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ABSTRACT 

 

GROUND STATION SCHEDULING OPTIMIZATION FOR A 

MODEL OF A REAL-WORLD PROBLEM INSTANCE 

Bryce Wildish 

Master of Applied Science, Aerospace Engineering 

Ryerson University, 2017 

 

Effective scheduling of communication windows between orbiting spacecraft and ground 

stations is a crucial component of efficiently using spacecraft resources. In all but the most trivial 

cases, this forces the operator to choose a subset of the potentially available access windows such 

that they can achieve the best possible usage of their hardware and other resources. 

This is a complex problem not normally solvable analytically, and as a result the standard 

approach is to apply heuristic algorithms which take an initial guess at a solution and improve 

upon it in order to increase its quality. Various such algorithms exist, with some being in 

common practice for this particular problem. 

This thesis covers the application of several of the most commonly-used algorithms on a problem 

instance. Additionally, a real-world problem instance is used, and the resultant practical 

constraints are addressed when applying the heuristics and fine-tuning them for this application. 
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Chapter 1 - Introduction 

1.1 Introduction 

The successful operation of most orbiting spacecraft requires reasonably regular communication 

with one or more ground stations. This may be to directly receive control commands, as in the 

case of a surveillance satellite, to relay data, as in the case of an orbiting telescope like Hubble or 

WISE, or for other purposes. As the number of orbiting spacecraft in use grows, as it has done 

and will continue to do for some time [1], it is becoming increasingly important to be able to 

schedule and prioritize this communication, as the number of orbiting satellites – often far in 

excess of the number of ground stations, even for large, well-funded agencies like the European 

Space Agency [2] – can often stymie the ability for a spacecraft operator to remain in contact 

with all spacecraft at all times. This is further exacerbated if the range of locations of the ground 

stations is limited (for example due to budget restrictions or international politics) and the orbits 

of the spacecraft are such that the satellite only infrequently passes over those areas. Outside of 

the trivial case in which the number and location of ground stations is such that all spacecraft can 

be tracked whenever visible, it becomes necessary to plan communication windows with each 

spacecraft to ensure the most effective possible use of spacecraft resources to satisfy the 

operator’s needs. 

This is what is known as the “Ground Station Scheduling” problem. Depending on the specifics 

of the system, a solution will satisfy one or more criteria to varying degrees. One such example 

is to maximize the total useful communication time across all spacecraft, so that the minimum 

amount of time is wasted and to maximize the utility of all spacecraft. Another often-required 

criterion is to attempt to ensure that each spacecraft receives a roughly equal – or, in the case of 

differential requirements, proportional – amount of time with which to communicate, to avoid 

hindering the operation of some spacecraft at the expense of others. Other potential criteria 

include minimizing the number of conflicts, ensuring that no one spacecraft exceeds some 

maximum time between communication windows, or obtaining the maximum efficiency from 

the usage of ground station resources. 
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The ground station scheduling problem, more so than most other scheduling problems, is highly 

difficult computationally [3]. This is because the problem has many more constraints than is 

typical for a scheduling problem, and that the exact nature of these constraints varies strongly 

between problem instances [4] [5]. 

 

1.2 Requirements and Constraints 

The classical elements of a ground-station scheduling problem are as follows: 

 Access Window Fitness – If a scheduled communication does not fully intersect an actual 

visibility window between the involved spacecraft and ground station, it is effectively 

impossible, and thus is assigned no value 

 Communication Time Satisfaction – How well a communication plan satisfies the 

communication needs of all spacecraft 

 Conflict Avoidance – The degree to which a solution successfully schedules 

communication windows to avoid overlapping (conflicting), i.e. two spacecraft 

simultaneously being scheduled to communicate with one ground station 

 Ground Station Usage – Because ground stations cost upkeep to operate, making as much 

use of the available stations as possible is desirable; this is the measure of how well that 

need is met in a given solution 

 

1.3 Thesis Focus 

The main focus of this work is to put several of the most common heuristic algorithms into 

practice, applying them to a model of a real-world problem instance, and comparing their relative 

performance in multiple criteria, such as final solution quality and relative computation time. 

With such information, it becomes more feasible to select which algorithm(s) may be most fit for 

a given application. 

 



3 

 

1.4 Thesis Contributions 

In this thesis, a more detailed formulation of the problem is developed to properly account for 

several practical constraints. This formulation is then used to design a solver program which 

applies some of the above heuristic algorithms to problem instances, and its output is examined 

to perform the above analysis. Additionally, the data obtained is used to explore potential 

improvements to the solvers in order to yield better overall performance. 
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Chapter 2 - Literature Review 

2.1 Problem Complexity 

The high complexity of the problem (such as the large number of both variables and 

requirements of the final solution) [3], and the high number and often variability of the 

constraints [4] [5] mean that most traditional mathematical approaches, such as those mentioned 

in [3], become intractable and require infeasible amounts of computational time. 

 

2.2 Heuristic Approaches 

As a result of the computational difficulty of applying traditional mathematical solutions, almost 

all approaches seen in the literature for solving the ground station scheduling problem are 

heuristic methods. Such methods are those that, given input data regarding the constraints and 

requirements of the initial problem – in the case of a Ground Station scheduling problem, 

constraints like in 1.2, such as avoiding conflict and requirements such as satisfying access time 

– approach  a solution. In most cases, some initial solution (or set thereof) is chosen, perhaps 

arbitrarily or with some preliminary tentative guidelines [4] [6], then successively improved 

upon – the process of which varies by algorithm and which will be explained in more detail later 

– until it is sufficiently capable of satisfying the requirements of the problem. 

 

2.3 Fitness Function 

Most approaches of the heuristic category create a fitness function with which to evaluate various 

solutions [7]. Under this evaluation, each criterion to be satisfied is transformed into a 

mathematical function whose output value is a reflection of how well the criterion is met. 

In contrast to many heuristic approaches, which use a cost function which is intended to be 

minimized, the goal of a fitness function is to be maximized, i.e. a larger fitness value means an 

objectively better solution for the given criteria. 

For example, whether the communication time requirements and the visibility window overlap 

would be termed the Access Window Fitness, and might be evaluated by defining that 



5 

 

communications that “fit” within the window are desirable while all others are not. Xhafa et al. 

use a method of this nature, depicted in Equation (2.1): 

 
𝑓(𝑛) =  {

1, 𝑖𝑓 [𝑇𝑠𝑡𝑎𝑟𝑡,𝑇𝑠𝑡𝑎𝑟𝑡 + 𝑇𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛]  ⊆ 𝐴𝑊(𝑛𝑔, 𝑛𝑖)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(2.1) 

That is, if the entire communication window, from Tstart to Tstart+Tduration, lies within the access 

window, the fitness function is correspondingly rewarded, being left zero for all other cases. 

Once each criterion has been assigned a dedicated fitness function, these are then consolidated 

into a Total Fitness Function. This is usually done by simple summation with weighting factors 

applied [7], as it allows great freedom in selecting the relative importance – and thus influence 

on solution optimization – of each criterion. 

Though the specifics of the problem may dictate minor changes to the function, such by 

modifying the individual weights, or by tweaking the individual fitness subfunctions, the general 

form is capable of accounting for most important concerns, including Access Window Fitness, 

maximizing communication time (Communication Time Requirement Fitness), reducing 

conflicts (Clashes fitness), Ground Station usage fitness, and more [4]. 

As the total fitness is intended to correlate directly to how well a prospective solution satisfies 

the problem criteria, it allows for an effective and comparable means with which to compare 

competing solutions during the heuristic process. 

 

2.4 Exploitation vs Exploration 

Heuristic solvers are dominated by two internal strategies, centered on how the solution space is 

to be explored, in order to best find the globally optimal solution. Each type of algorithm, 

including the ones discussed in detail later, is tailored to a specific balance of these two 

strategies, and may be modified to alter that balance [8] [7] [9]. 

The first, termed exploitation, is the process by which a solution is compared to its neighbors – 

very similar solutions, i.e. easily reachable with small permutations – and moves towards the one 

deemed most promising. This process repeats until a stopping condition, usually a local 
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maximum of optimization, is obtained. Exploitation covers a fairly small area of the search 

space, but is highly effective at finding the best solutions within that area. Conversely, however, 

it is prone to becoming trapped in local maxima, where all “nearby” solutions are less fit than 

itself, but where it is not necessarily similar in quality to the globally optimal solution. [9] 

The second strategy, exploration, covers a much larger area of the solution space, either with 

multiple solutions being evaluated in parallel or with a (comparatively) freely-varying 

permutation process that allows for a single solution to move over a much larger search area. 

This approach is much less prone to entrapment within local maxima, but this often comes at the 

cost of either greater computational requirements (from larger populations which rather evidently 

require proportionally greater processing time to permute and evaluate in parallel) or a lower 

effectiveness at finding the optimal solution within a smaller area of the search space due to the 

higher tendency to jump to another area of the space. [7] 

Ideally, a solution method would achieve some balance of the two strategies, in an effort to get 

the desirable traits of both without also suffering from their drawbacks [8]. 

 

2.5 Genetic Algorithms 

By far the most common solution method found in the literature is some variation of a genetic 

algorithm, such as in seen in much of the work by Xhafa et al, like in [3], [5], and [9]. Genetic 

algorithms mimic the natural process of biological evolution, leveraging statistics of large 

populations to achieve an optimal solution, as a sort of “directed brute force” approach. They are 

commonly used to aid in the solving of computationally difficult problems, making them a 

natural choice for the ground station scheduling problem as well [4]. In such an approach, a 

population of randomly-varying “solution candidates” – i.e. collection of potential links, or 

communication passes between stations and spacecraft – is created, then evaluated based on how 

well they meet the constraints of the specific problem. The best fraction is then selected, with 

each solution candidate giving rise to one or more “offspring”, slightly permuted from the 

original. This new pool of candidates is evaluated based on their ability to satisfy the 

requirements, and the cycle continues [10]. Each solution is encoded as a chromosome, which 

contains all of its inheritable traits (usually specific passes or elements thereof) [3] [11]. 
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Genetic algorithms come in several forms. In the most basic form, each permutation is entirely 

random and no special inheritance process is applied. Additionally, with each generational cycle, 

the entire population of solution candidates is replaced with their descendants. More refined 

approaches modify the inheritance and population replacement behaviors, either to reduce 

computational time or improve effectiveness at finding the optimal solution. 

Selection of the “surviving” solutions can come in various forms, including direct comparison, in 

which the worst-fit are eliminated, a roulette comparison, in which the probability of a solution’s 

survival is tied to its fitness, and a tournament evaluation [10]. 

 

2.5.1 Advantages and Disadvantages 

One of the main advantages of the genetic algorithm method of solving the problem is its relative 

ease of implementation; once a fitness function has been defined, it is comparatively 

straightforward to apply it to a varying population and compare solutions against one another. 

Another significant advantage is that genetic algorithms in a way run in parallel; because they 

operate on populations rather than individual solutions, there are effectively “more chances” to 

find an optimal solution and this is reflected in their increased ability to explore the search space 

[12]. Depending on the capabilities of the processing computer, and the implementation of the 

solving program, such parallelism might also lead to a faster solving time [13]. 

