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The 

Forward and Inverse Problems of 

Magneto-Acousto-Eiectrical Tomography (MAET) 

MSc., Biomedical Physics, Ryerson University, Toronto, Canada, 2009 

Abstract 

This thesis investigates a potential imaging method to provide high spatial resolution 

impedance information, known as Magneto-Acousto-Eiectrical Tomography (MAET). 

Both the forward and the inverse problems in MAET are explored by theoretical analysis 

and numerical simulations. The current density distribution that would exist in a sample if 

a current were to be applied through the measurement electrodes or a coil is first 

mapped by applying the reciprocity theorem of electromagnetism. Once the current 

distribution is known, it is possible to calculate the conductivity from this current density 

by solving a system of ordinary differential equations for the conductivity. These are 

obtained by applying the method of characteristics on the relevant Maxwell's equations 

involving the conductivity. 
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Chapter 1. Background 

1.1 Electrical Impedance of Biological Tissue 

While electrical parameters have long been measured for every possible substance 

known, the need to consider the electrical behaviour of complex substances can arise 

from the interest in how well any modality which depends on these parameters will 

perform. Unlike pure substances, biological tissue is very heterogeneous in structure, 

and one can expect the electrical behaviour, a property of the material, to also exhibit 

complex behaviour [1 ,2]. 

Biological tissue is organized into cells, which comprise 80°/o of the volume. Cells have 

a closed outer boundary, known as a membrane, which separates the extracellular fluid 

from the intracellular fluid. The extracellular fluid is the medium outside of the cell which 

contains mostly electrolytes and occupies the interstitial fluid between cells. The 

intracellular fluid is the medium inside the cell and it contains the protoplasm that 

supports the organelles and the nucleus of the cell. 

As the intra- and extra- cellular fluids occupy the bulk of the biological tissue both within 

and between cells, it is the free ions in these fluids which then become the carriers of 

charge. For a fluid containing dissociated ions there will be charges contained in both 

the cation (positive charge) and anions (negative charge). The ionic conductivity 

depends on the concentration, mobility, and degree of dissociation of the ions, as well 

as the temperature and viscosity of the fluid. For biological tissue, the most common 

ions are sodium, potassium, calcium, and chloride. 
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Apart from the fluid phase, the other major influence in the conductivity of tissue is the 

cell membrane. It is a thin and elastic structure of proteins and lipids, 55o/o and 43°/o by 

composition respectively. The structure is that of the classic lipid bi-layer often shown in 

. texts on cell biology. The lipid molecules have a hydrophobic and a hydrophilic side, 

and in an aqueous environment the hydrophillic heads attract together and form two 

surfaces that orient towards both the intracellular fluids and extracellular fluids. In the 

region between these two surfaces are the hydrophobic ends of all the lipid molecules 

which bond together in a region devoid of water thus effectively separating the 

intracellular and extracellular fluids. 

The direct current conductivity of the membrane will be very poor as the ions, carriers of 

electrical current, cannot pass through the nonaqueous region contained in the lipid 

bilayer. This feature of the membrane is electrically equivalent to a capacitor. This is 

somewhat an oversimplified picture, as any living cell does need to pass substances 

through the membrane. To this end, various proteins are dispersed throughout the 

membrane to act as narrow channels to allow water and ions to pass through the 

membrane, effectively making the membrane more of a leaky capacitor. The cell 

membrane is an insulator, but it is also a dielectric as it is capable of being polarized by 

an external electric field. Although biological tissue is a very complex structure, a simple 

but effective model of biological tissue may be based upon the electrical behavior of the 

extracellular and intracellular fluids, as well as the cell membrane, using a conductance 

G and capacitance C in parallel respectively. The quantities are defined as : 

G= (jA 

d 

Where (j denotes the conductivity of the material, E0 denotes the dielectric permittivity 

of free space and its value is 8.854e-12 F/m, and Er denotes the permittivity of the 
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material relative to E0 . These two values are customarily lumped together into a single 

factor E. A and d represent a simplified conversion of three dimensional field 

quantities J, the current density, and E, the electric field, to the scalar quantities I, 

the current, and VI , the voltage. Over an area A , the current is the total flux of current 

density, I = J · iiA, where ii is the normal to A. Likewise, if a charge is accelerated 

by an electric field E over a distance d , then it has fallen through a potential 

-- . -- -- I 
VI = E · d . Us1ng J = aE, the quantities may be rewritten as G = - and 

VI 

CVI = £E · iiA. The second result deserves some attention, since the electric field may 

also have a flux through A, and with Gauss' law on the right hand side CVI = Q, 

where Q is the charge. 

The electrical conductivity (j is a macroscopic measure of the current density created in 

a conductor when an electric field is applied. For biological tissue, the extracellular and 

intracellular fluids are the conductors,and the current density is due to the movement of 

ions. The permittivity is a measure of how much the electric field in the material is 

reduced from the free-space electric field. For insulators, the charges cannot move, but 

if the material is polar, then there will be charge distributions separated by some finite 

distance, called dipoles. An applied electric field will orient these dipoles so that they 

together generate an opposing field, and the net electric field in the insulator is then 

smaller than the free-space electric field by a factor of the relative permeability. 

In reality biological materials will contain both dipoles from bound charges and mobile 

charges although these two categories are by no means fixed, and a moving charge 

can be trapped by any heterogeneity and become a bound charge. Similarly, an 
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arbitrary field may cause charges to separate, and with this polarization, act as a single 

large dipole. 

The macroscopic description of the electrical properties of tissue is simplistic but it is far 

more practical to do than the microscopic view as the latter would be very complicated 

due to the extreme heterogeneity found in biological tissue. 

The two possible extremes of electrical behaviours may now be treated by using a 

simple circuit model with the capacitance in parallel with a resistance. In such a model, 

if a constant DC voltage is applied across such a circuit then a conduction current 

Icond = GVI will flow, and a charge of Q = cv/ will be stored in the capacitance. 

Suppose now that a sinusoidal voltage V1 (t) = V0 cos OJt is applied to the circuit, with 

an amplitude of V0 and angular frequency OJ = 21lj , in which f is the frequency of the 

source. The charge on the 'plates' of the capacitance are now charging and discharging 

with a frequency of f. With alternating current there will be a flow of displacement 

current Idisp = dQ = C dV1 = -mCV0 sinOJt. By comparison, the conduction current is 
dt dt 

I cond = GV0 cos OJt . Of course the total current flowing through the material will be the 

dV 
sum I= I disp + Icond, or in terms of the circuit parameters, I= GV1 + C--1 

. The 
dt 

conduction and displacement currents are out of phase by 90 degrees, as a result of the 

differences in the trigonometric functions. The better way express this phase difference 

is to use exponentials with complex arguments instead of trigonometric functions for the 

applied voltage. Instead, let V(t) = V0e1ax in which j 2 = -1, in which the real part 

takes on the physical relevance. The total current is now 
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I= GV1 + C dVI = ( G + joC)V0e1ax. With the definitions of G and C, the current is 
dt 

now I = (a+ j O£) · A V0e1ax, and as the ratio of current divided by voltage is an 
d 

admittance Y = : = (a-+ j ox::)· ~ . As far as material properties are concerned, the 
I 

complex value in the brackets may be considered as a complex valued conductivity: 

(J' + j O£ . The admittance is a measure of the current carrying capability of a material, 

which is useful if that material is conductive and a current source is applied. With such 

an arrangement, a nonzero current will produce some voltage drop along the path of the 

current. In other words, for some current and admittance, the voltage is the dependent 

variable. Another way to analyze the same problem is to consider how much current is 

produced for a given voltage. In this picture the material now limits the flow of a current 

with a given impedance. The impedance is the reciprocal of the admittance 

1 ~ 1 
Z = y = J. For a pure (real) resistance R this wouJd mean that R = G . In this 

model the impedance is given by Z = 1 

G+ joC 

1 d 
---· -, and the current-
a+jO£ A . 

voltage relationship is given by VI = 1 ·!!.._I ·. In terms of the resistance R the 
a+jO£ A ' 

impedance becomes Z = R 
· 1 + jmRC 

In the model, the biological tissue behaves as a real resistance for low frequencies as 

there is negligible displacement current. The impedance is Z ~ R and the mat~rial is a 

conductor. As the frequency increases, the displacement current contributes more 
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significantly to the overall current, so the impedance will have more capacitive 

character. 

For most materials the conductivity a and the permittivity £ are not constant, but 

instead vary with frequency of the applied signal. This frequency dependence of the 

material properties is called dispersion, and biological tissue exhibits several different 

types of dispersions over a wide frequency range. Since the model accounts for both 

moving and fixed charges, one can analyze these dispersions in terms of dipoles and 

charge carriers. 

At low frequencies, the dipoles can easily align themselves in response to the applied 

field and the charge carriers, the ions, have a significant field to travel relatively larger 

distances. For the charge carriers, it is also more likely that they may become trapped 

at an interface or defect because of the longer possible path. As a result of this trapping, 

further polarization is created and in effect the conductivity will be low and the 

permittivity is high. 

At higher frequencies, the dipoles have less time to respond to a changing field, so it is 

more difficult for them to oppose the field, so their polarization effect disappears. For the 

free ions that carry charge, the field may change before they travel an appreciable 

distance, so that the length of their path is now shorter for each shorter half-cycle of 

signal. With smaller distances travelled by the charge carriers, the likelihood that they 

will become trapped and contribute to the permittivity diminishes. Since the ions still are 

able to move, the conductivity increases, as fewer of them become trapped. 

The dispersion that occurs at frequencies below 1OkHz is called a -dispersion, and it is 

a result of free ions becoming trapped at interfaces, or cell membranes, and creating 

significant polarization due to the trapping of ions of both charges. Any dipoles are able 

to readily orient themselves and thus create an opposing field to the signal which also 

6 

adds to the polarization, but to a lesser extent. Although there is a minimal conductivity, 

the permittivity will be high. 

In the MHz frequency range, another dispersion, known as f3 -dispersion, takes place. 

The cell membrane will still prevent most ions from flowing through, but fewer ions will 

become trapped there because the shorter half-cycle of the alternating field prevents 

them from travelling far. As a result, there are fewer bound charges to create an 

opposing field to the applied field and the polarization is smaller, and the applied field is 

now stronger within the cell. Polarization of any constituent molecules such as proteins 

will still occur and contribute more to the overall permittivity. It is in this region that the 

capacitive reactance of the membrane now begins to decrease and effectively short the 

membrane resistance. 

The relative magnitudes of the two types of current, displacement and conduction, are 

best seen as a ratio of the two, 
1 

disp = 0£ . At the megahertz range, this ratio will be 
J cond (J 

((£ 
very small compared to unity, - << 1, even though the relative permittivity may high. 

(J 

For frequencies up to the MHz range, biological tissue is primarily conductive, and 

treating it electrically like a real resistance is justified. 

Tissue is a very inhomogeneous structure, and because of this it is difficult to make 

consistent measurements of its electrical properties. At low frequencies, cells may be 

considered as insulators suspended in a conductive fluid, but at higher frequencies, 

such as the MHz range, the membrane reactance becomes lower so that the dispersion 

in the membrane and the interior of the cell must now be accounted for. Also, the tissue 

itself may contain several different kinds of cells, each with their own electrical 

properties, all together within an extracellular matrix which may also have its own 

electrical behaviour. Unlike a standardized sample of single and identical cells, living 
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tissue will have even more complicated behaviour as it may be an integral component of 

several systems, such as the cardiovascular or nervous system. Some tissues also 

have anisotropic behaviour in that the dielectric and conductive quantities are 

dependent on direction. This occurs in muscle or bone, for example, in which the forces 

act predominantly in one direction, so the tissue is able to accommodate this anisotropy 

in its normal function. As a result, the conductivity along a cell in muscle fiber may be 

more than the conductivity of adjacent cells. The anisotropy of tissue will still be 

dependent on frequency, and especially so if the effect is due to cell membranes, which 

at higher frequencies will exhibit a lower reactance and a corresponding decrease in the 

direction dependence. 

The anisotropy is just one physiological trait of certain tissues that may be detected with 

a change in conductivity. Often another factor in the conductivity is the water content. 

Fat is a poor conductor in comparison to muscle, and any change in the relative 

compositions in these two substances will lead to a significant change in the 

conductivity. This would lead to the conclusion that the conductivity is dependent on the 

concentration of fluid in the material. On one side of the conductivity spectrum is blood, 

which is almost entirely liquid and very conductive, and on the other side is skin or fat 

which make relatively poor conductors. Skin in particular, is also very inhomogeneous, 

and it consists of three layers called the epidermis, dermis, and subcutaneous tissue 

and its main purpose is to protect the body from the environment. Of these, it is the 

epidermis, which is the outermost layer and composed of dead cells, that poses the 

greatest resistance making it a very effective insulator near DC especially when dry. 

One item of great interest is the possibility of using impedance measurements for the 

non-invasive measurements of the physiological changes and differences in tissues. 

Given that there are many different tissues each with their own structures and electrical 

properties, one can imagine that impedance measurements would be able to 

reconstruct these differences and offer a view of these relative variations. The 
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reasoning may now be expanded to whether differences in the physiology of the same 

tissue may now be differentiated according to differences in impedance. Detecting these 

variations can determine the presence of a tumor, which is an abnormal growth of tissue 

surrounded by normal healthy tissues. It has no useful function and grows to the 

detriment of the normal biological environment around it. With a background of a known 

conductivity ranges for healthy tissue, a localized region of higher conductivity due to 

the cancer may be visible in an otherwise lower-conducting tissue, for example. A study 

by Smith on tumor liver tissue showed a considerable difference in the electrical 

properties between healthy and normal tissues. Tumor conductivity was found to be 6-

7.5 times higher than that of the normal liver, and the permittivity was 2-5 times higher. 

For such an increase in conductivity, it is likely that the tumor will have a higher water 

content. The relative difference in the electrical properties between tissue and tumor will 

depend on the type of tissue as well as the stage of the tumor itself, as both factors will 

influence the amounts and distributions of biological conductors and insulators, so it 

may not be possible to generalize these results. Even so, there has been considerable 

work done so far to develop devices that may be used to determine the electrical 

conductivity of biological tissue so that this phenomenon may be better understood and 

detected. 
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1.2 Electrical Impedance Imaging 

Any electrical impedance imaging device will apply some current or voltage to the object 

of interest. The electrical properties, being the conductivity and the permittivity are then 

inferred from measurements of the electromagnetic quantities elsewhere in the material 

which are the response to the applied field. In principle, this method of imaging is safe 

and makes use of easily available technology, so it is no surprise that it is the subject of 

considerable research interest for clinical application. The established and documented 

techniques in impedance measurement to date are electrical impedance tomography 

(EIT), magnetic resonance electrical impedance tomography (MREIT), and magnetic 

induction tomography (MIT). 

Historically, the first impedance images were done using EIT (electrical impedance 

tomography). (see appendix A for a full account). Typically, sixteen electrodes are 

placed about the circumference of a patient for Sheffield systems, the standard model 

for this device. For each set of measurements, current is injected in any two adjacent 

electrodes while voltage measurements are taken from the remaining fourteen. Then 

the current source is shifted to the next pair of electrodes with which the voltages are 

collected from the remaining electrodes, and the cycle continues until all adjacent pairs 

of electrodes have been used as a current source. The conductivity is obtained from the 

transfer impedance derived from these voltage measurements for a given current 

configuration. The major drawback to this method is known as the ill-posed ness of the 

inverse problem. The finite sets of measurements, which are confined to the boundary 

of the test subject, severely limit the spatial resolution possible. There are other 

problems including errors in the placement of electrodes, as well as the insensitivity of 

the electrode voltages to a change in conductivity deep in the interior of the object. 

