions in the CconfB situation 

compared with the certain prior, uncertain sample condition, unexpectedly no differences in decision 

accuracy emerged between the uncertain prior, certain sample and certain prior, certain sample 

conditions for older adults in the RconfB situation. This critical finding is a testament to the 

overweighting of sample information regardless of whether prior information is certain or uncertain. 

These results are further qualified by most older adults reporting to use prior information to make 

decisions when sample information was ambiguous (i.e., 53%) and using sample information to make 

decisions when prior information was ambiguous (i.e., 60%), as well as the significant negative 

correlation between the conflict situations in the uncertain prior, certain sample condition showing that 

lower accuracy in the RconfB situation associated with higher accuracy in the CconfB situation. 

 Consistent with Hypothesis 5, as well as previous research, younger adults showed no 

difference in decision accuracy in the RconfB and CconfB situations in each condition (Hämmerer et 

al., 2019; Nassar et al., 2016; Tymula et al., 2013), with the RconfB situation producing less accurate 

decisions and longer decision times than the CconfB situation overall (Achtziger et al., 2014; Grether, 

1980). Younger adults’ reports in the self-assessment regarding how they represented masked 

information suggest that at least some younger adults were able to learn how to make inferences about 

ambiguous information in order to avoid decision biases. This was further qualified by the positive 

correlation in decision accuracy between conflict situations in the certain prior, uncertain sample 

condition, demonstrating that higher accuracy in the RconfB situation was associated with higher 

accuracy in the CconfB situation in a condition with ambiguous sample information. Additionally, in 
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line with Hypothesis 6, the results showed that conflict situations produce longer RTs than alignment 

situations, with older adults producing longer RTs than younger adults. 

 Together these results complement and extend the judgment and decision making literature. 

First, replicating Experiments 1 and 2, these results show that the representativeness error is committed 

more than the conservatism error (Achtziger et al., 2014; Grether, 1980). Second, replicating 

Experiment 2 results, as well as the aging and reinforcement learning literature, younger adults were 

able to learn to make accurate decisions more successfully than older adults from feedback (Fernandes 

et al., 2018). To improve performance, perhaps older adults required more trials to use feedback to 

learn how to represent ambiguous probabilistic information. This is plausible considering research 

shows that older adults generally require more trials than younger adults to learn from external 

feedback (Eppinger et al., 2008; Marschner et al., 2005). It is further supported by research showing 

that ambiguity is reducible such that decisions made under ambiguity become closer to normative 

decisions with increasing observations (i.e., the decision maker learns to “feel the weight” of the 

unknown information through sequential iterations of the task; Ellsberg, 1961; Knight, 1921; Payzan-

LeNestour, & Bossaerts, 2011; Volz & Gigerenzer, 2012). Third, the results are in line with the notion 

that, relative to younger adults, older adults have an aversion to ambiguity (Hämmerer et al., 2019; 

Nassar et al., 2016; Tymula et al., 2013). Nassar et al., (2016) attributed this aversion to a deficit in 

making inferences about ambiguous information with age. Results presented here support this 

argument by showing that younger adults accurately inferred ambiguous information by using 

feedback to learn how to represent information that was masked. In contrast, older adults did not show 

evidence of learning to make inferences about masked information to reduce uncertainty and instead 

avoided ambiguous information even when this strategy led to incorrect decisions.   

 What cannot be disassociated, however, is what strategy was used to make decisions under 

ambiguity, particularly amongst older adults. That is, it is unclear whether older adults were 
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dispositionally more averse to ambiguity (Nassar et al., 2016), whether they were less successful at 

learning from feedback in order to make inferences (Hämmerer et al., 2019), or both. Past research 

suggests that it may be a combination of older adults overweighting unambiguous information 

(Tymula et al., 2013) and not learning from feedback as quickly as younger adults (Eppinger et al., 

2008), with the latter finding also supported by the results of Experiment 2. Although younger adults 

show an aversion to ambiguity (albeit to a lesser degree than older adults; Tymula et al., 2013), 

younger adults are able to improve decision quality with feedback. Without being able to learn from 

feedback in Experiment 3, making inferences about masked information may not be possible. In line, 

with prior work (Eppinger et al., 2008; Marschner et al., 2005), evidence from Experiment 2 also 

showed that older adults required more trials to learn from feedback compared with younger adults. 

Given that the number of trials per condition in Experiment 3 was less than the number of trials in 

Experiment 2, it is possible that older adults required more trials per condition to learn from feedback 

in order to make inferences about ambiguous information. Future research should utilize EEG to 

measure the FRN component in order to examine whether older adults gradually begin to use feedback 

over time to make inferences about ambiguity to improve decision quality if a large number of trials 

are provided. This avenue of research may elucidate whether ambiguity aversion can be mitigated in 

older adults given the opportunity to learn from feedback over many trials. 

 Concerning Hypothesis 7, the Lipkus Numeracy Task, Cognitive Reflection Test - Reflection 

subscale, and Faith in Intuition assessments predicted performance on the belief updating task. 

Numeracy and cognitive reflection predicting decision accuracy replicate findings from Experiment 2. 

These findings indicate that numeracy and cognitive reflection may equip younger and older adults to 

accurately update beliefs and avoid decision biases even when information is ambiguous. Novel to this 

experiment however, is that the Faith in Intuition assessment predicted decision accuracy, such that 

lower scores predicted higher decision accuracy in belief updating. Previous literature has shown that 
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higher scores on the Faith in Intuition assessment associate with failures in belief updating (Alós-

Ferrer & Hügelschäfer, 2012), as well as reliance on heuristic reasoning (Epstein et al., 1996; Shiloh et 

al., 2002). However, other studies have shown that this assessment does not relate to heuristic-based 

decision making (Alós-Ferrer et al., 2016; Lu, 2015). That is, the literature is mixed concerning 

whether intuitive thinking dispositions relate to belief updating. In contrast to Experiments 1 and 2, the 

current study used the Faith in Intuition assessment to predict accuracy when making decisions under 

ambiguity rather than risk. The results suggest that having a disposition to make decisions based on 

intuition relates to committing heuristic-based errors particularly when updating beliefs under 

ambiguous circumstances. Future research should further examine whether intuitive thinking 

dispositions associate with avoiding ambiguous information and the overweighting of certain 

information.  

 Correlational analyses showed that higher scores on the Lipkus Numeracy Task, Berlin 

Numeracy Test, Cognitive Reflection Test – Reflection subscale, and lower scores on the Faith in 

Intuition assessment associated with a greater avoidance of committing the representativeness error in 

younger adults. In contrast, higher scores on the Lipkus Numeracy Task, Berlin Numeracy Test, and 

Cognitive Reflection Test – Reflection subscale associated with a greater avoidance of committing the 

conservatism error in older adults. These results indicate that individual differences in younger and 

older adults protect against committing different decision biases. Whereas numeracy and cognitive 

reflection protect against committing the representativeness error in younger adults (with younger 

adults generally avoiding the conservatism error), for older adults although numeracy and cognitive 

reflection protect against committing the conservatism error, older adults are still susceptible to the 

representativeness error. Regardless of age, scores on the DSST correlated with decision accuracy in 

both conflict situations. These results converge with prior literature showing that measures of fluid 

intelligence such as processing speed, are strongly associated with Type 2 processing (Burgess et al., 
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2011), as well as tasks that tap executive functions such as working memory and inhibition (Kane & 

Engle, 2002; Gray et al., 2003) - processes important for belief updating when confronted with 

conflicting information (Stanovich, 2018).  

 In summary, the results from Experiment 3 replicate and extend the heuristics and biases 

literature and build on the results of the two previous experiments that comprise this dissertation. First, 

the results show that younger adults made more accurate decisions than older adults regardless of 

whether decisions were based on risk or ambiguous information (Hämmerer et al., 2019; Nassar et al., 

2016; Peters et al., 2007; Tymula et al., 2013). Second, novel to the current experiment the results 

provide strong evidence that learning to avoid decision biases when making decisions under ambiguity 

are influenced by age. Specifically, results showed that the representativeness error was committed 

more than the conservatism error. However, older adults were more susceptible to the 

representativeness error compared with younger adults, and only avoided committing this error when 

sample information was ambiguous. These results suggest that younger adults can learn to make 

inferences about ambiguous information when feedback is presented in order to update beliefs whereas 

older adults avoid ambiguity and resort to overweighting the available information that is certain. 

Third, this is the first study to show that individual differences in numeracy, cognitive reflection, 

thinking dispositions and processing speed associate with updating beliefs when information is 

ambiguous.
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Chapter 8: General Discussion 
 

Prior literature shows that younger adults deviate from the principles of Bayes’ theorem 

during belief updating by using heuristics that lead to decision biases. Two common errors 

committed include overweighting prior information (i.e., the conservatism error) and 

overweighting new information (i.e., the representativeness error; Achtziger et al., 2014; Grether, 

1980, 1992). In the heuristics and biases literature, the representativeness error is committed 

more than the conservatism error (Kahneman & Frederick, 2002). However, this literature has 

been built on younger adult samples, with limited research investigating how older adults use 

heuristics during belief updating. In the aging literature, the tendency to process information 

automatically has been associated with age (Mutter & Pliske, 1994; Yates & Patalano, 1999; 

although not all research supports this; see Delaney et al., 2015). This finding has been attributed 

to deficits in cognitive control (Kropotov et al., 2016) and a preference to save cognitive 

resources in late life (Bruine De Bruin, et al., 2015). 

Cognitive reflection tasks such as the belief updating task used in the current dissertation, 

requires the decision maker to detect a conflict between an automatic and a normative response, 

suppress and override automatic processes, and simulate alternative responses while 

simultaneously separating simulations from the real world (Stanovich et al., 2016). Given that 

the processes underlying cognitive reflection heavily depend on cognitive control (Oldrati, 

Patricelli, Colombo, & Antonietti, 2016), older adults are likely to be at a disadvantage when 

performing these tasks compared with younger adults. In addition, belief updating tasks typically 

do not include feedback (e.g., Kolossa et al., 2015; Kopp et al., 2016). Although older adults 

show deficits learning from feedback compared with younger adults (Nieuwenhuis et al., 2002; 

Eppinger et al., 2008), it was not clear how older adults would use heuristics during belief 
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updating compared with younger adults, or whether younger and older adults would learn to 

avoid committing heuristic-based decision errors with feedback. 

Additionally, belief updating tasks require decision makers to make decisions under risk, 

in which all information relevant to solving a problem is presented (Volz & Gigerenzer, 2012). 

However, decisions made under ambiguity are more common in the real world. Although no age 

differences emerge when making decisions under risk (Armstrong & Spaniol, 2017; Mata et al., 

2011), older adults perform worse than younger adults when making decisions under ambiguity, 

due to an aversion to ambiguous information with age (Hämmerer et al., 2019; Nassar et al., 

2016). Whether age differences would emerge in the use of heuristics when updating beliefs 

based on ambiguous information, or whether younger and older adults would learn to make 

inferences about ambiguous information from feedback to support belief updating was unknown. 

Last, previous research shows that individual differences in younger adults such as numeracy, 

fluid intelligence, thinking dispositions and cognitive reflection associate with performance on 

tasks that examine the use of heuristics and decision biases (e.g., Alós-Ferrer & Hügelschäfer, 

2012; Campitelli & Gerrans, 2014; Cokely et al., in press). Thus, in addition to age differences, it 

was also of interest to examine whether individual differences in younger and older adults would 

modulate the use of heuristics when updating beliefs.  

The purpose of this dissertation was to fill these gaps in the literature using three 

experiments to examine: a) how age influences the use of heuristics during belief updating, b) 

whether the neural correlates that underlie belief updating differ as a function of age, c) whether 

younger and older adults would learn to avoid committing decision biases during belief updating 

with feedback, d) how age influences the use of heuristics when making decisions under risk 

https://www.sciencedirect.com/science/article/pii/S0167268112001564#!
https://www.sciencedirect.com/science/article/pii/S0167268112001564#!
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relative to ambiguity, and e) how individual differences influence the use of heuristics during 

belief updating.  

To briefly restate the main results, younger and older adults committed the 

representativeness error more than the conservatism error in each experiment, highlighting the 

prevalence of base-rate neglect (Kahneman & Tversky, 1972). No age differences were observed 

in the use of heuristics during belief updating with no feedback. However, younger adults made 

more accurate decisions than older adults during belief updating with feedback. This indicates 

that decision makers can avoid decision biases from learning from feedback when updating 

beliefs, with older adults learning to a lesser degree than younger adults. The ERP evidence 

suggests that older adults made less accurate decisions than younger adults possibly due to a 

delay in learning from feedback as indexed by a less defined FRN in older relative to younger 

adults in both blocks of the task. ERP data also showed evidence of conflict detection (indexed 

by the N2) cognitive control (indexed by pP) and inhibitory control (indexed by the P3b) in 

response to a conflict between an intuitive lure (i.e., heuristic) and Bayes’ theorem in younger 

and older adults, but with older adults showing more prefrontal neural activity (pP) than younger 

adults, and younger adults showing more frontocentral neural activity (N2) than older adults.  

Additionally, younger adults showed no differences in performance when making 

decisions under risk relative to ambiguity, with self-assessment data indicating that some 

younger adults learned to make inferences about ambiguous information to support belief 

updating. In contrast, decision accuracy and self-assessment data showed that older adults were 

more likely than younger adults to make decisions based on new information (i.e., the sample) 

regardless of whether prior information was ambiguous or not, and only made decisions based on 

prior information when new information was ambiguous. Last, no age differences were observed 
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in numeracy or cognitive reflection (with lower scores observed on the Cognitive Reflection Test 

– Reflection subscale), however age differences were observed in processing speed. In all 

experiments, individual differences in numeracy, processing speed and cognitive reflection16 

predicted or correlated with decision accuracy. The following sections highlight the theoretical 

and empirical implications of the main results of these experiments.  

Prevalence of Base-Rate Neglect 

It has been postulated that base-rate neglect occurs because individual-case evidence cues 

an intuitive response that is difficult to override (Kahneman & Frederick, 2002; Kahneman & 

Tversky, 1973; Tversky & Kahneman, 1974), whereas base-rate information is more likely to 

cue some degree of slower, deliberative processing (Bonner & Newell, 2010; De Neys & 

Glumicic, 2008; Ferreira, Garcia-Marques, Sherman, & Sherman, 2006; Kahneman & Frederick, 

2002), with a general preference to forego deliberative, Type 2 processing, for more intuitive, 

Type 1 processing (Stanovich et al., 2016). This is supported by evidence showing that when the 

problem structure allows for base-rates to be more easily processed, base-rate neglect becomes 

less prevalent (Barbey & Sloman, 2007; Brainerd, 2007; Reyna & Mills, 2007).  