This approach does have some disadvantages; the most obvious is that being a variant of a brute-

force approach, the number of required iterations can be large [5] [9], meaning a significant 

amount of computational time can be required. Another less-evident drawback is potentially 

more of a hindrance: evolutionary algorithms are a form of low-level local search approach [7], 

and as a result a solution can become “stuck” in local maxima, having iterated towards a solution 

that is more fit than its neighbors, yet not objectively ideal – i.e. not the global maximum – for 

the problem. This is worst for algorithms that do not have specialized mechanisms to combat it, 

such as the base genetic algorithm [12]. 
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2.5.2 Crossover and Mutation Operations 

In a genetic algorithm using this procedure, instead of the traditional “random mutation” method 

of generating offspring from a parent solution, the process is split into a crossover operation and 

a mutation operation [3]. The crossover operation is designed to ensure that parents pass on their 

“best traits” to their offspring, to improve the likelihood of the offspring being at least as fit as 

the parents [10]. The mutation operation is closer to the original process; it is usually fully 

randomized and small for any one generational change. However, the mutation process can be 

directed and consequently achieve higher effectivity [11]. One such example is an adaptive 

feasible mutation function, which is based off of some observations of real biological evolution, 

where mutations were observed in E. Coli bacteria, seemingly directed in such a manner as to 

better adapt the organisms to their environment [14]. Consequently, in the mutation model 

derived from this, mutations, rather than being entirely random, are applied so as to better adapt 

offspring to the environment. The result of this is an increased ability to converge onto optimal 

solutions [11]. 

Xhafa et al. evaluated the effectiveness of a crossover-and-mutation type genetic algorithm for 

the case of a single ground station and multiple spacecraft. Such an algorithm did indeed 

approach a solution that was far better than the initial state, but the fitness of the “near optimal” 

solutions was somewhat worse than those seen in more advanced genetic algorithms [3]. 

 

2.6 Steady-State Genetic Algorithm 

Another variant of the standard genetic algorithm is the Steady-State algorithm. In this version, 

only a small proportion of the population is mutated each cycle, with the remaining offspring all 

being identical to their parents. The fitness criterion is also slightly relaxed, where less fit 

solutions are only less likely to survive rather than being eliminated outright. This approach 

trades off breadth of search for computing time; fewer mutations mean less processing but 

correspondingly less variety in the solving process [5]. This approach is unsurprisingly better 

suited to small problem instances (i.e. a relatively low number of ground stations and spacecraft), 

as larger populations take much longer for gene flow to propagate throughout [5]. 
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Xhafa et al. found that the results from the steady-state algorithm, though potentially quite 

effective, are rather variable. In particular, it achieved varying performance for the different 

fitness types, more so than other heuristic approaches [5]. It was found to be effective, however, 

for small-size problems [5]. 

 

2.7 Struggle-Strategy Genetic Algorithm 

Yet another variant is the Struggle Strategy, where each new solution candidate replaces the 

most similar older candidate, provided that it is the more fit of the two solutions. The level of 

similarity is determined by a similarity function, which returns a scalar value given two 

solutions; higher values correlate to more similar solutions. There are various forms of the 

similarity function, including Hamming Distance, comparisons in Vector space, and a hash-

based similarity measure [9]. 

 

2.7.1 Hash Similarity 

In contrast to other methods, which have quadratic computational time – O(n
2
) in traditional big-

O notation – hash functions can be reduced to O(n) operations, greatly accelerating the process 

of finding the most similar solution to any other. [9]. Hashes are defined by a key, which can be 

calculated via several means, including based on fitness, position, or task-resource allocation [9] 

[15]. 

Xhafa et al. found that a Struggle-State genetic algorithm performed quite well, substantially 

better than a basic genetic algorithm [9]. Also in their findings was that a hash-based similarity 

function, if well-designed, gave the best performance, in a large part due to maintaining high 

solution diversity [9]. 

This method is highly effective compared to other genetic algorithms, but is computationally 

expensive: “This strategy is known for its effectiveness but suffers from a high computational 

cost. More precisely, given a new individual, finding a similar individual to it requires 

comparing against all individuals of the current generation.” [9]. 
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This method is also very sensitive to the details of comparative evaluation, meaning that 

accuracy and effectiveness of the similarity and fitness functions is highly important to the 

success of the algorithm [9]. Also, like the Steady-State algorithm, it replaces only a small 

fraction of the population, and is ill-suited for large populations due to the increased time 

required for gene flow [15] Additionally, there is a rise in computational complexity [9] from 

needing to compare a greater number of solutions against one another. 

 

2.8 Tabu Search 

Another heuristic approach is the “Tabu Search”. At first, it resembles a genetic algorithm: 

Given a starting condition, which may be chosen randomly or with certain preset heuristics [4], a 

space of solution variants is created, termed the neighborhood of solutions, by applying small 

perturbations (movements) to the original solution. At this point it diverges into a unique method, 

in particular with the Tabu Status and Aspiration Criteria evaluations to help direct the solution, 

with the presence of a historical memory, and due to the presence of Intensification and 

Diversification procedures. 

Under the Tabu Status condution, already-visited solutions are “tagged” so as to prevent repeated 

visitation to the same solutions and avoid infinite program loops. The aspiration criteria are a set 

of criteria – whose exact nature are not defined by the authors, and possibly may be problem-

specific – which can override the Tabu tagging and permit revisitation of solutions in the search 

of the optimal solution. 

The historical memory consists of two components, a short-term memory of recently-visited 

solutions or movements, and a long-term memory about the entire solution process [4]This 

information is used to further expand the flexibility of the search, especially if combined with the 

intensification and diversification procedures. 

Intensification and diversification procedures locally modify the fitness function, and are done to 

expand the range of the search and ensure it comprehensively covers the solution space. 

Somewhat of an inverse of one another, the former promotes uniformity among solutions, with 
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the frequency of a movement feature proportionally increasing the evaluated fitness, while the 

latter favors variety and penalizes the most common movements. 

The main advantage apparent in the Tabu Search is that unlike other heuristic methods, it is 

much less vulnerable to becoming trapped in local maxima, and can better find the true optimal 

solutions [4]. 

As found by Xhafa et al., the Tabu search is very effective. Of particular note is that the process 

could always achieve 100% access window fitness – deemed the most important by the fitness 

function – and always allocated sufficient time to each mission [4]. Additionally, it converged 

rapidly, even the in the case of large-size instances, something not seen by them in other 

heuristic approaches. 

The algorithm performed well in other respects as well; clashes were minimized to a high degree 

–less than 10% on average [4] – and even did fairly well optimizing ground station usage, 

especially when accounting for the much lower weight assigned to said fitness. 

Furthermore, a Tabu search has a low deviation, meaning that its results are more likely to be 

representative of its true performance. 

 

2.9 Simulated Annealing 

The simulated annealing algorithm is another local (as opposed to population-based) heuristic 

approach. It gets its name from a similarity to a materials engineering process, where a material 

is gradually cooled and becomes more structurally cohesive. In the algorithm, the “temperature”, 

i.e. the permissiveness of the permutation algorithm, starts high and is gradually reduced to 

progressively constrain further mutations in the solution [6]. The general design is to prevent 

premature optimization (and associated entrapment within local maxima) by initially permitting 

some movement from more-fit to less-fit solutions, with decreasing probability as the algorithm 

progresses. 

This approach was found to be very effective by Xhafa et al., especially with regard to 

optimizing Time Requirement fitness. Such fitness was nearly always at a maximum, and 
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visibility window fitness was usually nearly as high [6]. It was also found to converge rapidly, 

more so than most other approaches [6]. 

 

 

2.10 Other Approaches 

Several other approaches to solving the ground station scheduling problem have been explored in 

the literature, though they compose a minority of the total work. 

 

2.10.1 Graph Coloring 

The Graph Coloring procedure, examined by Zufferey et al., is based on the mathematics 

underlying the Tabu search algorithm [16]. It is similar to the Tabu search, but works in the 

solution space itself rather than the permutation space [16], and as a result is more efficient at 

solving the problem than a normal Tabu search [16]. 
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2.10.2 Neighbor-Area Search 

This process organizes the solution space into a tree, where each branch represents one data 

transmission schedule [17]. Lists of node neighbors are formulated such that the neighbors of 

node Nij are Ni(j-1) and Ni(j+1) [17]. Neighboring nodes on the tree are then compared, with the 

best fit one being selected and used as a new point for further iteration. This process is illustrated 

in Figure 2.1: 

 

Figure 2.1 - Neighbor-Area Search Process [17] 

This method is claimed to give better performance than traditional heuristic methods, in 

particular due to a reduced computation time without sacrificing solution quality [17]. 
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2.10.3 Particle Swarm Optimization 

Particle swarm optimization (PSO) is inspired by the flocking behaviors of several animals, 

including migratory birds and schools of fish [18]. Instead of a population being progressively 

modified genetically, each member, or particle, is moved through the solution space, keeping 

memory of optimal solutions for itself or its neighborhood as it does so. The movement is 

informed by a learning mechanism, which is the core feature of such an algorithm, as it is this 

that gives PSO such high efficiency. In a variant of the heuristic, termed the global version, the 

neighborhood of a particle is defined as the entire swarm, and so any high-fitness solutions found 

are available to all particles, i.e. that any particle can move to those solutions, regardless of their 

current state [19]. Particle swarm optimization offers comparable or even superior performance 

to other heuristics, both in terms of solution quality and solution speed [18].  

 

2.10.4 Ant Colony Optimization 

As its name suggests, Ant Colony Optimization is based on observed behaviors of social insects, 

such as colonies of ants, as they venture among a collection of targets. There are several variants 

of the process, the most successful and commonplace of which is the Max-Min Ant System  [20]. 

In this process, a series of nodes, corresponding to visibility windows, are linked by a system of 

edges, corresponding to access conflicts. Each edge is mapped to a “pheromone trail”, akin to the 

ones used by real ants, at first assigned to a maximal value. Next, some number of “ants” are 

placed on an arbitrary node. Each of these then moves to a different node, with the selection 

probability being informed by relative fitness values and the strength of the pheromone trail. 

Pheromone trails decay over time (i.e. with each iteration, according to a fixed evaporation rate), 

but are replenished by some or all ants traversing an edge, thus increasing the chance of future 

ants taking the path. After successive iterations, edges of greater fitness become more and more 

likely to be taken, and as a whole an ideal solution is approached [20]. This process can rapidly 

converge, and can yield very consistent results [20]. 
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2.11 Comparative Analysis 

In addition to their work examining the methods individually, Xhafa et al. have performed 

comparative evaluations, applying many different forms of heuristic analysis to various sizes of 

problem (i.e. number of ground station and spacecraft), including various Genetic Algorithms, 

simple Hill-Climbing, Simulated Annealing, and the Tabu Search [7]. 

There is significant similarity between methods regarding the fitness of the optimal solutions, 

especially for Clash Fitness. However, certain differences are noticeable. In particular, a pure 

genetic algorithm (termed GA base by the authors) performed the worst among all methods for 

access window fitness, and the Tabu Search performed visibly better for Clash fitness, enough so 

as to be the only method that stands out for that type of fitness. Overall, the Hill-Climbing, 

Simulated Annealing, and Tabu Search appear to be more effective than the other approaches, 

especially for Time Requirement Fitness. 