10 

A later imaging modality, known as MREIT [3] (magnetic resonance electrical 

impedance tomography), was designed to overcome the ill-posed ness in the 

reconstruction that plagued EIT. It makes use of MRI (Magnetic Resonance Imaging) in 

conjunction with a injected currents. These currents will produce an induced magnetic 

flux within the object which is synchronized with the MR imaging pulse sequence. If two 

currents in two different directions are injected in sequence, then by using the magnetic 

flux densities, a cross-sectional image of conductivity distribution may be obtained. A 

high spatial resolution may be obtained in this image using an additional boundary 

voltage measurement. One major disadvantage to this technique is the high costs 

associated with the MRI, as well as the shielding effect from the electrodes. 

Unlike the previous two techniques, MIT [4] does not require any direct physical contact 

of the sensors to the object that is to be imaged. Instead, a magnetic field is applied 

from one or more generator coils to induce eddy currents in the study object, so that the 

region of interest is penetrated with an oscillating magnetic field. The primary field 

generated by the exciting coil as well as the secondary field created by the induced 

eddy currents are then detected by another set of coils known as receiving coils. The 

manner in which the measurements are taken is similar to EIT. For example, if there are 

n measurement coils and m excitation coils per layer, forming a ring, then the total 

number of measurements possible is m(n-1) if every coil about the circumference is an 

excitation coil once. Unlike EIT, MIT can also measure the permeability of the material 

in addition to the conductivity. The measurements are performed in a manner similar to 

EIT with its electrodes now replaced by exciting and receiving coils, and the inverse 

problem is also nonlinear and ill-posed. The resulting conductivity image from this 

technique also has a poor resolution. 
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1.3 Magneto-Acousto-Eiectricai-Tomography (MAET) 

Given the present state of devices intended for imaging electrical properties and their 

capabilities, there is still no commercial device capable of producing high-resolution 

images of the conductivity. Continuing research may hopefully develop one that will find 

use in the future. 

One potential imaging method for current density and electrical impedance is known as 

MAET (Magneto-Acousto-Eiectro-Tomography),[5,6] and it relies on the action of 

ultrasound in a static magnetic field to image the electrical properties of tissue. This idea 

has already been reported in the literature by other authors, notably by Han Wen [7], 

although in his paper it was referred to as Hall Effect Imaging. An ultrasonic pulse is 

transmitted into a sample in a direction perpendicular to the magnetic field. Charged 

particles in the medium are displaced by the acoustic vibration, and since they are 

moving in a magnetic field, experience the Lorentz force. As the material is itself neutral 

because it is composed of equal numbers of positive and negative charges, then these 

charges are separated and a voltage signal is produced on the surface of the sample. 

As the ultrasound wave propagates through the sample, the time-varying voltage signal 

represents the degree to which the charges separate along the signal path. Unlike EIT, 

in which the signal source is confined to the surface of the sample, the sound beam 

may be swept throughout the sample. Provided that the magnetic field is always 

present, this source of EMF has been compared to a moving battery. As an ultrasound 

is being used to ultimately drive an electrical signal at the output, it is assumed that the 

resolution similar to that from ultrasound may be obtained in MAET. 

Although Wen's paper [7], upon which MAET is based, promises two or three 

dimensional conductivity images with Hall Effect Imaging there is only a brief derivation 

of the forward problem (the physics needed to get a signal) and no mention of the 
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inverse problem (are the signals or measurements sufficient to reconstruct the 

conductivity). The current investigation of the feasibility of MAET has two components: 

experiment and theory. This thesis investigates the theoretical aspects of MAET and 

compares its predictions to the experimental findings when possible. This thesis also 

investigates the inverse problem of the modality, which is an important part of its 

feasibility. 

Hypothesis in MAET 

The hypothesis behind MAET is essentially two-fold, both of which are addressed in the 

thesis: 

The first hypothesis is that the lead field current density or the coil field current density 

may be mapped pointwise, at least to a good approximation in a volume conductor. The 

validation of this hypothesis is largely experimental, but there are some theoretical 

considerations also, owing to the application of the reciprocity theorem of 

electromagnetism in experimental work and its justification of the simulations to which 

the experimental results were compared. The first hypothesis is the motivation behind 

the forward problem. 

The second hypothesis, which is the feasibility of obtaining the conductivity once the 

lead or coil field current density is known, will be addressed in more detail when the 

inverse problem is introduced. 

13 
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Chapter 2 The Forward Problem in MAET 

2.1 Theory 

The theory behind the forward problem in MAET is presented here. It is based on 

classical electrodynamics. The topics are the Lorentz force, Poynting's theorem, and the 

reciprocity theorem in electromagnetics as a background to the analysis of the forward 

problem. 

2.1.1 Lorentz Force 

MAET depends on the Lorentz force acting upon moving ions to generate a signal. It is 

the critical component in this modality. Its importance merits this section, devoted to the 

derivation of the Lorentz force and its consequences. 

The familiar expression for the Lorentz force may be obtained through the first variation 

of the Lagrangian function as popularized by Lanczos [12]. The Langrangian is defined 

as L == T- U, which is the difference between kinetic and potential energies, T and U 

respectively. It is the integral JLdt with which the first variation is taken to zero, 

commonly denoted as 8 J Ldt == 0. The assumption here is that L == L( q, q), and it is a 

functional of q == q(t) and q == q(t), which are independent coordinates. Unlike 

ordinary derivatives, the 8 operation acts only on functionals, but a functional may be 
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differentiated with respect to a function similar to the way an ordinary function can be 

differentiated with respect to an independent variable. 

The first variation of the Lagrangian under the integral sign is: 

o fut = r(aL &J +a~ &JJdt. Jl dq dq 

Notice that &j = J dqJ == !!_(&]).Using integration by parts, vl dt dt 

Since it is the path of least time that is being solved for, the function q is varied only 

within the interval, and it is fixed at either endpoint, &j lbdy == 0. Now 

r( ~~J!!_(&J )dt = r( a~J(&i )dt =- f!!_(a~J(&J )dt 
Jloq dt Jlaq dt iJq 

which may be substituted into the expression for 8 J Ldt, 

f ~dL d (dLJ J 8Ldt == - &j -- -. &j dt = 0 . 
dq dt dq 

If the variation in q, &j, is zero, then the Euler-Lagrange equation is obtained: 

dL _ !!_(dLJ == O. 
dq dt dq 

15 
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The Euler-Lagrange equation may be used to obtain the Lorentz force. A few 

preliminaries must be done first. More generally, a position q a and a velocity q a can 

each have three components determined by the value of the index, which is a == 1,2,3 . 

In the problem of ions in a magnetic field, the velocity of the moving ions is much 

1 
smaller than the speed of light, so the kinetic energy is just T == - mq aii a, where m is 

2 

the particle mass. The summation convention is used for repeating indices within a term 

unless otherwise noted. This means that iiaiia == q1q1 +q2q2 +q3q3. 

Two possible potentials on a test charge e are caused by electric and magnetic fields in 

the form of a scalar potential ¢ and a vector potential Aa. Following [13], this potential 

is U == e¢- eqaAa, which is dependent on both the positions and velocities. The 

Lagrangian is [see 14]: 

If the generalized coordinates are vectors, the Euler-Lagrange equation becomes: 

aL d [ ar J _ O 
aq/3 - dt aq/3 - . 

The derivatives of the Lagrangian with vectors are its gradients: 
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For two independent vectors q a and q f3 from any orthogonal coordinate system, their 

a· 
Jacobian is the Kronecker delta ~a == 8 a/3 . 

aq/3 

Using this result the conjugate momentum is obtained: 

The other derivative of the Lagrangian is just with respect to the generalized coordinate: 

aL a¢ a (. A ) a¢ (. aAa aqa -==-e-+e- q ==-e-+e q -+-A ) 
aq/3 aq/3 aq/3 a a aq/3 a aq/3 aq/3 a . 

The Euler-Lagrange equation was derived under the assumption that positions and 

velocities were independent coordinates, and a simplifying assumption which may be 

a· a 
used here is q a == 0. The assumption is a uniform velocity. The expression for __!__ is 

aq/3 aq/3 

now: 

aL a¢ . aAa 
-- == -e--+ eq a--. 
aq/3 aq/3 aq/3 

The last term evaluates to familiar expressions of vector identities using tensor calculus 

[15], 

a A (- - ) (- ( _ _ )) iia-a == q · V ~/3 + qx VxA /3' 
aq/3 
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where each term is the fJ -th component of the corresponding vector. The time 

derivative of the conjugate momentum is the force: 

d ( (JL J .. dA13 
dt dqp =mqp+edt. 

d ( dL J dL . By the Euler-Lagrange equation, - --.- == -- 1t follows that 
dt dqp dqp 

The total time derivative of the vector potential is 

dA aA (--: -)--==-+ q·VA, 
dt dt 

which may be substituted into the equation for force, along with changing tensor indices 

to vector notation: 

- - aA ( (- -)) F == -eV¢-e-+e vx VxA , 
dt 

that q is a velocity and in ordinary coordinates, may be represented with v . 

Recalling Faraday's Law of induction, 

- - as VxE==--
dt' 
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the vector potential is related to the magnetic flux density by B == V x A, and Faraday's 

Law in terms of the vector potential is: 

- (- aAJ Vx E+af ==0. 

Since this curl is zero, then it is the curl of a scalar potential - V tjJ = E + aA. 
dt 

The Lorentz force may now be expressed in terms of the electric field 

and the magnetic flux density B == V x A: 

This result is valid for the small velocities in MAET, and it is by no means a fundamental 

or given equation in electrodynamics. It is a geodesic, or a path of least time, for a 

. charged particle traversing arbitrary electric and magnetic potentials. The Lorentz force 

acts on moving charges, and the velocity is assumed uniform, which is not strictly the 

case with MAET since the oscillatory velocity is alternating direction by accelerating. 

However, if the charge separation has a smaller timescale than the change in velocity, 

then a uniform velocity during the charge separation is justified. 

If the force on a charge is F ==eli+ (v x B )J , then it may be considered identical to the 

force F == eE' created by a new field £' == E + (v x B ).The electric field seen by an 

observer moving with the charge (the rest frame) is E, but the electric field seen acting 
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on the charge by an observer in the lab frame will be £' = E + (v x B), for small 

velocities compared to the speed of light. For MAET, it is the current density that is of 

great importance: 

In MAET, the interaction between the fluid mechanics associated with ultrasound and 

-· - ( -) aA. the resulting electric field E = - V ¢ + v x B for a static magnetic field with - = 0 is 
dt 

linked by the velocity v. A simulation was done (see appendix B) to explore the finite 

dimensions of a realistic ultrasound focus as well as any effects of its wave nature on 

the induced electric field. A direct simulation reveals more details, although such an 

approach is also computationally time-consuming. 

This variational approach used to derive the Lorentz force is open to at least two 

extensions. In this case, the trajectory of a single charged particle was only considered, 

but in a real fluid there will be an immense number of them. Also, the issue of 

conductivity was not addressed, but its effects may be included as a term in the 

Lagrangian which decreases the kinetic energy of the particle and is both position and 

velocity dependent. As the conductivity increases, less kinetic energy is lost to friction, 

and as the conductivity decreases more kinetic energy is lost. The Lorentz force would 

then include a damping term representing this friction, which is inversely related to the 

conductivity. Once the damping factor to the Lorentz force is included, the next step 

would be to find the Hamiltonian from the Lagrangian by using a Legendre transform, 

and then extending this Hamiltonian to an ensemble of particles. This approach, not yet 

attempted, will lead to a statistical mechanics interpretation of the conductivity for 

dissociated ions, and for now it remains only a possible avenue in further work. 

20 

Returning to the expression for the electric field for MAET which is £' =-V ¢ + (v x B), 
there are two terms. The first, - V ¢ is the conservative term, and it is due to charges. 

The second, v x B is a non-conservative term, otherwise known as an impressed field. 

By virtue of charge separation, - V ¢ alone cannot maintain any steady current, but 

when a forcing electric field is applied, such as v x B, then a current may be 

maintained, since this field regenerates charge lost to conduction. Any accumulated 

electrostatic charge that contributes to the gradient of the scalar potential - V ¢, may 

always be modified by the impressed field. 

In the next section, a theorem will be developed known as the reciprocity theorem in 

electromagnetism. With reciprocity applied to MAET, a current at surface electrodes is 

assumed to be injected into a phantom, known as the lead field. The voltage at the 

leads is then proportional to the inner product of this current density with those of the 

impressed field v x B produced at the ultrasound focus. While the lead field current 

density may now be more easily visualized over the entire phantom, it is done at the 

expense of including any wave properties from the contribution of the ultrasound since 

the lead field current density is now mapped point-wise. 
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2.1:2 Poynting's Theorem 

Poynting's Theorem will be derived in this section. It is a statement of the conservation 

of energy of an electromagnetic field in the form of a continuity equation [13]. Its 

derivation is also the basis of how the reciprocity theorem is derived from Maxwell's 

equations. The only difference between the two theorems is that Poynting's theorem 

involves one field, whereas the reciprocity theorem involves two independent fields. 

The energy in an electromagnetic field is a critical point in the analysis of the forward 

problem in MAET, because the reciprocity theorem in electromagnetism allows a 

simpler forward model with fewer computational demands at the expense of neglecting 

the wave properties of ultrasound. The derivation of Poynting's theorem begins with 

Faraday's law and Ampere's law. 

V x E = -a 1B (Faraday's Law) 

V X fi = J +a 1D (Ampere's Law) 

Together with the relations for the material: 

- -B=JIH 

D=t:E 

The inner product of Faraday's Law may be taken with H: 

The inner product of Ampere's Law may be taken with E: 
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The two previous equations may be added: 

E. atjj + fi. atf3 =E. (v X fi )- fi. (v x£)- J. E 

The left hand side may be grouped as a single time derivative: 

The identity: 

_l_a 1 (cE · E + flli· ii)= E · (Vxii)- ii · (Vxi)-J. E. 
2 

E. (vxfi)-fi. (vx£)= -V. (ffxfi) 

may be substituted into the previous equation, to get Poynting's theorem: 

The vector Ex H is the Poynting vector, which is a flux of energy into (or out of) a 

control volume which contains a density of energy ££ 2 + JIH 2
. The term ] . E 

represents power dissipated by a current. For oscillations in the frequency domain, the 

time derivative is replaced by a factor of j OJ and the following is obtained : 

Jm(c£ ·E+ flli·ii)+ v · (.Exii)= -1.£. 

23 



il l .,, 

2.1.3 The Reciprocity Theorem 

Poynting's theorem leads to a continuity equation of the energy of the electromagnetic 

field, and the flux vector Ex fi is known as the Poynting vector. So far, all that has 

been considered is the energy as an inner product of two electric field vectors E and 

two magnetic field vectors H both from the same field . This concept of energy may 

now be generalized into inner products for two independent fields Ea fi a ,and Eb fib to 

what is known as the reciprocity theorem [16]. Consider Faraday's Law for field a and 

Ampere's Law for field b: 

With two fields, there are now four possible sets of constitutive relations defined for 

each field. 