 As a brief reminder, the corrected odds show that the level of difficulty for each decision 

situation is approximately the same (see Appendix X). Thus, the results do not stem from 

varying difficulty in the decision situations in terms of their calculability, but rather how 

information is used to make decisions. Committing the representativeness error, a by-product of 

base-rate neglect (Kahneman & Tversky, 1972), was commonly observed in each experiment of 

this dissertation. In the belief updating task, whereas prior information presented probabilistic 

information (e.g., 75% likelihood the computer drew the sample from the left urn; 25% right 

 
16 Only Experiments 2 and 3 included the extended Cognitive Reflection Test.  
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urn), new information was presented in absolute numbers (e.g., 3 blue and 1 green ball drawn) 

which could be perceived as more concrete evidence than prior probabilities (Barbey & Sloman, 

2007). That is, prior and new information differed concerning their level of certainty, with prior 

information less certain than new information. In line with research showing a preference to 

process certain relative to uncertain information with little effort (Ellsberg, 1961; Kahneman, 

2011; Stanovich, 2011), it is possible that the prevalence of committing the representativeness 

error observed in Experiments 1 to 3, stems from a preference to base decisions on concrete 

information that is more easily processed and more difficult to override than putting forth the 

effort to reason about base-rate probabilities (Bonner & Newell, 2010; De Neys & Glumicic, 

2008; Kahneman & Frederick, 2002).  

In addition, base-rate neglect may also be due to an aversion to numerical information, 

such that certain information presented symbolically (the new information) is preferred over less 

certain information presented numerically (prior information), with the former more easily 

processed than the latter. That is, it cannot be ruled out that a potential source of base-rate 

neglect observed in these experiments stem from either the certainty or the format (numeric vs. 

symbolic) in which information was presented. Importantly however, Experiment 3 did not 

present any numbers (only symbolic stimuli), with base-rate neglect persisting. This suggests that 

the difference in certainty between prior and new information may have influenced decision 

accuracy more than format differences (i.e., numbers vs. symbolic stimuli), however this remains 

an open question for future research.  

 Building on the heuristics and biases, as well as the aging literature, a novel contribution 

of this dissertation series provides evidence that younger and older adults can learn to avoid 

committing the representativeness error by learning from feedback. Further, the results show that 
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younger and older adults are susceptible to heuristic-based errors to the same degree during 

belief updating with no feedback, with age differences emerging when updating beliefs with 

feedback.   

Belief updating without feedback. In contrast to my hypothesis, Experiment 1 showed 

that younger and older adults committed the representativeness error more than the conservatism 

error to the same degree. Specifically, without feedback, the data suggests that both age groups 

were more likely to use new information to make decisions and did not learn to avoid 

committing heuristic-based decision errors over time. However, because the proportion of 

representativeness errors approximated 50% for both age groups, it is unclear whether a strategy 

was used (e.g., using new information to make decisions) or if participants were making 

decisions randomly. Evidence supporting the former stems from the proportion of correct 

decisions made in the other situations of interest. That is, in situations in which the conservatism 

heuristic conflicts with Bayes’ theorem or the representativeness heuristic aligns with Bayes’ 

theorem, basing decisions on new information leads to the correct response. Given the higher 

decision accuracy in these decision situations in Experiment 1 (74% in the CconfB situation and 

93% in the RalignB situation) and the lower decision accuracy in situations in which the 

representativeness heuristic conflicts with Bayes’ theorem in Experiment 1 (53%), these results 

imply that there was a preference to base decisions on new information, regardless of the 

decision situation, in both age groups. That is, the results could be showing use of normative 

strategies to make decisions in the situations in which the conservatism heuristic conflicts with 

Bayes’ theorem and the representativeness heuristic aligns with Bayes’ theorem. On the other 

hand, the results may not necessarily reflect avoidance of the conservatism error per se, but 

rather provides evidence of the high prevalence of base-rate neglect.  
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Together, these results support literature showing that younger adults deviate from 

Bayes’ theorem by using heuristics that lead to decision errors (Achtziger et al., 2014; Grether, 

1980, 1992). Additionally, this is the first study to show that younger and older adults commit 

heuristic-based errors, particularly the representativeness error, to the same extent in a belief 

updating task with no feedback and with numeracy modulating and processing speed associating 

with this outcome. In contrast to Achtziger et al. (2014), decision accuracy did not improve over 

time. This could potentially be due to methodological differences between studies. In Experiment 

1 of this dissertation, the representativeness heuristic may have been more compelling to use 

because relevant information was presented simultaneously in which new information and the 

urn distributions could easily be matched (Grether, 1980). In contrast, Achtziger et al. (2014) 

presented the urn distributions and prior information before presenting new information, forcing 

participants to recall the urn distributions and prior information in memory, which may have 

gradually encouraged reflective processing over time. In addition, Experiments 2 and 3 of this 

dissertation showed no age differences in the Cognitive Reflection Test and no age differences in 

belief updating in Experiment 1. The Cognitive Reflection Test requires one to suppress intuitive 

lures in order to generate better responses without feedback, similar to the version of the belief 

updating task that does not include feedback in Experiment 1. Together, these results show that 

younger and older adults gravitate to decision biases to the same degree when feedback is not 

provided, with committing the representativeness error being the most prevalent decision bias 

during belief updating. 

Belief updating with feedback. In Experiments 2 and 3, results showed that older adults 

made more decision errors than younger adults, with the representativeness error committed 

more than the conservatism error in both age groups. In addition, results in Experiment 2 also 
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showed an increase in accuracy over time in younger and older adults. These results can be 

attributed to the inclusion of feedback, and support prior research showing that younger adults 

learn more successfully from feedback compared with older adults (Eppinger et al., 2008; 

Fernandes et al., 2018; Nieuwenhuis et al., 2002).  

It could be argued that the increase in decision accuracy in Experiment 2 was due to 

instrumental conditioning such that participants memorized the pairing of decision situation and 

correct outcome, rather than due to feedback cueing reflective processes. However, if the pairing 

of decision situation and correct outcome were memorized, one would expect decision accuracy 

for each decision situation to be high and approximately equal. Importantly, even with trial-by-

trial feedback, the representativeness error was committed more than the conservatism error (i.e., 

a difference in accuracy between decision situations). This indicates that younger and older 

adults found it difficult to suppress and override the representativeness heuristic in order to 

choose the option that aligns with a normative response, even when feedback was provided. 

These results are supported by the longer RTs in situations in which the representativeness 

relative to the conservatism heuristic conflicted with Bayes’ theorem.  

Although accuracy increased over time in Experiment 2, there was still evidence of a 

struggle to make correct decisions when the representativeness heuristic conflicted with Bayes’ 

theorem in the latter half of the task. ERP evidence from Experiment 2 showed that the N2 for 

younger adults and pP for older adults, markers of conflict detection and engagement of 

cognitive control (Grützmann et al., 2014; Lucci et al., 2013), increased from Block 1 to Block 2 

in response to the representativeness heuristic conflicting with Bayes’ theorem. These results 

provide evidence at the brain level that younger and older adults engaged control processes in 

response to conflicting information. As described above, these results could be due to the 
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difficulty overriding concrete evidence (i.e., the sample) in order to generate a normative 

response that reflects the integration of prior and sample information (Bonner & Newell, 2010; 

De Neys & Glumicic, 2008; Kahneman & Frederick, 2002). 

Additionally, in Experiment 2, ERP evidence in response to feedback showed that older 

adults produced a less defined FRN component in response to positive and negative feedback 

compared with younger adults, and with older adults showing a larger FRN component in the 

second relative to the first block. This suggests that both younger and older adults were able to 

build expectations about their decisions in order to react to unexpected positive and negative 

feedback (Eppinger et al., 2008), with older adults showing a delay in building expectations 

about feedback compared with their younger adult counterparts.  

In line with previous research, these results suggest that the age differences observed in 

decision accuracy may stem from younger adults using feedback more successfully than older 

adults (Eppinger et al., 2008; Nieuwenhuis et al., 2002), and that older adults require more trials 

than younger adults to learn from feedback to improve performance (Eppinger, Schuck, 

Nystrom, & Cohen, 2013). Importantly, a larger FRN component was observed in response to 

negative feedback when a conservatism error was made relative to a representativeness error. 

These results suggest that there were greater expectations for outcomes on trials where the 

conservatism relative to the representativeness heuristic conflicted with Bayes’ theorem. Given 

that more accurate decisions were made when the conservatism relative to the representativeness 

heuristic conflicted with Bayes’ theorem, expectations concerning the outcomes for the former 

situation may be stronger than the latter. That is, committing a conservatism error may evoke 

greater FRN in response to negative feedback than committing a representativeness error because 

making an incorrect decision in the former situation is less likely than the latter situation. These 
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results converge with the behavioural data showing that the representativeness heuristic was 

more difficult to avoid than the conservatism heuristic.  

 An interesting finding that emerged from Experiment 3 was the age difference in 

committing the representativeness error when prior or sample information was ambiguous. As 

previously described, older adults compared with younger adults show an aversion to ambiguous 

information (Hammerer et al., 2019; Nassar et al., 2016; Tymula et al., 2013). Results from 

Experiment 3 showed that whereas younger adults were not influenced by ambiguous 

information, older adults showed evidence of making decisions based on new information 

regardless of whether prior information was ambiguous or not, and avoided the 

representativeness error only when new information was ambiguous. These results demonstrate 

the reliance on new information to make decisions, particularly in old age.   

A common finding in each experiment was that numeracy and cognitive reflection 

predicted and processing speed associated with decision accuracy in the belief updating task 

regardless of whether feedback was presented or not. These results indicate that those higher in 

numeracy and cognitive reflection were less likely to commit the representativeness error than 

those lower in numeracy and cognitive reflection, evidence that at least some participants were 

not “guessing” when the representativeness heuristic conflicted with Bayes’ theorem Experiment 

1. Additionally, faster processing speed was associated with a greater avoidance of the 

representativeness error in all three experiments. These results support past research showing 

that numeracy, cognitive reflection and fluid abilities protect against committing decision biases 

in younger adults (Cokely et al., in press; McVay & Kane, 2012; Stanovich et al., 2018), and 

builds on this literature by extending these results to the older population.  
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What remains unclear however is whether younger and older adults made more accurate 

decisions in situations in which the conservatism heuristic conflicted with Bayes’ theorem 

because normative principles were used or because participants defaulted to making decisions 

based on new information. Analysis of the LRP in Experiment 2 showed evidence that younger 

and older adults gravitated towards the higher prior probability in situations in which the 

conservatism heuristic conflicted with Bayes’ theorem. Although this shows that participants 

attended to prior information, this is not evidence of using a normative strategy to make 

decisions. Therefore, it remains unclear whether younger and older adults used normative 

strategies to make decisions when the conservatism heuristic conflicted with Bayes’ theorem or 

whether the representativeness heuristic was used. 

Together, Experiments 1 to 3 of this dissertation provide behavioural and ERP evidence 

that sheds light on the prevalence of neglecting the base-rate during belief updating. The results 

show that younger and older adults can learn to avoid committing this error when updating 

beliefs if feedback is presented, but with older adults showing a delay in learning from feedback 

compared with younger adults. Additionally, higher numeracy and fluid abilities may protect 

against committing the representativeness error regardless of whether feedback is presented or 

not, and cognitive reflection may protect against base-rate neglect when feedback is provided. 

Last, the prevalence of committing the representativeness over the conservatism error when 

updating beliefs may stem from a difference in certainty between prior and new information. 

However, more research is required to empirically test this speculation. 

Cognitive Architecture of Information Processing 

 A framework of the cognitive architecture of information processing in the heuristics and 

biases literature has been used to examine miserly processing that leads to decision biases 
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(Stanovich, 2018). Importantly, this literature is based on younger adult data. Although a recent 

study examined age differences on the Cognitive Reflection Test (Hertzog, Smith, & Ariel, 

2017), to my knowledge no study has investigated information processing that underlies 

performance on a belief updating task that pits an error-prone heuristic against Bayes’ theorem in 

younger and older adults. Of note, the purpose of this dissertation was not to directly test the 

processes that underlie each stage of the information processing framework in younger and older 

adults. However, the data acquired across these experiments in combination with what is known 

about cognitive aging may provide insight into the age differences observed in belief updating. 

The point of this section was to provide a “first look” at how miserly processing in older adults 

differs from younger adults by referencing relevant data acquired from these experiments, as 

well as the cognitive aging literature and to relate these findings to the information processing 

framework of cognitive reflection. 

 As a brief reminder, within the heuristics and biases literature, the cognitive architecture 

of information processing framework consists of three processing stages: 1) detecting the 

inadequacy of an automatic response; 2) suppressing and overriding automatic processing to 

engage reflective processing; 3) generating hypothetical alternative responses that are superior to 

the automatic response, while sustaining decoupling operations (Stanovich et al., 2016). Previous 

work shows that individual differences on the Cognitive Reflection Test have been associated 

with Stage 1 (Stanovich et al., 2016), inhibitory control has been associated with Stage 2, fluid 

intelligence has been associated with Stage 3 (Stanovich, 2011), stored knowledge such as 

numeracy has been associated with Stages 1 and 3 (Liberali, Reyna, Furlan, Stein, & Pardo, 

2012; Stanovich, 2018; Stanovich et al., 2016), and thinking dispositions have been associated 

with Stages 1 and 2 of the framework (Stanovich & West, 1998). Given that older adults show 
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deficits in inhibitory control (Hasher & Zacks, 1988), and fluid intelligence (Salthouse, 2019), 

show lower numeracy and a greater preference for automatic processing than younger adults 

(Peters et al., 2007; Peters et al., 2006), older adults are likely at a disadvantage when performing 

tasks requiring cognitive reflection compared with younger adults. However, results from the 

experiments in this dissertation did not show consistently worse performance in older relative to 

younger adults. Rather, results showed that younger and older adults deviate from normative 

decision making to the same degree. Increases in normative responses were only observed when 

cued by feedback, with older adults deviating from normative responses more than younger 

adults even with feedback.   

 Conflict detection, cognitive control, and alternative responses. Previous research has 

used RTs to gain insight into the difficulty of a task, with longer RTs reflecting greater difficulty 

(e.g., making decisions based on conflicting information) and shorter RTs reflecting less 

difficulty (e.g., making decisions based on non-conflicting information; Alós-Ferrer et al., 2016). 

Although RTs do not map one-to-one on latent processes, they may provide insight into the 

difficulty of a task. Across all experiments younger and older adults showed longer RTs in 

conflict situations than alignment situations. This indicates that even without feedback, conflict 

situations were more difficult than alignment situations, which may suggest that conflicting 

information engaged more reflective processing than non-conflicting information.  

ERP evidence showed that during belief updating with feedback, younger and older 

adults detected conflict and engaged cognitive control processes, indexed by the N2 component 

in younger adults and pP in a later time window in older adults. The N2 component has been 

used as a marker of conflict detection (e.g., Donkers & van Boxtel, 2004) and the over-

recruitment of the PFC in older adults has been associated with cognitive control in the conflict 
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monitoring literature (such as in Go/No-Go tasks; Lucci et al., 2013). Engagement of cognitive 

control implies that further information processing was necessary because the information 

presented did not elicit an immediately clear response. Additionally, more defined N2 and pP 

components were observed in Block 2 relative to Block 1, with larger N2 and pP amplitudes 

correlating with higher decision accuracy in younger and older adults, respectively. These results 

suggest that learning from feedback may have cued engagement of reflective processes in both 

age groups. Thus, concerning Stage 1 and 2 of the information processing framework, the RT 

and ERP data provide evidence that control processes were engaged in response to a heuristic 

conflicting with Bayes’ theorem, with larger amplitudes associating with normative responses in 

both age groups.  

 Generating an alternative response that is superior to an automatic response, while 

simultaneously sustaining decoupling operations relies heavily on fluid abilities (Stanovich, 

2011). Age differences in processing speed, an index of fluid intelligence (Salthouse, 2019), was 

observed in all three experiments, with older adults performing worse than younger adults. 