None of the approaches were as effective for Ground Station Usage fitness, but this is quite 

likely a result of the dramatically reduced weight (only 10% of Clash, and 1% of Time 

Requirement) of that fitness type. 

Regarding the standard deviation, which is a measure of the consistency of the algorithm’s 

performance (i.e. how likely the results for other problem sets will be of similar quality) [7] [12], 

the Struggle-Genetic Algorithm performed markedly better than all of the other approaches, most 

of which saw similar standard deviations more than 50% higher. [7] [12] The hash variant of the 

struggle algorithm, by contrast, performed substantially worse than all others, with almost twice 

the deviation of the non-hash version. This is probably due to the sensitivity of the hash on the 

specifics of the starting problem. 

Interestingly, base genetic algorithms seem to take far fewer generations to “plateau” into their 

optimal solutions [10] [3], and are generally regarded as being fairly rapid solvers compared to 

other implementations [11]. However, as discussed above, this comes at the cost of (and may be 

directly related to) reduced comparative performance. The one exception to this pattern is seen in 
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[21], where the algorithm took longer to converge but after doing so had achieved results rather 

better than seen for most basic GA cases. 

 

2.12 Limitations of Existing Approaches 

2.12.1 Similar Traits 

Given the similarities between many of the heuristic methods of solving the problem, a logical 

approach to improving their accuracy and/or performance is in the shared processes between 

them, such as in the creation of the individual or total fitness functions or to increase the rate of 

convergence while still preventing premature optimization and entrapment within local maxima, 

that is, find a balance between exploration and exploitation strategies. [7]  

 

2.12.2 Fitness Function Improvements 

Because of the importance of the fitness functions for defining the optimality of a solution, they 

are a potential point of improvement. In particular, the fitness functions used in most evaluations, 

such as those by Xhafa et al. [4] [3], are somewhat simplistic and may not optimize as well for 

real-world applications. 

For example, the visibility window fitness subfunction is a simple binary evaluation, where 

every visible position is treated as equal to all others. In contrast, real-life constraints may dictate 

that, for example, certain angles are undesirable (perhaps due to atmospheric interference on 

specific wavelengths). 

Similarly, the time requirement fitness subfunction makes no preference as to the nature of the 

communication window, whereas in reality one might expect, for example, that many short 

windows are less desirable than one long window of the same total length (perhaps due to “link 

setup” time). 

The ground station fitness function makes a similar assumption, that all ground stations are 

equally desirable. In reality, they may have wildly different operational costs, which is the root 

impetus behind this component to the fitness function. 
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2.12.3 Ground Station Capabilities and Positioning 

Contrary to that which seems to have been assumed by the above evaluations, not all ground 

stations are of equal capabilities. Some may well have the ability to track multiple spacecraft 

simultaneously [4], some may have less flexible angles of visibility (either due to hardware 

limitations or due to legal specifics of their location), and some may have different data rate 

capabilities, meaning that the same amount of communication time between two different ground 

stations is not necessarily of equal value. As an extension, not all stations may even be capable 

of continuous operation, at least in the same capacity; some may, for example, be weather- or 

schedule- sensitive, being at reduced capacity – or even offline – at certain times. 

Additionally, many evaluations used a single ground station case [3], or appeared to use a fixed 

set of ground stations [5] [7]. This is of importance because there is the unaddressed possibly 

that a radically different arrangement of ground stations – perhaps clustered within one country, 

for example – could significantly alter the relative performance of the heuristic analyses. 

 

2.12.4 Aspiration Condition 

One other point that does seem to require further examination is the “Aspiration” condition for 

the Tabu Search. Xhafa et al. did not go into detail regarding the nature of the criteria, instead 

opting only to say that it could change for different solutions [4].  In practice, the aspiration 

condition is usually simply “fitness better than ever seen before” [22], with little variation. 

 

2.12.5 Real-Time Scheduling 

The vast majority of the literature focuses on “static” evaluations, where a given solution for the 

scheduling problem will be used in effective perpetuity, but many real-world cases diverge from 

this. For example, spacecraft may need to be rescheduled as new ones are added or old ones fail, 

or where real-time events needing satellite involvement have immutable deadlines [23]. 
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Chapter 3 - Problem Definition 

3.1 Problem Description 

The input to the problem is a precomputed list of passes of a set of spacecraft over a number of 

ground stations, with each pass having a start and end time, and an involved spacecraft and 

station. The goal is to optimally divide these passes among the available spacecraft and stations 

to achieve the maximum possible fitness, within the practical restrictions. 

The general format of this list was provided by exactEarth Ltd., and is representative of the 

actual scheduling problem that is part of their normal operation. exactEarth is a company based 

in Cambridge, Ontario, whose primary focus is tracking seafaring vessels with orbiting 

spacecraft. As a result, the problem considered here is representative of an actual practical 

application, rather than the purely theoretical constructs usually found in the literature. This is 

also the reason that the chosen input was a predetermined list of passes rather than orbit and 

location definitions from which to compute those passes, as that step had already been 

completed. 

 

3.2 Problem Formulation 

Let S and G be collections of spacecraft and ground stations, respectively. (For ground stations 

with multiple receiving dishes, each is represented individually as a unique station). 

A visibility window is a 4-tuple (ts, tf, i, j) where i ∈ S, j ∈ G, and ts, tf ∈ ℝ with ts < tf such that 

spacecraft i is visible to station j over the interval [ts, tf]. 

A problem instance is a triple P = {V, S, G} where V is the set of visibility windows for S and G 

over a given time period [t0, t1] where for all visibility windows in V ts ≥ t0 and tf ≤ t1. 

A link is defined as a 4-tuple (ts, tf, i, j) where i ∈ S, J ∈ G, and ts, tf ∈ ℝ with ts < tf, and is said to 

be feasible if there exists a visibility window (ts*, tf*, i, j) ∈ V such that [ts, tf] ⊂ [ts*, tf*] 

(spacecraft i is visible to ground station j over the link’s duration). 

A solution candidate T is defined as a collection of links. 
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A pair of links (ts1, tf1, i1, j1) ∈ T and (ts2, tf2, i2, j2) ∈ T are said to be in conflict if [ts1, tf1]∩[ ts2, 

tf2]≠∅ (their time intervals overlap) and either i1 = i2 or j1 = j2 (they share either a spacecraft orS 

station). 

A pair of links (ts1, tf1, i1, j1) ∈ T and (ts2, tf2, i2, j2) ∈ T cause a ground station handover violation 

if j1 = j2, and either 0 < ts2-tf1 < δj1 or 0 < ts1-tf2 < δj1, where δj1 is the minimum handover time 

for ground station j1. 

Similarly, a pair of links (ts1, tf1, i1, j1) ∈ T and (ts2, tf2, i2, j2) ∈ T cause a spacecraft handover 

violation if i1 = i2 and either 0 < ts2-tf1 < δi1 or 0 < ts1-tf2 < δi1, where δi1 is the minimum 

handover time for spacecraft i1. 

Set C is the set of all pairs of conflicting links in T, i.e. 

C = {{L1, L2} : L1, L2 ∈ T and L1, L2 conflict} 

Given two conflicting links L1 = (ts1, tf1, i1, j1) and L2 = (ts2, tf2, i2, j2), the interval of time in 

conflict is given by [ta, tb] = [ts1, tf1]∩[ ts2, tf2], and its length is equal to to = tb-ta. 

A solution candidate T is defined to be possible in problem instance P if all links within are 

feasible, and no pair of links in T are in conflict or trigger either form of handover violation. 

 

3.2 Practical Restrictions 

The limitations imposed by the relevant spacecraft and station hardware, as well as real-world 

logistics, impose restrictions not previously addressed in the literature. 

In particular, the following additional constraints are imposed: 

 A maximum per-orbit ‘total transmission duration’ and maximum downlink duration 

o Transmitting data to the ground is very expensive on energy, and as a result 

power budget concerns put a hard limit on how much time, per orbit, the satellite 

can be transmitting data, as well as the maximum length of any one downlink. 

 Unequal priorities for spacecraft and ground stations 
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o Not all ground stations are equal; some are more costly to run than others, or more 

capable than others. Similarly, not all spacecraft are equal; some may provide 

much higher-value data than others. The result of this is that the same amount of 

communication time may not be of similar value for different craft or stations, and 

the fitness function must reflect this. 

 Minimum downlink durations 

o As one would expect, there is a finite, nonzero time to establish a communication 

link between a spacecraft and the ground station. Additionally, exceptionally short 

links are generally viewed as a waste of time and summarily ignored. As a result, 

durations of insufficient length (for this problem instance approximately three 

minutes) are discarded. 

 Station ‘Handover time’ 

o Due to the need for recalibration and tracking of the antennas on a ground station, 

it takes a specific amount of time to switch targets from one spacecraft to another. 

This time, a few minutes in duration, means that two passes that immediately 

follow one another cannot be utilized with full efficiency. It also means that if a 

station finishes tracking one satellite, but the next spacecraft’s pass has less time 

remaining than this handover time, the window is effectively lost.  

 Spacecraft ‘Handover time’ 

o Similar to station handover, if somewhat shorter-duration (around a few seconds 

to a minute), a restriction is present for satellite handover, i.e. switching which 

ground station to which it is transmitting. 

 Link quality during the pass 

o Due to atmospheric interference, the quality of a link with a spacecraft diminishes 

as the elevation angle with it lowers. As a result, two passes of equal lengths, but 

at unequal elevation angles, are not equally desirable. 

 Transmission in eclipse is to be avoided if possible 

o In eclipse, the solar panels on a spacecraft are non-functional, and as a result all 

power must come from storages.  Because these have a finite capacity, and often 

restrictions on number or depth of cycles, transmission in eclipse is undesirable. 

 Specific pass quotas 
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o Due to limitations such as available power, it may be the case that certain 

spacecraft have minimum or maximum counts for the number of passes per day or 

week that is desired from them. As a result, this places a strict restriction on the 

viability of some solutions. 

o Stations can have similar limitations, such as due to provider-imposed bandwidth 

limitations, or maximum allowable staffing times. 

 

 

3.3 Overall Fitness Function Definition 

The fitness function used is defined in Equation (3.1): 

𝐹 = 𝑊𝐴𝑇𝐶𝐴𝑇 − 𝑊𝐶𝑇𝐶𝐶𝑇 + 𝑊𝐺𝑆𝐶𝐺𝑆 − 𝑊𝐷𝐿𝑉𝐶𝐷𝐿𝑉 − 𝑊𝐿𝐿𝑉𝐶𝐿𝐿𝑉 − 𝑊𝐻𝑉𝑁𝐻𝑉 

(3.1) 

With the following terms, as defined in table 3.1: 

Symbol Value Description 

WAT Access Time Fitness Weight Relative importance of access time satisfaction 

CAT Access Time Satisfaction Total communication time, weighted for spacecraft 

value 

WCT Conflict Time Weight Relative importance of conflict avoidance 

CCT Total Conflict Time Total time spent “in conflict”, where two passes of a 

station or spacecraft overlap 

WGS Ground Station Usage 

Weight 

Relative importance of maximizing ground station 

usage 

CGS Ground Station Utilization Ground station usage time, weighted for station value 

WDLV Duration Limit Weight Relative importance of obeying total communication 

duration limits 

CDLV Duration Limit Violation Total time over maximum communication time 

WLLV Link Length Weight Relative importance of obeying link length limitations 

CLLV Link Length Violation Sum of all excess link length (i.e. the portion of a link 
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after the prescribed max length value) 

WHV Handover Violation Weight Relative importance of avoiding handover violations 

NHV Handover Time Violation Number of handover violations 

WPC Pass Centrality Weight Relative importance of maximizing average pass 

centrality 

FPC Pass Centrality Factor The average “centrality” value of all passes 

Table 3.1 - Fitness Function Terms 

In Equation (3.1), all weights are required to be positive real numbers. 