The inner product of Faraday's Law for field a may be taken with fib, and the inner 

product of Ampere's Law for field b may be taken with E a: 
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These two equations may then be added together to form. 

Using the constitutive relations Ba = JlaH a and Db = £bEb on the left hand side of the 

previous equation leads to: 

Assuming a single frequency of oscillation for each field using the frequency domain 

eliminates the derivatives with respect to time leads to: 

j(J)af1aiib . ii a + j(J)b£bEa . Eb = Ea . (v xiib )-fib . (v X Ea )- ] b . Ea. 

The right hand side may be simplified by the identity: 

This simplification leads to: 

The left hand side may be simplified by assuming a common frequency of oscillation OJ 

to each field, using OJa = OJb =OJ leads to: 
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For both fields, the material properties are the same, fla = flb = /1 and £a = £b = £, 

because the independent fields exist in the same material in question: 

}m(pHb · Ha +££a · Eb) = -V · (Ea X fib)- Jb · Ea · 

Another equation may easily be obtained by interchanging the a and b indices, since 

Ampere's Law could have been used for field a and Faraday's Law could have been 

used for field b : 

Subtraction of the last two equations leads to 

or by considering the conductivities aa and ab which relate the current densities 

Ja = aaEa and Jb = abEb: 

V · (E a X H b ) - V · (E b X H a ) + (j bE b · E a - (j a E a · E b = 0 · 

Since the material is the same for both fields, for consistency both conductivities must 

be the same a a = ab =a. The reciprocity becomes: 

V · (E a X H b)- V · (E b X H a ) = 0 , 

and 

The last expression may be integrated over the entire domain of the material: 
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fJb.E;a -]a ·EbdV=O. 
n 

In reciprocity, the field quantities which are actually used in the above integral are 

referred to as impressed fields, otherwise known as non-conservative fields which are 

not the result of charges, but they serve to alter the distribution of charges. Recalling the 

expression for the total electric field derived from the Lorentz force: 

E;' =-V¢+(vxli) 

The conservative term is - V ¢, and the non-conservative, or impressed term, is 

(v x B). Being an inner product between an electric field and a current density, the 

physical quantity present in the reciprocity theorem is that of power dissipation, which 

implies a flow of current. A steady current may only be produced in the presence of non­

conservative fields, so their use is justified. Having arrived the final form of the 

reciprocity theorem in electromagnetism, it is now possible to examine the forward 

problem of MAET, which is the current density produced with a known conductivity. 
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2.2 Methods 

The'reciprocity theorem is the chosen method of analysis in MAET for its simplicity. It 

will be applied towards two special cases of MAET. The first case uses electrodes for 

measurement and consequently involves a lead field current density, and the second 

case which uses a pickup coil and consequently involves a coil field current density. 

2.2.1 The Lead Field Current Density 

Consider two fields, one designated with a subscript lead , and the other denoted with a 

subscript focus to distinguish them. For the purposes of measurement, it is the lead 

field J 1ead which is the current that would be produced in the volume if there were a 

current source applied at leads located on the boundary. In reality, these leads are used 

to measure a voltage re.lated to the current density J 1ead . The real source of emf, or 

electromotive force, is the field E focus , the electric field produced at the focus of the 

ultrasound. Using these quantities in the reciprocity theorem leads to: 

fJlead · E focus - J focus · E lead dV = 0 · 
Q 

. In MAET, E focus = v X B is the impressed electric field at the ultrasound focus: 

f J lead · ( V X B)- J focus · E lead dV = 0 · 
Q 
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The conductivity (J' is interchangeable and it may be multiplied with E
1
ead instead 

ofE focus : 

I ] lead . (v X B)- E focus . (J'Elead d V = 0' or 
Q 

f ] lead · ( V X B)- E focus • ] lead d V = 0 · 
Q 

The electric field at the focus, v x B, may be expressed is as the negative gradient 

-v ¢ focus of a potential ¢ focus : 

I ] lead · (v X B)+ V ¢ focus · ] lead dV = 0 · 
Q 

The second term may be rearranged as a divergence of A.fi ] · 
'f/ ocus lead · 

JV 0 (tfJfocuJ /ead }iv = f¢focus V 0 Jlead dV + JV t/Jfocus 0 J lead dV o 

Q Q Q 

Before continuing with the reciprocity theorem, more needs to be known about ] 
lead · 

Consider Ampere's Law: V X H1 d = ] 1 d +a 15
1 

d ea ea t ea · 

The divergence of Ampere's Law is zero : 

V . ( V X fi lead ) = V . (Jlead + a t 15/ead ) = 0 · 

Assume that ]lead = (J'Elead and a t jjlead = }OJ£Elead , then in the frequency domain: 
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V · (Jlead + at fJ lead ) == O'E lead + J OJ£E lead == ( (J + J OJ£)£ lead 

Using the assumption that 0' >> j OJ£ in MAET, which operates in the MHz range of 

frequencies, along with negligible permittivity contributions in that frequency range, 

Ampere's Law simplifies to: 

v. (Jlead +a tjjlead) == v. ]lead == 0. 

Returning to: 

JV · (¢focus]lead )dv == J¢focus V · ]leaddV + JV ¢focus· ]leaddV' 

n n n 

if V ·]lead == 0 then JV · (¢ focus]lead }tv == JV ¢focus · ]leaddV · 

n n 

But by the divergence theorem JV · (¢ focus]lead )dv == J ¢ focus]lead · iidS · 

n an 

The reciprocity theorem now becomes J ]lead · (v X B )dv == - J ¢ focus]Zead · iidS . 

n an 

For a point source at the surface: ]lead ==I 0 [8(r- ~)-8(r- r2 )]n 

on the surface, the final result for unit injected current represented by I 0 == 1 is: 

J ]lead · (v X B }tv == ¢focus (r2)---¢ focus(~) 
n 

If the emf, which is v x B, is only highly localized at the focus and zero everywhere 

else. The integral becomes a distribution in which the voltage output 
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tjJ focus (r2 )- tjJ focus(~) measures only those components of Jlead that coincide with 

those of v x B in that region. In the extreme case, if the only nonzero component of 

v x [3 is the x-component, and in addition it is a delta function, then the potential 

difference ¢focus (r2 )- ¢focus (fi) will provide a point-wise evaluation of the x-component 

of ]lead at the focus. This is the idea behind the experimental determination of the lead 

field current density. In general, the reciprocity theorem also justifies the numerical 

simulations of this current density as a verification of experimental results, although 

experimental results to date have only obtained a single component of the lead field 

current density. In this case a simulation may be done for the entire lead field current 

density, and from the results, only a single component may be singled out. 

The solution of the forward problem for the lead field current density with a known 

conductivity 0', consists of solving : 

V · J lead == 0 ' 

with insulating boundary conditions: 

] lead . n == 0 ' 

as the current density is contained only in the domain. 

The lead field may be solved for from Poisson's equation since 

J lead == -oV ¢lead ' 

and the divergence of the current density is: 

V ·]lead == -V · oV ¢lead == 0 · 
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The boundary conditions are of the Neumann type since the current density is 

proportional to the gradient of the potential, 

since an is the gradient normal to the surface of the domain. 

In practice, Poisson's equation is best solved using COMSOL, a finite element method 

software package, which is ideal for solving partial differential equations. It is a very 

versatile tool for visualizing solutions of a wide range of these equations with modest 

hardware and software requirements. It is also user-friendly, and indeed all of the work 

done in COMSOL for this thesis was done using its graphical user interface. 

]lead is the current density which arises from a current density caused by a current 

injected into the domain. It is an impressed field, yet it may be solved through 

electrostatics. The rationale is that in a purely electrostatic problem, the opposing but 

mobile charges would temporarily create a current in a conductor, and with conduction 

the field would eventually go to zero as the numbers of free charges decrease. In the 

case of an impressed field, the sources may be charges, but the charge density is fixed 

to maintain a constant field. The governing equation is V ·]lead = 0, and it holds true 

for charge free space. In practice, to incorporate sources from a charge density, 

Ampere's Law must be modified for two point sources of opposite sign which may be 

represented as delta functions: v . ]lead = 8(r- r;)- 8(r- r2) 

The electrodes in this model are assumed to have a point sized region of contact which 

maintains a constant charge density, and these source terms to the divergence may be 

represented in COMSOL as the weak form. 
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2.2.1.1 Results 

The COMSOL simulations of J 1ead in Figures 1 and 2 were compared to experimental 

measurements of the lead field current density obtained from the actual MAET setup. 
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Streamline Plot of the Lead Field Current Density 
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Figure 1. Lead field current density in a phantom-shaped domain represented as 

streamlines. The point of contact of the electrodes is represented as a point 

source at either end of the domain. The intensity of the horizontal component of 

the current density peaks within the channel. The experimentally determined 

current density may be compared to this model. 
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The models from COMSOL, also have another use, which is to test the inverse problem 

of finding the conductivity from the lead field current density. This will be addressed in 

the latter part of the thesis. The experimental determination of the lead field current 

density was done by Syed Haider in his thesis [24]. Phantoms with uniform conductivity 

were used in the actual MAET setup, and the results were compared with these 

simulations. 

Line Plot of the Hori zontal Component of the Lead Field Current Density 
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Figure 2. Magnitude of the horizontal component of the current density along the 

horizontal line of symmetry in Figure 1. Experiments were only able to determine 

this component of the lead field current density. 

A typical model of the lead field current density takes only several minutes to complete 

with roughly 30,000 elements using a standard desktop computer. 
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2.2.1.2 Discussion 

The lead field current may be obtained reliably for an arbitrary domain with modest 

computational requirements. The current density is obtained from the solution of 

Poisson's equation with Neumann boundary conditions which is a well-known partial 

differential equation with standard boundary conditions. The current density obtained in 

the COM SOL forward model of the lead field current density will be used in the latter 

part of the thesis to ascertain whether the conductivity may be obtained. 

2.2.2 The Coil Field Current Density 

In the phantom with the lead field, a voltage signal was measured by the electrodes, 

which was the inner product of this lead field current density with the electric field 

produced by the vibrations in the phantom caused by the ultrasound in a magnetic field. 

By using the reciprocity theorem, this lead field could be mapped throughout the domain 

formed by the sample, as though a current were injected through the electrodes. Any 

components common to both the field v x B and the lead field will contribute to a 

voltage signal at the electrodes. However, another way to find the current density is to 

use a pickup coil next to the sample, so that its axis is parallel to the direction of wave 

propagation of the ultrasound, and the coil is placed on the side opposite to that upon 

which the ultrasound is incident. The v x B field from the ultrasound focus will produce 

a current density with a possibly unknown distribution, but with reciprocity the problem 

may be reversed. It is easier to find the current density produced by a current injected 

into the coil, and any components common to the fields produced by the coil and 
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ultrasound will generate a signal at the leads of the coil. The reciprocity theorem will 

now be derived for this case. Recalling the results of the reciprocity theorem: 

fJb ·Ea -]a ·EbdV=O. 
n 

Consider two fields, one designated with a subscript coil, and the other denoted with a 

subscript focus to distinguish them. For the purposes of measurement, it is the lead 

field J coil which is the current that would be produced in the volume if there were a 

current source applied at leads of the pickup coil. In experiments, these leads would be 

used to measure a voltage related to the current density J coil . As with the 

measurements with the electrodes, the real source of emf is the field Efi the electric 
OCUS 1 

field produced at the focus of the ultrasound. Putting these quantities into the reciprocity 

theorem leads to: 

f J coil · E focus - J focus · E coildV = 0 · 
n 

The impressed electric field due to ultrasound in a static magnetic field is Efi = v x B ocus 

as before. Jcoil is the field created in the phantom if 1 ampere of current is injected into 

the pickup coil. To find Jcoil, Faraday's law is first needed: 

V X Ecoil = -d tBcoil' 

along with Ohm's law ] coil = O'E coil. 

In the frequency domain, Faraday's law becomes: 
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V X Ecoil =- jOJBcoil · 

This is more easily solved if the vector potential of the magnetic induction vector is 

used: 

Bcoil = V X Acoif· -

When this is substituted into Faraday's law, the result is: 

V X (Ecoil + jOJAcoil ) = 0' 

which is equivalent to the curl of the gradient of a scalar potential V x (-V ¢coil )= 0 . 

The electric field induced by the coil is: 

E coil = - V ¢coil - J OJAcoil · 

The current density is: 

J coil = 0'(- V ¢coil - J wA.coit ). 

The conservative electric field is - V ¢coil and the impressed electric field is - j wAcoil . 

The latter result may now be used in the reciprocity theorem: 

fJcoil · (vxB}iV =-}OJ JaV¢Jocus · AcoildV 
n n 

The integral on the right hand side may be changed to a surface integral by applying the 

divergence theorem: 

J o\7 · (¢focus • A co a }iv = J o\7 ¢focus · A coil d v + J a¢ focus (V · A co a }iv . 
n n n 
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By the choice of gauge, V · Acoil = 0, the reciprocity now becomes: 

J J coil · (v X B '}Jv = - J {I) J aV · (¢focus A coil }lv = - J {I) J a(¢ focus Acoil }ndS · 
n n ~ 

The evaluation of the rightmost integral cannot proceed any further unless more is 

known about Acoil, which is the vector potential generated by a current flowing through 

a coil. This requires a temporary detour from this application of the reciprocity theorem. 

A general analysis of the vector potential begins with Ampere's law, simplified for a 

negligible displacement vector D . This is consistent with the lead field current density 

discussed earlier, because the frequency range of MAET excludes significant 

permittivity contributions and magnetic fields may be considered to be magnetostatic: 

V X Bcoil = p} wire· 

·-
J wire is the current density flowing through an arbitrary loop, or coil . Application of the 

vector potential v X Acoil = [3 coil to Ampere's law allows for a relation between the 

current density and the vector potential: 

1 - - - -
- V XV X Acoil = J wire · 
11 

The vector identity: 
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along with V · Acoil = 0 as the current choice of gauge provides the magnetostatic 

relation between the vector potential and current density. This simplification allows for a 

magnetostatic analogue to Poisson's equation for electrostatic fields: 

with the solution: 

A . (r) = _E_ f ] wire (r') dV'. 
coli 4 ~- -,~ TC r-r ails pace 

This integral applies to the entire volume allspace which encloses all current densities 

and Q. This solution for the vector potential is a vector relation, and it may only be 

resolved into three independent vector equations only if Acoil (r) and J wire (r') are 

expressed in Cartesian components. With a relation for the vector potential, reciprocity 

for the coil may now continue: 

Recalling reciprocity relation derived earlier: 

f J coil · (v X B '}Jv = J a(¢ focus A coil }ndS, 
n an 

the vector potential may now be expressed in terms of the current density in a wire, 

fJ- (- B-\JV J1 J (/h J ] wire(r')dV'] '""'dS 
coil. vx p =4 a 'rfocus lr -r'l n . 

n TC an allspace 

Noting that r' applies to all space, and r applies to the surface of the phantom, if the 

coil is located at a distance near the phantom then lr- r'l > 0 only for ] wire (r') '# 0. 
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The integral J ~:ire ?.? dV' therefore exists for all regions of space. Also J wire (r') 
r-r allspace 

J (-') . 
may be considered as a test function, and 

1

:ire ~~ vanishes as IF- i''l--7 oo, which 
r-r 

means that it has support, although not necessarily on a finite 

J (-') 
interval. J 

1

:ire ~~ dV' may be treated as a distribution[23] which assigns a 
r-r allspace . 

number to a test function. In this case, an approximation that J wire (r') may be assigned 

the value J wire (r) may be applied because ~:ire ?.? contributes to the integral 
r-r 

significantly only when lr- r'l is sufficiently small. 