Additionally, in each experiment, correlational analyses showed that higher processing speed 

associated with higher decision accuracy. However, no associations between fluid intelligence 

and decision accuracy were generally observed when the correlations were conducted separately 

within each age group. These results suggest that diminished processing speed in older adults 

compared with younger adults may have contributed to the age differences observed on the belief 

updating task, with Stage 3 of the framework reflecting the process that depends most heavily on 

fluid intelligence. Although age differences observed in Experiments 2 and 3 may be driven by 

younger adults learning from feedback more successfully than older adults (as indexed by a 

diminished FRN in older adults; Eppinger et al., 2008), research has shown that fluid intelligence 
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underlies learning from feedback (Ferdinand et al., 2016). Of note, age and processing speed are 

highly correlated. Therefore, the relation between processing speed and decision accuracy may 

reflect the relation between age group and decision accuracy. Future research should further 

investigate whether diminished fluid abilities with age influence generating normative responses 

and sustaining decoupling operations during cognitive reflection or learning from feedback when 

updating beliefs.  

Numeracy, cognitive reflection and thinking dispositions. As previously described, 

individual differences in numeracy, cognitive reflection, and thinking dispositions have been 

associated with decision biases (Cokely et al., in press; Toplak et al., 2014b; Toplak et al., 2011). 

In all three experiments of this dissertation, no age differences were observed on the numeracy 

assessments or the Cognitive Reflection Test17, Need for Cognition or Faith in Intuition 

assessments, however numeracy and cognitive reflection predicted decision accuracy, regardless 

of age. These results build on the current literature by showing that having a proclivity for 

numeracy and reflective processing underlies performance on heuristics and biases tasks 

regardless of age (Cokely et al., in press; Toplak et al., 2014b; Toplak et al., 2011). 

With the exception of higher faith in intuition predicting lower decision accuracy in 

Experiment 3, across all experiments thinking dispositions (i.e., Need for Cognition and Faith in 

Intuition) did not predict decision accuracy. These results could be due to a difference in what is 

measured by thinking disposition assessments and the belief updating task measure. Whereas 

thinking disposition assessments reflect one’s perception of how one makes decisions (i.e., self-

report responses), the belief updating task reflects decision behaviour. Self-reports of how one 

 
17 The Cognitive Reflection Test was only included in Experiments 2 and 3. 
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believes they make decisions (i.e., based on analytical vs. intuitive processing) did not associate 

with how decisions were actually made in the belief updating task.  

 Together, these results suggest that diminished fluid abilities rather than a deficit in 

inhibitory control may contribute to the age differences observed in the belief updating task. 

Additionally, numeracy and cognitive reflection consistently predicted decision accuracy in each 

experiment in younger and older adults, suggesting that these cognitive domains may protect 

against decision biases when updating beliefs. These results are the first to shed light on the 

processes that underlie cognitive reflection in old age and how this data can be situated in the 

cognitive architecture of information processing framework. Importantly, these data do not 

provide direct evidence of different cognitive processes or abilities influencing specific stages of 

the framework. However, the results in combination with well known theories of cognitive aging 

provide a preliminary examination concerning which stages age differences in belief updating 

stem from. An avenue for future research is to investigate at which stages in the information 

processing framework older adults differ from younger adults. Specifically, future research 

should examine how diminished inhibitory control and fluid abilities in old age effects 

overriding automatic responses and generating alternative responses while sustaining decoupling 

operations, respectively. This may further elucidate why older adults use heuristics and gravitate 

towards decision biases more than younger adults and how this behaviour may implicate 

decisions in the real world.  

Decisions Under Risk vs. Ambiguity 

 Previous literature shows that older adults perform similarly to younger adults when 

making decisions based on risk information (Armstrong & Spaniol, 2017; Mata et al., 2011). 

However, when making decisions based on ambiguous information older adults show an 
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aversion to ambiguity compared with younger adults (Tymula et al., 2013). Specifically, older 

adults have difficulty making inferences about ambiguous information (Hämmerer et al., 2019) 

and tend to devalue information that is uncertain and overvalue information that is certain 

(Nassar et al., 2016) compared with younger adults.  

The reason for this age difference has been attributed to the different neural structures 

and cognitive mechanisms that underpin decisions under risk and ambiguity (Brand et al., 2006). 

Specifically, whereas the “cognitive” loop supports holding and manipulating information on-

line required for making decisions under risk, the “limbic” loop supports feedback and reward-

based processing as information is gradually learned which is required for making decisions 

under ambiguity. Experiment 1 and 2 of this dissertation required making decisions under risk, 

with age differences observed in the latter but not the former. Whereas making normative 

decisions in Experiment 1 likely depended on the cognitive loop such that decisions were made 

based on explicit risk information, Experiment 2 may have depended more on the limbic loop 

such that decisions were improved by learning from feedback, with older adults less likely to 

learn from feedback than younger adults (Eppinger et al., 2008).  

  Results from Experiment 3 support prior research showing that older adults are less 

likely to learn to infer about ambiguous information by learning from feedback compared with 

younger adults (Hämmerer et al., 2019). Research shows that when making decisions under 

ambiguity, initially decisions are made under complete uncertainty. However, as ambiguous 

information is gradually figured out through learning from feedback, decisions under ambiguity 

start to reflect decisions under risk (similar to Experiment 2; Nassar et al., 2016). In both age 

groups, avoiding the representativeness error was the most difficult regardless of condition. 

However, younger adults were able to infer ambiguous information by learning from feedback 
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more than older adults particularly in the situation in which the representativeness heuristic 

conflicted with Bayes’ theorem.  

Critically in Experiment 3, older adults showed no differences in decision accuracy 

between the uncertain prior, certain sample and certain prior, certain sample conditions. In these 

conditions, accuracy was lower in situations in which the representativeness heuristic conflicted 

with Bayes’ theorem and higher in situations in which the conservatism heuristic conflicted with 

Bayes’ theorem. This suggests that older adults used new information to make decisions in these 

conditions. Conversely, when new information was ambiguous (i.e., the certain prior, uncertain 

sample condition), accuracy was higher in situations in which the representativeness heuristic 

conflicted with Bayes’ theorem and lower in situations in which the conservatism heuristic 

conflicted with Bayes’ theorem, compared with the other two conditions. Together, these results 

suggest that older adults used new information to make decisions regardless of whether prior 

information was ambiguous, and only used prior information when new information was 

ambiguous.  

These results show that older adults avoid ambiguous information more than younger 

adults. In addition, the preference to rely more on information of greater relative to less certainty 

was observed throughout the dissertation, such that most decisions were made based on new 

information rather than prior probabilities. Although both younger and older adults showed 

evidence of this, given feedback younger adults learned to incorporate prior information into 

decisions more than older adults. These results converge with literature showing age differences 

when making decisions that rely on cognitive mechanisms supported by the limbic loop (Brand 

et al., 2006), with age differences observed in Experiments 2 and 3 likely due to a diminished 

ability to learn from feedback with age. 
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 Last, numeracy and cognitive reflection predicted decision accuracy in Experiment 3. 

Past research has shown that numeracy is a good predictor of decisions under ambiguity in 

younger adults (Cokely et al., in press). However, to my knowledge this is the first study to show 

that numeracy underlies decisions under ambiguity in the older population, and that cognitive 

reflection, as measured by the extended Cognitive Reflection Test (Toplak et al., 2014a), predicts 

accuracy when making decisions under ambiguity in both younger and older adults. 

Correlational analyses showed that higher numeracy and cognitive reflection scores in younger 

adults associated with the situation in which the representativeness heuristic conflicted with 

Bayes’ theorem in conditions where information was ambiguous. Older adults showed a similar 

pattern when making decisions under ambiguity specifically when the conservatism heuristic 

conflicted with Bayes’ theorem. Individual differences in younger and older adults correlating 

with different conflict situations has been observed in each experiment, possibly due to a 

difference in conflict situation difficulty – not in the sense that computation differs in difficulty 

across decision situations but rather that older adults may have more difficulty avoiding the 

representativeness error than younger adults. Building on the previous experiments however, 

these results show that numeracy and cognitive reflection are also good predictors of belief 

updating about ambiguous information.  

In summary, the results from these experiments show that older adults avoid ambiguous 

information more than younger adults, with younger adults learning to make inferences about 

ambiguous information and incorporate less certain information to improve decisions to a greater 

degree than older adults. Given that most decisions made in the real world are based on uncertain 

information, these results have important implications for how decisions are made in real life. 

For example, older adults may decide against taking medications or opting for surgery when the 
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prevalence of a disease is low and the relevant diagnostic test for testing the presence of disease 

is not 100% accurate. Future studies should further investigate whether age differences in 

decisions under ambiguity are derived from an aversion to ambiguous information, or a deficit in 

learning from feedback in old age, or some combination of the two.  

Limitations  

 The experiments that comprise this dissertation are not without limitations. Achtziger et 

al. (2014) presented prior information separately from new information, with participants making 

a decision when only the sample was presented on the screen. It is possible that results reported 

by Achtziger et al. (2014) could have been confounded by a recency effect, such that new 

information influenced decisions more because it was on the screen at the time participants made 

decisions, increasing accessibility of new information and only accessing prior information 

through memory. In order to avoid a memory-related confound and isolate reasoning, the current 

experiments presented this information in the same order (i.e., urn distributions then prior then 

new information) but with all information remaining on the screen when decisions were made. 

Although participants do not need to hold information in memory, new information was 

presented last which could have made it more salient or accessible (although participants could 

look up to the prior information making that the most recent information observed). Therefore, 

although mnemonic demands may have been reduced, whether all information remained on the 

screen after sequential presentation eliminated the confound of recency is unclear. 

 A second limitation is that correct decisions in situations where the conservatism 

heuristic conflicted with Bayes’ theorem may reflect base-rate neglect rather than the avoidance 

of a conservatism error. In light of this, base-rate neglect may have been a strategy applied across 

all decision situations. That is, although base-rate neglect was discussed as the most common 
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error committed by younger and older adults, it is possible that it was the only heuristic used 

across experiments.  

 A third limitation is that it cannot be argued with certainty that increases in decision 

accuracy over time are due to learning from feedback. That is, the increase in decision accuracy 

over time could be due to instrumental conditioning in which outcomes are learned based on the 

reinforcing and inhibiting effects of feedback. In addition, increases in accuracy could be due to 

practice effects (i.e., familiarity with the task). However, in Experiments 2 and 3, the 

experimenter asked participants whether they were able to memorize the correct answers to 

decision situations, and all participants responded that there were too many decision situations to 

memorize answers (although participants did express an awareness of decision situations 

repeating). It is possible that participants could have memorized decision situations and the 

corresponding answer, such that decision accuracy reflects recognition memory rather than 

reasoning ability. However, if participants memorized decision situations and their outcomes, 

one would expect approximately equal accuracy in each decision situation. Given that accuracy 

fluctuated in each decision situation and held the same pattern across all experiments regardless 

of whether feedback was presented or not, participants may not have made decisions based on 

decision situation and outcome pairings in memory.   

 Last, prior and new information may have been perceived differently in the belief 

updating tasks. That is, prior information may have been perceived as less certain because it 

reflects a probability distribution, whereas new information may have been perceived as more 

certain because it reflects absolute numbers. The difference in “certainty” of the prior and new 

information may have confounded results, such that this difference contributed to why base-rate 

neglect was so prevalent across these experiments. 
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Future Directions 

In order to determine whether order of prior and new information influences how 

heuristics are used, or to rule out a potential recency effect confound, future studies could utilize 

eye tracking technology or think-aloud procedures to determine what information is attended to 

before making a decision, or counterbalance the presentation order of prior and new information 

in way that would make sense in the task. Further, equating the certainty of prior and new 

information would also be important to investigate in the future to determine whether the 

difference in certainty influenced the use of heuristics in these experiments, specifically the 

prevalence of base-rate neglect.  

In addition, learning from feedback over time was not examined in Experiment 3 because 

each condition did not consist of enough trials to create trial blocks. Thus, it remains an open 

question whether accuracy in decisions under risk compared with decisions under ambiguity 

increase in younger and older adults during belief updating with feedback. Future research 

should examine the rate of learning when updating beliefs when relevant information fluctuates 

in certainty and determine whether older adults can learn to make inferences about ambiguous 

information given ample opportunity (i.e., more trials than what was provided in Experiment 3).  

In each experiment, participants completed assessments subsequent to performing the 

hour-long belief updating task. It is possible that participants could be cognitively depleted after 

performing the belief updating task and the scores on the assessments may not reflect younger 

and older adults’ typical performance (although age differences in some of the assessments such 

as the Mill Hill Vocabulary Test and the DSST are well documented in the aging literature; 

Salthouse, 2019). Future research should consider splitting experiments like these into two 

sessions, in which one session participants complete the belief updating task and another session 
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requires participants to complete the assessments (with sessions counterbalanced). Designing the 

experiment this way may help avoid depletion effects. 

Last, building on the main results of this dissertation, future research should further 

examine age differences in cognitive reflection tasks in the heuristics and biases literature. 

Specifically, do older adults perform worse than younger adults during belief updating with 

feedback because they do not learn from feedback as well as younger adults, or due to 

diminished fluid abilities with age, important for generating normative responses once non-

normative responses have been supressed, or a combination of both? This would further 

highlight how age influences the processes that underpin cognitive reflection.   

Conclusions 

 In conclusion, the findings of this dissertation have important implications for theories 

surrounding the use of heuristics, decision biases, and aging. Specifically, these experiments 

demonstrated that both younger and older adults commonly use the representativeness heuristic 

leading to decision errors when updating beliefs. However, given an opportunity to learn from 

feedback, both age groups learned to avoid making heuristic-based decision errors, with younger 

adults learning to a greater degree than older adults. These data are the first to show that error-

prone heuristics, particularly base-rate neglect, can be avoided with feedback, with older adults 

showing a delay in learning from feedback compared with younger adults – findings that 

converge with prior research that show a deficit in learning from feedback with age (Eppinger et 

al., 2008). In addition, the results further our understanding of how the neural correlates 

associated with belief updating are influenced by age, such that both younger and older adults 

showed evidence of conflict detection and engagement of cognitive control in response to 

conflicting information. However, whereas younger adults showed typical frontocentral activity 
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in response to conflict, older adults showed less frontocentral activity and more prefrontal 

activity than younger adults. These results are the first to show that older adults engage more 

anterior brain regions than younger adults, possibly to compensate for age-related declines in 

other brain regions, when updating beliefs.  

Further, a novel finding observed was that ambiguous information influenced the use of 

heuristics in older adults, but not younger adults. These results have important real world 

implications that highlight susceptibility to decision biases in old age, specifically when 

information is not certain. Additionally, a consistent finding throughout the experiments was that 

individual differences in numeracy, processing speed, and cognitive reflection were associated 

with belief updating performance. These results are the first to show that higher numeracy, fluid 

abilities, and cognitive reflection in both young and old age protect against gravitating toward 

decision biases when updating beliefs.  