 

3.4 Fitness Function Term Definition 

DL – Length of a link L (ts, tf, i, j) in set of links T, given by tf-ts 

C – The set of all conflicting links. For each pair, the overlap time is given by t0 

LSi – The spacecraft i involved in link L  

LGj – The ground station j involved in link L 

WSi – Weighted value of a spacecraft i in set S 

WGj – Weighted value of a ground station j in set G 

MSi – Maximum link length for a spacecraft i 

MGj – Maximum link length for a ground station j 

ASi – Allowable total communication time for a spacecraft i 

AGj – Allowable total communication time for a ground station j 

SSi – Total communication time for a spacecraft i across a set of links T  

SGj – Total communication time for a ground station j across a set of links T 

LSH – Whether link L violates the handover time for its spacecraft  

LGH – Whether link L violates the handover time for its ground station 
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 𝐶𝐴𝑇 =  ∑ 𝐷𝐿 ∗ 𝑊𝑆𝑖 ∗ 𝑊𝐺𝑗
𝑇

 

 

(3.2) 

 𝐶𝐶𝑇 =  ∑ 𝑡𝑜
𝐶

 

 

(3.3) 

 

 𝐶𝐿𝐿𝑉 =  ∑ max(0, 𝐷𝐿 − 𝑀𝐿𝑆𝑖
)

𝑇
+ max (0, 𝐷𝐿 − 𝑀𝐿𝐺𝑗

) 

 

(3.4) 

 

 
𝑁𝐻𝑉 =  ∑ ({

1, 𝑖𝑓 𝐿𝑆𝐻

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
) + ({

1, 𝑖𝑓 𝐿𝐺𝐻

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
)

𝑇
 

 

(3.5) 

 𝐶𝐷𝐿𝑉 =  ∑ max(0, 𝑆𝑆𝑖 − 𝐴𝑆𝑖)
𝑆

 + ∑ max(0, 𝑆𝐺𝑗 − 𝐴𝐺𝑗)
𝐺

 

 

(3.6) 

 
𝐶𝐺𝑆 =  

∑ (𝑆𝐺𝑗 ∗ 𝑊𝑆𝑖)𝑆  

∑ 𝐷𝐿𝑇
 

 

(3.7) 

   

 

3.5 Treatment of Practical Constraints 

Many of the constraints can be formulated as new terms in the total fitness function, allowing for 

their inclusion automatically. For example, the handover restrictions are accounted for in their 

own term with their own weight. Larger handover violation times then lead to lower overall 

fitnesses, especially for high weights on that term. With sufficiently large weights, the 

minimization of handover violations becomes the most influential force in the determination of 

the solution, making the satisfaction of that constraint as likely as is possible. It should be noted 

that this does not guarantee such violations do not occur, but the very nature of a heuristic 

algorithm cannot guarantee a viable solution, only make it more likely with an appropriate 
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fitness function. Forcibly imposing such constraints during the solution process would negatively 

affect the performance of the solver in finding the best solutions. This is because it reduces its 

ability to explore the search space by closing off potential paths to ultimately superior solutions, 

i.e. that it is not necessarily the case that all solutions between two feasible solutions are 

themselves feasible, or even of the same quality. 

Other constraints are applicable by modifying existing terms in the fitness function. For example, 

while the total communication access time is normally defined as a simple sum of links’ lengths, 

like in Equation (3.8): 

 𝐶𝐴𝑇 =  ∑ 𝐷𝐿
𝑇

 

 

(3.8) 

Here it has been defined with relative weight parameters, as can be seen in Equation (3.2). 

A few constraints, in particular eclipse avoidance, cannot easily be inserted directly into the 

fitness function. In the case of eclipse avoidance, it can still be treated programmatically, with 

the solver automatically ignoring or truncating certain passes in the raw input data as needed. 

However, in this work, eclipse avoidance was ignored. 

 

3.6 Goals 

Three primary goals are present. The first is to near-optimally solve the problem instance, 

preferably such that the solution obtained is implementable in the real world, and of comparable 

or superior quality to a solution obtained prior. 

The second is to perform a general comparative analysis on various heuristic algorithms to 

determine which approaches appear best fit for the given problem and likely those similar to it. 

The third goal is to explore potential improvements on the existing algorithms or their 

application, to achieve better final fitness, or improve time efficiency. One example of this is to 

hybridize a solution to use different algorithms at different times, based on data returns from 

single-algorithm solutions. 
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Chapter 4 - Solution Approach 

4.1 Solving Process 

In order to near-optimally solve the problem instance, multiple heuristic algorithms will be used 

and their results will be compared. Using multiple approaches will afford a greater likelihood of 

obtaining very high-quality solutions which may be missed if only using a small subset of the 

available algorithms. This process will also lend itself to solving the second goal of comparative 

analysis, as the solutions between algorithms can be compared directly. 

 

4.2 Implementation 

To aid in the solving process, a computer program was written for automatically applying 

various heuristic approaches to the problem instance and obtaining solutions for each. The 

programming language chosen for the program was Java, chosen for its familiarity, its 

portability, and for the fact that its syntax is straightforward and very similar to many other 

languages, allowing for the source code to be as easily comprehensible as possible. 

All solvers were implemented directly into the program, rather than using external libraries. This 

was primarily done to allow for greater control over the solvers’ operation and to leave open the 

possibility for improvements to the algorithms, but also for reasons such as guaranteeing 

compatibility with the overall program. 

 

4.3 Program Description 

The program is modular, consisting of four main modules: 

 Input (Problem Specification) 

o Receives specific data about the problem instance allowing for its construction in 

the solver. 

o Selects the desired heuristic approach. 

o Specifies any additional specific parameters that might be required (such as 

number of iterations permitted). 
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 Heuristic Solvers (Simulated Annealing, Tabu, Genetic, Genetic Crossover, Genetic 

Steady-State, Struggle-Strategy Genetic) 

o Given a solution candidate or population thereof, constructs a new solution 

candidate or population. 

o Given the fitness of the solution candidate or of the population, chooses a new 

candidate or population . 

 Solution Analyzer and Evaluator 

o Evaluates the fitness of solution candidates given to it, returning them to the 

solver instance so that it can choose the most fit. 

 Output 

o Collects data during execution (such as average fitness over time) 

o Exports the data in the desired form 

 Output can be in CSV form, for graphical analysis. 

 Output can be in raw text (TXT) form, for simple usage. 

This structure was primarily chosen for its flexibility, as each module can have multiple 

variations to modify the behavior as desired. For example, the Heuristic Solver module has a 

variant for each algorithm, with a given form being used to apply that approach to the problem 

instance. 

The implementation of the solution analyzer also benefitted from the modular design of the 

program, as concurrent programming is often complex and somewhat sensitive to the program 

state, and as such being a separate module simplified the design and made it more robust. 

 

4.4 Program Overview 

Because of the modularity of the program, the pseudocode has been split into multiple sections, 

one for the “general program process”, one for the fitness evaluator, and a third for the solver. 

4.4.1 General Program Process 

Input: Problem instance (spacecraft/station definitions, passes, et cetera) (P), Heuristic Solver 

(S), FitnessEvaluator (E) 
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1. Settings C = loadSettings() 

2. SolutionCandidate sc = createStartingSolutionOrPopulation(P) 

3. Output O = initializeOutput() 

4. Fitness f = E.evaluate(P, sc) 

5. N = 0 

6. Nmax = C.maxIterations; Nmin = C.minIterations 

7. O.recordData() 

8. while ([N < Nmin OR NOT(S.stopCondition(P, sc, f))] AND N < Nmax) 

a.     sc = S.createChildSolutionOrPopulation(P, sc) 

b.     f = E.evaluate(P, sc, C) 

c.     O.recordData() 

d.     N = N+1 

9. endwhile 

10. O.exportData() 

Given a problem instance, the fitness function, and the program settings, an initial-guess solution 

is generated and evaluated, and passed into the solver, which runs until it either reaches an 

iteration limit or an internal stop condition. Each iteration, the permuted solution is evaluated and 

recorded by the output. At the end of the program, all output data is exported. 

 

4.4.2 Fitness Evaluator 

The fitness evaluator is the module that actually calculates the fitness of a solution or population 

(and each member within), based on the specified fitness function. This is called any time two 

solutions need to be compared, as well as for output purposes. 

Input: Problem instance (P), Heuristic Solver (S), SolutionCandidate or Population (sc), Settings 

(C) 

1. for all SolutionCandidate si in sc 

2.     localfitness lf = evaluateFitness(si, P, C) 

3.     S.recordFitness(sc, lf) 

4. endfor 
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4.4.3 Heuristic Solver 

Because the process used for the heuristic solver for evaluating, selecting, and generating 

solutions varies from algorithm to algorithm, the general process is explained here. Consult 

section 4.6 for details on each solver’s implementation. 

For a given solution candidate (or in the case of a population thereof, for each solution within), it 

requests individual fitnesses from the FitnessEvaluator. As the fitness evaluator computes the 

fitness of the solutions, it notifies the solver of the specific fitness of each candidate. Once the 

evaluator notifies the solver that it has finished all of its “requested” fitnesses, the solver will 

then, based on its underlying algorithm, use that data to select one or more new solution 

candidates as the next population. 

 

4.5 Implementation Details 

4.5.1 General Structure 

Certain traits and procedures are general to the solver program and are shared by all modules. In 

all cases, the general structure is as follows: 

For the given problem instance, the “first guess” solution candidate (or population) is generated. 

For simplicity, this first solution is the problem as-is, with every possible access time being used 

in all cases. In general, this solution has a large negative fitness, as it is usually physically 

impossible and has very large amounts of conflict. 

Each iteration, the solution or solutions are mutated, and compared to their progenitors – i.e. the 

solution from which they were derived by permutation – within the solver’s framework. In 

general, mutated solutions with higher fitnesses tend to replace the previous ones. Depending on 

the algorithm, not all solutions may be mutated, or not all solutions may be replacing ones of 

higher fitness, or their direct ancestors. 

Once the new solution or population has been generated and used to replace the previous ones, 

the iteration repeats, until one of the stop conditions has been reached, either an iteration limit, 

an average fitness-per-iteration threshold, or one inherent to the solver algorithm. The vast 
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majority of these stop conditions are user-specified, either directly as in the case of an iteration 

limit, or indirectly via other parameters like annealing decay factor. 

With each iteration, data such as fitness and solution time is logged for output as needed. 

 

4.5.2 Program Cycles 

Because the solvers include a large degree of randomness when mutating solutions, any one 

solution process risks being an outlier. To alleviate this, the program is designed to be able to run 

multiple successive attempts to solve a given problem instance, using the same initial guess each 

time. Though the number of cycles defaults to one to save computation time, more accurate data 

benefits from larger values, and some outputs like the statistics are mostly meaningless without 

it. 