This approximation will greatly simplify the reciprocity to 

The factor - j OJ f.lCY may be safely omitted because it is dimensionless and acts only 
4Jr 

as a proportionality. 

In terms of the current and voltage at the coil: 

fJcoil · (vxB)dV =~t/Jfocuslwire · 
Q 

The final expression if I wire = 1 for 1 ampere of current injected into the coil is: 
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~t/J f ocus = J] coil · (v X B )dv · 
Q 

Experimentally, the coil field current density J coil is mapped to within the resolution of 

ultrasound and its values during the scan can be determined experimentally with 

voltage measurements ~t/J f ocus at the coil terminals. It is the coil field J coil that is of 

interest for simulations, and now attention will shift to a more precise way in which it 

may be obtained, starting with a description of the model of the coil itself. The following 

derivation of the vector potential from a coil at all points in space is an excerpt from [13], 

and it is only provided here for completeness. 

z 

r 

r 

Figure 3. Coordinates used for the current loop, known as the coil 

A practical assumption is to treat the coil as a single loop provided that all of the turns 

occupy a volume of thickness small in comparison to the radius of the coil. For a single 

loop of a line source of current density lying in the x-y plane centered at the origin with a 
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radius of size a , it is best to use ordinary spherical coordinates (r , 8, rp) in Figure 3. 

Then the current density in the coil is: 

- - t5(r- a) 
J wire = J wire rn =I ot5( cos 8) · ,.,.. a 

If the current density has a component only in the rp direction then so will the vector 

potential: 

- -
A coil = A coil ,rp · 

The x and y components of the current density are: 

J wire,x = -J wire, rp sin(/)' J wire,y = J wire, rp cos(/)' and J wire,z = 0. 

The vector potential is: 

_ ( e)= l61rj.ll 0a [ (2- k2 )K(k)- 2E(k )] 
Acoa - Acoil rp r' .J 2 ' 

' a 2 + r 2 + 2arsin8 k 

where the argument of the elliptic integrals K(k) and E(k) is: 

4arsin8 k 2 = . 
a 2 + r 2 + 2ar sin() 

The x and y components of the vector potential are found in the same way as the 

Cartesian components to the current density: 

A coil ,x = - A coil ,rp sin(/), A coil ,y = A coil ,rp cos(/), A coil ,z = 0 · 

The current density found earlier from Faraday's law is: 
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1 coil = a{- V ¢ coil - J m.Acoa ) , 

and the governing equation is: 

V ·]coil = 0' 

with boundary conditions J coil · ii = 0 , 

for a unit normal oriented outward on the surface of the domain. The divergence of the 

current density leads to an inhomogeneous Poisson's equation for the scalar potential 

¢ coil ' 

With Neumann boundary conditions in the potential, () n¢coil = 0. 

From the analysis of the reciprocity theorem, it was shown that time dependence may 

be safely neglected and only the amplitudes are significant. The induced electric field is 

simplified to: 

E coil = - V r/Jcoil - A coil ' 

and the coil field current density is: 

With time-dependence neglected, Poisson's equation from the divergence of the coil 

field current density is: 
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still with the same boundary condition a n¢coil = 0. 

2.2.2.1 Results 

This is the forward problem for the coil field, and like the lead field, it may be solved with 

COMSOL for an arbitrary domain. Reciprocity allows the coil field to be measured by 

experiment, and justifies its numerical simulation as comparison to experiment. 

Conductivity Distribution in the Coil Field Forwanl Problem 

Max: l.:a:> 

l.1 

-3 -2 -1 

Min: o.aro 
Horizontal Axis (A.U.) 

Figure 4. Plot of the conductivity of the domain in a COMSOL model of a square 

slab domain. In this model the conductivity is linearly increasing in the x­

direction (horizontally). 
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Arrow Plot of the Coil Field Current Density 
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-2 

... .. ..... : - - - :- - - .: "" " .. ~ ' 
. . - .. . -· - - - ·- - - .. . - .. 

·3 

-3 -2 -1 

Horizontal Axis (A.U.) 

Figure 5. Plot of the coil field current density. The coil axis lies at the center of the 

domain and is suspended at a height of half of its radius from the surface. 

Being the forward problem, the conductivity is known, and it may be any continuous 

function of position. The coil field current density may now be obtained by specifying 

this conductivity and solving the corresponding Poisson's equation. Like the lead field, 

the coil field is an impressed field as it really is emf generated by an oscillating current 

in a coil. The time dependence is however implicit not only for the sake of simplifying 

the model, but it is allowed by the application of the reciprocity theorem. A typical coil 

field simulation with about 30,000 finite elements will only take several minutes to 

complete 
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2.2.2.2 Discussion 

The application of this forward model include validation of possible (future) experimenta~ 

work and testing the inverse, which is the determination of the conductivity from the coil 

field current density J coil• 
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Chapter 3. The Inverse Problem in MAET 

3.1 Theory 

Until now, the forward problem has been developed extensively in which a known 

conductivity allows a current density to be calculated. Now it is time to explore the 

inverse problem, which is to determine the conductivity from the current density. The 

relations between these two quantities involve the first derivatives of the conductivity in 

the form of first order partial differential equations. 

Provided that first derivatives exist, every first order partial differential equation has a 

solution. Recalling the hypothesis for MAET: 

• In the forward problem, the lead field or coil field current density may be mapped 

in a volume conductor. 

• In the inverse problem, the conductivity may be obtained from the lead field or 

coil field current density 

The second hypothesis will now be tested with the method of characteristics. The 

method of characteristics has the consequences of Lyapunov functions and Liouville's 

theorem which will be explored in the theory. 
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3.1.1 The Method of Characteristics 

The method of characteristics [17] offers a way to solve for the conductivity by 

converting partial differential equations to an equivalent system of ordinary differential 

equations. 

It is a general technique that may be applied to any first-order partial differential 

equation in any number of variables, although the following work involves mainly two 

independent variables. Given the linear equation: 

au . au 
a(x,y)-(x,y) + b(x,y)-(x,y) == c(x,y), 

ax ay 

the solution is the surface S = {x,y,u(x,y)}. 

To find this solution it is first useful to express the partial differential equation as an 

inner product: 

au au 
(a(x,y),b(x, y),c(x,y)) · (-(x, y),-(x, y),-1) = 0. 

ax ay 

This inner product suggests that the vector (a(x,y),b(x,y),c(x,y)) is perpendicular . 

au au au au ' 
to(-a (x,y),-(x,y),-1). The vector (-(x,y),-(x,y),-1) is the normal to S, so 

X ay ax ay 

at each point {x,y,u(x,y)} the vector (a(x,y),b(x,y),c(x,y)) must lie in the tangent 

plane of S. 
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The surface S = {x,y,u(x,y)} is constructed by a union of curves 

r =: {x(s),y(s),u(s)} parameterized by s. For any point along the curve r, the 

tangent vector is defined as (x(s),j;(s),u(s)), 

( . ( ) . ( ) . ( )) _ (dx(s) dy(s) du(s)) where x s , y s , u s = , , , 
ds ds ds 

au au 
and it is also perpendicular to the normal (-(x,y),-(x,y),-1). The inner product 

. ax ay 

between the normal to S and the tangent to r is also zero: 

(au (x, y), au (x,y),-1). (.X(s), y(s),u(s)) = au x(s) +au y(s)- u(s) = 0. 
~ ~ ~ ~ 

The tangent vector to S must be equal to the tangent vector of r, as the vector field 

(a(x(s),y(s)),b(x(s),y(s)),c(x(s),y(s))) is also tangent tor. 

(a(x(s ), y(s)),b(x(s ), y(s)), c(x(s ), y(s ))) = (x(s ), y(s ), u(s)). 

The curves r = {x(s),y(s),u(s)} are the solutions of the system of equations, known 

as characteristic equations: 

dx dy du - = a(x(s),y(s)), - = b(x(s),y(s)), - = c(x(s),y(s)). 
ds ds ds 

The curves r are known the characteristic curves for: 

au au 
a(x,y)-(x,y)+b(x,y)-;-(x,y) = c(x,y), 

ax oy 
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and once they are solved for using the characteristic equations, they may be pieced 

together to form the surface S = {x,y,u(x,y)} which is the solution to the POE. 

3.1.2 The Conductivity as the 'Energy' 

The forward problem was initially an electrodynamics problem, but the inverse is 

analogous to a mechanical problem, as it now involves trajectories. Given that 

x = a(x(s),y(s)) and y = b(x(s),y(s)) provide the coordinates of the phase space, 

one quantity that is highly pursued in the solution of systems of ordinary differential 

equations is the energy, although this name is used in a different context from the more 

familiar physical energy. It is more formally called the Lyapunov function to prevent 

confusion, and normally there is no way to find it except by trial and error. If the 

Lyapunov function is defined as H, its derivative is defined as [see 18,19,21] 

H = dH x + dH y. The conditions on this function are that H > 0 everywhere, and for 
dx dy 

stability, a decreasing energy is necessary, H ~ 0 (it is easier to go downhill than it is to 

go uphill). Using the method of characteristics automatically provides H in the form of 

u(x,y). 

In systems of ordinary differential equations obtained by solving for the conductivity 

using the method of characteristics, the Lyapunov function will be the conductivity since 

o- = dO' x + dO' y for two independent variables. The conductivity also fulfills the 
dx dy 

requirement that it is positive everywhere, that is, a> 0. The stability criterion 6" ~ 0 

for a varying conductivity will also apply, since an increasing conductivity can lead to 
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instability. The conductivity in the inverse problem is the colloquial energy of the system 

of ordinary differential equations used to make the trajectories for its solution. 

3.1.3 Liouville's theorem 

Now that the method of characteristics has provided both a phase space and a 

Lyapunov function, Liouville's theorem may be applied to find the density of trajectories 

in phase space. It is a statement of particle conservation in which a large number of 

trajectories in the phase space are compared to that of a fluid [20]. Let p be the density 

of particles in a volume V of phase space. The number of particles in the volume of 

phase space is: 

N= fpdv. 
Q 

The number of particles in the test volume may change, because of a flux through the 

surface of that volume. The flux is: 

f ~ "dS dN pv·n =--. 
()Q dS 

The negative sign is justified because the direction of the normal to the surface n is 

outward for a closed surface, and if the velocity v is perpendicular to that surface then 

the flux integral is positive and represents particles leaving the closed volume V. The 

continuity equation in terms of the integrals is then: 
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fdp dV + jpV · iidS = 0 . 
n ds an 

Using the divergence theorem: fJJV. nds = fv. (jJV)dv, 
an an 

and continuity becomes: f[ap + v. (jJV)Jdv = o, 
n ds 

over the entire volume, or: dp + V · (pv) = 0 pointwise. 
ds 

Suppose that this phase space consists of only the rectilinear coordinates x, y, z. The 

volume element of the phase space will be dV = dxdydz, and v = (x, y, z). The 

continuity equation is: 

ap (ap . ap . ap ·J (a.x ay azJ 0 -+ -x+-y+-z + p -+-+- = . 
ds dx dy dz dx dy dz 

The total time derivative of p is: 

dp dp . dp . dp . dp 
-=-x+-y+-z+-
ds dx dy dz ds ' 

but suppose that p is autonomous in that it does not depend on s explicitly. This would 

imply that dp = 0, and the continuity equation is: 
ds 

(ap . ap . ap ·J (a.x ay azJ -x+-y+-z +p -+-+- =0. 
dx dy dz ax ay dz 
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The term on the left may be simplified since: 

and continuity becomes : 

. (ap . ap . ap ·J p= -x+-y+-z , 
ax ay az 

. (a.x ay azJ 1 . (a.x ay azJ p + p - +-+- = 0, or - p + - +-+- = 0. 
ax dy dz p ax dy az 

Liouville's theorem has consequences: 

a.x a· az 
If the phase space trajectories diverge, - + _z +- > 0, then the density of particles 

. ax ay dz 

1 
will decrease, so that - jJ < 0, along the trajectory path. 

p 

a.x a· az 1 . 
If the trajectories converge together, then - + _z +- < 0, and - p > 0, so the 

ax ay dz p 

density increases. 

Since each particle can be associated with one trajectory, then the density of particles is 

identical to the density of trajectories. It is this density that is also a function of the 

'energy', or more precisely the Lyapunov function H. The conductivity has already been 

identified as such a function, so it will be seen through the method of characteristics that 

p = p( o) , and t.he density of trajectories may be related to the conductivity. 

For now, Liouville's theorem will be applied just to evaluate the relative change in the 

number trajectories in terms of changes in the conductivity. It will also be used as a test 

to compare the ~tability of the system of ordinary equations obtained when the method 
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of characteristics is applied for both Poisson's equation and, more importantly, 

Faraday's Law. 

3.2 Methods 

The method of characteristics along with Liouville's theorem have been introduced as a 

tool for solving first order partial differential equations. They may now be applied to any 

partial differential equation involving the conductivity and current density, with the goal 

of solving for the conductivity for a given current density. The two partial differential 

equations considered will be both Poisson's equation (the divergence of the current 

density), and Faraday's law. 

3.2.1 Poisson's equation 

The method of characteristics can be used to solve for the conductivity in Poisson's 

equation by reducing the POE for an unknown conductivity to a system of ordinary 

differential equations. In a space with no sources it is: 

Suppose for the moment that potentials are the quantities being measured, and that the 

conductivity can be obtained from these measurements. 

Expanding the divergence in Poisson's equation leads to: 
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The left hand term involves a gradient of the conductivity V (J', and expanding this 

gradient into partial derivatives leads to: 

As a dot product of normal and tangent vectors, this POE becomes 

(a x(J', a Y(J'' a 2 (]',-1) ·(a xt/J, a yf/J, a 2 t/J, -CJV 2 f/J) = 0. 

The goal is to find a surface S = {x,y,z,(J'(x,y,z)} with a tangent vector: 

(.X, y, z, 0') = ca x¢, a y¢J, a z¢,-aV 2 ¢). 

The characteristic equations are: 

i = dx =a ¢(x(s),y(s),z(s)) y = dy =a y¢(x(s),y(s),z(s)) 
ds x ds 

z = dz =a f/J(x(s),y(s),z(s)) 0' = d(J' = -aV 2¢J(x(s),y(s),z(s)) 
ds z ds 

with solution curves r= {x(s),y(s),z(s),(J'(s)} parameterized by .s. 

Now the divergence of the phase space (.X, y, z) is: 
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but the equation for the derivative of the conductivity is --o- = V 2¢. The two right 

(5 

hand sides of both equations both equal the Laplacian of the potential, equating the two 

left hand sides leads to: 

1 . a.x a_y az 
0 -0"+-+-+-= . 