 These results also build on the heuristics and biases literature by shedding new light on 

how the processes that underpin cognitive reflection in old age relate to the stages that comprise 

the information processing framework (Stanovich et al., 2016). Specifically, given that 

generating normative responses while suppressing automatic non-normative responses, and 

learning from feedback depend heavily on fluid abilities, age differences observed in belief 

updating may have been driven by diminished fluid intelligence. An avenue for future research is 

to pinpoint at which stages in the process of cognitive reflection younger and older adults show 

differences. These results would further elucidate why automatic processing and the use of 

heuristics increase with age. Altogether, these findings add to our knowledge of how younger 

and older adults update beliefs about risk and ambiguous information, and show how avoidance 

of decision biases is possible given the opportunity to learn from previous decision errors. 
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Appendices 

Appendix I: Consent Form for Experiment 1 

 

CONSENT FORM 
DECISION GAME I 

 

You are being invited to participate in a research study. Please read this consent form so that you 

understand what your participation will involve. Before you agree to participate, please ask any 

questions you may have.  

Investigators: 

Principal Investigator: Bonnie Armstrong, Department of Psychology, Ryerson 
University, bonnie.armstrong@psych.ryerson.ca  

Faculty Supervisor and  Dr. Julia Spaniol, Department of Psychology, Ryerson University 

Co-Investigator: jspaniol@psych.ryerson.ca  

 

This study is being conducted in partial fulfillment of the doctoral degree requirements for Ms. 

Bonnie Armstrong. The study is funded by a grant from the Natural Sciences and Engineering 

Research Council. 

Purpose of Study: In this study we are investigating how people make decisions based on 

probability information. Approximately 80 individuals will participate in this study. Results of 

this experimental study will be examined at the group level. We will not examine individual 

results. The group results may be published or presented at conferences. 

Description of Study: The study involves 1 testing session at Ryerson University. The session 

will involve a two computer-based tasks, as well as paper-and-pencil questionnaires. The time to 

complete the session is approximately 1.5 hours, and will not exceed 2 hours. Participants will 

receive an incentive of $15 for participating, as well as an opportunity to win an additional $5 

that will be based on your performance on the Decision Game computer task described below. If 

you choose to participate, your identity will be kept confidential and your responses will be 

recorded in such a way that you cannot be identified. You will receive a copy of this consent 

form, which contains the names and contact numbers of the study investigators.  

Tasks: The session will involve paper-and-pencil questionnaires and two computer tasks. You 

will be asked questions pertaining to various personality traits; dispositions and preferences 

about certain statements and in given situations; and overall mood and feelings. You will also 

complete some simple tests of thinking and vocabulary. The first computer task will present 

coloured words to you. Your task is to identify the font colour of the word. In the Decision Game 

computer task, you will be presented with two jars that each contain blue and green balls. The 
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computer will draw a sample of balls from one of the jars. You will be given information 

regarding the likelihood that each jar was chosen. You will then be shown the sample of balls 

that the computer drew, and you will be asked to guess which jar the balls were drawn from. The 

goal is to guess correctly as often as possible.  

Confidentiality: Each individual’s results are confidential. Neither your identity nor any 

personal information will be available to anyone other than the investigator. Each participant will 

receive an identification number (ID). Only the ID number will appear on electronic files, data 

files as well as on hard-copy data forms and questionnaires. Only individuals involved in the 

research team will have access to a central password-protected electronic file that matches 

participant IDs with identifying information (name, date of birth, responses to demographic and 

health-related questions). This information is being kept in the event that a follow-up study is 

conducted in the future and if you acknowledge and agree to this use of your information, as well 

as to be contacted in the future. If a follow-up study is conducted in the future and you would 

like to be contacted and be included in the follow-up study, the investigator will contact you in 

order to obtain your consent to use this information. No personal information will be disclosed in 

any resulting publication or presentation. All research records will be stored in a locked file 

cabinet in a locked laboratory (with personal information such as your name and signature stored 

separate from all other information). Electronic files will be password-protected and will be 

stored locally on a secure server on the Ryerson network.  

If you are interested, we would be happy to provide you with the final results of the study when 

they appear in press via email. After the study has been published or presented, or after a 

maximum of 7 years, all paper records (form, questionnaires, etc.) we collect from you will be 

shredded.  

Risks and Benefits: The results of this study may help us better understand how people make 

decisions that involve probability. Your participation will not directly benefit you, but 

knowledge will be gained that may benefit others. Furthermore, you may find the study fun and 

educational. However, being involved in a study may be a new experience for you, and you may 

feel uncomfortable answering some of the questions, some of which you may find disturbing or 

upsetting. However, any potential discomfort is expected to be temporary and will not be greater 

than what you might experience in a typical day. Remember that you do not have to answer all 

questions and that you may discontinue participation at any time with no penalty or loss of 

benefits to which you are entitled. 

Incentives to participate: Participants will receive an incentive of $15 for participating. You 

will receive this incentive even if you do not complete the study for any reason. Participants will 

receive an additional $5 if 80% or more of the decisions made in the Decision Game computer 

task are correct. 

Voluntary nature of participation: Participation in this study is voluntary. Your choice to 

participate, or not to participate, will not influence your future relations with Ryerson University. 

If you decide to participate, you are free to withdraw your consent and to stop your participation 

at any time, before or during the experiment, without penalty or loss of benefits to which you are 
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entitled. If closed, no data will be collected. If you do, you will still receive $15 for your 

participation. If you would like to participate but wish your data to be excluded from the 

analyses you can request this at any point during the study without penalty or loss of benefits to 

which you are entitled. You must notify the researchers by April 1, 2018 if you wish to have 

your data removed from the study.  

Questions about the study: If you have any questions about the research experience please feel 

free to ask the experimenter at any time (now or during the study). If you have any questions 

about this research after you have completed the study you may contact Bonnie Armstrong 

(phone: 416.979.5000 ext. 2193, or bonnie.armstrong@psych.ryerson.ca) or Dr. Julia Spaniol 

(416.979.5000 ext. 2268, or jspaniol@psych.ryerson.ca). 

Questions about your rights as a participant: This research has been reviewed and has 

received ethical approval by the Research Ethics Committee at Ryerson University. If you have 

questions about your participation in the research or about your treatment as a research 

participant, you may contact the Research Ethics Board (Contact: Research Ethics Board, c/o 

Office of the Vice President, Research and Innovation, Ryerson University, 350 Victoria St., 

Toronto ON, M5B 2K3, 416.979.5000, ext. 5042, or fax 416.979.5336).  

 

Agreement: 

Your signature below indicates that you have read the information in this agreement and have 

had a chance to ask any questions you have about the study. Your signature also indicates that 

you agree to be in the study and have been told that you can change your mind and withdraw 

your consent to participate at any time. You have been given a copy of this agreement. You have 

been told that by signing this consent agreement you are not giving up any of your legal rights.  

 

___________________________________ 

Name of Participant (please print) 

 

___________________________________  __________________________ 

Signature of Participant    Date 
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If you would like to be contacted in the future in the event that the experimenter conducts a 

follow-up study, please sign and date below. 

 

 

___________________________________  __________________________ 

Signature of Participant    Date 

Please check this box if you would like to receive a copy of the final report of this research 

 

 

___________________________________  ___________________________ 

Signature of Investigator    Date 
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Appendix II: Debriefing Form for Experiment 1 

 

DEBRIEFING FORM 
DECISION GAME I 

 

Purpose of Study: 

If you were to decide whether to hold an afternoon wedding ceremony outdoors at 6pm on the 

basis of a) the morning weather forecast and b) actual weather conditions at 2pm, you would 

need to combine this information in such a way that would inform your decision. People have 

great difficulty “updating” their knowledge with new information to make a decision1 (e.g., 

updating one’s knowledge of the weather forecast announced in the morning, with actual weather 

conditions in the early afternoon in order to decide whether to have the wedding indoors or 

outdoors at 6pm). People have a tendency to either place more value on their prior knowledge 

(e.g., the morning weather forecast) in which a conservatism heuristic is used or place more 

value on new information (e.g., weather conditions at 2pm) in which a representativeness 

heuristic is used2. Previous research from our lab examined how younger and older adults 

combine old information with new information, and found that both age groups were able to 

combine information more accurately when information was experienced, compared to when 

information was described to them3. However, the cognitive processes underlying younger and 

older adults’ performance in information integration tasks are still unknown. In particular, it is 

unclear whether there are age differences in the use of heuristics (e.g., do younger adults use 

heuristics more or less than older adults?). In addition, it is unknown whether there are age 

differences in the type of heuristic used (e.g., do younger adults prefer to use a different heuristic 

than older adults do?). The goal of the current study is to reveal whether age differences exist 

when old and new information are to be combined, and decisions are to be made based on 

judgments of the information.   

Main Question: 

a) Are there age differences in the use of heuristics? b) Are there age differences in the type of 

heuristic used?  

Study Summary: 

You made many decisions in which you had to decide which urn a sample of blue and green 

balls were drawn from. Some of the decision situations you were faced with a) influenced using 

a heuristic that led to an incorrect decision, b) influenced using a heuristic that led to a correct 

decision, and c) did not influence any heuristic. Our main interest is whether you used a heuristic 

that would lead you to make an incorrect choice, or whether you used a different strategy that 

would lead you to the correct choice. 
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Study hypothesis: 

We hypothesize that age differences exist regarding the frequency of heuristics used, with older 

adults using heuristics more than younger adults.   

Why is this study important?  

This study will tell us how susceptible older and younger adults are to heuristics (short-cuts) that 

lead to incorrect choices in a probability-based task. It will also shed light on whether older 

and/or younger adults prefer one type of heuristic to another.  

Thank you again for your participation!  Please contact bonnie.armstrong@psych.ryerson.ca if 

you have further questions about this study. 

Further readings:  

1. Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases. Science. 

1974;185:1124-31. 

2. Achtziger A, Alos-Ferrer C, Hugelschafer S, Steinhauser M. The neural basis of belief 

updating and rational decision making. Soc Cogn Affect Neurosci. 2014;9:55-62. 

3. Armstrong BA, Spaniol J. Experienced probabilities increase understanding of diagnostic test 

results in younger and older adults. Med Decis Mak. 2017; 1-10. 
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Appendix III: Consent Form for Experiment 2 

 

CONSENT FORM 
DECISION GAME II 

 

You are being invited to participate in a research study. Please read this consent form so that you 

understand what your participation will involve. Before you agree to participate, please ask any 

questions you may have.  

Investigators: 

Principal Investigator: Bonnie Armstrong, Department of Psychology, Ryerson 
University, bonnie.armstrong@psych.ryerson.ca  

Faculty Supervisor and  Dr. Julia Spaniol, Department of Psychology, Ryerson University 

Co-Investigator: jspaniol@psych.ryerson.ca  

 

This study is being conducted in partial fulfillment of the doctoral degree requirements for 

Bonnie Armstrong. The study is funded by a grant from the Natural Sciences and Engineering 

Research Council. 

Purpose of Study: In this study we are investigating how people make decisions based on 

probability information. The results may be presented at conferences and/or published in an 

academic journal. 

Description of Study: The study takes a total of 3 hours to complete at Ryerson University. All 

participants will undergo electroencephalographic (EEG) recordings during the study. Prior to 

beginning the study, the experimenter will explain how EEG is recorded, and the details of the 

experimental tasks. The session will involve two computer-based tasks, as well as paper-and-

pencil questionnaires. Participants will receive an incentive of $30 for participating, as well as an 

opportunity to win an additional $5 that will be based on your performance on the Decision 

Game computer task described below. In accordance with the Personal Health Information 

Protection Act (PHIPA), if you choose to participate, your identity will be kept confidential and 

your responses will be recorded in such a way that you cannot be identified. You will receive a 

copy of this consent form, which contains the names and contact numbers of the study 

investigators.  

Tasks: The session will involve paper-and-pencil questionnaires and two computer tasks. In the 

questionnaires, you will be asked questions pertaining to various personality traits; dispositions 

and preferences about certain statements and in given situations; and overall mood and feelings. 

You will also complete some simple tests of thinking and vocabulary. The first computer task 

will require you to press keys on the keyboard in response to stimuli on the computer screen. In 

the Decision Game computer task you will be presented with two jars that each contain blue and 
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green balls. The computer will draw a sample of balls from one of the jars. You will be given 

information regarding the likelihood that each jar was chosen. You will then be shown the 

sample of balls the computer drew, and you will be asked to guess which jar the balls were 

drawn from. The goal is to guess correctly as often as possible. You will receive feedback 

regarding whether you were correct or incorrect subsequent to each decision. 

Confidentiality: Each individual’s results are confidential. Neither your identity nor any 

personal information will be available to anyone other than the investigator. Each participant will 

receive an identification number (ID). Only the ID number will appear on electronic files, data 

files as well as on hard-copy data forms and questionnaires. Only individuals involved in the 

research team will have access to a central password-protected electronic file that matches 

participant IDs with identifying information (name, date of birth, responses to demographic and 

health-related questions). This information is being kept in the event that a follow-up study is 

conducted in the future and if you acknowledge and agree to this use of your information, as well 

as to be contacted in the future. If a follow-up study is conducted in the future and you would 

like to be contacted and be included in the follow-up study, the investigator will contact you in 

order to obtain your consent to use this information. No personal information will be disclosed in 

any resulting publication or presentation. All research records will be stored in a locked file 

cabinet in a locked laboratory (with personal information such as your name and signature stored 

separate from all other information). Electronic files will be password-protected and will be 

stored locally on a secure server on the Ryerson network. You have the right to withhold any 

personal health information if you wish to. You also have the right to discontinue your 

participation in this study at any point without any negative consequences. 

If you are interested, we would be happy to provide you with the final results of the study when 

they appear in press via email. After the study has been published or presented, or after a 

maximum of 7 years, all paper records (form, questionnaires, etc.) we collect from you will be 

shredded.  

Risks and Benefits: The results of this study may help us better understand how people make 

decisions that involve probability. The anticipated benefits of participating in this study include: 

a) gaining knowledge of psychological experiments and cognitive functions; and 2) contributing 

to the research of cognitive psychology. Participation in this study is associated with no or 

minimal risks. Furthermore, you may find the study fun and educational. However, being 

involved in a study may be a new experience for you, and you may feel uncomfortable 

answering some of the questions, some of which you may find disturbing or upsetting. However, 

any potential discomfort is expected to be temporary and will not be greater than what you might 

experience in a typical day. Remember that you do not have to answer all questions and that you 

may discontinue participation at any time with no penalty or loss of benefits to which you are 

entitled. The experimenter will make every effort to ensure that you feel as comfortable as 

possible throughout the session. There are no long-term risks associated with the recording of 

EEG, although you might feel short-term discomfort as a result of wearing the electrode cap for a 

long period of time. If you have temporal-mandibular joint (TMJ) disease or any recurrent 
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problems with your head or neck, then you should not participate in this study. As a 

reminder, you can discontinue the study at any time without penalty. 

Incentives to participate: Participants will receive an incentive of $30 for participating. You 

will receive this incentive even if you do not complete the study for any reason. Participants will 

receive an additional $5 if 80% or more of the decisions made in the Decision Game computer 

task are correct. 

Voluntary nature of participation: Participation in this study is voluntary. Your choice to 

participate, or not to participate, will not influence your future relations with Ryerson University. 

If you decide to participate, you are free to withdraw your consent and to stop your participation 

at any time, before or during the experiment, without penalty or loss of benefits to which you are 

entitled. If you discontinue the study, you will still receive $30 for your participation. If you 

would like to participate, but wish your data to be excluded from the analyses you can request 

this at any point during the study without penalty or loss of benefits to which you are entitled. 

You must notify the researchers by June 1, 2019 if you wish to have your data removed from the 

study.  