 

4.5.3 Chromosome Implementation 

In the genetic algorithms, the chromosome implementation was such that a solution candidate 

was effectively its own chromosome; that is, its list of links were its permutable and transferrable 

traits, with each link being a ‘gene’. A crossover implementation, then, for example, would 

consist of transferring some number of links directly from one solution to another. A 

visualization of this can be found in Figure 4.1: 

 

Figure 4.1. A solution as its own chromosome, with links serving as genes. 
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4.5.3 Mutation 

There are five types of mutations that can be applied, and are selected using a weighted random 

(i.e. a random-number generator with unequal chances for each potential result). These mutation 

types, as well as their selected defaults, are listed in Table 4.1: 

Type Description Default 

Weight 

Default Chance 

Link Shift Translating a link, unmodified, by some 

amount of time; moves both the start and 

end times the same amount 

For a link (ts, tf, i, j) and the mutation 

amount d, the link becomes (ts+d, tf+d, i, 

j) 

5 5/14.1 = 35.4% 

Link Edit Changing the length of a link, by moving 

either the start or end time by some amount 

For a link (ts, tf, i, j) and the mutation 

amounts d1 and d2, the link becomes 

(ts+d1, tf+d2, i, j) 

7.5 7.5/14.1 = 53.2% 

Link 

Removal 

Deletion of a link entirely 0.1 0.1/14.1 = 0.7% 

Link Split Splitting a link into two links, at any point 

between 0.01% and 99.99% of the length; 

this limit is to avoid creating zero-length 

links 

Given a link (ts, tf, i, j) the new links 

become (ts1, tf1, i, j) and (ts2, tf2, i, j) where 

ts2 = tf1 

1 1/14.1 = 7.1% 

Link Merge Merging two links if they are consecutive 

and share spacecraft and station; the new 

link has the start time of the first and the 

end time of the second, making its total 

0.5 0.5/14.1 = 3.5% 
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length the sum of the two original links 

plus any empty time in between. 

Given two links (ts1, tf1, i, j) and (ts2, tf2, i, 

j) where ts2 > tf1,  the new link becomes 

(ts1, tf2, i, j) 

  Sum: 14.1 Sum: 100% 

Table 4.1 - Mutation Settings 

 

The weight, and thus relative probability, of each mutation type is configurable. Very dramatic 

changes like link removal generally have small weights, while small edits like a link shift have 

larger weights, and this is reflected in the chosen defaults. Also user-specified is the number of 

mutations to run per iteration and the maximum magnitude of a mutation. The default values are 

five mutations per iteration, of a magnitude up to 100. These defaults were chosen because 

excessively small values cause the solution to converge very slowly, while overly large ones 

generate a great deal of noise and can stymie proper improvement. As link times are usually 

imagined to be in seconds, a magnitude limit of 20, for example, would then impose a maximum 

translation of up to 20 seconds. Note that the sign of a mutation is random, i.e. any magnitude-

type mutation can be applied in either direction. For example, it is equally likely to shift a link 

forwards in time as to do so in reverse. 

Larger mutation values, and more mutations per iteration, generally accelerate the solution in 

that more space is explored more rapidly. However, by virtue of introducing much more 

randomization, it increases the risk of missing small-scale optima. 

For the sake of simplicity and speed, all mutations are done entirely randomly within the 

assigned parameters; for example, any value of link translation up to the maximum is equally 

likely, as is the chance of any one link being selected should the chosen mutation be a link 

removal. 

All randomizations are performed using the standard Java random libraries, which offer a built-in 

capability to generate pseudorandom numbers. 
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4.5.4 Output 

There are four main output streams (one optional) to the program: 

 Logger – general program state, status updates, debug info (if enabled), final results 

 Mainline Output – transient fitness values; customizable format 

 Statistics – overall solution statistical analysis, like average iteration time, improvement 

per iteration, or the average cycle fitness 

 Profiling (optional) – Records the amount of time spent on different parts of the solution 

program, such as fitness evaluation or file I/O 

The mainline output is customizable in format, determined automatically based on the specified 

output filetype; the two current implementations are CSV for generating graphs and TXT for raw 

text. In either case, the usual content is the fitness information on a per-iteration basis.  

For long solutions that may generate excessively large files, the output density can be 

configured, so that the data is only logged every N iterations. 

For each algorithm type, the statistics output records the following parameters, across all cycles, 

designed to expedite a comparative analysis of different solution types: 

 Worst Final Fitness encountered 

 Best Final Fitness encountered 

 Median Final Fitness 

 Average Final Fitness 

 Fitness Range 

 Fitness Variance 

 Total Execution Time 

 Total Iteration Count 

 Average Time Per Iteration 

 Average Time Per Cycle 

 Average Improvement Per Iteration 

 Average Improvement Per Cycle 

 Average Improvement Per Millisecond 
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 Average Iterations Per Cycle 

The profiler is a debug feature, designed to identify where execution time is being spent (or 

wasted). If enabled, it sorts time into nine categories: 

 Init – Program initialization; making initial guesses, loading settings 

 Fitness – Fitness evaluation of solutions 

 Check – Solution somparison 

 Mutation – Mutating solutions 

 Iteration – Overall iteration 

 Caches – Updating caches of best or other notable solutions 

 IO – File I/O 

 Logging – Generating log messages 

 Output – Generating output data, compiling output file data 

 

A typical profiler output would look as seen in Table 4.2: 

 Total Time (ms) Block Count Fraction Average Block 

Time 

Init 93.902402 49 13.48%  2.751 µs/block 

Fitness 347.360479 1566 49.86%  0.318 µs/block 

Check 14.908991 4130 2.14%  0.005 µs/block 

Mutation 19.415059 1565 2.79%  0.018 µs/block 

Iteration 171.730296 5130 24.65%  0.048 µs/block 

Caches 0.691046 1006 0.10%  0.001 µs/block 

IO 2.868024 1213 0.41%  0.003 µs/block 

Logging 0.136044 8 0.02%  0.024 µs/block 

Output 45.632599 1000 6.55%  0.066 µs/block 

Table 4.2 - Typical Profiler Output 

A block is defined as one operation in a given category, such as one log message or one 

mutation. 
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4.6 Solver Implementations 

4.6.1 Simulated Annealing 

The simulated annealing solver is a standard implementation of such a solver like that seen in 

[6], where specific values for the constants (defined below) were tuned as they appeared to give 

the best results. The solver starts with a ‘temperature’ parameter initialized to 1.0. Each iteration, 

the temperature is multiplied by the decay factor ‘α’, which defaults to 0.95 – a common value in 

the literature [6] – but can be modified at will. At each step, the permuted solution candidate can 

be chosen over its predecessor if its fitness (Fnew) is greater than that of the old (Fold), or, if it is 

not, with a chance proportional to the temperature (T), as per Equation (4.1): 

 
𝑒(

𝐹𝑛𝑒𝑤−𝐹𝑜𝑙𝑑
𝑇

)
 

 

(4.1) 

This formula is the standard annealing formula; as can be seen, the chance of a less-fit solution 

being chosen drops as it becomes more dramatically less fit, and as the solution progresses. 

This process continues until the temperature reaches the chosen minimum value, defaulting to 

10
-6

, again chosen because it is a common choice [6]. 

 

The pseudocode for this algorithm is as follows: 

Input: Initial Guess Solution Candidate (sc), FitnessEvaluator (E), Settings (C), Mutator (m), 

Output (o) 

1. Temperature T = 1.0 

2. while T > C.minTemperature 

a.     Fitness fprev = E.evaluate(sc) 

b.     improved = false, attempts = 0 

c.     while (attempts < C.attemptsPerStep AND [NOT improved]) 

I.         attempts = attempts+1 

II.         SolutionCandidate scm = m.mutate(sc) 

III.         Fitness f = E.evaluate(scm) 
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IV.         Chance ch = 𝑒(
𝑓−𝑓𝑝𝑟𝑒𝑣

𝑇
)
, range 0 to 1 

V.         if doWithChance(ch) then 

VI.             sc = scm 

VII.             improved = true 

VIII.         endif 

a.     endwhile 

3.     endwhile 

4.     T = T*C.decayFactor 

5.     o.logOutput() 

6. endwhile 

For as long as the temperature remains above the threshold temperature, the solver continues to 

iterate. Each iteration, N attempts are made to improve the solution (with N being the number of 

attempts per step specified in the settings). Each attempt, the permuted solution is compared to 

the parent. If more fit, or with a chance based on the fitness reduction, it replaces that parent. If 

this replacement occurs, the iteration is complete, and the temperature is multiplied by α and 

output data is logged.  

 

4.6.2 Tabu Search 

In the Tabu solver, the main solution determination happens not in whether to step to a newly 

generated solution or not, but in the generation of that solution itself. As opposed to the process 

used in simulated annealing, where in each step a solution candidate generates a variant against 

which it is compared, with a Tabu search a whole ‘neighborhood’ of solutions is generated and 

the best of those is chosen as a successor, which always replaces the original, irrespective of 

relative fitness. This is a standard form of such an algorithm, and is based on examples from the 

literature [22] [4] [24]. The determination of the best successor is based on three factors: 

 If a solution is in the Tabu list (the list of visited solutions), it is not a valid successor, 

unless: 

 If a solution meets the Aspiration Condition, its Tabu status is ignored 
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 Of all the solutions meeting the above two listed conditions in a given neighborhood, the 

one with the highest total fitness is selected 

Here the aspiration condition has been defined as if the solution candidate has a fitness greater 

than has ever been seen before, i.e. its fitness value is greater than the maximum recorded across 

the entire solution process. This is very common aspiration condition, and it helps move the 

search to a more promising area of the space. 

Additionally, with each step of the iteration, some caches of solutions are updated: 

 A list of all solution candidates iterated through is maintained, with each new step added 

to the end of the list 

 A shorter “recent memory” list is also added to, but continuously trimmed to keep its 

length below a maximum value (configurable and here defined, somewhat arbitrarily, as 

12 iterations) 

 The solution just iterated through is added to the tabu list. Periodically, the tabu list is 

cleared. 

This iteration process continues until either the iteration limit has been reached, or there is a step 

where there is no viable successor, i.e. all solutions in the neighborhood are tabu and do not meet 

the aspiration condition. 

An important note is that the current implementation forgoes some of the diversification and 

intensification procedures often seen in a Tabu search, as those usually involve restarting the 

search at a location midway through the last one’s process, something not easily compatible with 

the overall design of the solver program. 