0" ax ay az 

1 1 
This has the form of Liouville's equation with -a-=-p, so that if the conductivity 

(5 p 

increases, then so does the trajectory density, for 0" > 0 and p > 0. For a decreasing 

conductivity, the phase space will diverge, as the trajectories move apart since, 

a.x a· az 
- + _z +- > 0, and for convergent trajectories the conductivity will increase. 
ax ay az 

In MAET, the problem is different, and it is the current density which is measured. The 

characteristic equations now must be expressed in terms of the current density. These 

are: 

. J x(x(s),y(s),z(s)) . J y(x(s),y(s),z(s)) . J
2
(x(s),y(s),z(s)) 

x = - y = - z = - , and 
O"(s) O"(s) O"(s) 

c:T(s) 
-

O"(s) 

[ 
a

2 
a2 a2 J 

-
2 

f/J(x(s),y(s),z(s)) + 
2 

f/J(x(s),y(s),z(s)) + 
2 

f/J(x(s),y(s),z(s)) . 
ax(s) ay(s) . az(s) 

The fourth equation may be expressed in terms of derivatives of current density: 
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c:T(s) 
= 

O"(s) 

_a_(Jx(x(s),y(s),z(s))J + a [Jy(x(s),y(s),z(s))J + ... 
ax(s) O"(s) ay(s) O"(s) 

_a_(Jz(x(s),y(s),z(s))J. 
az(s) O"(s) , 

Although the conductivity O"(s) is also the Lyapunov function, it may be treated as an 

independent coordinate, leading to : 

0"= ... 

( dx~s) (Jx(x(s),y(s),z(s)))+ dy~s) {Jy(x(s),y(s),z(s)))+ dz~s) (Jz(x(s),y(s),z(s)))J 

This simplifies too-- V · J = 0. 

The divergence of (X,j;,Z) = _]_{Jx,Jy,Jz ) is: 
(5 

a.x a_y az 1 - -
-+-+-=--V·J. 
ax ay az 0" 

In terms of the divergence, the equation o-- V · J = 0 becomes: 
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Which is identical to Liouville's theorem with 0' = p . . 

Since the divergence of the current density is zero, V · J = 0, it follows that 6" = 0 , and 

0' =canst. The conductivity O'(s) may now be eliminated from all of the characteristic 

equations as it is a common constant. These equations may now be multiplied 

simultaneously by - O'(s) because it is an independent coordinate to give the following 

characteristic equations : 

dx dy dz - = J x(x(s),y(s),z(s)), - = J y(x(s),y(s),z(s)), - = J z (x(s), y(s),z(s)), 
~ ~ ~ 

and dO'=O. 
ds 

The result of using the method of characteristics to determine the conductivity from the 

current density in Poisson's equation is that the conductivity will be an indeterminate 

constant. The direction of the integration is done along the current density. It does not 

mean that the conductivity is nonexistent, but rather it cannot be inferred from using the 

divergence of the current density. 

58 

3.2.2 Faraday's Law and the Inverse for the Coil Field 

The method of characteristics may also be applied to Faraday's law: 

VxE=-JmB. 

The complex angular frequency factor may be omitted: 

VxE=-B, 

and using Ohm's law ] = O'E, expressed as a direct relationship between current 

density and conductivity [22]: 

- (JJ -Vx 0' =-B. 

The curl may now be expanded into: 

- ( 1 J - 1 (- -) -~\o- xJ+ O" VxJ =-B. 

The leftmost term as a gradient of conductivity is: 

V- xJ=--VO'XJ, -(1J - 1 - -
(J' (]'2 

and the entire relation now becomes: 

1 - - 1 (- - ) ---VO'XJ+- VxJ =-B. 
(]'2 (J' 
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This vector equation may be expanded into three components in Cartesian coordinates 

_1 (J a()_ J a(JJ + _!_(aJz _ aJY J = -B 
() 2 Y az z ay () ay az x 

_1 (J a()_ J a())+ _!_(aJx _ aJz ) = -B 
(} 2 z ax X az (} az ax y 

_1 (J a(J_J a(JJ+_!_(aJY _aJxJ=-B 
() 2 x dy y dX () dX dy z 

For a thin domain, it may be assumed that oJZ 'oJZ 'oJZ ,Jz ' and d(J are negligible 
dX ay dZ az 

so that only the third curl equation may be used. It may be rearranged to : 

As a product of tangent and normal vectors it is: 

(
- J J -(J(aJ y - aJ X J- () 2 B J. (a() d(J -1J = o 

y ' X ' ax dy Z dX ' dy ' . 
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_ _ aJY aJ 
The z-component of V x J , which is -- _ x , can now be treated as any function 

ax ay 

of x and y, and it may be abbreviated as (v x J t (x, y). 

To find the surface S = {x ,y,O"(x,y)} as a union of curves r = {x(s), y (s),O"(s)}, 

the characteristic equations are : 

dx(s) dy(s) 
--= -Jy(x(s),y(s)), = J x(x(s),y(s)), 

ds ds 

3.2.2.1 Results 

The method of characteristics has offered a very practical way to convert Faraday's law 

into a form that may be more easily solved, but the system of ordinary differential 

equations (ODE's) is nonlinear so that it is only possible to solve this system 

numerically, especially since the current densities and the magnetic field are 

nonanalytic functions . In practice, MATLAB is the best environment for the solution of 

this system. The coil field current density components are first solved for as - aV tPcail 

in the Poisson equation forward problem for a given 0" with COMSOL: 

-v · aV tPcaa = v · O"Acail with the boundary condition a n¢caa = o. 
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Once these current densities are known, they may then be used to for the system of 

ODE's. Unlike the characteristic equations for Poisson's equation, the trajectories are 

perpendicular to the current density, and the conductivity is obtained along these 

curves. As the streamlines of the current density form closed loops, there will be a 

single point in the domain where all of these trajectories intersect. This is called the 

fixed point and it occurs when J x == 0 and J Y == 0, which is roughly close to the axis of 

the coil, depending on the local gradient of conductivity. This fixed point is unstable and 

trajectories move away from it. The real parameters is arbitrary, and it increases along 

the integration. The initial conditions are { x(O) , y (O) , a(O)} at s == 0 as the system is 

an initial value problem. 

There is no rule for finding the initial conductivity at the fixed point, but once the fixed 

point is known, even an erroneous initial conductivity will quickly converge to the correct 

conductivity along the trajectory. The coil method of conductivity reconstruction is 

capable of distinguishing between constant conductivities. To see .how, it is sufficient to 

solve: 

O"(s) == -a(s)(VxJt(x(s), y (s))-a(s) 2 Bz(x(s) ,y(s)) == 0, 

which at the fixed point s == 0 has the solution 

a(O) = _ (V x Jt (x(O),y(O)) 

B z(x(O), y (O)) 

In the absence of a known conductivity, this is preferred because it offers a value that is 

at least within an order of magnitude to the subsequent values. The necessary 

prerequisites to reconstruct the linear conductivity distribution in Figure 4 have been 

presented to allow for a reconstruction in MATLAB. 
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Figure 6. Characteristic curves for the coil method for the linear conductivity in 

Figure 4. The coil field current density in the COMSOL forward model is used to 

determine the trajectories, which are always perpendicular to it. The trajectories 

are more rarefied in the region of higher conductivity (right), and are more dense 

in a region of higher conductivity. The fixed point lies within the disk at (0,0). The 

change in density of the trajectories is a result of Liouville's theorem, and it will 

affect the resolution. Increasing conductivities will become harder to resolve. 
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Figure 7. Reconstructed conductivity for Figure 4 for the forward problem. The 

typical time required for completion is about 20 minutes for several hundred 

trajectories. Once obtained, they conductivities along these trajectories are 

interpolated together. 

Along with the initial conditions, it is important to consider the stability at the fixed point. 

For the purposes of reconstruction, it is important that this point is unstable, because 

outgoing trajectories can be used to map the conductivity throughout the domain as 

long as there is a nonzero current density. To analyze the stability at the fixed point, 

only the first two of the characteristic equations are considered: 
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x(s) == -Jy(x(s),y(s)) y(s) == Jx(x(s),y(s)) 

The linear approximation in a neighbourhood {x(s ), y(s)} to the fixed point 

{x(O), y(O)} is 

-a yJ y ][x(s)- x(O)] 
a yJx y(s)- y(O) 

Solving for the eigenvalues of the Jacobian will allow an estimate of how much the 

vector {.X(s),y(s)} diverges near the critical point. These eigenvalues ~ ,~ may be 

found by solving the characteristic equation obtained by taking the determinant of the 

Jacobian. 

along with the associated eigenvectors i\, v2 . Using these eigenvalues and 

eigenvectors amounts to : 

Normally these eigenvectors are orthogonal to one another and parallel to { x( s ), y( s)} . 

More importantly, ~ > 0 and .A-2 > 0. These positive eigenvalues indicate that all 

trajectories are guaranteed to move away from the fixed point. 

{. . } a~ a~ 
The divergence of v1, v2 is -f +----}- == ~ + A2 > 0. av1 av2 
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The volume of the space occupied by {v1, v2 } is expands near the origin. Similarly, the 

divergence may be applied to the first two characteristic equations for a more global 

expression: 

a.x a_y _ (- -) -+-=d J -d J --VxJ dX dy y X X y Z 

It is just the trace of the Jacobian used for linearization, and it applies to every trajectory 

at every point. For a negative curl of the current density, the coordinates {x(s), y (s)} 

will diverge, while they will tend to converge in a region of positive curl. 

The stability may be also evaluated by using Liouville's theorem, developed earlier, for 

the coil. Revisiting the third equation of the characteristic equations, which is the rate of 

the change of the conductivity along a trajectory: 

( - -) 2 o- = -(}' v X J z - (}' B z ' 

it may be rewritten in terms of the divergence of the phase space as: 

( a.x a_y J 2B . t ·t . o- = a - +- -a z , or by rearrang1ng erms 1 1s: 
dx dy 

By comparison, the Liouville's theorem with the density Is: 

1 . (a.x a_yJ 0 -p+ -+- = . 
p dx dy 
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Assuming that p > 0 and a > 0 , the conductivity may related to the density of 

trajectories: 

1. (1 . .-DJ p p =- (}' (}' + (J'n z . 

As the conductivity increases, the density of trajectories traversing the region will 

decrease, but the presence of the magnetic field will also contribute to the loss of 

trajectories since the continuity equation in the conductivity is inhomogeneous, and aB z 

has the same sign as the divergence of the phase space. An increase in conductivity 

will result in an increased divergence to which the aB z will add further to the instability, 

and the density of trajectories will decrease dramatically. 

This level of instability can become a serious issue if the conductivity increases too 

rapidly. One such example is a Gaussian conductivity anomaly of Figure 8. If the peak 

of the conductivity had coincided with the coil axis, then a< 0 away from the fixed 

point, the trajectories are unconditionally stable, and a reconstruction is possible. 

In figure 8, the peak conductivity is off-axis, and the conductivity along some trajectories 

will increase, that is o- > 0 , leading to instability. Unlike the linear conductivity example 

done previously, this increase is sharp to the extent that very few trajectories cross the 

region. 
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Figure 8. Off-center Gaussian conductivity forward problem done with COMSOL. 

Modifications to the phase space associated with the inverse to the coil forward 

problem become a necessity when the conductivity increases significantly away 

from the fixed point 

For this system of ODE's with a single unstable fixed point common to all trajectories, a 

sufficient increase in conductivity away from a fixed point where the trajectories have 

already diverged may cause them to completely avoid that region. This is a serious 

practical problem for increasing conductivities in using the method of characteristics for 
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the coil field, but it can be overcome by changing from Cartesian coordinates to polar 

coordinates. Let x = l cos B and y = l sin B. For a fixed angle B, .X = i cos B and 

y = i sin B with l = 0 coinciding with the fixed point. l is the distance from the fixed 

point and its rate of change is i = ~ x2 + y2 = ~ J x 
2 + J Y 

2 
, which is positive 

semidefinite. The use of l is as a constraint, which only allows solutions along a straight 

line from the fixed point in {x, y) space. The system of the characteristic equations is 

reduced from a system of three differential equations to a system of two differential 

equations: 

i(s) = ~ J X (l(s) cos B, l(s) sino? + J y (l(s) cos B, l(s) sin or 
O"(s) = -O"(s)(V x Jt {l(s) cos B,l(s) sin B)- O"(s) 2 Bz (l(s) cos B, l(s) sin B), 

B fixed for each trajectory. 

For each B the solution curves are {l(s),O"(s)}. Cartesian coordinates may be 

recovered by using x(s) = /(s)cosB and y(s) = /(s)sinB to form the set of 

coordinates {x(s), y (s),O"(s)}. Sets of these coordinates may be collected by solving 

these equations for fixed B at increments within the interval BE [0,2JZ'] to build the 

surface {x, y, 0"( x, y)}. 

69 



2 

1.8 
........... 
:::) 
~ 1.6 
:>-. .... 

-~ 1.4 
u 
::;, 
"0 
c 1.2 0 

(..) 

Scatterplot of Conductive Anomaly Trajectories 
····· ···· ·· ··· · ··· ·· ······· · · ·· · · ········· ·· : : :· ······ ·· ······:·· ··· ·· ·· ·· ····:···· ···· ··· ·· ·· 

..... . . .. . . . . . ~- ........ .... . . ~- . . ......... . . -~ : : 
! ! :"'"""""''( '''" "" ""'!""""""" 

. . 
···· · · ····· ·:·· · ···· · ··· · · ··:· · ·· ·· · ····· · · . . . . . . . . . . .. . -. .... . .. --1· .. .. ..... ... . 1 .. .. .. ... --····~ .. . ...... . ! ... -.. --.. -.... r . . .. - .. . .... . . 

. . 
• • • • • ••••••• • • :· •• 0 • 0 ....... 0 0 .. .. : • • 0 • •• • . . . .. .... : .... .. ... ....... : .. ......... .. . . . . . . . . . . . . . . . . . . . . . . 

0 .. .. .. . ~ ...... . ... . ...... ~ ... .. .. ... . . ... . 

. . 

4I g_ 
N 

23_ 
Q) 

· ·· ······ ·· ··)··· ········ ·· , .... .. ... ... .. ·· ···· ·· ·· ···r···· ·· ··· ··: ····· ····· ···· 

0.8-r----r------.---i-----f----~----k 

3 2 0 -1 -2 -3 -
4 

Vertical Axis (A.U.) 

Figure 9. With modifications, the trajectories are constrained to straight lines in 

(x,y) space originating from the fixed point, which is visible in this plot as a 

central disk. The time required for a reconstruction with a modified phase space 

is no different from the unmodified one. The time required to complete 400 

trajectories with MATLAB is about 20 minutes on a standard desktop computer. 

These trajectories are then interpolated together to form the image in Figure 10. 
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Figure 10. The off-center Gaussian may now be reliably reconstructed with the 

modified phase space. 