Questions about the study: If you have any questions about the research experience please feel 

free to ask the experimenter at any time (now or during the study). If you have any questions 

about this research after you have completed the study you may contact Bonnie Armstrong 

(phone: 416.979.5000 ext. 2193, or bonnie.armstrong@psych.ryerson.ca). 

Questions about your rights as a participant: This research has been reviewed and has 

received ethical approval by the Research Ethics Committee at Ryerson University. If you have 

questions about your participation in the research or about your treatment as a research 

participant, you may contact the Research Ethics Board (Contact: Research Ethics Board, c/o 

Office of the Vice President, Research and Innovation, Ryerson University, 350 Victoria St., 

Toronto ON, M5B 2K3, 416.979.5000, ext. 5042, or fax 416.979.5336).  

Agreement: 

Your signature below indicates that you have read the information in this agreement and have 

had a chance to ask any questions you have about the study. Your signature also indicates that 

you agree to be in the study and have been told that you can change your mind and withdraw 

your consent to participate at any time. You have been given a copy of this agreement. You have 

been told that by signing this consent agreement you are not giving up any of your legal rights.  

__________________________________ 

Name of Participant (please print) 

___________________________________  __________________________ 

Signature of Participant    Date 

 

mailto:bonnie.armstrong@psych.ryerson.ca
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If you would like to be contacted in the future in the event that the experimenter conducts a 

follow-up study, please sign and date below. 

__________________________________  __________________________ 

Signature of Participant    Date 

 

Please check this box if you would like to receive a copy of the final report of this research 

___________________________________  ___________________________ 

Signature of Investigator    Date 
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Appendix IV: Debriefing Form for Experiment 2 

 

DEBRIEFING FORM 
DECISION GAME II 

Purpose of Study: 

If you were to decide whether to hold an afternoon wedding ceremony outdoors at 6pm on the 

basis of a) the morning weather forecast and b) actual weather conditions at 2pm, you would 

need to combine this information in such a way that would inform your decision. People have 

great difficulty “updating” their knowledge with new information to make a decision1 (e.g., 

updating one’s knowledge of the weather forecast announced in the morning, with actual weather 

conditions in the early afternoon in order to decide whether to have the wedding indoors or 

outdoors at 6pm). People have a tendency to either place more value on their prior knowledge 

(e.g., the morning weather forecast) in which a conservatism heuristic is used or place more 

value on new information (e.g., weather conditions at 2pm) in which a representativeness 

heuristic is used2. Previous research from our lab examined how younger and older adults 

combine old information with new information, and found that both age groups were able to 

combine information more accurately when information was experienced, compared to when 

information was described to them3. However, the cognitive and neural processes underlying 

younger and older adults’ performance in information integration tasks are still unknown. In 

particular, it is unclear whether there are age differences in the use of heuristics (e.g., do younger 

adults use heuristics more or less than older adults?). In addition, it is unknown whether there are 

age differences in the type of heuristic used (e.g., do younger adults prefer to use a different 

heuristic than older adults do?). The goal of the current study is to reveal whether age differences 

exist when old and new information are to be combined, and decisions are to be made based on 

judgments of the information. In this study, we also measured electrophysiological activity. We 

measure brain activity in order to examine the biases people have for prior and new information. 

For example, are there differences in brain activity when people overweight prior information 

compared to new information? Do younger and older adults show differences in brain activity 

when overweighting prior and new information? 

Main Question: 

a) Are there age differences in the use of heuristics? b) Are there age differences in the type of 

heuristic used? c) Are there age differences in brain activity across different decision situations? 

Study Summary: 

You made many decisions in which you had to decide which urn a sample of blue and green 

balls were drawn from. Some of the decision situations you were faced with may have been a) 

influenced by a heuristic that led to an incorrect decision, b) influenced by a heuristic that led to 

a correct decision, and c) were  not influenced by any heuristic. Our main interest is whether you 
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used a heuristic that would lead you to make an incorrect choice, or whether you used a different 

strategy that would lead you to the correct choice. 

Study hypothesis: 

We hypothesize that age differences exist regarding the frequency of heuristics used, with older 

adults using heuristics more than younger adults.2,4 

Why is this study important?  

This study will tell us how susceptible older and younger adults are to heuristics (short-cuts) that 

lead to incorrect choices in a probability-based task. It will also shed light on whether older 

and/or younger adults prefer one type of heuristic to another.  

Thank you again for your participation! Please contact bonnie.armstrong@psych.ryerson.ca if 

you have further questions about this study. 

Further readings:  

1. Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases. Science. 

1974;185:1124-31. 

2. Achtziger A, Alos-Ferrer C, Hugelschafer S, Steinhauser M. The neural basis of belief 

updating and rational decision making. Soc Cogn Affect Neurosci. 2014;9:55-62. 

3. Armstrong BA, Spaniol J. Experienced probabilities increase understanding of diagnostic 

test results in younger and older adults. Med Decis Mak. 2017; 1-10. 

4. Peters E, Finucane ML, MacGregor DG, & Slovic P. The bearable lightness of aging: 

Judgment and decision processes in older adults. 2000; 144-65. 
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Appendix V: Consent Form for Experiment 3 

 
 

CONSENT FORM 
DECISION GAME III 

 

You are being invited to participate in a research study. Please read this consent form so that you 

understand what your participation will involve. Before you agree to participate, please ask any 

questions you may have.  

 

Investigators: 
Principal Investigator: Bonnie Armstrong, Department of Psychology, Ryerson 

University, bonnie.armstrong@psych.ryerson.ca  
 

Faculty Supervisor and  Dr. Julia Spaniol, Department of Psychology, Ryerson University 

Co-Investigator: jspaniol@psych.ryerson.ca  

 

 

This study is being conducted in partial fulfillment of the doctoral degree requirements for 

Bonnie Armstrong. The study is funded by a grant from the Natural Sciences and Engineering 

Research Council. 

 

Purpose of Study: In this study we are investigating how people make decisions based on 

probability information. The results may be presented at conferences and/or published in an 

academic journal. 

 

Description of Study: The study takes a total of 2.5 hours to complete at Ryerson University. 

Prior to beginning the study, the experimenter will explain the details of the experimental tasks. 

The session will involve one computer-based task, as well as paper-and-pencil questionnaires. 

Participants will receive an incentive of $25 for participating, as well as an opportunity to win an 

additional $5 that will be based on your performance on the Decision Game computer task 

described below. In accordance with the Personal Health Information Protection Act (PHIPA), if 

you choose to participate, your identity will be kept confidential and your responses will be 

recorded in such a way that you cannot be identified. You will receive a copy of this consent 

form, which contains the names and contact numbers of the study investigators.  

 

Tasks: The session will involve paper-and-pencil questionnaires and one computer task. In the 

questionnaires, you will be asked questions pertaining to various personality traits, dispositions 

and preferences about certain statements and in given situations, and overall mood and feelings. 

You will also complete some simple questionnaires of thinking and vocabulary. In the Decision 

Game computer task you will be presented with 12 jars that each contains blue and green balls. 

The computer will draw a sample of balls from one of the 12 jars. You will then be shown the 

sample of balls the computer drew from the chosen jar, and you will be asked to decide which jar 
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the balls were drawn from. Sometimes some of the balls in the 12 jars will be hidden, and other 

times they will all be visible. Additionally, sometimes one of the four balls drawn from one of 

the jars will be hidden, and sometimes all balls that were drawn will be visible. The goal is to 

decide which jar the sample was drawn from correctly as often as possible. You will receive 

feedback regarding whether you were correct or incorrect subsequent to each decision. 

 

Confidentiality: Each individual’s results are confidential. Neither your identity nor any 

personal information will be available to anyone other than the investigator. Each participant will 

receive an identification number (ID). Only the ID number will appear on electronic files, data 

files as well as on hard-copy data forms and questionnaires. Only individuals involved in the 

research team will have access to a central password-protected electronic file that matches 

participant IDs with identifying information (name, date of birth, responses to demographic and 

health-related questions). This information is being kept in the event that a follow-up study is 

conducted in the future and if you acknowledge and agree to this use of your information, as well 

as to be contacted in the future. If a follow-up study is conducted in the future and you would 

like to be contacted and be included in the follow-up study, the investigator will contact you in 

order to obtain your consent to use this information. No personal information will be disclosed in 

any resulting publication or presentation. All research records will be stored in a locked file 

cabinet in a locked laboratory (with personal information such as your name and signature stored 

separate from all other information). Electronic files will be password-protected and will be 

stored locally on a secure server on the Ryerson network. You have the right to withhold any 

personal health information if you wish to. You also have the right to discontinue your 

participation in this study at any point without any negative consequences. 

 

If you are interested, we would be happy to provide you with the final results of the study when 

they appear in press via email. After the study has been published or presented, or after a 

maximum of 7 years, all paper records (form, questionnaires, etc.) we collect from you will be 

shredded.  

 

Risks and Benefits: The results of this study may help us better understand how people make 

decisions that involve probability in situations that vary in the precision of the information. The 

anticipated benefits of participating in this study include: a) gaining knowledge of psychological 

experiments and cognitive functions; and 2) contributing to the research of cognitive psychology. 

Participation in this study is associated with no or minimal risks. Furthermore, you may find the 

study fun and educational. However, being involved in a study may be a new experience for you, 

and you may feel uncomfortable answering some of the questions, some of which you may find 

disturbing or upsetting. However, any potential discomfort is expected to be temporary and will 

not be greater than what you might experience in a typical day. Remember that you do not have 

to answer all questions and that you may discontinue participation at any time with no penalty or 

loss of benefits to which you are entitled. The experimenter will make every effort to ensure that 

you feel as comfortable as possible throughout the session.  

 

Incentives to participate: Participants will receive an incentive of $25 for participating. You 

will receive this incentive even if you do not complete the study for any reason. Participants will 

receive an additional $5 if 80% or more of the decisions made in the Decision Game computer 

task are correct. 
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Voluntary nature of participation: Participation in this study is voluntary. Your choice to 

participate, or not to participate, will not influence your future relations with Ryerson University. 

If you decide to participate, you are free to withdraw your consent and to stop your participation 

at any time, before or during the experiment, without penalty or loss of benefits to which you are 

entitled. If you discontinue the study, you will still receive $25 for your participation. If you 

would like to participate, but wish your data to be excluded from the analyses you can request 

this at any point during the study without penalty or loss of benefits to which you are entitled. 

You must notify the researchers by June 1, 2019 if you wish to have your data removed from the 

study.  

 

Questions about the study: If you have any questions about the research experience please feel 

free to ask the experimenter at any time (now or during the study). If you have any questions 

about this research after you have completed the study you may contact Bonnie Armstrong 

(phone: 416.979.5000 ext. 2193, or bonnie.armstrong@psych.ryerson.ca). 

 

Questions about your rights as a participant: This research has been reviewed and has 

received ethical approval by the Research Ethics Committee at Ryerson University. If you have 

questions about your participation in the research or about your treatment as a research 

participant, you may contact the Research Ethics Board (Contact: Research Ethics Board, c/o 

Office of the Vice President, Research and Innovation, Ryerson University, 350 Victoria St., 

Toronto ON, M5B 2K3, 416.979.5000, ext. 5042, or fax 416.979.5336).  

 

Agreement: 

Your signature below indicates that you have read the information in this agreement and have 

had a chance to ask any questions you have about the study. Your signature also indicates that 

you agree to be in the study and have been told that you can change your mind and withdraw 

your consent to participate at any time. You have been given a copy of this agreement. You have 

been told that by signing this consent agreement you are not giving up any of your legal rights.  

 

 

___________________________________ 

Name of Participant (please print) 

 

 

 

___________________________________  __________________________ 

Signature of Participant    Date 
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If you would like to be contacted in the future in the event that the experimenter conducts a 

follow-up study, please sign and date below. 

 

 

 

___________________________________  __________________________ 

Signature of Participant    Date 

 

 

 
Please check this box if you would like to receive a copy of the final report of this research 

 

 

___________________________________  ___________________________ 

Signature of Investigator    Date 
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Appendix VI: Debriefing Form for Experiment 3 

 
 

DEBRIEFING FORM 
DECISION GAME III 

 

Purpose of Study: 

If you were to decide whether to hold an afternoon wedding ceremony outdoors at 6pm on the 

basis of a) the morning weather forecast and b) actual weather conditions at 2pm, you would 

need to combine this information in such a way that would inform your decision. People have 

great difficulty “updating” their knowledge with new information to make a decision1 (e.g., 

updating one’s knowledge of the weather forecast announced in the morning, with actual weather 

conditions in the early afternoon in order to decide whether to have the wedding indoors or 

outdoors at 6pm). People have a tendency to either place more value on their prior knowledge 

(e.g., the morning weather forecast) in which a conservatism heuristic is used or place more 

value on new information (e.g., weather conditions at 2pm) in which a representativeness 

heuristic is used2. Previous research from our lab examined how younger and older adults 

combine old information with new information, and found that both age groups were able to 

combine information more accurately when information was experienced, compared to when 

information was described to them3. However, the cognitive processes underlying younger and 

older adults’ performance in information integration tasks are still unknown. In particular, it is 

unclear whether there are age differences in the use of heuristics (e.g., do younger adults use 

heuristics more or less than older adults?). In addition, it is unknown whether there are age 

differences in the type of heuristic used (e.g., do younger adults prefer to use a different heuristic 

than older adults do?), or whether the precision of information affects the type of decisions 

made. Some research shows that older adults have difficulty representing uncertain information 

compared to younger adults.5 The goal of the current study is to reveal whether age differences 

exist when old and new information are to be combined, and decisions are to be made based on 

judgments of uncertain and certain information.  

 

Main Question: 

a) Are there age differences in the use of heuristics? b) Can making accurate judgments of 

probability information be learned over time with feedback? c) Does the precision of information 

affect the types of decisions made by younger and older adults? 

 

Study Summary: 

You made many decisions in which you had to decide which jar a sample of blue and green balls 

were drawn from. Some of the decision situations you were faced with may have been a) 

influenced by a heuristic that led to an incorrect decision, b) influenced by a heuristic that led to 

a correct decision, and c) were not influenced by any heuristic. Our main interest is whether you 

used a heuristic that would lead you to make an incorrect choice, or whether you used a different 

strategy that would lead you to the correct choice. 
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Study hypothesis: 

We hypothesize that age differences exist regarding the frequency of heuristics used, with older 

adults using heuristics more than younger adults.2,4 

 

Why is this study important?  

This study will tell us how susceptible older and younger adults are to heuristics (short-cuts in 

decision making) that lead to incorrect choices in a probability-based task. It will also shed light 

on whether older and/or younger adults prefer one type of heuristic to another, and whether the 

precision of information affects the quality of decisions made based on probability information. 

 

Thank you again for your participation!  Please contact bonnie.armstrong@psych.ryerson.ca if 

you have further questions about this study. 

 

Further readings:  

 

1. Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases. Science. 

1974;185:1124-31. 

2. Achtziger A, Alos-Ferrer C, Hugelschafer S, Steinhauser M. The neural basis of belief 

updating and rational decision making. Soc Cogn Affect Neurosci. 2014;9:55-62. 

3. Armstrong BA, Spaniol J. Experienced probabilities increase understanding of diagnostic 

test results in younger and older adults. Med Decis Mak. 2017; 1-10. 

4. Peters E, Finucane ML, MacGregor DG, & Slovic P. The bearable lightness of aging: 

Judgment and decision processes in older adults. 2000; 144-65. 