 

 

The pseudocode for this algorithm is as follows: 

Input: Initial Guess Solution Candidate (sc), FitnessEvaluator (E), Settings (C), Mutator (m), 

Output (o) 
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1. tabuList = EmptySet(), solutionPath = EmptyList(), recentPath = EmptyList() 

2. Fitness maxFit = 0 

3. ViableSolutions = true 

4. while ViableSolutions 

a.     Neighborhood N = generateNeighborhood(sc) 

b.     Fitness f = E.evaluate(sc) 

c.     ViableSolutions = false 

d.     Fitness f1 = -Infinity 

e.     Initialize “best fitness of neighborhood” to negative infinity (so anything is better) 

f.     for all SolutionCandidate si in N 

I.         Fitness f2 = E.evaluate(si) 

II.         if (f2 > f1 AND [f2 > maxFit OR NOT tabuList.contains(si)]) then 

III.             f1 = f2 

IV.             sc = si 

V.             ViableSolutions = true 

VI.         endif 

VII.         tabuList.add(sc) 

VIII.         solutionPath.add(sc) 

IX.         recentPath.add(sc) 

X.         if (recentPath.size() > C.shortMemorySize) then 

XI.             recentPath.removeFirst() 

XII.         endif 

XIII.         if (f2 > maxFit) then 

XIV.             maxFit = f2 

XV.         endif 

g.     endfor  

h.     o.logOutput() 

5. endwhile 
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As long as available moves remain, the solver generates a population of permuted solutions for 

the current solution each iteration. Of these, the best is selected unless it is both tabu and not 

meeting the aspiration condition. Once selected, a solution is added to the tabu list and the 

memory caches, the availability of moves is reconfirmed and output is logged. 

 

4.6.3 Genetic Solver (Basic) 

The most basic genetic solver, intended primarily as a simple comparative baseline, applies only 

raw mutation, skipping improvements like crossover. In this approach, a solution candidate 

population of size N – configurable in the program, defaulting to 50 since it is large enough to be 

effective at diversifying the search without being so large as to greatly slow computation – is 

randomly generated from the input data by taking the initial guess and permuting it (by applying 

the settings-defined number of mutations) for each member of the population. With each 

iteration, each of these candidates generates N descendants, the most fit of which is selected as 

their successor, if it is also more fit than them. Once all N solutions have been replaced with their 

most-fit children, the iterations continue. 

This solver has no specialized stop condition; it continues until the overarching iterator’s stop 

conditions (such as max iteration count or lack of improvement in some number of generations) 

signals it to terminate. 

 

4.6.4 Genetic Solver (Crossover) 

A variant of the basic solver, the crossover solver inserts an additional step during the mutation 

process. Crossover has two variants; in the first, each randomly-generated offspring is crossed 

with its parent, with the parent transferring it part of itself. This is the approach used by Xhafa. 

et. al [3]. The second approach crosses between parents, before any offspring are generated. This 

approach is more similar to the real-world genetic process upon which crossover is based, but it 

is more logistically complex, in particular when solutions are not readily paired. For that reason, 

the first approach was chosen, where each offspring, once generated, is given one component of 
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its parent, with a component here being defined as one link (i.e. one connection between station 

and spacecraft). 

Like the basic genetic solver, this process continues until externally stopped. A sample crossover 

operation, where a child is permuted and then crossover overrides part of that permutation, is 

depicted in Figure 4.2. 

 

Figure 4.2. A Sample Crossover Operation. 

4.6.5 Genetic Solver (Steady-State) 

The steady-state genetic solver is an extension of the crossover solver, with one modification: 

Where in previous algorithms each solution is always replaced with its successor if the latter is 

more fit, in this algorithm there is only a chance for this to happen. This chance is up to the user 

to define, and controls the tradeoff between improvement and iteration time; here its value has 

been chosen to match much of the literature at 20% [5], so that roughly only one-fifth (less, if 
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there are solutions yielding no superior offspring) of the population is replaced in any one 

iteration. Like most other constants, this parameter is configurable. 

 

Both the basic genetic solvers, and the steady-state genetic solver, have nearly identical 

pseudocode: 

Input: Initial Guess Population (P), FitnessEvaluator (E), Settings (C), Mutator (m), Output (o) 

1. while true 

2.     for all SolutionCandidate sc in P 

a.         if (NOT isSteadyState OR doWithChance(C.steadyStateReplacement)) then 

b.             Fitness fprev = E.evaluate(sc) 

c.             Population children = emptyPopulation() 

d.             while (children.size() < C.childCount) 

I.                 SolutionCandidate child = m.mutate(sc) 

II.                 crossover(sc, child) (Note: Only in the Crossover and Steady-State 

algorithms) 

III.                 children.add(child)  

e.             endwhile 

f.             SolutionCandidate best = E.getBest(children) 

g.             Fitness f = E.evaluate(best) 

h.             if (f > fprev) then 

i.                 P.replace(sc, best) 

j.             endif 

3.         endfor 

4.     endif 

5.     o.logOutput() 

6. endwhile 

Until an outside stop condition is imposed, the solver continues to run, with each iteration 

generating a population of children for each member of the parent population (or fraction 



41 

 

thereof, in the case of steady-state). If applicable, crossover is applied, and for each child 

population the best-fit is selected and compared to the parent, replacing it if superior. 

 

 

Crossover: 

Input: SolutionCandidate (sc), Child SolutionCandidate (child) 

1. Link l = pickRandomLink(sc) 

2. child.replaceSameIndexLink(l) 

 

4.6.6 Genetic Solver (Struggle) 

In contrast to the above algorithms where each solution is replaced with its own offspring, in this 

solver a solution replaces that which it most closely resembles. [9] [15] This is done by 

comparing each the offspring to each member of the parent population, and finding the one with 

the highest ‘similarity value’. This is done with a simple Hamming Distance, where two solution 

candidates are more similar if they have the same number of links N (marked as “entirely 

dissimilar” if they do not), and where each matching link adds 1/N to the similarity value (so two 

completely identical solutions have a similarity value of 1.0). Links are defined as matching if 

they have the same start and end points between the same spacecraft and stations. This is the 

implementation used by Xhafa et al [15]. 

The struggle GA pseudocode is identical to the crossover algorithm, except on the replacement 

step: 

Input: Initial Guess Population (P), FitnessEvaluator (E), Settings (C), Mutator (m), Output (o) 

1. while true 

2.  for all SolutionCandidate sc in P 

a.         Population children = emptyPopulation() 

b.         while (children.size() < C.childCount) 
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I.             SolutionCandidate child = m.mutate(sc) 

II.             crossover(sc, child) 

III.             children.add(child)  

c.         endwhile 

d.         SolutionCandidate best = E.getBest(children)  

e.         SolutionCandidate replaced = findMostSimilar(P, best) 

f.         Fitness fprev = E.evaluate(replaced) 

g.         Fitness f = E.evaluate(best) 

h.         if (f > fprev) then 

i.             P.replace(replace, best) 

j.         endif 

3.     endfor 

4.     o.logOutput() 

5. endwhile 

This is mostly the same as the other genetic implementations, except for the replacement logic. 

In this case, the best child of each population replaces the most-similar member of the parent 

population, rather than their direct parent. 

 

Similarity Evaluation: 

Input: Population (P), SolutionCandidate Target (sc) 

1. maxSimilarity = 0 

2. SolutionCandidate closest = none() 

3. for all SolutionCandidate si in P 

a.     if (si.linkCount != sc.linkCount) then 

b.         similarity = 0 

c.     else 

d.         similarity = countIdenticalLinks(si, sc)/si.linkCount 

e.     endif 

f.     if (similarity > maxSimilarity) then 
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g.         maxSimilarity = similarity 

h.         closest = si 

i.     endif 

4. endfor 

5. return closest 

To find the most-similar member of the population, it is iterated over. For each member, a 

similarity fraction is determined based on the number of matching links between the two 

populations (zero if the link counts differ). The population member with the highest fraction is 

selected. 
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Chapter 5 – Results and Analysis 

Sections 5.1 to 5.7 primarily contain the raw results; most of the analysis of these results can be 

found in Section 5.8. 

Details of problem definitions and a sample portion of a problem can be found in Appendix A. 

The generation of random problems is detailed in Appendix B. 

A problem instance is defined by a set of definitions for all involved spacecraft and ground 

stations, specifying the relevant parameters such as time requirement, weight value, and 

limitations, and a list of all potential passes. 

 

5.1 Setup 

For each solver type, 40 cycles (full solving processes) were run consecutively on the same 

problem instance, i.e. 40 solution attempts were performed on the same problem. The same 

solvers were then run on 40 randomly-generated problems to increase the likelihood of statistical 

validity of the results. In both cases, 40 cycles were run for the same reason; while any 

individual solution attempt may underperform, running a large number makes it very likely that 

the behavior seen is representative of the actual nature of the solvers. 

The solvers were run on a computer with an 8-core, 3.5GHz i7-3770K processor, 12GB of 

1800MHz DDR3 RAM, and a 6 Gb/s OCZ solid-state drive. 

The fitness function defined above in Equation (3.1) was used, with the following weight 

coefficients, shown and explained in Table 5.1: 

Symbol Term Value Reasoning 

WAT Access Time 

Fitness Weight 

2.0 This is the most important parameter in a practical use 

case 

WCT Conflict Time 

Weight 

1.0 Nearly as important as satisfying access time 

WGS Ground Station 

Usage Weight 

0.01 Worth considering, but not nearly as important as 

effective usage of spacecraft 
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WDLV Duration Limit 

Weight 

10
-6 A comparatively minor concern compared to other 

parameters 

WLLV Link Length 

Weight 

10
-6 A comparatively minor concern compared to other 

parameters 

WHV Handover 

Violation Weight 

1000 Very large due to physical impossibility, but finite to 

still allow numerical comparison of solution fitnesses 

Table 5.1 - Fitness Function Weight Values 

 

The program settings were as shown in Table 5.2: 

Iteration Minimum Count 50 

Iteration Maximum Count 2000 

Fitness Per Iteration Threshold 50 

Mutations Per Iteration 5 

Maximum Mutation Magnitude 100 

Annealing Attempts Per Iteration 250 

Annealing Decay Factor 0.99948 

Annealing Temperature Limit 10
-9 

Child Count (Genetic) 8 

Population Size (Genetic) 30 

Steady-State Replacement 20% 

Tabu Short Memory Length 12 Entries 

Table 5.2 - Solver-Specific Settings 

 

5.2 Generated Problem Instance Results 

5.2.1 Fitness 

Comparing the final solution fitnesses obtained by the different solver types for a fixed problem 

(a sample portion of the problem can be found in Appendix A), the data obtained is shown in 

Table 5.3 and Figure 5.1 (‘Average’ denotes the average final fitness across all cycles). 