The inverse does not necessarily need to be confined to a thin slab domain. Domains 

with geometries resembling those of the actual phantom used in experiments may be 

used to test the performance of the inverse. An example is included in Figure 11, the 

forward problem, and Figure 12, the inverse problem. The coil field current density may 

be obtained from the solution of the for-Ward problem with COMSOL. The coil field 

current density may then be used in the system of ordinary differential equations, which 

lends itself to a solution in MATLAB. 
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Figure 11. Simulated phantom with uniform conductivity forward problem with 

COMSOL. The coil axis in this model is centered at the geometric center of this 

object, and the coil field current density is obtained from this simulation for use 

in the inverse. Although the model has a constant conductivity, the boundaries 

deserve attention, because the conductivity needs to be continuous in its spatial 

derivatives. 
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Figure 12. Conductivity obtained from the coil field current density distribution in 

the simulated phantom. The fixed point of the reconstructing trajectories was 

located in the center of the channel, and the modified phase space was used. The 

trajectories are rays with a common fixed point and are inherently unable to 

reproduce sharp edges such as those adjacent to the channel in this example, 

but this problem may be alleviated by moving the coil axis to another location in 

the domain. About 500 trajectories were needed with a runtime of a half hour. 
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3.2.2.2 Discussion 

The method of characteristics applied to Faraday's Law has proven, at least in principle, 

to provide a reliable reconstruction of the conductivity for the coil field current density. In 

spite of its ability to reproduce distinct constant conductivities, the unaltered method is 

inherently unstable. The instability can, however, be remedied by modifying the phase 

space so that trajectories originating from the fixed point are constrained to propagate 

along straight lines in a direction away from the fixed point. This modification increases 

the stability because the trajectories cannot diverge as a result of a conductivity 

increase. Even so, the trajectories still diverge away from the coil axis and resolution 

can be expected to diminish away from the coil axis. The utility of solving Faraday's law 

with the method of characteristics may also be applied to solving for the conductivity 

from the lead field current density. 

3.2.3 Inverse for the Lead Field 

The inverse for the coil field forward problem can now be slightly modified to find the 

conductivity from the forward problem of the lead field. The method of characteristics is 

applied to [25]: 

and the characteristic equations are: 
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~~) = -JY (x(s),y(s)), d~~) = J x(x(s),y(s)), and 

da(s) = -a(V'xJt(x(s),y(s)) 
ds 

Unlike the coil field, only relative changes in the conductivity may be obtained, as the 

method cannot distinguish between constant conductivities with different values. 

da(s) (- -) 
If = 0 , then V x J z = 0 , 

ds 

and for a conductivity a > 0 , the conductivity can have any value. 

There is no fixed point, because (.X, y) =t ( 0,0) in the lead field, and the initial conditions 

will also be different, due to the geometry of the field. In the reconstruction of the 

conductivity from the lead field current density, initial conditions do not start from a 

single point, but they are located along a parameterized curve, possibly one which has 

its own characteristic equations. It cannot be any curve, and it has to provide 

uniqueness, so that trajectories do not intersect. In what follows, this criterion for 

uniqueness will show which curves for initial conditions are admissible. 

Suppose a curve of initial conditions has another parameter, called t. In the 

characteristic equations for the electrodes, this parameter t may be inserted without 

changing them. 

dx(s,t) c(v(s,t) 
--= -J (x(s,t),y(s,t)), = Jx(x(s,t),y(s,t)), and 

ds Y ds 

da(s, t) = -a(v x Jt (x(s, t), y(s, t)) 
ds 

75 



:1 I 
' ' I •I I 
!I : 
)I I ,, ' ,. ' 
If l 

,. ,, ' 

The solutions of these equations will be x = x(s, t), y = y(s, t), e7 = e7(s, t), for any real 

s , with the initial condition determined by t. For uniqueness with two parameters, it is 

sufficient to consider only r = (x(s,t), y(s, t) ). The conductivity e7(s, t) is determined 

along r.lftwotrajectories r=(x(s,t)),y(s,t))) and r=(x(s,t2),y(s,t2)) intersect 

for t1 = t2 , then there may also be two values of the conductivity at the intersection. In 

this scenario the conductivity may be non-unique, and it is of utmost importance to 

avoid it by finding the conditions which guarantee no intersection between trajectories. 

At s = 0, the initial conditions to the characteristic equations associated with Faraday's 

Law are: 

x(O, t) = YI (t) 'y(O, t) = r2 (t)' 

and the curve of initial conditions is: 

The characteristic equations for the curve of initial conditions are: 

(:
1 

xinit (t), :t Yinit (t)) = (tl (t), t2 (t)) · 

Both characteristic equations have· two parameters, ( s, t) , which are used to determine 

unique values of (x, y). This implies a transformation (s, t) -t (x, y). To determine 

whether or not this transformation is invertible, and ultimately whether unique values of 

(s, t) will lead to unique values of (x, y), the Jacobian J of the transformation must be 

found: 
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dx dx 
- -

J= ds dt 
dy dy ' 

ds dt 

and the determinant of J is IJI = (~; )( ~)-(~ )(~~) F 0. 

The inverse of J will only exist if, and only if, its determinant is non-zero. At s = 0, 

x = xinit and y = Yinit . Also, ~; = -JY and ~ = J x along with the characteristic 

equations for the curve of initial values dx = y1 (t) and dy = y2 (t) apply, as the initial 
dt dt 

points of (x(s),y(s)) are now being considered exclusively along the curve of initial 

values. All four values may be substituted into the determinant for J: 

J= y 
(
-J 

J x 

The determinant is IJI = (- J Y Xr2 )- (J x )(r1) -:t- 0. 

One choice of the curve y which guarantees a nonzero determinant for any arbitrary 

nonzero current density is YJ = J X and r 2 = J y . The determinant in this case is 

IJI = J 2 + J 2 -:t- 0. This would imply that the characteristic equations of the current 
X y . 

density in Poisson's equation will provide reliable starting points for finding the 

conductivity via Faraday's law. These initial points may be found at points along the 

streamline of the current density: 
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d d d 
( -d xinit (t) , -d Ytnit (t) , -d a init (t)) = (J X ( xinit (t), Ytnit (t)), J y ( xinit (t) , Yinit (t)),O). t t t . ' . 

The respective phase spaces from Faraday's law and from Poisson's equation, because 

their trajectories are perpendicular to each other. Given the two phase spaces: 

The dot product (x,y, a)Faraday · (x,y, a)Poisson = 0 everywhere, and the two 

trajectories are nowhere tangent to each other. Although any streamline tangent to the 

current density will be sufficient for generating initial points, it is a straight line joining the 

two electrodes as a generator for initial conditions that is often convenient. The reason 

for this is mainly due to the geometry of the phantom involved. It is symmetrical about 

such a line, and the domain tends to narrow abruptly near the centre into a channel. In 

this case, the current density about this channel will predominantly contain a component 

parallel to a straight-line joining the two electrodes. With such a line of initial conditions, 

the domain may be split into two halves, each containing trajectories that move away 

from the initial points on the line . 

It is also worth considering Liouville's theorem for stability. Using the equations: 

the divergence of the phase space is: 
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and the conductivity equation in terms of the divergence is: 

_!_ o- _ ( a.x + a_y J = 0 . 
a ax ay 

For comparison , the Liouville equation is: 

1 . (a.x a_y J 0 -p+ -+- = . 
p ax ay 

Assuming that p > 0 and a> 0 , _!_ p = _ _!_&.The trajectories will tend to avoid 
p a 

regions of higher conductivity, but not to the extent as the trajectories in the coil, since 

the continuity equation lacks the forcing term aB z . The advantage with better stability is 

that in practice, there are no modifications needed as those used for the coil. 

MAT LAB is still the best environment for the solution of the inverse for the lead field. 

The lead field current density components are first solved for as - oV ¢1ead in the 

Poisson equation forward problem for a given a with COMSOL: 

-v . oV ¢lead == 0 with the boundary condition an ¢lead = 0. 

Once the current densities are known, they may then be used to determine the 

trajectories along which the conductivity is determined. 
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3.2.3.1 Results 

The current density due to the lead field has a very different geometry from the coil and 

a plot of the phase space trajectories now contains separatrices, boundaries which 

separate two trajectories with very different long-term behaviours, shown in Figure 13. 

There is no longer a single fixed point and individual trajectories do not intersect each 

other anywhere throughout the domain. 
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Figure 13. Trajectories for lead field reconstruction. The horizontal line contains 

the initial conditions and the trajectories fill the domain. The vertical line is the 

separatrix, which separates trajectories with long term behaviour. The trajectories 

are perpendicular to the lead field current density, which is obtained from the 

COMSOL forward model. 
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It has been found that the initial conditions all lie on a streamline, and this curve divides 

the domain into two regions. Trajectories beginning at initial conditions along the 

streamline will traverse only one of the regions with the characteristic equations so far. 

x == -J y· == J o- == -(j(vxJ) y X Z 1 

This system may be modified so that the trajectories will fill the other region 

In practice, both equations are used to obtain points (x, y , (}) for all regions in the 

domain. 

Unfortunately, determining the initial conductivities may be a problem under certain 

circumstances. Although the initial x and y coordinates may be found along streamlines 

of the current density, the initial conductivities cannot, because the initial conductivities 

also lie along a streamline of the current density. Recalling the results seen previously 

with Poisson's equation, the conductivity distribution cannot be obtained along a 

streamline. The lack of any prior knowledge of the conductivity distribution along any 

streamline of the current density may pose a problem. 

One solution to this dilemma is to use a streamline which traverses a region of known 

background conductivity. Then the initial conductivities along the streamline are known 

and the trajectories may use the coordinates along this streamline as initial positions. 
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Figure 14. Happyface conductivity distribution. The domain is mostly filled with a 

region of constant conductivity, and it is possible to find a streamline which 

traverses only this region. This may be used for initial conditions to find the 

conductivity in Figure 15. This COMSOL forward model will generate current 

densities which are then used to generate the trajectories in the reconstruction. 
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Figure 15. Reconstructed happyface conductivity using the background 

conductivity. The time needed to complete 400 trajectories is comparable to the 

coil, about 30 minutes. 

Another solution to uncertain initial conductivities uses the observation that the 

calculated conductivity eventually converges to the real conductivity after a longer 

trajectory time. The remedy for the lack of initial conductivities is to sample the 

neighbourhood of the initial line to determine whether the conductivity changes along 

the trajectories. This is done by solving the characteristic equations for very short 

trajectories for each initial condition and then updating the initial conductivity once each 
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integration has terminated, with the conductivity at the end of the trajectory. There is no 

limit on how many times the initial conductivity may be updated, except computational 

time. The initial conductivity will slightly improve with each update, but the updated 

conductivities may also converge to very unrealistically small values. While the idea 

behind making repetitive updates is to make the initial conductivity converge to the 

correct form, each update must be multiplied by a scaling factor to ensure that the new 

maximum is the same as the maximum of the pre-updated conductivity. By doing 

successive updates over short trajectories near the initial conditions, the intent is to 

create an overall longer path composed of many short trajectories. Also, conductivity 

updates along these short trajectories will take into account the local distribution of 

conductivity near the initial conductivity. 
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Figure 16. Forward problem with COMSOL in which the linear conductivity in the 

x-direction. The conductivity is changing everywhere in the domain. 
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The only option at present is to begin at the line of symmetry in the horizontal axis in 

Figure 17. The initial conductivity along this line will be a constant due to the lack of 

knowledge of the actual initial conditions along the initial conditions. An example is 

provided in Figure 16 in which the conductivity changes everywhere. There is no longer 

any streamline which traverses a region of constant conductivity and conductivity 

distribution along any streamline cannot be inferred otherwise. 
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Figure 17. Conductivity obtained from a constant conductivity along the initial 

conditions. The initial conditions lie along the horizontal line of symmetry. 

Without knowledge of the conductivity along these initial conditions, the 

conductivity is not well represented near the line, but it eventually converges to 

the correct value. 
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Figure 18. Image obtained after 100 updates of the initial conductivity. The 

conductivity near the initial conditions may be sampled repetitively with very 

short trajectories near the initial conditions to obtain an improved profile of the 

conductivity along the initial conditions. Such sampling will increase the runtime 

to roughly several hours for 400 trajectories. 

This reconstruction may be used for other domains, such as those with a geometry 

resembling the phantom used for experiments. The geometry of the lead field current 

density allows for trajectories that will fill the domain, so that sharper edges in the 

boundary are better represented in the reconstruction. 
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Figure 19. The forward problem of a phantom with linearly varying conductivity in 

the vertical direction. 
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Figure 20. Linearly varying conductivity obtained from current density. The 

reconstruction allows for sharp edges about the central channel. 
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However, a lack of knowledge of the conductivity at the initial conditions can also hinder 

a proper conductivity reconstruction. In Figures 21 and 22, the conductivity now varies 

linearly along the horizontal direction which coincides with the predominantly horizontal 

current density. 
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Figure 21. Forward problem of a linearly varying conductivity in the horizontal 

direction. The lead field current density is obtained from this forward model. 
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Figure 22. The reconstructed conductivity with an error in the channel. 

Although the geometry can be reasonably reconstructed, the correct conductivity cannot 

be returned. The conductive region is more constrained and the current density in the 

center of the channel can only have an x-component. The characteristic curves can only 

be vertical, and with the technique of repetitive short trajectories used, these trajectories 

will only be able to travel along regions of constant conductivity. An unconstrained 

domain allows the characteristic lines to curve more so that conductivity gradients away 

from the initial conditions may be integrated both vertically and horizontally. The 

trajectory geometry is a major factor in the ability of this inverse to function. 
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3.2.3.2 Discussion 

In closing, the reconstruction of the conductivity may be achieved for the lead field 

current density in addition to the coil field current density. Its properties, when applied to 

the lead field, differ greatly from those of the coil field. The geometry of the lead field 

current density changes the initial conditions from the fixed point seen in the coil field to 

a streamline of the current density. In particular, the conductivity along the streamline of 

current density can be indeterminate unless it is known background conductivity. The 

reconstruction involving the lead field current density is, however, more stable to 

increases in conductivity than its coil field equivalent. With stability also comes improved 

resolution, because the characteristic curves do not diverge so easily. 
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Chapter 4. Discussion and Future Work 

The application of the method of characteristics to the solution of Maxwell's equations 

for the conductivity has been proven to provide reasonable reconstructions from either 

the lead field current density or the coil field current density, with few caveats. The 

method has not been tried on current densities obtained from experimental data, which 

may have unexpected effects on its ability to obtain the conductivity. There is also room 

for improvement in the handling of noise in the current density. Given all of the 

uncertainties of its further use, it is helpful to know the important aspects of the theory 

behind the method of characteristics, so that improvements may be carefully applied. 

This theory has been presented throughout this thesis as needed. In future work there 

are several avenues to the improvement and extension of this method. 

4.1 Initial Conditions of the Conductivity 

The initial conditions of the conductivity have not yet been addressed entirely. For the 

coil method, they are not as major an impediment as they are for the reconstruction with 

the lead field. The conductivity was already found to correspond to the 'energy' function 

of the phase space created by the method of characteristics when applied to first order 

partial differential equations involving the current density and the conductivity. This 

'energy', not necessarily the physical energy, is often referred to as the Lyapunov 

function, and it is typically found by trial and error. In a physical system it may be the 

Hamiltonian from which the equations of motion are derived. Any ongoing research in 

differential equations is likely to include newer analytical techniques that may help to 
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determine an appropriate Lyapunov function given only trajectories parallel and 

perpendicular to the current density. Perhaps such a technique may aid the lead field 

reconstruction by providing at least an initial estimate of the conductivity distribution 

along the line of initial conditions. Finding initial conductivities more effectively will also 

serve in realizing three dimensional images of the conductivity. 

4.2 Noise and Computational time 

One issue of importance to imaging is noise. In this thesis, most of the reconstructions 

were done without noise, to assess their inherent properties. For actual current density 

data, it is prudent to test the reconstruction for behaviour with noisy data. 