5. Nassar MR, Bruckner R, Gold JI, Li SC, Heekweren HR, & Eppinger B. Age differences 

in learning emerge from an insufficient representation of uncertainty in older adults. Nat 

Commun. 2016;7:1-13.  
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Appendix VII: Experiment 1 Instructions  

Practice: 

In this experiment you will see two jars that contain a mixture of blue and green balls. You will 

be presented with the proportion of blue and green balls within each jar. For example, one jar 

may have 75% blue and 25% green balls, and the other jar may have 50% blue and 50% green 

balls. In the middle of the computer task there will be a 2-minute break to relax. After this break, 

the proportion of blue and green balls within each jar will change. For example, one jar may now 

have 75% green and 25% blue balls, and the other jar may have 50% green and 50% blue balls. 

You will see this in the practice task as well. In every decision situation you encounter, the 

computer will choose one of the two jars to draw balls out of. The catch is, you will not be told 

which jar the computer will draw from! You will only be presented with the likelihood that each 

jar will be chosen by the computer. For example, there may be a 75% chance that the computer 

will choose the left jar, and a 25% chance that the computer will choose the right jar to draw 

balls out of. The likelihood each jar will be chosen by the computer, will change across decision 

situations. You will then see the sample of balls the computer drew from one of the two jars. The 

sample of balls drawn by the computer also change across decision situations. 

Your task is to choose which jar you believe the sample of balls was drawn from by pressing the 

L key for the left jar and the R key for the right jar. The sample will stay on the screen until you 

have made a decision. Once you have made a decision, the sample of balls will be put back in the 

jar they were drawn from. Along with the 2-minute break in the middle of the computer task, 

there are also 6 shorter breaks (around 30 seconds each) scattered throughout the task. In the real 

experiment, if you make 80% or more CORRECT decisions, you will receive an extra $5. 

However, you will not be given feedback on the decisions you make. Whether you win the extra 

$5 will be revealed at the end of the computer task. It is important to try to make the correct 

decision in EVERY decision situation in order to maximize your total reward (amount of money 

won!). We will first go through a practice task. It is important you ask the experimenter anything 

you do not understand about the task. If you do not have any questions, please press the spacebar 

to begin. 

Experiment: 

In this experiment you will see two jars that contain a mixture of blue and green balls. You will 

be presented with the proportion of blue and green balls within each jar. For example, one jar 

may have 75% blue balls and 25% green balls, and the other jar may have 50% blue balls and 

50% green balls. In the middle of the computer task there will be a 2 minute break to relax. After 

this break, the proportion of blue and green balls within each jar will change. For example, one 

jar may now have 75% green balls and 25% blue balls, and the other jar may have 50% green 

balls and 50% blue balls. You will see this in the practice task too. In every decision situation 

you encounter, the computer will choose one of the two jars to draw balls out of. The catch is, 

you will not be told which jar the computer will draw from! You will only be presented with the 

likelihood that each jar will be chosen by the computer. For example, there may be a 75% chance 

that the computer will choose the left jar, and a 25% chance that the computer will choose the 
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right jar to draw balls out of. The likelihood each jar will be chosen by the computer, will change 

across decision situations. You will then see the sample of balls the computer drew from one of 

the two jars. The sample of balls drawn by the computer will also change across decision 

situations. 

Your task is to choose which jar you believe the sample of balls was drawn from by pressing the 

L key for the left jar and the R key for the right jar. The sample will stay on the screen until you 

have made a decision. Once you have made a decision, the sample of balls will be put back in the 

jar they were drawn from. Along with the 2 minute break in the middle of the computer task, 

there are also 6 shorter breaks (around 30 seconds each) scattered throughout the task. In the real 

experiment, if you make 80% or more CORRECT decisions, you will receive an extra $5. 

However, you will not be given feedback on the decisions you make. Whether you win the extra 

$5 will be revealed at the end of the computer task. It is important to try to make the correct 

decision in EVERY decision situation in order to maximize your total reward (amount of money 

won!). We will first go through a practice task. It is important you ask the experimenter anything 

you do not understand about the task. If you do not have any questions, please press the spacebar 

to begin. 

30 second break: 

Take a brief break (about 30 seconds). Press the spacebar to continue. 

2-minute break: 

1: Take this time to take a longer break. In 2-minutes this screen will let you know when you 

may resume. Remember: the proportion of blue and green balls in each bowl is now going to 

change. 

2: Get ready to continue the experiment. Press the spacebar to continue. 

Last screen: 

Congratulations! The decisions you made were over 80% correct! The decision game is now 

complete. Thank you for your participation! Please wait for the experimenter for further 

instruction. 
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Appendix VIII: Experiment 2 Instructions  

Practice: 

In this experiment you will see two jars that contain a mixture of blue and green balls. You will 

be presented with the proportion of blue and green balls within each jar. For example, one jar 

may have 75% blue and 25% green balls, and the other jar may have 50% blue and 50% green 

balls. In the middle of the computer task there will be a 2-minute break to relax. After this break, 

the proportion of blue and green balls within each jar will change. For example, one jar may now 

have 75% green and 25% blue balls, and the other jar may have 50% green and 50% blue balls. 

You will see this in the practice task as well. In every decision situation you encounter, the 

computer will choose one of the two jars to draw balls out of. The catch is, you will not be told 

which jar the computer will draw from! You will only be presented with the likelihood that each 

jar will be chosen by the computer. For example, there may be a 75% chance that the computer 

will choose the left jar, and a 25% chance that the computer will choose the right jar to draw 

balls out of. The likelihood each jar will be chosen by the computer, will change across decision 

situations. You will then see the sample of balls the computer drew from one of the two jars. The 

sample of balls drawn by the computer also change across decision situations. 

Your task is to choose which jar you believe the sample of balls was drawn from by pressing the 

L key for the left jar and the R key for the right jar. The sample will stay on the screen until you 

have made a decision. Once you have made a decision, the sample of balls will be put back in the 

jar they were drawn from. In the actual experiment (not the practice), you will be given feedback 

on the decisions you make (i.e., whether your decision was correct or incorrect). Along with the 

2-minute break in the middle of the computer task, there are also 6 shorter breaks (around 30 

seconds each) scattered throughout the task. In the real experiment, if you make 80% or more 

CORRECT decisions, you will receive an extra $5. Whether you win the extra $5 will be 

revealed at the end of the computer task. It is important to try to make the correct decision in 

EVERY decision situation in order to maximize your total reward (amount of money won!). We 

will first go through a practice task. It is important you ask the experimenter anything you do not 

understand about the task. If you do not have any questions, please press the spacebar to begin. 

Experiment: 

In this experiment you will see two jars that contain a mixture of blue and green balls. You will 

be presented with the proportion of blue and green balls within each jar. For example, one jar 

may have 75% blue balls and 25% green balls, and the other jar may have 50% blue balls and 

50% green balls. In the middle of the computer task there will be a 2-minute break to relax. After 

this break, the proportion of blue and green balls within each jar will change. For example, one 

jar may now have 75% green balls and 25% blue balls, and the other jar may have 50% green 

balls and 50% blue balls. You will see this in the practice task too. In every decision situation 

you encounter, the computer will choose one of the two jars to draw balls out of. The catch is, 

you will not be told which jar the computer will draw from!  

You will only be presented with the likelihood that each jar will be chosen by the computer. For 

example, there may be a 75% chance that the computer will choose the left jar, and a 25% 
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chance that the computer will choose the right jar to draw balls out of. The likelihood each jar 

will be chosen by the computer, will change across decision situations. You will then see the 

sample of balls the computer drew from one of the two jars. The sample of balls drawn by the 

computer will also change across decision situations. 

Your task is to choose which jar you believe the sample of balls was drawn from by pressing the 

L key for the left jar and the R key for the right jar. The sample will stay on the screen until you 

have made a decision. Once you have made a decision, the sample of balls will be put back in the 

jar they were drawn from. You will be given feedback on the decisions you make (i.e., whether 

your decision was correct or incorrect). Along with the 2-minute break in the middle of the 

computer task, there are also 6 shorter breaks (around 30 seconds each) scattered throughout the 

task. As a reminder, you will be rewarded with an extra $5 if you answer 80% or more of the 

decisions correctly. It is important to try to make the correct decision in EVERY decision 

situation in order to maximize your total reward (amount of money won!). Whether you win the 

extra $5 or not will be revealed to you at the end of the study. If you have any questions about 

the task, please ask the experimenter now. Otherwise press the spacebar to begin. 

30 second break: 

Take a brief break (about 30 seconds). Press the spacebar to continue. 

2-minute break: 

1: Take this time to take a longer break. In 2-minutes this screen will let you know when you 

may resume. Remember: the proportion of blue and green balls in each bowl is now going to 

change. 

2: Get ready to continue the experiment. Press the spacebar to continue. 

Last screen: 

Congratulations! The decisions you made were over 80% correct! The decision game is now 

complete. Thank you for your participation! Please wait for the experimenter for further 

instruction. 
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Appendix IX: Experiment 3 Instructions  

Practice: 

In this experiment you will see twelve jars that contain a mixture of blue and green balls. You 

will be presented with the proportion of blue and green balls within each jar. There are two types 

of jars. One type of jar will have 75% of one colour and 25% of another colour, and the other 

type of jar will have 50% of one colour and 50% of another colour. Although the proportions of 

colours in the two jar types will stay the same, the colours of the balls within each jar and the 

number of jars of each type will change across decision situations. This will be demonstrated in 

the practice task we do. In every decision situation you encounter, the computer will choose one 

of the twelve jars to draw a sample of four balls. The catch is you will not be told which jar the 

computer will draw from! You will only be presented with the twelve jars and the proportion of 

blue and green balls in each jar.  You will then see the sample of balls the computer drew from 

one of the twelve jars. The sample of balls drawn by the computer will also change across 

decision situations. Your task is to choose which type of jar you believe the sample was drawn 

from by pressing the L key for the left jar type or the R key for the right jar type. The twelve jars 

and the sample will stay on the screen until you have made a decision. Once you have made a 

decision, the sample of balls will be put back in the jar they were drawn from. 

In some decision situations you encounter, the contents of some of the twelve jars will be hidden 

from you. That is, you will not know the proportion of blue and green balls in the jars that are 

hidden. Importantly, the hidden jars contain proportions of blue and green balls that are identical 

to the two visible jars, but the number of each type of jar will remain unknown to you. 

In other decision situations you encounter, the sample drawn by the computer from one of the 

twelve jars will contain hidden information. That is, one of the four balls will be hidden, and 

remain unknown to you. The hidden ball could be either blue or green. 

Altogether, there are three types of decision situations: 

1.  All 12 jars and the sample are visible. 

2.  Some of the 12 jars are hidden and the sample is visible.  

3.  All 12 jars are visible and some of the sample is hidden. 

 

There will be two 1-minute breaks separating each type of decision situation, with three optional 

30 second breaks within each decision situation block. If you make 80% or more CORRECT 

decisions, you will receive an extra $5! Whether you win the extra $5 will be revealed at the end 

of the computer task. It is important to try to make the correct decision in EVERY decision 

situation in order to maximize your total reward. We will first go through a practice task. It is 

important you ask the experimenter anything you do not understand about the task at this time. If 

you do not have any questions, please press the spacebar to begin. 

 

Experiment: 

In this experiment you will see twelve jars that contain a mixture of blue and green balls. You 

will be presented with the proportion of blue and green balls within each jar. There are two types 
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of jars. One type of jar will have 75% of one colour and 25% of another colour, and the other 

type of jar will have 50% of one colour and 50% of another colour. Although the proportions of 

colours in the two jar types will stay the same, the colours of the balls within each jar and the 

number of jars of each type will change across decision situations. This will be demonstrated in 

the practice task we do. In every decision situation you encounter, the computer will choose one 

of the twelve jars to draw a sample of four balls. The catch is you will not be told which jar the 

computer will draw from! You will only be presented with the twelve jars and the proportion of 

blue and green balls in each jar.  You will then see the sample of balls the computer drew from 

one of the twelve jars. The sample of balls drawn by the computer will also change across 

decision situations. Your task is to choose which type of jar you believe the sample was drawn 

from by pressing the L key for the left jar type or the R key for the right jar type. The twelve jars 

and the sample will stay on the screen until you have made a decision. Once you have made a 

decision, the sample of balls will be put back in the jar they were drawn from. 

In some decision situations you encounter, the contents of some of the twelve jars will be hidden 

from you. That is, you will not know the proportion of blue and green balls in the jars that are 

hidden. Importantly, the hidden jars contain proportions of blue and green balls that are identical 

to the two visible jars, but the number of each type of jar will remain unknown to you. 

In other decision situations you encounter, the sample drawn by the computer from one of the 

twelve jars will contain hidden information. That is, one of the four balls will be hidden, and 

remain unknown to you. The hidden ball could be either blue or green. 

Altogether, there are three types of decision situations: 

1.  All 12 jars and the sample are visible. 

2.  Some of the 12 jars are hidden and the sample is visible.  

3.  All 12 jars are visible and some of the sample is hidden.  

There will be two 1-minute breaks separating each type of decision situation, with three optional 

30 second breaks within each decision situation block. You will be given feedback on the 

decisions you make. If you make 80% or more CORRECT decisions, you will receive an extra 

$5! Whether you win the extra $5 will be revealed at the end of the computer task. It is important 

to try to make the correct decision in EVERY decision situation in order to maximize your total 

reward. We are about to begin the computer task. It is important you ask the experimenter 

anything you do not understand about the task at this time. If you do not have any questions, 

please press the spacebar to begin. 

30 second break: 

Take a brief break (about 30 seconds). Press the spacebar to continue. 

2-minute break: 

1: Take this time to take a break. Remember: the type of decision situation will now change. \n\n 

In 1 minute this screen will let you know when you may resume. 
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2: Get ready to continue the experiment. Press the spacebar to continue. 

Last screen: 

Congratulations! The decisions you made were over 80% correct! The decision game is now 

complete. Thank you for your participation!  Please wait for the experimenter for further 

instruction. 
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Appendix X: Posterior Probabilities and Corrected Odds of Decision Situations 

The table below provides the posterior probabilities for each prior-sample combination 

for the left urn. Posterior probabilities above 0.5 indicate choosing the left urn is the correct 

choice, and probabilities below 0.5 indicate choosing the left urn is the incorrect choice.  

Posterior probabilities of the left urn contingent on prior probability and sample drawn 

Following the paradigm by Achtziger et al. (2014), the corrected posterior odds (i.e., the 

posterior odds – 1) were used to reflect a measure of inverse difficulty for the more likely urn 

chosen by the computer (see table below). 

Corrected odds of the left urn contingent on prior probability and sample drawn 

The corrected odds demonstrate how distant the odds are from 1:1. Therefore, the closer the 

corrected odds value is to 0, the more difficult the decision situation (see bolded corrected odds 

in table above). The level of difficulty of the six decision situations of interest is also 

demonstrated in the table of posterior probabilities (see bolded posterior probabilities in table 

above). Posterior probabilities closer to .50 reflect more difficult decisions, such that the 

probability of making a correct choice is closer to chance. Therefore, posterior probabilities of 

.36 and .63 are prior-sample combinations that are of approximately equal difficulty. The cells 

with bolded corrected odds of approximately equal difficulty represent the six decision situations 

of interest in the current study.  