Percentage improvements are relative to the initial-guess fitness (essentially that of the raw data). 
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Solver Type 

Worst Final 

Fitness 

Worst 

Percent 

Increase 

Average Final 

Fitness 

Average 

Percent 

Increase 

Best Final 

Fitness 

Best 

Percent 

Increase 

Annealing 
-1.720 x 10

6
 0.1867 -5.520 x 10

5
 67.97 -2.243 x 10

5
 86.99 

Tabu 
6.715 x 10

3
 100.4 8.212 x 10

3
 100.5 1.053 x 10

4
 100.6 

Genetic 
7.636 x 10

3
 100.4 8.776 x 10

3
 100.5 9.916 x 10

3
 100.6 

Crossover 
-9.822 x 10

4
 94.30 -6.660 x 10

3
 99.61 1.012 x 10

4
 100.6 

Steady 
-6.254 x 10

5
 63.71 -4.755 x 10

5
 72.41 -2.198 x 10

5
 87.25 

Struggle 
1.171 x 10

4
 100.7 1.412 x 10

4
 100.8 1.733 x 10

4
 101.0 

Table 5.3 - Final Fitness Results by Algorithm 

 

As can be seen, the Tabu search, the Struggle-Strategy genetic algorithm, and the base GA have 

comparable performance, with the Crossover GA having the capability of also achieving the 

same fitness, if somewhat less reliably. The Steady-State solver yields far worse fitnesses in all 

respects, and the Annealing heuristic, while its maximum and average fitness is similar to that of 

the Steady-State, can yield solutions that are far worse than any other algorithm. 
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Figure 5.1 – Average Fitness Improvement and Range by Algorithm for Generated 

Problem; Square points indicate the average values, with the lines extending to show the 

minimum and maximum values  
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5.2.2 Execution Time 

The total execution time across all cycles, as well as the average time per-iteration, is shown in 

Table 5.4 and Figures 5.2 and 5.3: 

Solver Type Total Time (ms) Average Time Per Iteration (ms) 

Annealing 
49900 0.689 

Tabu 
4510000 56.3 

Genetic 
6490000 81.1 

Crossover 
6270000 78.3 

Steady 
1370000 17.2 

Struggle 
6180000 77.2 

Table 5.4 - Execution Time Data by Algorithm 

 

 

Figure 5.2 – Total Execution Time by Algorithm 
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Figure 5.3 – Average Time Per Iteration by Algorithm  

 

Aside from Steady-State, the genetic algorithms have near-identical execution times – a few 

milliseconds per iteration difference at most – while the Steady-State unsurprisingly runs in 

about one fifth the time. Tabu search is somewhat faster, while Annealing demonstrates itself to 

be orders of magnitude faster yet.  
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5.2.3 Fitness vs Time 

Meta-analysis data, regarding the average fitness improvement per iteration as well as per 

millisecond, is shown in Table 5.5 and Figure 5.4: 

Solver Improvement Per Iteration Improvement Per Millisecond 

Annealing 
647 9.40 x 10

2
 

Tabu 
866 1.54 x 10

1
 

Genetic 
866 1.07 x 10

1
 

Crossover 
858 1.10 x 10

1
 

Steady 
624 3.63 x 10

1
 

Struggle 
869 1.12 x 10

1
 

Table 5.5 - Fitness vs Time Data by Algorithm 

 

 

Figure 5.4 – Average Fitness Over Iteration and Millisecond by Algorithm   
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This data shows that even though that – compared to the others – the Simulated Annealing 

heuristic is not normally of comparable performance, at least in terms of output fitness, it is 

much more time-efficient in that it improves far more rapidly per millisecond. 

 

 

Figures 5.5 and 5.6 display the fitness and improvement thereof during the solver process for the 

best run, i.e. the cycle with the highest final fitness. Note that each step on the graph represents 

25 iterations, as the solver only logged output with that frequency. 

 

Figure 5.5 – Best Fitness History by Algorithm  
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Figure 5.6 – Average Improvement Per Iteration by Algorithm 

 

As can be seen in the fitness histories, the Tabu search converges extremely rapidly, with most of 

the genetic algorithms not far behind. Steady-State converges much more slowly, whereas the 

Annealing does not converge to a comparable fitness at all, at least in the time allotted. 
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5.3 Randomized Problem Instance Results 

5.3.1 Fitness 

The data obtained for randomized problem instances is shown in Table 5.6 and Figure 5.7. As 

before, percentage improvements are relative to the initial guess. 

Solver Type 

Worst Fitness Percent 

Improvement 

Average Fitness Percent 

Improvement 

Best Fitness Percent 

Improvement 

Annealing 
15.02 88.07 102.1 

Tabu 
100.0 101.1 117.7 

Genetic 
99.93 100.8 105.4 

Crossover 
85.89 99.51 116.3 

Steady 
0.8698 85.75 103.0 

Struggle 
98.92 101.7 133.7 

Table 5.6 - Final Fitness Results by Algorithm 

Figure 5.7 – Average Fitness Improvement and Range by Algorithm for Random 

Problems; Square points indicate the average values, with the lines extending to show the 

minimum and maximum values  
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Very similar to the results obtained using a non-random problem, the Tabu Search and Struggle-

Strategy yield the highest potential and average fitnesses. Crossover offers potentially larger 

fitness improvement than the base GA, but not reliably. As before, Steady-State and Annealing 

fail to achieve similar improvements to the other algorithms.  



55 

 

5.3.2 Execution Time 

The total execution time across all cycles, as well as the average time per-iteration, is shown in 

Table 5.7 and Figures 5.8 and 5.9: 

Solver Type Total Time (ms) Average Time Per Iteration (ms) 

Annealing 
41500 0.578 

Tabu 
6580000 84.2 

Genetic 
5540000 72.7 

Crossover 
5910000 76.5 

Steady 
1200000 15.6 

Struggle 
5620000 71.4 

Table 5.7 - Execution Time Data by Algorithm 

 

 

Figure 5.8 – Total Execution Time by Algorithm 
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Figure 5.9 – Average Time Per Iteration by Algorithm 

 

These results are nearly identical to those of a fixed problem instance, with the biggest difference 

being that the Tabu search is now the slowest to execute. However, this difference is not large, 

and the main trends remain present. In particular, the Tabu Search and Struggle GA remain the 

best improvers per iteration.  
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5.3.3 Fitness vs Time 

Meta-analysis data, regarding the average fitness improvement per iteration as well as per 

millisecond, is shown in Table 5.8 and Figure 5.10: 

Solver Improvement Per Iteration Improvement Per Millisecond 

Annealing 380 6.57 x 10
2
 

Tabu 416 4.93 x 10
0
 

Genetic 337 4.64 x 10
0
 

Crossover 426 5.57 x 10
0
 

Steady 293 1.89 x 10
1
 

Struggle 450 6.30 x 10
0
 

Table 5.8 - Fitness vs Time Data by Algorithm 

 

 

Figure 5.10 – Average Fitness Over Iteration and Millisecond by Algorithm   
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Figures 5.11 and 5.12 display the fitness and improvement thereof during the solver process for 

the best run, i.e. the cycle with the highest final fitness. 

 

Figure 5.11 – Best Fitness History by Algorithm  
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Figure 5.12 – Average Improvement Per Iteration by Algorithm 

 

The fitness histories show a similar story to with a fixed problem instance. One important result 

here is the Struggle and Crossover GAs demonstrating a superior capacity for exploration of the 

search space, as both found solutions better than the plateau that trapped the other solvers.  



60 

 

5.4 Long-Run Annealing Results on Generated Problem 

Given a large number of iterations, a Simulated Annealing algorithm can sometimes obtain 

solutions of competitive quality to the other solvers, and still much more rapidly in terms of 

elapsed time, as shown in Table 5.9 and Figure 5.13: 

Solver Type Worst Fitness Average Fitness Best Fitness 

Average Total 

Time (ms) 

Long-Run 

Annealing -1.722 x 10
6
 -3.808 x 10

5
 9.804 x 10

3
 

932000 

Tabu 6.715 x 10
3
 8.212 x 10

3
 1.053 x 10

4
 

4510000 

Genetic 7.636 x 10
3
 8.776 x 10

3
 9.916 x 10

3
 

6490000 

Crossover -9.822 x 10
4
 -6.660 x 10

3
 1.012 x 10

4
 

6270000 

Steady -6.254 x 10
5
 -4.755 x 10

5
 -2.198 x 10

4
 

1370000 

Struggle 1.171 x 10
4
 1.412 x 10

4
 1.733 x 10

4
 

6180000 

Table 5.9 – Long-Run Annealing Fitnesses Compared To Other Algorithms 

 

Figure 5.13 – Long-Run Annealing Fitness History 



61 

 

5.5 Hybrid Solution Results on Random Problems 

In an attempt to achieve even better solutions than the individual algorithms, a hybrid algorithm 

was designed so as to be able to take advantage of the rapid improvement of the Tabu search as 

well as the exploratory power of the genetic algorithms. Using the data from Section 5.3 as a 

guide, the hybrid algorithm was chosen to be a Tabu search to iteration 250, then a Struggle-

Strategy GA to iteration 1000, followed by 1000 iterations of annealing to scan for potential 

improvements. The goal was to improve upon the initial guess first, then expand the search to 

find nearby maximums of greater quality than the local. This hybrid was tested against the other 

solvers for ten randomly-generated problem instances. 

This ultimately did not prove to be the case; as can be seen in Figure 5.14, this hybrid, at least in 

terms of final fitness, does not offer noticeably better performance than the other solvers. 

 

Figure 5.14 – Hybrid Solver Performance Comparison, Best Fitness History 
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Figure 5.15 – Hybrid Solver Performance Comparison, Average Improvement Per 

Iteration 

 

5.6 Effect of Annealing Attempt Count 

Though it is not normally present in a standard implementation of Simulated Annealing, the 

number of attempts per iteration, if increased, does improve the performance of the solver, both 

in terms of output quality and convergence speed. However, this effect is not particularly large, 

and ceases to be significant once the number of attempts reaches five to ten attempts per 

iteration. This can be seen in Table 5.10 and Figures 5.16 and 5.17: 
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Annealing Attempts Worst Fitness Average Fitness Best Fitness Iterations to 

Convergence 

(approx.) 

1 -1.723 x 10
5
 -7.582 x 10

5
 -9.302 x 10

4
 >4000 

2 -1.722 x 10
5
 -4.056 x 10

5
 6.020 x 10

3
 3900 

5 -1.722 x 10
5
 -3.507 x 10

5
 7.790 x 10

3
 3850 

10 -1.722 x 10
5
 -2.997 x 10

5
 9.801 x 10

3
 3425 

50 -1.722 x 10
5
 -2.300 x 10

5
 9.149 x 10

3
 3900 

100 -1.722 x 10
5
 -3.010 x 10

5
 8.374 x 10

3
 3850 

250 -1.723 x 10
5
 -2.826 x 10

5
 8.957 x 10

3
 3125 

1000 -1.723 x 10
5
 -2.834 x 10

5
 9.432 x 10

3
 3475 

Table 5.10 – Effect of Annealing Attempt Count Per Iteration 

 

 

Figure 5.16 – Fitness History by Annealing Attempt Count 
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Figure 5.17 – Fitness and Variation by Annealing Attempt Count; Square points indicate 

the average values, with the lines extending to show the minimum and maximum values 
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This improvement also comes at the cost of time, as seen in Figure 5.18: 

 

Figure 5.18 – Improvement Over Iteration and Millisecond by Annealing Attempt Count 

 

5.7 Feasibility Improvements 

All of the solvers improved the feasibility of randomized problem instances, reducing both 

conflict time and handover violation count. A sample of this can be seen in Table 5.11 and 

Figures 5.19 and 5.20, which average these results across six randomly-generated problem 

instances: 

Solver Average Conflict Time Average Spacecraft 

Handover Violations 

Average Ground Station 

Handover Violations 

<Raw Problem> 
1.04 x 10

6
 0.250 6.5 

Annealing 
7.06 x 10

5
 0.167 2.0 



66 

 

Tabu 
4.70 x 10

-1
 0.000 0.0 

Genetic 
2.60 x 10

-1
 0.000 0.0 

Crossover 
6.29 x 10

3
 0.000 0.0 

Steady 
3.85 x 10

5
 0.000 0.0 

Struggle 
1.80 x 10

2
 0.000 0.0 

Hybrid 
1.73 x 10

-1
 0.000 0.0 

Table 5.11 – Solution Feasibility Improvement by Solver 

 

 

Figure 5.19 – Average Total Conflict Time in Final Solution by Solver 
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Figure 5.20 – Average Handover Violation Count in Final Solution By Solver 

 

5.8 Analysis 

5.8.1 – Exploration vs Exploitation 

As expected, different algorithms and their results demonstrate the effects of a different balance 

between exploration and exploitation. In both the generated and the random problems, the Tabu 

search demonstrated easily the greatest capacity for exploitation, converging extremely rapidly 

compared to the other solvers. This is most clearly demonstrated in Figures 5.5, 5.11, and 5.14. 