Coil Field Current Density Reconstruction 'With 10 Percent Noise 
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Figure 23. Noise in the coil field reconstruction. 
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Figure 24. Noise in the lead field reconstruction. 
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Figures 23 and 24 are a comparison of noise of the coil field and lead field responses of 

ten percent noise in the respective current densities. Fortunately, the main image is 

obvious, but the characteristic curves are also pronounced. In comparison to noise-free 

simulations, the time taken for data with ten percent noise added is roughly ten times 

longer for the same number of trajectories. Typically 400 trajectories are needed for a 

reasonable resolution in the inverse with a run-time on the order of a half hour. With 

noise, the time to complete this number of trajectories will be on the order of a day. 

Possible remedies in the near future may be to apply filtering to the noisy data to 

exclude high frequency oscillations, or to include regularization [25] in the reconstruction 

to exclude a rapidly varying conductivity along the trajectories. In the presence of noise, 

the determination of initial conductivities may also become more problematic. 
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4.3 Practical Considerations in the Resolution 

The profile of the ultrasound cross-section has been assumed to be a delta function so 

that we can obtain an ideal distribution of current density point-wise. In experiments, the 

resolution of the current density distribution is limited by the beam diameter of the 

ultrasound wave. Consequently, the resolution of the reconstructed electrical 

conductivity cannot have a better resolution than the ultrasound beam diameter even in 

an ideal reconstruction case (see Appendix 8.3 for focused ultrasound). 

In addition, noise in the experimental data will deteriorate the image resolution further 

due to the cut-off of the high frequency component of the signal. This is the common . 
feature of all imaging modalities. 

4.4 The Prospects of Three Dimensional Imaging 

In the present stage of MAET experiments, the current density distribution is ob~ained in 

a thin (compared with the ultrasound wavelength) sample due to the oscillatory nature 

of ultrasound waves. Therefore, two dimensional image reconstruction was 

concentrated upon in this thesis. The method to measure the current density in the 

interior of a thick sample is being investigated, and the question of three dimensional 

images will be addressed. Recall that Faraday's law originally had three components, 

although only the third was used. 

_1 (J deY -J dCY)+_!_(dJz _ ()JYJ=-B 
o-2 Y dz z dy o- dy dz x 
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_1 (J d(Y -J d(Y)+_!_(dJx _ ()Jz )=-B 
o-2 z dx x dz o- dz dx Y 

These equations may be converted to their equivalent characteristic equations 

Also the characteristic equations from Poisson's equation may be included 

Four sets of phase spaces will require four parameters (s1, s2 , s3 , s4 ) .The coordinates 

which these parameters will determine are: 

( x, y, z, o-) == ( x ( s 1 , s 2 , s 3 , s 4 ), y ( s 1 , s 2 , s 3 , s 4 ), z ( s 1 , s 2 , s 3 , s 4 ), o-( s 1 , s 2 , s 3 , s 4 ) ) , since 

the conductivity is now also a coordinate. With four phase spaces, there is every 

possibility that the transformation (s1,s2 ,s3 ,s4 ) ---7 (x,y,z,a) will determine unique 

conductivities. The Jacobian for this transformation is: 
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as] as2 as3 as4 
ay ay ay ay 
as1 as2 as3 as4 J= az az az az 
as] as2 as3 as4 
a a a a a a a a 
as] as2 as3 as4 

Using the values from the four phase space equations, 

0 Jz -J Jx y 
-J 0 Jx Jy J= z 
J -J 0 Jz ' 

-o{VxJt -a2Bx 
X 

- a(V X Jt -0"
2 By - a(v x Jt -a 2 Bz 0 

and the determinant of J is 

or a(J · J).] · ((vxl)+ aB) in vector notation. 

jJj :t. 0 unconditionally in the coil reconstruction, that is if B i= 0, or conditionally for a 

change in the conductivity with the electrodes for B = o provided that V x J :t. 0. 

There is much work that needs to be done in this area, and nothing has been tried, but 

there is one possible route that may be attempted. Recall that from the lead field 

reconstruction, the curve of initial conditions needed to be orthogonal to the 

characteristic equations that determined the trajectories. The Poisson equation phase 
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space will be orthogonal to each of the three other equations, even if they are not 

orthogonal to each other. It may be possible to use Poisson's equation trajectories as 

initial conditions for the three curl equations to find the conductivities in the yz, xz, and 

xy planes throughout the three dimensional domain. The question of initial conductivities 

will also be important here. All of these data will be four dimensional points, but 

MATLAB is very capable of interpolating such points. Hopefully this will lead to the three 

dimensional images of conductivity alluded to in Wen's paper [7]. 

4.5 Other Considerations 

The method of characteristics applied to partial differential equations of the conductivity 

resulting from Maxwell's equations has been able to provide conductivity images for at 

least two configurations in current density, the lead field and the coil field. The 

differences between these configurations are a result of the different geometries of the 

current density. 

The original configuration tested was the coil field, and the highlights in the conductivity 

reconstruction were: 

• A fixed point, which required only one initial conductivity. 

• The ability to reconstruct absolute conductivities. 

• Prone to great instability unless modified. 

• The inherent resolution is limited by the divergence of the trajectories resulting 

from Liouville's theorem, and it decreases further away from the coil axis. 
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The lead field reconstruction had different properties due to the different current density 

geometry, and its main features are: 

• The initial conditions lie on a streamline of current density, and the conductivity 

along that streamline must be known. 

• Is only able to reconstruct relative conductivities. 

• Relatively stable, with arbitrary conductivity anomalies. 

• The inherent resolution is still limited by diverging trajectories, but not to the 

extent seen in the coil. The initial conditions lie along a streamline of current 

density, and the resulting trajectories can fill the phantom more uniformly. The 

overall resolution is better than that for the coil. 

Aside from the different configurations and their reconstruction properties, use of the 

method of characteristics is based on the assumption that the current density and the 

conductivity are both continuous functions of position with continuous first derivatives. It 

is anticipated that even in the presence of noise, real current densities with real 

conductivities will indeed have these properties even with noise and smoothing of the 

data. Although real conductivities may change over short distances, a sudden jump, 

such as a Heaviside step function is unlikely. 

This system of reconstruction is relatively new, but given these considerations, it should 

be pursued further, especially now that its basic properties are known. 
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Appendices 

Appendix A: Electrical Impedance Tomography 

The background to electrical impedance tomography is presented here for comparison 

to MAET. Like MAET, EIT is a device intended to measure the conductivity in a volume 

conductor, and its analysis consists of both a forward and inverse problem. Unlike 

MAET, it is already in widespread use, although its resolution is poor due to the ill­

posedness of the inverse problem. Due to the similarities between MAET and EIT, the 

inverse for EIT was also considered as a possible method of reconstruction in MAET, 

although a more appropriate technique was found. 

A.1 Introduction 

Electrical impedance tomography is an imaging modality that makes use of an applied 

electrical current to probe the inside structure of a body. The method is sensitive to 

electrical conductivity since a known current is injected into the body and the resulting 

electrical potential is then measured at regular points along the boundary. It is possible 

to then reconstruct these voltage measurements in such a way as to obtain a picture of 

the conductivity distribution within the body. Since alternating currents can be used, it is 

also possible to measure the impedance, although it is the conductivity (real resistance) 

that is more often done. 
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A.2 Sheffield systems 

The most common EIT systems are the 16 electrode systems with a single current 

source from Sheffield. There are three versions : the mark 1, mark 2, both of which are 

single frequency, and the multifrequency mark 3. The mark 1 supplies current at 50kHz 

at 1 rnA, and the potentials are measured from the remaining electrodes. The mark 2 

operates with a 5 rnA sinusoidal current source at a frequency of 20.83kHz, which is 

generated using a DAC that reads a ROM lookup table as it is very difficult to generate 

stable sine waveforms otherwise. Using any other waveform will lead to corrupted 

signals as only certain harmonics would be corrupted by the complex impedance ,of 

biological tissue. The current source is coupled via a transformer primarily for safety 

reasons to allow the subject to float with ground potential so as to prevent electric 

shock. A current sensing resistor is then placed in series with the subject to monitor 

current. Differential voltages are then measured between adjacent electrodes using AC 

coupled instrumentation amplifiers. These instrumentation amplifiers are then 

transformer coupled to OTA's or variable gain amplifiers. These OTA's (operational 

transconductance amplifiers) usually operate as matched transistor pairs so AC 

coupling will allow proper biasing of the transistor bases. 

Since instrumentation amplifiers are used, it is important that they have a high CMRR. 

Ideally, if the two inputs are tied to the same voltage then the output of such an amplifier 

should be zero. Any mismatch between input impedances will inadvertently cause a 

differential input voltage and nonzero amplified output. Problems with CMRR worsen 

with increasing frequency, but they may be compensated for by adding an extra current 

source far away from the electrodes so as to create an extra voltage and reduce the 

common mode seen by all amplifiers. For such compensation the gain must be kept 

relatively low so that unwanted oscillations do not occur. 
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Sheffield systems need multiplexers to switch current to adjacent electrode pairs and 

this switching will introduce extra shunt capacitance on the electrodes. As a result, only 

the real (resistive) component of the voltage is used while the reactive component is 

ignored, omitting any impedance reconstruction. 

For any object with cylindrical symmetry, there are normally 16 electrodes evenly 

distributed about the circumference per layer. This measurement strategy is called the 

Sheffield measurement protocol and adjacent electrodes between layers are used to 

apply current while voltages are measured along the remaining electrodes about the 

circumference except for those electrodes closest to the current sources. For 16 

electrodes there will be 16 measurement patterns each with 13 voltage measurements 

along the circumference for a total of 208 per layer. Of the 208 measurements, only 1 04 

are non-redundant due to reciprocity. 

A.3 Physical motivation 

The physics behind EIT is governed by Maxwell's equations. 

or V x fi = j (J£E + J (Ampere's Law) 

or v X E = -JOJf-LH (Faraday's Law). 

For a single frequency OJ, with the fields being related to material properties by : 

- - - -
D = cE and B = Jill . 

The divergence of Ampere's Law is: 
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v. (vxii )= v. (JO£E +1)= o. 

For a constant current, V · J = 0, J = aE , and E = - V ¢, the divergence in terms of 

the gradient of the potential leads to Poisson's equation. - V · oV ¢ = 0 with a 

Neumann boundary condition d n¢ = 0 also known as Kirchoff's current law. Poisson's 

equation is also known as the forward problem as its solution will determine the 

potential ¢ at the boundary. The preferred method of solution to Poisson's equation is 

by finite elements. 

A.4 Reciprocity and the Sensitivity matrix 

In the discretized forward model the domain is divided into k regions each with a 

constant conductivity and measurements are taken from m electrodes for a drive pattern 

d. This is a situation in which we are trying to infer the interior fields from those at the 

boundary. This is done by applying the reciprocity theorem. Let ] d and E d be the 

interior fields about ak and J m and Em be boundary fields near the electrodes. The 

reciprocity theorem relates these quantities: 

fJd .£mdV- fJm.£ddV=O. 
n n 

Using the interior conductivity ak with potentials f/Jd and t/Jm : 

fakV¢d ·V¢mdV- fJm ·V¢ddV=O. 
n n 
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The second term can be rewritten using integration by parts and the divergence 

theorem. 

- f1m·V¢ddV= JV·(¢d]m)dV= f¢d1m·ndS. 
n n an 

For the point of contact for the electrode, J m = I 08dm and: 

f¢d] m · ndS = f¢dio8dm dS = Vd io, 
an an 

at the point of contact of the electrodes. The reciprocity is now: 

a k fv ¢d · V ¢mdV = -I0Vd, 
n 

for a constant conductivity for the kth simplex. For a unit injected current I 0 any 

·change in v d is entirely due to a change in (J' k : 

8Vam = -Jak JV ¢a · V ¢mdV. 
n 

This leads to the Jacobian: 

This is a linear transformation that relates the measured voltages to the individual 

conductivities within the domain and it is obtained from the forward problem. The 

Jacobian of voltage with respect to conductivity is appropriately named the sensitivity 

matrix as it measures the degree to which measured voltages are affected by changes 

in conductivity and it is practical way of making simulations compatible with experiment. 
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A.5 Optimization and reconstruction 

With the Jacobian, if there are as many conductivity regions as there are measurements 

then by finding the inverse of the Jacobian one should be able to use these 

measurements to find the distribution of conductivities. 208 total measurements can 

only determine 1 04 conductivities in 104 subdivisions of a cylindrical cross-section 

uniquely due to reciprocity. Unfortunately, this is poor resolution, as this is far greater 

than the millimeter resolution for ultrasound for anatomy-sized dimensions. One might 

wish to increase the resolution by introducing more conductivity regions for the same 

domain, for example to 256 or 512. In that case, the Jacobian is no longer a square 

matrix but a rectangular one. The excess conductivities introduce slack into the 

corresponding voltages so that the transformation from voltages to conductivities is no 

longer unique and matrix inversion is no longer straighforward. In this case we must 

consider some way to 'guess' at the conductivity so that its corresponding voltages 

match the observed voltages as closely as possible. 

av 
Tthe Jacobian is: __!!!!!:_ == - fv ¢d · V ¢ dV == Jd k . aa m m, 

k n 

The linear transformation between voltages and conductivities is t5Vdm == J dm ,kt5ak. For 

excess conductivities there will be fewer linear equations in more unknowns a k. 

Consequently, there will remain a number of arbitrary conductivities that may give a 

solution to Vdm. Given this immense subset of feasible conductivities we choose those 

conductivities that minimize: 
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Although it is desirable from an optimization point of view to have many slack variables, 

the main disadvantage lies with experimental error and noise. Any error in the 

measured voltage could likely result in a suboptimal determination of all conductivities. 

One way to invert the matrix J dm,k == J is to use singular value decomposition. As the 

Jacobian is non-square then there will be two possible ranks determined by the number 

of conductivities and voltage measurements. This leads to two metrics J H J and JJ H 

both of which are positive definite square matrices but differ in rank. The superscript H 

denotes the Hermitian transpose where the conjugate of complex entries is taken. 

J H J has a complete set of eigenvectors vi with real eigenvalues Ai. These 

eigenvectors may then be normalized so that their subspace forms a unitary matrix 

pr == v-1
• Similarily JJH also has a complete orthonormal basis ui also with 

eigenvalues A.i, and its subspace of all eigenvectors is the matrix Or == 0-1
. The ranks 

of 0 and V will depend on which quadratic form is greater in rank. The singular values 

are simply the square roots of these eigenvalues. cti == ji; . The norm 

1 
~.Suppose that there exists a matrix I:ii == cti padded with zeros so as to make it an 
(}"} 

m x n matrix, then JV == UL. If V is a unitary matrix then V can be decomposed into 

J == ULVr with I:== or JV. Once the eigenvectors and eigenvalues are known then 
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the inverse is J-1 = Or.-1 vr with Lii -1 = ~ is simply the transpose of l:. 
a . 

l 

-1 " -1 "T II 2 J = UL v . It solves Ja- vmeasured II as J-1 
v measured =a' for the conductivity. 