 

 Number of majority colour balls 

Prior 0 1 2 3 4 

75% 0.16 0.36 0.63 0.83 0.94 

50% 0.06 0.16 0.36 0.63 0.83 

25% 0.02 0.06 0.16 0.36 0.63 

 Number of majority colour balls 

Prior 0 1 2 3 4 

75% 4.25 0.78 0.69 4.06 14.19 

50% 14.67 4.25 0.78 0.69 4.06 

25% 48 14.67 4.25 0.78 0.69 
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Appendix XI: Demographic Questionnaire 

DEMOGRAPHICS / PHONE SCREENING 

Name: ______________________________________ Gender: Male  Female   Age: ______ 

Phone: _______________________ Email: _______________________________________ Handed: ______ 

EDUCATION 

Currently Student or Non-student ________________________ 

Highest level of education obtained ___________________Years____ Area of study ___________________ 

Previous degree / diploma     NO  YES: Area of study _________________________ 

LANGUAGE  

What is your first language ______________________ English learned at age______ Fluent in English YES NO 

Language spoken in grade school______________________ Other languages ________________________ 

What country were you born in__________________________ Year moved to Canada _________ 

HEALTH 

Vision Do you wear:  GLASSES: __________________ CONTACTS  NONE 

Operations on your eyes?    NO  YES: Specify ____________________________________ 

Are you colourblind?    NO  YES: Specify ____________________________________ 

Hearing Do you have any problems with your hearing? NO  YES 

  If YES, is your hearing corrected with a hearing aid? Specify: ___________________________ 

 Conditions Have you ever had any of the following conditions?  

Have you been taking any medications in the last six months?: __________

Stroke NO YES  Learning disability NO YES  

Tumor NO YES  Psychiatric illness NO YES  

Neurological diseases NO YES  Epilepsy NO YES  

Head injury NO YES  Cancer NO YES  

Concussion NO YES  High blood pressure NO YES  

Depression NO YES  Diabetes NO YES  

Anxiety NO YES  Thyroid disease NO YES  

Seizure NO YES  Serious car accident NO YES  

Aneurysm NO YES  Been unconscious NO YES 
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Appendix XII: Self-Assessment for Experiments 1 and 2 

Self-Assessment 

1. Which of the following influenced your decision the most? Circle one option below: 

 

a) Mostly likelihood information to make decisions 

b) Mostly sample information to make decisions 

c) Used both likelihood and sample information to make decisions 

 

2. What strategy did you use to make decisions? Circle one option below: 

 

a) I used the information indicated in question 1 consistently to make decisions 

b) I switched the information I used to make a decision (e.g., some decisions I used 

likelihood information and other decisions I used sample information to make 

decisions) 

c) Neither of the above 

 

3. Please explain, step by step, how you made your decisions in the computer task using the 

space below: 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

4. In your opinion, how accurate do you think the decisions you made were? Circle one 

option below: 

 

a) Very inaccurate 

b) Somewhat inaccurate 

c) Neither accurate nor inaccurate 

d) Somewhat accurate 

e) Very accurate 

 

5. How difficult did you find the task? Circle one option below: 

 

a) Very difficult 

b) Somewhat difficult 

c) Neither difficult nor easy 

d) Somewhat easy 

e) Very easy 
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6. How confident are you working with numbers? Circle one option below: 

 

a) Not at all confident  

b) Somewhat confident  

c) Confident 

d) Very confident 

e) Extremely confident  

 

7. Please use the space below to provide comments on the task you just completed: 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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Appendix XIII: Self-Assessment for Experiment 3 

Self-Assessment 

1. When likelihood and sample information were both unmasked, which of the following 

influenced your decision the most? Circle one option below: 

 

a) Mostly likelihood information to make decisions 

b) Mostly sample information to make decisions 

c) Used both likelihood and sample information to make decisions 

 

2. What strategy did you use to make decisions when likelihood and sample information 

were both unmasked? Circle one option below: 

 

a) I used the information indicated in question 1 consistently to make decisions 

b) I switched the information I used to make a decision (e.g., some decisions I used 

likelihood information and other decisions I used sample information to make 

decisions) 

c) Neither of the above 

 

3. When likelihood information was unmasked but sample information was masked, which 

of the following influenced your decision the most? Circle one option below: 

 

a) Mostly likelihood information to make decisions 

b) Mostly sample information to make decisions 

c) Used both likelihood and sample information to make decisions 

 

4. What strategy did you use to make decisions when likelihood information was unmasked 

but sample information was masked? Circle one option below: 

 

a) I used the information indicated in question 3 consistently to make decisions 

b) I switched the information I used to make a decision (e.g., some decisions I used 

likelihood information and other decisions I used sample information to make 

decisions) 

c) Neither of the above 

 

5. When likelihood information was masked but sample information was unmasked, which 

of the following influenced your decision the most? Circle one option below: 

 

a) Mostly likelihood information to make decisions 

b) Mostly sample information to make decisions 

c) Used both likelihood and sample information to make decisions 
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6. What strategy did you use to make decisions when likelihood information was masked 

but sample information was unmasked? Circle one option below: 

 

a) I used the information indicated in question 5 consistently to make decisions 

b) I switched the information I used to make a decision (e.g., some decisions I used 

likelihood information and other decisions I used sample information to make 

decisions) 

c) Neither of the above 

 

7. Please explain, step by step, how you made your decisions in the computer task using the 

space below: 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

8. In your opinion, how accurate do you think the decisions you made were? Circle one 

option below: 

 

a) Very inaccurate 

b) Somewhat inaccurate 

c) Neither accurate nor inaccurate 

d) Somewhat accurate 

e) Very accurate 

 

9. How difficult did you find the task? Circle one option below: 

 

a) Very difficult 

b) Somewhat difficult 

c) Neither difficult nor easy 

d) Somewhat easy 

e) Very easy 
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10. How confident are you working with numbers? Circle one option below: 

 

a) Not at all confident  

b) Somewhat confident  

c) Confident 

d) Very confident 

e) Extremely confident  

 

11. Please use the space below to provide comments on the task you just completed: 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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Appendix XIV: R Script Used for Multi-Level Modeling 

 

setwd("C:/Users/dflora/Dropbox/BonnieJuliaMLM") 

 

setwd("C:/Users/dbf/Dropbox/BonnieJuliaMLM") 

 

young <- read.table("young.txt", header = T) 

young$age <- 0 

young$ager <- 1  

 

old <- read.table("old.txt", header = T) 

old$age <- 1 

old$ager <- 0  

 

#concatenate young and old data into a single data frame; age = 0 for young, age = 1 for old 

all <- rbind.data.frame(young, old) 

 

library(car) 

all$cond <- recode(all$Decision.Situation, "c('25_3','75_2')='R'; c('25_4','75_1')='C'; else='F'") 

all2 <- all[ which(all$cond != 'F'),] 

 

#concatenate all2 with assessments 

all3 = merge(all2, dsst) 

 

#desriptive stats etc.  

 

library(psych) 

describe(young$RT) 

describe(old$RT) 

 

describe(young$Accuracy) 

describe(old$Accuracy) 

 

#describeBy(young$RT, group=young$) 

#describeBy(old$RT, group=old$Colour_CB) 

 

describeBy(all2$Accuracy, group=all2$cond) 

 

describeBy(all2$Accuracy, list(all2$cond,all2$age), mat=TRUE,digits=4) 

describeBy(all2$RT, list(all2$cond,all2$age), mat=TRUE,digits=4) 

 

#Load 'lme4' package for fitting multilevel models 

library(lme4) 

 

#ICC (proportion of variability due to clustering - range from 0-1, higher score more important 

to consider clustering).  
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#Divide intercept variance and sum of intercept + residual variance 

RTICC <- lmer(RT ~ 1 + (1|Subject), data = all3) 

summary(RTICC) 

 

#Regress RT on age - "means as outcomes model" because age is predicting each subject's mean 

RT across trials 

rtAge <- lmer(RT ~ age + (1|Subject), data = all3) 

 

#REML estimation is the default (rather than FIML) 

#restricted maximum likelihood (REML) is preferable when level 2 N is small 

#here, subjects are the level 2 units 

summary(rtAge) 

#Under 'Fixed effects', (Intercept) Estimate represents the mean RT for young 

#age estimate represents difference between mean RT for young and mean RT for old 

 

#this is a random-intercepts model; assumes that the effect of Block is constant across subjects 

#also including age as Level 2 predictor 

#only main effects so far; no interactions 

rtCon <- lmer(RT ~ age+cond+(1|Subject), data = all3) 

summary(rtCon) 

 

#Under 'Fixed effects', 

library(car) 

Anova(rtCon) #note the capital A  

 

# random slopes model 

#only main effects so far; no interactions 

rtConrs <- lmer(RT ~ age+cond+(cond|Subject), data = all3) 

summary(rtConrs) 

#Fixed effect estimates are very similar 

Anova(rtConrs) 

 

anova(rtCon, rtConrs) #note the lower-case A 

#but random-effects model fits significantly better; also BIC and AIC are better  

 

#add age interaction: 

rtConxAge <- lmer(RT ~ age+cond+(age*cond)+(cond|Subject), data = all2) 

summary(rtConxAge) 

#interaction is significant; don't interpret coefficients of Cond as "main effects" 

#to probe interaction, re-code age so that old = 0 and young = 1 

#to get "simple slopes" aka "simple main effects" of condition within old 

Anova(rtConxAge) 

 

#change reference category, change first letter: all3$cond<-factor(all3$cond,levels=c("R", "A", 

"C")) 

all3$cond<-factor(all3$cond,levels=c("C", "R")) 
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#ICC (proportion of variability due to clustering - range from 0-1, higher score more important 

to consider clustering).  

#Divide intercept variance and sum of intercept + residual variance 

accICC <- lmer(Accuracy ~ 1 + (1|Subject), data = all2) 

summary(accICC) 

 

#regress accuracy on age 

accAge <- glmer(Accuracy ~ age + (1|Subject), data=all2, family=binomial) 

summary(accAge) 

 

exp(fixef(accAge)) 

 

#random-intercepts  

accCon <- glmer(Accuracy ~ age + cond + (1|Subject), data=all2, family=binomial) 

summary(accCon) 

exp(fixef(accCon)) 

 

#random-slopes 

accConrs <- glmer(Accuracy ~ age + cond + (cond|Subject), data=all2, family=binomial) 

summary(accConrs) 

exp(fixef(accConrs)) 

 

#compare random-intercepts to random-slopes model 

anova(accCon, accConrs) 

 

#age by condition interaction 

accConxAge <- glmer(Accuracy ~ age + cond + (age*cond) + (cond|Subject), data=all2, 

family=binomial, control = glmerControl(optimizer = "bobyqa")) 

 

summary(accConxAge) 

Anova(accConxAge) #for overall test of interaction  

exp(fixef(accConxAge)) 

 

#assessments added as interaction terms 

#using Lipkus by condition by age interaction as an example 

accConxcLipxage <- glmer(Accuracy ~ cLip + cond + age + (cLip*cond*age) + (cond|Subject), 

data=all3, family=binomial, 

                        control = glmerControl(optimizer = "bobyqa")) 

 

summary(accConxcLipxage) 

Anova(accConxcLipxage) 

exp(fixef(accConxcLipxage)) 
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Appendix XV: MATLAB Script Used for Signal Processing and ICA 

 

Signal processing for “N2, pP, P3b, FRN” 
 

%Batch EEG analyses 
clear all; 

  
subject = {'100 resampled pruned with ICA_othercomponents'... 
'101 resampled pruned with ICA_othercomponents'... 
'102 resampled pruned with ICA_othercomponents'... 
'103 resampled pruned with ICA_othercomponents'... 
'104 resampled pruned with ICA_othercomponents'... 
'105 resampled pruned with ICA_othercomponents'... 
'106 resampled pruned with ICA_othercomponents'... 
'107 resampled pruned with ICA_othercomponents'... 
'108 resampled pruned with ICA_othercomponents'... 
'109 resampled pruned with ICA_othercomponents'... 
'110 resampled pruned with ICA_othercomponents'...} 

Etc. 

 
pathWrite = 'C:\Users\Carson\Documents\MATLAB\DGII\processed_data\'; 
pathRawData = '/Users/carson/Documents/MATLAB/Bonnie_DG/original_data/'; 
pathDefs = '/Users/carson/Documents/MATLAB/Bonnie_DG/scripts_lists/'; 

  
nsubj = length(subject); 

  
% set flags to 1 if you want the associated operations to be performed 
basic = 1; 
filter = 0; 

  
%convert BDF to SET 
for s = 1:nsubj 

     

      
    % Basic processing 
    if basic == 1 
        fprintf('\n') 
        

fprintf('**********************************************************\n') 
        fprintf('BASIC PROCESSSING FOR subject #%g : %s ...\n', s, 

subject{s}) 
        EEG = pop_loadset('filename', [subject{s} '.set'], 'filepath', 

[pathWrite 'pruned_ICA/']); 
        %fprintf('\n') 
        

%fprintf('**********************************************************\n') 
        %fprintf('ARTIFACT REJECTION AND AVERAGING FOR subject #%g : %s 

...\n', s, subject{s})       
        %EEG = pop_eegthresh(EEG,1,[1:68] ,-75,75,-0.199,0.996,2,0); % reject 

epochs amplitues exceeding +/- 75Hz 

         
        % Find out number of total events in file: 
        numTrials = EEG.trials; 
        halfTrial = round(numTrials/2) - 1; 
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        EEG_first_half = pop_select(EEG, 'trial', [1:halfTrial]); 
        EEG_second_half = pop_select(EEG,'trial', [(halfTrial+1):numTrials]); 

         

         

 
        ERP_first_half = pop_averager( EEG_first_half, 'DSindex', 1, 

'Criterion', 'good'); %compute average waveform for each bin 
        ERP_second_half = pop_averager( EEG_second_half, 'DSindex', 1, 

'Criterion', 'good');        

         
        % FIRST HALF PROCESSING 

         
        %Collapse across left/right targets 
        %ERP = pop_erpchanoperator( ERP, {'nchan1 = (ch13-ch50) label 

C3_C4'}); 
        ERP_first_half = pop_binoperator( ERP_first_half, {'b34 = (b10+b12)/2 

label RepCorrect'}); 
        ERP_first_half = pop_binoperator( ERP_first_half, {'b35 = (b14+b16)/2 

label ConsCorrect'}); 
        ERP_first_half = pop_binoperator( ERP_first_half, {'b36 = (b18+b20)/2 

label AlignCorrect'}); 
        ERP_first_half = pop_binoperator( ERP_first_half, {'b37 = b35 - b34 

label Neutral-Conf_CORRECT_DifferenceWave'}); 

         
        ERP_first_half = pop_binoperator( ERP_first_half, {'b38 = (b11+b13)/2 

label RepINCorrect'}); 
        ERP_first_half = pop_binoperator( ERP_first_half, {'b39 = (b15+b17)/2 

label ConsINCorrect'}); 
        ERP_first_half = pop_binoperator( ERP_first_half, {'b40 = (b19+b21)/2 

label AlignINCorrect'}); 
        ERP_first_half = pop_binoperator( ERP_first_half, {'b41 = b39 - b38 

label Neutral-Conf_INCORRECT_DifferenceWave'});         

         
        %ERP = pop_binoperator( ERP, {'nb1 = b1 label GainIncentive_Cue',  

'nb2 = b2 label GainNeutral_Cue',  'nb3 = b3 label LossIncentive_Cue',... 
        %'nb4 = b4 label LossNeutral_Cue',  'nb5 = b5 label 