However – as seen in the same figures – it demonstrated fairly poor ability to then explore the 

larger search space, and given enough time was often surpassed by the genetic algorithms, whose 

large population size and thus large amount of variation give them much better ability to explore. 

This differs somewhat from the literature results [4], but it is almost certainly explained by the 
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simplified implementation of the Tabu search in this work, where it is fairly similar to a Hill-

Climbing algorithm, a heuristic known for its lack of exploration ability [12]. 

 

5.8.2 – Genetic Algorithm Comparison 

As can be seen in Figure 5.7, and is consistent with the literature [15], a simple base genetic 

algorithm offers mediocre performance in its obtained fitnesses, significantly outperformed by 

the crossover and struggle-strategy versions. Similarly, also visible in both Figure 5.7 and Figure 

5.1, and again consistently with the literature, the Steady-State variation offered much poorer 

solutions, most likely because the algorithm is ill-suited for cases like the ones in this work, with 

large population (N=30) and large problem instances [12] [5]. 

Also as expected, the Struggle-Strategy performed well more reliably than the Crossover 

algorithm, where the nature of the crossover implementation has a chance of worsening a 

solution as well as improving it. The large variation in final fitness from the Crossover solver 

reinforces this, especially given that the average fitness is not substantially different from that of 

the base genetic algorithm. This relationship is most obvious in Figure 5.7. 

The most noticeable difference seen between these results and those generally found in the 

literature is the execution time (displayed in Figures 5.2, 5.3, 5.8, and 5.9), especially for the 

Struggle-Strategy heuristic. Where most literature, like in [9] and [15], describes Struggle-

Strategy as very slow – especially for the non-Hash version used in this work – compared to a 

base or even crossover GA, but the results obtained here show times, both total and per-iteration, 

that are mostly the same – a few milliseconds per iteration difference at most – between all 

genetic solvers. One possible explanation of this is that the main reason a non-Hash Struggle GA 

is slow is due to iteration over the population, and it may well be the case that the size here is not 

large enough to create a significant effect. Another possible explanation may be that the 

similarity evaluation used in the literature is more detailed when compared to this work’s 

computationally-simple direct-link-comparison implementation, which would translate to a 

larger effect. 
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5.8.3 – Speed vs Solution Quality 

Unsurprisingly, the algorithms which perform simpler or fewer operations per iteration – namely 

the Simulated Annealing and Steady-State algorithms – yield comparatively poor final solutions 

compared to the other solvers, both for the given problem instance and for randomized problems, 

as can be seen in Figures 5.1 and 5.7. However, the tradeoff is not zero-sum; that is, the final 

solutions are often worse given the same number of iterations, but the time required to perform 

these iterations is markedly less than for the other heuristics. 

One significant result from the data obtained is that the improvement-per-millisecond seems 

almost wholly determined by the absolute speed of the solver, not its per-iteration quality. This 

then implies that given enough iterations to converge, an algorithm that appears poor may 

actually prove in a way superior due to its much higher time efficiency. 

This is especially true for the Simulated Annealing algorithm, which while it converges far more 

slowly per-iteration than any other solver, does so enormously faster per-millisecond (Figure 

5.10). As a result, though the Simulated Annealing algorithm may at first appear ill-suited to this 

sort of application, it offers significant promise in that it has good capability to offer solutions of 

reasonable quality in a fraction of the time required for any other algorithm. Given enough 

iterations, it can achieve good-quality solutions, as can be seen in Figure 5.13. 

Though it is true that Simulated Annealing does not reliably achieve competitive fitness, this is 

of little consequence; the algorithm completes so rapidly compared to the others – on the order of 

seconds as opposed to 15 minutes or more – that it is trivial to simply run a large number of 

cycles and select the best solutions. 

 

5.8.4 – Hybrid Analysis 

The hybrid solvers designed – of which the best was shown earlier – did not prove superior to the 

base algorithms. In particular, as was shown in Figure 5.14, the hoped-for fast improvement 

followed by exploration did not occur. The two most immediate hypotheses for why this may be 

the case are that the solver had already reached a global maximum, or that it was too late in the 

solver process for the exploration to be useful. That is, the early solution given by the Tabu 
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search may have locked the solver into a region of the solution space such that it was at a 

sufficiently isolated a local maximum so that no small permutation could reach a better solution. 

However, the hybrid did prove promising in one way: Where a 2000-iteration Tabu search would 

usually take on the order of five to fifteen minutes, the Hybrid, by virtue of using Simulated 

Annealing for the second half of its cycle, used roughly half that, with no loss in solution quality. 

This is because both the hybrid and the Tabu search see almost all the improvement in the first 

few hundred iterations, something seen in Figure 5.14. 

 

5.8.5 – Solution Feasibility 

As one would hope, and is shown by Figures 5.19 and 5.20, the solutions generated by the 

solvers are far more feasible than the raw input data. Where the initial guess, taken from the raw 

visibility data, has large amounts of conflict and a large number of handover violations, the final 

result is massively better, with a very large reduction in conflict time – sometimes eliminating all 

conflict entirely – and a significant reduction in the number of handover violations, with the 

better solvers often fully resolving them. Even though this solution may not be fully feasible 

directly, this is still fairly close to an ideal result, as a handover violation is fairly easy to resolve 

by manually tweaking the solution whereas a conflict is not. This is also a fairly standard 

outcome; it is not uncommon for the final output from these algorithms to require some manual 

improvement missed by the solver. 

 

5.8.6 – Optimal Solver Choice 

Using the obtained results, the Tabu search seems to be a fairly good candidate as the ideal 

solver for this application and problem formulation; though it may not be as capable of achieving 

global maxima quite as frequently as the better genetic algorithms, it still obtains high-quality 

solutions, and does so in fewer iterations than any other heuristic. 
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Chapter 6 – Conclusions 

6.1. Conclusion 

The primary goals of this work were to: 

 Apply heuristic algorithms as seen in the literature to a real-world problem 

instance, or approximation thereof 

 Perform a comparative evaluation of these algorithms with regard to their 

efficiency in solving the problem 

 Attempt to find an improved algorithm to achieve even greater performance 

To achieve these goals, a solver program was designed and written to apply the selected 

heuristics to randomly-generated problem instances, as well as any other problem provided in a 

similar format. This solver was designed to account for several real-world constraints normally 

ignored in the literature, including handover violations, communication limits, and unequal asset 

values. The output of the program, when using each solver, was then analyzed. 

Through this analysis, the Tabu search positioned itself as a viable candidate for the best choice 

of algorithm of those tested for this application. 

Though the third goal did not ultimately end up being fully achieved – the designed hybrid 

algorithms were no better than the defaults – it remains a feasible goal as only a limited amount 

of time was focused on this objective, and future work here may prove more rewarding. 

 

6.2 – Future Work 

Due to time limitations, not every practical constraint was able to be modelled in this work. In 

particular, the centrality of a pass and the effect of an eclipse penalty were not studied. Though 

this should not affect the comparative results from the different solvers, it may significantly alter 

the nature of the generated solutions. Therefore an exploration of these two constraints would be 

a significant contribution. 

Another improvement would be to try more solver types, including some of the more advanced 

heuristics present in the literature which were forgone here. This includes a Hash version of the 
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Struggle-Strategy genetic algorithm and a full implementation of a Tabu Search, as well as some 

more exotic, complex, and effective algorithms mentioned in the introductions of several of the 

cited works. 

It would also be worth investigating the effect of the fitness function or mutation settings in more 

detail; the settings in this work were based on the literature where available and some testing and 

small-scale optimization elsewhere, and it is possible that different settings may affect 

convergence speed or reliability of the solution quality. 

A large expansion to this work would be to use an actual problem instance. The randomly-

generated problems, though intended to reflect the nature of a real-world problem, ultimately 

may not be fully representative of one. For example, the randomly-generated problems usually 

had few spacecraft handover violations, where a real-world case may have significantly more. 

Finally, more hybrid algorithms could be tested to see if there are potential improvements to be 

made to the existing algorithms, either in terms of solution quality, speed, or both. 
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Appendices 

Appendix A – Subset of Generated Problem Instance 

Where multiple cycles of a solver were used on the same problem instance, as in Sections 5.2, 

5.4, and 5.6, this is a portion of the problem instance that was used, selected to demonstrate its 

structure. Its format is identical to that used as input to the solver program. 

 

Sample Spacecraft Definition: 

id:RandSC_4     - An identifier string used internally 

handover:2.3792548609530506  - Minimum handover time 

weight:2.0545891680755677   - Relative spacecraft weight value 

required:89604.97370507567   - Required communication time amount 

 

Sample Ground Station Definition: 

id:RandGS_3     - An identifier string used internally 

handover:9.623904416641736  - Minimum handover time 

latency:1.9595304162542604   - Network latency value 

weight:6.3342855864701955   - Relative station weight value 

dishes:3     - Number of usable dishes 

 

Sample Visibility Window: 

satellite:RandSC_6    - Which satellite is involved 

station:RandGS_1    - Which ground station is involved  

start:386170.86910751404   - Start time 

end:411524.54620013153    - End time 
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Appendix B – Generation of Random Problems 

Where a randomly-generated-problem was used, it was generated dynamically at the start of the 

program. First, an overall time frame was created, from t0 = 0 and t1 being a random real number 

between 1000 and 500000. All random numbers were generated using the native Java 

pseudorandom libraries. 

Then 12 ground stations were generated with bounded random parameters, as seen in Table A1: 

Parameter Minimum Value Maximum Value Notes 
Dish Count 1 8 Integer; 67% chance of 

only one dish 
Weight 0 10 Any decimal value 
Latency 0 4 Any decimal value 
Handover Time 0 40 Any decimal value 
Communication Limit 1000 500000 Any decimal value; 

87.5% chance of being 

Infinity 

Table B1 – Randomized Ground Station Parameters 

 

Next, 32 ground stations were generated with bounded random parameters, as seen in Table A2: 

Parameter Minimum Value Maximum Value Notes 
Required Time 0 120000 Any decimal value 
Weight 0 10 Any decimal value 
Handover Time 0 10 Any decimal value 
Max Link Length 1000 100000 Any decimal value 
Communication Limit 1000 500000 Any decimal value; 

87.5% chance of being 

Infinity 

Table B2 – Randomized Spacecraft Parameters 

 

Finally, for each pair of spacecraft and ground stations, with a 12.5% chance, between one and 

six visibility windows were created, with start and end times randomly-chosen in the overall time 

frame (with a check to ensure two windows do not overlap).   
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