The singular value decomposition alone is not sufficient to solve practical problems 

which involve noise. It may inadvertently change in the rank of the Jacobian, so that its 

inversion leads to erroneous results. One common method is to introduce 

regularization, and there are several kinds, two of which will be covered. They all 

involve constraining the conductivity so that it retains 'reasonable' values while at the 

same time the inverse, though not exact exists. The first is Tikhonov regularization and 

it is essentially a simple penalty function: 

The a is a Lagrangian multiplier and its value enforces how small the conductivity 

should be. The singular value solution is (}' . = (JH J + a 2I)-1 JHV where I ·1s mm measured ' 

an identity matrix. In the event that A= 0 (lower rank Jacobian), at the very least a min 

avoids a zero denominator. One modification to the optimized conductivity is to adjust 

the penalty term to allow conductivities centered about some background conductivity 

ao: a min = minaiiJa- Vmeasured r + a2 lla- aoll 2 
to constrain the contrast. Helpful as 

it seems, Tikhonov regularization may not always offer a good reconstruction. The 

choice of a presupposes the conductivity distribution and may lead to a form of 

'cheating'. The other form of regularization is total variation regularization. It measures 

the degree to which the conductivity changes (or oscillates) over the domain. It is 

defined as TV( a)= ~V a~V. Even if the amplitude of the conductivity is small, for 
n 

example, any high frequency spatial oscillations will be filtered out when this is added 
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as a penalty function. If the conductivity happens to be a step function, then its gradient 

will be a delta function, and at least in the ideal case, the penalty will have a value only 

at the discontinuity and zero value elsewhere. 

The use of a Jacobian is based on the assumption of a linear relationship between 

voltage and conductivity for small conductivity variations. For realistic calculations it is 

likely that this relationship is nonlinear and that the optimization so far is only somewhat 

useful. It is still possible to use the optimization covered so far, but as successive 

approximations to the true conductivity. Keeping in mind that the Jacobian and its 

inverse are an array of gradients, and that J H V d is a gradient vector of the measure 

conductivity, allows the use of gradient search methods throughout conductivity space. 

A gradient search method may be visualized as a search for a hill or valley depending 

on whether a maximum or a minimum are desired. For a maximum, the search direction 

should be a positive gradient and for a minimum it should be a negative gradient, as 

care with signs is important. One way of finding the zero of a gradient (extremum) is to 

consider Newton's method of finding zeros. In the single variable case 

xn+I = xn- 1?n) solves f(x) = 0 and this may be modified to x +I = x - f'?n) 
f (xn) n n f 1 (xn ) 

to solve j 1 (xn ) = 0. For the multivariable case with a vector of conductivities, the 

Tikhonov solution may be repeatedly used to accomplish this as: 

a n+l = an + ( J n H J n + a 2 I) -l J n H v measured +regularization . 

The vector of conductivities will then be updated after every iteration along with the 

Jacobian. The stopping criterion is when the variation in conductivity J H V d is n measure 

below some tolerance, which is when a minimum in the conductivity is obtained . Unlike 
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the single variable case, second derivatives are neglected (although they need not be) 

for simplification purposes. 

These optimization methods and their variants work for practical reconstructions in EIT. 

They are all seemingly unconstrained optimizations, and they all search conductivity 

space to find the set of conductivities that will allow the forward problem to match 

experimental measurements with varying success. The reconstruction of EIT is not so 

straightforward and it is amazing how far simple optimization can lead to success given 

the ill-posed ness of the problem. Although it is not apparent, the constraints are 

indirectly used in the objective functions in the form of the Jacobian, and in a standard 

optimization they would be multiplied by Lagrangian multipliers. As the Jacobian is 

included in the objective function, all constraints are always active saving much algebra 

which would otherwise result, though at the cost of adequately representing nonlinear 

conductivities. 

A.6 Conclusion 

This year marks the 30th anniversary of Electrical Impedance Tomography (EIT}. It uses 

well defined physics and easily available technology to image conductivity (and 

impedance) safely, but research continues for improved impedance imaging. 

The inverse for EIT was presented in detail because it was tried as a prototype to the 

inverse in MAET. Both modalities are designed to measure the electrical conductivity 

within a volume conductor, but it is MAET which promises higher resolution conductivity 

images, made possible by an emf created inside the volume by ultrasound. The inverse 

for MAET should also accommodate this innovation, and indeed the optimization in the 
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conductivity together with regularization in EIT was surpassed by a more applicable 

method. 

Optimization is useful if no relation is known to exist between measured (in EIT it is 

voltage, in MAET it is current density) and inferred (conductivity) quantities. In MAET, 

there was a definite relation, and optimization was not needed. 

References: Holder, DavidS., Electrical Impedance Tomography: Methods History 

and Applications , lOP Publishing 2005 
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Appendix B : Ultrasound 

The forward problem of MAET depends on ultrasound to resolve the lead or coil field 

current density. The contribution of ultrasound is approximated to a point source of emf 

in the application of the reciprocity theorem, so that the lead or coil field current density 

may now be mapped point-wise with either a simulation or experimentally. While this 

simplifies the model considerably, it neglects the wave properties of the ultrasound. This 

appendix explores the effect of the wave nature of the applied ultrasound on the 

induced emf. 

There will be three sections in which the wave equation is derived and then 

incorporated into the Lorentz force to visualize a more complete induced emf. 

8.1 Thermodynamics of Ultrasound 

MAET relies on the action of an ultrasound. As described by Cobbold [8], the acoustical 

part of MAET may be considered using thermodynamics [9]. 

Relations involving the entropy S are often referred to as the TdS , or 'tedious' 

relations, in which the entropy may be a function of any two of the temperature, 

pressure, or volume, leading to three possible relations. The combined first and second 

laws are: 

TdS = dU +PdV, 
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where U is the internal energy, P is the pressure, and V is the volume. For a simple 

relation, the entropy is a function of pressure and volume, S = S(P, V). Its differential in 

terms of the two independent quantities is 

ds=(asJ dP+(asJ dv. 
aP v av p 

The subscripts V and P with the partial derivatives just indicate which variable is held 

constant when that derivative is taken. 

For an adiabatic change, dS = 0, and the result is a relation between the pressure and 

volume. 

dP =-(a~) (as] dv. 
as v av p 

For three variables, the possibilities that any variable is a function of the other two is 

s = S(P, v)' p = P(s, v) ,and v = v(P,S ), which lead to the relation 

( aP) (asJ (av) =-l,or (a~) (asJ =-(aP). 
as v av p aP s as v av p av s 

The pressure-volume relation now becomes a seemingly trivial: 

dP = (ap). dV. 
av s 

The adiabatic bulk modulus is defined as: 
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K =-v(aPJ s a , v ~ s 

1 1 
and volume is related to density as V =-, and dV = --

2 
dp. Substitution of these 

p p 

values into the pressure-volume relation leads to: 

The differential may be expressed in terms of the pressure: 

This is a very desirable result for thermodynamics. It is known as an equation of state, 

which relates thermodynamic variables. In this case, the pressure and density 

(reciprocal of volume) are related, the temperature is the dependent variable but 

indeterminate, and the entropy change (heat dissipation) is zero, in an idealized process 

otherwise known as isentropic. With zero entropy change lies the assumption that all of 

the PdV work done to compress the fluid is stored in the fluid as its internal energy 

dU with no energy losses by heat dissipation, since dU + PdV = 0. 

8.2 Fluid Mechanics of Ultrasound 
' 

Aside from the equation of state, the other important relations involve the conservation 

of mass, known as continuity, and momentum, as outlined by Kundu [1 0]. The goal of 
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this section is to ultimately arrive at a wave equation. Starting with continuity, if a fluid 

has a density, then its total mass is : 

m= JpdV, 
Q 

over an arbitrary volume in Q, and any change in the mass, which is: 

Om= f()p dV, 
at Qat 

can be attributed to an outward flux of mass leaving the test volume through the 

boundary an ' 

- JpV·nds. 
an 

Using the divergence theorem: 

JpV. nds = Jv. (j]V}Jv , 
an n 

allows the divergence of the flux to be related to the rate of change of density: 

S
ap - ( -) - + V · pv dV = 0 , 

Q at 

or ap + V · (jJV) = 0 point-wise. 
at 

Using tensor notation, conservation is: 
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where repeated indices in a term represent a sum. In addition to continuity, 

conservation of momentum may be expressed in a similar manner by replacing the 

density p with pv f3 as now it is the momentum that is conserved. A test volume will 

have a density of momentum, and any change in this density will be the flux of 

momentum density through the surface of the volume: 

fp is a force density, and unlike the case for mass conservation, this inhomogeneous 

term represents a loss (or gain) to the total momentum per unit volume. Expanding the 

left hand side, the momentum conservation is: 

The bracketed term vanishes due to mass conservation: 

p( av f3 + v av f3 J == f . 
at a axa f3 

The total force is the volume integral J fpdV, but by the divergence theorem, it may 
v 

also be the divergence of a stress r af3 applied at the surface: 
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arap . 
which implies that fp == --. The inhomogeneous term may now expressed 1n terms 

ax a 

of the stress tensor in the momentum balance equation: 

In the simplest case for a fluid, which is that for an ideal gas, in which only normal 

forces act and there is a lack of shearing forces, r afJ == - P 6 af3, where P is the pressure 

and 6 afJ is the Kronecker delta. The negative sign indicates that the pressure is 

directed opposite to the outward normal to the surface, so it is directed towards the 

interior of the test volume. As the outward flux of momentum is balanced by the inward 

body force the net sum of forces is zero: 

In terms of more familiar vector notation, momentum balance becomes: 

(
av _ --) -p a(+v·Vv ==-VP. 

The total time derivative for the velocity is: 

dv av --+ n--==-+v· vv, 
dt at 
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and it will allow some simplification to the more familiar form of Euler's equation: 

The gradient in the pressure is the force density which accelerates fluid volumes with 

density p. The continuity equation is: 

dp - ( ) ar+V· pV =0, 

but it is also easier to introduce the total time derivative for the density, 

dp dp - -
-=-+v·Vp. 
dt dt 

Continuity then becomes dp + pV · v = 0. To obtain a wave equation in pressure, it is 
dt 

the velocity, which is common to both the continuity equation and Euler's equation that 

is eliminated. A simplifying assumption that may be applied now is to assume that the 

density varies about some equilibrium density p 0 : 

dp -
-+p V·v=O 
dt 0 

' 

dv 1 -
and -=--VP. 

dt Po 

Taking the divergence of the modified Euler's equation leads to: 

d (- -) 1 - -- V·v =--V·VP, 
dt Po 
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while differentiating the modified continuity equation with respect to time: 

d
2 
p d (- -) -2-+Po- V·v =0. 

dt dt 

Eliminating V · v leads to: 

and using the equation of state to relate the density to the pressure: 

( J
-1 2 2 ( J 2 Ks d P - - d P Ks . - - . d P 2 - - = V · V P, or -- = - V · V P or JUSt -- = V P. 

. p dt 2 dt 2 p . dt 2 

The final result is the wave equation for pressure for acoustic waves for infinitesimal 

amplitudes. Here the speed of the wave is ~. 

The wave equation presented so far will have two solutions, namely P = P0 eJ(k-r-ax) 

and P = P0 eJ(k·r+ox), where k is the wavenumber and P0 is the amplitude. 

Using the first solution of the two, the gradient of the pressure is V P = jkP, but by 

dv · -
Euler's equation, - = _j_kP, so the pressure will need to be integrated with respect 

dt p 

1 _ 1k-P _ kp 
to time using a factor of -- to obtain the velocity, v =- , or just v =- . 

jm ap ap 

Judging by the Euler equation, the velocity will have the same direction as the pressure 

gradient, so that the waves are longitudinal, and the velocity v is the parlicle 

displacement velocity in which fluid flows into regions of lower pressure and away from 
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regions of higher pressure. The particle displacement velocity is very different from the 

wave velocity. 

8.3 Focused Ultrasound 

In practice, an ultrasound transducer not only has a finite size, but it also has a 

curvature, so that the pressure produced is focused into a relatively small volume. The 

plane wave solutions derived so far are more of an idealization of a focused transducer 

but the basic relations still hold. In re-visiting Euler's equation: 

dv =--1 VP 
dt Po ' 

the velocity v may be the gradient of a potential <I>, known as the velocity potential. 

Substitution of v = -V<I> into Euler's equation leads to: 

d (- ) 1 -- V<l> =-VP. 
dt Po 

Using these plane wave solutions, the derivatives with respect to time and spatial 

coordinates will simplify this to kfP =- jk P, and the pressure is just jp
0

aA> = p. 
Po OJ 

The pressure and velocity potential are just proportional to one another and can be 

interchanged. This approach also has the advantage that both the velocity potential and 

the pressure are scalars, which is simpler to work with. For any transducer of arbitrary 

geometry, the method of Green's functions is used, in which the face of the transducer 
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is treated as a continuum of point sources. The pressure in space is then the 

summation of these point source contributions. 

If the size of the transducer is much larger than the acoustic wavelength, then the 

velocity potential may be found by making use of the point source solution to the 

-fk·r e 
Helmholtz equation in spherical coordinates, l~'l . As the surface is continuous, the 

velocity potential will then be an integral over the entire surface of the transducer face. 

Using a spherical coordinate system, [11] the integral for <I>(r) may be evaluated as a 

series of Bessel functions. Taking the negative of the gradient of the velocity potential 

will lead to the x,y, and z components of the particle displacement velocity v, which is 

the quantity of interest since it is the velocity with which the ions in the phantom move 

through a magnetic field. By virtue of this movement, the charges are then separated by 

the Lorentz force. 

Using the effect of a Lorentz force on a charged fluid particle due to its velocity, a 

solution was made using COMSOL. Recalling that J = a(E + v x B), and that the 

electric field is a gradient of a scalar potential, E =-V ¢, the expression for the current 

density is 1=a(-V¢+vxB). 

The governing equation is Kirchoff's current law V · J = 0, which in terms of the 

potential is 

- V · (lJV' f/J + a(v X jj )) = 0 , along with the boundary condition J · n = 0. 

This equation may be solved using the Poisson equation solver in COMSOL, using 

particle displacement velocities obtained numerically. 
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The focal region is clearly distinguished in Figure 25. The simulated transducer was 

positioned above the page facing down towards the phantom. The magnetic field is 

assumed to have only a constant positive, and nonzero y component in this simulation, 

so that v x B is known. 

In the actual experiments, the focal point would be scanned along the x-axis (horizontal 

line of symmetry), and the current density would be deduced from voltage 

measurements at electrodes placed on either side of this line of symmetry. With the 

reciprocity theorem, it is far more practical to consider the lead field, and to assume that 

the focus "illuminates" a small portion of the lead field. 

Electric Field Distribution at Ultrasound Focus 

Horizontal Axis (A.U.) 

Figure 25 Electric field at the ultrasound focus 
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The assumption in the reciprocity theorem, is that the ultrasound would resolve the lead 

field current density to within the size of a point, but this is just an approximation. 

Instead, the field from the ultrasound has the form shown in Figure 26. In this plot, the 

electric field is significant in a finite volume, but reciprocity may still be applied. 
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Figure 26 Electric field at ultrasound focal plane along horizontal axis line of 
symmetry. 

The value of the lead field current density near zero on the horizontal axis will be a 

centroid weighted about this function. An integral of this electric field a test function such 

as the lead field current density is known as a distribution[23], since the electric field 

vanishes quickly to zero along the Horizontal Axis in Figure 26 as the axis value 

increases or decreases from zero. 
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