NeutralNeutral_Cue',  'nb6 = (b6+b7)/2 label GI_Cong_Tar',  'nb7 = (b8+b9)/2 

label GI_Incong_Tar',... 
        %'nb8 = (b10+b11)/2 label GN_Cong_Tar',  'nb9 = (b12+b13)/2 label 

GN_Incong_Tar',  'nb10 = (b14+b15)/2 label LI_Cong_Tar',... 
        %'nb11 = (b16+b17)/2 label LI_Incong_Tar',  'nb12 = (b18+b19)/2 label 

LN_Cong_Tar',  'nb13 = (b20+b21)/2 label LN_Incong_Tar',  'nb14 = (b22+b23)/2 

label NN_Cong_Tar',... 
        %'nb15 = (b24+b25)/2 label NN_Incong_Tar',  'nb16 = b26 label 

GI_FastCorr_FDBK',  'nb17 = b27 label GI_Slow_FDBK',... 
        %'nb18 = b28 label LI_FastCorr_FDBK',  'nb19 = b29 label 

LI_Slow_FDBK',  'nb20 = b30 label GN_Neutral_FDBK',  'nb21 = b31 label 

LN_Neutral_FDBK',... 
        %'nb22 = b32 label NN_Neutral_FDBK'}); 

         
        %pop_summary_AR_erp_detection(ERP, [pathWrite 'D_Artifact_Summary\' 

subject{s} '.txt']); %Summarize rejected trials, save as txt file 
        saveERP(ERP_first_half, [pathWrite subject{s} 

'_FIRST_half_averaged.erp']); % Save ERPs  
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        %EEG = pop_saveset( EEG, 'filename', [subject{s} '_rej.set'], 

'filepath', [pathWrite 'C_Artifact_Rejected']); %Save EEG file with rejected 

trials 
        % SECOND HALF PROCESSING 

       
        %Collapse across left/right targets 
        %ERP = pop_erpchanoperator( ERP, {'nchan1 = (ch13-ch50) label 

C3_C4'}); 
        ERP_second_half = pop_binoperator( ERP_second_half, {'b34 = 

(b10+b12)/2 label RepCorrect'}); 
        ERP_second_half = pop_binoperator( ERP_second_half, {'b35 = 

(b14+b16)/2 label ConsCorrect'}); 
        ERP_second_half = pop_binoperator( ERP_second_half, {'b36 = 

(b18+b20)/2 label AlignCorrect'}); 
        ERP_second_half = pop_binoperator( ERP_second_half, {'b37 = b35 - b34 

label Neutral-Conf_CORRECT_DifferenceWave'}); 

         
        ERP_second_half = pop_binoperator( ERP_second_half, {'b38 = 

(b11+b13)/2 label RepINCorrect'}); 
        ERP_second_half = pop_binoperator( ERP_second_half, {'b39 = 

(b15+b17)/2 label ConsINCorrect'}); 
        ERP_second_half = pop_binoperator( ERP_second_half, {'b40 = 

(b19+b21)/2 label AlignINCorrect'}); 
        ERP_second_half = pop_binoperator( ERP_second_half, {'b41 = b39 - b38 

label Neutral-Conf_INCORRECT_DifferenceWave'});         

         
        %ERP = pop_binoperator( ERP, {'nb1 = b1 label GainIncentive_Cue',  

'nb2 = b2 label GainNeutral_Cue',  'nb3 = b3 label LossIncentive_Cue',... 
        %'nb4 = b4 label LossNeutral_Cue',  'nb5 = b5 label 

NeutralNeutral_Cue',  'nb6 = (b6+b7)/2 label GI_Cong_Tar',  'nb7 = (b8+b9)/2 

label GI_Incong_Tar',... 
        %'nb8 = (b10+b11)/2 label GN_Cong_Tar',  'nb9 = (b12+b13)/2 label 

GN_Incong_Tar',  'nb10 = (b14+b15)/2 label LI_Cong_Tar',... 
        %'nb11 = (b16+b17)/2 label LI_Incong_Tar',  'nb12 = (b18+b19)/2 label 

LN_Cong_Tar',  'nb13 = (b20+b21)/2 label LN_Incong_Tar',  'nb14 = (b22+b23)/2 

label NN_Cong_Tar',... 
        %'nb15 = (b24+b25)/2 label NN_Incong_Tar',  'nb16 = b26 label 

GI_FastCorr_FDBK',  'nb17 = b27 label GI_Slow_FDBK',... 
        %'nb18 = b28 label LI_FastCorr_FDBK',  'nb19 = b29 label 

LI_Slow_FDBK',  'nb20 = b30 label GN_Neutral_FDBK',  'nb21 = b31 label 

LN_Neutral_FDBK',... 
        %'nb22 = b32 label NN_Neutral_FDBK'}); 

         
        %pop_summary_AR_erp_detection(ERP, [pathWrite 'D_Artifact_Summary\' 

subject{s} '.txt']); %Summarize rejected trials, save as txt file 
        saveERP(ERP_second_half, [pathWrite subject{s} 

'_SECOND_half_averaged.erp']); % Save ERPs  
        %EEG = pop_saveset( EEG, 'filename', [subject{s} '_rej.set'], 

'filepath', [pathWrite 'C_Artifact_Rejected']); %Save EEG file with rejected 

trials 

         

         

         
        EEG_first_half = eeg_checkset( EEG_first_half );   
        EEG_second_half = eeg_checkset( EEG_second_half );   
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    end 

     
    %filter 
    if filter == 1 
        fprintf('\n') 
        

fprintf('**********************************************************\n') 
        fprintf('FILTERING subject #%g : %s ...\n', s, subject{s}) 
        ERP = pop_loaderp([pathWrite subject{s} '_averaged.erp'], pathWrite); 
        ERP = pop_filterp( ERP,1:70, 0, 30, 2, 'butter', 0);   
        saveERP(ERP, [pathWrite subject{s} '_f.erp']); 
    end 
end 

 

Signal processing for LRP (for first and second block) 

 
%Batch EEG analyses 
clear all; 

  
subject = {'100 resampled pruned with ICA_LRP'... 
'101 resampled pruned with ICA_LRP'... 
'102 resampled pruned with ICA_LRP'... 
'103 resampled pruned with ICA_LRP'... 
'104 resampled pruned with ICA_LRP'... 
'105 resampled pruned with ICA_LRP'... 
'106 resampled pruned with ICA_LRP'... 
'107 resampled pruned with ICA_LRP'... 
'108 resampled pruned with ICA_LRP'... 
'109 resampled pruned with ICA_LRP'... 

'110 resampled pruned with ICA_LRP'...}  

Etc… 

 
pathWrite = '/Users/carson/Documents/MATLAB/Bonnie_DG/processed_data/'; 
pathRawData = '/Users/carson/Documents/MATLAB/Bonnie_DG/original_data/'; 
pathDefs = '/Users/carson/Documents/MATLAB/Bonnie_DG/scripts_lists/'; 

  
nsubj = length(subject); 

  
% set flags to 1 if you want the associated operations to be performed 
basic = 1; 
filter = 0; 

  
%convert BDF to SET 
for s = 1:nsubj 

     
    % Basic processing 
    if basic == 1 
        fprintf('\n') 
        

fprintf('**********************************************************\n') 
        fprintf('BASIC PROCESSSING FOR subject #%g : %s ...\n', s, 

subject{s}) 
        EEG = pop_loadset('filename', [subject{s} '.set'], 'filepath', 

[pathWrite 'pruned_ICA/']); 
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        %fprintf('\n') 
        

%fprintf('**********************************************************\n') 
        %fprintf('ARTIFACT REJECTION AND AVERAGING FOR subject #%g : %s 

...\n', s, subject{s})       
        %EEG = pop_eegthresh(EEG,1,[1:68] ,-75,75,-0.199,0.996,2,0); % reject 

epochs amplitues exceeding +/- 75Hz 
        ERP = pop_averager( EEG, 'DSindex', 1, 'Criterion', 'good'); %compute 

average waveform for each bin 

        
        %Collapse across left/right targets 

        
        ERP = pop_erpchanoperator( ERP, {'nchan1 = (ch13-ch50) label 

C3_C4'}); 

         
        % Create new bins: 
        ERP = pop_binoperator( ERP, {'b7 = (b1+b3)/2 label K25'}); 
        ERP = pop_binoperator( ERP, {'b8 = (b2+b4)/2 label K75'}); 
        ERP = pop_binoperator( ERP, {'b9 = (b5+b6)/2 label K50'});     
        ERP = pop_binoperator( ERP, {'b10 = (b8-b7) label LRP'}); 

  
        %ERP = pop_binoperator( ERP, {'nb1 = b1 label GainIncentive_Cue',  

'nb2 = b2 label GainNeutral_Cue',  'nb3 = b3 label LossIncentive_Cue',... 
        %'nb4 = b4 label LossNeutral_Cue',  'nb5 = b5 label 

NeutralNeutral_Cue',  'nb6 = (b6+b7)/2 label GI_Cong_Tar',  'nb7 = (b8+b9)/2 

label GI_Incong_Tar',... 
        %'nb8 = (b10+b11)/2 label GN_Cong_Tar',  'nb9 = (b12+b13)/2 label 

GN_Incong_Tar',  'nb10 = (b14+b15)/2 label LI_Cong_Tar',... 
        %'nb11 = (b16+b17)/2 label LI_Incong_Tar',  'nb12 = (b18+b19)/2 label 

LN_Cong_Tar',  'nb13 = (b20+b21)/2 label LN_Incong_Tar',  'nb14 = (b22+b23)/2 

label NN_Cong_Tar',... 
        %'nb15 = (b24+b25)/2 label NN_Incong_Tar',  'nb16 = b26 label 

GI_FastCorr_FDBK',  'nb17 = b27 label GI_Slow_FDBK',... 
        %'nb18 = b28 label LI_FastCorr_FDBK',  'nb19 = b29 label 

LI_Slow_FDBK',  'nb20 = b30 label GN_Neutral_FDBK',  'nb21 = b31 label 

LN_Neutral_FDBK',... 
        %'nb22 = b32 label NN_Neutral_FDBK'}); 

         
        %pop_summary_AR_erp_detection(ERP, [pathWrite 'D_Artifact_Summary\' 

subject{s} '.txt']); %Summarize rejected trials, save as txt file 
        saveERP(ERP, [pathWrite subject{s} '_averaged.erp']); % Save ERPs  
        %EEG = pop_saveset( EEG, 'filename', [subject{s} '_rej.set'], 

'filepath', [pathWrite 'C_Artifact_Rejected']); %Save EEG file with rejected 

trials 
        EEG = eeg_checkset( EEG );   
    end 

     
    %filter 
    if filter == 1 
        fprintf('\n') 
        

fprintf('**********************************************************\n') 
        fprintf('FILTERING subject #%g : %s ...\n', s, subject{s}) 
        ERP = pop_loaderp([pathWrite subject{s} '_averaged.erp'], pathWrite); 
        ERP = pop_filterp( ERP,1:70, 0, 30, 2, 'butter', 0);   
        saveERP(ERP, [pathWrite subject{s} '_f.erp']); 
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    end 
end 

ICA script  
 

% ICA analysis 
    if ICA == 1 

         
        fileTags = [fileTags '_ICA']; 

         
        %EEG = pop_runica(EEG,'extended',1,'logfile',[EEG.setname,'-

ICAlog.txt']); 
        EEG = pop_runica(EEG,'extended',1); 
        EEG = pop_saveset(EEG,'filename', [subject{s} fileTags '.set'], 

'filepath', pathWrite); 

         
        %EEG = pop_runica(EEG,'extended',1,'logfile',[EEG.setname,'-

ICAlog.txt']); 
        EEGLRP = pop_runica(EEGLRP,'extended',1); 
        EEGLRP = pop_saveset(EEGLRP,'filename', [subject{s} fileTags 

'LRP.set'], 'filepath', pathWrite); 
    end 
end 
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Appendix XVI: ERP Latency Results  

Latency 

N2, pP latency. The 2 (age) x 2 (decision situation) x 2 (block) x 2 (region) mixed 

ANOVA on N2 and pP peak latency revealed a significant Age by Region interaction, F (1, 48) 

= 18.55, p < .001, ηp
2 = .28. To probe this interaction, independent- and paired-samples t tests 

were conducted to examine potential differences in region within each age group, as well as the 

potential differences age differences for each region. For younger adults, the pP (M = 393.65, SD 

= 7.59) had a longer latency than the N2 (M = 253.59, SD = 10.87), t (24) = -52.65, p < .001, d = 

10.53. Similarly, for older adults, the pP (M = 402.63, SD = 8.19) had a longer latency than the 

N2 (M = 245.66, SD = 10.89), t (24) = -54.34, p < .001, d = 10.87. Further, younger adults 

showed a longer N2 peak latency than older adults, t (24) = 2.57, p = .01, d = .73. However, 

older adults showed a longer pP latency than younger adults, t (24) = -4.02, p < .001, d = 1.14. 

P3b latency. The 2 (age) x 2 (decision situation) x 2 (block) mixed ANOVA on P3b peak 

latency revealed no main effect of age, F (1, 48) = .73, p > .05, ηp
2 = .02, no main effect of block, 

F (1, 48) = 1.08, p > .05, ηp
2 = .02, and no main effect of decision situation, F (1, 48) = .51, p > 

.05, ηp
2 = .01. No interactions were observed. 

 FRN latency. The 2 (age) x 2 (decision situation) x 2 (block) x 2 (feedback: correct, 

incorrect) mixed ANOVA on FRN peak latency revealed a significant main effect of age, F (1, 

48) = 1648.00, p < .001, ηp
2 = .97, such that younger adults (M = 265.61, SD = 7.71) showed 

earlier FRN peak latencies than older adults (M = 351.25, SD = 7.20).  

 Additionally, an Age by Decision Situation by Block three-way interaction was observed, 

F (1, 48) = 6.26, p = .02, ηp
2 = .12. To unpack this interaction, stratifying by age, paired-samples 

t tests were used to examine differences in decision situations within each block, as well as the 

potential block effects within each decision situation. For younger adults, no differences in the 
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RconfB (M = 267.19, SD = 13.71) or CconfB situation (M = 266.79, SD = 11.06) were observed 

in the first block, t (24) = .15, p > .05, or between the RconfB (M = 264.92, SD = 10.59) and 

CconfB situation (M = 263.52, SD = 11.97), in the second block, t (24) = .53, p > .05. Further, no 

differences were observed in the RconfB situation in the first, t (24) = .64, p > .05, or the second 

block, t (24) = 1.16, p > .05. For older adults, no differences in the RconfB (M = 353.83, SD = 

11.19) or CconfB situation (M = 348.05, SD = 13.63), were observed in the first block, t (24) = 

1.51, p > .05, however a significant difference was observed in FRN peak latency between the 

RconfB (M = 347.89, SD = 12.81) and CconfB situation (M = 355.23, SD = 10.52), in the second 

block , t (24) = -3.08, p = .01, d = -.61. Further, a significant difference in FRN peak latency was 

observed in the RconfB situation between the first and second blocks, t (24) = 1.98, p = .05, d = 

.40, and in the CconfB situation between the first and second blocks, t (24) = -2.42, p = .02, d = -

.48, for older adults. 
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